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ON THE ALGORITHMIC ASPECTS OF DISCRETE AND
LEXICOGRAPHIC HELLY-TYPE THEOREMS

AND THE DISCRETE LP-TYPE MODEL∗

NIR HALMAN†

Abstract. Helly’s theorem says that, if every d+1 elements of a given finite set of convex objects
in R

d have a common point, there is a point common to all of the objects in the set. In discrete Helly
theorems the common point should belong to an a priori given set. In lexicographic Helly theorems
the common point should not be lexicographically greater than a given point. Using discrete and
lexicographic Helly theorems we get linear time solutions for various optimization problems. For this,
we introduce the DLP-type (discrete linear programming–type) model, and provide new algorithms
that solve in randomized linear time fixed-dimensional DLP-type problems. For variable-dimensional
DLP-type problems, our algorithms run in time subexponential in the combinatorial dimension.
Finally, we use our results in order to solve in randomized linear time problems such as the discrete
p-center on the real line, the discrete weighted 1-center problem in R

d with either l1 or l∞ norm,
the standard (continuous) problem of finding a line transversal for a totally separable set of planar
convex objects, a discrete version of the problem of finding a line transversal for a set of axis-parallel
planar rectangles, and the (planar) lexicographic rectilinear p-center problem for p = 1, 2, 3. These
are the first known linear time algorithms for these problems. Moreover, we use our algorithms to
solve in randomized subexponential time various problems in game theory, improving upon the best
known algorithms for these problems.
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1. Introduction.

1.1. Helly-type theorems. The classical theorem of Helly stands at the origin
of what is known today as the combinatorial geometry of convex sets. It was discovered
in 1913 and may be formulated as follows.

Theorem 1.1 (Helly’s theorem). Let H be a family of closed convex sets in Rd,
and suppose either H is finite or at least one member of H is compact. If every d+ 1
or fewer members of H have a common point, then there is a point common to all
members of H.

A possible generalization of Helly’s theorem is as follows. Let H be a family of
objects, and let P be a predicate on subsets of H. A Helly-type theorem for H is of
the form:

There is a constant k such that for every finite set G, G ⊆ H, P(G), if and only
if, for every F ⊆ G with |F | ≤ k, P(F ).

The minimal such constant k is called the Helly number of H with respect to
the predicate P. If no such constant exists, we say that the Helly number of H with
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respect to P is unbounded or infinite (∞). In Helly’s theorem, the Helly number is
d + 1, and P is the predicate of having a nonempty intersection.

Over the years, a vast body of application analogues and far-reaching generaliza-
tions of Helly’s theorem has been assembled in the literature (see, for instance, the
excellent surveys of [10, 12, 16]).

It is possible to give lexicographic versions to some of the Helly theorems. For
instance, the following theorem is a lexicographic version of Helly’s theorem. (Recall
that, for every x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd, x is said to be lexicographically
smaller than y (lsmaller, in short, or x <L y) if either x1 < y1 or there exists d ≥ k > 1
such that xi = yi for i = 1, 2, . . . , k − 1 and xk < yk.)

Theorem 1.2 (lexicographic Helly’s theorem [26, 20]). Let H be a finite family
of convex sets in Rd. For every x ∈ Rd, if every d + 1 or fewer members of H have
a common point which is not lexicographically greater than x, then there is a point
common to all members of H which is also not lexicographically greater than x.

This theorem is folklore. It derives directly from Helly’s theorem and Lemma
8.1.2 in [26] and is proved independently in [20]. d+1 is called the lexicographic Helly
number of H with respect to intersection (lex-Helly number, in short). The following
theorem is a discrete version of Helly’s theorem, due to Doignon.

Theorem 1.3 (see [11]). Let H be a finite family of at least 2d convex sets in
Rd. If every 2d or fewer members of H have a common point with integer coordinates,
then there is a point with integer coordinates common to all members of H.

2d is called the discrete Helly number of H with respect to intersection. Hal-
man [20] provides discrete versions to numerous known Helly theorems. For instance,
a special case of Helly’s theorems is when the given convex sets are axis-parallel boxes
in Rd. In this case the Helly number is just 2 [9]. A discrete version of this Helly
theorem is as follows.

Theorem 1.4 (Theorem 2.10 in [20]). Let S be a finite set of points in Rd, and
let D be a finite family of closed boxes in Rd with edges parallel to the axes. If every
2d or fewer members of D have a common point in S, then there is a point in S
common to all members of D.

A combined discrete-lexicographic version of this Helly theorem is as follows.
Theorem 1.5 (Theorem 2.10 in [20]). Let S be a finite set of points in Rd, and

let D be a finite family of closed boxes in Rd with edges parallel to the axes. For
every x ∈ Rd, if every 2d or fewer members of D have a common point x′ ∈ S, with
x′ ≤L x, then there is a point x∗ ∈ S common to all members of D with x∗ ≤L x.

1.2. Algorithmic aspects of finite Helly numbers. In this section we discuss
two optimization models and show their relations to Helly numbers.

The LP-type model. Matoušek, Sharir, and Welzl [28] defined a model which
generalizes linear programming (LP) and called it the LP-type model (see definitions
in section 2). Fixed-dimensional LP-type problems can be solved efficiently by LP-
type algorithms such as the ones of Matoušek, Sharir, and Welzl [28] or Kalai [22].
The algorithm of Clarkson [8], which was originally formulated to solve LP, fits the
LP-type model as well [31, 7, 15]. This provides a tool for obtaining linear time
algorithms to various (continuous) optimization problems, mainly in computational
geometry and location theory, as shown in [2, 28].

The DLP-type model. In continuous optimization models related to LP-type
problems, the feasible set is defined by a finite set of constraints. In the discrete
versions, in addition to the above, there is also a prespecified set of relaxations. A



ON THE POWER OF DISCRETE HELLY THEOREMS 3

feasible solution is restricted to be in the set of relaxations as well as to satisfy
the constraints. Integer programming (IP) is an example of a discrete optimization
problem where the set of relaxations is the integer lattice. Another example for
a discrete optimization problem is the discrete point set width problem, where we
are given a finite set of points in the plane (i.e., constraints) and a finite set of
permissible directions (i.e., relaxations). The goal is to find the minimal width of a
band with a permissible direction which contains all of the points (see more detail
about this problem in section 4). Many times discrete optimization problems are
proved to be computationally harder to solve than their corresponding continuous
versions (e.g., LP vs. IP and continuous planar Euclidean 1-center vs. the discrete
version as proved in section 9). In this paper we propose the following framework
for solving discrete optimization problems: We generalize integer programming by
introducing the discrete LP-type (DLP-type) model. We provide randomized linear
time algorithms to solve fixed-dimensional DLP-type problems satisfying a condition
we call the violation condition (VC).

Helly numbers and the two optimization models. In [20] Halman defines
the notion of discrete and lexicographic Helly theorems, provides lexicographic and
discrete versions to numerous known Helly theorems, and studies the relations be-
tween the different types of Helly theorems. In this paper we show that discrete and
lexicographic Helly theorems have interesting algorithmic aspects as well. In 1994,
Amenta [2] showed that every parameterized Helly system satisfying a condition called
the unique minimum condition (UMC) results in a fixed-dimensional LP-type problem
(see definitions of the terms parameterized Helly theorems and UMC in section 2.3).
In this paper we define lexicographic parameterized Helly systems and show that ev-
ery such system results in a fixed-dimensional LP-type problem. Unlike in [2], no
additional conditions are needed. Similarly to [2], this provides a framework for ob-
taining linear time algorithms (i.e., the LP-type algorithms mentioned above) for the
optimization problems related to these Helly numbers. In this way the existence of
finite lexicographic Helly numbers implies the solvability of their corresponding opti-
mization problems by the linear time LP-type algorithms. Similarly to the above, we
show that every lexicographic-discrete parameterized Helly system can be formulated
as a fixed-dimensional DLP-type problem.

1.3. Applications. We improve upon the best known algorithms for the seven
problems listed below. The problems differ in the way we solve them. The first
three are solved by using the LP-type model and its connection to lexicographic Helly
theorems. The next four problems are solved via the DLP-type model. While the
first three of them are solved via lexicographic-discrete Helly theorems, the fourth is
not. We solve in this paper the first five problems in linear time. Due to its length,
we refer the reader to [17] for details of the solution of the sixth problem. The first
six problems lie in the fields of research of either computational geometry or location
theory. The seventh problem is solved in [19] and is different, since it lies in game
theory and is solved in strongly subexponential time. We summarize the solutions we
give to each of these problems in Table 1.1.

1. Planar lexicographic weighted rectilinear p-center optimization
problem (p = 1, 2, 3). Given a finite set H = {h1, . . . , hn} of reference points
in the plane and a set W = {w1, . . . , wn} of weights in R+, find the lexicograph-
ically smallest vector (λ1, x1, y1, x2, y2, . . . , xp, yp) ∈ R+ × R2p such that for every
scaled square λ1

wi
hi, hi ∈ H, centered at hi with radius λ1

wi
, there exists 1 ≤ j ≤ p
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Table 1.1

A comparison between the various problems solved.

Problem number 1 2 3 4 5 6 7
Running time Linear Linear Linear Linear Linear Linear Subexponential
Model used LP-type LP-type LP-type DLP-type DLP-type DLP-type LP/DLP-type
Type of Helly
theorem used lex lex lex lex-discrete lex-discrete None None

such that λ1

wi
h contains (i.e., is pierced by) point (xj , yj) (we call λ1 the radius and

(x1, y1, . . . , xp, yp) the centers vector).

For p > 3 [32] showed a lower bound of Ω(n log n). [32, 21] solve the corresponding
nonlexicographic problem in linear time.

2. Line transversal of axis-parallel rectangles optimization problem.
Given a set B of axis-parallel rectangles, find the minimal scaling factor λ∗ such that
the set of scaled rectangles λ∗ admits a line transversal.

For the next problem we use the following definitions. A set H of convex objects is
called totally separable if there exists a direction such that each line in this direction
intersects at most one convex object from H. We call the objects in H simple if
they have a constant size storage description, the intersections and common tangents
between any two objects can be found in constant time, and the minimal scaling factor
for any 3 objects to admit a line transversal can be found in constant time.

3. Line transversal of totally separable set of convex planar objects
decision problem. Given is a totally separable finite family H of simple convex
objects (the direction of separation is not given). Decide whether H admits a line
that intersects all of the objects in H.

Given the order in which any line transversal should meet the objects in H, the
problem is solvable in linear time [13].

4. Lexicographic discrete line transversal of axis-parallel rectangles
problem. Given a finite family D of axis-parallel rectangles and a finite set S of
line directions, find a line transversal for D, y = ax + b, with the lexicographically
smallest vector (a, b) satisfying a ∈ S.

We show in section 10 that a similar problem, where, instead of a finite family
S of line directions, we are given a finite family S′ of lines, and the goal is find the
lexicographically smallest vector (a, b) ∈ S′ such that y = ax + b is a line transversal
for D, has a lower bound of Ω(n log n) under the algebraic computation tree model.

5. Discrete weighted 1-center problem in Rd with an l∞ norm. Given
are sets D = {d1, . . . , dn} and S = {s1, . . . , sm} of points in Rd and a set W =
{w1, . . . , wn} of weights in R+. Find a point s ∈ S (center) which minimizes the
real function r(D,S) = mins∈S maxi wi‖s− di‖∞ (the optimal radius). We solve the
corresponding rectilinear problem (i.e., with an l1 norm) in linear time as well.

It is folklore that the latter problem restricted to the case S = D is solvable in
O(n log n) time.

6. Discrete p-center problem on the real line. Given a finite set D of
real numbers (points) and a finite set S of real numbers (center locations), find a
subset C ⊆ S of p points (centers) which minimizes the real function rp(D,S) =
minC⊆S,|C|≤p maxh∈D dist(h,C) (the optimal radius). For every finite set of real num-
bers C and real h, dist(h,C) = minc∈C |h− c|. Due to space limitations we refer the
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interested reader to Chapter 9 in [17] for a detailed description of our linear time
solution for this problem.

Assuming the order of the points on the line is given, the discrete p-center prob-
lem on the real line is solvable in linear time by the fairly involved technique of
Frederickson [14].

7. Simple stochastic games and infinite games. The first strongly subexpo-
nential algorithm for binary simple stochastic games (SSGs) was given by Ludwig [25]
in 1995 by using ideas from the algorithms of [22] and [31] for LP-type problems.
Halman [19] gives the first strongly subexponential solution for (nonbinary) SSGs by
formulating the SSG as an LP-type problem and then calculating optimal strategies
for both players by the LP-type algorithm of [31]. Since several infinite games are
linearly reducible to nonbinary SSGs, this gives strongly subexponential algorithms to
parity games (PGs) and the first strongly subexponential algorithms to mean payoff
games (MPGs) and discounted payoff games. Halman notes in [19] that nonbinary
SSGs can most naturally be formulated as discrete LP-type problems, because of the
essentially primal-dual nature of the two-player game. We note that, independently,
Björklund, Sandberg, and Vorobyovn [6] developed a (nonstrongly) subexponential
algorithm for MPGs, a strongly subexponential algorithm for PGs [5], and a (non-
strongly) subexponential algorithm to nonbinary SSGs [4]. All of their algorithms
are “tailored” to the specific game solved and “adapt” ideas from the algorithms of
[25, 22, 31] (see formal definitions of all of these games in [19]).

Our contribution. In this paper we define a new model for solving discrete
optimization problems, the DLP-type model. We develop for it several linear time
(randomized) algorithms. We study the relations between discrete Helly theorems and
the DLP-type model. We study also the relations between (nondiscrete) lexicographic
Helly theorems and the LP-type model. We show that every lexicographic parame-
terized Helly system results in a fixed-dimensional LP-type problem. In this case the
UMC stated in the main theorem of [2] is not needed. By incorporating these “ingre-
dients” together we provide the first linear time algorithms for the first six problems
defined above. All of these problems are related to computational geometry and lo-
cation theory. By solving the seventh problem we show (for the first time, to the best
of our knowledge) that the LP-type and DLP-type models have applications in other
fields of research, such as game theory. Moreover, we show that these two models are
also useful for solving non-fixed-dimensional problems in subexponential time.

Organization of the paper. In this paper we extensively use terms which are
defined in [2], two tools for establishing linear time algorithms: the LP-type framework
and Helly-type results, which are reviewed in [2, 32], and the two LP-type algorithms
in [8, 32]. In order to make the paper self-contained we review these terms, models,
and algorithms in section 2. In section 3 we define a dual version of the LP-type
model, which we use in order to define the DLP-type model in section 4. In section 5
we develop algorithms which solve (fixed-dimensional) DLP-type problems in (ran-
domized) linear time. The rest of the paper is dedicated to show the interrelations
between discrete and lexicographic Helly theorems and DLP-type and LP-type mod-
els. In section 6 we study the relations between lexicographic Helly theorems and
the LP-type model. By showing that every lexicographic parameterized Helly sys-
tem results in a fixed-dimensional LP-type problem, we give a partial solution for the
main open problem raised by Amenta [2], who asked to characterize the parameter-
ized Helly systems which result in fixed-dimensional LP-type problems. In section 7
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we demonstrate the applicability of these relations by solving the first problem dis-
cussed in this section—the planar lexicographic weighted rectilinear p-center problem
(p = 1, 2, 3) in linear time. In section 8 we study the relations between discrete and
lex-discrete Helly theorems and the DLP-type model. In sections 9 and 10 we solve
in linear time the next four problems discussed in this section.

2. Literature review. In this section we review some of the definitions and
results given in Amenta [1, 2], Sharir and Welzl [31], Matoušek, Sharir, and Welzl [28],
and Clarkson [8]. The term used in the first two papers is GLP (general linear
programming) rather than LP-type.

2.1. LP-type problems.
Definition 2.1. An abstract problem is a tuple (H,ω), where H is a finite set

of elements (which we call constraints) and ω is an objective function from 2H to
some totally ordered set Λ which contains a special maximal (minimal) element ∞
(−∞), respectively. The goal is to compute ω(H).

Definition 2.2. Let (H,ω) be an abstract problem. For any subset G ⊆ H
we say that F ⊆ G defines the solution on G (F is a solution-defining set of G) if
ω(F ) = ω(G).

Clearly, for every G ⊂ H, G is a defining set for itself.
Definition 2.3. An LP-type problem is an abstract problem (H,ω) that obeys

the following conditions (when we write <, ≤, = etc., we mean under the ordered
set Λ):

1. Monotonicity: For all F ⊆ G ⊆ H : ω(F ) ≤ ω(G) (so the special element
−∞ is such that ω(∅) = −∞).

2. Locality: For all F ⊆ G ⊆ H, with ω(G) = ω(F ) 
= −∞, and for each h ∈ H,
if ω(G ∪ {h}) > ω(G) then ω(F ∪ {h}) > ω(F ).

Note that lexicographic linear programming, where the input is a finite set of closed
half-planes in Rd and the output is the lsmallest point which lies in all half-planes,
is an LP-type problem: H is the finite set consisting of these closed half-spaces, and
the function ω(G) returns the coefficients of the lexicographic minimum point in

⋂
G.

Adding half-planes to H cannot decrease the value of ω, so the monotonicity condition
is satisfied. As for the locality condition, note that if ω(G) = ω(F ) 
= −∞, then ω(G)
is realized in a single point x∗ ∈ Rd. The fact that ω(G ∪ {h}) > ω(G) implies that
x∗ /∈ h. Therefore, ω(F ∪ {h}) > ω(F ) as needed. An immediate consequence of the
monotonicity and locality conditions is the following.

Corollary 2.4. Let (H,ω) be an LP-type problem. For all F ⊆ G ⊆ H,
with ω(G) = ω(F ) 
= −∞, and for each h ∈ H, ω(G ∪ {h}) > ω(G) if and only if
ω(F ∪ {h}) > ω(F ).

We give now several definitions for every abstract problem (H,ω) which meets
the monotonicity condition. Let G ⊆ H be arbitrary, and let n = |H|. If ω(G) = ∞,
we say G is infeasible; otherwise we call G feasible. If ω(G) = −∞, we say G is
unbounded ; otherwise we call G bounded. We say a constraint h ∈ H violates G when
ω(G ∪ {h}) > ω(G). (Using this definition we note that the locality condition says
that, for every bounded subset G ⊆ H, defining set F for G, and h /∈ G, if h violates
G, then h must violate the defining set F . Corollary 2.4 says that, for any such
G,F, h, h violates G if and only if it violates its defining set F .) A basis B is a set
B ⊆ H, with ω(B′) < ω(B) for all proper subsets B′ of B. A basis for G is a basis
B ⊆ G, with ω(B) = ω(G). (In other words, a basis for G is a minimal (by inclusion)
defining set of G.) We note that due to the monotonicity condition a basis for G, for
any G ⊆ H, always exists. The basis for any unbounded set is the empty set.
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Observation 2.5. Let (H,ω) be an LP-type problem, let G ⊂ H, and let B ⊆ G
be such that ω(B) = ω(G). If ω(G) < ω(H), then there exists a constraint h ∈ H \G
which violates B.

To see this, it is sufficient to show that if no h ∈ H \G violates B, then ω(G) =
ω(H). We add to B and G an arbitrary constraint h ∈ H \G. Since h does not violate
B, the locality condition implies that h does not violate G and that ω(B) = ω(G∪{h}).
Repeating this argument |H \G| times, we get that ω(G) = ω(H) as needed.

So B is a basis for G if and only if B ⊆ G is a basis and no element in G violates
it. We say that h ∈ G is extreme in G if ω(G \ {h}) < ω(G). Thus h ∈ G is extreme
in G if and only if h violates G \ {h}. From the minimality of a basis, every h in a
basis B is extreme in B. From the monotonicity condition we get the following.

Observation 2.6. Let (H,ω) be an LP-type problem. Every h ∈ G which is
extreme in G ⊆ H is contained in every basis B for G.

In other words, a basis B for G contains all of the constraints which are extreme
in G. We note that not all of the elements in B are extreme in G as seen in Figure 2.1.
Let G be the set of 5 lines. The two thick lines form a basis B for G, and each one of
them is extreme in B. We note that the line with negative slope is extreme in G.

The terms “violates” and “extreme” are somewhat complementary: For h ∈ G
we may ask whether h is extreme in G (or, equivalently, whether it violates G \ {h}).
Similarly, for h /∈ G we may test whether h violates G (or, equivalently, whether it is
extreme in G∪{h}). Using the monotonicity condition and the observation above we
get the following.

Observation 2.7. Let (H,ω) be an LP-type problem. Let B be a basis for G ⊆ H.
If h /∈ G violates B, then h is extreme in G ∪ {h} and is a member of every basis for
G ∪ {h}.

The combinatorial dimension d of (H,ω) is the maximum size of every basis for
any feasible subset G. An abstract problem which meets the monotonicity condition
and is of combinatorial dimension d, where d is independent of |H|, is called fixed-
dimensional. A d-dimensional LP-type problem where the cardinality of every basis
is exactly d is called a d-dimensional basis-regular LP-type problem. Note that if such
a problem is feasible and bounded, then ω(H) = maxG⊂H, |G|=d ω(G).

For instance, in lexicographic linear programming, if
⋂
G 
= ∅, the lexicographi-

cally smallest point in
⋂
G is determined by a basis of cardinality at most d (if G is

unbounded, its basis is ∅). Notice that, although more than d half-spaces may have
the minimum point on their boundary, a subfamily of at most d of them is sufficient to
determine the minimum. In Figure 2.1 below, the thick two lines are a basis. Notice
also that a subfamily G may have more than one basis.

2.2. LP-type algorithms. An LP-type algorithm takes a d-dimensional LP-
type problem (H,ω) and returns a basis B for H. Several efficient randomized LP-
type algorithms are known such as the ones of Clarkson [8], Matoušek, Sharir, and
Welzl [28], or Kalai [22]. In the following two sections we review the first two al-
gorithms. We develop in section 5 a DLP-type algorithm by combining these two
algorithms together.

It is not clear, of course, what computational operations are possible on an ab-
stract object such as (H,ω). We assume two computational primitives and analyze the
various algorithms by counting the number of calls to these primitives. The running
time for a specific LP-type problem then depends on how efficiently the primitives
can be implemented. Let us now define the two primitive operations. A basis com-
putation Basis(G) takes a family G of at most d + 1 constraints and finds a basis for
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Fig. 2.1. A basis for LP.

G. A violation test Violation(B, h) takes a basis B and a constraint h and returns
true if and only if h violates B (i.e., B is not a basis of B ∪ {h}). Let tb be the
time required for a basis computation and tv be the time required for a violation
test.

2.2.1. Clarkson’s algorithm. As originally presented, Clarkson’s algorithm is
aimed for linear programming. As Sharir and Welzl [31] note, the algorithm solves
LP-type problems in the same time bound. We review the algorithm in the context of
linear programming. Given a lexicographic linear programming problem in d variables
with a set of constraints H (|H| = n) and objective function ω, we view it as the d-
dimensional LP-type problem (ω,H).

Let x∗
s be an algorithm which gets input of size up to 9d2 (d is the dimension of

the problem) and outputs a basis for H. The algorithm of Clarkson [8] is as follows:

Function x∗
m(H) (Returns a basis for H)

1. Let V ∗ := ∅, let V := H

2. If |H| ≤ 9d2, then return x∗
s(H)

3. Else repeat the following until V = ∅:
(a) Choose R ⊂ H \ V ∗ uniformly at random, |R| = d

√
|H|

(b) Let B := x∗
i (R ∪ V ∗), and let V := {h ∈ H | Violation(B, h) =

TRUE}
(c) If |V | ≤ 2

√
|H|, then let V ∗ := V ∗ ∪ V

4. Return B

Function x∗
i (H)

1. Let V := H. For every h ∈ H let νh := 1

2. If |H| ≤ 9d2, then return x∗
s(H)

3. Else repeat the following until V = ∅:
(a) Choose R ⊂ H at random according to weights νh, |R| = 9d2

(b) Let B := x∗
s(R).

(c) Let V := {h ∈ H | Violation(B, h) = TRUE}
(d) If ν(V ) ≤ 2ν(H)/(9d− 1), then for every h ∈ V let νh =: 2νh

4. Return B
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As Amenta notes in [1], Clarkson’s randomized algorithm for solving an LP-type
problem (H,ω) improves the running time by separating the dependence on d and on
n. He uses a three-level algorithm, with a “base-case” algorithm at the lowest level
(x∗

s) solving subproblems of size up to 9d2.
The higher two levels x∗

m and x∗
i reduce the problem to smaller problems using

the following idea. Take a sample R ⊆ H, find a basis B for R by calling the next
lower level algorithm, and then find the subset V ⊆ H of all of the constraints which
violate B. If V is empty, Observation 2.5 tells us that B is a basis for H as well.
Otherwise, by the monotonicity condition ω(H) > ω(B). Let B′ be a basis for H,
and let H ′ = B∪B′. Clearly ω(H) = ω(H ′), so B′ is a basis for H ′ as well. Applying
Observation 2.5 for H ′ and B we get that there exists a constraint in B′ which violates
B. We’ve just proved the following lemma.

Lemma 2.8 (Lemma 3.1 in [8]). If the set V is nonempty, then it contains at
least one constraint from every basis B for H.

The purpose of the top level x∗
m is to get the number of constraints down so we

can apply the second level (x∗
i ), which is more efficient in d but less efficient in n. In

the top level we take a random sample R, with |R| = d
√
n so that E[|V |] = O(

√
n);

that is, we take a big random sample which gives an expected small set of violators.
This is a consequence from the following lemma.

Lemma 2.9 (Lemma 3.2 in [8]). Let V ∗ ⊂ H, and let R ⊂ H \ V ∗ be a random
subset of size r, with |H \ V ∗| = n. Let V ⊂ H be the set of constraints which violate
R ∪ V ∗. Then the expected size of V is no more than d(n− r + 1)/(r − d).

We iterate, keeping the violators in a set V ∗ and finding a basis B′ for R ∪ V ∗.
At every iteration in the “repeat-until” loop of x∗

m, we add the violators to V ∗, so
that after d iterations V ∗ contains a basis B for H and E[|V ∗|] = d

√
n. Solving the

subproblem on V ∗ then gives the answer.
All recursive calls from the first level x∗

m call the second level algorithm x∗
i , which

uses small random samples of size 9d2. Initially the sample R is chosen using the
uniform distribution, but then we double the weights of elements in V and iterate.
Since at least one basis element always ends up in V , eventually they all become so
heavy that we get B ⊆ R. The analysis shows that the expected number of samples
before B ⊆ R is O(d log n). Since we need O(n) work at each iteration to compare
each constraint with the basis B′ of R, without the first phase this algorithm alone
would be O(n log n). All of the recursive calls from this reweighting algorithm are
made to some “base-case” algorithm x∗

s.
Recall that tv is the time required for a violation test, and let ts(n) be the time

required for function x∗
s to run on n constraints. In his paper, Clarkson chooses x∗

s to
be the simplex algorithm for linear programming on sets of 9d2 elements and estimates
its running time by ts(9d

2) = d
d
2 +O(1), using Stirling’s approximation. Given a set H

of n elements and a basis B (which in linear programming is equivalent to a point in
Rd), the time needed for a single call to function Violation(B, h) is d. Thus the time
needed to execute the line

V ← {h ∈ H | Violation(B, h) = TRUE}

in the algorithm is dn, or ntv.
In his time complexity analysis, Clarkson also uses a lemma to show that progress

will be made during the execution of the algorithm. We say that an execution of the
loop in x∗

m (x∗
i ) is successful if the test |V | ≤ 2

√
|H| (ν(V ) ≤ 2ν(H)/(9d−1)) returns

“true.”
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Lemma 2.10 (Lemma 3.3 in [8]). The probability that any given execution of a
loop body is successful is at least 1/2, and so on average two executions are required
to obtain a successful one.

Let Ti(n) (Tm(n)) be the expected time required by x∗
i (x∗

m) for a problem with
n constraints.

Theorem 2.11 (Theorem 3.4 in [8]). Given an LP-type problem, the iterative
algorithm x∗

i requires

Ti(n) = O(d log n(ntv + ts(9d
2)))

expected time, where the constant factors do not depend on d.
Theorem 2.12 (Theorem 3.5 in [8]). Given an LP-type problem, algorithm x∗

m

requires

Tm(n) = O(d(Ti(d
√
n) + ntv)) = O(d2 log n(

√
ntv + ts(9d

2)) + dntv)

expected time, where the constant factors do not depend on d.
We can see Clarkson’s algorithm as a tool for reducing an LP-type problem with

many constraints to a collection of small problems with a few constraints.

2.2.2. Sharir and Welzl’s algorithm. As Amenta notes in [1], the algorithm of
Sharir and Welzl [31] for solving an LP-type problem (H,ω) is a monotone algorithm;
i.e., the sequence of values resulted by the calls the algorithm makes to the basis
calculation primitive is monotone increasing. The idea is to select a random constraint
h ∈ H and recursively find a basis B for H\{h}. If h doesn’t violate B, then output B;
otherwise solve the problem recursively starting from a basis for B∪{h}. Although the
statement of the algorithm does not include a set of tight constraints (i.e., the set of
constraints which the current minimum must satisfy), Observation 2.7 demonstrates
that every basis found in the recursive call will include h. So the dimension of the
problem is effectively reduced. They show that the algorithm requires expected O(n)
calls to the Basis primitive on subproblems with d + 1 constraints and O(n) calls to
the Violation primitive, when the constant depends exponentially on d.

For the sake of completeness we state their algorithm. Function lptype is called
with an initial basis C which they call a candidate basis. C is not necessarily a basis
for H. It can be viewed as some auxiliary information one gets for the computation
of the solution. Note that C can have influence on the running time and output of
the algorithm (e.g., when there are several optimal bases).

Function lptype(H,C)

1. If H = C, then return C

2. Else

(a) Choose h ∈ H \ C uniformly at random

(b) Let B := lptype(H \ {h}, C)

(c) If Violation(B, h) = TRUE, then return lptype(H,Basis(B ∪{h}))
(d) Else return B

Matoušek, Sharir, and Welzl [28] cite explicitly all of the properties which are needed
for the correctness and time analysis of their algorithm

Lemma 2.13 (see [28]). Let (H,ω) be an abstract problem. The correctness and
time analysis of algorithm lptype applied on (H,ω) as described in [28] are valid, if
for all F,G ⊆ H, F ⊆ G, and h ∈ H:
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1. ω(G) ≥ ω(F ).
2. If ω(G) = ω(F ) > −∞, then h violates G if and only if h violates F .
3. If ω(G) < ∞, then any F ⊆ G has at most d extreme constraints.
4. If ω(G) < ∞, then every basis B ⊆ G for G has exactly d constraints.

We note that a d-dimensional basis-regular LP-type problem (H,ω) satisfies all
of the above properties: The monotonicity condition yields property 1. Corollary 2.4
yields property 2, the d-dimensionality of the (H,ω) together with Observation 2.6
yield property 3, and property 4 (which is needed only for the time analysis) results
because (H,ω) is basis-regular.

A simple inductive argument shows that the procedure returns the required an-
swer. This happens after a finite number of steps, since the first recursive call decreases
the number of constraints, while the second call increases the value of the candidate
basis (and there are only finitely many different bases).

Recall that tv denotes the time required for a violation test and tb denotes the
time required for the Basis primitive on subproblems with d + 1 constraints. Let
nv (nb) be the number of violation tests (basis computations) performed throughout
the execution of the algorithm. Matoušek, Sharir, and Welzl (see section 4 in [28])
show that nv ≤ nbn, which implies a crude upper bound of O(nb(tvn + tb)) for the
running time of the algorithm. They [28] give a careful and complicated analysis of
this algorithm for the case where n is not much larger than d (e.g., d ≤ n ≤

√
ded/4)

and show that nb = eO(
√
d ln d). Hence, for this case, the algorithm of [31] runs in

randomized O(eO(
√
d ln d)(tvn + tb)) time, i.e., subexponential in the dimension d of

the problem. (Actually they use property 4 only for showing the subexponential bound
in d.) Since, for linear programming, both the violation test and the basis calculation
can be performed in time polynomial in both n and d, this gives a subexponential
randomized algorithm for linear programming. Using this as the base-case algorithm

at the third level of Clarkson’s algorithm (i.e., x∗
s) gives expected O(eO(

√
d ln d) log n)

basis computations and expected O(dn+ d2 log neO(
√
d ln d))) violation tests. When d

is constant, the running time of the combined algorithm is O(tvn+ tb log n). We will
use this expression in the analysis of the running times of many of our applications.

2.3. Helly-type theorems and their relations to LP-type problems. The
first works to systematically study the relations between Helly-type theorems and LP-
type problem were those of Amenta [1, 2]. In this subsection we summarize her results.

An LP-type problem (H,ω) with combinatorial dimension k is an abstract prob-
lem with combinatorial dimension k such that ω obeys monotonicity. Therefore the
theorem below implies that there is a Helly-type theorem corresponding to the con-
straint set of every fixed-dimensional LP-type problem.

Theorem 2.14 (see [2]). Let (H,ω) be an abstract problem with combinatorial
dimension k such that ω obeys monotonicity, and let λ ∈ Λ be arbitrary. H has the
property ω(H) ≤ λ if and only if every G ⊆ H with |G| ≤ k + 1 has the property
ω(G) ≤ λ.

The main theorem in [2] goes in the other direction. Before stating it we need
some definitions.

A set system is a pair (X,H), where X is a set and H is a set consisting of subsets
of X. We say (X,H) is a Helly system if there exists a finite integer k such that H
has Helly number k with respect to the intersection predicate. Most Helly theorems
can be restated in terms of the intersection predicate. For example, let us consider
the following Helly-type theorem.
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Theorem 2.15 (radius theorem). A family H of points in the Euclidean d-
dimensional space Ed is contained in a unit ball if and only if every d + 1 or fewer
points from H are contained in a unit ball.

Here the family of objects is the set of points in Ed, the predicate is that a
subfamily is contained in a (closed) unit ball, and the Helly number is d + 1. In
order to restate this theorem in terms of the intersection predicate, we apply the
following duality transformation. We transform every point h ∈ H into the set D(h)
of centers of unit balls containing h. In this way D(h) is a unit ball centered at h.
Let D(H) = {D(h) | h ∈ H}. From the definition of this duality transformation we
get that the points in H are contained in a unit ball if and only if the unit balls in
D(H) have a nonempty intersection (see Figure 2.2). Since balls are a special case of
convex sets, the radius theorem derives directly from Helly’s theorem.

�� ���
��

⇔ ��
��

��
��

��
��

Fig. 2.2. The 3 points on the left side are contained in a unit ball if and only if the 3 unit balls
on the right side intersect.

Recall that the range Λ of an LP-type problem can be any totally ordered set, and
let (X,H) be a set system. We call ω′ : X → Λ a ground set objective function. We
call ω : 2H → Λ the objective function induced by ω′ on (X,H) if, for every G ⊆ H,
ω(G) is the least value λ∗ ∈ Λ for which there exists x∗ ∈

⋂
G such that ω′(x∗) = λ∗,

i.e., ω(G) = min{ω′(x) | x ∈
⋂
G}. If

⋂
G = ∅, we define ω(G) = ∞. For example,

when formulating lexicographic linear programming in the LP-type framework, the
value of ω on a subset G of constraints is the minimum value that the ground set
objective function ω′ achieves on the points that are feasible with respect to G.

A mathematical programming problem is a triple (X,H, ω′), where X is a ground
set, H is a set of subsets of X, and ω′ is a ground set objective function to a totally
ordered set Λ. We call the pair (H,ω), where ω is the objective function induced by
ω′ on (X,H), the induced abstract problem. If |{t ∈

⋂
G | ω′(t) = ω(G)}| = 1 for all

G ⊆ H, then we say that ω′ satisfies the unique minimum condition (UMC).
Let (X × Λ, H̄) be a set system where Λ is a totally ordered set which contains

a maximal element ∞. We call a ground set objective function ω′ a natural ground
set objective function if, for all (x, λ) ∈ X × Λ, ω′(x, λ) = λ. We call an objective
function ω natural if it is induced by a natural ground set objective function. For every
particular constraint h̄ ∈ H̄ and λ ∈ Λ we write hλ = {x ∈ X | ∃ν ≤ λ s.t. (x, ν) ∈ h̄}
for the projection into X of the part of h̄ with Λ-coordinate no greater than λ. Also,
for a subfamily of constraints Ḡ ⊆ H̄, we write Gλ as shorthand for {hλ | h̄ ∈ Ḡ}. We
call an indexed family of subsets {hλ | h̄ ∈ Ḡ}, such that hα ⊆ hβ , for all α, β ∈ Λ
with α < β, a nested family.

Figure 2.3 (based upon Figure 1 in [2]) is a schematic diagram of a parameterized
Helly system. The whole stack represents X × Λ, and each of the cones represents a
set h̄ ∈ H̄. Each h̄ is a subset of X × Λ. Since all of the h̄ are indexed with respect
to Λ, the cross section at λ (represented by one of the planes) is equivalent to the
Helly system (X,Hλ). Notice that if Ḡ ⊆ H̄ does not intersect at some value λ2, then
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Fig. 2.3. A parameterized Helly system.

Ḡ also fails to intersects at all λ1 < λ2, and if Ḡ ⊆ H̄ intersects at λ1, then Ḡ also
intersects at all λ2 > λ1.

In her paper, Amenta [2] relates Helly-type theorems and LP-type problems by
parameterization (a similar parameterization appears in [27] under the name “concrete
LP-type problem”).

Definition 2.16. A set system (X×Λ, H̄) is a parameterized Helly system with
Helly number k, when

1. {hλ | λ ∈ Λ} is a nested family for all h̄ ∈ H̄;
2. (X,Hλ) is a Helly system, with Helly number k for all λ.

So the function ω′ is just the projection into the Λ coordinate, and, for Ḡ ⊆ H̄,
ω(Ḡ) = min{λ |

⋂
Gλ 
= ∅}, or ω(Ḡ) = ∞ if Ḡ does not intersect at any value of λ.

Amenta [1] notes that it is almost always useful to think of Λ as time, so that
a subfamily Gλ is a “snapshot” of the situation at time λ. Usually we can think of
some initial time 0 at which G0 does not intersect and then envision the hλ growing
greater with time, so that λ∗ = ω(Ḡ) is the first “moment” at which Gλ intersects.

As an example, let us consider how the Helly system (X,H) for the radius theorem
can be extended to a parameterized Helly system. (Recall that the ground set X of
the Helly system representing the radius theorem is the set of centers of unit balls in
Ed (which is equivalent to Rd) and that each h = h(p) ∈ H is the set of centers of
unit balls which contain point p; i.e., h(p) is a unit ball centered at p.) We define
a parameterized Helly system (X × Λ, H̄), where Λ = R+ is the set radii, and each
hλ = h(p)λ ∈ Hλ is the set of centers at which a ball of radius at most λ contains
a particular point p. The nested family h̄ = h̄(p) is the set of all balls containing
p. The ground set X × Λ is the set of all balls in Ed, and H̄ is the family of nested
families for all points (see Figure 2.3).

The natural objective function for this parameterized Helly system ω(Ḡ) returns
the smallest radius at which there is a ball containing all of the points corresponding
to constraints h̄ ∈ Ḡ. So (X × Λ, H̄, ω′) is the following mathematical programming
problem:

Problem: Smallest enclosing ball
Input: A finite family H of points in Ed.
Output: The smallest ball enclosing H.

In Figure 2.3 we see the parameterized Helly system corresponding to an instance H
of the smallest enclosing ball problem consisting of 3 points. Each nested family h̄ is
a cone whose base is a point from H.

We say a ball is realized by points of H if it is the smallest volume ball enclosing
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the points on its boundary. Assuming that the points in H are at general positions,
such that no two different congruent balls are realized by points of H, the theorem
below implies that the smallest enclosing ball in Ed problem can be formulated as a
d-dimensional LP-type problem (H̄, ω).

Theorem 2.17 (main theorem in [2]). Let (X ×Λ, H̄) be a parameterized Helly
system with Helly number k, natural ground set function ω′, and natural objective
function ω. If ω′ meets the UMC, then (H̄, ω) is an LP-type problem of combinatorial
dimension k.

Amenta showed that, without requiring the UMC, the theorem is not correct
by giving an example of a Helly system with no fixed combinatorial dimension [2].
The theorem above is applied in [2] to get linear time solution algorithms for various
geometric problems.

In her paper [2], Amenta investigates lexicographic objective functions. Let
(X × Λ, H̄) be a parameterized Helly system with Helly number k and natural ob-
jective function ω. For all λ ∈ Λ, we assume a function νλ : 2Hλ → Λ′, where Λ′

is a totally ordered set containing a maximal element ∞, such that (Hλ, νλ) is an
LP-type problem of combinatorial dimension at most d. The functions νλ may them-
selves be lexicographic. Amenta [2] imposes a lexicographic order on Λ × Λ′ with
(λ, κ) > (λ′, κ′) if λ > λ′ or if λ = λ′ and κ > κ′. She defines a lexicographic objective

function ν : 2H̄ → Λ×Λ′ in terms of ω and the functions νλ as seen in the following.
Theorem 2.18 (see [2]). Let Λ′ be a totally ordered set. If (X × Λ, H̄) is a

parameterized Helly system with Helly number k and natural objective function ω, and
if, for every λ, (Hλ, νλ) is an LP-type problem of combinatorial dimension d, where
νλ : 2Hλ → Λ′, then (H̄, ν) is an LP-type problem of combinatorial dimension ≤ k+d,
where ν : 2H̄ → Λ × Λ′ is defined as ν(Ḡ) = (ω(Ḡ), νω(Ḡ)(Gω(Ḡ))) for all Ḡ ⊆ H̄.

Certainly, this bound on the combinatorial dimension is not always tight. For d-
dimensional linear programming, for instance, this theorem gives an upper bound of
2d−1 on the combinatorial dimension, since each Hλ is the constraint set of a (d−1)-
dimensional linear program, and (Ed, H̄) is a parameterized Helly system with Helly
number d. Nonetheless, the theorem provides the best general bound as shown in [2].

3. Dual LP-type problems.
Definition 3.1. A dual LP-type problem is an abstract problem (H,ω) that

obeys the following conditions (when we write <, ≤, = etc., we mean under the
totally ordered set Λ):

1. Monotonicity: For all F ⊆ G ⊆ H : ω(F ) ≥ ω(G) (so the special element ∞
is such that ω(∅) = ∞).

2. Locality: For all F ⊆ G ⊆ H, with ω(G) = ω(F ) 
= ∞, and for each h ∈ H,
if ω(G ∪ {h}) < ω(G), then ω(F ∪ {h}) < ω(F ).

Let G ⊆ H be arbitrary. If ω(G) = ∞, we say G is infeasible; otherwise we call
G feasible. If ω(G) = −∞, we say G is unbounded ; otherwise we call G bounded. A
basis B is a set B ⊆ H, with ω(B′) > ω(B) for all proper subsets B′ of B. A basis
for G is a basis B ⊆ G, with ω(B) = ω(G). We note that due to the monotonicity
condition a basis for G, for every G ⊆ H, always exists.

The combinatorial dimension d of a dual LP-type problem is the maximum car-
dinality of every basis for any bounded subfamily G. We note that the basis for every
infeasible set is the empty set. A dual LP-type problem of combinatorial dimension d,
where d is independent of |H|, is called fixed-dimensional. We choose the term dual
LP-type (which should not be confused with the term dual in linear programming)
because of the following.
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Observation 3.2. The abstract problem (H,ω) is a dual LP-type problem if and
only if (H,−ω) is an LP-type problem.

Looking at (H,ω), in order to prevent confusion between LP-type problems and
their dual versions, we will denote by (D,ω) LP-type problems and by (S, ω) dual
LP-type problems. The motivation for the choice of the letters “D” and “S” is as
follows. We use the letter “D” in the LP-type problem (D,ω) since we look at D
as a set of demand elements (d-elements), or constraints on the feasible region, on
which the minimum value is ω(D). Adding demand elements to D may increase
the minimum solution of the problem and will never decrease its value. We use the
letter “S” in the dual LP-type problem (S, ω) since we look at S as a set of supply
elements (s-elements), or relaxations on the feasible region, on which the minimum
value is ω(S). Adding supply elements to S may decrease the minimum solution of
the problem and will never increase its value. In the next section we define discrete
LP-type problems by using the same ω in a primal and a dual LP-type problem.

4. Discrete LP-type problems.
Definition 4.1. A discrete abstract problem is a triple (D,S, ω), where D and

S are finite sets of elements and ω is an objective function from 2D × 2S \ {(∅, ∅)} to
some totally ordered set Λ which contains a special maximal (minimal) elements ∞
(−∞). The goal is to compute ω(D,S).

Definition 4.2. Let (D,S, ω) be a discrete abstract problem. For every D′, D′′ ⊆
D and S′, S′′ ⊆ S let αS′(D′′) = ω(D′′, S′), and let βD′(S′′) = ω(D′, S′′). We say
that (D,S, ω) is a discrete LP-type problem (DLP-type, in short) when (D,αS′) is an
LP-type problem and (S, βD′) is a dual LP-type problem for all D′ ⊆ D and S′ ⊆ S.
We say that (D,αS′) ( (S, βD′)) is an induced LP-type (dual LP-type) problem of
(D,S, ω).

We note that we do not include (∅, ∅) in the domain of ω since this will result
in the trivial ordered set Λ = {−∞,∞}, where −∞ = ∞: To see this, recall that
the definition of LP-type problems implies that α∅(∅) = −∞, the definition of dual
LP-type problems implies that β∅(∅) = ∞, and the definition of DLP-type problems
implies that α∅(∅) = ω(∅, ∅) = β∅(∅).

Throughout this paper, whenever we call (D,α) ((S, β)) the induced LP-type
(dual LP-type) problem of (D,S, ω), we mean that α = αS (β = βD). It is easy to
see that the following definition for a DLP-type problem is equivalent to the former
one.

Definition 4.3. A DLP-type problem is a discrete abstract problem (D,S, ω)
which for all S′ ⊆ S and for all D′ ⊆ D obeys the following conditions (when we write
<, ≤, =, etc., we mean under the ordered set Λ):

1. Monotonicity of demand: For all D′′ ⊆ D′ ⊆ D : ω((D′′, S′)) ≤ ω((D′, S′)).
2. Monotonicity of supply: For all S′′ ⊆ S′ ⊆ S : ω((D′, S′′)) ≥ ω((D′, S′)).
3. Locality of demand: For all D′′ ⊆ D′ ⊆ D such that ω((D′, S′)) = ω((D′′, S′))

> −∞ and for each h ∈ D, if ω((D′ ∪ {h}, S′)) > ω((D′, S′)), then ω((D′′ ∪
{h}, S′)) > ω((D′′, S′)).

4. Locality of supply: For all S′′ ⊆ S′ ⊆ S such that ω((D′, S′)) = ω((D′, S′′)) <
∞ and for each h ∈ S, if ω((D′, S′ ∪ {h})) < ω((D′, S′)), then ω((D′,
S′′ ∪ {h})) < ω((D′, S′′)).

Before continuing any further, we give an example of a DLP-type problem.
Problem: Discrete point set width
Input: A finite set D of points in Ed and a finite set S of permissible direc-
tions.
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Output: The minimal width of the set in the permissible directions (i.e., the
minimal width of a band with a permissible direction which contains all the
points in D).

We assume general positions of the points and directions; that is, all |S|
(|D|

2

)
distances (in each one of the |S| permissible directions) between pairs of points are
different. For every set D of points and set S of permissible directions we define
ω(D,S) to be the minimal width of the points in D in the permissible directions from
S. Clearly (D,S, ω) is a discrete abstract problem. Let S′ ⊆ S. We show now that
(D,αS′) is an LP-type problem for every choice of S′. Since adding points to a set can
only increase its width, (D,αS′) meets the monotonicity condition. Let D′′ ⊂ D′ ⊆ D
be such that αS′(D′′) = αS′(D′). Due to the general position assumption there are
unique d1, d2 ∈ D′′ and s ∈ S′ such that the width of (D′′, S′) and of (D′, S′) is the
distance between d1 and d2 in direction s. (In other words, the width of (D′, S′) and
of (D′′, S′) is the width of the band in direction s between d1 and d2 in which all of the
points of D′ lie.) If for h /∈ D′ αS′(D′∪{h}) > αS′(D′), then point h is not inside this
band, so there must be another triple of two points and one direction which realizes the
width αS′(D′′ ∪ {h}). Due to the monotonicity condition, αS′(D′′ ∪ {h}) ≥ αS′(D′′),
and from the general position assumption we get that αS′(D′′ ∪ {h}) > αS′(D′′), so
(D,αS′) meets the locality condition as well and thus is an LP-type problem.

Let D′ ⊆ D. It remains to show that (S, βD′) is a dual LP-type problem for every
choice of D′. (S, βD′) satisfies the monotonicity condition since adding directions to
the set of permissible directions can only decrease the width. Let S′′ ⊂ S′ ⊆ S be
such that βD′(S′′) = βD′(S′), and let h /∈ S′. If βD′(S′ ∪ {h}) < βD′(S′), then the
width βD′(S′∪{h}) must be realized by a band in direction h, that is, βD′(S′∪{h}) =
βD′({h}). Hence we must have βD′(S′′ ∪ {h}) = βD′({h}) < βD′(S′) = βD′(S′′), so
(S, βD′) satisfies the locality condition as well and thus is a dual LP-type problem.

We now give more definitions. Let G = (D′, S′) ∈ 2D×2S be arbitrary. Through-
out this paper, if not explicitly specified otherwise, we choose G such that ω is defined
on G, i.e., G 
= (∅, ∅). If ω(G) = ∞, we say G is infeasible; otherwise we call G feasible.
If ω(G) = −∞, we say G is unbounded ; otherwise we call G bounded. We extend the
terms “violates” and “extreme” in a natural way: We say that a d-element h ∈ D\D′

(s-element h ∈ S \S′) violates G if h violates D′ (S′) in the induced LP-type problem
(D,αS′) (induced dual LP-type problem (S, βD′)). A d-element h ∈ D′ (s-element
h ∈ S′) is extreme in G if h is extreme in D′ (in S′) in its induced LP-type problem
(D′, αS′) (induced dual LP-type problem (S′, βD′)). We define bases in the following
natural way.

Definition 4.4. Let (D,S, ω) be a DLP-type problem, let α and β be as defined
in Definition 4.2, and let G = (D′, S′) ∈ 2D×2S. B = (BD, BS) ∈ 2D

′×2S
′
is a basis

for G in (D,S, ω) if BD is a basis for D′ in its induced LP-type problem (D,αS′),
and BS is a basis for S′ in its induced dual LP-type problem (S, βD′).

We note that there always exists a basis B = (BD, BS) for any G.
Observation 4.5. Let (D,S, ω) be a DLP-type problem, and let G = (D′, S′) ∈

2D × 2S . If B is a basis for G, then ω(B) = ω(G), and no h ∈ D′ ∪ S′ violates B.
This follows from both monotonicity conditions. ω(B) = ω(G) since ω(G) =

ω(BD, S′) ≤ ω(BD, BS) ≤ ω(D′, BS) = ω(G). h ∈ D′ doesn’t violate B since ω(G) =
ω(BD, BS) ≤ ω(BD ∪ {h}, BS) ≤ ω(D′, BS) = ω(G), and in a similar way h ∈ S′

doesn’t violate B. In order to illustrate the term “basis” let us consider the following
instance of the discrete point set width problem.

Example 4.6. Let G = (D,S), where D = {(0, 0); (2, 1); (1, 5)} and S =
{horizontal, vertical}, be an instance of the discrete point set width problem. The
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minimal width is achieved by a vertical strip of width 2. Let (D,α) and (S, β) be
its induced LP-type and induced dual LP-type problems, respectively. At first glance
one may be tempted to suggest B = (BD, BS) = ({(0, 0); (2, 1)}, {vertical}) as a basis
for G, since ω(B) = ω(G). This B is not a basis for G, since BD is not a basis
for (D,α) (because of the horizontal direction: α(BD) = ω(BD, {horizontal}) = 1 
=
ω(BD ∪ {(1, 5)}, {horizontal, vertical})). The other subsets of (D,S) on which the
value of ω is 2 are (D,S) and (D, {vertical}). (D,S) fails to be a basis for G because
S is not a basis in (S, β) (β(S \ {horizontal}) = β(S)). It is easy to verify that D is
a basis for D in (D,α) and {vertical} is a basis for S in (S, β). Thus, (D, {vertical})
is a basis for G.

A “discrete” version of Observation 2.5 is as follows.

Observation 4.7. Let (D,S, ω) be a DLP-type problem. Let G = (D′, S′) ∈
2D × 2S , and let B = (BD, BS) ∈ 2D

′ × 2S
′

be such that ω(B) = ω(G). If ω(B) 
=
ω(D,S), then there exists an element in either D \D′ or S \ S′ which violates B.

To see this suppose first that the inequality is ω(B) < ω(D,S). Considering the
induced LP-type problem (D,αBS

), and since ω(D,S) ≤ ω(D,BS), this implies that
αBS

(BD) < αBS
(D). Applying Observation 2.5 on (D,αBS

), D′, and BD, we get
that there exists h ∈ D \D′ that violates BD in (D,αBS

). Hence h violates B. The
case where the inequality is ω(B) > ω(D,S) is treated similarly by considering the
induced LP-type problem (S, βBD

).

Corollary 4.8. Let (D,S, ω) be a DLP-type problem. Let G = (D′, S′) ∈
2D × 2S, and let B ∈ 2D

′ × 2S
′
be a basis for G. If no h ∈ (D \D′)∪ (S \S′) violates

B, then B is a basis for (D,S) as well.

Proof. We need to prove that BD is a basis for D in the induced problem (D,α)
and that BS is a basis for S in the induced problem (S, β). We prove the first part.
The proof of the second part is similar. We first show that BD is a basis in (D,α).
Let B′

D be a proper subset of BD.
(4.1)
α(B′

D) = ω(B′
D, S) ≤ ω(B′

D, S′) < ω(BD, S′) = ω(BD, BS) = ω(BD, S) = α(BD).

The first inequality follows from monotonicity of supply, the second (strict) inequality
follows from the fact that B is a basis for G, and therefore BD is a basis in (D′, αS′),
the following equality is due to the fact that B is a basis for G, and the next equality
is due to Observation 2.5 applied on (S, βBD

) (BS is a basis for S′ in this dual
LP-type problem). It remains to show that α(BD) = α(D). From (4.1) we have
α(BD) = ω(BD, S) = ω(BD, BS). We conclude by deriving from Observation 4.7
that ω(BD, BS) = ω(D,S) = α(D).

We now define a condition sufficient for a DLP-type problem (D,S, ω) to satisfy a
discrete version of Observation 2.7. This condition is used in the proof of correctness
of our DLP-type algorithms.

Definition 4.9. We say that the DLP-type problem (D,S, ω) satisfies the vio-
lation condition (VC) if for every (D′, S′) ∈ 2D × 2S and (D′′, S′′) ∈ 2D

′ × 2S
′
with

ω(D′, S′) = ω(D′′, S′′) the following properties hold:

1. For every h ∈ D, if ω(D′′ ∪ {h}, S′′) > ω(D′′, S′′), then ω(D′ ∪ {h}, S′) >
ω(D′, S′);

2. for every h ∈ S, if ω(D′′, S′′ ∪ {h}) < ω(D′′, S′′), then ω(D′, S′ ∪ {h}) <
ω(D′, S′).

Note that due to Corollary 2.4 this condition is always satisfied whenever either
S′ = S′′ or D′ = D′′. The lemma below is a discrete version of Observation 2.7.
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Lemma 4.10. Let (D,S, ω) be a DLP-type problem which satisfies the violation
condition. Let G = (D′, S′) ∈ 2D × 2S, and let B = (BD, BS) ∈ 2D

′ × 2S
′
be a basis

for G. If h ∈ D (h ∈ S) violates B, then h is extreme in (D′∪{h}, S′) ( (D′, S′∪{h}))
and is a member of every basis for this set.

Proof. We will prove the case where h ∈ D. The proof for h ∈ S is similar. If
h ∈ D violates B, i.e., ω(BD ∪ {h}, BS) > ω(B), then due to the VC

(4.2) ω(D′ ∪ {h}, S′) > ω(B) = ω(D′, S′),

so h is extreme in (D′ ∪ {h}, S′). To see that h is a member for every basis B′ =
(B′

D, B′
S) for (D′∪{h}, S′), we use the fact that B′

D is a basis for the induced LP-type
problem of (D′ ∪ {h}, S′) (so ω(B′) = ω(B′

D, S′)) and (4.2) to get

(4.3) ω(B′
D, S′) = ω(D′ ∪ {h}, S′) > ω(D′, S′).

We conclude the proof by noting that if h is not a member in B′
D, then B′

D ⊆ D′ and
due to monotonicity of demand ω(B′

D, S′) ≤ ω(D′, S′), in contradiction to (4.3).
The demand combinatorial dimension kD (d-dimension, in short) of (D,S, ω) is

the combinatorial dimension of its induced LP-type problem. A DLP-type problem
of d-dimension kD, where kD is independent of |D|+ |S|, is called fixed d-dimensional.
We define the terms supply combinatorial dimension (s-dimension, in short) and fixed
s-dimensionality analogously. We call a DLP-type problem which is both fixed s-
dimensional (of dimension kS) and fixed d-dimensional (of dimension kD) (kD, kS)-
dimensional. A (kD, kS)-dimensional DLP-type problem where both its induced LP-
type problem and induced dual LP-type problem are basis regular is called a (kD, kS)-
dimensional basis-regular DLP-type problem.

We note that the discrete point set width problem is not fixed-dimensional. To
see this, suppose by negation that it is k-d-dimensional. Consider an instance of the
problem with n = 2k d-elements, consisting of k pairs of antipodal points which are
located on a unit circle. Let the s-elements be the n directions perpendicular to the
one-unit length segments connecting the antipodal points. Clearly, each proper subset
of the d-elements admits a width of less than one unit, whereas the width of the whole
set is one unit. Therefore, the number of d-elements in any basis is at least 2k, in
contradiction to our assumption that the problem is k-d-dimensional.

If the problem were fixed-dimensional, the DLP algorithms stated in the next
section would solve the problem in (randomized) linear time. The variable dimen-
sionality of the problem is not surprising, since the problem admits an Ω(n log n)
(deterministic) lower bound under the algebraic computation tree model due to a
linear time reduction from:

Problem: Set equality
Input: Sets A and B of n real numbers each.
Output: “true” if and only if A = B.

Lemma 4.11 (see [3]). Solving set equality requires Ω(n log n) operations under
the algebraic computation tree model.

Lemma 4.12. Solving discrete point set width requires Ω(n log n) operations under
the algebraic computation tree model.

Proof. Consider without loss of generality two sets A and B of n positive numbers
each and a unit circle with center at the origin. We construct from A and B an instance
(D,S) of discrete point set width. The numbers of A are transformed into points in D,
and the numbers of B are transformed into directions in S as follows. We transform
each number a ∈ A into the two intersection points of the unit circle with the line
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with slope a that passes through the origin. We transform each number b ∈ B into
the direction vertical to a line with slope b. It is easy to see that the solution of the
instance (D,S) of the discrete point set width is 1 if and only if A ≡ B.

We now define a condition sufficient for a DLP-type problem (D,S, ω) to be fixed
s-dimensional.

Definition 4.13. Let (D,S, ω) be a discrete abstract problem, and let p ∈ N.
We say that (D,S, ω) is a p-supply problem if for every G = (D′, S′) ∈ 2D ×2S there
exists S′′ ⊆ S′ such that |S′′| ≤ p and ω(D′, S′′) = ω(G).

Lemma 4.14. A DLP-type problem (D,S, ω) which is a p-supply problem is p-s-
dimensional.

Proof. Let (S, β) be its induced dual LP-type problem. Suppose by negation that
there exists a bounded S′ ∈ 2S and a basis B for S′ with |B| > p. From the definition
of a basis in dual LP-type problems, for every proper subset B′ ⊂ B, β(B′) > β(B) =
β(S′). This contradicts the fact that (D,S, ω) is a p-supply problem.

Integer programming can be formulated as a DLP-type problem where D is a set
of half-hyperplanes and S = Zk. There is one problem with this formulation: The set
S is not finite. We can overcome this by noting that, when given an instance of an IP
problem, it is always possible to bound the integer lattice by a big box (whose radius
depends exponentially on the input size), such that the solution of the IP problem, if
it exists, is found inside the bounding box (see, for example, Theorem 17.2 in [30]).
Because of the above, solving IP by the DLP-type model is not efficient.

5. DLP-type algorithms. Given an instance (D,S, ω) of a (kD, kS)-dimen-
sional DLP-type problem, let n = |D| and m = |S|. Similarly to the assumptions made
with the LP-type model, we assume two primitive operations. A basis computation
Basis(D′, S′) takes an ordered pair G = (D′, S′), with |D′| ≤ kD + 1 and |S′| ≤ 9k2

S ,
and finds a basis for G. A violation test Violation(B, h) takes a basis B and a
constraint h and returns true if and only if h violates B. Let tb be the time required
for a basis computation and tv be the time required for a violation test.

We observe that, when changing (by deleting or adding elements) the set D (S)
while keeping the set S (D) unchanged, the problem behaves like an LP-type (dual
LP-type) problem. Thus, while “fixing” the set S (D) one can use LP-type algorithms
in order to solve the induced LP-type (dual LP-type) problem on D (S).

In Chapter 6 in [17] we have developed several randomized algorithms that solve
fixed-dimensional DLP-type problems that satisfy the VC in linear time. The algo-
rithms differ in the choice of the LP-type algorithms used to solve the induced LP-type
and dual LP-type problems and in the decision rules when and with which input to
call these algorithms.

The 4-layer algorithm given below uses this observation. In the first layer, i.e.,
in Function DLP, the set of s-elements does not change, so Function DLP resembles
Function x∗

m in Clarkson’s algorithm [8] applied on the induced LP-type problem.
In the second layer, i.e., in Function M, the set of d-elements does not change, so
Function M (as well as its name) resembles Function x∗

m in Clarkson’s algorithm [8]
applied on the induced dual LP-type problem. The purpose of Function DLP (Func-
tion M) is to get the number of constraints (relaxations) down, so we can apply the
third level Function I, which resembles (as well as its name) Function x∗

i in [8] and
is more efficient in kS but less efficient in |D| and |S|. The fourth layer Function
Demand is called only when the cardinality of the s-element set is bounded by 9k2

S

and it behaves similarly to Sharir and Welzl’s algorithm [31], applied on the induced
LP-type problem.



20 NIR HALMAN

Function DLP(D,S)

1. Let V ∗ := ∅, let V := D, and find a candidate basis CD for D in the

induced LP-type problem of (D,S, ω)

2. If |D| ≤ 9k2
D, then return M(D,S,CD)

3. Else repeat the following until V = ∅:
(a) Choose R ⊂ D \ V ∗ uniformly at random, |R| = kD

√
|D|

(b) Find a candidate basis CD for R ∪ V ∗ in the induced LP-type

problem of (R ∪ V ∗, S, ω)

(c) Let B := M(R ∪ V ∗, S, CD), and let V := {d ∈ D |
Violation(B, d) = TRUE}

(d) If |V | ≤ 2
√

|D|, then let V ∗ := V ∗ ∪ V

4. Return B

Function M(D,S,CD)

1. Let V ∗ := ∅, let V := S

2. If |S| ≤ 9k2
S , then return Demand(D,S,CD)

3. Else repeat the following until V = ∅:
(a) Choose R ⊂ S \ V ∗ uniformly at random, |R| = kS

√
|S|

(b) Let B := I(D,R∪V ∗, CD), and let V := {s ∈ S | Violation(B, s) =

TRUE}
(c) If |V | ≤ 2

√
|S|, then let V ∗ := V ∗ ∪ V

4. Return B

Function I(D,S,CD)

1. For every s ∈ S let νs := 1

2. If |S| ≤ 9k2
S , then return Demand(D,S,CD)

3. Else repeat the following until V = ∅:
(a) Choose R ⊂ S at random according to weights νs, |R| = 9k2

S

(b) Let B := Demand(D,R,CD)

(c) Let V := {s ∈ S | Violation(B, s) = TRUE}
(d) If ν(V ) ≤ 2ν(S)/(9kS − 1), then for every s ∈ V let νs =: 2νs

4. Return B

Function Demand(D,S,CD)

1. If D = CD, then return Basis(CD, S)

2. Else

(a) Choose a random d ∈ D \ CD

(b) Let B = (BD, BS) := Demand(D \ {d}, S, CD)

(c) If Violation(B, d) = TRUE, then return Demand(D,S, the first

coordinate of Basis(BD ∪ {d}, S))

(d) Else return B
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We will first show that Function Demand returns the required answer by showing that
all of the arguments of [28] apply here as well. We can view Function Demand applied
on the DLP-type problem (D,S, ω) as a function applied on its induced LP-type
problem (D,α). This is true since the s-elements set S does not change throughout the
execution of Function Demand. In this way all of the conditions stated in Lemma 2.13
are satisfied.

Function Demand is similar, but not identical, to Function lptype of Sharir and
Welzl, only because of line 2(c). Due to Corollary 2.4, the violation test in Function
lptype, Violation(B, h), returns true if and only if B is not a basis for H. If in
Function Demand we called Function Violation((BD, S), d) instead of calling Function
Violation(B, d), then we would get exactly Function lptype applied on the induced
LP-type problem (D,α) (but the running time would increase by a big constant
depending on kS). Because of this difference we need to prove Lemma 5.1.

Lemma 5.1. Let (D,S, ω) be a (kD, kS)-dimensional DLP-type problem which
meets the VC, and suppose ω(D,S) = ω(B) > −∞. Let B = (BD, BS) be a basis for
(D \ {d}, S). Let (D,α) be the induced LP-type problem of (D,S, ω). The violation
test Violation(B, d) in Function Demand applied on (D,S, ω) returns true if and only
if BD is not a basis for D in (D,α).

Proof. If d does not violate B, then, due to Corollary 4.8, B is a basis for (D,S).
Hence, BD is a basis for D in (D,α). If d does violate B, then due to the VC we get
that α(D) > α(D \ {d}) = α(BD), which implies that BD is not a basis for D.

So this lemma implies that Function Demand correctly computes a basis for (D,S)
whenever (D,S, ω) meets the VC. We now compute tD, the time needed for Func-
tion Demand to run. Let tvD (tbDS) be the time required for the violation test
Violation(B, d) (the basis calculation BasisDS). Using the analysis in [28], Function
Demand calls Functions BasisDS and Violation O(|D|) times where the constant de-
pends (exponentially) on kD, so the running time of Function Demand is

(5.1) tD = O(|D|(tvD + tbDS)).

If the violation test and basis calculation are done in constant time, Function Demand
runs in O(n) time.

We next show that Functions M and I return the required value. In order to
prove this we need to show that Lemmas 2.8, 2.9, and 2.10 and Theorem 2.11 can be
modified for the DLP-type framework. We also rely, of course, on the correctness of
Function Demand. Lemma 2.10 and Theorem 2.11 are straightforwardly adapted to
the DLP-type case. We provide proofs for the first 2 lemmas.

Lemma 5.2 (adaptation of Lemma 3.1 in [8]). In Functions M and I, if the set
V is nonempty, and if (D,S, ω) satisfies the VC, then V contains an element from
B′

S, where B′ = (B′
D, B′

S) is any basis of (D,S).
Proof. We prove the correctness of Function M. The proof for Function I is similar.

Let S∗ = R∪ V ∗, and let B = (BD, BS) be a basis for (D,S∗). Let NV be the set of
s-elements in S \S∗ that do not violate B; i.e., S decomposes into S = S∗ �NV � V .
If V is not empty, then there exists s ∈ V such that ω(BD, BS ∪{s}) < ω(B). Hence,
since (D,S, ω) satisfies the VC and s violates B, it also violates (D,S∗), that is,
ω(D,S∗ ∪ {s}) < ω(B). From the monotonicity of supply condition we get

(5.2) ω(D,S) < ω(B).

None of s ∈ NV violates B, so, by Corollary 4.8, B is a basis for (D,S∗ ∪NV ). Let
us consider an arbitrary basis B′ = (B′

D, B′
S) for (D,S). If B′

S does not contain an
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element from V , then B′
S ⊆ S∗ ∪NV , so by the monotonicity of supply condition we

get

ω(D,S) = ω(B′) = ω(D,B′
S) ≥ ω(D,S∗ ∪NV ) = ω(B),

in contradiction to (5.2).
Note that the above lemma is the sole reason for which the VC is required to

derive a linear time solution. (The discussion in the paragraph preceding Lemma 5.1
implies that, if the VC were not satisfied, it would still be possible to modify Function
Demand to work correctly at an additional constant cost.)

Lemma 5.3 (adaptation of Lemma 3.2 in [8]). Let R ⊂ S be a random subset of
size r, where |S| = m. If V ⊂ S is the set of elements violating a basis of (D,R),
then its expected size is no more than kS(m− r)/(r + 1).

Proof. The probability that a random element s ∈ S \R violates a basis of (D,R)
is not more than kS/(r + 1), since |BS | ≤ kS for every basis (BD, BS) and the total
size of the sample R with the element s is r + 1. From the linearity of expectation
the expected size of V is not more than kS(m− r)/(r + 1).

We now compute the complexity of Functions M and I. Theorem 2.12 tells
us that Function M calls Function I O(kS) times (with an s-element set of size
O(

√
|S|)) and calls Function Violation O(kS |S|) times. Function I (when called with

|S| elements) calls Function Demand O(kS log |S|) times and calls Function Violation
O(kS |S| log |S|) times.

If Function Demand runs in tD time, then the total running time of Function M
is O(kS |S|tvS + k2

S log |S|tD)), where the constant factors do not depend on kD and
kS . Using (5.1), we get that the total running time of Function M is O(kS |S|tvS +
k2
S(log |S|)|D|(tvD + tbDS)), where the constant depends exponentially on kD.

After proving that Functions M, I, and Demand are correct and calculating their
running times, it remains to consider Function DLP. In order to prove that Function
DLP works correctly, we need to show that Lemmas 2.8, 2.9, and 2.10 and Theo-
rem 2.11 can be modified for the DLP-type framework. This is done similarly to the
way it was proved for Functions M and I.

It remains to consider the running time of Function DLP. Due to Theorem 2.12,
Function DLP calls Function M (with a d-element set of size kD

√
|D|) O(kD) times

and calls Function Violation O(kD|D|) times. In this way Function Demand is called
O(kDk2

S log |S|) times, with an s-element set of constant size C and a d-element set

of size O(kD
√
|D|). If Function Demand is implemented in tD time, then the total

running time of Function DLP is O(kD(|D|tvD + kS |S|tvS + k2
S log |S|tD)), where the

constant factors do not depend on kD and kS . Using (5.1), we get that the total
running time of Function DLP is O(kD(|D|tvD + kS |S|tvS + k2

S log |S|
√

|D|(tvD +
tbDS))), where the constant depends exponentially on kD. If the violation tests and
basis calculations are done in constant time, this algorithm runs in O(|D|+ |S|) time.
We have proved the following.

Theorem 5.4. Let (D,S, ω) be a (kD, kS)-dimensional DLP-type problem which
meets the VC. Function DLP solves it in O((|S|+ |D|)tv +

√
|D| log |S|tb) randomized

time, where tv (tb) is the time needed for the violation test (basis calculation of a set
consisting of kD + 1 d-elements and 9k2

S s-elements) primitive.
We summarize the structure of our algorithm in the following table (recall that

|D| = n and |S| = m):
The constants in the above algorithm may depend exponentially on kD and kS . We
can get a linear time algorithm where the constants depend subexponentially on kD
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Function Input |D| Input |S| # iterations Sample from Sample size

DLP n m kd D
√
n

M
√
n m ks S

√
m

I
√
n

√
m logm S const

Demand
√
n const

√
n D 1

and kS when (D,S, ω) is basis regular. The idea is to call the modified algorithm
of Sharir and Welzl only after the sizes of both the d-element set and the s-element
set are reduced to constants and use the fact that this algorithm runs in linear time
where the constants depend subexponentially on the dimension of the problem, when
the problem is basis regular. Recall that Function I is a modified version of Function
x∗
i in [8], applied on the s-element set. Instead of calling Function Demand in lines

2 and 3(b), we change it to call a new and similar Function I’, which is a modified
version of Function x∗

i in [8], applied on the d-element set. Function I’ will call
Function Demand in the lines corresponding to lines 2 and 3(b) in Function I. Thus
Function Demand is called with both d-element and s-element sets of constant size.
Recall that Function Demand is a modified version of Function lptype in [31], applied
on the d-elements set. Instead of calling Function Basis in lines 1 and 2(c), we change
it to call a new and similar Function Supply, which is a modified version of Function
lptype in [31], applied on the s-element set. Function Supply will call Function Basis
in the lines corresponding to lines 1 and 2(c) in Function Demand. Using similar
arguments to the ones mentioned earlier in this section, we get that the resulting
6-layer algorithm proves the following theorem.

Theorem 5.5. Let (D,S, ω) be a (kD, kS)-dimensional DLP-type problem which
meets the VC. (D,S, ω) is solved in O((|S| + |D|)tv +

√
|D||S| log |D| log |S|tb) ran-

domized time, where tv (tb) is the time needed for the violation test (basis calculation
of a set consisting of at most kD + 1 d-elements and kS + 1 s-elements) primitive. If
(D,S, ω) is basis regular, then the constants depend subexponentially on kD and kS.

6. Continuous lexicographic Helly-type theorems and their relations to
the LP-type model. Amenta [2] concludes her paper with “The major open problem
is to characterize the Helly systems (X,H) for which there is an objective function ω
that gives a fixed-dimensional LP-type1 problem (H,ω).” We give a partial answer
for her question in this section, by showing that every lexicographic Helly system
(to be defined below) admits an objective function ω that gives a fixed-dimensional
LP-type problem (H,ω).

Let (X × Λ, H̄) be a parameterized Helly system with Helly number k and ω be
a natural objective function. If ω meets the UMC, then, by Theorem 2.17, (H̄, ω) is
an LP-type problem of combinatorial dimension k. If ω does not satisfy the UMC, in
order to get a fixed-dimensional LP-type problem, one normally uses the following two
“tricks.” If possible, assume that the input is in such a general position that ω satisfies
the UMC. Alternatively, explicitly change ω to be a lexicographic function ν whose
first parameter is ω. The resulting LP-type problem (H̄, ν) has usually combinatorial
dimension greater than k (see [2, 32]).

Consider, for instance, LP. As noted in section 3 in [2], the parameterized Helly
system corresponding to LP does not generally satisfy the UMC, but by using a lexi-
cographic objective function, it does. As an additional example, consider the smallest

1Amenta uses the term GLP rather than LP-type.
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enclosing ball problem defined in section 2.3. This problem does not necessarily sat-
isfy the UMC. When we assume that the points in H are in general positions, such
that no two different congruent balls are realized by points of H, this problem does
satisfy the UMC.

Our approach is different. We provide a machinery which converts any param-
eterized lexicographic Helly system (to be defined below) into an LP-type problem.
In this way, instead of extending the objective function, using (standard) Helly the-
orems, assuming UMC, and applying Theorem 2.17, we use lexicographic objective
functions, lexicographic Helly theorems, and our framework. Unlike Theorem 2.17,
this machinery does not require that the natural objective function meets the UMC.

We give some definitions first. For every totally ordered set Λ and d ∈ N we impose
a lexicographic order on Λd such that for any x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Λd

we say that x <L y (x is lexicographically smaller than y (lsmaller, in short)) if
x1 < y1 or there exists d ≥ k > 1 such that xi = yi for i = 1, 2, . . . , k − 1, and
xk < yk. We say that x ≥L y if x <L y does not hold. For every X ⊆ Λd and x ∈ Λd

we let Xx = {x′ ∈ X | x′ ≤L x} and let Xx = {x′ ∈ X | x′ ≥L x}. We note that if X
is a convex set, then for every x ∈ X, Xx and Xx are convex sets as well.

Definition 6.1. Let Λ be a totally ordered set. A Helly system with lexicographic
Helly number l is a set system (X,H), where X ⊆ Λd for some positive integer d,
such that, for any x ∈ X, (X, {h∩Xx | h ∈ H}) is a Helly system with Helly number l.

This means that for any x ∈ X, whenever every l or less elements of H have a
common point which is not lgreater than x, we get that all elements of H have a
common point which is not lgreater than x.

In order to get LP-type problems from lexicographic Helly theorems, we impose
a lexicographic order on the ground set X and parameterize the Helly system (X,H)
with lexicographic Helly number l.

Definition 6.2. A set system (X×X, H̄) is a parameterized Helly system with
lexicographic Helly number l if there exists a Helly system with lexicographic Helly
number l, (X,H), such that, for all h ∈ H, h̄ = {(y, x) | x ∈ X, y ∈ h ∩ Xx} and
H̄ = {h̄ | h ∈ H}.

From the definitions it is easy to verify the following.
Observation 6.3. Let (X × X, H̄) be a parameterized Helly system with lexi-

cographic Helly number l. For every x, y ∈ X and h̄ ∈ H̄ the following attributes
hold:

1. {hx | x ∈ X} is a nested family for all h̄ ∈ H̄.
2. (X,Hx) is a Helly system with lexicographic Helly number l.
3. (X ×X, H̄) is a parameterized Helly system with Helly number l.
4. (y, x) ∈ h̄ → (y, y) ∈ h̄.
5. (y, x) ∈ h̄ → y ≤L x.

The importance of lexicographic Helly theorems follows partly from the following
two results.

Theorem 6.4. Let (X×X, H̄) be a parameterized Helly system with lexicographic
Helly number l. If ω is its natural objective function, then (H̄, ω) is an LP-type
problem of combinatorial dimension l.

Proof. We show that all of the conditions of Theorem 2.17 are satisfied. Due
to attribute 3 in Observation 6.3, (X ×X, H̄) is a parameterized Helly system with
Helly number at most l. It remains to show that the natural objective function ω
meets the UMC. Suppose on the contrary that there is Ḡ ⊆ H̄, with ω(Ḡ) = x, such
that there are two different points x′, x′′ ∈ X such that both (x′, x), (x′′, x) ∈

⋂
Ḡ

realize ω(Ḡ). Due to attribute 5 in Observation 6.3, x′, x′′ ≤L x. Without loss of
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generality x′′ <L x′. Hence x′′ <L x, and from attribute 4 in Observation 6.3 we get
that (x′′, x′′) ∈

⋂
Ḡ, so ω(Ḡ) ≤L x′′ <L x in contradiction.

Theorem 6.5. Let (X×Λ, H̄) be a parameterized Helly system with Helly number
k and natural objective function ω. If, for every λ ∈ Λ, (X,Hλ) is a Helly system
with lexicographic Helly number l, then there is a function ν : 2H̄ → Λ ×X such that
for all Ḡ ⊆ H̄ the first part of ν(Ḡ) is ω(Ḡ) and (H̄, ν) is an LP-type problem of
combinatorial dimension ≤ k + l.

Proof. For every λ ∈ Λ we parameterize the Helly system (X,Hλ) such that
(X × X, H̄λ) is a parameterized Helly system with lexicographic Helly number l. If
its natural objective function νλ is not well-defined, we symbolically compactify the
space X by representing points at infinity. Due to Theorem 6.4 the resultant abstract
problem (Hλ, νλ) is an LP-type problem of combinatorial dimension l. We conclude
our proof by using Theorem 2.18.

This theorem is useful when we want to omit general position assumptions. For
instance, we reconsider the smallest enclosing ball problem. In the beginning of this
section we represented this problem on the set H of points in Rd as a parameterized
Helly system with Helly number d+ 1, (X ×Λ, H̄), where Λ = R+ is the set of radii,
and each hλ ∈ Hλ is the set of centers at which a ball of radius at most λ contains a
particular point h ∈ H. The natural objective function ω is just the minimal radius of
a ball which encloses all of the points in H. By assuming that the input points are in
general positions, we caused the natural ground set function ω′ to meet the UMC. In
this way all of the conditions of Theorem 2.17 are met, and (H̄, ω) is a d-dimensional
LP-type problem.

Using the lexicographic version of Helly’s theorem, Theorem 1.2, we note that the
Helly system (X,H) representing the radius theorem (i.e., the ground set X = Rd is
the set of centers of unit balls in Ed, and H is a family of unit balls) has lexicographic
Helly number d + 1. In this way we get that, for every λ ∈ Λ = R+, (X,Hλ) (i.e.,
X = Rd and Hλ is a family of balls of radius at most λ) is a Helly system with
lexicographic Helly number d + 1. Applying Theorem 6.5, we get that (H̄, ν) is an
LP-type problem of combinatorial dimension ≤ 2(d+ 1), where the first parameter of
the objective function ν is the radius of the smallest enclosing ball of H.

It is possible to bound the combinatorial dimension of the resulting LP-type
problem even further. We give some more definitions first. In the Helly system
(X,H) representing the radius theorem, every h = h(p) ∈ H is a unit ball centered
at p. We call such p a reference point. For every positive scaling factor λ ∈ R+ we let
λh = λh(p) be the λ-units ball centered at p and λH = {λh | h ∈ H} be the set of
λ-units balls with the same centers as the balls in H.

Theorem 6.6. Let d ∈ N, and let H be a finite family of compact subsets in
Rd with a reference point for each one of them. If, for every scaling factor λ0 ∈ R+,
(Rd, λ0H) is a Helly system with lexicographic Helly number l, and (Rd, λ0 Int(H))
is a Helly system with Helly number k, where Int(H) = {Int(h) | h ∈ H} is the
family of the interiors of the sets in H, then (Rd × R+ × Rd, H̄) is a parameterized
Helly system with Helly number m = max{k, l}, where, for all h ∈ H and for all
λ = (λ0, x) ∈ R+ × Rd, hλ = (λ0h ∩Xx) ∪ (λ0 Int(h)). Moreover, if ω is its natural
objective function, then (H̄, ω) is an LP-type problem of combinatorial dimension
m = max{k, l}.

In Figure 6.1 below, d = 2, h is a rectangle of length 2 and width 1 centered
at the origin, and λ = (1, 0, 0). h(1,0,0) is a rectangle whose closure is h itself. The
dashed line and the open circles do not belong to h(1,0,0) = (h∩R2

(0,0))∪ Int(h), while
the solid line and the black point do.
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Fig. 6.1. h and h(1,0,0).

Proof. In order to prove that (Rd ×R+ ×Rd, H̄) is a parameterized Helly system
with Helly number m = max{k, l}, we need to show that {hλ | λ ∈ R+ × Rd} is
a nested family and, for every λ ∈ R+ × Rd, (Rd, Hλ) is a Helly system with Helly
number m.

Let α = (λ0, x), β = (λ′
0, x

′) ∈ R+ × Rd be such that α <L β. If λ0 = λ′
0, then

x <L x′, so Xx ⊂ Xx′ , and, from the definition of hλ, hα ⊆ hβ . Otherwise (λ0 < λ′
0),

λ0h ⊂ λ′
0 Int(h), so again hα ⊆ hβ . Hence {hλ | λ ∈ R+ × Rd} is a nested family.

We show now that, for every λ = (λ0, x) ∈ R+ × Rd, (Rd, Hλ) is a Helly system
with Helly number m = max{k, l}. If every m elements in Hλ intersect in Xx, since
(Rd, λ0H) is a Helly system with lexicographic Helly number l ≤ m, then there is a
point x′ ∈ Xx common to all of the sets in λH. Hence x′ is common to all hλ ∈ Hλ.
If every m elements in Hλ intersect in Rd \Xx, then from the definition of hλ every
m elements in λ0 Int(H) intersect. Since (Rd, λ0 Int(H)) is a Helly system with Helly
number k ≤ m, all of the sets in λ Int(H) have a point in common. Hence there is
a point common to all hλ ∈ Hλ. In this way we get that (Rd, Hλ) is a Helly system
with Helly number m and (Rd × R+ × Rd, H̄) is a parameterized Helly system with
Helly number m.

We will now apply Theorem 2.17 on the parameterized Helly system with Helly
number m, (Rd ×R+ ×Rd, H̄). For this we need to show that the natural ground set
objective function ω′ meets the UMC. We observe that, due to the definition of hλ,
for every λ0 ∈ R+, h̄ ∈ H̄, and x, y ∈ Rd

(6.1) (y, λ0, x) ∈ h̄ → (y, λ0, y) ∈ h̄

holds. Second, we note that if λ∗ = (λ∗
0, x

∗) is the value of the optimal solution over
Ḡ ⊆ H̄, that is, ω(Ḡ) = ω′(x, λ∗) = λ∗, then, for every point (y, λ∗) ∈ Rd × R+ × Rd

realizing this value, there exists h′ ∈ H such that y lies on the boundary of λ∗
0h

′∩X∗
x .

(Otherwise, y must be in ∩h∈H λ∗
0 Int(h), and we can decrease λ∗

0 slightly, say, to λ′
0,

and still have a nonempty intersection (y, λ′
0, x

∗) ∈
⋂
Ḡ, so ω(Ḡ) ≤L ω′(y, λ′

0, x
∗) =

(λ′
0, x

∗) <L λ∗ in contradiction to the optimality of λ∗.) Thus we have for every
y ∈ Rd

(6.2) (y, λ∗
0, x

∗) ∈
⋂

Ḡ → y ≤L x∗.

Suppose on the contrary that there exists Ḡ ⊆ H̄, with ω(Ḡ) = λ∗ = (λ∗
0, x

∗), and
there are two different points y′, y′′ ∈ Rd such that both (y′, λ∗), (y′′, λ∗) ∈

⋂
Ḡ

realize ω(Ḡ). Due to (6.2), y′, y′′ ≤L x∗. Without loss of generality y′′ <L y′.
Hence y′′ <L x∗, and (6.1) implies that (y′′, λ∗

0, y
′′) ∈

⋂
Ḡ, so ω(Ḡ) ≤L (λ∗

0, y
′′) <L

(λ∗
0, x) = λ∗ in contradiction to the optimality of λ∗. Hence ω′ satisfies the UMC

on (Rd × R+ × Rd, H̄), and, by Theorem 2.17, (H̄, ω) is an LP-type problem of
combinatorial dimension m.
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Considering once again the smallest enclosing ball problem, we note that, for every
λ0 ∈ R+, (X,λ0H) (X = Rd and λ0H is a family of balls of radius λ0) is a Helly
system with lexicographic Helly number d+1. Since Helly’s theorem is valid for finite
families of open convex sets, (X,λ0 Int(H)) is a Helly system with Helly number
d + 1. Applying the theorem above, we get that (H̄, ω) is an LP-type problem of
combinatorial dimension d + 1, where the first coordinate (parameter) of ω is the
radius of the smallest enclosing ball of the points in H, and the remaining parameters
are its center location. We demonstrate the usage of Theorem 6.6 in the next section.

7. Solving the planar lexicographic rectilinear p-center problem. In the
lexicographic rectilinear p-piercing decision problem (p-lpiercing decision problem, in
short) we are given a finite set B of closed axis-parallel boxes in Rd and a p-tuple
A = (a1, . . . , ap) of p points in Rd, with ai ≤L aj for all i < j. We need to decide
whether there exists a p-tuple A′ = (a′1, a

′
2, . . . , a

′
p) such that {a′1, a′2, . . . , a′p} p-pierces

B and A′ ≤L A. If such a p-tuple A′ exists, we say that B is A-p-pierceable and call
A′ a p-piercing vector of B.

In the lexicographic rectilinear p-piercing optimization problem (p-lpiercing opti-
mization problem, in short) we are given a finite set B of closed boxes in Rd with edges
parallel to the coordinate axes and need to find the lexicographically least p-tuple A
such that A p-pierces B. If no such p-tuple exists, we return a special symbol ∞.

The Helly-type theorem related to these problems is about the least hL(p) such
that, for all A, B is A-p-pierceable if each B′ ⊆ B, with |B′| ≤ hL, is A-p-pierceable.

Theorem 7.1 (Theorem 2.7 in [20]). Let B be a finite set of axis-parallel closed
rectangles in the plane and A = (a1, . . . , ap) be a p-tuple of p points in Rd, with
ai ≤L aj for all i < j. For p = 1, 2, 3 the rectangles in B are A-p-pierceable if every
subfamily G ⊂ B of size at most hL(p) is A-p-pierceable, where hL(1) = 2, hL(2) = 6,
and 16 ≤ hL(3) ≤ 34.

Its corresponding nonlexicographic Helly-type theorem is the following.

Theorem 7.2 (see [9]). Let B be a finite set of axis-parallel rectangles in the
plane such that all of the rectangles are either closed or open. For p = 1, 2, 3 the
rectangles in B are p-pierceable if every subfamily G ⊂ H of size at most h(p) is
p-pierceable, where h(1) = 2, h(2) = 5, and h(3) = 16.

In this section we solve the planar lexicographic weighted p-center problem for
p = 1, 2, 3 in randomized linear time by applying Theorem 7.2 on open rectangles,
using its corresponding lexicographic version Theorem 7.1, and Theorem 6.6.

We start by defining the parameterized Helly system corresponding to our prob-
lem. Let the ground set of all possible p-centers be

Xp = {(x1, y1, . . . , xp, yp) | x1, y1, . . . , xp, yp ∈ R} = R2p,

where (x1, y1), . . . , (xp, yp) are the p centers. Let the range of the objective function
be the radius, so Λ = R+.

We consider the 2p-dimensional space Xp. For each reference point h = hj =
(x0, y0) ∈ H we define hp = ∪p

i=1 h
i
p, where

(7.1) hi
p =

{
(x1, y1, . . . , xp, yp)

∣∣∣∣ |xi − x0| ≤
1

wj
; |yi − y0| ≤

1

wj

}

is the set of all points in Xp such that the ith center is at weighted distance at most 1
from h. We let Hp = {hp | h ∈ H}. For every λ1 ∈ R+ and h = hj ∈ H we define
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λ1hp as hp scaled by λ1, that is, λ1hp = ∪p
i=1 λ1h

i
p, where λ1h

i
p = {(x1, y1, . . . , xp, yp) |

|xi − x0| ≤ λ1

wj
; |yi − y0| ≤ λ1

wj
}.

Due to Theorem 7.1, for every scaling factor λ0 ∈ R+, the set system (Xp, λ0Hp)
is a Helly system with lexicographic Helly number 2 (6, a constant bounded by 34) for
p = 1 (p = 2, 3). Due to Theorem 7.2 (applied on open rectangles) (Xp, λ0 Int(Hp))
is a Helly system with Helly number 2 (5, 16) for p = 1 (p = 2, 3). Theorem 6.6
implies that (Xp × R+ × Xp, H̄p), where for all hp ∈ Hp and for all λ = (λ0, x) ∈
R2p+1, hpλ = (λ0hp ∩Xx) ∪ (λ0 Int(hp)) is a parameterized Helly system with Helly
number 2 (6, a constant bounded by 34) for p = 1 (p = 2, 3). Moreover, if ωp is its
natural objective function, the theorem says that (H̄p, ω) is an LP-type problem of
combinatorial dimension 2 (6, 34) for p = 1 (p = 2, 3).

Theorem 7.3. The lexicographic weighted planar p-center problem with an l∞
norm is solvable in (randomized) linear time for p = 1, 2, 3.

Proof. Until now we have shown that the lexicographic planar p-center problem
with an l∞ norm is an LP-type problem of dimension at most 2 (6, 34) for p = 1
(p = 2, 3). We solve this problem by using the LP-type randomized algorithms, such as
the one of Sharir and Welzl (see section 2.2.2). In order to obtain a linear running time
it remains to show how to implement the violation test and basis calculation primitives
such that they run in constant time. We slightly change the structure of these two
primitives: We implement the basis calculation primitives such that when called with
input (B, h) it returns, in addition to a basis B(B ∪ {h}) for B ∪ {h}, also the value
ω(B∪{h}) of the objective function on B∪{h} and the point x(B∪{h}) which realizes
this value (there is only such a point since the objective function is lexicographic).
The input for the violation tests consists of x(B) in addition to B (i.e., we call
Violation(B, h, x(B))). The violation test primitive checks whether x(B) ∈ h̄p(h).
This is done in constant time since h̄p(h) is of constant complexity. We implement
the basis calculation primitive Basis(B, h) in constant time as follows. For any proper
subset B′ ⊂ B ∪ {h} we calculate explicitly ω(B′) and the point x(B′) realizing this
value. Then for every h ∈ B ∪ {h} \ B′ we call Violation(B′, h, x(B′)). B′ is a basis
for B ∪ {h} if and only if all of these calls return “false.”

We note that, since the optimal solution for the lexicographic planar p-center
problem is an optimal solution for the nonlexicographic problem, we get an alternative
solution to the one of [32]. We summarize as follows.

Corollary 7.4. The planar p-center problem with an l∞ norm is solvable in
(randomized) linear time for p = 1, 2, 3.

We note that the combinatorial dimension of the lexicographic problem is smaller
than the combinatorial dimension given by [32] for the corresponding nonlexicographic
problems (6 instead of 13 for the case p = 2 and 34 instead of 43 for the case p = 3).

8. Discrete Helly-type theorems and their relations to the DLP-type
model.

8.1. DLP-type problems specialized to mathematical programming. In
the DLP-type framework both D and S are sets of abstract objects, and the objective
function applies to elements of 2D × 2S . We consider an extended version of math-
ematical programming which is a quadruple (X,D, S, ω′), where X is a ground set
(usually Rd), D is a set of d-elements, S is a set of s-elements (both of which are
subsets of the ground set), and ω′ is an objective function from X to some totally
ordered set Λ. We call the elements of X points. For G = (D′, S′) ∈ 2D × 2S we
write

⋂
G for (

⋂
D) ∩ (

⋃
S). The points in

⋂
(D,S) are called feasible. The goal is
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to minimize ω′ over the set of feasible points.
One can think of a discrete mathematical programming problem (X,D, S, ω′) as a

mathematical programming problem on a grid made by
⋃
S, that is, the mathematical

programming problem (X∩(
⋃
S), D∩(

⋃
S), ω′). However, our definition of a discrete

mathematical programming problem enables us to solve fixed-dimensional DLP-type
problems efficiently, as explained later.

To simplify our proofs later, we will make a few observations about the DLP-type
framework specialized to mathematical programming.

Definition 8.1. Let (X,D, S, ω′) be a discrete mathematical programming prob-
lem. For G = (D′, S′) ∈ 2D × 2S, let ω(G) = ∞ when

⋂
G = ∅ and ω(G) =

min{ω′(m) | m ∈
⋂
G} elsewhere. We call ω : 2D × 2S → Λ the induced subfamily

objective function of (X,D, S, ω′) and call the triple (D,S, ω) the induced discrete
abstract problem.

For instance, in the discrete 1-center problem on the real line we are given two
finite sets of real numbers H1 and H2. We need to find a point h ∈ H2 which
minimizes the maximum distance between points in H1 and h. We call this point
a center and call the distance it realizes the radius. We formulate this problem as
a discrete mathematical programming problem (X,D, S, ω′), where X = R2, D is
the set of π

4 radians cones whose origins are the points of H1, S is a set of vertical
rays whose origins are the points of H2, and, for all (x, y) ∈ R2, ω′(x, y) = y. In
Figure 8.1 we have an instance of the problem where H1 = {5, 9} (the black points)
and H2 = {4, 8} (the white points). In the solution of this problem the center is 8,
and the radius is 3. If the center is not restricted to be a point of H2, the radius
realized by choosing a center at 7 will be 2. In the next section we will discuss in
detail other p-center problems such as the 1-center problem in Rd with either l1 or l∞
norm.
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Fig. 8.1. An instance of the general 1-center problem.

Observation 8.2. Let (X,D, S, ω′) be a discrete mathematical programming prob-
lem. The induced discrete abstract problem (D,S, ω) satisfies both monotonicity
conditions of the DLP-type framework.

This follows from the fact that adding a d-element (i.e., a constraint) eliminates
only feasible points, so the value of the minimum on the remaining feasible points
cannot decrease. Adding an s-element (i.e., a relaxation) increases the set of feasible
points, so the value of the minimum on the new enlarged set of feasible points cannot
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increase.
Observation 8.3. Let (X,D, S, ω′) be a discrete mathematical programming prob-

lem. Its induced discrete abstract problem (D,S, ω) is a 1-supply problem which
satisfies both monotonicity conditions and the locality of supply condition.

Proof. In order to show that (D,S, ω) is a 1-supply problem, it is sufficient to
show that for every feasible G = (D′, S′) ∈ 2D×2S there exists S′′ ⊆ S, with |S′′| = 1
such that ω(G) = ω(D′, S′′). Since (D,S, ω) is an induced discrete abstract problem,
there exists x ∈

⋂
G such that ω(G) = ω′(x). From the definition of

⋂
G, there is

h ∈ S′ such that x ∈ h so x ∈
⋂

(D′, {h}) and ω(D′, {h}) = ω(G). Hence we choose
S′′ = {h}.

By Observation 8.2, (D,S, ω) obeys both monotonicity conditions.
We now show that (D,S, ω) satisfies the locality of supply condition. Let G =

(D′, S′) ∈ 2D × 2S be feasible, and let S′′ ⊆ S′ such that ω(D′, S′) = ω(D′, S′′).
We need to show that, for every h ∈ S, ω(D′, S′ ∪ {h}) < ω(G) implies ω(D′,
S′′∪{h}) < ω(G). Since (D,S, ω) is a 1-supply problem, ω(D′, S′∪{h}) < ω(G) only
if ω(D′, {h}) < ω(G). From the monotonicity of supply condition we conclude that
ω(D′, S′′ ∪ {h}) ≤ ω(D′, {h}) < ω(G).

Definition 8.4. Let (X,D, S, ω′) be a discrete mathematical programming prob-
lem, and let (D,S, ω) be a discrete abstract problem, where ω is the objective function
induced by ω′. If, for all G = (D′, S′) ∈ 2D × 2S, |{x ∈

⋂
G | ω′(x) = ω(G)}| = 1, we

say that ω′ satisfies the UMC.
This definition says that every subfamily not only has a minimum but that this

minimum is achieved by a unique point. There is one simple sufficient condition to
satisfy the UMC.

Observation 8.5. If ω′(x) 
= ω′(y) for any two distinct points x, y ∈ X, then ω′

satisfies the UMC.
Lemma 8.6. Let (X,D, S, ω′) be a discrete mathematical programming problem.

If its ground set function ω′ meets the UMC on (X,D, S), then its induced abstract
problem (D,S, ω) is a 1 s-dimensional DLP-type problem.

Proof. By Observation 8.3, (X,D, S) is a 1-supply problem which satisfies both
monotonicity conditions as well as the locality of supply condition.

We prove now that the locality of demand condition is satisfied. Let G =
(D′, S′) ∈ 2D×2S be bounded, and let D′′ ⊆ D′ such that ω(G) = ω(D′′, S′). We need
to show that for all h ∈ D, ω(D′∪{h}, S′) > ω(G) → ω(D′′∪{h}, S′) > ω(G). Due to
the UMC, the value ω(D′, S′) = ω(D′′, S′) is achieved at a single point x ∈ X. This
means that ω(D′∪{h}, S′) > ω(G) only if x /∈ h, in which case ω(D′′∪{h}, S′) > ω(G),
so the locality of demand condition is satisfied, and (D,S, ω) is a DLP-type problem.
By Lemma 4.14 it is 1 s-dimensional.

We concentrate for a moment on lexicographic integer programming (lex IP, for
short) in Zd. The corresponding discrete mathematical programming formulation is
(Zd, D, S, ω′), where D is a finite set of half-spaces in Zd, S is the (exponentially large)
set of the integer lattice points inside a “bounding box” around the problem, and ω′

is defined for every x ∈ Zd as ω′(x) = x. Since S is finite and ω′ satisfies the UMC, we
get from Lemma 8.6 that (D,S, ω) is a 1 s-dimensional DLP-type problem. It remains
to consider its d-dimension. Alternatively, we consider the combinatorial dimension
of its induced LP-type problem (D,α). Suppose its combinatorial dimension is k and
that the optimal value is α(D) = x∗. We will first show that k ≤ 2d. Suppose on
the contrary that k > 2d. This means that if B is a basis for D, then every proper
subset of B, B′ ⊂ B has α(B′) <L x∗. Let xmax = max{α(B′) | B′ ⊂ B} be the
maximal value of α on proper subsets of B. Since B is finite, xmax is well-defined, and
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xmax <L x∗. Since the lexicographic version of Theorem 1.3 has Helly number 2d (see
Theorem 2.5 in [20]), applying it on B and xmax implies that the half-spaces in B have
a common point which is not lexicographically greater than xmax, in contradiction.

We now give a lower bound of 2d − 1 on the combinatorial dimension k of lex IP.
Theorem 8.7 below applied on lex IP tells us that the special case of the lexicographic
version of Theorem 1.3 over half-spaces has a Helly number of at most k + 1. Since
it is known (see section 2 in [20]) that this special case has Helly number 2d, we get
that 2d ≤ k + 1 as needed.

8.2. (Nonlexicographic) discrete case. We first show that there is a discrete
Helly theorem corresponding to the constraint set of every fixed-dimensional DLP-
type problem.

Theorem 8.7. Let (D,S, ω) be a (kD, kS)-dimensional DLP-type problem. For
every λ ∈ Λ, H = (D,S) has the property ω(H) ≤ λ if and only if every BD ⊆ D,
with |BD| ≤ kD + 1, has the property ω(BD, S) ≤ λ. Moreover, H has the prop-
erty ω(H) ≥ λ if and only if every BS ⊆ S, with |BS | ≤ kS + 1, has the property
ω(D,BS) ≥ λ.

Proof. We prove the first part of the theorem. The proof of the second part of
the theorem is analogous. Let ω(H) ≤ λ. By the monotonicity of demand condition,
ω(BD, S) ≤ ω(H) ≤ λ. Going in the other direction, H must contain a basis B =
(BD, BS), with |BD| ≤ kD + 1, and ω(BD, S) = ω(H) (if H is feasible, |BD| ≤ kD;
otherwise, every subset of BD is feasible, so |BD| ≤ kD + 1). So if every subfamily
(BD, S), with |BD| ≤ kD + 1, has ω(BD, S) ≤ λ, then ω(H) = ω(BD, S) ≤ λ.

We next show how to get fixed-dimensional DLP-type problems from discrete
Helly-type problems.

We first “discretize” set systems and Helly systems. A discrete set system is a
triple (X,D, S), where X is a set and D,S are families of subsets of X. A discrete
set system (X,D, S) is a discrete Helly system if there exists a finite integer k such
that the intersection of every k or less d-elements of D has a common element in

⋃
S

implies that
⋂
D ∩ (

⋃
S) 
= ∅. Let (X × Λ, D̄, S̄) be a discrete set system, where Λ

is a totally ordered set which contains a maximal element ∞. For every λ ∈ Λ and
h̄ ∈ D̄ ∪ S̄, we write hλ = {x ∈ X | ∃ν ≤ λ s.t. (x, ν) ∈ h̄} for the projection into X
of the part of h̄ with Λ-coordinate no greater than λ. Also, for G ∈ 2D × 2S , we write
Gλ as a shorthand for {hλ | h̄ ∈ Ḡ}.

We next discretize parameterized Helly systems.
Definition 8.8. A discrete set system (X×Λ, D̄, S̄) is a discrete parameterized

Helly system with Helly number k, when
1. {hλ | λ ∈ Λ} is a nested family for all h̄ ∈ D̄ ∪ S̄, and
2. (X,Dλ, Sλ) is a discrete Helly system, with Helly number k for all λ.

We say that Ḡ = (D̄′, S̄′) ∈ 2D̄×2S̄ intersects at λ if
⋂
D′

λ∩(
⋃
S′
λ) 
= ∅. ω(D̄′, S̄′)

is then the least value in Λ at which Ḡ = (D̄′, S̄′) intersects, i.e., ω(D̄′, S̄′) = λ∗ =
inf{λ |

⋂
D′

λ ∩ (
⋃
S′
λ) 
= ∅}, and ω(D̄′, S̄′) = ∞ if Ḡ fails to intersect at all λ ∈ Λ.

Figure 8.2 is a schematic diagram of a discrete parameterized Helly system. The
whole stack represents X ×Λ, each of the pyramids represents a set h̄ ∈ D̄, and each
of the vertical lines represents a set h̄ ∈ S̄. Each h̄ is a subset of X × Λ. Since all
of the h̄ are indexed with respect to Λ, the cross section at λ (represented by one of
the planes) is equivalent to the discrete Helly system (X,Dλ, Sλ) corresponding to
Theorem 1.4. The discrete parameterized Helly system drawn in this figure is related
to the discrete weighted 1-center problem with an l∞ norm, which we solve in the next
section. ω(D̄, S̄) is the smallest value in Λ at which the intersection of the pyramids
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Fig. 8.2. A discrete parameterized Helly system.

in D̄ “touches” a vertical line from S̄.
We extend the main theorem in [2] to the discrete case and get the following.
Theorem 8.9. Let (X × Λ, D̄, S̄) be a parameterized discrete Helly system with

Helly number k, a natural ground set function ω′, and a natural objective function
ω. If ω′ meets the UMC, then (D̄, S̄, ω) is a DLP-type problem of combinatorial
dimension (k, 1).

Proof. Since ω is induced by the natural ground set objective function ω′ on the
space X × Λ, and since ω′ meets the UMC on (X × Λ, D̄, S̄, ω′) (Definition 8.4), by
Lemma 8.6 (D̄, S̄, ω) is a 1 s-dimensional DLP-type problem.

It remains to prove that (D̄, S̄, ω) is k-d-dimensional. Consider any feasible Ḡ =
(D̄′, S̄′) ∈ 2D̄ ×2S̄ and a basis B̄ = (B̄D, B̄S) for Ḡ. Let (D̄′, αS′) be the induced LP-
type problem of (D̄′, S̄′, ω). B̄D is then a basis for D̄′. We need to prove that |B̄D| ≤ k.
From the minimality of a basis we get that, for any h̄ ∈ B̄D, αS′(B̄D\{h̄}) < αS′(B̄D).
Let λmax = max{αS′(B̄D \ {h̄}) | h̄ ∈ B̄D}. Since D̄′ is finite, so is B̄D, and this
maximum is guaranteed to exist.

The basis B̄ does not intersect at λmax, but for any h̄ ∈ B̄D, αS′(B̄D\{h̄}) ≤ λmax,
which means that (B̄D \ {h̄}, S̄′) intersects at λmax. Since (X,Dλmax , Sλmax) is a
discrete Helly system with Helly number k, B̄D must contain some subfamily Ā, with
|Ā| ≤ k, such that (Ā, S̄′) does not intersect at λmax. Every h̄ ∈ B̄D must be in Ā,
since otherwise it would be the case that Ā ∈ (B̄D \ {h̄}) for some h̄. This cannot be,
because (Ā, S̄′) does not intersect at λmax, while every (B̄D \{h̄}, S̄′) does. Therefore
B̄D = Ā and |B̄D| ≤ k.

8.3. Lexicographic-discrete case. In this rather technical section we dis-
cretize the results in section 6. We start by “lexifying” discrete Helly systems.

Definition 8.10. A discrete Helly system with lexicographic Helly number ld
is a discrete set system (X,D, S) such that, for every x ∈ X, (X, {d ∩Xx | d ∈ D},
{s ∩Xx | s ∈ S}) is a discrete Helly system with Helly number ld.

This means that for every x ∈ X, whenever every ld or less elements of D have a
common point in S which is not lgreater than x, we get that all elements of D have
a common point in S which is not lgreater than x.

We next discretize Theorem 2.18. Let (X × Λ, D̄, S̄) be a parameterized discrete
Helly system with Helly number k and natural objective function ω. For all λ ∈ Λ, we
assume a function νλ : 2Dλ × 2Dλ → Λ′, where Λ′ is a totally ordered set containing
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a maximal element ∞ such that (Dλ, Sλ, νλ) is a DLP-type problem of d-dimension
at most d and s-dimension 1. The functions νλ may themselves be lexicographic.
Similarly to [2], we impose a lexicographic order on Λ × Λ′ with (λ, κ) > (λ′, κ′)
if λ > λ′ or if λ = λ′ and κ > κ′. We define a lexicographic objective function
ν : 2D̄ × 2S̄ → Λ × Λ′ in terms of ω and the functions νλ as seen in the following.

Theorem 8.11. Let Λ′ be a totally ordered set. Let (X × Λ, D̄, S̄) be a parame-
terized discrete Helly system with Helly number k and natural objective function ω. If,
for all λ, (Dλ, Sλ, νλ) is a DLP-type problem of combinatorial dimension (d, 1), where
νλ : 2Dλ×2Sλ → Λ′, then (D̄, S̄, ν) is a DLP-type problem of d-dimension ≤ k+d and

s-dimension 1, where ν : 2D̄×2S̄ → Λ×Λ′ is defined as ν(Ḡ) = (ω(Ḡ), νω(Ḡ)(Gω(Ḡ)))

for all Ḡ ⊆ D̄ × S̄.
Proof. Due to Observation 8.2, (D̄, S̄, ω) obeys both monotonicity conditions.

For every λ, (Dλ, Sλ, νλ) obeys both monotonicity conditions. Hence, since ν is a
composition of monotone functions, we get that (D̄, S̄, ν) obeys both monotonicity
conditions as well. We next show that (D̄, S̄, ν) obeys both locality conditions.

Consider D̄′′ ⊆ D̄′ ⊆ D̄ and S̄′ ⊆ S̄, with ν(D̄′′, S̄′) = ν(D̄′, S̄′) = (λ∗, κ∗)
and ν(D̄′ ∪ {h̄}, S̄′) = (λ, κ) > ν(D̄′, S̄′). We must have either λ > λ∗ or κ > κ∗. If
λ > λ∗, by the definition of ω, νλ∗(D′

λ∗ ∪{hλ∗}, S′
λ∗) = ∞, so νλ∗(D′

λ∗ ∪{hλ∗}, S′
λ∗) >

νλ∗(D′
λ∗ , S′

λ∗). Otherwise, κ > κ∗, that is, νλ∗(D′
λ∗ ∪ {hλ∗}, S′

λ∗) > νλ∗(D′
λ∗ , S′

λ∗).
In either case, by the locality of demand condition on νλ∗ , νλ∗(D′′

λ∗ ∪ {hλ∗}, S′
λ∗) >

νλ∗(D′′
λ∗ , S′

λ∗) and ν(D̄′′ ∪ {h̄}, S̄′) > ν(D̄′′, S̄′). So the lexicographic function ν also
satisfies the locality of demand condition.

We now consider the locality of supply condition. We note that, due to Ob-
servation 8.3, (D̄, S̄, ω) is a 1-supply problem which meets the locality of supply
condition. For every λ, (Dλ, Sλ, νλ) obeys both locality conditions. We will show
that, since ν is a composition of functions satisfying the locality of supply condition,
(D̄, S̄, ν) meets the locality of supply condition. Let S̄′′ ⊆ S̄′ ⊆ S̄ and D̄′ ⊆ D̄,
with ν(D̄′, S̄′′) = ν(D̄′, S̄′) = (λ∗, κ∗) and ν(D̄′, S̄′ ∪ {h̄}) = (λ, κ) < ν(D̄′, S̄′).
We need to show that ν(D̄′, S̄′′ ∪ {h̄}) < (λ∗, κ∗). Clearly, we must have either
λ < λ∗ or κ < κ∗. If λ < λ∗, since (D̄, S̄, ω) obeys the locality condition of sup-
ply, ω(D̄′, S̄′′ ∪ {h̄}) < λ∗, so ν(D̄′, S̄′′ ∪ {h̄}) < (λ∗, κ∗), as needed. Otherwise,
κ < κ∗, that is, νλ∗(D′

λ∗ , S′
λ∗ ∪ {hλ∗}) < νλ∗(D′

λ∗ , S′
λ∗). In this case, by the lo-

cality of supply condition on νλ∗ , νλ∗(D′
λ∗ , S′′

λ∗ ∪ {hλ∗}) < νλ∗(D′
λ∗ , S′′

λ∗) and again
ν(D̄′, S̄′′ ∪ {h̄}) < ν(D̄′, S̄′′), as needed.

We now consider the combinatorial s-dimension. It is sufficient to show that, for
every feasible (D̄′, S̄′) ∈ 2D̄×2S̄ and every basis B̄ = (B̄D, B̄S) for (D̄′, S̄′), |B̄S| = 1.
Since B̄ is a basis for (D̄′, S̄′), we have ν(B̄) = ν(D̄′, S̄′) = (λ∗, κ∗). Let Bλ∗ =
(BD′

λ∗ , BS′
λ∗) be a basis for (D′

λ∗ , S′
λ∗) in the DLP-type problem (D′

λ∗ , S′
λ∗ , νλ∗).

Since the s-dimension of (D′
λ∗ , S′

λ∗ , νλ∗) is 1, there is h̄′ ∈ S̄′ such that BS′
λ∗ = {h′

λ∗}.
Let S̄′′ ⊆ S̄′ be the set of all such h̄′. Since (D̄′, S̄′, ω) is an induced discrete abstract
problem, there is a feasible point x ∈

⋂
(D̄′, S̄′) such that ω(D̄′, S̄′) = ω′(x) = λ∗,

x ∈ h′
λ∗ (so x ∈ h̄′), and

(8.1) ν(D̄′, S̄′) = ν(D̄′, {h̄′}).

Let BD′′
λ∗ be a basis for Dλ∗ in the induced LP-type problem of (Dλ∗ , Sλ∗ , νλ∗) such

that BD′′
λ∗ ⊆ BDλ∗ . It is possible to choose such a basis since νλ∗(BDλ∗ , S′

λ∗) =
κ∗. Similarly, let BS′′

λ∗ be a basis for Sλ∗ in the induced dual LP-type problem of
(Dλ∗ , Sλ∗ , νλ∗) such that BS′′

λ∗ ⊆ BSλ∗ . It is possible to choose such a basis since
νλ∗(D′

λ∗ , BSλ∗) = κ∗. Due to the definition of a basis (Definition 4.4), (BD′′
λ∗ , BS′′

λ∗)
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is a basis for (D′
λ∗ , S′

λ∗). Hence S̄′′ ∩ ¯BS′′ 
= ∅, and consequently S̄′′ ∩ B̄S 
= ∅, so
there exists

(8.2) h̄′ ∈ S̄′′ ∩ B̄S.

We claim that B̄S = {h̄′}. Since (B̄D, B̄S) is a basis for (D̄′, S̄′) we get

(8.3) ν(D̄′, S̄′) = ν(D̄′, B̄S).

Combining (8.1) and (8.3) together implies that ν(D̄′, B̄S) = ν(D̄′, {h̄′}). Since B̄S
is a basis for the induced dual LP-type problem (S̄′, β), the last equality implies that
B̄S = {h̄′}, so (D̄, S̄, ν) has s-dimension 1.

Finally, we consider the combinatorial d-dimension. We note that, since B̄ is a
basis, ν(B̄D \ {h}, S̄′) = (λ, κ) < ν(B̄) = (λ∗, κ∗) for any h̄ ∈ B̄D. Let the subset
B̄1 = {h̄ ∈ B̄D | ν(B̄D \ {h̄}, S̄′) = (λ, κ) and λ < λ∗}. Since the d-dimension of
(Bλ∗ , νλ∗) is d, B̄D \ B̄1 contains at most d constraints. If B̄1 = ∅, we are done.
Otherwise, we let

λmax = max{λ | ν(B̄D \ {h̄}, S̄′) = (λ, κ), h̄ ∈ B̄1}.

Since λmax < λ∗, B̄D fails to intersect with S′ at λmax and hence must contain a set Ā
of size ≤ k that also fails to intersect. Every h̄ ∈ B̄1 must also be in Ā, since B̄D\{h̄}
intersects with S′ at λmax and Ā does not, so Ā � B̄D \ {h̄}. So |B̄1| ≤ |Ā| ≤ k and
|B̄D| ≤ k + d.

In order to get DLP-type problems from lexicographic-discrete Helly theorems,
we impose lexicographic order on the ground set X and parameterize the discrete
Helly system (X,D, S) with lexicographic Helly number ld (see Definition 8.10) in
the following way (recall that Xx = {x′ ∈ X | x′ ≤L x}).

Definition 8.12. A discrete set system (X×X, D̄, S̄) is a parameterized discrete
Helly system with lexicographic Helly number ld if there exists a discrete Helly system
with lexicographic Helly number ld, (X,D, S), such that for all h ∈ D, h̄ = {(y, x) |
x ∈ X, y ∈ h ∩Xx}, D̄ = {h̄ | h ∈ D}, and for all h ∈ S, h̄ = {(y, x) | x ∈ X, y ∈ h},
S̄ = {h̄ | h ∈ S}.

From the definitions it is easy to verify the following.
Observation 8.13. Let (X × X, D̄, S̄) be a parameterized discrete Helly system

with lexicographic Helly number ld. For every x, y ∈ X and h̄ ∈ D̄ ∪ S̄ the following
attributes hold:

1. {hx | x ∈ X} is a nested family for all h̄ ∈ D̄ ∪ S̄.
2. (X,Dx, Sx) is a discrete Helly system with lexicographic Helly number ld.
3. (X×X, D̄, S̄) is a parameterized discrete Helly system with Helly number ld.
4. (y, x) ∈ h̄ → (y, y) ∈ h̄.
5. (y, x) ∈ h̄ → y ≤L x.

We give the discrete versions of Theorems 6.4 and 6.5 and prove them similarly
to the way we proved the continuous versions.

Theorem 8.14. Let (X×X, D̄, S̄) be a parameterized discrete Helly system with
lexicographic Helly number ld and ω be its natural objective function. Then (D̄, S̄, ω)
is a DLP-type problem of combinatorial dimension (ld, 1).

Proof. We show that all of the conditions of Theorem 8.9 are satisfied. Due to at-
tribute 3 in Observation 8.13, (X ×X, D̄, S̄) is a parameterized discrete Helly system
with Helly number at most ld. It remains to show that the natural objective function
ω meets the UMC. Suppose on the contrary that there is Ḡ = (D̄′, S̄′) ∈ 2D̄ × 2S̄ ,
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with ω(Ḡ) = x, such that there are two different points x′, x′′ ∈ X ∩ (
⋃
S′) so that

both (x′, x), (x′′, x) ∈
⋂
Ḡ realize ω(Ḡ). Due to attribute 5 in Observation 8.13,

x′, x′′ ≤L x. Without loss of generality x′′ <L x′. Hence x′′ <L x, and from at-
tribute 4 in Observation 8.13 we get that (x′′, x′′) ∈

⋂
Ḡ, so ω(Ḡ) ≤L x′′ <L x in

contradiction.
Theorem 8.15. Let (X ×Λ, D̄, S̄) be a parameterized discrete Helly system with

Helly number k and natural objective function ω. If, for every λ ∈ Λ, (X,Dλ, Sλ) is
a discrete Helly system with lexicographic Helly number ld, then there is a function
ν : 2D̄ × 2S̄ → Λ×X such that for all Ḡ ∈ 2D̄ × 2S̄ the first part of ν(Ḡ) is ω(Ḡ) and
(D̄, S̄, ν) is a DLP-type problem of d-dimension ≤ k + l and s-dimension 1.

Proof. For every λ ∈ Λ we parameterize the discrete Helly system (X,Dλ, Sλ)
such that (X×X, D̄λ, S̄λ) is a parameterized discrete Helly system with lexicographic
Helly number ld. If its natural objective function νλ is not well-defined, we symboli-
cally compactify the space X by representing points at infinity. Due to Theorem 8.14
the resulted discrete abstract problem (Dλ, Sλ, νλ) is a DLP-type problem of combi-
natorial dimension (ld, 1). We conclude our proof by using Theorem 8.11.

It is possible to bound the combinatorial dimension of the resulting LP-type
problem further by using the following discrete version of Theorem 6.6 (whose proof
is similar to the one of Theorem 6.6).

Theorem 8.16. Let d ∈ N, D be a finite family of compact subsets in Rd

and S be a finite family of closed subsets in Rd. If, for every scaling factor λ0 ∈
R+, (Rd, λ0D,S) is a discrete Helly system with lexicographic Helly number l, and
(Rd, λ0 Int(D), S) is a discrete Helly system with Helly number k, where Int(D) =
{Int(h) | h ∈ D} is the family of the interiors of the sets in D, then (Rd × R+ × Rd,
D̄, S̄) is a parameterized discrete Helly system with Helly number m = max{k, l},
where, for all h ∈ D and for all λ = (λ0, x) ∈ R+×Rd, hλ = (λ0h∩Xx)∪ (λ0 Int(h)),
and for all h ∈ S and for all λ = (λ0, x) ∈ Rd+1, hλ = h. Moreover, if ω is its natural
objective function, then (D̄, S̄, ω) is a DLP-type problem of combinatorial dimension
(m, 1).

9. Solving the discrete weighted 1-center problem in Rd with either l1
or l∞ norm. In this section we show how to solve the discrete weighted 1-center
problem in Rd with an l∞ norm (1-center problem, in short) in linear time by formu-
lating it as a fixed-dimensional DLP-type problem which satisfies the VC.

Given an instance D,S,W of the 1-center problem, for every G = (D′, S′) ∈
2D × 2S let r(D′, S′) be the optimal radius of the 1-center problem on D′, S′,W ,
realized by making s∗(D′, S′) ∈ S′ the center.

Considering the set of boxes r(D′, S′)D′ = {r(D′, S′)di | di ∈ D′}, where

r(D′, S′)di is the box with center at di and radius r(D′,S′)
wi

, we note that s∗(D′, S′)
intersects all of the boxes of r(D′, S′)D′. The proof of Theorem 1.5 applied on the
set of boxes r(D′, S′)D′ and the set of points S′ tells us that the following 2d boxes
“define” the optimal solution:

For every i = 1, . . . , d, let Li(D
′, S′) ∈ D′ be a d-element dj(i) ∈ D′ such that

the projection of box r(D′, S′)dj(i) on the ith coordinate results in an interval [li, ri]
with the smallest ri. Let li(D

′, S′) ∈ R be the right end point of the projection of
r(D′, S′)dj(i) on the ith coordinate.

For every i = 1, . . . , d, let Gi(D
′, S′) ∈ D′ be a d-element dj(i) ∈ D′ such that

the projection of box r(D′, S′)dj(i) on the ith coordinate results in an interval [l′i, r
′
i]

with the greatest l′i. Let gi(D
′, S′) ∈ R be the left end point of the projection of

r(D′, S′)dj(i) on the ith coordinate.
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We also define C(D′, S′) ∈ S′ to be the lexicographically smallest optimal center.
We let the range of the objective function be R+ × R3d and define the objective
function to be

ω(D′, S′) = (r(D′, S′), C(D′, S′), l1(D
′, S′),−g1(D

′, S′), . . . , ld(D
′, S′),−gd(D

′, S′)).

Clearly (D,S, ω) is a discrete abstract problem.

For every (D′, S′) ∈ 2D × 2S we let Feasible(D′, S′) denote the set of points that
intersect all of the boxes r(D′, S′)D′. From the definitions of the variables and the
optimality of the solution we get the following.

Observation 9.1. Let D,S,W be an instance of the discrete weighted 1-center
problem in Rd with an l∞ norm. For every (D′, S′) ∈ 2D × 2S , Feasible(D′, S′) is
the minimal axis-parallel box containing the 2 points (g1(D

′, S′), . . . , gd(D
′, S′)) and

(l1(D
′, S′), . . . , ld(D

′, S′)). Furthermore, C(D′, S′) lies on its boundary.

We show now that (D,S, ω) is a (2d, 1)-dimensional DLP-type problem. (D,S, ω)
obeys the monotonicity of demand condition since adding a new element h to D′

cannot lexicographically decrease the value, i.e., ω(D′, S′) ≤L ω(D′ ∪ {h}, S). Simi-
larly, (D,S, ω) obeys the monotonicity of supply condition since adding a new point
h cannot lexicographically increase the objective function value.

We now show that (D,S, ω) obeys both locality conditions and that it obeys
the VC. Let G = (D′, S′) ∈ 2D × 2S and F = (D′′, S′′) ∈ 2D

′ × 2S
′

be such that
ω(G) =L ω(F ) (so due to Observation 9.1 Feasible(G) = Feasible(F )). It suffices to
show that the following 3 properties hold:

1. For all h ∈ S, ω(D′, S′∪{h}) <L ω(G) if and only if ω(D′′, S′′∪{h}) <L ω(F ).
2. For all h ∈ D, ω(D′ ∪ {h}, S′) >L ω(G) → ω(D′′ ∪ {h}, S′) >L ω(F ).
3. For all h ∈ D, ω(D′′ ∪ {h}, S′′) >L ω(G) → ω(D′ ∪ {h}, S′) >L ω(F ).

Regarding the first property we note (for every set X ∈ Rd, let Int(X) denote its
interior, and let ∂(X) denote its boundary) that

ω(D′′, S′′ ∪ {h}) <L ω(F ) ⇐⇒ C(D′′, S′′ ∪ {h}) = h

⇐⇒ (h ∈ Int(Feasible(F ))) ∨ ((h ∈ ∂(Feasible(F )))

∧ (h <L C(F )))

⇐⇒ (h ∈ Int(Feasible(G))) ∨ ((h ∈ ∂(Feasible(G)))

∧ (h <L C(G)))

⇐⇒ C(D′, S′ ∪ {h}) = h

⇐⇒ ω(D′, S′ ∪ {h}) <L ω(G).

We now consider the remaining two properties. Let di ∈ D. ω(D′′∪{di}, S′′) >L ω(F )
if and only if one of the following cases occurs:

1. r(D′′ ∪ {di}, S′′) > r(F ), or
2. r(D′′ ∪ {di}, S′′) = r(F ) and C(D′′ ∪ {di}, S′′) >L C(F ), or
3. r(D′′ ∪ {di}, S′′) = r(F ), C(D′′ ∪ {di}, S′′) =L C(F ), and (l1(D

′′ ∪ {di}, S′′),
−g1(D

′′ ∪ {di}, S′′), . . . , ld(D
′′ ∪ {di}, S′′),−gd(D

′′ ∪ {di}, S′′)) >L (l1(F ),
−g1(F ), . . . , ld(F ),−gd(F )).



ON THE POWER OF DISCRETE HELLY THEOREMS 37

Regarding case 1, we have

r(D′′ ∪ {di}, S′′) > r(F ) ⇐⇒ r(F )di ∩ Feasible(F ) ∩ S′′ = ∅
⇐⇒ (r(G)di ∩ Feasible(G) ∩ S′ = ∅) ∨ ((r(G)di ∩ ∂(Feasible(G) ∩ (S′ \ S′′)) 
= ∅)

∧ C(G) /∈ r(G)di)

⇐⇒ (r(D′ ∪ {di}, S′) > r(G)) ∨ ((r(D′ ∪ {di}, S′) = r(G))

∧ (C(D′ ∪ {di}, S′) >L C(G))).

We now consider case 2.

(r(D′′ ∪ {di}, S′′) = r(F )) ∧ (C(D′′ ∪ {di}, S′′) >L C(F ))

⇐⇒ (C(F ) /∈ r(F )di) ∧ (r(F )di ∩ ∂(Feasible(F )) ∩ S′′ 
= ∅)
⇒ (C(G) /∈ r(G)di) ∧ (r(G)di ∩ ∂(Feasible(G)) ∩ S′ 
= ∅)
⇐⇒ (r(D′ ∪ {di}, S′) = r(D′, S′)) ∧ (C(D′ ∪ {di}, S′) >L C(D′, S′)).

When S′ = S′′, the other direction of implications is also correct.

Case 3 occurs if and only C(F ) ∈ r(F )di and there exists j such that, among
the projections of the boxes in r(F )D′′ ∪ {r(F )di} on the jth coordinate, the pro-
jection of r(F )di results in an interval [l, r] with either the smallest r or the greatest
l. This happens if and only if C(G) ∈ r(G)di, and among the projections of the
boxes in r(G)D′ ∪ {r(G)di} on the jth coordinate, the projection of r(G)di results
in an interval [l, r] with either the smallest r or the greatest l. This occurs if and
only if r(D′ ∪ {di}, S′) = r(G), C(D′ ∪ {di}, S′) =L C(G), and (l1(D

′ ∪ {di}, S′),
−g1(D

′ ∪ {di}, S′), . . . , ld(D
′ ∪ {di}, S′),−gd(D

′ ∪ {di}, S′)) >L (l1(G),−g1(G), . . . ,
ld(G),−gd(G)).

From the above analysis we get that the last two properties are indeed satisfied.
Hence (D,S, ω) is a DLP-type problem which satisfies the VC.

It is easy to verify that B(D,S) = ({L1(D,S), G1(D,S), . . . , Ld(D,S), Gd(D,S)},
{C(D,S)}) is a basis of a feasible and bounded (D,S) and that the problem is of d-
dimension 2d and s-dimension 1.

The violation test can easily be implemented in constant time. For a basis B =
(BD, BS) and a d-element di, ω(BD ∪ {di}, BS) > ω(B) if and only if either r(B)di
does not contain C(B) or there exists j such that, among the projections of the
boxes in r(B)D′′ ∪ {r(B)di} on the jth coordinate, the projection of r(B)di results
in an interval [l, r] with either the smallest r or the greatest l. For an s-element h,
ω(BD, BS ∪ {h}) < ω(B) if and only if either h lies in the interior of Feasible(B) or
h lies on the boundary of Feasible(B) and h ≤L C(B). The basis calculation can
be implemented in constant time by calling the violation test a constant number of
times. Using a DLP algorithm such as the one stated in section 5, we conclude as
follows.

Theorem 9.2. The discrete weighted 1-center problem in Rd with an l∞ norm
is solvable in (randomized) linear time for every fixed d.

The rectilinear 1-center problem in Rd (i.e., with an l1 norm) is solved similarly by
using the rectilinear Helly-type versions of Theorems 1.4 and 1.5 (i.e., with rectilinear
“balls” instead of axis-parallel boxes), which have Helly number 2d instead of 2d. We
get the following theorem.

Theorem 9.3. The discrete weighted rectilinear 1-center problem in Rd is solv-
able in (randomized) linear time for every fixed d.
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We note that, while the Euclidean 1-center problem in Rd can be formulated
as a (d + 1)-dimensional LP-type problem and thus is solved in randomized linear
time [31], the corresponding discrete problem admits an Ω(n log n) lower bound un-
der the algebraic computation tree model and is solved in the same time bound [24].
This demonstrates that sometimes the complexity of a discrete optimization version
of a continuous optimization problem is strictly harder, as discussed also in the intro-
duction.

10. Solving problems related to line transversals in the plane.

10.1. Continuous case. We first consider the lexicographic (continuous) line
transversal of axis-parallel rectangles problem. The input is a family D = {d1, . . . , dn}
of axis-parallel (closed) rectangles in the plane, together with a set of their reference
points C = {c1, . . . , cn} such that ci lies in the interior of di for every i = 1, . . . , n. For
a particular rectangle di ∈ D, let λdi be the homothet of di that results from scaling di
by a factor of λ, relatively to ci (i.e., while keeping the point ci fixed in the plane). Let
λD = {λd | d ∈ D}. In the lexicographic (continuous) line transversal of axis-parallel
rectangles optimization problem, we are interested in the smallest scaling factor λ∗

and lexicographically smallest vector (a′′, b′′) such that the line y = a′′x+b′′ intersects
each of the scaled rectangles in λ∗D. In the corresponding (nonlexicographic) decision
problem (i.e., no scaling is allowed), we ask whether there exists a line transversal
which intersects all of the rectangles in D. We note that this decision problem is solved
in linear time via LP-type algorithms or by reducing it to linear programming [1, 2].
We are unaware of any linear time algorithms for the (nonlexicographic) optimization
problem. We solve this problem by solving the (more general) lexicographic problem
in linear time and noting that the optimal scaling factors of the lexicographic and
nonlexicographic problems are equal. We solve the lexicographic problem by using
the LP-type framework and the following two Helly-type theorems.

Theorem 10.1 (see [29]). Let D be a family of parallel open rectangles in the
plane. If every subset of at most 6 rectangles admits a line transversal, then H does
as well.

Theorem 10.2 (Theorem 2.12 in [20]). Let D be a family of axis-parallel (closed)
rectangles in the plane. For every pair of reals a′ and b′, if every subfamily of at most
6 rectangles admits a line transversal y = ax + b, with (a, b) ≤L (a′, b′), then D does
as well.

We note that, for every line direction (e.g., vertical to the x-axis), the restricted
problem of finding the smallest scaling factor λ∗, such that there exists a line trans-
versal for λ∗D in this direction, is solvable in linear time by projecting the problem
on the vertical direction (e.g., on the x-axis) and formulating it as a 2-dimensional
LP problem. Hence it is enough to solve in linear time the problem where the line
transversal must not be vertical to the x-axis.

We show that this problem is a 6-dimensional LP-type problem by formulating
it as a parameterized Helly system with lexicographic Helly number 6 and using
Theorem 6.6. Let the ground set X = R2 be the set of lines in the plane which are
not vertical to the x-axis (i.e., (a, b) ∈ X is the line Y = aX + b), and let Λ = R+.
For every d ∈ D, let t(d) be the set of lines intersecting d, let d̄ = {t(λd) | λ ∈ R+},
and let D̄ = {d̄ | d ∈ D}.

Every line that intersects the homothet λ1d also intersects λ2d for any λ2 > λ1, so
each d̄ is a nested family of lines. Due to Theorem 10.2 every (X,λD) is a Helly system
with lexicographic Helly number 6. Due to Theorem 10.1 every (X,λ Int(D)) is a Helly
system with Helly number 6. Hence, Theorem 6.6 implies that (R2 ×R+×R2, D̄) is a
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parameterized Helly system with Helly number 6 and that (D̄, ω) is a 6-dimensional
LP-type problem. The natural objective function ω(D̄) is the lsmallest vector λ =
(λ0, a, b) such that Dλ intersects at the point (a, b) (i.e., the line aX + b intersects
each of the scaled rectangles in λ0D). Recall that the algorithm in [28] runs in
O(tvn + tb log n) time, where tv is the time needed for a violation test and tb is the
time required for a basis calculation. Since both violation test and basis calcula-
tion primitives can easily be implemented in constant time, we have just proved the
following theorem.

Theorem 10.3. The line transversal of axis-parallel rectangles optimization prob-
lem is solvable in (randomized) linear time.

We conclude this section by considering several variants of the line transversal of a
totally separable set of convex planar objects problem (problem 3 in the introduction).
The input for the lexicographic version of this problem is a totally separable family
D = {d1, . . . , dn} of simple convex objects, a family C = {c1, . . . , cn} of reference
points such that ci lies in the interior of di for every i = 1, . . . , n, and a vector (a′, b′).
In the decision problem we want to decide whether there exists a line Y = aX+b, with
(a, b) ≤L (a′, b′), which intersects all of the objects in D. In the optimization problem
we are interested in the smallest scaling factor λ∗ and lexicographically smallest vector
(a, b) such that the line y = ax + b intersects each of the scaled objects in λ∗D.
Clearly, the answer for the decision problem is positive if and only if the solution of
the optimization problem is at most (1, a′, b′). We solve this problem in linear time
using the LP-type framework and the following two Helly-type theorems.

Theorem 10.4 (see [23]). Let D be a totally separable finite family of open
convex sets. If every subset of at most 3 sets admits a line transversal, then D does
as well.

Theorem 10.5 (Corollary 2.20 in [20]). Let D be a totally separable family of
(closed) convex sets. For every pair of reals a′ and b′, if every subfamily of at most
3 sets admits a line transversal y = ax + b, with (a, b) ≤L (a′, b′), then H does as
well.

It is easy to show, using similar arguments to the ones mentioned earlier in this
section, that the optimization problem is indeed a 3-dimensional LP-type problem
and that it is solved in linear time. We thus have just proved the following theorem.

Theorem 10.6. The line transversal of totally separable set of convex planar
objects decision problem is solvable in (randomized) linear time.

10.2. Discrete case I—A finite number of permissible directions of line
transversals. In this section we define a discrete version for the line transversal of
axis-parallel rectangles optimization problem. We solve it in randomized linear time
by using the DLP-type framework.

Problem 10.7. Given are a set D = {d1, . . . , dn} of (not necessarily pairwise
disjoint) axis-parallel compact rectangles in the plane, together with a set of their
reference points C = {c1, . . . , cn}, such that ci lies in the interior of di, for every
i = 1, . . . , n, and a set S = {s1, . . . , sm} of permissible line directions. Find the
minimal scaling factor λ∗

1 = λ1(D,S) ∈ R+ such that λ∗
1D admits a line transversal

whose direction is in S.
If we choose S to be the (infinite) set of all possible directions, this problem

coincides with the continuous one. We can assume that S does not contain the
vertical direction and that the directions in S are such that the permissible lines
are {y = ax + b | a ∈ S}. (If S does contain a vertical direction, we will take the
minimal solution (i.e., scaling factor) among the ones of Problem 10.7 on S without
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the vertical direction and on the vertical direction alone. As already mentioned in
the previous section, the latter problem is solved in linear time by formulating it as
an LP problem.)

A special case of Problem 10.7 is when the line transversal must be nondescending.
Problem 10.8. Given are a set D = {d1, . . . , dn} of (not necessarily pairwise

disjoint) axis-parallel compact rectangles, together with a set of their reference points
C = {c1, . . . , cn}, such that ci lies in the interior of di for every i = 1, . . . , n, and a
set S = {s1, . . . , sm} of permissible line directions. Find the minimal scaling factor
λ∗

1 = λ1(D,S) ∈ R+ such that λ∗
1D admits a nondescending line transversal whose

direction is in S.
The solution of Problem 10.7 is the minimum scaling factor between the solution

of Problem 10.8 and the analog problem where the line transversal must be nonas-
cending.

10.2.1. A formulation as a discrete LP-type problem. In this section we
formulate Problem 10.8 as a fixed-dimensional DLP-type problem by using Theo-
rem 8.16 and the following Helly-type theorems.

Theorem 10.9 (Theorem 2.13 in [20]). Let D be a family of open rectangles in
the plane with edges parallel to the axes, and let S be a set of nonnegative reals (line
directions). If every subfamily of at most 4 rectangles admits a line transversal with
a slope from S, then D does as well.

Theorem 10.10 (Theorem 5.8 in [20]). Let D be a family of rectangles in the
plane with edges parallel to the axes, and let S be a set of nonnegative reals (line
directions). For every pair of reals a′ ≥ 0 and b′, and a pair of nonnegative reals
slmin ≤ slmax, if every subfamily of at most 5 rectangles admits a line transversal
y = ax+ b, with a ∈ S, slmin ≤ a ≤ slmax, and (a, b) ≤L (a′, b′), then D does as well.

Let G = (D′, S′) ∈ 2D×2S be an arbitrary set such that G 
= (∅, ∅). We first look
closely at an optimal solution for Problem 10.8 on G. Let λ∗

1 be the optimal scaling
factor. Due to Theorem 10.9 there is a direction s∗ ∈ S′ and a set D′′ ⊆ D′ of at
most 4 rectangles such that the solution of Problem 10.8 on (D′′, {s∗}) is λ∗

1. For this
solution we define the following variables:

• λ1(D
′, S′) ∈ R+ is λ∗

1, the optimal scaling factor.
• DIR(D′, S′) ∈ S is s∗, the minimal direction in S′ in which there exists a

nondecreasing line transversal for λ1(D
′, S′)D′.

• LINE (D′, S′) = (DIR(D′, S′), b(D′, S′)) is the line y = DIR(D′, S′)x +
b(D′, S′), which intersects every λ1(D

′, S′)d ∈ λ1(D
′, S′)D.

We note that, due to the optimality of λ∗
1, there exists only one line transversal to D′

with direction s∗, and this line is tangent to at least 2 rectangles in λ∗
1D

′.
In order to solve Problem 10.8, we first define and solve a lexicographic version

of it, containing 4 more parameters. Let us consider the dual space R2 of all possible
line transversals for λ∗

1D
′. In this dual space, each nonvertical line y = ax + b is

represented by the point (a, b). We will use the following observation.
Observation 10.11 (Observation 5.7 in [20]). Let D be a family of axis-parallel

rectangles in the plane, and, for every d ∈ D, let L(d) be the set of line transversals
which d admits in the dual space of line transversals. Let P (D) = ∩d∈D L(d) be the
set of line transversals which D admits. The intersection of P (D) with either the x
nonnegative or x nonpositive half-planes is a convex polygon. The slopes of line trans-
versals with nonnegative (nonpositive) slopes for D generate a slope range interval
[slmin, slmax] ([slmin, slmax]) resulted by the projection of P (D) on the nonnegative
(nonpositive) part of the x-axis, respectively. Each of the 4 end points of these two
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intervals is determined by two rectangles.
Due to this observation, the range of slopes of the possible nondecreasing line

transversals is a closed interval contained in R+. We call this interval the slope range
corresponding to λ∗

1D
′ and denote it by [SLmin(D′, S′), SLmax(D′, S′)], where

• SLmin(D′, S′) is the slope of the line transversal for λ∗
1D

′ with a minimal
nonnegative slope, and

• SLmax(D′, S′) is the slope of the line transversal for λ∗
1D

′ with a maximal
nonnegative slope.

(Due to the optimality of the scaling factor, the slope range does not contain any
direction from S′ in its interior.) We are ready to define a lexicographic version for
Problem 10.8.

Problem 10.12. Given are a set D = {d1, . . . , dn} of (not necessarily pairwise
disjoint) axis-parallel rectangles, together with a set of their reference points C =
{c1, . . . , cn}, such that ci lies in the interior of di for every i = 1, . . . , n, and a set S =
{s1, . . . , sm} of permissible line directions. Find the lexicographically minimal vector
λ = (λ1, s, b, sl

min,−slmax) such that the line y = sx + b (s ∈ S) is nondescending,
intersects all of the rectangles in λ1D, and the slope range corresponding to λ1D is
[slmin, slmax].

Clearly, the optimal solution of Problem 10.12 is an optimal solution for Prob-
lem 10.8.

We now apply Theorem 10.10 in order to construct a parameterized discrete Helly
system. Let the ground set be X = R+×R×R+×R−, the space of all nondecreasing
lines and slope ranges. In this space, each point represents a line by the geometric
duality transformation mentioned above and a slope range, as shown below. Let the
range of the objective function be Λ = R+. For every h ∈ D and λ ∈ R+ we define
(10.1)

hλ =

{
x = (a, b, slmin,−slmax) ∈ X y = ax + b is a line transversal for λh and

a ∈ [slmin, slmax].

}
.

As usual, we let h̄ = {hλ | λ ∈ Λ}.
Lemma 10.13. For all h ∈ D, h̄ is a nested family.
Proof. We need to show that for all α, β ∈ Λ, with α < β, hα ⊆ hβ , i.e., for all

x ∈ hα, x is also in hβ . This is true by monotonicity: A line transversal for αh is also
a line transversal for βh.

For every h ∈ S and λ ∈ Λ we let

hλ = {x | x is a line with direction s}.

Obviously, for every h ∈ S, h̄ = {hλ | λ ∈ Λ} is a nested family as well, and hλ does
not depend on λ.

From the definitions and Theorem 10.9 we get that, for all λ ∈ Λ, (X,Dλ, Sλ) is a
discrete Helly system with Helly number 4, and thus (X×Λ, D̄, S̄) is a parameterized
discrete Helly system with Helly number 4 (see Definition 8.8). From Theorem 10.10,
we get that, for all λ ∈ Λ, (X,Dλ, Sλ) is a discrete Helly system with lexicographic
Helly number 5. Thus all of the conditions in Theorem 8.16 are fulfilled, and (D,S, ν)
is a DLP-type problem of d-dimension at most 5 and s-dimension 1, where for all
G = (D′, S′) ∈ 2D × 2S

(10.2) ν(G) = (λ1(G),DIR(G), b(G), SLmin(G),−SLmax(G)).

We have just proved the following lemma.
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Lemma 10.14. (D,S, ν) is a (5, 1)-dimensional DLP-type problem.

Before we continue, we explain the values that the decision and optimization prob-
lems return. The decision problem returns “yes” if and only if λ∗

1 = λ1(D,S) ≤ 1. The
optimization problem returns the minimal scaling factor λ1(D,S), the minimal non-
negative direction from S such that λ1(D,S) admits a line transversal with direction
DIR(D,S) and intersection point b(D,S) with the y-axis, the slope range defined by
SLmin(D,S), SLmax(D,S), and a basis B = (BD, BS) for (D,S). We note that there
exist line transversals for λ∗

1D with each of the slopes SLmin(D,S) and SLmax(D,S).
We can view B and LINE (D,S) as witnesses for the optimality of the scaling factor
λ1(D,S). We need only to check that λ1(BD, S) = λ∗

1 (the monotonicity of demand
condition implies λ∗

1(D,S) ≥ λ∗
1) and that the line transversal LINE (D,S) intersects

each one of the rectangles λ∗
1h, h ∈ D (the monotonicity of supply condition implies

λ∗
1(D,S) ≤ λ∗

1). The first test can be executed in |S| time and the second in |D| time.

10.2.2. A linear time algorithm. In this section we apply the linear time
algorithm stated in section 5. We need to show that the conditions stated in Theo-
rem 5.4 are satisfied and implement each of the violation test and basis calculation
primitives in constant time. In the last section we formulated Problem 10.8 as a
(5, 1)-dimensional DLP-type problem. Thus, it remains to show the following.

Lemma 10.15. (D,S, ν) meets the VC (Definition 4.9).

Proof. We need to show that for every (D′, S′) ∈ 2D×2S and (D′′, S′′) ∈ 2D
′×2S

′

with ν(D′, S′) = ν(D′′, S′′) the following properties hold:

1. For every h ∈ D, if ν(D′′ ∪ {h}, S′′) > ν(D′′, S′′), then ν(D′ ∪ {h}, S′) >
ν(D′, S′).

2. For every h ∈ S, if ν(D′′, S′′ ∪ {h}) < ν(D′′, S′′), then ν(D′, S′ ∪ {h}) <
ν(D′, S′).

Let λ1 = λ1(D
′, S′) = λ1(D

′′, S′′). We define the following functions related to
P (λ1D

′), the set of line transversal which λ1D
′ admits (see Observation 10.11 for

the definition and structure of P (λ1D
′) in the dual space of line transversals). Let

lmin(D′, S′) be the unique line transversal with direction SLmin(D′, S′) that
λ1(D

′, S′)D′ admits. Let bmin(D′, S′) be its intersection point with the y-axis. In
this way (SLmin(D′, S′), bmin(D′, S′)) is the leftmost point in P (λ1D

′). We define
lmax(D′, S′) and bmax(D′, S′) similarly, so (SLmax(D′, S′), bmax(D′, S′)) is the right-
most point in P (λ1D

′).

The proof of both properties relies on the following observation which is true due
to (10.2):
(10.3)
ν(D′, S′) = ν(D′′, S′′) → the functions SLmin, bmin, lmin, SLmax, bmax, and lmax

have the same values on (D′, S′) and on (D′′, S′′).

We first show that the first property holds. h ∈ D violates (D′′, S′′) if and only if the
set of line transversals which λ1h admits does not contain both lines lmin(D′′, S′′) and
lmax(D′′, S′′) (i.e., {(SLmin(D′′, S′′), bmin(D′′, S′′)); (SLmax(D′′, S′′), bmax(D′′, S′′))}

⊂ P (λ1h)). Using (10.3), the latter condition occurs if and only if the set of line trans-
versals which λ1h admits does not contain both lines lmin(D′, S′) and lmax(D′, S′),
which in turn occurs if and only if h ∈ D violates (D′, S′).

Regarding the second property, we observe that h ∈ S violates (D′′, S′′) if and
only if either the slope h lies in the interior of the slope range corresponding to λ1D

′′

(so the scaling factor decreases) or h is the left end point of the slope range with
h < DIR(D′′, S′′). We conclude the proof by using (10.3) again.
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We are ready to make the complexity calculations. Given a basis B = (BD, BS)
and its optimal scaling factor λ1, we compute in constant time the functions SLmin(B),
bmin(B), lmin(B), SLmax(B), bmax(B), lmax(B),DIR(B), and the set of all line trans-
versals for λ1B, P (λ1BD) = ∩h∈BD

D(λ1h) (see Observation 10.11 for the notations).
The following violation tests are implemented in constant time as follows:

tvS : A new s-element h violates B if and only if either h lies in the interior of
the slope domain (SLmin(B), SLmax(B)) or h = SLmin(B) and DIR(B) =
SLmax(B).

tvD: A new d-element h violates B if and only if D(λ1h) does not contain
{(SLmin(D′′, S′′), bmin(D′′, S′′)); (SLmax(D′′, S′′), bmax(D′′, S′′))}.

Using the violation tests it is easy to see that the basis calculation for (D′, S′) where
both |D′|, |S′| are constants can be implemented in constant time. We have proved
the following.

Theorem 10.16. Problem 10.7 is solvable in (randomized) linear time.

Corollary 10.17. The lexicographic discrete line transversal of axis-parallel
rectangles problem is solvable in (randomized) linear time.

10.3. Discrete case II—A finite number of permissible line transversals.
In this section we show that the problem below has a lower bound of Ω(n log n).

Problem 10.18. Given are a set D = {d1, . . . , dn} of (not necessarily pairwise
disjoint) axis-parallel compact rectangles, together with a set of their reference points
C = {c1, . . . , cn}, such that ci lies in the interior of di for every i = 1, . . . , n, and
a set S = {s1, . . . , sm} of permissible lines. Find the minimal scaling factor λ∗

1 =
λ1(D,S) ∈ R+ such that λ∗

1D admits a line transversal from S.

Clearly it is sufficient to show that the corresponding decision problem has that
lower bound.

Theorem 10.19. Given a set D of axis-parallel rectangles and a set S of lines,
deciding whether D admits a line transversal from S requires Ω(n log n) time under
the algebraic computation tree model (when m = n).

Proof. We reduce in linear time the set equality problem (see definition in sec-
tion 4) to this decision problem. Given an instance of the set equality problem, i.e.,
two sets A,B of n real numbers each, we act as follows. We find minA and maxA

(minB and maxB) the minimal and maximal elements in A (B), respectively. We de-

fine two new sets A′ = { 2(a−minA)
maxA −minA

− 1 | a ∈ A} and B′ = { 2(b−minB)
maxB −minB

− 1 | b ∈ B}.
All of the elements in A′ and B′ are numbers between −1 to 1, and A = B if and only
if A′ = B′. For any −1 ≤ r ≤ 1 let p(r) be the intersection point of the unit circle
and the ray originating at the origin and having an angle of r radians with the posi-
tive part of the x-axis. We define two instances for the problem. The first instance,
instance I, has a set of lines SI = S(A′) and a set of rectangles (intervals) DI = D(B′)
defined as follows. We let S(A′) = {s(a′) | a′ ∈ A′}, where s(a′) is the line tangent
to the unit circle at point p(a′). We let D(B′) = {i(b′) | b′ ∈ B′}, where i(b′) is a
horizontal interval of length M , where M is a large number (e.g., 100), whose left end
is slightly to the right of p(b′) (from a computation point of view we build the left
end of the interval at exactly p(b) but symbolically do not include this point in the
interval). From the above construction we get that D(B′) admits a line transversal
from S(A′) if and only if A 
⊂ B. The second instance, instance II, has the set of lines
SII = S(B′) and the set of rectangles DII = D(A′). We get that D(A′) admits a line
transversal from S(B′) if and only if B 
⊂ A. We conclude the proof by observing that
A = B if and only if both instances of the problem return negative responses.
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[12] J. Eckhoff, Helly, Radon and Carathéodory type theorems, in Handbook of Convex Geometry,

P. M. Gruber and J. M. Willis, eds., Elsevier Science Publishers B.V., Amsterdam, 1993.
[13] P. Egyed and R. Wenger, Ordered stabbing of pairwise disjoint convex sets in linear time,

Discrete Appl. Math., 31 (1991), pp. 133–140.
[14] G. Frederickson, Optimal algorithms for tree partitioning, in Proceedings of the Second

Annual ACM Symposium on Discrete Algorithms, 1991, pp. 168–177.
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Abstract. We prove a very general lower bound technique for quantum and randomized query
complexity that is easy to prove as well as to apply. To achieve this, we introduce the use of Kol-
mogorov complexity to query complexity. Our technique generalizes the weighted and unweighted
methods of Ambainis and the spectral method of Barnum, Saks, and Szegedy. As an immediate con-
sequence of our main theorem, it can be shown that adversary methods can only prove lower bounds
for Boolean functions f in O(min(
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1. Introduction.

1.1. Overview. In this paper, we study lower bounds for randomized and quan-
tum query complexity. In the query model, the input is accessed using oracle queries,
and the query complexity of an algorithm is the number of calls to the oracle. Since
it is difficult to obtain lower bounds on time directly, the query model is often used
to prove concrete lower bounds, in classical as well as quantum computation.

The two main tools for proving lower bounds on randomized query complexity,
the polynomial method [7] and the adversary method [2], were successfully extended
to quantum computation. In the randomized setting, the adversary method is most
often applied using Yao’s minimax principle [21]. Using a different approach, which
introduces the notion of quantum adversaries, Ambainis developed a general scheme
in which it suffices to analyze combinatorial properties of the function in order to
obtain a quantum lower bound. Recently, Aaronson [1] brought these combinatorial
properties back to randomized computation, using Yao’s minimax principle.

The most general method for proving lower bounds in quantum query complex-
ity is the semidefinite programming method of Barnum, Saks, and Szegedy [5]. This
method is in fact an exact characterization of the query complexity. However, the
method is so general that it is very difficult to apply to obtain concrete lower bounds.
Barnum, Saks, and Szegedy gave a weaker method derived from the semidefinite pro-
gramming approach, using weight matrices and their largest eigenvalue. This spectral
method can be thought of as a generalization of Ambainis’s unweighted method.
Other generalizations of Ambainis’s unweighted method have been previously intro-
duced [6, 3]. All of them use a weight function on the instances. The difficulty in
applying these methods is finding a good weight function on the instances. Høyer,
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Neerbek, and Shi [15] were the first to use such weight assignments to prove lower
bounds for searching in ordered lists and sorting.

This paper presents a new, very general adversary technique (Theorem 1.1) to
prove lower bounds in quantum and randomized query complexity. We believed that
this technique is simpler to prove and to apply. It is based on the framework of
Kolmogorov complexity. This framework has proven to be very useful for proving
negative results in other models of computation, for example, for the number of rounds
and length of advice in random-self-reductions in [13, 4]. The techniques we use
here are an adaptation of those techniques to the framework of query complexity.
We expect that this framework will prove to be useful for negative results in other
quantum models of computation, for instance, communication complexity, where we
hope to give lower bounds for bounded round query complexity.

The proof of Theorem 1.1 is in two parts. The first part (divergence lemma)
shows how fast the computations can diverge when they start on different inputs.
This part depends on the model of computation (randomized or quantum). The
quantum case of this lemma was first proven by Ambainis [2]. The second part (query
information lemma) does not depend on the model of computation. It establishes the
relationship between the Kolmogorov complexity of individual positions of the input
and the probability that a given algorithm makes a query to this position. Whereas
Aaronson [1] used a different approach to prove a version of Ambainis’s method for
randomized algorithms, here we use the same framework to establish lower bounds
for both quantum and randomized query complexities (QQC and RQC).

We show that our method encompasses all previous adversary methods, including
the quantum and randomized weighted methods [3, 1] (Theorem 4.2) and the spectral
method [5] (Theorem 4.3). As an immediate consequence of our main theorem (ob-
served by Troy Lee), our method can only prove lower bounds for arbitrary Boolean
functions in O(min(

√
nC0(f),

√
nC1(f))), where C0 and C1 is the certificate complex-

ity of negative and positive instances, respectively, of f and n is the size of the input
(Theorem 5.2). Prior to our work, it was known [3] that the unweighted Ambainis
method [2, Theorem 5.1] could not prove bounds better than Ω(

√
C0(f)C1(f)) for

total functions; Szegedy [20] also proved independently that the semidefinite program-
ming method could not prove lower bounds better than O(min(

√
nC0(f),

√
nC1(f))),

and Zhang [22] proved the same thing for Ambainis’s weighted method.
We end the paper by giving some applications of our method to prove lower

bounds for some graph properties: bipartiteness (Theorem 5.4) and connectivity
(Theorem 5.3). The lower bound on connectivity was proven in [12] and the one
on bipartiteness by Dürr and independently in [22]. We reprove it here to illustrate
the simplicity of our method.

In recent developments, Špalek and Szegedy [19] showed that our method is equiv-
alent to both the spectral method [5] as well as Ambainis’s weighted method [3].
Subsequently, Laplante, Lee, and Szegedy showed that the square of the quantum
adversary method was also a lower bound on formula size [16].

1.2. Main result. The conditional Kolmogorov complexity K(a|b) (defined for-
mally in section 2.1) is the length of the shortest program which prints a given b as
input. Our main result relates the query complexity of an algorithm A for f to the
quantities {K(i|x,A),K(i|y,A) : xi �= yi} for any x, y such that f(x) �= f(y).

Theorem 1.1. There exists a constant C > 0 such that the following holds.
Let Σ be a finite set, let n ≥ 1 be an integer, and let S ⊆ Σn and S′ be sets. Let
f : S → S′. Let A be an algorithm that for all x ∈ S computes f , with bounded error
ε and at most T queries to the input. Then for every x, y ∈ S with f(x) �= f(y):
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1. if A is a quantum algorithm, then

T ≥ C × 1 − 2
√

ε(1 − ε)∑
i:xi �=yi

√
2−K(i|x,A)−K(i|y,A)

;

2. if A is a randomized algorithm, then

T ≥ C × 1 − 2ε∑
i:xi �=yi

min
(
2−K(i|x,A), 2−K(i|y,A)

) .
We briefly describe the intuition behind the proof of Theorem 1.1. Consider an

algorithm that purports to compute f , presented with two inputs x, y that lead to
different outputs. The algorithm must query those positions where x and y differ with
average probability of the order of 1

T , or it will not successfully compute the function.
On the other hand, the queries that are made with high average probability can be
described succinctly given the input and the algorithm, by using the Shannon–Fano
code. If we exhibit a pair of strings x, y for which there is no succinct description of
any of the positions where x and y differ, then the number of queries must be large.

The same reasoning can be applied to classical and to quantum computing; the
only difference is how fast two different input states cause the outputs to diverge to
different outcomes.

To conclude the introduction we give a very simple application, for Grover search.
Example 1. Fix n and a quantum algorithm A for a Grover search for instances

of length n. Let z be a binary string of length logn, with K(z|A) ≥ log n. Let j be
the integer between 0 and n− 1 whose binary expansion is z. Consider x, the all 0’s
string, and let y be everywhere 0 except at position i = j + 1, where it is 1. Then
K(i|x,A) ≥ log n−O(1) and K(i|y,A) ≥ 0; therefore, QQC(Search) = Ω(

√
n).

2. Preliminaries.

2.1. Kolmogorov complexity. We use a few standard results in Kolmogorov
complexity and information theory in this paper. We briefly review these here. The
reader is invited to consult standard textbooks such as [17] for more background
on Kolmogorov complexity and [9] for more on information theory. We denote the
length of a finite string x by |x|. We assume that the Turing machine’s alphabet is the
same finite alphabet as the alphabet used to encode instances of the function under
consideration. Letters x, y typically represent instances; i is an index into the binary
representation of the instance; and p, q are probability distributions. Programs are
denoted P , and the output of a Turing machine M on input x is written M(x). When
there are multiple inputs, we assume that a standard encoding of tuples is used.

Definition 2.1.

1. A set of strings is prefix-free if no string is a prefix of another string in the
set.

2. A universal Turing machine M is prefix-free if the set of programs {P :
∃xM(P, x) �= ε}, where ε is the empty string, is prefix-free.

3. Let M be a universal prefix-free Turing machine. Let x and y be finite strings.
The prefix-free Kolmogorov complexity of x given y with respect to M is
denoted KM (x|y) and defined as follows:

KM (x|y) = min(|P | such that M(P, y) = x).

In the rest of the paper M is a fixed universal prefix-free Turing machine, and
we will write K instead of KM . When y is the empty string, we write K(x) instead of
K(x|y).
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We first state standard bounds on conditional Kolmogorov complexity, where the
last one is from [17, Theorem 3.9.1, p. 232].

Proposition 2.2. There exists a constant c ≥ 0 such that, for every finite
string σ,

K(x|σ) ≤ K(x) + c,(2.1)

K(x) ≤ K(σ) + K(x|σ) + c,(2.2)

|K(x, y) − K(x) − K(y|x,K(x))| ≤ c.(2.3)

We shall also use the following bound.
Proposition 2.3. There is a constant c ≥ 0 such that, for any three strings

x, y, z,

K(z|x) ≥ K(x, y) − K(x) − K(y|z, x) + K(z|x, y,K(x, y)) − c.

Proof. Using the third bound of Proposition 2.2, there is a constant c1 ≥ 0 such
that

|K(a, b) − K(a) − K(b|a,K(a))| ≤ c1.

Substituting x, y for a and z for b:

K(x, y) + K(z|x, y,K(x, y)) − c1 ≤ K(x, y, z) ≤ K(x) + K(z|x) + K(y|z, x) + c2,

which gives the result, where the second inequality follows from the first and third
bounds of Proposition 2.2.

The main motivation for using prefix-free Kolmogrov complexity is the bound
known as Kraft’s inequality together with the last two bounds of Proposition 2.2.

Proposition 2.4 (Kraft’s inequality). Let T be any prefix-free set of finite
strings. Then

∑
P∈T 2−|P | ≤ 1. In particular, for any set of finite strings S and any

finite string σ,
∑

x∈S 2−K(x|σ) ≤ 1.
A source S of finite strings is a pair (S, p), where S is a set of finite strings and p

is a probability distribution over S.
Proposition 2.5 (Shannon’s coding theorem). Consider a source S of finite

strings where x occurs with probability p(x). Then for any code for S the average code
length is bounded below by the entropy of the source; that is, if x is encoded by the code
word c(x) of length |c(x)|, H(S) =

∑
x:p(x) �=0 p(x) log( 1

p(x) ) ≤
∑

x:p(x) �=0 p(x)|c(x)|.
Lemma 2.6. Let S be a source as above. Then for any fixed finite string σ there

exists a string x such that p(x) �= 0 and K(x|σ) ≥ log( 1
p(x) ).

Proof. By Shannon’s coding theorem,

H(S) =
∑

x:p(x) �=0

p(x) log

(
1

p(x)

)
≤

∑
x:p(x) �=0

p(x)K(x|σ),

because K(x|σ) is the length of an encoding of x. Therefore there exists x such that
p(x) �= 0 and K(x) ≥ log( 1

p(x) ).

The Shannon–Fano code is a prefix-free code that encodes each word x with p(x) �=
0, using 
log( 1

p(x) )� bits. We will write log( 1
p(x) ) to simplify notation. The code can

easily be computed given a description of the probability distribution. We formalize
this in the following proposition, letting K(x|S) denote the prefix-free Kolmogorov
complexity of x given a finite description of S.

Proposition 2.7 (Shannon–Fano code). There exists a constant c ≥ 0 such that,
for every source S as above, for all x such that p(x) �= 0, K(x|S) ≤ log( 1

p(x) ) + c.



50 SOPHIE LAPLANTE AND FRÉDÉRIC MAGNIEZ

2.2. Query models. The quantum query model was implicitly introduced by
Deutsch, Jozsa, Simon, Bernstein, Vazirani, and Grover [11, 10, 18, 8, 14] and ex-
plicitly by Beals et al. [7]. In this model, as in its classical counterpart, we pay for
accessing the oracle, but unlike the classical case, the machine can use the power of
quantum parallelism to make queries in superposition. Access to the input x ∈ Σn,
where Σ is a finite set, is achieved by way of a query operator Ox. The query com-
plexity of an algorithm is the number of calls to Ox.

The state of a computation is represented by a register R composed of three
subregisters: the query register i ∈ {0, . . . , n}, the answer register z ∈ Σ, and the
work register w. We denote a register using the ket notation |R〉 = |i〉|z〉|w〉, or simply
|i, z, w〉. In the quantum (resp., randomized) setting, the state of the computation is
a complex (resp., nonnegative real) combination of all possible values of the registers.
Let H denote the corresponding finite-dimensional vector space. We denote the state
of the computation by a vector |ψ〉 ∈ H over the basis (|i, z, w〉)i,z,w. Furthermore,
the state vectors are unit length for the �2 norm in the quantum setting and for
the �1 norm in the randomized setting.

A T -query algorithm A is specified by a (T+1)-tuple (U0, U1, . . . , UT ) of matrices.
When A is quantum (resp., randomized), the matrices Ui are unitary (resp., stochas-
tic). The computation takes place as follows. The query operator is the unitary (resp.,
stochastic) matrix Ox that satisfies Ox|i, z, w〉 = |i, z ⊕ xi, w〉 for every i, z, w, where
by convention x0 = 0. Initially the state is set to some fixed value |0, 0, 0〉. Then the
sequence of transformations U0, Ox, U1, Ox, . . . , UT−1, Ox, UT is applied.

We say that the algorithm A ε-computes a function f : S → S′, for some sets
S ⊆ Σn and S′, if the observation of the last bits of the work register equals f(x)
with probability at least 1 − ε for every x ∈ S. Then QQC(f) (resp., RQC(f)) is the
minimum query complexity of quantum (resp., randomized) query algorithms that
ε0-compute f , where ε0 = 1/3.

3. Proof of the main theorem. This section is devoted to the proof of the main
theorem. We prove Theorem 1.1 in two main steps. Lemma 3.1 shows how fast the
computations diverge when they start on different individual inputs, in terms of the
query probabilities. This lemma depends on the model of computation. Lemma 3.2
establishes the relationship between the Kolmogorov complexity of individual posi-
tions of the input and the probability that a given algorithm makes a query to this
position. This lemma is independent of the model of computation. Theorem 1.1
follows immediately by combining these two lemmas.

In the following two lemmas, let A be an ε-bounded error algorithm for f that
makes at most T queries to the input. When A is a randomized algorithm, let pxt (i)
be the probability that A queries xi at query t on input x. By analogy, when A is a
quantum algorithm, the probability pxt (i) is interpreted as the probability of observing
i if the query register were measured at query t, that is, the square of the norm of
the part of the state that queries xi. Let px(i) = 1

T

∑T
t=1 p

x
t (i) be the average query

probability over all of the time steps up to time T . We assume henceforth without
loss of generality that px(i) > 0. (For example, we start by uniformly querying all
positions and reverse the process.)

Lemma 3.1 (divergence lemma). For every input x, y ∈ S such that f(x) �= f(y)
the following hold.

1. For quantum algorithms:

2T
∑

i:xi �=yi

√
px(i)py(i) ≥ 1 − 2

√
ε(1 − ε).
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2. For randomized algorithms:

2T
∑

i:xi �=yi

min (px(i), py(i)) ≥ 1 − 2ε.

We defer the proof of Lemma 3.1 to the end of this section.
The next lemma relates the query probabilities to the Kolmogorov complexity

of the strings. In this lemma and the results that follow, we assume that a finite
description of the algorithm is given. Using the knowledge of A, we may assume
without loss of generality that the function f that it computes is also given, as is
the length n of the inputs. With additional care, the additive constants in all of the
proofs can be made very small by adding to the auxiliary information made available
to the description algorithms those constant-size programs that are described within
the proofs.

Lemma 3.2 (query information lemma). There exists an absolute constant c ≥ 0
such that, for every input x ∈ S and position i ∈ {1, . . . n},

K(i|x,A) ≤ log

(
1

px(i)

)
+ c.

Proof. Let Sx be the source where i occurs with probability px(i). By Proposi-
tion 2.7, K(i|Sx) ≤ log( 1

px(i) )+c for some absolute constant c. To complete the proof,

it suffices to show that K(Sx|x,A) = O(1) and apply the second bound of Proposi-
tion 2.2. Use x and A to compute the probabilities (px(i))1≤i≤n. The probabilities
can be computed in a finite number of steps because the dimension is finite, and the
number of queries is bounded by T .

From these two lemmas we derive the main theorem.
Proof of Theorem 1.1. By Lemma 3.2, there is a constant c ≥ 0 such that, for

any algorithm that makes at most T queries and any x, y, i,

px(i) ≤ 2−K(i|x,A)+c and py(i) ≤ 2−K(i|y,A)+c.

This is true in particular for all those i where xi �= yi. Combining this with Lemma 3.1
concludes the proof of the main theorem with C = 2−c−1.

We now give the proof of Lemma 3.1. The proof of the quantum case is very
similar to the proofs found in many papers which give quantum lower bounds on query
complexity. To our knowledge, the randomized case is new despite the simplicity
of its proof. Whereas Aaronson [1] used a different approach to prove a version
of Ambainis’s method for randomized algorithms, our lemma allows us to use the
same framework to establish lower bounds for both quantum and randomized query
complexities.

Proof of Lemma 3.1. Let |ψx
t 〉 be the state of the ε-bounded error algorithm A

just before the tth oracle query, on input x. By convention, |ψx
T+1〉 is the final state.

When A is a quantum algorithm, |ψx
t 〉 is a unit vector for the �2 norm; otherwise, it

is a probabilistic distribution, that is, a nonnegative and unit vector for the �1 norm.
Observe that the �1 distance is the total variation distance.

First we prove the quantum case. The starting state of A does not depend on
the input, and thus before the first question we have |ψx

1 〉 = |ψy
1 〉, so 〈ψx

1 |ψ
y
1 〉 = 1.

At the end of the computation, if the algorithm is correct with probability ε, then
|〈ψx

T+1|ψ
y
T+1〉| ≤ 2

√
ε(1 − ε) [2]. At each time step, we consider how much the two

states can diverge in the following claim, which we will prove after the end of this
proof.
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Claim 1 (quantum divergence).

|〈ψx
t |ψ

y
t 〉 − 〈ψx

t+1|ψ
y
t+1〉| ≤ 2

∑
i:xi �=yi

√
pxt (i)pyt (i).

Over T time steps, the two states diverge as follows. The proof uses only Claim 1
and the Cauchy–Schwartz inequality.

1 − 2
√
ε(1 − ε) ≤ |〈ψx

1 |ψ
y
1 〉 − 〈ψx

T+1|ψ
y
T+1〉|

≤
T∑

t=1

|〈ψx
t |ψ

y
t 〉 − 〈ψx

t+1|ψ
y
t+1〉|

≤
T∑

t=1

2
∑

i:xi �=yi

√
pxt (i)pyt (i)

≤ 2
∑

i:xi �=yi

√√√√T−1∑
t=0

pxt (i)

T−1∑
t=0

pyt (i)

= 2T
∑

i:xi �=yi

√
px(i)py(i).

Now we prove the randomized case. We use the ket notation for real-valued
normalized vectors, for consistency in notation. Again, initially |ψx

1 〉 = |ψy
1 〉. At

the end of the computation, if the algorithm is correct with probability ε, then
‖ |ψx

T+1〉 − |ψy
T+1〉 ‖1≥ 1 − 2ε. At each time step, the distribution states now di-

verge according to the following claim, which we will prove after the end of this proof.
Claim 2 (randomized divergence).

‖ |ψx
t+1〉 − |ψy

t+1〉 ‖1

≤ ‖ |ψx
t 〉 − |ψy

t 〉 ‖1 +2
∑

i:xi �=yi

min (pxt (i), pyt (i)) .

We now conclude the proof.

1 − 2ε ≤
T∑

t=1

‖ |ψx
t+1〉 − |ψy

t+1〉 ‖1 − ‖ |ψx
t 〉 − |ψy

t 〉 ‖1

≤
T∑

t=1

2
∑

i:xi �=yi

min (pxt (i), pyt (i))

≤ 2T
∑

i:xi �=yi

min (px(i), py(i)) .

Proof of Claim 1. Let

|ψx
t 〉 =

∑
i,z,w

αi,z,w|i, z, w〉, and

|ψy
t 〉 =

∑
i,z,w

βi,z,w|i, z, w〉.
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After the tth query is made, the states |ψ′x
t 〉 = Ox|ψx

t 〉 and |ψ′y
t 〉 = Oy|ψy

t 〉 are

|ψ′x
t 〉 =

∑
i,z,w

αi,z,w|i, z ⊕ xi, w〉, and

|ψ′y
t 〉 =

∑
i,z,w

βi,z,w|i, z ⊕ yi, w〉.

Now, since the inner product is invariant under unitary transformations, we get

〈ψx
t+1|ψ

y
t+1〉 = 〈ψ′x

t |ψ′y
t 〉,

and therefore

|〈ψx
t |ψ

y
t 〉 − 〈ψx

t+1|ψ
y
t+1〉|

=

∣∣∣∣∣∣
∑
i,z,w

αi,z,wβi,z,w −
∑
i,z,w

αi,z⊕xi,wβi,z⊕yi,w

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
∑
i,z,w

xi �=yi

αi,z,wβi,z,w − αi,z⊕xi,wβi,z⊕yi,w

∣∣∣∣∣∣∣
≤
∑

i:xi �=yi

(∣∣∣∣∣
∑
z,w

αi,z,wβi,z,w

∣∣∣∣∣+
∣∣∣∣∣
∑
z,w

αi,z⊕xi,wβi,z⊕yi,w

∣∣∣∣∣
)

≤ 2
∑

i:xi �=yi

√√√√
(∑

z,w

|αi,z,w|2
)(∑

z,w

|βi,z,w|2
)

≤ 2
∑

i:xi �=yi

√
pxt (i)pyt (i).

Proof of Claim 2. Let us write the distributions using the same formalism as
above, that is,

|ψx
t 〉 =

∑
i,z,w

αi,z,w|i, z, w〉, and

|ψy
t 〉 =

∑
i,z,w

βi,z,w|i, z, w〉.

Note that now the vectors are unit for the �1 norm. After the tth query is made, the
states |ψ′x

t 〉 = Ox|ψx
t 〉 and |ψ′y

t 〉 = Oy|ψy
t 〉 are

|ψ′x
t 〉 =

∑
i,z,w

αi,z,w|i, z ⊕ xi, w〉, and

|ψ′y
t 〉 =

∑
i,z,w

βi,z,w|i, z ⊕ yi, w〉.
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Now, since the �1 distance does not increase under stochastic matrices, we get

‖ |ψx
t+1〉 − |ψy

t+1〉 ‖1≤‖ |ψ′x
t 〉 − |ψ′y

t 〉 ‖1,

and therefore

‖ |ψx
t+1〉 − |ψy

t+1〉 ‖1

=

∥∥∥∥∥∥
∑
i,z,w

(αi,z,w|i, z ⊕ xi, w〉 − βi,z,w|i, z ⊕ yi, w〉)

∥∥∥∥∥∥
1

=
∑
i

∥∥∥∥∥
∑
z,w

(αi,z,w|i, z ⊕ xi, w〉−βi,z,w|i, z ⊕ yi, w〉)
∥∥∥∥∥

1

.

We now bound each term of the last sum separately. Fix any i. If xi = yi, then
∥∥∥∥∥
∑
z,w

(αi,z,w|i, z ⊕ xi, w〉 − βi,z,w|i, z ⊕ yi, w〉)
∥∥∥∥∥

1

=
∑
z,w

|αi,z,w − βi,z,w|.

If xi �= yi, then
∥∥∥∥∥
∑
z,w

(αi,z,w|i, z ⊕ xi, w〉 − βi,z,w|i, z ⊕ yi, w〉)
∥∥∥∥∥

1

≤
∥∥∥∥∥
∑
z,w

(αi,z,w|i, z ⊕ yi, w〉−βi,z,w|i, z ⊕ yi, w〉)
∥∥∥∥∥

1

+

∥∥∥∥∥
∑
z,w

(αi,z,w|i, z ⊕ xi, w〉−αi,z,w|i, z ⊕ yi, w〉)
∥∥∥∥∥

1

≤
∑
z,w

|αi,z,w − βi,z,w| + 2
∑
z,w

|αi,z,w|

=
∑
z,w

|αi,z,w − βi,z,w| + 2pxt (i).

In the same way we can prove that
∥∥∥∥∥
∑
z,w

(αi,z,w|i, z ⊕ xi, w〉 − βi,z,w|i, z ⊕ yi, w〉)
∥∥∥∥∥

1

≤
∑
z,w

|αi,z,w − βi,z,w| + 2pyt (i).

We group together these upper bounds and conclude that

‖ |ψx
t+1〉 − |ψy

t+1〉 ‖1

≤
∑
i,z,w

|αi,z,w − βi,z,w| + 2
∑

i:xi �=yi

min (pxt (i), pyt (i))

= ‖ |ψx
t 〉 − |ψy

t 〉 ‖1 +2
∑

i:xi �=yi

min (pxt (i), pyt (i)) .
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4. Comparison with previous adversary methods. In this section, we re-
prove, as a corollary of Theorem 1.1, the previously known adversary lower bounds.
Our framework also allows us to obtain somewhat stronger statements for free.

To obtain the previously known adversary methods as a corollary of Theorem 1.1,
we must give a lower bound on terms K(i|x,A) and K(i|y,A). To this end, we apply
Proposition 2.3 and give a lower bound on K(x, y) and upper bounds on K(x|i, y)
and K(y|i, x). The lower bound on K(x, y) is obtained by applying Lemma 2.6, a
consequence of Shannon’s coding theorem, for an appropriate distribution. The up-
per bounds on K(x|i, y) and K(y|i, x) are obtained using the Shannon–Fano code for
appropriate distributions.

The following lemma is the general formulation of the sketch above.
Lemma 4.1. There exists a constant C > 0 such that the following holds. Let Σ be

a finite set, let n ≥ 1 be an integer, and let S ⊆ Σn. Let q be a probability distribution
on S2, let p be a probability distribution on S, and let {p′x,i : x ∈ S, 1 ≤ i ≤ n} be a
family of probability distributions on S. Assume that whenever q(x, y) �= 0, then p(x),
p(y), p′y,i(x), and p′x,i(y) are nonzero for every i such that xi �= yi. Then for every
finite string σ there exist x, y ∈ S, with q(x, y) �= 0, such that

1∑
i:xi �=yi

√
2−K(i|x,σ)−K(i|y,σ)

≥ C × min
i:xi �=yi

⎛
⎝
√
p(x)p′x,i(y) p(y)p′y,i(x)

q(x, y)

⎞
⎠ ,

and (for the same x, y ∈ S)

1∑
i:xi �=yi

min
(
2−K(i|x,σ), 2−K(i|y,σ)

)

≥ C × min
i:xi �=yi

(
max

(
p(x)p′x,i(y)

q(x, y)
,
p(y)p′y,i(x)

q(x, y)

))
.

Proof. In this proof, c1, . . . , c5 are some appropriate nonnegative constants. By
Lemma 2.6, there exists a pair (x, y) such that q(x, y) �= 0 and

K(x, y|σ, p, p′) ≥ log

(
1

q(x, y)

)
,

where p′ stands for a complete description of all of the p′x,i.
Fix x and y so that this holds. By using the Shannon–Fano code (Proposition 2.5),

K(x|p) ≤ log

(
1

p(x)

)
+ c1

and

K(y|x, i, p′x,i) ≤ log

(
1

p′x,i(y)

)
+ c1
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for any i such that xi �= yi. By Proposition 2.3,

K(i|x, σ)

≥ K(i|x, σ, p, p′) − c3

≥ K(x, y|σ, p, p′) − K(x|p) − K(y|i, x, p′x,i)
+ K(i|x, y,K(x, y), σ, p, p′) − c4

≥ log

(
1

q(x, y)

)
− log

(
1

p(x)

)
− log

(
1

p′x,i(y)

)

+ K(i|x, y,K(x, y), σ, p, p′) − c5

= log

(
p(x)p′x,i(y)

q(x, y)

)
+ K(i|x, y,K(x, y), σ, p, p′) − c5.

Similarly,

K(i|y, σ) ≥ log

(
p(y)p′y,i(x)

q(x, y)

)

+ K(i|x, y,K(x, y), σ, p, p′) − c5.

To conclude, consider the sum

1∑
i:xi �=yi

√
2−K(i|x,σ)−K(i|y,σ)

≥ 1

∑
i:xi �=yi

√
2
− log

(
p(x)p′

x,i(y)

q(x,y)

)
−log

(
p(y)p′

y,i(x)

q(x,y)

)
−2K(i|x,y,K(x,y),σ,p,p′)+2c5

≥ 1∑
i:xi �=yi

2c5
√

q(x,y)
p(x)p′

x,i(y)
q(x,y)

p(y)p′
y,i(x)2

−K(i|x,y,K(x,y),σ,p,p′)

≥ 2−c5 min
i:xi �=yi

(√
p(x)p′

x,i(y)p(y)p′
y,i(x)

q(x,y)

)
1∑

i:xi �=yi
2−K(i|x,y,K(x,y),σ,p,p′)

.

We apply Kraft’s inequality (Proposition 2.4) to show that
∑

i:xi �=yi

2−K(i|x,y,K(x,y),σ,p,p′) ≤ 1. This concludes the proof of the first part of the lemma
using Kraft’s inequality and letting C = 2−c5 . The second part is similar.

4.1. Ambainis’s weighted scheme.
Theorem 4.2 (Ambainis’s weighted method). Let Σ be a finite set, let n ≥ 1 be

an integer, and let S ⊆ Σn and S′ be sets. Let f : S → S′. Consider a weight scheme
as follows:

• Every pair (x, y) ∈ S2 is assigned a nonnegative weight w(x, y) such that
w(x, y) = 0 whenever f(x) = f(y).

• Every triple (x, y, i) is assigned a nonnegative weight w′(x, y, i) such that
w′(x, y, i) = 0 whenever xi = yi or f(x) = f(y).

For all x, i, let

wt(x)=
∑
y

w(x, y) and

v(x, i)=
∑
y

w′(x, y, i).
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If w′(x, y, i)w′(y, x, i) ≥ w2(x, y) for all x, y, i such that xi �= yi, then

QQC(f) = Ω

⎛
⎝ min

x,y,i

w(x,y) �=0,xi �=yi

(√
wt(x)wt(y)

v(x, i)v(y, i)

)⎞
⎠ .

Furthermore, if w′(x, y, i), w′(y, x, i) ≥ w(x, y) for all x, y, i such that xi �= yi, then

RQC(f) = Ω

⎛
⎝ min

x,y,i

w(x,y) �=0,xi �=yi

(
max

(
wt(x)

v(x, i)
,
wt(y)

v(y, i)

))⎞
⎠ .

The relation in Ambainis’s original statement is implicit in this formulation, since
it corresponds to the nonzero-weight pairs. A weaker version of the randomized case
was proven independently by Aaronson [1] using a completely different approach. We
show that Theorem 4.2 follows from Theorem 1.1.

Proof. We derive probability distributions q, p, p′ from the weight schemes as
follows. Let W =

∑
x,y w(x, y). Define

q(x, y) =
w(x, y)

W
,

p(x) =
wt(x)

W
,

p′x,i(y) =
w′(x, y, i)

v(x, i)
for any x, y, i.

It is easy to check that, by construction and hypothesis, these distributions satisfy the
conditions of Lemma 4.1. We may now rearrange and simplify the terms as follows:

√
p(x)p′x,i(y) p(y)p′y,i(x)

q(x, y)
=

√
wt(x)
W

w′(x,y,i)
v(x,i)

wt(y)
W

w′(y,x,i)
v(y,i)

w(x,y)
W

=

√
wt(x)
v(x,i)

wt(y)
v(y,i)w

′(x,y,i)w′(y,x,i)

w(x,y)

≥
√

wt(x)
v(x,i)

wt(y)
v(y,i) .

The final line follows from the hypothesis w′(x, y, i)w′(y, x, i) ≥ w2(x, y). The
second part of the theorem is obtained by similar rearrangement and
simplification.

We conclude this section by sketching the proof of the unweighted version of
Ambainis’s adversary method, as it affords a simpler combinatorial proof that does
not require Lemma 4.1. To simplify notation we omit additive constants and the usual
auxiliary strings including A.

Let R ⊆ S×S be a relation on pairs of instances, where (x, y) ∈ R =⇒ f(x)�=f(y),
and let Ri be the restriction of R to pairs x, y for which xi �= yi. Viewing the relation
R as a bipartite graph, let l, l′,m,m′ be as follows:

• m is a lower bound on the degree of all x ∈ X,
• m′ is a lower bound on the degree of all y ∈ Y ,
• for any fixed x and i, 1 ≤ i ≤ n, the number of y adjacent to x for which
xi �= yi is at most l,
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• for any fixed y and i, 1 ≤ i ≤ n, the number of x adjacent to y for which
xi �= yi is at most l′.

We make the following observations:
1. |R| ≥ max{m|X|,m′|Y |}, so ∃x, y ∈ R such that K(x, y) ≥ max(log(m|X|),

log(m′|Y |)).
2. For all x ∈ X,K(x) ≤ log(|X|), and K(y) ≤ log(|Y |) for all y ∈ Y .
3. For all x, y, i with (x, y) ∈ Ri,K(y|i, x) ≤ log(l) and similarly K(x|i, y) ≤

log(l′).
For any i with xi �= yi, by Proposition 2.3,

K(i|x) ≥ K(x, y) − K(x) − K(y|i, x)

+ K(i|x, y,K(x, y))

≥ log(m|X|) − log(|X|) − log(l)

+ K(i|x, y,K(x, y))

= log
(m
l

)
+ K(i|x, y,K(x, y)).

The same proof works to show that K(i|y) ≥ log(m
′

l′ ) + K(i|x, y,K(x, y)). By Theo-
rem 1.1 and Kraft’s inequality,

QQC(f) = Ω

(√
mm′

ll′

)
.

4.2. Spectral lower bound. We now show how to prove the spectral lower
bound of Barnum, Saks, and Szegedy [5] as a corollary of Theorem 1.1. Recall that
for any matrix Γ, λ(Γ) is the largest eigenvalue of Γ.

Theorem 4.3 (Barnum–Saks–Szegedy spectral method). Let Σ be a finite set,
let n ≥ 1 be an integer, and let S ⊆ Σn and S′ be sets. Let f : S → S′. Let Γ be an
arbitrary S×S nonnegative real symmetric matrix that satisfies Γ(x, y) = 0 whenever
f(x) = f(y). For i = 1, . . . , n let Γi be the matrix:

Γi(x, y) =

{
0 if xi = yi,

Γ(x, y) otherwise.

Then

QQC(f) = Ω

(
λ(Γ)

maxi λ(Γi)

)
.

Proof. Since Γ and Γi are nonnegative real symmetric matrices, they have an
eigenvector with only nonnegative real entries for their respective largest eigenvalues.
Let |α〉 (resp., |αi〉) be this unit eigenvector of Γ (resp., Γi). We define the probability
distributions q, p, p′ as follows:

q(x, y) =
Γ(x, y)〈x|α〉〈y|α〉

〈α|Γ|α〉 ,

p(x) = 〈x|α〉2,

p′x,i(y) =
Γi(x, y)〈y|αi〉
〈x|Γi|αi〉

, for any x, y, i.

First we check that these are probability distributions. Distribution p also has
weight 1 because |α〉 is a unit vector. Since |α〉 and |y〉 have real entries, 〈y|α〉 = 〈α|y〉.
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Then the distribution q has weight 1
〈α|Γ|α〉

∑
x,y〈α|y〉Γ(x, y)〈x|α〉, which is 1 since∑

x Γ(x, y)〈x|α〉 = 〈y|Γ|α〉. Using the same argument, p′x,i also has weight 1.
Now, fix any x, y, i such that xi �= yi and q(x, y) �= 0. Note that 〈α|Γ|α〉 = λ(Γ),

Γi|αi〉 = λ(Γi)|αi〉, and Γ(x, y) = Γi(x, y). Then the fractions
p(x)p′

x,i(y)

q(x,y) and
p(y)p′

y,i(x)

q(x,y)

are, respectively, λ(Γ)
λ(Γi)

〈y|αi〉
〈x|αi〉

〈x|α〉
〈y|α〉 and λ(Γ)

λ(Γi)
〈x|αi〉
〈y|αi〉

〈y|α〉
〈x|α〉 . Taking the square root of their

product gives the result using Lemma 4.1.

5. Certificate complexity and adversary techniques. Let f be a Boolean
function. For any positive instance x ∈ Σn of f (f(x)=1), a positive certificate for
f(x) is the smallest subset of indices I ⊆ [n] of x such that, for any y with xi = yi for
all i ∈ I, f(y)=1.

The 1-certificate complexity of f , denoted C1(f), is the size of the largest positive
certificate for f(x), over all positive instances x. The 0-certificate complexity is defined
similarly for negative instances x of f (f(x) = 0).

Prior to our work, it was known that the best possible bound that could be
proven using the unweighted adversary technique for total functions [2, Theorem 5.1]
is O(

√
C0(f)C1(f)). Independently, Szegedy [20] showed that the best possible lower

bound using the spectral method is O(min(
√
nC0(f),

√
nC1(f))) for arbitrary func-

tions, and Zhang [22] proved the same for Ambainis’s weighted method.
The following lemma, due to Troy Lee, results in a very simple proof of the fact

that our method and, hence, all of the known variants of the adversary method have
lower bounds larger than min(

√
nC0(f),

√
nC1(f)) for arbitrary functions.

Lemma 5.1. There exists a constant c ≥ 0 such that the following holds. Let Σ
be a finite set, let n ≥ 1 be an integer, and let S ⊆ Σn be a set. Let f : S → {0, 1}.
For every x, y ∈ S with f(x) = 0 and f(y) = 1, there is an i0 with xi0 �= yi0 for
which K(i0|x, f) ≤ log(C0(f)) + c, and similarly there is an i1 with xi1 �= yi1 such
that K(i1|y, f) ≤ log(C1(f)) + c.

Proof. Among the negative certificates for f(x), let I be the lexicographically
smallest one. By definition of the 0-certificate complexity, the size of I is at most
C0(f). Since f(x) �= f(y), x and y must differ on some i0 ∈ I. To describe i0 given
x, it suffices to give an index into I, which requires at most log(C0(f)) + c bits. The
same can also be done for y and C1(f).

Theorem 5.2. Let Σ be a finite set, let n ≥ 1 be an integer, and let S ⊆ Σn

be a set. Let f : S → {0, 1}. Then any quantum query lower bound for f given by
Theorem 1.1 is in O(min(

√
nC0(f),

√
nC1(f))).

Proof. Let A be a quantum algorithm that computes f with bounded error
by making at most T queries to the input and x, y ∈ S such that f(x) = 0 and
f(y) = 1. Then a description of f can be obtained from a description of A, so
K(i|x,A) ≤ K(i|x, f) + O(1). By Lemma 5.1, there exists i0 such that xi0 �= yi0 , and
K(i0|x, f) ≤ log(C0(f)) + O(1). For any i, 1 ≤ i ≤ n, K(i|y,A) ≤ log(n) + O(1).
Therefore K(i0|x,A) + K(i0|y,A) ≤ log(nC0(f)) + O(1).

The lower bound given by Theorem 1.1 is O
(

1∑
i:xi �=yi

√
2−K(i|x,A)−K(i|y,A)

)
. Since

∑
i:xi �=yi

√
2−K(i|x,A)−K(i|y,A) ≥

√
2−K(i0|x,A)−K(i0|y,A), the bound is O(

√
nC0(f)) Sim-

ilarly, it can be shown that the bound is O(
√
nC1(f)).

In recent work, Špalek and Szegedy showed that, for total functions, the best
lower bound one can achieve with any of the adversary methods is

√
C0(f)C1(f) for

any total function [19].
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5.1. Applications to graph properties. Theorem 1.1 provides a simple and
intuitive method to prove lower bounds for specific problems. We illustrate this by
giving lower bounds for two graph properties: connectivity and bipartiteness. These
are direct applications of Theorem 1.1 in that we analyze directly the complexity
K(i|x,A) without defining relations or weights or distributions: We need only to
consider a “typical” hard pair of instances. In this section, we omit additive and
multiplicative constants that result from using small, constant-size programs, as well
as the constant length auxiliary string A to simplify the proofs.

We consider graphs over n vertices {0, 1, . . . , n−1}, where the graph is represented
as an adjacency matrix.

5.1.1. Graph connectivity.
Theorem 5.3 (see [12]). QQC(GraphConnectivity) = Ω(n3/2).
Proof. We construct one negative and one positive instance of graph connectivity,

using the incompressibility method, using the ideas of [12]. Let S be an incompressible
string of length log(n − 1)! + log

(
n
2

)
, chopped into two pieces S1 and S2 of length

log(n− 1)! and log
(
n
2

)
, respectively. We think of S1 as representing a Hamilton cycle

C = (π(0), π(1) . . . π(n−1), π(0)) through the n vertices, where π is a permutation over
{0, 1, . . . , n− 1} such that π(0) = 0. Let G contain the cycle C, so that K(G) = K(π).
We also think of S2 as representing a pair of distinct vertices s, t. Let H be obtained
from G by breaking the cycle into two cycles at s and t, that is, H = G\{(π(s), π(s+
1)), (π(t), π(t+ 1))} ∪ {(π(s), π(t+ 1)), (π(s+ 1), π(t))}, where addition is modulo n.

We show that, for the four edges e where G and H differ, K(e|G) + K(e|H) ≥
3 log n − 4. Let e−, e

′
− be the edges removed from G and e+, e

′
+ be the edges added

to G. Observe that, up to an additive constant, K(e+|G) = K(e′+|G) and K(e−|H) =
K(e′−|H).

Assume without loss of generality that e− = (π(s), π(s+1)) and that the smallest
cycle of H contains π(s). Let l be the length of this cycle. Observe that K(s|G) =
K(e−|G) and K(e−|H) = K(π, s, t|H).

log(n− 1)! + log

(
n

2

)
≤ K(S)

≤ K(G) + K(s|G) + K(t|G)

≤ K(G) + K(e−|G) + logn,

K(e−|G) ≥ log

(
n

2

)
− log n = log

n− 1

2
.

Furthermore,

K(H) ≤ K(l) + log
(n− 1)!

(n− l)!
+ log(n−l−1)!

≤ log
(n

2

)
+ log(n− 1)! − log(n− l)

≤ log(n− 1)! .
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Fig. 5.1. Graphs G,H for the graph lower bounds.

Therefore,

log(n− 1)! + log

(
n

2

)
≤ K(S)

≤ K(H) + K(π, s, t|H)

≤ K(H) + K(e−|H)

≤ log(n− 1)! + K(e−|H),

K(e−|H) ≥ log

(
n

2

)
.

For the added edges, e+, e
′
+, consider without loss of generality e+ = (π(s), π(t+

1)). Since S is incompressible, K(e+|G) = K(s, t|G) ≥ log
(
n
2

)
. Furthermore, K(S) ≤

K(H) + K(e+|H) + K(e′+|H) and K(e′+|H) ≤ log n, so K(e+|H) ≥ log
(
n
2

)
− log n =

log n−1
2 . The same proof shows that K(e′+|H) ≥ log n−1

2 .

5.1.2. Bipartiteness. The following lower bound was proven by Dürr and in-
dependently in [22].

Theorem 5.4. QQC(Bipartiteness) = Ω(n3/2).
Proof. The proof is similar to the one of Theorem 5.3 except that we construct

G to be an even cycle on n = 2m vertices and H will be composed of two odd cycles
on the same vertex set (see Figure 5.1).

Let S be an incompressible string of length log(n − 1)! + log(
(
n
2

)
− 1), chopped

into two pieces S1 and S2 of length log(n − 1)! and log(
(
n
2

)
− 1), respectively. We

think of S1 as representing a Hamilton cycle C = (π(0) = 0, π(1) . . . π(n − 1), π(0))
through the n vertices and S2 as representing a pair of distinct vertices s, t, with s �≡ t
(mod 2). Let G contain the cycle C, and let H be obtained from G by breaking the
cycle into two odd cycles at s and t, that is, H = G \ {(π(s), π(s + 1)), (π(t), π(t +
1))} ∪ {(π(s), π(t + 1)), (π(s + 1), π(t))}.

The same analysis as Theorem 5.3 yields the lower bound QQC(Bipartiteness) =
Ω(n3/2), as claimed.

Acknowledgments. We thank Troy Lee, Christoph Dürr for many useful dis-
cussions, and Andris Ambainis for his helpful answers to our questions.
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Abstract. For circuit classes R, the fundamental computational problem Min-R asks for the
minimum R-size of a Boolean function presented as a truth table. Prominent examples of this
problem include Min-DNF, which asks whether a given Boolean function presented as a truth table
has a k-term disjunctive normal form (DNF), and Min-Circuit (also called the minimum circuit
size problem (MCSP)), which asks whether a Boolean function presented as a truth table has a
size k Boolean circuit. We present a new reduction proving that Min-DNF is NP-complete. It is
significantly simpler than the known reduction of Masek [Some NP-Complete Set Covering Problems,
manuscript, 1979], which is from Circuit-SAT. We then give a more complex reduction, yielding the
result that Min-DNF cannot be approximated to within a factor smaller than (logN)γ , for some
constant γ > 0, assuming that NP is not contained in quasi-polynomial time. The standard greedy
algorithm for Set Cover is often used in practice to approximate Min-DNF. The question of whether
Min-DNF can be approximated to within a factor of o(logN) remains open, but we construct an
instance of Min-DNF on which the solution produced by the greedy algorithm is Ω(logN) larger
than optimal. Finally, we turn to the question of approximating circuit size for slightly more general
classes of circuits. DNF formulas are depth-two circuits of AND and OR gates. Depth-d circuits are
denoted by AC0

d . We show that it is hard to approximate the size of AC0
d circuits (for large enough

d) under cryptographic assumptions.
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1. Introduction. A fundamental computational problem is to determine the
minimum size of a Boolean function in some representation, given a truth table for
the function. Two prominent examples are Min-DNF, which asks whether a Boolean
function presented as a truth table has a k-term disjunctive normal form (DNF), and
Min-Circuit (also called the minimum circuit size problem), which asks whether a
Boolean function presented as a truth table has a size k Boolean circuit. By varying
the representation class, we can obtain a hierarchy of problems between Min-DNF
and Min-Circuit, including such problems as Min-AC0, Min-TC0, and Min-NC1.

The main focus of this paper is the Min-DNF problem. Min-DNF is the decision
version of finding the smallest DNF formula consistent with a truth table, where
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the size of a DNF formula is considered to be the number of terms in it. This is
a classic problem in computer science and circuit design. Heuristic approaches to
solving this problem range from the Karnaugh maps of the 1960s to state-of-the-art
software packages (cf. [14]).

Masek proved Min-DNF to be NP-complete in the 1970s [30]. This result was
cited by Garey and Johnson [21] and is widely known, but Masek never published his
proof. More recently, Czort presented a modernized, more readable version of Masek’s
proof [15] (see also [40]). Masek’s proof is by direct reduction from Circuit-SAT, using
gadget constructions, and even in Czort’s version it is long and involved. We present
a new, simple NP-completeness proof for Min-DNF by reduction from 3-Partite Set
Cover (or, more particularly, from 3D-Matching).

It is well known that Min-DNF can be viewed as a special case of Set Cover and
that the greedy Set Cover algorithm can be applied to Min-DNF to produce a DNF
with O(logN) times as many terms as the optimal, where N is the size (number
of entries) of the input truth table. This prompts the question of whether a better
approximation factor can be achieved. Czort considered this question but showed only
that, unless P = NP, the size of the smallest DNF cannot be approximated to within
an additive constant k [15]. We also give a more complicated reduction (again from a
restricted version of Set Cover) that allows us to prove the following inapproximability
result for Min-DNF: If NP is not contained in quasi-polynomial time, then Min-DNF
cannot be approximated to within a factor smaller than (logN)γ for some constant
γ > 0, where N is the size of the input truth table.

There is a gap between our Ω((logN)γ) inapproximability lower bound for Min-
DNF and the O(logN) upper bound of the greedy Set Cover algorithm. Closing this
gap remains an open question. We do, however, construct an instance of Min-DNF
for which the greedy Set Cover algorithm produces a DNF formula that has Ω(logN)
times as many terms as the optimal. The greedy Set Cover algorithm is commonly
used as a heuristic for solving Min-DNF in practice. We also prove an Ω(

√
logN)

inapproximability lower bound for Min-DNF under the additional assumption that a
restriction of Set Cover is Ω(log n)-hard to approximate.

Although the general Min-DNF problem is NP-hard, for k = O(
√

logN) it is
tractable [22]. Using a simple padding argument, we show hardness results for Min-
DNF where k = ω(logN). The question of whether Min-DNF is tractable for k =
logN remains open. This question was posed in [22]; a negative result would imply
that logn-term DNF cannot be learned with membership and proper equivalence
queries.

In addition to our results for Min-DNF, we also prove a result for Min-AC0
d for all

sufficiently large d. Under cryptographic assumptions, it is known that Min-Circuit,
Min-NC1, and Min-TC0

d are not polynomial-time approximable [4]. (This is stated
explicitly for Min-Circuit and Min-NC1 in [4], while it is only implicit for Min-TC0

d–
because the argument presented in [4] makes use of the TC0 pseudorandom function
generator of [31]. All of this can also be viewed as being implicit in the work of
Razborov and Rudich [36], and related results were also presented by Kabanets and
Cai [25].) We extend the hardness results for Min-TC0

d to obtain new hardness results
for Min-AC0

d, under cryptographic assumptions. This still leaves open the interesting
question of whether Min-Circuit (or the other problems) are NP-complete. Kabanets
and Cai [25] give evidence that such a reduction will not be straightforward.

The organization of this paper is as follows. In section 2 we define the relevant
minimization problems and present necessary background. In section 3 we present our
new proof that Min-DNF is NP-hard. In section 4 we present our hardness results
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for approximating Min-DNF. In section 5 we give our construction of the instance
of Min-DNF on which the greedy Set Cover algorithm produces an Ω(logN) factor
approximation. Section 6 concerns the fixed parameter versions of Min-DNF. Our
hardness results for Min-AC0

d appear in section 8. Conclusions are in section 9.
A preliminary version of this paper appeared in [3]. Feldman independently

proved an Ω((logN)δ) factor inapproximability result for Min-DNF [20] using re-
lated techniques. Feldman’s result is based on the assumption P �= NP, rather than
on the assumption that NP is not contained in quasi-polynomial time. Feldman also
proved new results on proper learning of DNF, which are discussed in section 7.

2. Preliminaries. We begin with a few definitions. The set {1, . . . , n} is denoted
by [n]. We use the bitwise ordering on vectors: For v, w ∈ {0, 1}n, we write v ≤ w
if vi ≤ wi for all i ∈ [n]. Let Vn = {x1, . . . , xn}. A prime implicant T of a function
f(x1, . . . , xn) is a conjunction of literals over the variables Vn such that T = 1 ⇒ f =
1, and removing any literal from T violates this property. (In the literature, prime
implicants are sometimes called minterms.) A DNF formula over the variables Vn is
a formula φ = T1 ∨ T2 ∨ . . . Tk for some k, where T1, . . . , Tk are each conjunctions
of literals over Vn. Each Ti in φ is a term of φ. Every Boolean function f can be
expressed by a DNF formula in which every term is a prime implicant of f . The
size of a DNF formula is the number of terms in it; for a Boolean function or partial
function f , dnf-size(f) denotes the size of the smallest DNF formula consistent with
f . The class of Boolean circuits AC0

d consists of all depth-d circuits of AND and OR
gates with arbitrary fan-in.

The classic Set Cover optimization problem is, given input (S,U), where U is a
finite universe and S is a collection of subsets of U , find a smallest subcollection C ⊆ S
such that that the union of the sets in C equals U . It is NP-hard to approximate Set
Cover to within a factor smaller than c log n, where c is a constant and n is the size
of the input (cf. [6]). On the other hand, there is a simple greedy algorithm that
achieves an O(log n) approximation for Set Cover [24, 28, 13].

For r a positive integer, the r-Uniform Set Cover problem is as follows: On input
(n, k,S), where n and k are positive integers and S is a set of subsets of [n], each
subset having size r, determine whether there is a subcollection C ⊆ S of size at most
k whose union is [n]. The r-Partite Set Cover problem is a restriction: On input
(n, k,Π,S), where n and k are positive integers, Π is a partition of [n] into r sets, and
S is a collection of subsets of [n], where every subset contains exactly one element
from each of the sets of Π, determine whether there is a subcollection C ⊆ S of size at
most k whose union is [n]. The 3D-Matching problem is the NP-complete restriction
of 3-Partite Set Cover where k = n/3 (cf. [21]).

We consider a general family of computational problems of the form Min-R(S)
where the input is a Boolean function with input representation from S and the output
should be a minimum representation of the function from R. For example, Min-
DNF(tt) is the problem of determining a smallest DNF representation of a Boolean
function f on n variables, if f is presented as a truth table of size N = 2n. Our default
input representation will be the truth table representation, and when we write Min-R,
rather than Min-R(S), we will assume the default input representation.

We focus primarily on DNF minimization. We consider the following four varia-
tions:

Min-DNF(A): The input is a total Boolean function, specified by explicitly listing
all 1’s of the function. That is, A ⊆ {0, 1}n is the input, and we look for a
minimum DNF that realizes the total function fA, where fA(a) = 1 for a ∈ A
and fA(b) = 0 for b ∈ {0, 1}n −A.
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Min-DNF: In the full-truth table version, the input is the entire truth table of
f : {0, 1}n → {0, 1}, and we look for a minimum DNF that realizes the
function f .

Min-DNF(A,B): The input is a partial Boolean function, specified by listing the
1’s and 0’s of the function, and we look for a minimum DNF that is consistent
with the input. That is, A,B ⊆ {0, 1}n is the input, and we look for a
minimum DNF that realizes a function f : {0, 1}n → {0, 1}, where f(a) = 1
for a ∈ A and f(b) = 0 for b ∈ B.

Min-DNF(*): The input is a partial Boolean function, specified by the entire
truth table of f : {0, 1}n → {0, 1, ∗}, where f(a) = ∗ means that the value of
f is not defined on a. We look for a minimum DNF that realizes a function
f ′ : {0, 1}n → {0, 1}, where f ′(a) = 1 for a ∈ f−1(1) and f ′(b) = 0 for
b ∈ f−1(0). Note that, as in the (A,B) version, the input here also specifies a
partial function, but now the partial function is specified by a 2n-sized input,
regardless of the size of the domain of the partial function.

The decision versions of the above problems ask, given a function f and a natural
number k, whether or not there is a DNF formula realizing f that has at most k terms.
All decision versions are easily seen to lie in NP. It is also easy to see that Min-DNF
is a special case of Min-DNF(*) and therefore reduces to Min-DNF(*), and Min-
DNF(*) reduces to Min-DNF(A,B). Also Min-DNF reduces to Min-DNF(A). Thus
NP-hardness of Min-DNF implies NP-hardness of all other versions. The first three of
the above problems are covered by Czort [15] in an excellent survey of previous related
work. There is a hodgepodge of interesting but incomparable hardness results that
are known for versions of DNF minimization, dating back to the 1960s. The simplest
of these is the NP-hardness of the (A,B) version due to Pitt and Valiant [34]. As
shown by Czort, there is also a clean NP-hardness proof of the A version that follows
from a reduction of Gimpel. Masek [30] proved the NP-completeness of Min-DNF.
In terms of inapproximability, Pitt and Valiant’s proof of the (A,B) hardness result
preserves solution values and thus shows the NP-hardness of achieving a factor nε

approximation. Neither of the other two NP-hardness proofs (for the A version or for
Min-DNF) give much in the way of inapproximability results.

A starting point for this paper is the well-known observation that Min-DNF easily
reduces to Set Cover and in fact can be viewed as a special case of Set Cover. Given
the truth table of a Boolean function f over n variables, all prime implicants of f can
be generated in time 2O(n). Each prime implicant can then be viewed as a subset of
{0, 1}n (corresponding to those inputs that satisfy the prime implicant). Thus given
all of the prime implicants, finding a smallest DNF is equivalent to finding a smallest
cover for these prime implicant sets. Applying the standard greedy algorithm for Set
Cover, it follows that Min-DNF can be approximated to within a factor of O(logN),
where N is the size (number of entries) of the truth table.

For a partial Boolean function f , the prime implicants of f are the prime impli-
cants of the total function f ′ that satisfies f ′(�x) = 1 iff f(�x) = 1 ∨ f(�x) = ∗. Every
partial function f has a smallest consistent DNF whose terms are prime implicants
of f . The greedy Set Cover algorithm can also be used to approximate Min-DNF(*)
in the same way that it is applied to Min-DNF, except that it chooses sets that cover
the maximum number of 1’s of the input function (i.e., it ignores ∗’s when greedily
choosing sets).

The pseudocode for applying the greedy Set Cover algorithm to Min-DNF and
Min-DNF(*) is shown in Figure 2.1. The input is the full truth table of a Boolean
function or partial function f .
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1: T := {T | T is a prime implicant of f}
2: ϕ := ⊥
3: while ϕ does not cover all 1’s of f do
4: let T ∈ T cover the most uncovered 1’s of f
5: ϕ := ϕ ∨ T
6: end while
7: return ϕ

Fig. 2.1. Greedy Min-DNF and Min-DNF(*) algorithm.

3. Simple proof that MinDNF is NP-complete. Our new proof that Min-
DNF is NP-complete is a modification of the reduction of Gimpel mentioned above,
which was was used by Czort to prove the NP-completeness of the A version of DNF
minimization [15].

We start by briefly describing Gimpel’s reduction. It can be viewed as consisting
of two phases. In the first phase, an instance (S,U) of Set Cover over the ground set
U = [n] is mapped to a partial function f , as follows. First, both the sets as well
as the ground elements are mapped to truth assignments in {0, 1}n such that a set
covers a ground element in [n] iff the assignment corresponding to the ground element
is less than the assignment corresponding to the set (where comparison of assignments
is with respect to the bitwise ordering of the vectors). Each ground element i ∈ [n]
is mapped to the assignment that is all zero except for bit i, which is 1. Each set
is mapped to the assignment corresponding to the characteristic function of the set.
The 1’s of f are those assignments corresponding to ground elements; the ∗’s of f
are those assignments α such that α ≤ β for some β corresponding to a set; and
the remaining truth assignments are zeros of f . It can be shown that the size of the
minimum DNF consistent with the partial function f is equal to the minimum size of
the cover for the input instance of Set Cover.

In the second phase of Gimpel’s reduction, the partial function f is mapped to a
total function, g. We give the details of g below in section 3.2. The truth table sizes of
f and g are exponential in the size of the Set Cover instance from the first phase. Thus
Gimpel’s reduction does not give a hardness result for Min-DNF. As Czort notes, it
does, however, give a hardness result for Min-DNF(A), provided that we begin the
reduction not from the general Set Cover problem but from 3-Uniform Set Cover.

Our reduction proving that Min-DNF is NP-complete also has two phases. The
first phase is similar to that of Gimpel. The main difference is that we need a much
more compact mapping from the sets and ground elements of the Set Cover instance
onto truth assignments, to ensure that the size of the truth table for the resulting
function is only polynomial in the size of the input Set Cover instance. To do such
a compact mapping in a simple way, we reduce from 3-Partite Set Cover rather than
from 3-Uniform Set Cover. The second phase of our reduction is essentially identical
to Gimpel’s.

3.1. Reducing 3-Partite Set Cover to Min-DNF(*). In the first phase
of our reduction, we reduce 3-Partite Set Cover to Min-DNF(*). We note that our
reduction from 3-Partite Set Cover would also work from 3D-Matching. We use the
following lemma, which is implicit in Gimpel’s reduction.

Lemma 3.1. Let S be a set of subsets of [n]. Let t > 0, and let V = {vi : i ∈ [n]}
and W = {wA : A ∈ S} be sets of vectors from {0, 1}t satisfying

(*) For all A ∈ S and i ∈ [n], i ∈ A iff vi ≤ wA.

Let R = {x ∈ {0, 1}t | x �∈ V and for some w ∈ W, x ≤ w}. Let f be a partial
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function with domain {0, 1}t such that f(x) = 1 if x ∈ V , f(x) = ∗ if x ∈ R, and
f(x) = 0 otherwise. Then S has a cover of size m iff there is an m-term DNF
consistent with f .

Proof. For u ∈ {0, 1}t, let D(u) = {w : w ≤ u}, and let τ(u) denote the DNF
term

∧
i:ui=0 ¬xi. Note that D(u) is exactly the set of satisfying assignments of τ(u).

For a set U of vectors D(U) =
⋃

u∈U D(u). By (*), we have that V ⊆ D(W ). Also,
f(x) = ∗ iff x ∈ D(W ) − V .

Given a cover C ⊆ S of size m, the m-term DNF whose terms are {τ(wC) | C ∈ C}
is easily seen to be consistent with f . Conversely, suppose φ is an m-term DNF
consistent with f . For each term τ ∈ φ, let u(τ) be the maximal vector satisfying
τ . Since φ is consistent with f , we have that u(τ) ∈ D(W ), so there must be a set
S(τ) ∈ S for which u(τ) ≤ wS(τ). We claim that {S(τ) : τ ∈ φ} is a cover of S. Let
j ∈ [n]. We must show that j is covered. The consistency of φ implies that vj is
satisfied by some term τj ∈ φ. This implies vj ≤ u(τj). Thus vj ≤ wS(τj), which by
(*) implies j ∈ S(τj).

The reduction from 3-Partite Set Cover to Min-DNF(*) is given in the following
lemma.

Lemma 3.2. There is an algorithm that takes as input an instance (n, k,Π,S) of
3-Partite Set Cover and outputs an instance of Min-DNF(*). The instance of Min-
DNF(*) defines a partial function f on O(log n) variables such that the size of the
smallest DNF consistent with f is equal to the size of the smallest cover for the input
3-Partite Set Cover instance. The algorithm runs in time polynomial in n.

Proof. Given an input instance (n, k,Π,S) of 3-Partite Set Cover, the algorithm
produces an indexed set of vectors V = {vi : i ∈ [n]} and W = {wA : A ∈ S} all of
the same (small) length t satisfying the condition (*) of Lemma 3.1. We will specify
V and then define W according to the rule that, for A ∈ S, wA is the bitwise OR of
{vi : i ∈ A}. This guarantees the forward implication of condition (*) for any choice
of V ; it is the backward implication that requires some care in choosing V .

Let q be the smallest integer such that
(

q
q/2

)
≥ n. Thus q = O(log n). Assign to

each i ∈ [n] a unique q-bit Boolean vector b(i) containing exactly q/2 1’s. For i ∈ [n],
write Π(i) for the index of the block of Π that contains i. Let t = 3q. We will consider
the t-bit vectors in V and W as being divided into 3 blocks of size q. For i ∈ [n], let
vi be equal to 0 on all blocks but block Π(i); on block Π(i) it is b(i). To see that the
backward implication of (∗) holds, let A ∈ S and i ∈ [n], and assume that vi ≤ wA.
Then A contains one element i′ with Π(i′) = Π(i), and so we must have b(i) ≤ b(i′),
which implies i = i′.

V and W can be generated in time nO(1). The partial function f will have domain
{0, 1}t. The lemma then follows immediately from Lemma 3.1.

3.2. Reducing Min-DNF(*) to Min-DNF. As mentioned above, the second
phase of our reduction is taken from Gimpel. We describe the phase here and will
build on it later in order to prove inapproximability results. The second phase of
Gimpel’s reduction maps a partial function f to a total function g. The variables
underlying g are V (the variables of f) plus two additional variables y1 and y2. The
total function g is defined as follows:

g(�x y1y2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if f(�x) = 1 and y1 = y2 = 1,

1 if f(�x) = ∗ and y1 = y2 = 1,

1 if f(�x) = ∗, y1 = p(�x), and y2 = ¬p(�x),

0 otherwise,
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where p(�x) = 0 if the parity of �x is even, and p(�x) = 1 if the parity of �x is odd. Let
s = |f−1(∗)|. The following lemma is implicit in Gimpel’s reduction (cf. [15]).

Lemma 3.3. dnf-size(g) = dnf-size(f) + s.
Proof. The idea behind the proof is as follows. The key observation is that

every DNF for g requires s distinct terms to cover the inputs of the third type in the
definition of g above; these terms can simultaneously cover all inputs of the second
type but not those of the first type. The remaining terms of the DNF must therefore
cover the terms of the first type and may optionally cover the terms of the second
type; they thus constitute a solution to the Min-DNF(*) problem for f . It follows
that dnf-size(g) = dnf-size(f) + s. We now prove this formally.

We first show that dnf-size(g) ≤ dnf-size(f) + s. Suppose ϕ is a minimum-size
DNF consistent with f . Define a DNF ψ with terms of two types: First, for every
input �x ∈ f−1(∗), ψ contains the term

(∧
i:�xi=1 xi

)
∧
(∧

i:�xi=0 ¬xi

)
∧ y2−p(�x). These

terms cover all inputs of the second and third types in the definition of g. Second, for
every term T of ϕ, ψ contains the term T ∧ y1 ∧ y2. These terms cover all inputs of
the first type in the definition of g.

Finally, suppose that �xy1y2 satisfies ψ. Then one of the following three conditions
holds: (1) �x ∈ f−1(∗), y1 = p(�x), and y2 = ¬p(�x); (2) �x ∈ f−1(∗) and y1 = y2 = 1;
(3) �x satisfies ϕ (and thus �x ∈ f−1(1) ∪ f−1(∗)) and y1 = y2 = 1. In all three cases
we have g(�xy1y2) = 1, and thus ψ is consistent with g. The number of terms in ψ is
|f−1(∗)| + |ϕ| = dnf-size(f) + s.

We now show that dnf-size(g) ≥ dnf-size(f) + s. Suppose that ψ is a smallest
DNF for g. We assume without loss of generality that each term of ψ is a prime
implicant of g. We begin by proving that, for every �x ∈ f−1(∗), ψ contains the term
t(�x) ∧ y2−p(�x), where t(�x) =

(∧
i:�xi=1 xi

)
∧
(∧

i:�xi=0 ¬xi

)
. The proof is as follows.

Let �x ∈ f−1(∗), and suppose that the parity of �x is odd: The case of even parity
is symmetric. Let T be a term of ψ that is satisfied by �x10 (where 1 and 0 are the
values of y1 and y2, respectively). If, for some index i, T does not contain the variable
xi, let �x′ be obtained by flipping the ith bit of �x. Then �x′10 falsifies g (since �x′ has
even parity) but satisfies T , contradicting the assumption that ψ is consistent with g.
Thus T contains each of the variables x1, . . . , xn. In addition, T contains the variable
y1, as otherwise �x00 would satisfy T . Finally, since T is a prime implicant of g, we
have that T = t(�x)y1.

We now prove that there exists a subformula ψ̂ of ψ and a DNF ψ′ over the
�x variables that is consistent with f such that ψ̂ =

∨
T∈ψ′

(
T ∧ y1 ∧ y2

)
. Let ψ̂

be the subformula of ψ consisting of those terms that are satisfied by �x11 for some
�x ∈ f−1(1). Each term of ψ̂ contains y1 ∧ y2, since flipping y1 or y2 produces an

input that falsifies g. It follows that ψ̂ =
∨

T∈ψ′

(
T ∧ y1 ∧ y2), where ψ′ is a DNF.

It remains to show that ψ′ is consistent with f . For every �x ∈ f−1(1), there is a
term of ψ satisfied by �x11, and thus there is a corresponding term of ψ′ satisfied by
�x. On the other hand, every �x ∈ f−1(0) must falsify ψ′, as otherwise �x11 would
satisfy ψ.

It follows from the above that ψ consists of the terms t(�x) ∧ y2−p(�x) for each

�x ∈ f−1(∗), together with the subformula ψ̂. These components are pairwise disjoint.

Since ψ′ is consistent with f , ψ̂ contains at least dnf-size(f) terms, and thus the size
of ψ is at least dnf-size(f) + s.

It follows that there is a polynomial-time reduction from Min-DNF(*) to Min-
DNF. Combining this with the previous reduction from 3-Partite Set Cover to Min-
DNF(*), it follows that Min-DNF is NP-complete.
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4. On the approximability of Min-DNF . Although the two-phase reduction
above proves the NP-completeness of Min-DNF, it does not give us inapproximability
results. There are two problems. First, the reduction begins with an instance of 3-
Partite Set Cover, a problem that can be approximated in polynomial time to within
a factor of 4/3 [18]; to obtain inapproximability results we need to reduce from a
problem that is difficult to approximate. Also, the second phase of the reduction,
from Min-DNF(*) to Min-DNF, is not approximation-preserving.

We replace the first phase of the reduction with a reduction that exploits prop-
erties of the Set Cover instance obtained by the inapproximability results of Lund–
Yannakakis [29] that are based on probabilistically-checkable proofs (PCPs). We then
modify the second phase to make it approximation-preserving. The final two-phase
reduction gives an inapproximability factor of Ω((logN)γ) assuming that NP is not
contained in quasi-polynomial time.

In Appendix A we also present a modified version of the first phase of the reduc-
tion, which reduces from r-Uniform Set Cover rather than from 3-Partite Set Cover.
This allows us to obtain an inapproximability result for Min-DNF by applying known
inapproximability results for r-Uniform Set Cover. However, the result we obtain for
Min-DNF is weak (inapproximability to within a factor of Ω(log logN)). Neverthe-
less, the reduction itself may be of independent interest, since it requires a different
technique to reduce from r-Uniform Set Cover rather than from r-Partite Set Cover.

4.1. New reduction to Min-DNF(*). In this section we present a reduction
that follows the PCP-based inapproximability results for Set Cover [29, 19]. We will
closely follow the Lund–Yannakakis reduction, as presented by Khot [26].

An instance of Label Cover is denoted by L = (G,L1, L2,Π), where G = (V,W,E)
is a regular bipartite graph, L1 and L2 are sets of labels, and Π = {πvw}(v,w)∈E

denotes the constraints on each edge. For every edge (v, w) ∈ E we have a map
πvw : L1 → L2. A labeling l : V → L1, W → L2 satisfies the constraint on an edge
(v, w) if πvw(l(v)) = l(w). Given an instance L, the output should be a labeling that
satisfies the maximum fraction OPT(L) of edge constraints.

Theorem 4.1 (see [29, 26]). There is a constant c < 1 such that it is NP-
hard to solve the following gap version of Label Cover. The input is an instance
L = (G = (V,W,E), [7], [2], {πvw}(v,w)∈E) of Label Cover. The instance should be
accepted if OPT(L) = 1, and the instance should be rejected if OPT(L) is at most c.

Note that the reduction is from Max3SAT(5) (the problem of maximizing the
number of satisfied clauses in a 3CNF formula where each variable occurs in exactly
five clauses). The vertices in V correspond to the m clauses, and the vertices in
W correspond to the n variables. Using Raz’s parallel repetition theorem [35], we
can amplify the gap, obtaining, for any positive integer k, an instance L′ = (G′ =
(V ′,W ′, E′), [7k], [2k], {πv′w′}(v′,w′)∈E′), where |V ′| = |V |k and |W ′| = |W |k, such

that OPT(L) = 1 implies OPT(L′) = 1, and OPT(L) ≤ c implies OPT(L′) ≤ 2−γk,
where γ > 0 is an absolute constant. Note that the sizes of both V ′ and W ′ are nO(k),
where n is the number of variables in the Max3SAT(5) instance.

Definition 4.2. A partition system P(m,h, t) consists of t partitions (A1, A1), . . .
(At, At) of [m], with the property that no collection of h sets, with at most one set
from each partition, covers all of [m].

Lemma 4.3 (see [29]). For every h and t, there is an efficiently constructible
partition system P(m,h, t), with m = O(2hh log t).

We now review the reduction from the Label Cover instance L′ to a Set Cover
instance (S,U). First, the universe U is as follows. Let t = 2k, let h be a parameter to
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be determined later, and let m = m(t, h) = O(2hh log t) be the parameter specified by
Lemma 4.3. For each edge e ∈ E′ we associate a subuniverse Ue = {(e, i) | i ∈ [m]}.
The entire universe U is the disjoint union of these |E′| subuniverses. Associated with
each edge e is a partition system P(m,h, t) over Ue, with one partition associated with
each of the possible labels in L2. Thus each label b ∈ [t] corresponds to a partition
(Ae

b, A
e
b) of Ue. The size of the entire universe is nO(k)2O(h). The set system S is the

union of two collections of sets: S(v, a), for each vertex v ∈ V ′ and each label a ∈ [7k],
and S(w, b), for each w ∈ W ′ and each label b ∈ [2k]. In particular,

S(v, a) =
⋃

w:(v,w)∈E′

A
(v,w)
πvw(a), S(w, b) =

⋃
v:(v,w)∈E′

A
(v,w)
b .

The following lemma is implicit in [29, 26].
Lemma 4.4 (see [29, 26]). If OPT(L′) = 1, then (S,U) has a cover of size

|V ′| + |W ′|. If OPT(L′) ≤ 1/(2h2), then every cover of (S,U) has size at least
h(|V ′| + |W ′|)/16.

Choosing h ≤ 2γk/2−1/2, we obtain a gap of h/16 for the Set Cover instance from
the 2γk gap of the Label Cover instance. For k = O(log log n) sufficiently large, we
have |U| = 2O(h), and thus the gap is Ω(log |U|). The size of the Set Cover instance is
quasi-polynomial in n. Thus a polynomial-time, (h/16)-approximation algorithm for
Set Cover could distinguish between the cases OPT(L′) = 1 and OPT(L′) ≤ 2−γk in
time 2polylog(n), implying that NP is contained in DTIME(2polylog(n)).

We now show how to reduce instances of Set Cover of the above form to Min-
DNF(*) instances. By the observations in section 3.1 it suffices to define three sets of
vectors {ue,i | (e, i) ∈ U}, {tv,a | v ∈ V ′, a ∈ L1}, and {tw,b | w ∈ W ′, b ∈ L2} such
that the following conditions hold: (1) ue,i ≤ tv,a iff (e, i) ∈ S(v, a), for all (e, i) ∈ U ,
v ∈ V , and a ∈ L1, and (2) ue,i ≤ tw,b iff (e, i) ∈ S(w, b), for all (e, i) ∈ U , w ∈ W ,
and b ∈ L2. Let r ∈ O(log |V ′|) be such that

(
r

r/2

)
≥ max(|V ′|, |W ′|). Our function

will have variables {x1, . . . , xr} ∪ {x′
1, . . . , x

′
r} ∪ {ya | a ∈ L1} ∪ {y′b | b ∈ L2}. Thus

the number of variables is O(log |V ′| + |L1| + |L2|) = O(k log n + 7k).
We assign to each v ∈ V ′ a unique set Sv ⊆ {1, . . . , r} of size r/2; similarly

each w ∈ W ′ is assigned a unique set Sw ⊆ {1, . . . , r} of size r/2. For each v ∈ V ′

and a ∈ L1, we define a Boolean vector tv,a as follows. The vector tv,a has zeros
corresponding to those variables xi such that i ∈ Sv, and it has a zero corresponding
to ya. The remaining bits of tv,a are ones. We similarly define, for each w ∈ W ′ and
b ∈ L2, a Boolean vector tw,b having zeros corresponding to those variables x′

i such
that i ∈ Sw, and a zero corresponding to y′b and whose remaining bits are ones.

We now describe, for each (e, i) ∈ U , a Boolean vector ue,i. Suppose that e =
(v, w), and let S(v, a1), . . . , S(v, ak) and S(w, b1), . . . , S(w, b	) be all of the sets in S
containing (e, i). Then ue,i has zeros in the positions corresponding to the following
variables: (1) variables xi, where i ∈ Sv, (2) variables x′

i, where i ∈ Sw, (3) variables
yai , where 1 ≤ i ≤ k, and (4) variables y′bi , where 1 ≤ i ≤ �. The remaining bits of
ue,i are ones.

Lemma 4.5. For all (e, i) ∈ U , v ∈ V , w ∈ W , a ∈ L1, and b ∈ L2, the following
conditions hold: ue,i ≤ tv,a iff (e, i) ∈ S(v, a) and ue,i ≤ tw,b iff (e, i) ∈ S(w, b).

Proof. Suppose first that (e, i) ∈ S(v, a), where v ∈ V ′ and a ∈ L1. Then
e = (v, w) for some vertex w ∈ W ′. The zeros of tv,a are in positions corresponding to
variables xi, where i ∈ Sv, and in the position corresponding to ya. Since e = (v, w),
the vector ue,i has zeros in the positions corresponding to variables xi, where i ∈ Sv,
and since (e, i) ∈ S(v, a) the vector ue,i also has a zero in the position corresponding
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to ya. Thus ue,i ≤ tv,a. The case where (e, i) ∈ S(w, b), where w ∈ W ′ and b ∈ L2, is
symmetric.

Now suppose that (e, i) �∈ S(v, a), where v ∈ V ′ and a ∈ L1. Suppose that
e = (v′, w′). If v′ �= v, then there exists an index j ∈ Sv \ Sv′ ; ue,i has a one in
the position corresponding to xj , while tv,a has a zero in the same position, and thus
ue,i �≤ tv,a. So assume that v′ = v. By the definition of tv,a, we know that tv,a has
a zero in the position corresponding to ya. But since e = (v, w′), ue,i has a zero in
this position iff (e, i) ∈ S(v, a); as we have supposed that (e, i) �∈ S(v, a), it follows
that the position in ue,i corresponding to ya is set to one. Thus ue,i �≤ tv,a. The case
where (e, i) �∈ S(w, b), where w ∈ W ′ and b ∈ L2, is symmetric.

By the results of section 3.1, the vectors ue,i, tv,a, and tw,b yield an instance of
Min-DNF(*) on O(k log n+7k) variables whose optimum is equal to the optimum for
the instance (S,U) of Set Cover.

Theorem 4.6. If NP �⊆ DTIME(2polylog(n)), then there exists an absolute con-
stant δ > 0 such that no polynomial-time algorithm achieves an approximation ratio
better than (logN)δ for Min-DNF(*), where N is the size of the input truth table.

Proof. Let f be the partial function specified by our reduction. Claims 4.4 and
4.5, together with the results of section 3.1, imply that our Min-DNF(*) instance
has the following properties: If OPT(L′) = 1, then dnf-size(f) ≤ |V ′| + |W ′|; if
OPT(L′) ≤ 2−γk, then dnf-size(f) ≥ h(|V ′| + |W ′|)/16, where h = Ω(2γk/2). Let
us take k = log logn, and thus h = Ω((log n)γ/2). Let N be the size of the truth
table for f . The number of variables of f is logN = O(k log n+ 7k) = O((log n)log 7),
and thus the gap is h/16 = Ω((logN)γ/(2 log 7)). The truth table has size 2polylog n

and can be generated in time polynomial in its size. The theorem follows by taking
δ = γ/(2 log 7).

4.2. Approximation-preserving reduction from Min-DNF(*) to Min-
DNF . We modify the reduction from section 3.2 to make it approximation-preserving.
Let f be a partial Boolean function over variables x1, . . . , xn. Let s = |f−1(∗)|.
We construct a new total function g′ such that dnf-size(g′) = s · dnf-size(f) + s =
s · (dnf-size(f) + 1). Let t = n + 1, and let S ⊆ {0, 1}t be a collection of s vectors,
each containing an odd number of 1’s. We add t new variables z1, . . . , zt and define

g′(�x y1y2 �z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if f(�x) = 1, y1 = y2 = 1, and �z ∈ S,

1 if f(�x) = ∗ and y1 = y2 = 1,

1 if f(�x) = ∗, y1 = p(�x), and y2 = ¬p(�x),

0 otherwise.

Lemma 4.7. dnf-size(g′) = s · dnf-size(f) + s.
Proof. For binary vector �w, we use t(�w) to denote the term

(∧
i:wi=1 wi

)
∧(∧

i:wi=0 ¬wi

)
.

We first show that dnf-size(g′) ≤ s · dnf-size(f) + s. Suppose that ϕ is a smallest
DNF consistent with f . Define a DNF ψ with terms of the following two types. First,
for every input �x ∈ f−1(∗), ψ contains the term t(�x) ∧ y2−p(�x). These terms cover all
inputs of the second and third types in the definition of g′. Second, for every term T of
ϕ and every vector �z ∈ S, ψ contains the term T ∧y1∧y2∧ t(�z). These terms cover all
inputs of the first type in the definition of g′. Finally, suppose that �xy1y2�z satisfies ψ.
Then one of the following conditions holds: (1) �x ∈ f−1(∗), y1 = p(�x), and y2 = ¬p(�x);
(2) �x ∈ f−1(∗) and y1 = y2 = 1; (3) �x satisfies ϕ (and thus �x ∈ f−1(1) ∪ f−1(∗)),
y1 = y2 = 1, and �z ∈ S. In all three cases we have g′(�xy1y2�z) = 1, and thus ψ is
consistent with g′. The number of terms in ψ is |f−1(∗)|+ |ϕ| · |S| = s ·dnf-size(f)+s.
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We next show that dnf-size(g′) ≥ s · dnf-size(f) + s. Suppose that ψ is a smallest
DNF for g′. The same reasoning used in the proof of Lemma 3.3 shows that, for
every �x ∈ f−1(∗), ψ contains the term t(�x) ∧ y2−p(�x). We now argue that, for each
�z ∈ S, there exists a subformula ψ�z of ψ and a DNF ψ′

�z over the �x variables and
consistent with f such that ψ�z =

∨
T∈ψ′

�z

(
T ∧ y1 ∧ y2 ∧ t(�z)

)
. Let �z ∈ S, and let

ψ�z be the subformula of ψ consisting of those terms that are satisfied by �x11�z for
some �x ∈ f−1(1). Each term of ψ�z contains y1 ∧ y2 ∧ t(�z), since flipping either
y1 or y2, or any bit of �z, produces an input that falsifies g′. It follows that ψ�z =∨

T∈ψ′
�z
(T ∧y1∧y2∧ t(�z)), where ψ′

�z is a DNF. It remains to show that ψ′
�z is consistent

with f . For every �x ∈ f−1(1), there is a term of ψ that is satisfied by �x11�z, and thus
there is a corresponding term of ψ′

�z that is satisfied by �x. On the other hand, every
�x ∈ f−1(0) must falsify ψ′

�z, as otherwise �x11�z would satisfy ψ.
It follows from the above that ψ consists of the terms t(�x) ∧ y2−p(�x) for each

�x ∈ f−1(∗) and of the subformulas ψ�z for each �z ∈ S. These components are pairwise
disjoint. Since ψ′

�z is consistent with f , it follows that ψ�z contains at least dnf-size(f)
terms, and thus the size of ψ is at least s · dnf-size(f) + s.

The results of section 4.2, together with Theorem 4.6, yield the following hardness
result for Min-DNF.

Theorem 4.8. If NP �⊆ DTIME(2polylog(n)), then there exists a constant γ > 0
such that no polynomial-time algorithm achieves an approximation ratio better than
(logN)γ for Min-DNF, where N is the size of the truth table.

4.3. An improved hardness result under additional assumptions. In this
section, we prove an Ω(

√
logN) hardness of approximation result for Min-DNF under

the additional assumption that a restriction of Set Cover is Ω(log n)-hard to approx-
imate.

Definition 4.9. The f-Frequency Bounded Set Cover problem is the restriction
of Set Cover to instances where each element occurs in at most f(n) sets, where n is
the total size of the instance.

It is well known [23] that a factor f approximation for f -Frequency Bounded
Set Cover can be obtained in polynomial time. Thus for f = o(log n), f -Frequency
Bounded Set Cover is not as hard to approximate as the general Set Cover problem.
On the other hand, the reduction of Lund and Yannakakis showing an Ω(logn) hard-
ness of approximation for Set Cover produces an instance of Ω((logn)c)-Frequency-
Bounded-Set-Cover, for some constant c, which implies an Ω(logn) hardness result
for that problem. We conjecture that f -Frequency-Bounded-Set-Cover is NP-hard to
approximate within a factor better than c2 lnn for f = c1 lnn and some constants
c1, c2. Resolving this conjecture is an interesting question in its own right, since it
postulates a frequency threshold (within a constant factor) for hardness. Assuming
that the conjecture holds, we can prove an Ω(

√
logN) hardness of approximation

result for Min-DNF using a simple, randomized reduction.
Theorem 4.10. If there exist constants c1 and c2 such that it is NP-hard to

approximate (c1 lnn)-Frequency Bounded Set Cover to within c2 lnn, then there ex-
ists a constant c3 such that no polynomial-time algorithm for Min-DNF achieves an
approximation ratio better than c3

√
logN unless NP ⊆ DTIME(2polylog(n)).

Proof. Assume that there exist constants c1 and c2 as in the lemma. We prove an
Ω(

√
logN) hardness of approximation for Min-DNF(*); the reduction from section 4.2

extends the same result to Min-DNF. Let (S,U) be an instance of (c1 lnn)-Frequency
Bounded Set Cover of size n. The idea of the reduction is as follows. First, we
will map each set S ∈ S to a subset f(S) ⊆ [b], for a suitably chosen parameter
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b. Second, we define vectors wS ∈ {0, 1}b for each S ∈ S, by letting wS have zeros
in those positions contained in f(S) and ones elsewhere. Finally, we define vectors
ux ∈ {0, 1}b for each x ∈ U having zeros in the positions contained in Fx, where

Fx =
⋃

S∈S:x∈S

f(S),

and ones elsewhere. If the vectors satisfy the condition ux ≤ wS ⇐⇒ x ∈ S for all
x ∈ U and S ∈ S, then by Lemma 3.1 we can construct an instance of Min-DNF(*)
over b variables whose optimum is equal to the optimum for (S,U). Notice that the
definition of ux implies that the “if” part of the condition is always satisfied. For the
“only if” part to hold, it is necessary and sufficient that, for every S such that x �∈ S,
ux has a one in a position where wS has a zero; that is, f(S) �⊆ Fx. For S ∈ S, let
f(S) be defined by choosing each i ∈ [b] independently with probability p. Fix an
element x ∈ U and a set S ∈ S such that x �∈ S. We will show that the probability
that f(S) ⊆ Fx is small. For any choice of p, the probability that f(S) ⊆ Fx is
maximized when x occurs in exactly c1 lnn sets (since it cannot occur in more than
c1 lnn sets). As we wish to find an upper bound for the probability that f(S) ⊆ Fx,
we may therefore assume that x occurs in exactly c1 lnn sets. For 1 ≤ i ≤ b, let Xi

be the indicator variable for the event i ∈ Fx. Then E[Xi] = 1− (1− p)c1 lnn, and by
letting X =

∑
1≤i≤b Xi be the size of Fx, linearity of expectation implies

E[X] = b(1 − (1 − p)c1 lnn)

≈ b(1 − e−pc1 lnn),

which can be made smaller than b/4 by choosing p ≈ ln(4/3)/(c1 lnn). The Xi’s are
independent, and we apply the simplified Chernoff bound Pr[X > (1 + δ)E[X]] <
2−δE[X] to obtain

Pr[X > b/2] < 2−b/4.

Let us consider the case |Fx| ≤ b/2. Then the probability that f(Sj) ⊆ Fx is

Pr
[
f(Sj) ⊆ Fx

∣∣∣|Fx| ≤ b/2
]
≤ (1 − p)b/2

≈
(

1 − ln(4/3)

c1 lnn

)b/2

< e−b ln(4/3)/(2c1 lnn).

By choosing b = 8c1 ln2 n, we have

Pr[f(Sj) ⊆ Fx] ≤ 2−b/4 + e−4 ln(4/3) lnn

< e−3 lnn

= 1/n3.

Applying the union bound, the probability that there exists an element x ∈ U and
a set S ∈ S, with x �∈ S, such that f(S) ⊆ Fx, is at most 1/n. Thus with proba-
bility at least 1 − 1/n, we can apply the construction of Lemma 3.1 to the vectors
ux and wS , to obtain an instance of Min-DNF(*) over b = O(log2 n) variables whose
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minimum DNF has the same size as the minimum set cover for (S,U). The Min-

DNF(*) instance has size N = 2b = 2O(log2 n), and the probabilistic construction
can be derandomized in quasi-polynomial time using the method of conditional prob-
abilities (see, e.g., [7]). It follows that there is no polynomial-time algorithm for
Min-DNF(*) which achieves an approximation ratio better than c2 lnn = Ω(

√
logN)

unless NP ⊆ DTIME(2polylog(n)).
Let Hypothesis 1 be the hypothesis that there exists constants c1, c2 such that it

is NP-hard to approximate (c1 lnn)-Frequency Bounded Set Cover to within (c2 lnn).
We gave a simple argument showing that, under Hypothesis 1, Min-DNF cannot be
approximated to within a ratio better than some constant times

√
logN unless NP is

in quasi-polynomial time. How believable is Hypothesis 1? A recent paper [16] proves
the following related result which gives some evidence that Hypothesis 1 is true.

Theorem 4.11 (see [16]). For some constant ε, (lnn)ε-Frequency Bounded Set
Cover cannot be approximated to within a factor of 2 unless NP is in quasi-polynomial
time.

Hypothesis 1 is stronger than the above theorem in two ways. First, Hypothesis 1
requires that Frequency Bounded Set Cover be NP-hard instead of quasi-polynomial-
hard. The second difference is more substantial. Hypothesis 1 requires that the
problem is hard for frequency up to (lnn) instead of (lnn)ε. It is possible that the
above theorem can be improved to prove Hypothesis 1. In any case, the above theorem
gives an alternative proof that Min-DNF cannot be approximated to within a ratio
better than (logN)γ for some γ < 1, unless NP is in quasi-polynomial time, where γ
is basically (ε/2).

5. A tight example for the greedy algorithm. We show that there exist
instances of Min-DNF for which the greedy Set Cover algorithm achieves an Ω(logN)
approximation ratio. Our approach is to take a standard worst-case Set Cover instance
and to apply a version of the reductions of sections 3.1 and 4.2 to obtain first a Min-
DNF(*) instance and then a Min-DNF instance. We then show that the greedy
algorithm operates on the resulting Min-DNF(*) instance, and on the resulting Min-
DNF instance, much as it does on the original Set Cover instance.

5.1. Tight example for greedy on Min-DNF(*). The starting point is the
following Set Cover instance, on which the greedy Set Cover algorithm has worst-case
behavior. The instance consists of m−1 pairwise disjoint sets S1, . . . , Sm−1 such that
|Si| = 2i and of two additional sets T0 and T1. For each set Si, the set T0 contains
half of the elements in Si, while T1 contains the other half. On this set collection, the
greedy algorithm chooses the cover consisting of all of the sets Si, while the optimal
solution consists only of T0 and T1.

Let U be the underlying universe. We define three sets of vectors {ve | e ∈ U},
{si | 1 ≤ i ≤ m − 1}, and {t0, t1}, over {0, 1}2(m+1), such that the following three
conditions hold for all e ∈ U and all 1 ≤ i ≤ m− 1: (1) ve ≤ si iff e ∈ Si; (2) ve ≤ t0

iff e ∈ T0; (3) ve ≤ t1 iff e ∈ T1. The vectors {ve | e ∈ U} are defined according to the
set in which they occur, as follows: Each element e ∈ Si is assigned a unique vector
ve from the set {x10m−ix01m−i | x ∈ {0, 1}i}. The vectors {si | 1 ≤ i ≤ m − 1}
and {t0, t1} are defined as follows: si = 1i10m−i1i01m−i, t0 = 01m1m+1, and t1 =
1m+101m. The set T0 is defined as {e ∈ U | ve ≤ t0}, and the set T1 is defined as
{e ∈ U | ve ≤ t1}. It is easily verified that the sets S1, . . . , Sm−1, T0, T1 have the
required structure: Namely, S1, . . . , Sm−1 are pairwise disjoint, Si has size 2i, and
T0 and T1 are disjoint, each consisting of half of the elements from each of the sets
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S1, . . . , Sm−1. Conditions (2) and (3) hold by definition, as does the “if” direction of
condition (1). For the “only if” direction of (1), note that if e ∈ Sj for j �= i, then
either bit j + 1 or bit (m + 1) + (i + 1) witnesses the fact that ve �≤ si.

The partial Boolean function f is defined as in the reduction from section 3.1: The
ones of f are the vectors ve for each e ∈ U ; the stars of f are those remaining inputs
�x such that �x ≤ si for some 1 ≤ i ≤ m − 1, or �x ≤ t0, or �x ≤ t1; and the remaining
inputs are zeros. The following general lemma shows that the prime implicants of f ,
viewed as sets and considering only the ones of f that they cover, have exactly the
same structure as the original set system.

Lemma 5.1. Let S be a set system over universe U such that no set in S contains
another set in S. Let {ve | e ∈ U} and {wS | S ∈ S} be sets of Boolean vectors such
that the following condition holds for all e ∈ U and all S ∈ S: ve ≤ wS iff e ∈ S. Let
f be the function obtained from S as in Lemma 3.1 using the given vectors. Then the
set of prime implicants of f is exactly {τ(wS) | S ∈ S}.

Proof. We first show that each term τ(wS) is, indeed, a prime implicant of f .
Suppose, on the contrary, that there is an implicant τ of f that subsumes τ(wS) for
some S ∈ S. Note that all variables in τ are negated. Let �u be a maximal truth
assignment satisfying τ . Since f(�u) = 1, there is a set S′ ∈ S such that �u ≤ wS′

;
that is, for each index i, if wS′

i = 0, then ui = 0. By our choice of �u we have that

ui = 0 iff the literal ¬xi occurs in τ , and by definition wS′

i = 0 iff the literal ¬xi

occurs in τ(wS′

i ). Thus for each index i, if the literal ¬xi occurs in τ(wS′
), then it

also occurs in τ . As both τ and τ(wS′
) consist exclusively of negated literals, we have

τ =⇒ τ(wS′
); since τ subsumes τ(wS), we have

τ(wS) =⇒ τ =⇒ τ(wS′
).

For each e ∈ U , e ∈ S ⇐⇒ ve ≤ wS , and ve ≤ wS iff ve satisfies τ(wS). Thus,

e ∈ S =⇒ ve ≤ wS =⇒ ve ≤ wS′
=⇒ e ∈ S′.

That is, S ⊆ S′, contradicting the assumption about S.
We now show that every prime implicant of f is equal to τ(wS) for some S ∈ S.

Let τ be a prime implicant of f , and let �u be a maximal truth assignment satisfying
τ . Then there exists S ∈ S such that �u ≤ wS , and thus wS

i = 0 implies ui = 0, and
by the same argument as before we have that each literal ¬xi occurring in τ(wS) also
occurs in τ . It follows that τ = τ(wS).

Lemma 5.1 implies that the prime implicants of f , viewed as sets, have exactly
the same structure with respect to the ones of f as the original set collection has
with respect to U . It follows that the greedy algorithm finds a solution of size m− 1,
consisting of the terms τ(s1)∧ · · · ∧ τ(sm−1), while the optimal solution τ(t0)∧ τ(t1)
has size two. As the instance has n = 2m + 2 variables, the approximation ratio is
(m− 1)/2 = (n− 4)/4.

5.2. Tight example for greedy on Min-DNF . We now extend the construc-
tion of the previous section to give an instance of Min-DNF for which the greedy algo-
rithm achieves an approximation ratio of Ω(n) = Ω(logN). The instance is obtained
by applying the reduction of section 4.2 to the function f from section 5.1. As in the
proof of Lemma 4.7, we use t(�w) to denote the term

(∧
i:wi=1 wi

)
∧
(∧

i:wi=0 ¬wi

)
.

Lemma 5.2. Let S be a set of subsets of [n], and let f be a partial Boolean
function, such that S and f satisfy the conditions of Lemma 3.1. Let g be the total
Boolean function obtained by applying the reduction from section 4.2 to f . Then the
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prime implicants of g consist of exactly the following: τ ∧ y1 ∧ y2 ∧ t(�z), where τ is a
prime implicant of f and �z ∈ S, and t(�x) ∧ y2−p(�x), where f(�x) = ∗.

Proof. It is easy to verify that each term in the statement of the lemma is, indeed,
a prime implicant of g, noting that every prime implicant τ of f must cover at least
one vector in f−1(1), since each set in the original set system is nonempty.

We now argue that all prime implicants of g are of the above types. Let τ be an
implicant of g: We will show that τ is subsumed by an implicant of one of the above
two types. Let �xy1y2�z be an assignment that satisfies τ . We first consider the case
where f(�x) = 1. From the definition of g, it is clear that τ contains t(�z), y1, and y2, as
flipping the corresponding bits of the assignment falsifies g. Moreover, the portion τx
of τ containing x-variables is an implicant of f and is therefore subsumed by a prime
implicant τ ′ of f . Thus τ ′ ∧ y1 ∧ y2 ∧ t(�z) is an implicant of g and subsumes τ . Now
consider the case where f(�x) = ∗, and assume without loss of generality that �x has
even parity. Then τ must contain y2 and t(�x), as flipping any of these bits falsifies g,
and thus τ is subsumed by t(�x) ∧ y2.

The inputs to g are of the form �xy1y2�z, where the length of �x is n and the length
of �z is t = n+1. Each prime implicant of the second type in the statement of Lemma
5.2 covers 2t+1 ones of g, and the ones covered by these prime implicants are pairwise
disjoint. The prime implicants of the first type each cover at most 2n−1 < 2t+1

ones of g. Thus the greedy algorithm begins by choosing all prime implicants of the
second type. At this point, the prime implicants of the first type corresponding to
different values of �z cover disjoint subsets of the ones of g, so let us consider only a
particular value of �z: The choices made by the greedy algorithm for other vectors �z
are independent of its behavior on this vector. Now the uncovered ones of g that are
covered by a term τ ∧ y1 ∧ y2 ∧ t(�z) are precisely those whose �x-component is a one of
f , as the others are already covered by prime implicants of the second type. Thus the
prime implicants of this type chosen by the greedy algorithm are exactly the set of
prime implicants of the form τ ∧y1∧y2∧t(�z), where τ is a prime implicant that would
be chosen by the greedy algorithm on input f . It follows that the greedy solution has
size s(m−1)+s = sm, while the optimal solution has size 2s+s = 3s. As the instance
has n = 2m+ 4 + t variables, the approximation ratio is m/3 = (n− t− 4)/6 = Ω(n).

6. Fixed parameter complexity. It is known that the decision problem “Given
a truth table of a Boolean function f , and a number k, does f have a DNF with at
most k terms?” can be solved in time p(N, 2k

2

), for some polynomial p, where N
is the size of the truth table [22]. (This follows easily from the fact that if f is a
Boolean formula that can be represented by a k-term DNF formula, then there exist
at most 2k prime implicants of f [12].) Thus, Min-DNF is fixed parameter tractable
[17]. Moreover, because the size of the input truth table is N = 2n, where n is the
number of variables of f , it follows that Min-DNF is solvable in polynomial time for
any k = O(

√
n).

It is an open question whether Min-DNF can be solved in polynomial time for
k = n. But by applying a simple padding argument, we obtain the following corollary
to the NP-completeness result for Min-DNF.

Corollary 6.1. If there exists some constant ε > 0 such that NP is not contained
in DTIME(2O(nε)), then for some constant c > 1, Min-DNF for k = nc is not solvable
in polynomial time (where n is the number of input variables of the Boolean function
defined by the Min-DNF instance).

Proof. Because Min-DNF is NP-complete, there exists a polynomial-time reduc-
tion from problems Π in NP to Min-DNF. If the input to Π is of size n, then the
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input to the resulting Min-DNF problem will be a truth table of size s = O(nb) for
some constant b > 1, defining a Boolean function on log s variables. The parameter
k in the derived Min-DNF instance is no more than s, since for any truth table there
is always a consistent DNF of size at most the size of the truth table. Let c > 1.
Let m = s

1
c . Take the Min-DNF instance, and form a new Min-DNF instance by

padding the function in the truth table with m − log s new dummy variables. Sup-
pose Min-DNF is solvable in polynomial time when k = nc, where n is the number of
input variables of the Boolean function defined by the Min-DNF instance. Then the
padded instance of Min-DNF can be solved in time polynomial in 2m, and Π can be

solved in time 2O(n
b
c
)

, where n is the size of input to Π. For c > b
ε , this is less than

2O(nε), a contradiction.

7. Min-DNF and learning. One of the major problems in learning theory is
to determine whether DNF formulas can be learned in polynomial time. There are
connections between the complexity of Min-DNF and its fixed parameter versions, and
the complexity of learning DNF formulas. This connection is strongest for “proper”
learning models. In such models, any hypotheses used in the learning algorithm must
be of the same type as the formulas being learned by the algorithm. Thus if the task
is to learn DNF formulas, hypotheses must be DNF formulas. If the task is to learn
k-term DNF formulas, then hypotheses must be k-term DNF formulas.

There has been a significant amount of research on learning k-term DNF formulas
for small values of k in both proper and improper models (see, e.g., [8, 10, 27, 22, 34]).
Pitt and Valiant showed that in the probably approximately correct (PAC) model,
unless RP=NP one cannot learn k-term DNF formulas in polynomial time using
hypotheses that are k-term DNF formulas (for constant k) [34]. Their proof actually
shows that the consistency problem for k-term DNF is hard. This problem takes as
input a partial Boolean function, specified by its 1’s and 0’s, and asks whether there is
a k-term DNF formula consistent with those entries. The work of Pitt and Valiant was
subsequently extended to obtain significantly stronger results on learning arbitrary
length DNF formulas in the PAC learning model [2, 20]. We note that our reduction to
Min-DNF(*) in fact implies that the consistency problem for k-term DNF is NP-hard
for k = n, even when the underlying function depends on only logn of the n input
variables (a logn “junta”); this in turn implies that proper PAC learning of n-term
DNF formulas depending on logn of the n input variables is hard unless RP=NP.

Pillaipakkamnatt and Raghavan [33] showed that, for some ε < 1 and some c > 1,
logc n-term DNF cannot be learned in the membership and proper equivalence query
model unless NP ⊆ DTIME(2O(nε)). Subsequently, Hellerstein and Raghavan proved
that Ω(log3+ε n)-term DNF formulas cannot be learned in the same model; their
proof involves a structural property of DNF formulas, and the result is without any
assumptions [22]. (It can be improved to Ω(log2+ε).) It is open, however, whether
log n-term DNF formulas can be learned in polynomial time in this model;

√
log n-

term DNF can be so learned [10].
A polynomial-time algorithm for learning logn-term DNF formulas in the mem-

bership and proper equivalence query model (i.e., with hypotheses that are logn-term
DNF formulas) would imply a polynomial-time algorithm for Min-DNF for k = n [22].
The same proof shows that, for constant c, a polynomial-time algorithm for learning
logc n-term DNF formulas would imply a polynomial-time algorithm for Min-DNF for
k = nc. It follows that the result of [33] mentioned above can also be derived from
Corollary 6.1.
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The relation between truth table minimization and learning with membership and
equivalence queries relies on the following observation: Given a truth table represent-
ing a function f , one can simulate a membership and equivalence query algorithm for
learning (a hypothesis representing) f by using the truth table to answer the queries.
Feldman observed that one can also use the truth table of f to generate uniformly
distributed examples of f . Combining this observation with the hardness of approxi-
mating Min-DNF, he showed hardness of proper PAC learning of min-DNF under the
uniform distribution, with membership queries. More specifically, he showed that for
some γ > 0, unless P=NP, there is no polynomial-time algorithm that PAC learns
DNF formulas under the uniform distribution using hypotheses that are DNF for-
mulas of size at most nγ larger than the function being learned, even if membership
queries are allowed [20].

8. Hardness of Min-AC 0
d. In this section we consider the problem of esti-

mating Min-AC0
d(f), the size of the smallest AC0

d circuit for f , given as input its
N(= 2n)-bit truth table. In [4] it was shown that neither Min-Circuit(f) (the size of
the smallest circuit) nor Min-NC1(f) (the size of the smallest NC1 circuit) can be
approximated to within a factor of N1−ε in polynomial time unless Blum integers can
be factored in probabilistic polynomial time. Here we prove an analogous result for
Min-AC0.

We consider algorithms that produce an estimate that is at least Min-AC0
d(f)

(e.g., algorithms that actually produce a circuit C for f and output the size of C).
We say that such an algorithm is a λ(N)-approximation algorithm if the output is no
more than λ(N) Min-AC0

d(f). Since for each d ≥ 2, every n-variate Boolean function
f satisfies 1 ≤ Min-AC0

d(f) ≤ nN , there is a trivial nN -approximation algorithm.
In this section, we show that for any ε > 0 there is a d(ε) such that there is no
polynomial time O(N1−δ)-approximation for Min-AC0

d(f) for any δ > 0, unless m-
bit Blum integers can be factored in probabilistic time 2m

ε

. We have not computed
the relationship between d and ε, but we anticipate that this yields a meaningful
inapproximability result for d as small as 10.

The proof of this inapproximability result follows along similar lines as the re-
lated results in [4]. In those proofs, the pseudorandom function generator of Naor
and Reingold is used, which has the nice property that it can be computed in TC0

d

for some d. Any test that can distinguish random functions from functions gener-
ated by this generator can be used to factor Blum integers. A good approximation
of TC0

d circuit size can be used to distinguish pseudorandom and random functions,
since random functions require circuits of exponential size, whereas the pseudorandom
functions produced by the generator have small TC0

d circuits. One more ingredient is
still needed, in order to obtain inapproximability results for Min-AC0

d. This ingredient
is provided by Lemma 8.1, which shows that any function with small TC0 circuits
has “relatively small” AC0 circuits. (This property extends even to complexity classes
seemingly much larger than TC0.) Taken together, this means that a good approxi-
mation to AC0

d circuit size yields a good enough approximation to TC0
d′ circuit size

to yield subexponential upper bounds on the complexity of factoring Blum integers.
Because of the way the various parameters involved interact, we see no simple

way to present the approximability result by merely appealing to results in [4]. Thus,
we present the entire proof below. First, we show that everything in nondeterministic
logspace (NL) has AC0 circuits of subexponential size.

Lemma 8.1. For every language L in NL, and for every ε, there exists a d such
that there are AC0

d circuits of size 2n
ε

that recognize L.
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Proof. Consider an NL machine M running in time m = nc. On input x, we want
to find out if M has an accepting path on x. To find an accepting path, it is sufficient
to see if there is a sequence of

√
m configurations of M C1, . . . , C√

m, where C1 is the
initial configuration of M on input x and C√

m is the accepting configuration, with
the property that for 1 ≤ i <

√
m there is a computation path of length

√
m from Ci

to Ci+1. We view the configurations Ci as “checkpoints” along the computation path.
This approach to finding an accepting path is straightforward to implement using a
depth-three AC0 circuit of size 2O(

√
m logm).

If the number of checkpoints chosen is m1/3 instead of
√
m, then a similar strategy

leads to a depth-five circuit of size 2O(m1/3 logm). That is, the top level of the depth-

five circuit is an OR (over all of the 2O(m1/3 logm) sequences S of checkpoints) of the
AND that each of the m1/3 − 1 pairs of adjacent checkpoints in S is connected by
a path of length m2/3. This latter condition can be checked by an OR over another

2O(m1/3 logm) sequences S′ of m1/3 checkpoints, of an AND that each of the m1/3 − 1
pairs of adjacent checkpoints in S′ is connected by a path of length m1/3. Since the
input head of M can move only a distance of m1/3 in m1/3 steps, and each checkpoint
specifies the position of the input head, the condition that a given pair of checkpoints
is connected by a path of length m1/3 depends only on m1/3 input variables, namely,
those centered around the two input head positions specified by the checkpoints.
Thus this condition can be expressed by a CNF formula of size exponential in m1/3.
(The depth can be optimized somewhat, using closure under complement and merging
adjacent layers—but we ignore such issues for now.)

Notice that, by increasing the depth from three to five and decreasing the number
of checkpoints from

√
m to m1/3, one is able to obtain smaller circuits. Iterating the

above idea gives depth-d AC0 circuits of size 2n
ε

. This is basically a strengthening
of Nepomnjaščĭı’s theorem [5, 32]. (The same claim, with an identical proof, holds
for any language accepted by a nondeterministic machine running in polynomial time
and using space no(1). In particular, it holds for the complexity class LogCFL.)

Definition 8.2. An integer M is called a Blum integer if M = PQ, where P
and Q are two primes such that P ≡ Q ≡ 3 mod 4. The Blum integer factorization
problem is as follows. Given a Blum integer M , find the primes P and Q such that
1 < P ≤ Q and M = PQ.

Theorem 8.3. For every δ > 0 and ε > 0 there is a depth d such that if B is an
algorithm that approximates Min-AC0

d to within a factor of N1−δ (where N = 2n is
the size of the input truth table), then Blum integer factorization is in BPTIME(2m

ε

)B

(where m is the number of bits of the integer to be factored).
Proof. We follow the proof given in [4]. In [31] a pseudorandom function ensemble

{fM,r(x) : {0, 1}n → {0, 1}}M,r is constructed with the following two properties:
• There is a polynomial size TC0 circuit computing fM,r(x), given an m = 2n

bit integer M , a 4n2 + 2n-bit string r, and an n-bit string x. This means
that there is a constant d′ such that for each n there is a depth-d′ threshold
circuit of size at most nd′

that takes as input M, r, x and outputs fM,r(x).
• For every probabilistic Turing machine M running in time t(n) with oracle

access to fM,r of query length n, there exists a probabilistic Turing machine
A running in time t(n)nO(1) such that for every 2n-bit Blum integer M =
PQ, if |Pr[MfM,r (M) = 1] − Pr[MRn(M) = 1]| > 1/2, where Rn is a
uniformly distributed random function ensemble, and the probability is taken
over random r and random bits of M, then Pr[A(M) = (P,Q)] > 1/2. In
other words, if M can distinguish the pseudorandom function ensemble from
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a truly random function “efficiently,” then Blum integers can be factored
“efficiently” on a probabilistic machine.

Let δ > 0 and ε > 0 be given as in the theorem. Let q = nε and Q = 2q. By
the first property of the ensemble together with Lemma 8.1, there is a d such that
for each sufficiently large n there is a depth-d AC0 circuit that takes as input M, r, x

and outputs fM,r(x) and has size at most 2n
ε/2

; for n sufficiently large this quantity

is at most Qδ/2. In particular, for each choice of M ∈ {0, 1}2n and r ∈ {0, 1}4n2+2n,
we can hardwire the values of M and r to get a circuit of size at most Qδ/2 for the
function fM,r.

For y ∈ {0, 1}q let ỹ ∈ {0, 1}n be the concatentation of y with 0n−q. For any
function h defined on {0, 1}n, let h̃ be the function defined on {0, 1}q by h̃(y) = h(ỹ).

Suppose that B is a function as in the hypothesis of the theorem. We now con-
struct an oracle Turing machine M which takes as input a 2n-bit integer M and has
oracle access to B and to an n-variate Boolean function g and reliably distinguishes
the case that g = fM,r from the case that g is truly random. By the second property
of the pseudorandom function generator fM,r, when M is a Blum integer, this will be
enough to factor M .

On input N , M queries g(ỹ) for all y ∈ {0, 1}nq

, thus constructing the truth
table for g̃ (of size Q). M then submits the truth table of g̃ to the approximation
algorithm B and accepts iff the approximate circuit size for g̃ returned by B is greater
than Q1−δ/2.

Now assume that the answer returned by B is within a Q1−δ factor of the true
answer. If g = fM,r, then g (and therefore g̃) has a circuit of size at most Qδ/2, and so
B always returns a value less than Qδ/2Q1−δ = Q1−δ/2 and M rejects. On the other
hand, if g is taken uniformly at random from Rn, then the distribution of g̃ is uniformly
random from Rq and thus with extremely high probability requires AC0

d circuits of size
Q/q > Q1−δ/2 (since most functions require circuits of this size), and this condition
causes M to accept. Hence |Pr[MfM,r(x)(M) = 1] − Pr[MRn(M) = 1]| > 1/2 for
sufficiently large n. Thus, M can distinguish the pseudorandom function ensemble
from a truly random one with probability greater than 1/2, and thus Blum integers
can be efficiently factored probabilistically.

Corollary 8.4. For all δ > 0 and all ε > 0 there exists a d such that Min-
AC0

d cannot be approximated to within a factor n1−δ in BPP unless Blum integer
factorization is in BPTIME(2n

ε

).

9. Discussion. There are close connections between the hardness of function
minimization problems and related learnability results. In addition to the connec-
tions discussed above in section 6, we mention two others: The complexity of Min-
DNF(DNF) and of approximating Min-DNF(DNF) has been shown to be related to
the problem of learning DNF with proper membership and equivalence queries [11, 22,
1], and results on learning circuits [9] yield positive results for approximating circuit
minimization (cf. [39]). At a basic level, learning a formula or circuit involves gath-
ering information about it and then synthesizing or compressing that information to
produce a compact hypothesis. The need for compactness provides the connection to
minimization. In many learning problems one can distinguish between informational
complexity (the number of queries or sample size needed) and computational com-
plexity (the amount of computation needed to process the information). Information
about a formula or circuit typically consists just of input/output pairs. Truth table
minimization problems are relevant to the computational hardness of learning; even
if you have all input/output pairs, the question is whether you can compact that
information in polynomial time.
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The NP-hardness of proper PAC learning DNF and of Min-DNF are known. On
the other hand, very strong inapproximability results are known for both proper PAC
learning and the function minimization problem for complexity classes starting at
AC0. However, these latter results rely on cryptographic assumptions and are not
known to hold under NP-hardness assumptions. Thus an important open question is
to resolve the NP-hardness of both learnability results as well as function minimization
results above for classes that are stronger than DNF.

Another open problem is to close the approximability gap for Min-DNF.

Appendix A. Reduction from r-Uniform Set Cover . The following lemma
describes a modified version of the reduction given in section 3.1. Whereas the reduc-
tion in that section is from 3-Partite Set Cover, the reduction here is from r-Uniform
Set Cover (all sets in the input set cover instance are of size r). Because the reduction
here is not from a partite version of Set Cover, it requires different techniques than
the reduction in section 3.1.

Lemma A.1. There is an algorithm that takes as input an r-uniform collection
of subsets S over [n] and produces the truth table of a partial Boolean function f such
that the minimum size of a cover of [n] with S is equal to the minimum number of
terms in a DNF consistent with f . The algorithm runs in time (n|S|)O(r), and the
number of variables of f is O(r log(n|S|)).

Proof. Let the r-uniform collection S over [n] be given.
As in the proof of Lemma 3.2, we produce two indexed sets of vectors V = {vi :

i ∈ [n]} and W = {wA : A ∈ S} of length t satisfying the property (∗) that, for
all A ∈ S and i ∈ [n], i ∈ A iff vi ≤ wA. Again, we specify V and then define W
according to the rule that, for A ∈ S, wA is the bitwise OR of {vi : i ∈ A}. The
construction of partial function f , given V and W , is then the same as in the proof of
Lemma 3.2, and again it follows that the size of the minimum DNF consistent with
f is equal to the size of the minimum cover of [n] by S.

We now describe the construction of V . Let P be the set of pairs (j, A), with
A ∈ S and j ∈ [n] − A. The desired conditions on V can be restated as specifying
that for all (j, A) ∈ P :

C(j, A): There is a bit position α ∈ [t] such that vjα = 1 and viα = 0
for all i ∈ A.

If we choose v1, . . . , vn of length t at random where each bit is 1 independently with
probability 1/r, then for each (j, A) ∈ P the probability that C(j, A) does not hold is
(1− 1

r (1− 1
r )r)t ≤ e−t/3r, so the probability that v1, . . . , vr fails to meet the require-

ments is at most |P |e−t/3r ≤ |S|ne−t/3r. Thus if t ≥ 3r(1 + ln(|S|n)), this random
choice succeeds with probability more than 1/2. This is enough for a randomized re-
duction. To make it deterministic, we derandomize this construction using the method
of conditional probabilities (see, e.g., [7]). This is routine but technical, so we provide
only a sketch. Let X(j, A) be the random variable that is 1 if C(j, A) fails. We want
to choose v1, . . . , vr so that X =

∑
(j,A)∈P X(j, A) = 0. The above argument says

that under random choice Exp[X] ≤ 1/2. The key point for derandomizing is that
if we fix any subset of the bits in v1, . . . , vr, then it is straightforward to compute
the conditional expectation of X given this fixing in time (|S|n)O(1)). We can then
use the method of conditional probabilities to fix these bits one at a time by always
choosing the value of the bit that does not increase the expectation. Once all bits are
fixed, we must have a good choice for V .
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Clearly V and W can be constructed in time (n|S|)O(1), with t = O(r log
(n|S|)). Since the truth table has size 2t, outputting it takes time (n|S|)O(r).

Combining the above reduction with the modified reduction from Min-DNF(*)
to Min-DNF in section 4.2 yields a reduction from r-Uniform Set Cover to Min-
DNF. By setting r = logN , where N is the truth table size, one can then apply
inapproximability results for r-Uniform Set Cover [19, 38] to show that Min-DNF
cannot be approximated to within a factor of Ω(log logN) in polynomial time unless
NP is in randomized quasi-polynomial time.
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Abstract. Many algorithms and data structures employing hashing have been analyzed under
the uniform hashing assumption, i.e., the assumption that hash functions behave like truly random
functions. Starting with the discovery of universal hash functions, many researchers have studied
to what extent this theoretical ideal can be realized by hash functions that do not take up too
much space and can be evaluated quickly. In this paper we present an almost ideal solution to this
problem: a hash function h : U → V that, on any set of n inputs, behaves like a truly random
function with high probability, can be evaluated in constant time on a RAM and can be stored in
(1+ε)n lg |V |+O(n+lg lg |U |) bits. Here ε can be chosen to be any positive constant, so this essentially
matches the entropy lower bound. For many hashing schemes this is the first hash function that makes
their uniform hashing analysis come true, with high probability, without incurring overhead in time
or space.
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1. Introduction. Hashing is an important tool in randomized algorithms and
data structures, with applications in such diverse fields as information retrieval, com-
plexity theory, data mining, cryptology, and parallel algorithms. Many algorithms
using hashing have been analyzed under the assumption of uniform hashing, i.e., the
idealized assumption that the hash function employed is a truly random function. In
this paper we present a theoretical justification for such analyses, in the form of the
construction of a hash function that makes the uniform hashing assumption “come
true” with high probability. Our hash function can be evaluated in constant time on
a RAM, and its description uses very close to the minimum possible space.

1.1. History. According to Knuth [16], the idea of hashing was originated in
1953 by H. P. Luhn. The basic idea is to use a function h : U → V , called a hash
function, that “mimics” a random function. In this way a “random” value h(x) can
be associated with each element from the domain U . In this paper, as in most other
hash function constructions, we consider a universe of the form U = {0, . . . , u − 1}
and a range of the form V = {0, . . . , v − 1}, where 1 < v ≤ u.

Representation of a random function requires u lg v bits, so it is usually not feasible
to actually store a randomly chosen function. For many years hashing was largely a
heuristic, and practitioners used fixed functions that were empirically found to work
well in cases where uniform hashing could be shown to work well.

The gap between hashing algorithms and their analysis narrowed with the advent
of universal hashing [6]. The key insight was that it is often possible to get provable
performance guarantees by choosing hash functions at random from a small family of
functions (rather than from the family of all functions). The importance of the family
being small is, of course, that a function from the family can be stored succinctly.
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Hash functions are usually chosen uniformly at random from some family H of
hash functions. For example, the family

{x �→ ((ax + b) mod p) mod v | 0 < a < p, 0 ≤ b < p},

first studied by Carter and Wegman [6], has many known applications. The family is
described by the parameters p and v, while a particular function in the family is given
by the values of parameters a and b. In our results, we will distinguish between the
space needed to represent the family and the space needed to represent a function in
the family.

One property of the choice of hash function that often suffices to give performance
guarantees is that it maps each set of k elements in U to uniformly random and
independent values, where k is some parameter that depends on the application. If
this holds for a random function from a family H, we say that H is k-wise independent.
There exist such function families whose functions can be stored in O(k lg u) bits of
space [25]. For many years, all known k-wise independent families with nontrivial
space usage required time Ω(k) for evaluating a hash function. A breakthrough was
made by Siegel [23], who showed that high independence is achievable with relatively
small families of hash functions that can be evaluated in constant time on a RAM.

The RAM model used in Siegel’s result, as well as in this paper, is a standard
unit cost RAM with an instruction set that includes multiplication, and a word size of
Θ(lg u) bits. The RAM has access to a source of random bits, and in particular we as-
sume that a random value in V and a random word can be generated in constant time.

The two main performance parameters of a hash function family is the space
needed to represent a function and the time necessary to compute a given function
value from a representation. A tight bound on the number of bits needed to achieve
k-wise independence is Θ(k lg u) bits [3, 7]. Sometimes there is a trade-off between the
space used to represent a function and its evaluation time. For example, Siegel [23]
shows that if u = k1+Ω(1), it is necessary to use k1+Ω(1) lg v bits of space to achieve
constant evaluation time.

Siegel’s construction of a k-wise independent family comes close to this lower
bound (see Theorem 3). If one applies this family with k = n to a set S of n elements,
it will map these to independent and uniformly random values. We say that it is
uniform on S. However, the space usage is superlinear meaning that, in many possible
applications, the hash function description itself becomes asymptotically larger than
all other parts of the data structure.

1.2. Our result. In this paper we present a family of hash functions that has
the same performance as Siegel’s family on any particular set of n elements and
space usage close to the lower bound of n lg v + lg lgv u bits shown in section 5. The
previously best construction using O(n lg v+ lg lg u) space is based on evaluation of a
degree n− 1 polynomial over a finite field and has Ω(n) evaluation time.

Theorem 1. Let S ⊆ U = {0, . . . , u − 1} be a set of n > 1 elements. For any
constants c > 0 and ε > 0, and for 1 < v < u, there is a RAM algorithm that, using
time lg n(lg v)O(1) and O(lg n + lg lg u) bits of space, selects a family H of functions
from U to V = {0, . . . , v − 1} (independent of S) such that

• H is k-wise independent when restricted to S, with probability 1 −O( 1
nc ).

• A function in H can be represented by a RAM data structure using space
(1+ε)n lg v+O(n) bits such that function values can be computed in constant
time. The data structure of a random function in H can be constructed in
time O(n).
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As our hash functions are optimal with respect to evaluation time and essentially
optimal with respect to space usage, the only possible significant improvement would
be an error probability that decreases more rapidly with n. Such a result could
possibly be achieved for u = nO(1) by explicit constructions of certain expanders in
Siegel’s hash function construction.

Techniques. Our main technical ingredient is to use the two-choice paradigm [4]
that has recently found a number of applications in load balancing and data struc-
tures. The central fact we make use of is that if we associate, using hashing, two
memory locations in a linear size array with every element of the set S, then with
high probability (whp.) there exists a way of associating keys with unique memory
locations [19]. Essentially, each key gets the independence of its hash value from ran-
dom bits at the memory location with which it is associated. A complication is that
one needs to take care of cyclic dependencies that may arise, but this involves only a
logarithmic number of elements, whp. The solution is to add a hash function that is
independent (whp.) on the set of problematic elements.

Perspective. It should be noted that a data structure with slightly different
functionality is very easy to construct: use a high performance dictionary such as the
one in [9] to store elements from U and associated “hash values” from V . When a new
function value is needed, it is randomly generated “on the fly” and stored with the
element in the dictionary. The space needed for this is O(n(lg u + lg v)) bits, which
is a constant factor from the space usage achieved by our data structure if u = vO(1).
The main difference between this and the data structure of Theorem 1 is that our
hash function can be generated once and for all, after which it may be used without
any need for random bits. This also means that our hash function may be distributed
and used by many parties without any need for additional communication. Another
distinguishing feature is that our hash function will be uniform with high probability
on each of nO(1) sets of size n. Thus it may be shared among many independently
running algorithms or data structures.

1.3. Implications. The fact that the space usage of our hash function is linear
in n means that a large class of hashing schemes can be implemented to perform,
with high probability, exactly as if uniform hashing was used, increasing space by at
most a constant factor. This means that our family makes a large number of analyses
performed under the uniform hashing assumption come true with high probability.

Two comprehensive surveys of early data structures analyzed under the uniform
hashing assumption can be found in the monographs of Gonnet [13] and Knuth [16].
Gonnet provides more than 100 references to books, surveys, and papers dealing with
the analysis of classic hashing algorithms. This large body of work has made the
characteristics of these schemes very well understood, under the uniform hashing as-
sumption. As the classic hashing algorithms are often very simple to implement, and
efficient in practice, they seem to be more commonly used in practice than newer
schemes with provably good behavior. While our family may not be of practical im-
portance for these hashing schemes, it does provide a theoretical bridge justifying the
uniform hashing assumption for a large class of them. Previously, such justifications
have been made for much more narrow classes of hashing schemes and have dealt only
with certain performance parameters (see, e.g., [20, 21]). More details on applications
of our scheme in hashing data structures can be found in the conference version of
this paper [17].

In addition to the classic hashing schemes, our result provides the first provably
efficient hashing based implementation of load balancing schemes of Azar et al. [4] and
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Vöcking [24]. The fact that hash functions can be used to perform the random choices
in these algorithms means that it is possible to retrace any previous load balancing
decision by checking a small number of possible choices.

Finally, our construction has an application in cryptography, where it “derandom-
izes” a construction of Bellare, Goldreich, and Krawczyk [5] for the most important
parameters. (See the discussion in section 3.1.1.)

1.4. Overview of the paper. The organization of the paper is as follows. In
section 2 we provide the background information necessary to understand our con-
struction. Specifically, we survey Siegel’s construction, which will play an important
role. Section 3 presents our initial construction, which achieves space that is within
a constant factor of optimal. Section 4 shows, by a general reduction, how to reduce
the space to (essentially) 1 + ε times the space lower bound shown in section 5.

2. Background. Theorem 1 can be seen as an improvement of Siegel’s family
of high performance hash functions [23]. The motivation for Siegel’s work was that
many algorithms employing hashing can be shown to work well if the hash functions
are chosen at random from a k-wise independent family of functions, for suitably large
k.

Definition 1. A family H of functions from U to V is k-wise independent if,
for any distinct elements x1, . . . , xk ∈ U , and any y1, . . . , yk ∈ V , when h ∈ H is
chosen uniformly at random,

Pr[h(x1) = y1 ∧ · · · ∧ h(xk) = yk] = |V |−k.

In other words, a random function from a k-wise independent family acts like a truly
random function on any set of k elements of U . We note that several relaxed notions
of k-wise independence exist, e.g., the notion of (c, k)-universality [8]. However, we
don’t know of any data structures in the literature that allow evaluation of a function
from a (c, k)-universal (or similar) family in time o(k), except for those achieving
k-wise independence.

Siegel’s construction. Siegel showed that for arbitrary constants c > 0 and

ε > 0 it is possible to construct, using O(u
√

lg k/ lg u+ε lg v) bits of space, a family of
functions from U to V with the following properties:

• It is k-wise independent with probability at least 1 − u−c.

• There is a RAM data structure of O(u
√

lg k/ lg u+ε lg v) bits representing its
functions such that function values can be computed in constant time.

Siegel mainly considered the case k = uo(1), e.g., k = O(lg u), where the space usage
is dominated by the uε term. The positive probability that the family is not k-wise
independent is due to the fact that Siegel’s construction relies on a certain type of
expander graph that, in lack of an explicit construction, is found by selecting a graph
at random (and storing it). However, there is a small chance that the randomly
chosen graph is not the desired expander, in which case there is no guarantee on the
performance of the family. Also, there seems to be no known efficient way of generating
a graph at random and verifying that it is the desired expander. (However, a slightly
different class of expanders can be efficiently generated in this way [2].)

Space lower bound. It is inevitable that the space usage grows with u when
constant evaluation time is required. Siegel shows the following trade-off between
evaluation time and the size of the data structure.

Theorem 2 (see Siegel [23]). Consider any k-wise independent family H of
functions from U to V and any RAM data structure using m words of O(lg v) bits to
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represent a function from H. Then there exists h ∈ H and x ∈ U such that the data
structure for h requires time Ω(min(lgm/k(u/k), k)) on input x.

Note that when using optimal space, i.e., m = O(k), the time needed to evaluate
a function is Ω(min(lg(u/k), k)).

Applying domain reduction. Theorem 2 establishes that high independence
requires either high evaluation time or high space usage when u is large. A standard
way of getting around problems with hashing from a large domain is to first perform
a domain reduction, where elements of U are mapped to elements of a smaller domain
U ′ using universal hashing. As this mapping cannot be 1-1, the domain reduction
forces some hash function values to be identical. However, for any particular set S
of n elements, the probability of two elements in S mapping to the same element of
U ′ is O(n−c) if |U ′| ≥ nc+2. One universal family, suggested implicitly in [12] and
explicitly in [18], uses primes in a certain range. A function from the family can be
generated in expected time (lg |U ′|+ lg lg u)O(1) and stored in O(lg |U ′|+ lg lg u) bits.
Another universal family [8] has functions that can be generated in constant time and
stored in O(lg u) bits. Both families support constant time evaluation of functions.
In the following we will state all results using the former universal family, obtaining
the smallest possible space at the cost of a modest amount of precomputation.

Using domain reduction with Siegel’s family described above, one gets the follow-
ing result. For k = n it is similar to our main theorem, the main difference being that
the space usage is superlinear.

Theorem 3 (see Siegel [23]). Let S ⊆ U = {0, . . . , u− 1} be a set of n elements.
For any constants ε > 0 and c > 0 there is a RAM algorithm constructing a random
family SI(U, V, k, n, c, ε) of functions from U to V = {0, . . . , v − 1} in expected time

O(s) + (lg lg u)O(1) and O(s lg v + lg lg u) bits of space, where s = n
√

(c+2) lg k/ lgn+ε,
such that.

• With probability 1 − O( 1
nc ) the family is k-wise independent when restricted

to S.
• There is a RAM data structure of O(s lg v+lg lg u) bits representing its func-

tions such that function values can be computed in constant time. The data
structure can be initialized to a random function in time O(s).

Notice that the space usage is ω(k
√

2) bits for all parameters, so it is truly su-
perlinear in k. With currently known ways of constructing expanders, Siegel’s hash
function family exhibits high constant factors.

Other constructions. Other proposals for high-performance hash functions,
due to Dietzfelbinger and Meyer auf der Heide [9, 10], appear more practical than
Siegel’s. However, these families only exhibit O(1)-wise independence and are difficult
to analyze in general.

Dietzfelbinger and Woelfel [11] have analyzed a family similar to the abovemen-
tioned high-performance hash functions and showed that it may be used for hashing
schemes whose analysis rests on a bipartite graph defined by a pair of hash functions.
In particular, they are able to give an alternative to our initial uniform hashing con-
struction, described in section 3, that is likely to be more practical. However, their
construction restricts the size v of the range to be a prime number.

3. Initial hash function construction. In this section we describe a hash
function family with properties as stated in Theorem 1 for some constant ε > 0.
In section 4 we will extend this to show Theorem 1 (where ε can be any positive
constant). We use the notation T [i] to denote the ith entry in an array T . By [m] we
denote the set {0, . . . ,m− 1}.
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3.1. The hash function family. We start with a definition.
Definition 2. Let G be a family of functions from U to V , and consider functions

i1, i2 : U → [m]. We define the family of functions

H(i1, i2,G) = {x �→ (T1[i1(x)] + T2[i2(x)] + g(x)) mod v | T1, T2 ∈ V m and g ∈ G}.

The hash function family considered in this section uses Siegel’s construction of
function families to get the functions i1 and i2, as well as the family G in the above
definition.

Definition 3. For n ≤ u and any constant c > 0 we define the random family
Hn,c = H(i1, i2,G) of functions as follows. Let k = 
n1/(2c+4)� and construct the
random families

G = SI(U, V, k, n, c, 1/4) and

F = SI(U, [4n], k, n, c, 1/4)

according to Theorem 3. Pick i1 and i2 independently at random from F .

3.1.1. Related constructions. A similar way of constructing a function family
was presented in [9]. The essential change in the above definition compared to [9] is
that we look up two values in tables, rather than just one.

The technique of using multiple lookups in a random (or pseudorandom) table to
produce a new random value has previously been used in cryptography by Bellare,
Goldreich, and Krawczyk [5] in connection with stateless evaluation of pseudorandom
functions. The construction given in this paper is strictly more general that the one
in [5] as we get a random function rather than just a way of generating random values.
Also, function evaluation is deterministic, whereas the generation procedure in [5] is
randomized. Our analysis is completely different from the one in [5].

On the other hand, our analysis shares some features with the analysis of cuckoo
hashing in [19], as it rests on the analysis of the same random bipartite graph (gen-
erated by Siegel’s hash functions). In fact, Dietzfelbinger and Woelfel show in [11]
how to base uniform hashing (with range of size that is a prime number) on any hash
function that works with cuckoo hashing.

3.2. Properties of the family. For two functions i1, i2 : U → [m] and a set
S ⊆ U , let G(i1, i2, S) = (A,B,E) be the bipartite graph that has left vertex set
A = {a1, . . . , am}, right vertex set B = {b1, . . . , bm}, and edge set

E = {ex | x ∈ S}, where ex = (ai1(x), bi2(x)).

We consider the edge ex to be labeled by x. Note that there may be parallel edges
with different labels.

We define a leafless subgraph E′ ⊆ E of a graph as a subset of the edges such that
there is no vertex incident to exactly one edge in E′. A graph’s leafless part C ⊆ E
consists of the edges that are on a cycle and the edges that are on a path connecting
two cycles. (This is also known as the 2-core.)

Lemma 1. Let S ⊆ U be a set of n elements and let G be a family of functions
from U to V that is k-wise independent on S. If the total number of edges in the
leafless part of G(i1, i2, S) = (A,B,E) is at most k, then H(i1, i2,G) is uniform when
restricted to S.

Proof. Let S′ be the set of all elements x ∈ S, where the edge ex with label x is
in the leafless part C of G(i1, i2, S).
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The proof is by induction on |E \C|. In the base case we assume that |E \C| = 0,
i.e., that S′ = S. Since |S| ≤ k it holds for any function h that the function family
x �→ (h(x) + g(x)) mod v, where g is chosen from a k-wise independent family, is
uniform on S. In particular, H(i1, i2,G) has this property.

For the inductive step, note that among the edges in E \ C there has to be
at least one edge with one unique endpoint. Let ex∗ = (ai1(x∗), bi2(x∗)) be such an
edge, x∗ ∈ S \ S′. By symmetry we may assume that ai1(x∗) is the unique endpoint.
The induction hypothesis says that H(i1, i2,G) is uniform on S \ {x∗}, and for h ∈
H(i1, i2,G) chosen at random, all values h(x) for x ∈ S \ {x∗} are independent of
the value T1[i1(x

∗)]. These facts mean that given g ∈ G and all entries in vectors T1

and T2 except T1[i1(x
∗)], h(x∗) is uniformly distributed when choosing T1[i1(x

∗)] at
random. Hence H(i1, i2,G) is uniform on S.

Lemma 2. For each set S of size n, and for i1, i2 : U → [4n] chosen at random
from a family that is k-wise independent on S, k ≥ 32, the probability that the leafless
part C of the graph G(i1, i2, S) has size at least k is n/2Ω(k).

Proof. Assume that |C| ≥ k and that k ≤ n is even (this may be assumed without
loss of generality). Either there is a connected leafless subgraph in G(i1, i2, S) of size
at least k/2 or there is a leafless subgraph of size k′, where k/2 < k′ ≤ k. In the first
case there is a connected subgraph in G(i1, i2, S) with exactly k/2 edges and at most
k/2 + 1 vertices. In the second case there is a subgraph with k′ edges and at most k′

vertices in G(i1, i2, S).
In the following we will count the number of different edge-labeled subgraphs with

k′ edges and at most k′ + 1 vertices for k/2 ≤ k′ ≤ k to bound the probability of
such a subgraph to appear in G(i1, i2, S). Hence, we also get an upper bound on the
probability that |C| is at least k. Note that since i1 and i2 are chosen from a k-wise
independent family, each subset of at most k elements of S will map to to random
and independent edges. We will only consider subgraphs corresponding to at most k
elements of S.

To count the number of different subgraphs with k′ edges and at most k′ + 1
vertices, for k/2 ≤ k′ ≤ k, in a bipartite graph G = (A,B,E) with |A| = |B| = 4n
and |E| = n, we count the number of ways to choose the edge labels, the vertices,
and the endpoints of the edges such that they are among the chosen vertices. The k′

edge labels can be chosen in
(
n
k′

)
≤ (en/k′)k

′
ways. Since the number of vertices in

the subgraph is at most k′ + 1, and they are chosen from 8n vertices in G, the total
number of ways in which they can be chosen is bounded by

k′+1∑
i=1

(
8n
i

)
≤ (8en/(k′ + 1))k

′+1.

Let ka and kb be the number of vertices chosen from A and B, respectively. The
number of ways to choose an edge such that it has both its endpoints among the
chosen vertices is kakb ≤ ((k′ + 1)/2)2k

′
. In total, the number of different subgraphs

with k′ edges and up to k′ + 1 vertices is at most

(en/k′)k
′ · (8en/(k′ + 1))k

′+1 · ((k′ + 1)/2)2k
′

= 8en
k′+1 · (2e2 · n2 · k′+1

k′ )k
′

≤ 8en
k′+1 · ( 63

4 · n2)k
′
,

using k′ ≥ k/2 ≥ 16.



92 ANNA PAGH AND RASMUS PAGH

There are in total (4n)2k
′
graphs with k′ specific edges. In particular, the proba-

bility that k′ specific edges form a particular graph is (4n)−2k′
, using k′-wise indepen-

dence. To get an upper bound on the probability that there is some subgraph with
k′ edges and at most k′ + 1 vertices, where k/2 ≤ k′ ≤ k, we sum over all possible
values of k′: ∑

k/2≤k′≤k

8en
k′+1 · ( 63

4 · n2)k
′ · (4n)−2k′

=
∑

k/2≤k′≤k

8en
k′+1 · ( 63

64 )k
′

≤ (k/2 + 1) · 8en
k/2+1 · ( 63

64 )k/2

= n/2Ω(k).

We now proceed to show Theorem 1 for some constant ε > 0. More precisely,
we will show that the random family Hn,c of Definition 3 fulfills the requirements in
the theorem. The families G = SI(U, V, k, n, c, 1/4) and F = SI(U, [4n], k, n, c, 1/4)
are both k-wise independent with probability 1 − n−c for sets of size up to n ac-
cording to Theorem 3. If F is k-wise independent, then by Lemma 2 the probability
that the leafless part of graph G(i1, i2, S) has size at most k is at least 1 − n−Ω(k) if
k ≥ 32. We can assume without loss of generality that k ≥ 32, since otherwise the
theorem follows directly from Theorem 3. When the leafless part of graph G(i1, i2, S)
has size at most k, then, by Lemma 1, Hn,c is uniform on S if G is k-wise indepen-
dent. The probability that G is k-wise independent, that F is k-wise independent,
and that the leafless part of the graph G(i1, i2, S) has size at most k is altogether
(1 − n−c)2(1 − 2−Ω(k)) = 1 −O(n−c).

The construction of Hn,c, i.e., constructing F and G and choosing i1 and i2, can ac-
cording to Theorem 3 be done in expected O(s)+(lg lg u)O(1) time and O(s lg v) bits of

space, where s = n
√

(c+2) lg k/ lgn+1/4 = O(n0.96). The space usage of a data structure
representing a function from Hn,c is O(n lg v) bits for T1 and T2 and O(s lg v+lg lg u)
bits for storing i1, i2, and g. The initialization time is dominated by the time used
for initializing T1 and T2 to random arrays and the (lg lg u)O(1) term from Siegel’s
construction. Function values can clearly be computed in constant time.

4. Achieving near-optimal space. In this section we present a general reduc-
tion for decreasing the space used by a uniform hashing construction. Together with
section 3 this will show Theorem 1. The idea of the reduction is the following. We
construct a data structure of (1+ε/2)n lg v+O(n) bits representing a function f such
that for any set S ⊆ U of n elements there exists, with probability 1 − O(n−c), a
set S′ ⊆ S, where |S′| ≥ (1 − ε/16)n, such that the following independence property
holds:

• The values (f(x))x∈S′ are independent and uniform in [v], even when condi-
tioned on particular f -values for elements in S\S′.

To be precise, we associate with each possible choice of f a unique set S′. The uni-
formity property above holds when restricting f to the subset of functions associated
with any particular set S′. (The probability space may be empty for some choices
of S′.)

Now choose a function h according to a uniform hashing construction for sets of
size (ε/16)n, and error probability O(n−c). We consider the function

x �→ (f(x) + h(x)) mod v.
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For a given set S ⊆ U of size n, there exists with probability 1−O(n−c) a set S′ with
properties as stated above. With probability 1−O(n−c) the function h then maps the
elements of S\S′ to uniformly distributed and independent values. Hence, using the
independence property of f , the function x �→ (f(x) + h(x)) mod v must be uniform
on the set S with probability 1 −O(n−c).

Using the uniform hashing construction of section 3, the space to represent h is
(8ε/16)n
lg v�+ o(n)+O(lg lg u) = (ε/2)n lg v+O(n+lg lg u) bits, so the total space
for storing f and h is as required in Theorem 1.

4.1. Details of the reduction. It remains to see how to construct f in the
desired space bound, with the desired preprocessing time, and such that function
values can be computed in constant time. Below we will several times refer to a
constant �, which is assumed to be “sufficiently large.” That is, the arguments are
valid if � is set to a sufficiently large constant. We first notice that for the case
where v ≤ �, Theorem 1 was already shown in section 3. Thus, in the following we
may assume that v > �. Let p ≥ v be a prime in the range v to v + O(v2/3). We
know from [14] that there are Ω(v2/3/ lg v) such primes, so p can be found in time
lg n(lg v)O(1) with high probability by sampling [1].

Let d = 
�/ε2�, k = 
n1/(2c+4)�, r1 = 
(1 + ε/2)n/d�, and let r2 > 9d3/ε be a
constant. Since v can be assumed to be sufficiently large, we have that p−v < εv/(9d).
Now pick the following functions uniformly at random:

ρ1 : U → {0, . . . , r1 − 1} from SI(U, [r1], k, n, c, 1/4),
ρ2 : U → {0, . . . , r2 − 1} from SI(U, [r2], k, n, c, 1/4).

Also, pick functions f1, . . . , fr1 independently at random from the family of degree
d−1 polynomials in the field of size p, which is known to be d-wise independent. Note
that such a polynomial can be stored in d
lg p� = d lg v + O(d) bits and evaluated in
O(d) time using arithmetic modulo p. Without loss of generality we may assume that
ε < 1 and p ≥ r2. Thus we may interpret a value of ρ2 as an input to f1, . . . , fr1 , and
the following is well -defined:

f(x) = fρ1(x)(ρ2(x)).

Observe that f may have function values up to p−1, i.e., not in [v]. However, we will
define S′ such that the function values of elements in S′ are uniform in [v], and this
suffices for the reduction to work.

4.2. Analysis.
Time and space usage. We first argue that f has the desired properties with

respect to storage, preprocessing time, and evaluation time. The storage required for
ρ1 and ρ2 is bounded by the storage used in the construction of section 3, so it can
be ignored in this context. The functions f1, . . . , fr1 require space r1(d lg v+O(d)) =
(1 + ε/2)n lg v + O(n) bits, and a function can be evaluated in O(1) time, since d is
a constant. Selection of ρ1 and ρ2 can be done in o(n) time, while construction of
f1, . . . , fr1 requires expected time wO(1) to find the prime p, and O(n) time to choose
the random polynomials.

Independence. To argue that f has the desired independence property, we let
Si = {x ∈ S | ρ1(x) = i} and define S′ to be the union of the sets Si for which

• |Si| ≤ d,
• |ρ2(Si)| = |Si|, i.e., ρ2 is 1-1 on Si, and
• fi(ρ2(Si)) ⊆ [v].
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In other words, if we think of ρ1 as hashing into buckets of capacity d, the set S′

consists of those elements that are hashed to a bucket i that does not overflow, whose
elements have no collisions under ρ2, and where fi produces values in the right range
for all elements in the bucket.

Consider a nonempty part of the probability space where f is associated with a
particular set S′ and has a specific, fixed value on each of the elements in S\S′. We
will argue that if f is chosen in this part of the probability space, we get a uniform
function on S′. First, function values of elements hashing to different buckets are
completely independent as f1, . . . , fr1 are chosen independently. If Si is part of S′,
then |Si| ≤ d by definition of S′. Since fi is d-wise independent and there is no collision
among elements in Si under ρ2, the f -values of elements in Si are independent and
uniformly random in [v] (because of the requirement fi(ρ2(Si)) ⊆ [v]). This concludes
the argument for uniformity on S′.

Size of S′. Finally, we need to show that |S′| ≥ (1 − ε/16)n with probability
1 − O(n−c). For this we split [r1] into blocks of at most 2z consecutive integers
Ij = {2zj, . . . , 2z(j + 1) − 1}, j = 0, 1, 2, . . . , where z = Ω(lg n) is the highest integer
for which 2zd < k. If 2z does not divide r1, there will be one block of size less than 2z.
If we conservatively assume that all elements of S having a ρ1-value in this final block
will be part of S′, it will follow from the arguments below that this will contribute
only negligibly to S′. Thus we simply assume that 2z divides r1.

First we observe that for all j, |∪i∈IjSi| < (1−ε/4)2zd with probability 1−n−ω(1).
This follows from Chernoff bounds for random variables with limited dependence [22,
Theorem 5.I.b]. On the condition that | ∪i∈Ij Si| < (1 − ε/4)2zd (which is assumed
in the following) the z least significant bits of the ρ1-values of elements in ∪i∈IjSi

will be random and independent for any particular j. We conclude the argument
by proving that for any j, |S′ ∩ (∪i∈IjSi)| ≥ (1 − ε/16)| ∪i∈Ij Si| with probability

1 − O(n−ω(1)). By the union bound this will imply that S′ has the desired size with
probability 1 −O(n−ω(1)).

Consider the indicator random variables Yx, x ∈ ∪i∈IjSi, where Yx = 1 if and
only if x has the same value under ρ1 as at least d other elements in ∪i∈IjSi. Observe
that if Yx = 1, then x is not included in S′ due to the first requirement in the
definition of S. By uniformity of ρ1 in the z least-significant bits, and since the
expected number of elements colliding with x is bounded by (1 − ε/4)d, it follows
from classical Chernoff bounds that Pr(Yx = 1) ≤ ε/6. The random variables Yx

are not independent; however, they are negatively related [15], which means that we
can apply a Chernoff bound on the sum of the Yxs to show that it is bounded by
(ε/4)| ∪i∈Ij Si| with probability 1 − nω(1) [15].

Finally, consider the indicator random variables Xi, i ∈ Ij , where Xi = 1 if
and only if |Si| ≤ d and either |ρ2(Si)| < |Si| or fi(ρ2(Si)) �⊆ [v]. That is, Xi

indicates whether the set Si fails to be included in S′ because of at least one of the
two last requirements in the definition of S′. For each variable Xi equal to 1 we
have at most d elements (those in Si) that are not part of S′. We next show that
with probability 1 − nω(1) the sum

∑
i∈Ij

Xi is bounded by 2zε/(4d), which means

that the number of elements not included in S′ due to requirements two and three
is at most (ε/4)| ∪i∈Ij Si|. Since ρ2 is independent on all elements in ∪i∈IjSi, the
Xi are independent. By the choice of p and r2 we have that for all i, Pr(Xi =
1) ≤ p−v

v +
(
d
2

)
/r2 < 2ε/(9d). Hence by Chernoff bounds

∑
i∈Ij

Xi < 2zε/(4d) with

probability 1−nω(1). Together with the similar bound above for the first requirement,
this shows that S′ has the desired size with high probability.
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The combined construction. For ease of reference we state the full uniform
hashing construction used to show Theorem 1:

x �→ (fρ1(x)(ρ2(x)) + T1[i1(x)] + T2[i2(x)] + g(x)) mod v.

5. Space lower bound. We now show that our space usage in bits is close to the
best possible. To this end, note that any data structure achieving n-wise independence
on a set S of n elements, with nonzero probability, must be able to represent every
function from S to V .

Theorem 4. For integers u ≥ n ≥ 2 and v ≥ 2, let U = {0, . . . , u − 1} and
V = {0, . . . , v − 1}. Any data structure representing functions h : U → V such that
the restriction h|S to any set S ⊆ U of n elements can be an arbitrary function from
S to V must use space max(n lg v, lg lgv u) bits.

Proof. Even for fixed S, n lg v bits are necessary to be able to represent all
functions from S to V . Second, if the data structure can represent fewer than lgv u
different functions, there will be elements x1, x2 ∈ U such that all functions map x1

and x2 to the same value, contradicting the assumptions of the theorem. Thus the
data structure must have at least lg lgv u bits.

Note that when lg v < lg lg u, the second term in the lower bound is Ω(lg lg u), so
the lower bound is Ω(n lg v + lg lg u) bits.
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Abstract. We provide formal definitions and efficient secure techniques for turning noisy infor-
mation into keys usable for any cryptographic application, and, in particular, reliably and securely
authenticating biometric data. Our techniques apply not just to biometric information, but to any
keying material that, unlike traditional cryptographic keys, is (1) not reproducible precisely and
(2) not distributed uniformly. We propose two primitives: a fuzzy extractor reliably extracts nearly
uniform randomness R from its input; the extraction is error-tolerant in the sense that R will be the
same even if the input changes, as long as it remains reasonably close to the original. Thus, R can
be used as a key in a cryptographic application. A secure sketch produces public information about
its input w that does not reveal w and yet allows exact recovery of w given another value that is
close to w. Thus, it can be used to reliably reproduce error-prone biometric inputs without incur-
ring the security risk inherent in storing them. We define the primitives to be both formally secure
and versatile, generalizing much prior work. In addition, we provide nearly optimal constructions of
both primitives for various measures of “closeness” of input data, such as Hamming distance, edit
distance, and set difference.
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1. Introduction. Cryptography traditionally relies on uniformly distributed
and precisely reproducible random strings for its secrets. Reality, however, makes
it difficult to create, store, and reliably retrieve such strings. Strings that are neither
uniformly random nor reliably reproducible seem to be more plentiful. For example,
a random person’s fingerprint or iris scan is clearly not a uniform random string, nor
does it get reproduced precisely each time it is measured. Similarly, a long pass-phrase
(or answers to 15 questions [31] or a list of favorite movies [38]) is not uniformly ran-
dom and is difficult to remember for a human user. This work is about using such
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nonuniform and unreliable secrets in cryptographic applications. Our approach is
rigorous and general, and our results have both theoretical and practical value.

To illustrate the use of random strings on a simple example, let us consider the
task of password authentication. A user Alice has a password w and wants to gain
access to her account. A trusted server stores some information y = f(w) about the
password. When Alice enters w, the server lets Alice in only if f(w) = y. In this
simple application, we assume that it is safe for Alice to enter the password for the
verification. However, the server’s long-term storage is not assumed to be secure (e.g.,
y is stored in a publicly readable /etc/passwd file in UNIX [55]). The goal, then, is
to design an efficient f that is hard to invert (i.e., given y it is hard to find w′ such
that f(w′) = y) so that no one can figure out Alice’s password from y. Recall that
such functions f are called one-way functions.

Unfortunately, the solution above has several problems when used with passwords
w available in real life. First, the definition of a one-way function assumes that w
is truly uniform and guarantees nothing if this is not the case. However, human-
generated and biometric passwords are far from uniform, although they do have some
unpredictability in them. Second, Alice has to reproduce her password exactly each
time she authenticates herself. This restriction severely limits the kinds of passwords
that can be used. Indeed, a human can precisely memorize and reliably type in only
relatively short passwords, which do not provide an adequate level of security. Greater
levels of security are achieved by longer human-generated and biometric passwords,
such as pass-phrases, answers to questionnaires, handwritten signatures, fingerprints,
retina scans, voice commands, and other values selected by humans or provided by
nature, possibly in combination (see [30] for a survey). These measurements seem to
contain much more entropy than human-memorizable passwords. However, two bio-
metric readings are rarely identical, even though they are likely to be close; similarly,
humans are unlikely to precisely remember their answers to multiple questions from
time to time, though such answers will likely be similar. In other words, the ability
to tolerate a (limited) number of errors in the password while retaining security is
crucial if we are to obtain greater security than provided by typical user-chosen short
passwords.

The password authentication described above is just one example of a crypto-
graphic application where the issues of nonuniformity and error-tolerance naturally
come up. Other examples include any cryptographic application, such as encryp-
tion, signatures, or identification, where the secret key comes in the form of noisy
nonuniform data.

Our definitions. As discussed above, an important general problem is to convert
noisy nonuniform inputs into reliably reproducible, uniformly random strings. To
this end, we propose a new primitive, termed fuzzy extractor. It extracts a uniformly
random string R from its input w in a noise-tolerant way. Noise-tolerance means that
if the input changes to some w′ but remains close, the string R can be reproduced
exactly. To assist in reproducing R from w′, the fuzzy extractor outputs a non-secret
string P . It is important to note that R remains uniformly random even given P .
(Strictly speaking, R will be ε-close to uniform rather than uniform; ε can be made
exponentially small, which makes R as good as uniform for the usual applications.)

Our approach is general: R extracted from w can be used as a key in a cryp-
tographic application but, unlike traditional keys, need not be stored (because it
can be recovered from any w′ that is close to w). We define fuzzy extractors to
be information-theoretically secure, thus allowing them to be used in cryptographic
systems without introducing additional assumptions (of course, the cryptographic ap-
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Fig. 1. (a) Secure sketch. (b) Fuzzy extractor. (c) A sample application: User who encrypts
a sensitive record using a cryptographically strong, uniform key R extracted from biometric w via a
fuzzy extractor; both P and the encrypted record need not be kept secret, because no one can decrypt
the record without a w′ that is close.

plication itself will typically have computational, rather than information-theoretic,
security).

For a concrete example of how to use fuzzy extractors, in the password authenti-
cation case, the server can store (P, f(R)). When the user inputs w′ close to w, the
server reproduces the actual R using P and checks if f(R) matches what it stores.
The presence of P will help the adversary invert f(R) only by the additive amount
of ε, because R is ε-close to uniform even given P .1 Similarly, R can be used for sym-
metric encryption, for generating a public-secret key pair, or for other applications
that utilize uniformly random secrets.2

As a step in constructing fuzzy extractors, and as an interesting object in its
own right, we propose another primitive, termed secure sketch. It allows precise
reconstruction of a noisy input as follows: on input w, a procedure outputs a sketch
s. Then, given s and a value w′ close to w, it is possible to recover w. The sketch
is secure in the sense that it does not reveal much about w: w retains much of its
entropy even if s is known. Thus, instead of storing w for fear that later readings
will be noisy, it is possible to store s instead, without compromising the privacy of w.
A secure sketch, unlike a fuzzy extractor, allows for the precise reproduction of the
original input but does not address nonuniformity.

Secure sketches, fuzzy extractors, and a sample encryption application are illus-
trated in Figure 1.

Secure sketches and extractors can be viewed as providing fuzzy key storage: they
allow recovery of the secret key (w or R) from a faulty reading w′ of the password w by
using some public information (s or P ). In particular, fuzzy extractors can be viewed
as error- and nonuniformity-tolerant secret key key-encapsulation mechanisms [65].

Because different biometric information has different error patterns, we do not

1To be precise, we should note that because we do not require w, or hence P , to be efficiently
samplable, we need f to be a one-way function even in the presence of samples from w; this is implied
by security against circuit families.

2Naturally, the security of the resulting system should be properly defined and proven and will
depend on the possible adversarial attacks. In particular, in this work we do not consider active
attacks on P or scenarios in which the adversary can force multiple invocations of the extractor with
related w and get to observe the different P values. See [8, 9, 23] for follow-up work that considers
attacks on the fuzzy extractor itself.
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assume any particular notion of closeness between w′ and w. Rather, in defining our
primitives, we simply assume that w comes from some metric space and that w′ is no
more than a certain distance from w in that space. We consider particular metrics
only when building concrete constructions.

General results. Before proceeding to construct our primitives for concrete met-
rics, we make some observations about our definitions. We demonstrate that fuzzy
extractors can be built out of secure sketches by utilizing strong randomness extrac-
tors [56], such as, for example, universal hash functions [12, 75] (randomness extrac-
tors, defined more precisely below, are families of hash which “convert” a high entropy
input into a shorter, uniformly distributed output). We also provide a general tech-
nique for constructing secure sketches from transitive families of isometries, which is
instantiated in concrete constructions later in the paper. Finally, we define a notion
of a biometric embedding of one metric space into another and show that the existence
of a fuzzy extractor in the target space, combined with a biometric embedding of the
source into the target, implies the existence of a fuzzy extractor in the source space.

These general results help us in building and analyzing our constructions.

Our constructions. We provide constructions of secure sketches and fuzzy extrac-
tors in three metrics: Hamming distance, set difference, and edit distance. Unless
stated otherwise, all the constructions are new.

Hamming distance (i.e., the number of symbol positions that differ between w
and w′) is perhaps the most natural metric to consider. We observe that the “fuzzy-
commitment” construction of Juels and Wattenberg [39] based on error-correcting
codes can be viewed as a (nearly optimal) secure sketch. We then apply our general
result to convert it into a nearly optimal fuzzy extractor. While our results on the
Hamming distance essentially use previously known constructions, they serve as an
important stepping stone for the rest of the work.

The set difference metric (i.e., the size of the symmetric difference of two input sets
w and w′) is appropriate whenever the noisy input is represented as a subset of features
from a universe of possible features.3 We demonstrate the existence of optimal (with
respect to entropy loss) secure sketches and fuzzy extractors for this metric. However,
this result is mainly of theoretical interest, because (1) it relies on optimal constant-
weight codes, which we do not know how to construct, and (2) it produces sketches of
length proportional to the universe size. We then turn our attention to more efficient
constructions for this metric in order to handle exponentially large universes. We
provide two such constructions.

First, we observe that the “fuzzy vault” construction of Juels and Sudan [38] can
be viewed as a secure sketch in this metric (and then converted to a fuzzy extractor
using our general result). We provide a new, simpler analysis for this construction,
which bounds the entropy lost from w given s. This bound is quite high unless
one makes the size of the output s very large. We then improve the Juels–Sudan
construction to reduce the entropy loss and the length of s to near optimal. Our
improvement in the running time and in the length of s is exponential for large
universe sizes. However, this improved Juels–Sudan construction retains a drawback
of the original: it is able to handle only sets of the same fixed size (in particular, |w′|
must equal |w|).

3A perhaps unexpected application of the set difference metric was explored in [38]: A user would
like to encrypt a file (e.g., her phone number) using a small subset of values from a large universe
(e.g., her favorite movies) in such a way that those and only those with a similar subset (e.g., similar
taste in movies) can decrypt it.
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Second, we provide an entirely different construction, called PinSketch, that main-
tains the exponential improvements in sketch size and running time and also handles
variable set size. To obtain it, we note that in the case of a small universe, a set can
be simply encoded as its characteristic vector (1 if an element is in the set, 0 if it is
not), and set difference becomes Hamming distance. Even though the length of such
a vector becomes unmanageable as the universe size grows, we demonstrate that this
approach can be made to work quite efficiently even for exponentially large universes
(in particular, because it is not necessary to ever actually write down the vector).
This involves a result that may be of independent interest: we show that BCH codes
can be decoded in time polynomial in the weight of the received corrupted word (i.e.,
in sublinear time if the weight is small).

Finally, edit distance (i.e., the number of insertions and deletions needed to con-
vert one string into the other) comes up, for example, when the password is entered
as a string, due to typing errors or mistakes made in handwriting recognition. We dis-
cuss two approaches for secure sketches and fuzzy extractors for this metric. First, we
observe that a recent low-distortion embedding of Ostrovsky and Rabani [57] imme-
diately gives a construction for edit distance. The construction performs well when
the number of errors to be corrected is very small (say, nα for α < 1) but cannot
tolerate a large number of errors. Second, we give a biometric embedding (which
is less demanding than a low-distortion embedding but suffices for obtaining fuzzy
extractors) from the edit distance metric into the set difference metric. Composing it
with a fuzzy extractor for set difference gives a different construction for edit distance,
which does better when t is large; it can handle as many as O(n/ log2 n) errors with
meaningful entropy loss.

Most of the above constructions are quite practical; some implementations are
available [36].

Extending results for probabilistic notions of correctness. The definitions and
constructions just described use a very strong error model: we require that secure
sketches and fuzzy extractors accept every secret w′ which is sufficiently close to the
original secret w, with probability 1. Such a stringent model is useful, as it makes
no assumptions on the stochastic and computational properties of the error process.
However, slightly relaxing the error conditions allows constructions which tolerate a
(provably) much larger number of errors, at the price of restricting the settings in
which the constructions can be applied. In section 8, we extend the definitions and
constructions of earlier sections to several relaxed error models.

It is well known that in the standard setting of error-correction for a binary com-
munication channel, one can tolerate many more errors when the errors are random
and independent than when the errors are determined adversarially. In contrast, we
present fuzzy extractors that meet Shannon’s bounds for correcting random errors
and, moreover, can correct the same number of errors even when errors are adversar-
ial. In our setting, therefore, under a proper relaxation of the correctness condition,
adversarial errors are no stronger than random ones. The constructions are quite
simple and draw on existing techniques from the coding literature [4, 22, 33, 43, 48].

Relation to previous work. Since our work combines elements of error-correction,
randomness extraction, and password authentication, there has been a lot of related
work.

The need to deal with nonuniform and low-entropy passwords has long been re-
alized in the security community, and many approaches have been proposed. For
example, Kelsey et al. [42] suggested using f(w, r) in place of w for the password
authentication scenario, where r is a public random “salt,” to make a brute-force at-
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tacker’s life harder. While practically useful, this approach does not add any entropy
to the password and does not formally address the needed properties of f . Another
approach, more closely related to ours, is to add biometric features to the password.
For example, Ellison et al. [28] proposed asking the user a series of n personalized
questions and using these answers to encrypt the “actual” truly random secret R.
A similar approach using the user’s keyboard dynamics (and, subsequently, voice
[52, 53]) was proposed by Monrose, Reiter, and Wetzel [54]. These approaches re-
quire the design of a secure “fuzzy encryption.” The above works proposed heuristic
designs (using various forms of Shamir’s secret sharing) but gave no formal analysis.
Additionally, error tolerance was addressed only by brute-force search.

A formal approach to error tolerance in biometrics was taken by Juels and Wat-
tenberg [39] (for less formal solutions, see [20, 54, 28]), who provided a simple way
to tolerate errors in uniformly distributed passwords. Frykholm and Juels [31] ex-
tended this solution and provided entropy analysis to which ours is similar. Similar
approaches have been explored earlier in seemingly unrelated literature on crypto-
graphic information reconciliation, often in the context of quantum cryptography
(where Alice and Bob wish to derive a secret key from secrets that have small Ham-
ming distance), particularly [4, 6]. Our construction for the Hamming distance is
essentially the same as a component of the quantum oblivious transfer protocol of [6].

Juels and Sudan [38] provided the first construction for a metric other than Ham-
ming: they constructed a “fuzzy vault” scheme for the set difference metric. The
main difference is that [38] lacks a cryptographically strong definition of the object
constructed. In particular, their construction leaks a significant amount of informa-
tion about their analogue of R, even though it leaves the adversary with provably
“many valid choices” for R. In retrospect, their informal notion is closely related to
our secure sketches. Our constructions in section 6 improve exponentially over the
construction of [38] for storage and computation costs, in the setting when the set
elements come from a large universe.

Linnartz and Tuyls [45] defined and constructed a primitive very similar to a fuzzy
extractor (that line of work was continued in [73].) The definition of [45] focuses
on the continuous space Rn and assumes a particular input distribution (typically
a known, multivariate Gaussian). Thus, our definition of a fuzzy extractor can be
viewed as a generalization of the notion of a “shielding function” from [45]. However,
our constructions focus on discrete metric spaces.

Other approaches have also been taken for guaranteeing the privacy of noisy data.
Csirmaz and Katona [19] considered quantization for correcting errors in “physical
random functions.” (This corresponds roughly to secure sketches with no public
storage.) Barral, Coron, and Naccache [3] proposed a system for offline, private
comparison of fingerprints. Although seemingly similar, the problem they study is
complementary to ours, and the two solutions can be combined to yield systems
which enjoy the benefits of both.

Work on privacy amplification, e.g., [4, 5], as well as work on derandomization
and hardness amplification, e.g., [37, 56], also addressed the need to extract uniform
randomness from a random variable about which some information has been leaked. A
major focus of follow-up research has been the development of (ordinary, not fuzzy)
extractors with short seeds (see [63] for a survey). We use extractors in this work
(though for our purposes, universal hashing is sufficient). Conversely, our work has
been applied recently to privacy amplification: Ding [21] used fuzzy extractors for
noise tolerance in Maurer’s bounded storage model [47].

Independently of our work, similar techniques appeared in the literature on non-
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cryptographic information reconciliation [51, 15] (where the goal is communication
efficiency rather than secrecy). The relationship between secure sketches and efficient
information reconciliation is explored further in section 9, which discusses, in partic-
ular, how our secure sketches for set differences provide more efficient solutions to the
set and string reconciliation problems.

Follow-up work. Since the original presentation of this paper [25], several follow-
up works have appeared (e.g., [8, 9, 27, 24, 67, 14, 44, 13]). We refer the reader to a
recent survey about fuzzy extractors [26] for more information.

2. Preliminaries. Unless explicitly stated otherwise, all logarithms below are
base 2. The Hamming weight (or just weight) of a string is the number of nonzero
characters in it. We use U� to denote the uniform distribution on �-bit binary strings.
If an algorithm (or a function) f is randomized, we use the semicolon when we wish
to make the randomness explicit; i.e., we denote by f(x; r) the result of computing
f on input x with randomness r. If X is a probability distribution, then f(X) is
the distribution induced on the image of f by applying the (possibly probabilistic)
function f . If X is a random variable, we will (slightly) abuse notation and also
denote by X the probability distribution on the range of the variable.

2.1. Metric spaces. A metric space is a set M with a distance function dis :
M×M → R+ = [0,∞). For the purposes of this work, M will always be a finite set,
and the distance function will take on only integer values (with dis(x, y) = 0 if and
only if x = y) and will obey symmetry dis(x, y) = dis(y, x) and the triangle inequality
dis(x, z) ≤ dis(x, y)+dis(y, z) (we adopt these requirements for simplicity of exposition,
even though the definitions and most of the results below can be generalized to remove
these restrictions).

We will concentrate on the following metrics.
1. Hamming metric. Here M = Fn for some alphabet F , and dis(w,w′) is the

number of positions in which the strings w and w′ differ.
2. Set difference metric. Here M consists of all subsets of a universe U . For

two sets w,w′, their symmetric difference w�w′ def
= {x ∈ w ∪ w′ | x /∈ w ∩ w′}. The

distance between two sets w,w′ is |w�w′|.4 We will sometimes restrict M to contain
only s-element subsets for some s.

3. Edit metric. Here M = F∗, and the distance between w and w′ is defined to
be the smallest number of character insertions and deletions needed to transform w
into w′.5 (This is different from the Hamming metric because insertions and deletions
shift the characters that are to the right of the insertion/deletion point.)

As already mentioned, all three metrics seem natural for biometric data.

2.2. Codes and syndromes. Since we want to achieve error-tolerance in vari-
ous metric spaces, we will use error-correcting codes for a particular metric. A code
C is a subset {w0, . . . , wK−1} of K elements of M. The map from i to wi, which we
will also sometimes denote by C, is called encoding. The minimum distance of C is
the smallest d > 0 such that for all i 	= j we have dis(wi, wj) ≥ d. In our case of
integer metrics, this means that one can detect up to (d − 1) “errors” in an element

4In the preliminary version of this work [25], we worked with this metric scaled by 1
2
; that is, the

distance was 1
2
|w�w′|. Not scaling makes more sense, particularly when w and w′ are of potentially

different sizes since |w�w′| may be odd. It also agrees with the Hamming distance of characteristic
vectors; see section 6.

5Again, in [25], we worked with this metric scaled by 1
2
. Likewise, this makes little sense when

strings can be of different lengths, and we avoid it here.
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of M. The error-correcting distance of C is the largest number t > 0 such that for
every w ∈ M there exists at most one codeword c in the ball of radius t around w:
dis(w, c) ≤ t for at most one c ∈ C. This means that one can correct up to t errors in
an element w of M; we will use the term decoding for the map that finds, given w,
the c ∈ C such that dis(w, c) ≤ t (note that for some w, such c may not exist, but if
it exists, it will be unique; note also that decoding is not the inverse of encoding in
our terminology). For integer metrics by triangle inequality we are guaranteed that
t ≥ �(d− 1)/2�. Since error correction will be more important than error detection in
our applications, we denote the corresponding codes as (M,K, t)-codes. For efficiency
purposes, we will often want encoding and decoding to be polynomial-time.

For the Hamming metric over Fn, we will sometimes call k = log|F| K the dimen-
sion of the code and denote the code itself as an [n, k, d = 2t + 1]F -code, following
the standard notation in the literature. We will denote by A|F|(n, d) the maximum
K possible in such a code (omitting the subscript when |F| = 2), and by A(n, d, s)
the maximum K for such a code over {0, 1}n with the additional restriction that all
codewords have exactly s ones.

If the code is linear (i.e., F is a field, Fn is a vector space over F , and C is a
linear subspace), then one can fix a parity-check matrix H as any matrix whose rows

generate the orthogonal space C⊥. Then for any v ∈ Fn, the syndrome syn(v)
def
= Hv.

The syndrome of a vector is its projection onto subspace that is orthogonal to the
code and can thus be intuitively viewed as the vector modulo the code. Note that
v ∈ C ⇔ syn(v) = 0. Note also that H is an (n − k) × n matrix and that syn(v) is
n− k bits long.

The syndrome captures all the information necessary for decoding. That is, sup-
pose a codeword c is sent through a channel and the word w = c+e is received. First,
the syndrome of w is the syndrome of e: syn(w) = syn(c)+syn(e) = 0+syn(e) = syn(e).
Moreover, for any value u, there is at most one word e of weight less than d/2 such
that syn(e) = u (because the existence of a pair of distinct words e1, e2 would mean
that e1 − e2 is a codeword of weight less than d, but since 0n is also a codeword and
the minimum distance of the code is d, this is impossible). Thus, knowing syndrome
syn(w) is enough to determine the error pattern e if not too many errors occurred.

2.3. Min-entropy, statistical distance, universal hashing, and strong
extractors. When discussing security, one is often interested in the probability that
the adversary predicts a random value (e.g., guesses a secret key). The adversary’s
best strategy, of course, is to guess the most likely value. Thus, the predictability
of a random variable A is maxa Pr[A = a], and, correspondingly, the min-entropy
H∞(A) is − log(maxa Pr[A = a]) (min-entropy can thus be viewed as the “worst-
case” entropy [16]; see also section 2.4).

The min-entropy of a distribution tells us how many nearly uniform random
bits can be extracted from it. The notion of “nearly” is defined as follows. The
statistical distance between two probability distributions A and B is SD (A,B) =
1
2

∑
v |Pr(A = v) − Pr(B = v)|.
Recall the definition of strong randomness extractors [56].
Definition 1. Let Ext : {0, 1}n → {0, 1}� be a polynomial time probabilistic

function which uses r bits of randomness. We say that Ext is an efficient (n,m, �, ε)-
strong extractor if for all min-entropy m distributions W on {0, 1}n

SD ((Ext(W ;X), X), (U�, X)) ≤ ε ,

where X is uniform on {0, 1}r.
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Strong extractors can extract at most � = m − 2 log
(

1
ε

)
+ O(1) nearly random

bits [59]. Many constructions match this bound (see Shaltiel’s survey [63] for refer-
ences). Extractor constructions are often complex since they seek to minimize the
length of the seed X. For our purposes, the length of X will be less important, so
universal hash functions [12, 75] (defined in the lemma below) will already give us the
optimal � = m − 2 log

(
1
ε

)
+ 2, as given by the leftover hash lemma below (see [37,

Lemma 4.8] as well as references therein for earlier versions).
Lemma 2.1 (universal hash functions and the leftover hash/privacy-amplifica-

tion lemma). Assume a family of functions {Hx : {0, 1}n → {0, 1}�}x∈X is universal:
for all a 	= b ∈ {0, 1}n, Prx∈X [Hx(a) = Hx(b)] = 2−�. Then, for any random
variable W ,6

(2.1) SD ((HX(W ), X) , (U�, X)) ≤ 1

2

√
2−H∞(W )2�.

In particular, universal hash functions are (n,m, �, ε)-strong extractors whenever � ≤
m− 2 log

(
1
ε

)
+ 2.

2.4. Average min-entropy. Recall that predictability of a random variable A
is maxa Pr[A = a], and its min-entropy H∞(A) is − log(maxa Pr[A = a]). Con-
sider now a pair of (possibly correlated) random variables A,B. If the adversary
finds out the value b of B, then predictability of A becomes maxa Pr[A = a |
B = b]. On average, the adversary’s chance of success in predicting A is then
Eb←B [maxa Pr[A = a | B = b]]. Note that we are taking the average over B (which
is not under adversarial control) but the worst case over A (because prediction of
A is adversarial once b is known). Again, it is convenient to talk about security in
log-scale, which is why we define the average min-entropy of A given B as simply the
logarithm of the above:

H̃∞(A | B)
def
= − log

(
E

b←B

[
max

a
Pr[A = a | B = b]

])
= − log

(
E

b←B

[
2−H∞(A|B=b)

])
.

Because other notions of entropy have been studied in cryptographic literature, a
few words are in order to explain why this definition is useful. Note the importance of
taking the logarithm after taking the average (in contrast, for instance, to conditional
Shannon entropy). One may think it more natural to define average min-entropy as
Eb←B [H∞(A | B = b)], thus reversing the order of log and E. However, this notion
is unlikely to be useful in a security application. For a simple example, consider the
case when A and B are 1000-bit strings distributed as follows: B = U1000 and A
is equal to the value b of B if the first bit of b is 0, and U1000 (independent of B)
otherwise. Then for half of the values of b, H∞(A | B = b) = 0, while for the other
half, H∞(A | B = b) = 1000, so Eb←B [H∞(A | B = b)] = 500. However, it would
be obviously incorrect to say that A has 500 bits of security. In fact, an adversary
who knows the value b of B has a slightly greater than 50% chance of predicting
the value of A by outputting b. Our definition correctly captures this 50% chance
of prediction, because H̃∞(A | B) is slightly less than 1. In fact, our definition of
average min-entropy is simply the logarithm of predictability.

The following useful properties of average min-entropy are proven in Appendix A.
We also refer the reader to Appendix B for a generalization of average min-entropy
and a discussion of the relationship between this notion and other notions of entropy.

6In [37], this inequality is formulated in terms of Rényi entropy of order two of W ; the change
to H∞(C) is allowed because the latter is no greater than the former.
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Lemma 2.2. Let A,B,C be random variables. Then the following hold.

(a) For any δ > 0, the conditional entropy H∞(A|B = b) is at least H̃∞(A|B)−
log(1/δ) with probability at least 1 − δ over the choice of b.

(b) If B has at most 2λ possible values, then H̃∞(A | (B,C)) ≥ H̃∞((A,B) |
C)−λ ≥ H̃∞(A | C)−λ. In particular, H̃∞(A | B) ≥ H∞((A,B))−λ ≥ H∞(A)−λ.

2.5. Average-case extractors. Recall from Definition 1 that a strong extrac-
tor allows one to extract almost all the min-entropy from some nonuniform random
variable W . In many situations, W represents the adversary’s uncertainty about some
secret w conditioned on some side information i. Since this side information i is often
probabilistic, we shall find the following generalization of a strong extractor useful
(see Lemma 4.1).

Definition 2. Let Ext : {0, 1}n → {0, 1}� be a polynomial time probabilistic
function which uses r bits of randomness. We say that Ext is an efficient average-case
(n,m, �, ε)-strong extractor if, for all pairs of random variables (W, I) such that W is
an n-bit string satisfying H̃∞(W | I) ≥ m, we have SD ((Ext(W ;X), X, I), (U�, X, I))
≤ ε, where X is uniform on {0, 1}r.

To distinguish the strong extractors of Definition 1 from average-case strong ex-
tractors, we will sometimes call the former worst-case strong extractors. The two
notions are closely related, as can be seen from the following simple application of
Lemma 2.2(a).

Lemma 2.3. For any δ > 0, if Ext is a (worst-case) (n,m− log
(

1
δ

)
, �, ε)-strong

extractor, then Ext is also an average-case (n,m, �, ε + δ)-strong extractor.

Proof. Assume (W, I) are such that H̃∞(W | I) ≥ m. Let Wi = (W | I = i)
and let us call the value i “bad” if H∞(Wi) < m − log

(
1
δ

)
. Otherwise, we say that

i is “good.” By Lemma 2.2(a), Pr(i is bad) ≤ δ. Also, for any good i, we have that
Ext extracts � bits that are ε-close to uniform from Wi. Thus, by conditioning on the
“goodness” of I, we get

SD ((Ext(W ;X), X, I), (U�, X, I)) =
∑
i

Pr(i) · SD ((Ext(Wi;X), X), (U�, X))

≤ Pr(i is bad) · 1
+

∑
good i

Pr(i) · SD ((Ext(Wi;X), X), (U�, X))

≤ δ + ε.

However, for many strong extractors we do not have to suffer this additional
dependence on δ, because the strong extractor may already be average-case. In par-
ticular, this holds for extractors obtained via universal hashing.

Lemma 2.4 (generalized leftover hash lemma). Assume {Hx : {0, 1}n → {0, 1}�}x∈X

is a family of universal hash functions. Then, for any random variables W and I,

(2.2) SD ((HX(W ), X, I) , (U�, X, I)) ≤ 1

2

√
2−H̃∞(W |I)2�.

In particular, universal hash functions are average-case (n,m, �, ε)-strong extractors
whenever � ≤ m− 2 log

(
1
ε

)
+ 2.
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Proof. Let Wi = (W | I = i). Then

SD ((HX(W ), X, I) , (U�, X, I)) = E
i
[SD ((HX(Wi), X) , (U�, X))]

≤ 1

2
E
i

[√
2−H∞(Wi)2�

]

≤ 1

2

√
E
i

[
2−H∞(Wi)2�

]

=
1

2

√
2−H̃∞(W |I)2� .

In the above derivation, the first inequality follows from the standard leftover hash
lemma (Lemma 2.1), and the second inequality follows from Jensen’s inequality (namely,
E[
√
Z] ≤

√
E [Z]).

3. New definitions.

3.1. Secure sketches. Let M be a metric space with distance function dis.
Definition 3. An (M,m, m̃, t)-secure sketch is a pair of randomized procedures,

“sketch” (SS) and “recover” (Rec), with the following properties:
1. The sketching procedure SS on input w ∈ M returns a bit string s ∈ {0, 1}∗.
2. The recovery procedure Rec takes an element w′ ∈ M and a bit string s ∈

{0, 1}∗. The correctness property of secure sketches guarantees that if dis(w,w′) ≤ t,
then Rec(w′,SS(w)) = w. If dis(w,w′) > t, then no guarantee is provided about the
output of Rec.

3. The security property guarantees that for any distribution W over M with
min-entropy m, the value of W can be recovered by the adversary who observes s with
probability no greater than 2−m̃. That is, H̃∞(W | SS(W )) ≥ m̃.

A secure sketch is efficient if SS and Rec run in expected polynomial time.
Average-case secure sketches. In many situations, it may well be that the adver-

sary’s information i about the password w is probabilistic, so that sometimes i reveals
a lot about w, but most of the time w stays hard to predict even given i. In this case,
the previous definition of a secure sketch is hard to apply: it provides no guarantee if
H∞(W |i) is not fixed to at least m for some bad (but infrequent) values of i. A more
robust definition would provide the same guarantee for all pairs of variables (W, I)
such that predicting the value of W given the value of I is hard. We therefore define
an average-case secure sketch as follows.

Definition 4. An average-case (M,m, m̃, t)-secure sketch is a secure sketch (as
defined in Definition 3) whose security property is strengthened as follows: for any
random variables W over M and I over {0, 1}∗ such that H̃∞(W | I) ≥ m, we have
H̃∞(W | (SS(W ), I)) ≥ m̃. Note that an average-case secure sketch is also a secure
sketch (take I to be empty).

This definition has the advantage that it composes naturally, as Lemma 4.7 shows.
All of our constructions will in fact be average-case secure sketches. However, we will
often omit the term “average-case” for simplicity of exposition.

Entropy loss. The quantity m̃ is called the residual (min-)entropy of the secure
sketch, and the quantity λ = m − m̃ is called the entropy loss of a secure sketch.
In analyzing the security of our secure sketch constructions below, we will typically
bound the entropy loss regardless of m, thus obtaining families of secure sketches
that work for all m (in general, [62] shows that the entropy loss of a secure sketch is
upperbounded by its entropy loss on the uniform distribution of inputs). Specifically,
for a given construction of SS, Rec, and a given value t, we will get a value λ for the



108 Y. DODIS, R. OSTROVSKY, L. REYZIN, AND A. SMITH

entropy loss, such that, for any m, (SS,Rec) is an (M,m,m− λ, t)-secure sketch. In
fact, the most common way to obtain such secure sketches would be to bound the
entropy loss by the length of the secure sketch SS(w), as given in the following simple
lemma.

Lemma 3.1. Assume some algorithms SS and Rec satisfy the correctness property
of a secure sketch for some value of t and that the output range of SS has size at
most 2λ (this holds, in particular, if the length of the sketch is bounded by λ). Then,
for any min-entropy threshold m, (SS,Rec) form an average-case (M,m,m − λ, t)-
secure sketch for M. In particular, for any m, the entropy loss of this construction
is at most λ.

Proof. The result follows immediately from Lemma 2.2(b), since SS(W ) has at
most 2λ values: for any (W, I), H̃∞(W | (SS(W ), I)) ≥ H̃∞(W | I) − λ.

The above observation formalizes the intuition that a good secure sketch should
be as short as possible. In particular, a short secure sketch will likely result in a better
entropy loss. More discussion about this relation can be found in section 9.

3.2. Fuzzy extractors.

Definition 5. An (M,m, �, t, ε)-fuzzy extractor is a pair of randomized proce-
dures, “generate” (Gen) and “reproduce” (Rep), with the following properties:

1. The generation procedure Gen on input w ∈ M outputs an extracted string
R ∈ {0, 1}� and a helper string P ∈ {0, 1}∗.

2. The reproduction procedure Rep takes an element w′ ∈ M and a bit string
P ∈ {0, 1}∗ as inputs. The correctness property of fuzzy extractors guarantees that if
dis(w,w′) ≤ t and R,P were generated by (R,P ) ← Gen(w), then Rep(w′, P ) = R. If
dis(w,w′) > t, then no guarantee is provided about the output of Rep.

3. The security property guarantees that for any distribution W on M of min-
entropy m, the string R is nearly uniform even for those who observe P : if (R,P ) ←
Gen(W ), then SD ((R,P ), (U�, P )) ≤ ε.

A fuzzy extractor is efficient if Gen and Rep run in expected polynomial time.

In other words, fuzzy extractors allow one to extract some randomness R from
w and then successfully reproduce R from any string w′ that is close to w. The
reproduction uses the helper string P produced during the initial extraction; yet P
need not remain secret, because R looks truly random even given P . To justify our
terminology, notice that strong extractors (as defined in section 2) can indeed be seen
as “nonfuzzy” analogues of fuzzy extractors, corresponding to t = 0, P = X, and
M = {0, 1}n.

We reiterate that the nearly uniform random bits output by a fuzzy extractor
can be used in any cryptographic context that requires uniform random bits (e.g., for
secret keys). The slight nonuniformity of the bits may decrease security, but by no
more than their distance ε from uniform. By choosing ε negligibly small (e.g., 2−80

should be enough in practice), one can make the decrease in security irrelevant.

Similarly to secure sketches, the quantity m−� is called the entropy loss of a fuzzy
extractor. Also similarly, a more robust definition is that of an average-case fuzzy
extractor, which requires that if H̃∞(W | I) ≥ m, then SD ((R,P, I), (U�, P, I)) ≤ ε
for any auxiliary random variable I.

4. Metric-independent results. In this section we demonstrate some general
results that do not depend on specific metric spaces. They will be helpful in obtain-
ing specific results for particular metric spaces below. In addition to the results in
this section, some generic combinatorial lower bounds on secure sketches and fuzzy
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extractors are contained in Appendix C. We will later use these bounds to show the
near-optimality of some of our constructions for the case of uniform inputs.7

4.1. Construction of fuzzy extractors from secure sketches. Not surpris-
ingly, secure sketches are quite useful in constructing fuzzy extractors. Specifically,
we construct fuzzy extractors from secure sketches and strong extractors as follows:
apply SS to w to obtain s, and a strong extractor Ext with randomness x to w to
obtain R. Store (s, x) as the helper string P . To reproduce R from w′ and P = (s, x),
first use Rec(w′, s) to recover w and then Ext(w, x) to get R.

w’
R

s

Rec

x
w

x Ext

x

w

R

P
s

r
x

SS

Ext

A few details need to be filled in. First, in order to apply Ext to w, we will assume
that one can represent elements of M using n bits. Second, since after leaking the
secure sketch value s, the password w has only conditional min-entropy, technically
we need to use the average-case strong extractor, as defined in Definition 2. The
formal statement is given below.

Lemma 4.1 (fuzzy extractors from sketches). Assume (SS,Rec) is an (M,m, m̃,
t)-secure sketch, and let Ext be an average-case (n, m̃, �, ε)-strong extractor. Then the
following (Gen,Rep) is an (M,m, �, t, ε)-fuzzy extractor:

• Gen(w; r, x): set P = (SS(w; r), x) and R = Ext(w;x), and output (R,P ).
• Rep(w′, (s, x)): recover w = Rec(w′, s), and output R = Ext(w;x).

Proof. From the definition of a secure sketch (Definition 3), we know that H̃∞(W |
SS(W )) ≥ m̃. And since Ext is an average-case (n, m̃, �, ε)-strong extractor,

SD ((Ext(W ;X),SS(W ), X), (U�,SS(W ), X)) = SD ((R,P ), (U�, P )) ≤ ε .

On the other hand, if one would like to use a worst-case strong extractor, we can
apply Lemma 2.3 to get the following corollary.

Corollary 4.2. If (SS,Rec) is an (M,m, m̃, t)-secure sketch and Ext is an
(n, m̃ − log

(
1
δ

)
, �, ε)-strong extractor, then the above construction (Gen,Rep) is a

(M,m, �, t, ε + δ)-fuzzy extractor.
Both Lemma 4.1 and Corollary 4.2 hold (with the same proofs) for building

average-case fuzzy extractors from average-case secure sketches.
While the above statements work for general extractors, for our purposes we

can simply use universal hashing, since it is an average-case strong extractor that
achieves the optimal [59] entropy loss of 2 log

(
1
ε

)
. In particular, the lemma below is

an immediate corollary of Lemmas 2.4 and 4.1.
Lemma 4.3. If (SS,Rec) is an (M,m, m̃, t)-secure sketch and Ext is an (n, m̃, �,

ε)-strong extractor given by universal hashing (in particular, any � ≤ m̃−2 log
(

1
ε

)
+2

can be achieved), then the above construction (Gen,Rep) is an (M,m, �, t, ε)-fuzzy
extractor. In particular, one can extract up to (m̃− 2 log

(
1
ε

)
+ 2) nearly uniform bits

from a secure sketch with residual min-entropy m̃.

7Although we believe our constructions to be near optimal for nonuniform inputs as well, and
our combinatorial bounds in Appendix C are also meaningful for such inputs, at this time we can
use these bounds effectively only for uniform inputs.
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Again, if the above secure sketch is average-case secure, then so is the resulting
fuzzy extractor. In fact, combining the above result with Lemma 3.1, we get the
following general construction of average-case fuzzy extractors.

Lemma 4.4. Assume some algorithms SS and Rec satisfy the correctness prop-
erty of a secure sketch for some value of t, and that the output range of SS has
size at most 2λ (this holds, in particular, if the length of the sketch is bounded by
λ). Then, for any min-entropy threshold m, there exists an average-case (M,m,
m−λ−2 log

(
1
ε

)
+2, t, ε)-fuzzy extractor for M. In particular, for any m, the entropy

loss of the fuzzy extractor is at most λ + 2 log
(

1
ε

)
− 2.

4.2. Secure sketches for transitive metric spaces. We give a general tech-
nique for building secure sketches in transitive metric spaces, which we now define.
A permutation π on a metric space M is an isometry if it preserves distances, i.e.,
dis(a, b) = dis(π(a), π(b)). A family of permutations Π = {πi}i∈I acts transitively on
M if, for any two elements a, b ∈ M, there exists πi ∈ Π such that πi(a) = b. Suppose
we have a family Π of transitive isometries for M (we will call such M transitive).
For example, in the Hamming space, the set of all shifts πx(w) = w ⊕ x is such a
family (see section 5 for more details on this example).

Construction 1 (secure sketch for transitive metric spaces). Let C be an (M,K, t)-
code. Then the general sketching scheme SS is the following: given an input w ∈ M,
pick uniformly at random a codeword b ∈ C, pick uniformly at random a permutation
π ∈ Π such that π(w) = b, and output SS(w) = π (it is crucial that each π ∈ Π
should have a canonical description that is independent of how π was chosen and, in
particular, independent of b and w; the number of possible outputs of SS should thus
be |Π|). The recovery procedure Rec to find w given w′ and the sketch π is as follows:
find the closest codeword b′ to π(w′), and output π−1(b′).

Let Γ be the number of elements π ∈ Π such that minw,b |{π|π(w) = b}| ≥ Γ.
That is, for each w and b, there are at least Γ choices for π. Then we obtain the
following lemma.

Lemma 4.5. (SS,Rec) is an average-case (M,m,m− log |Π| + log Γ + logK, t)-
secure sketch. It is efficient if operations on the code, as well as π and π−1, can be
implemented efficiently.

Proof. Correctness is clear: when dis(w,w′) ≤ t, then dis(b, π(w′)) ≤ t, so de-
coding π(w′) will result in b′ = b, which in turn means that π−1(b′) = w. The
intuitive argument for security is as follows: we add logK + log Γ bits of entropy by
choosing b and π, and we subtract log |Π| by publishing π. Since, given π, w and b
determine each other, the total entropy loss is log |Π| − logK − log Γ. More formally,
H̃∞(W | SS(W ), I) = H̃∞((W, SS(W )) | I)−log |Π| by Lemma 2.2(b). Given a partic-
ular value of w, there are K equiprobable choices for b and, further, at least Γ equiprob-
able choices for π once b is picked, and hence any given permutation π is chosen with
probability at most 1/(KΓ) (because different choices for b result in different choices
for π). Therefore, for all i, w, and π, Pr[W = w ∧ SS(w) = π | I = i] ≤ Pr[W = w |
I = i]/(KΓ); hence H̃∞((W, SS(W )) | I) ≥ H̃∞(W | I) + logK + log Γ.

Naturally, security loss will be smaller if the code C is denser.

We will discuss concrete instantiations of this approach in sections 5 and 6.1.

4.3. Changing metric spaces via biometric embeddings. We now intro-
duce a general technique that allows one to build fuzzy extractors and secure sketches
in some metric space M1 from fuzzy extractors and secure sketches in some other
metric space M2. Below, we let dis(·, ·)i denote the distance function in Mi. The
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technique is to embed M1 into M2 so as to “preserve” relevant parameters for fuzzy
extraction.

Definition 6. A function f : M1 → M2 is called a (t1, t2,m1,m2)-biometric
embedding if the following two conditions hold:

• For any w1, w
′
1 ∈ M1 such that dis(w1, w

′
1)1 ≤ t1, we have dis(f(w1), f(w2))2

≤ t2.
• For any distribution W1 on M1 of min-entropy at least m1, f(W1) has min-

entropy at least m2.

The following lemma is immediate (correctness of the resulting fuzzy extractor
follows from the first condition, and security follows from the second).

Lemma 4.6. If f is a (t1, t2,m1,m2)-biometric embedding of M1 into M2 and
(Gen(·),Rep(·, ·)) is an (M2,m2, �, t2, ε)-fuzzy extractor, then (Gen(f(·)),Rep(f(·), ·))
is an (M1,m1, �, t1, ε)-fuzzy extractor.

It is easy to define average-case biometric embeddings (in which H̃∞(W1 | I) ≥
m1 ⇒ H̃∞(f(W1) | I) ≥ m2) which would result in an analogous lemma for average-
case fuzzy extractors.

For a similar result to hold for secure sketches, we need biometric embeddings
with an additional property.

Definition 7. A function f : M1 → M2 is called a (t1, t2, λ)-biometric embed-
ding with recovery information g if the following hold:

• For any w1, w
′
1 ∈ M1 such that dis(w1, w

′
1)1 ≤ t1, we have dis(f(w1), f(w2))2

≤ t2.
• g : M1 → {0, 1}∗ is a function with range size at most 2λ, and w1 ∈ M1 is

uniquely determined by (f(w1), g(w1)).

With this definition, we get the following analogue of Lemma 4.6.

Lemma 4.7. Let f be a (t1, t2, λ)-biometric embedding with recovery information
g. Let (SS,Rec) be an (M2,m1 − λ, m̃2, t2) average-case secure sketch. Let SS′(w) =
(SS(f(w)), g(w)). Let Rec′(w′, (s, r)) be the function obtained by computing Rec(w′, s)
to get f(w) and then inverting (f(w), r) to get w. Then (SS′,Rec′) is an (M1,m1,
m̃2, t1) average-case secure sketch.

Proof. The correctness of this construction follows immediately from the two
properties given in Definition 7. As for security, using Lemma 2.2(b) and the fact
that the range of g has size at most 2λ, we get that H̃∞(W | g(W )) ≥ m1 − λ
whenever H∞(W ) ≥ m1. Moreover, since W is uniquely recoverable from f(W ) and
g(W ), it follows that H̃∞(f(W ) | g(W )) ≥ m1 − λ as well whenever H∞(W ) ≥ m1.
Using the fact that (SS,Rec) is an average-case (M2,m1 − λ, m̃2, t2)-secure sketch,
we get that H̃∞(f(W ) | (SS(W ), g(W ))) = H̃∞(f(W ) | SS′(W )) ≥ m̃2. Finally, since
the application of f can only reduce min-entropy, H̃∞(W | SS′(W )) ≥ m̃2 whenever
H∞(W ) ≥ m1.

As we saw, the proof above critically used the notion of average-case secure
sketches. Luckily, all our constructions (for example, those obtained via Lemma 3.1)
are average-case, so this subtlety will not matter too much.

We will see the utility of this novel type of embedding in section 7.

5. Constructions for Hamming distance. In this section we consider con-
structions for the space M = Fn under the Hamming distance metric. Let F = |F|
and f = log2 F .
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Secure sketches: The code-offset construction. For the case of F = {0, 1}, Juels
and Wattenberg [39] considered a notion of “fuzzy commitment.”8 Given an [n, k,
2t + 1]2 error-correcting code C (not necessarily linear), they fuzzy-commit to x by
publishing w ⊕ C(x). Their construction can be rephrased in our language to give a
very simple construction of secure sketches for general F .

We start with an [n, k, 2t + 1]F error-correcting code C (not necessarily linear).
The idea is to use C to correct errors in w even though w may not be in C. This is
accomplished by shifting the code so that a codeword matches up with w and storing
the shift as the sketch. To do so, we need to view F as an additive cyclic group of
order F (in the case of most common error-correcting codes, F will already be a field).

Construction 2 (code-offset construction). On input w, select a random codeword
c (this is equivalent to choosing a random x ∈ Fk and computing C(x)), and set SS(w)
to be the shift needed to get from c to w: SS(w) = w−c. Then Rec(w′, s) is computed
by subtracting the shift s from w′ to get c′ = w′ − s, decoding c′ to get c (note that
because dis(w′, w) ≤ t, so is dis(c′, c)), and computing w by shifting back to get
w = c + s.

+s w
c

w’–s

d
ec

c’

In the case of F = {0, 1}, addition and subtraction are the same, and we get
that computation of the sketch is the same as the Juels–Wattenberg commitment:
SS(w) = w ⊕ C(x). In this case, to recover w given w′ and s = SS(w), compute
c′ = w′ ⊕ s, decode c′ to get c, and compute w = c⊕ s.

When the code C is linear, this scheme can be simplified as follows.

Construction 3 (syndrome construction). Set SS(w) = syn(w). To compute
Rec(w′, s), find the unique vector e ∈ Fn of Hamming weight ≤ t such that syn(e) =
syn(w′) − s, and output w = w′ − e.

As explained in section 2, finding the short error-vector e from its syndrome is
the same as decoding the code. It is easy to see that two constructions above are
equivalent: given syn(w) one can sample from w − c by choosing a random string v
with syn(v) = syn(w); conversely, syn(w − c) = syn(w). To show that Rec finds the
correct w, observe that dis(w′ − e, w′) ≤ t by the constraint on the weight of e, and
syn(w′ − e) = syn(w′) − syn(e) = syn(w′) − (syn(w′) − s) = s. There can be only one
value within distance t of w′ whose syndrome is s (else by subtracting two such values
we get a codeword that is closer than 2t+ 1 to 0, but 0 is also a codeword), so w′ − e
must be equal to w.

As mentioned in the introduction, the syndrome construction has appeared be-
fore as a component of some cryptographic protocols over quantum and other noisy
channels [6, 18], though it has not been analyzed the same way.

Both schemes are (Fn,m,m − (n − k)f, t)-secure sketches. For the randomized
scheme, the intuition for understanding the entropy loss is as follows: we add k random
elements of F and publish n elements of F . The formal proof is simply Lemma 4.5,
because addition in Fn is a family of transitive isometries. For the syndrome scheme,
this follows from Lemma 3.1, because the syndrome is (n− k) elements of F .

We thus obtain the following theorem.

8In their interpretation, one commits to x by picking a random w and publishing SS(w;x).
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Theorem 5.1. Given an [n, k, 2t + 1]F error-correcting code, one can construct
an average-case (Fn,m,m − (n − k)f, t)-secure sketch, which is efficient if encod-
ing and decoding are efficient. Furthermore, if the code is linear, then the sketch is
deterministic, and its output is (n− k) symbols long.

In Appendix C we present some generic lower bounds on secure sketches and
fuzzy extractors. Recall that AF (n, d) denotes the maximum number K of codewords
possible in a code of distance d over n-character words from an alphabet of size
F . Then by Lemma C.1, we obtain that the entropy loss of a secure sketch for the
Hamming metric is at least nf− log2 AF (n, 2t+1) when the input is uniform (that is,
when m = nf), because K(M, t) from Lemma C.1 is in this case equal to AF (n, 2t+1)
(since a code that corrects t Hamming errors must have minimum distance at least
2t + 1). This means that if the underlying code is optimal (i.e., K = AF (n, 2t + 1)),
then the code-offset construction above is optimal for the case of uniform inputs,
because its entropy loss is nf − logF K log2 F = nf − log2 K. Of course, we do not
know the exact value of AF (n, d), let alone any efficiently decodable codes which meet
the bound, for many settings of F , n, and d. Nonetheless, the code-offset scheme gets
as close to optimality as possible given the coding constraints. If better efficient codes
are invented, then better (i.e., lower loss or higher error-tolerance) secure sketches
will result.

Fuzzy extractors. As a warm-up, consider the case when W is uniform (m = n),
and look at the code-offset sketch construction: v = w − C(x). For Gen(w), output
R = x, P = v. For Rep(w′, P ), decode w′ − P to obtain C(x), and apply C−1 to
obtain x. The result, quite clearly, is an (Fn, nf, kf, t, 0)-fuzzy extractor, since v is
truly random and independent of x when w is random. In fact, this is exactly the
usage proposed by Juels and Wattenberg [39], except they viewed the above fuzzy
extractor as a way to use w to “fuzzy commit” to x, without revealing information
about x.

Unfortunately, the above construction setting R = x works only for uniform W ,
since otherwise v would leak information about x.

In general, we use the construction in Lemma 4.3 combined with Theorem 5.1 to
obtain the following theorem.

Theorem 5.2. Given any [n, k, 2t + 1]F code C and any m, ε, there exists an
average-case (M,m, �, t, ε)-fuzzy extractor, where � = m + kf − nf − 2 log

(
1
ε

)
+ 2.

The generation Gen and recovery Rep are efficient if C has efficient encoding and
decoding.

6. Constructions for set difference. We now turn to inputs that are subsets
of a universe U ; let n = |U|. This corresponds to representing an object by a list of its
features. Examples include “minutiae” (ridge meetings and endings) in a fingerprint,
short strings which occur in a long document, or lists of favorite movies.

Recall that the distance between two sets w,w′ is the size of their symmetric
difference: dis(w,w′) = |w�w′|. We will denote this metric space by SDif(U). A set
w can be viewed as its characteristic vector in {0, 1}n, with 1 at position x ∈ U if
x ∈ w, and 0 otherwise. Such representation of sets makes set difference the same
as the Hamming metric. However, we will mostly focus on settings where n is much
larger than the size of w, so that representing a set w by n bits is much less efficient
than, say, writing down a list of elements in w, which requires only |w| log n bits.

Large versus small universes. More specifically, we will distinguish two broad
categories of settings. Let s denote the size of the sets that are given as inputs to the
secure sketch (or fuzzy extractor) algorithms. Most of this section studies situations
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where the universe size n is superpolynomial in the set size s. We call this the “large
universe” setting. In contrast, the “small universe” setting refers to situations in
which n = poly(s). We want our various constructions to run in polynomial time
and use polynomial storage space. In the large universe setting, the n-bit string
representation of a set becomes too large to be usable—we will strive for solutions
that are polynomial in s and logn.

In fact, in many applications—for example, when the input is a list of book
titles—it is possible that the actual universe is not only large, but also difficult to
enumerate, making it difficult to even find the position in the characteristic vector
corresponding to x ∈ w. In that case, it is natural to enlarge the universe to a
well-understood class—for example, to include all possible strings of a certain length,
whether or not they are actual book titles. This has the advantage that the position
of x in the characteristic vector is simply x itself; however, because the universe is
now even larger, the dependence of running time on n becomes even more important.

Fixed versus flexible set size. In some situations, all objects are represented by
feature sets of exactly the same size s, while in others the sets may be of arbitrary size.
In particular, the original set w and the corrupted set w′ from which we would like
to recover the original need not be of the same size. We refer to these two settings
as fixed and flexible set size, respectively. When the set size is fixed, the distance
dis(w,w′) is always even: dis(w,w′) = t if and only if w and w′ agree on exactly s− t

2
points. We will denote the restriction of SDif(U) to s-element subsets by SDifs(U).

Summary. As a point of reference, we will see below that log
(
n
s

)
−logA(n, 2t+1, s)

is a lower bound on the entropy loss of any secure sketch for set difference (whether
or not the set size is fixed). Recall that A(n, 2t + 1, s) represents the size of the
largest code for Hamming space with minimum distance 2t + 1, in which every word
has weight exactly s. In the large universe setting, where t � n, the lower bound is
approximately t log n. The relevant lower bounds are discussed at the end of sections
6.1 and 6.2.

In the following sections we will present several schemes which meet this lower
bound. The setting of small universes is discussed in section 6.1. We discuss the code-
offset construction (from section 5), as well as a permutation-based scheme which is
tailored to a fixed set size. The latter scheme is optimal for this metric but impractical.

In the remainder of the section, we discuss schemes for the large universe setting.
In section 6.2 we give an improved version of the scheme of Juels and Sudan [38].
Our version achieves optimal entropy loss and storage t log n for fixed set size (notice
the entropy loss does not depend on the set size s, although the running time does).
The new scheme provides an exponential improvement over the original parameters
(which are analyzed in Appendix D). Finally, in section 6.3 we describe how to
adapt syndrome decoding algorithms for BCH codes to our application. The resulting
scheme, called PinSketch, has optimal storage and entropy loss t log(n + 1), handles
flexible set sizes, and is probably the most practical of the schemes presented here.
Another scheme achieving similar parameters (but less efficiently) can be adapted
from information reconciliation literature [51]; see section 9 for more details.

We do not discuss fuzzy extractors beyond mentioning here that each secure sketch
presented in this section can be converted to a fuzzy extractor using Lemma 4.3. We
have already seen an example of such a conversion in section 5.

Table 1 summarizes the constructions discussed in this section.

6.1. Small universes. When the universe size is polynomial in s, there are a
number of natural constructions. The most direct one, given previous work, is the
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Table 1

Summary of secure sketches for set difference. Notes: In the Juels–Sudan (JS) scheme, r is
a parameter, s ≤ r ≤ n; generic syndrome and permutation-based schemes achieve entropy loss
similar to that of the improved Juels–Sudan scheme and PinSketch, ≈ t logn, when t � n; see
section 6.3 for running time of PinSketch.

Entropy loss Storage Time Set size

Juels–Sudan t logn + log
((n

r

)
/
(n−s
r−s

))
+ 2 r logn poly(r log(n)) Fixed

[38]
Generic n− logA(n, 2t + 1) n− logA(n, 2t + 1) poly(n) Flexible

syndrome (for linear codes)

Permutation- log
(n
s

)
− logA(n, 2t + 1, s) O(n logn) poly(n) Fixed

based
Improved t logn t logn poly(s logn) Fixed

JS
PinSketch t log(n + 1) t log(n + 1) poly(s logn) Flexible

construction of Juels and Sudan [38]. Unfortunately, that scheme requires a fixed set
size and achieves relatively poor parameters (see Appendix D).

We suggest two possible constructions. The first involves representing sets as n-bit
strings and using the constructions of section 5. The second construction, presented
below, requires a fixed set size but achieves slightly improved parameters by going
through “constant-weight” codes.

Permutation-based sketch. Recall the general construction of section 4.2 for tran-
sitive metric spaces. Let Π be a set of all permutations on U . Given π ∈ Π, make
it a permutation on SDifs(U) naturally: π(w) = {π(x)|x ∈ w}. This makes Π into a
family of transitive isometries on SDifs(U), and thus the results of section 4.2 apply.

Let C ⊆ {0, 1}n be any [n, k, 2t + 1] binary code in which all words have weight
exactly s. Such codes have been studied extensively (see, e.g., [1, 11] for a summary
of known upper and lower bounds). View elements of the code as sets of size s. We
obtain the following scheme, which produces a sketch of length O(n log n).

Construction 4 (permutation-based sketch). On input w ⊆ U of size s, choose
b ⊆ U at random from the code C, and choose a random permutation π : U → U such
that π(w) = b (that is, choose a random matching between w and b and a random
matching between U−w and U−b). Output SS(w) = π (say, by listing π(1), . . . , π(n)).
To recover w from w′ such that dis(w,w′) ≤ t and π, compute b′ = π−1(w′), decode
the characteristic vector of b′ to obtain b, and output w = π(b).

This construction is efficient as long as decoding is efficient (everything else takes
time O(n log n)). By Lemma 4.5, its entropy loss is log

(
n
s

)
− k: here |Π| = n! and

Γ = s!(n− s)!, so log |Π| − log Γ = logn!/(s!(n− s)!).
Comparing the Hamming scheme with the permutation scheme. The code-offset

construction was shown to have entropy loss n− logA(n, 2t+ 1) if an optimal code is
used; the random permutation scheme has entropy loss log

(
n
s

)
− logA(n, 2t+1, s) for

an optimal code. The Bassalygo–Elias inequality (see [72]) shows that the bound on
the random permutation scheme is always at least as good as the bound on the code

offset scheme: A(n, d) · 2−n ≤ A(n, d, s) ·
(
n
s

)−1
. This implies that n − logA(n, d) ≥

log
(
n
s

)
− logA(n, d, s). Moreover, standard packing arguments give better construc-

tions of constant-weight codes than they do of ordinary codes.9 In fact, the random

9This comes from the fact that the intersection of a ball of radius d with the set of all words of
weight s is much smaller than the ball of radius d itself.
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permutations scheme is optimal for this metric, just as the code-offset scheme is op-
timal for the Hamming metric.

We show this as follows. Restrict t to be even, because dis(w,w′) is always even
if |w| = |w′|. Then the minimum distance of a code over SDifs(U) that corrects up to
t errors must be at least 2t + 1. Indeed, suppose not. Then take two codewords, c1
and c2, such that dis(c1, c2) ≤ 2t. There are k elements in c1 that are not in c2 (call
their set c1 − c2), and k elements in c2 that are not in c1 (call their set c2 − c1) with
k ≤ t. Starting with c1, remove t/2 elements of c1−c2 and add t/2 elements of c2−c1
to obtain a set w (note that here we are using that t is even; if k < t/2, then use k
elements). Then dis(c1, w) ≤ t and dis(c2, w) ≤ t, and so if the received word is w,
the receiver cannot be certain whether the sent word was c1 or c2 and hence cannot
correct t errors.

Therefore, by Lemma C.1, we get that the entropy loss of a secure sketch must
be at least log

(
n
s

)
− logA(n, 2t + 1, s) in the case of a uniform input w. Thus in

principle, it is better to use the random permutation scheme. Nonetheless, there are
caveats. First, we do not know of explicitly constructed constant-weight codes that
beat the Elias–Bassalygo inequality and would thus lead to better entropy loss for
the random permutation scheme than for the Hamming scheme (see [11] for more
on constructions of constant-weight codes and [1] for upper bounds). Second, much
more is known about efficient implementation of decoding for ordinary codes than for
constant-weight codes; for example, one can find off-the-shelf hardware and software
for decoding many binary codes. In practice, the Hamming-based scheme is likely to
be more useful.

6.2. Improving the construction of Juels and Sudan. We now turn to the
large universe setting, where n is superpolynomial in the set size s, and we would like
operations to be polynomial in s and logn.

Juels and Sudan [38] proposed a secure sketch for the set difference metric with
fixed set size (called a “fuzzy vault” in that paper). We present their original scheme
here with an analysis of the entropy loss in Appendix D. In particular, our analysis
shows that the original scheme has good entropy loss only when the storage space is
very large.

We suggest an improved version of the Juels–Sudan scheme which is simpler and
achieves much better parameters. The entropy loss and storage space of the new
scheme are both t log n, which is optimal. (The same parameters are also achieved by
the BCH-based construction PinSketch in section 6.3.) Our scheme has the advantage
of being even simpler to analyze, and the computations are simpler. As with the
original Juels–Sudan scheme, we assume n = |U| is a prime power and work over
F = GF (n).

An intuition for the scheme is that the numbers ys+1, . . . , yr from the Juels–
Sudan scheme need not be chosen at random. One can instead evaluate them as yi =
p′(xi) for some polynomial p′. One can then represent the entire list of pairs (xi, yi)
implicitly, using only a few of the coefficients of p′. The new sketch is deterministic
(this was not the case for our preliminary version in [25]). Its implementation is
available [36].

Construction 5 (improved Juels–Sudan secure sketch for sets of size s). To com-
pute SS(w), do the following:

1. Let p′() be the unique monic polynomial of degree exactly s such that p′(x) =

0 for all x ∈ w. (That is, let p′(z)
def
=

∏
x∈w(z − x).)

2. Output the coefficients of p′() of degree s− 1 down to s− t.
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This is equivalent to computing and outputting the first t symmetric polynomials of
the values in A; i.e., if w = {x1, . . . , xs}, then output

∑
i

xi,
∑
i 	=j

xixj , . . . ,
∑

S⊆[s],|S|=t

(∏
i∈S

xi

)
.

To compute Rec(w′, p′), where w′ = {a1, a2, . . . , as}, do the following:
1. Create a new polynomial phigh, of degree s which shares the top t+ 1 coeffi-

cients of p′; that is, let phigh(z)
def
= zs +

∑s−1
i=s−t aiz

i.
2. Evaluate phigh on all points in w′ to obtain s pairs (ai, bi).
3. Use [s, s− t, t + 1]U Reed–Solomon decoding (see, e.g., [7, 72]) to search for

a polynomial plow of degree s− t− 1 such that plow(ai) = bi for at least s− t/2 of the
ai values. If no such polynomial exists, then stop and output “fail.”

4. Output the list of zeros (roots) of the polynomial phigh − plow (see, e.g., [66]
for root-finding algorithms; they can be sped up by first factoring out the known
roots—namely, (z − ai) for the s − t/2 values of ai that were not deemed erroneous
in the previous step).

To see that this secure sketch can tolerate t set difference errors, suppose that
dis(w,w′) ≤ t. Let p′ be as in the sketch algorithm; that is, p′(z) =

∏
x∈w(z−x). The

polynomial p′ is monic; that is, its leading term is zs. We can divide the remaining
coefficients into two groups: the high coefficients, denoted as−t, . . . , as−1, and the low
coefficients, denoted b1, . . . , bs−t−1:

p′(z) = zs +

s−1∑
i=s−t

aiz
i

︸ ︷︷ ︸
phigh(z)

+

s−t−1∑
i=0

biz
i

︸ ︷︷ ︸
q(z)

.

We can write p′ as phigh + q, where q has degree s − t − 1. The recovery algorithm
gets the coefficients of phigh as input. For any point x in w, we have 0 = p′(x) =
phigh(x)+q(x). Thus, phigh and −q agree at all points in w. Since the set w intersects
w′ in at least s − t/2 points, the polynomial −q satisfies the conditions of step 3 in
Rec. That polynomial is unique, since no two distinct polynomials of degree s− t− 1
can get the correct bi on more than s − t/2 ais (else, they agree on at least s − t
points, which is impossible). Therefore, the recovered polynomial plow must be −q;
hence phigh(x) − plow(x) = p′(x). Thus, Rec computes the correct p′ and therefore
correctly finds the set w, which consists of the roots of p′.

Since the output of SS is t field elements, the entropy loss of the scheme is at most
t log n by Lemma 3.1. (We will see below that this bound is tight, since any sketch
must lose at least t log n in some situations.) We have proven the following theorem.

Theorem 6.1 (analysis of improved Juels–Sudan). Construction 5 is an average-
case (SDifs(U),m,m − t log n, t) secure sketch. The entropy loss and storage of the
scheme are at most t log n, and both the sketch generation SS() and the recovery
procedure Rec() run in time polynomial in s, t, and log n.

Lower bounds for fixed set size in a large universe. The short length of the sketch
makes this scheme feasible for essentially any ratio of set size to universe size (we only
need log n to be polynomial in s). Moreover, for large universes the entropy loss t log n
is essentially optimal for uniform inputs (i.e., when m = log

(
n
s

)
). We show this as

follows. As already mentioned in section 6.1, Lemma C.1 shows that for a uniformly
distributed input, the best possible entropy loss is m−m′ ≥ log

(
n
s

)
−logA(n, 2t+1, s).
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By Theorem 12 of Agrell, Vardy, and Zeger [1],

A(n, 2t + 2, s) ≤
(

n
s−t

)
(

s
s−t

) .

Noting that A(n, 2t + 1, s) = A(n, 2t + 2, s) because distances in SDifs(U) are even,
the entropy loss is at least

m−m′ ≥ log

(
n

s

)
− logA(n, 2t + 1, s)

≥ log

(
n

s

)
− log

((
n

s− t

)/(
s

s− t

))

= log

(
n− s + t

t

)
.

When n � s, this last quantity is roughly t log n, as desired.

6.3. Large universes via the Hamming metric: Sublinear-time decod-
ing. In this section, we show that the syndrome construction of section 5 can in fact
be adapted for small sets in a large universe, using specific properties of algebraic
codes. We will show that BCH codes, which contain Hamming and Reed–Solomon
codes as special cases, have these properties. As opposed to the constructions of the
previous section, the construction of this section is flexible and can accept input sets
of any size.

Thus we obtain a sketch for sets of flexible size, with entropy loss and storage
t log(n+1). We will assume that n is one less than a power of 2: n = 2m−1 for some
integer m, and will identify U with the nonzero elements of the binary finite field of
degree m: U = GF (2m)∗.

Syndrome manipulation for small-weight words. Suppose now that we have a small
set w ⊆ U of size s, where n � s. Let xw denote the characteristic vector of w (see the
beginning of section 6). Then the syndrome construction says that SS(w) = syn(xw).
This is an (n−k)-bit quantity. Note that the syndrome construction gives us no special
advantage over the code-offset construction when the universe is small: storing the
n-bit xw + C(r) for a random k-bit r is not a problem. However, it is a substantial
improvement when n � n− k.

If we want to use syn(xw) as the sketch of w, then we must choose a code with
n − k very small. In particular, the entropy of w is at most log

(
n
s

)
≈ s log n, and so

the entropy loss n− k had better be at most s log n. Binary BCH codes are suitable
for our purposes: they are a family of [n, k, δ]2 linear codes with δ = 2t + 1 and
k = n − tm (assuming n = 2m − 1) (see, e.g., [72]). These codes are optimal for
t � n by the Hamming bound, which implies that k ≤ n − log

(
n
t

)
[72].10 Using the

syndrome sketch with a BCH code C, we get entropy loss n− k = t log(n+ 1), which
is essentially the same as the t log n of the improved Juels–Sudan scheme (recall that
δ ≥ 2t + 1 allows us to correct t set difference errors).

The only problem is that the scheme appears to require computation time Ω(n),
since we must compute syn(xw) = Hxw and, later, run a decoding algorithm to recover

10The Hamming bound is based on the observation that for any code of distance δ, the balls of
radius �(δ − 1)/2� centered at various codewords must be disjoint. Each such ball contains

( n
�(δ−1)/2�

)
points, and so 2k

( n
�(δ−1)/2�

)
≤ 2n. In our case δ = 2t + 1, and so the bound yields k ≤ n− log

(n
t

)
.
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xw. For BCH codes, this difficulty can be overcome. A word of small weight w can
be described by listing the positions on which it is nonzero. We call this description
the support of xw and write supp(xw) (note that supp(xw) = w; see the discussion of
enlarging the universe appropriately at the beginning of section 6).

The following lemma holds for general BCH codes (which include binary BCH
codes and Reed–Solomon codes as special cases). We state it for binary codes since
that is most relevant to the application.

Lemma 6.2. For a [n, k, δ] binary BCH code C one can compute
• syn(x), given supp(x), in time polynomial in δ, log n, and |supp(x)|,
• supp(x), given syn(x) (when x has weight at most (δ − 1)/2), in time poly-

nomial in δ and log n.
The proof of Lemma 6.2 requires a careful reworking of the standard BCH de-

coding algorithm. The details are presented in Appendix E. For now, we present the
resulting secure sketch for set difference.

Construction 6 (PinSketch). To compute SS(w) = syn(xw), do the following:
1. Let si =

∑
x∈w xi (computations in GF (2m)).

2. Output SS(w) = (s1, s3, s5, . . . , s2t−1).
To recover Rec(w′, (s1, s3, . . . , s2t−1)), do the following:

1. Compute (s′1, s
′
3, . . . , s

′
2t−1) = SS(w′) = syn(xw′).

2. Let σi = s′i − si (in GF (2m), so “−” is the same as “+”).
3. Compute supp(v) such that syn(v) = (σ1, σ3, . . . , σ2t−1) and |supp(v)| ≤ t by

Lemma 6.2.
4. If dis(w,w′) ≤ t, then supp(v) = w�w′. Thus, output w = w′� supp(v).

An implementation of this construction, including the reworked BCH decoding
algorithm, is available [36].

The bound on entropy loss is easy to see: the output is t log(n+1) bits long, and
hence the entropy loss is at most t log(n+ 1) by Lemma 3.1. We obtain the following
theorem.

Theorem 6.3. PinSketch is an average-case (SDif(U),m,m − t log(n + 1), t)-
secure sketch for set difference with storage t log(n + 1). The algorithms SS and Rec
both run in time polynomial in t and log n.

7. Constructions for edit distance. The space of interest in this section is
the space F∗ for some alphabet F , with distance between two strings defined as the
number of character insertions and deletions needed to get from one string to the
other. Denote this space by EditF (n). Let F = |F|.

First, note that applying the generic approach for transitive metric spaces (as
with the Hamming space and the set difference space for small universe sizes) does
not work here, because the edit metric is not known to be transitive. Instead, we
consider embeddings of the edit metric on {0, 1}n into the Hamming or set difference
metric of much larger dimension. We look at two types: standard low-distortion
embeddings and “biometric” embeddings as defined in section 4.3.

For the binary edit distance space of dimension n, we obtain secure sketches and
fuzzy extractors correcting t errors with entropy loss roughly tno(1), using a standard
embedding, and 2.38 3

√
tn log n, using a relaxed embedding. The first technique works

better when t is small, say, n1−γ for a constant γ > 0. The second technique is better
when t is large; it is meaningful roughly as long as t < n

15 log2 n
.

7.1. Low-distortion embeddings. A (standard) embedding with distortion
D is an injection ψ : M1 ↪→ M2 such that for any two points x, y ∈ M1, the ratio
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dis(ψ(x),ψ(y))
dis(x,y) is at least 1 and at most D.

When the preliminary version of this paper appeared [25], no nontrivial embed-
dings were known mapping edit distance into �1 or the Hamming metric (i.e., known
embeddings had distortion O(n)). Recently, Ostrovsky and Rabani [57] gave an em-
bedding of the edit metric over F = {0, 1} into �1 with subpolynomial distortion. It
is an injective, polynomial time computable embedding which can be interpreted as
mapping to the Hamming space {0, 1}d, where d = poly(n).11

Fact 7.1 (see [57]). There is a polynomial time computable embedding denoted

ψed : Edit{0,1}(n) ↪→ {0, 1}poly(n) with distortion Ded(n)
def
= 2O(

√
log n log log n).

We can compose this embedding with the fuzzy extractor constructions for the
Hamming distance to obtain a fuzzy-extractor for edit distance which will be good
when t, the number of errors to be corrected, is quite small. Recall that instantiating
the syndrome fuzzy-extractor construction (Theorem 5.2) with a BCH code allows
one to correct t′ errors out of d at the cost of t′ log d + 2 log

(
1
ε

)
− 2 bits of entropy.

Construction 7. For any length n and error threshold t, let ψed be the embedding
given by Fact 7.1 from Edit{0,1}(n) into {0, 1}d (where d = poly(n)), and let syn be

the syndrome of a BCH code correcting t′ = tDed(n) errors in {0, 1}d. Let {Hx}x∈X

be a family of universal hash functions from {0, 1}d to {0, 1}� for some �. To compute
Gen on input w ∈ Edit{0,1}(n), pick a random x and output

R = Hx(ψed(w)) , P = (syn(ψed(w)), x) .

To compute Rep on inputs w′ and P = (s, x), compute y = Rec(ψed(w′), s), where
Rec is from Construction 3, and output R = Hx(y).

Because ψed is injective, a secure sketch can be constructed similarly: SS(w) =
syn(ψ(w)). To recover w from w′ and s, compute ψ−1

ed (Rec(ψed(w′))). However, this
secure sketch is not known to be efficient, because it is not known how to compute
ψ−1

ed efficiently.
Proposition 7.2. For any n, t,m, there is an average-case (Edit{0,1}(n),m,m′,

t)-secure sketch and an efficient average-case (Edit{0,1}(n),m, �, t, ε)-fuzzy extractor

where m′ = m− t2O(
√

logn log log n) and � = m′ − 2 log
(

1
ε

)
+ 2. In particular, for any

α < 1, there exists an efficient fuzzy extractor tolerating nα errors with entropy loss
nα+o(1) + 2 log

(
1
ε

)
.

Proof. Construction 7 is the same as the construction of Theorem 5.2 (instan-
tiated with a BCH-code-based syndrome construction) acting on ψed(w). Because
ψed is injective, the min-entropy of ψed(w) is the same as the min-entropy m of
w. The entropy loss in Construction 3 instantiated with BCH codes is t′ log d =
t2O(

√
logn log log n) log poly(n). Because 2O(

√
logn log log n) grows faster than logn, this

is the same as t2O(
√

logn log log n).
Note that the peculiar-looking distortion function from Fact 7.1 increases more

slowly than any polynomial in n, but still faster than any polynomial in logn. In
sharp contrast, the best lower bound states that any embedding of Edit{0,1}(n) into
�1 (and hence Hamming) must have distortion at least Ω(logn/ log log n) [2]. Closing
the gap between the two bounds remains an open problem.

General alphabets. To extend the above construction to general F , we represent
each character of F as a string of logF bits. This is an embedding Fn into {0, 1}n logF ,

11The embedding of [57] produces strings of integers in the space {1, . . . , O(logn)}poly(n),
equipped with �1 distance. One can convert this into the Hamming metric with only a logarith-
mic blowup in length by representing each integer in unary.
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which increases edit distance by a factor of at most logF . Then t′ = t(logF )Ded(n)
and d = poly(n, logF ). Using these quantities, we get the generalization of Proposi-
tion 7.2 for larger alphabets (again, by the same embedding) by changing the formula

for m′ to m′ = m− t(logF )2O(
√

log(n logF ) log log(n logF )).

7.2. Relaxed embeddings for the edit metric. In this section, we show
that a relaxed notion of embedding, called a biometric embedding in section 4.3, can
produce fuzzy extractors and secure sketches that are better than what one can get
from the embedding of [57] when t is large (they are also much simpler algorithmically,
which makes them more practical). We first discuss fuzzy extractors and later extend
the technique to secure sketches.

Fuzzy extractors. Recall that unlike low-distortion embeddings, biometric em-
beddings do not care about relative distances, as long as points that were “close”
(closer than t1) do not become “distant” (farther apart than t2). The only additional
requirement of a biometric embedding is that it preserve some min-entropy: we do
not want too many points to collide together. We now describe such an embedding
from the edit distance to the set difference.

A c-shingle is a length-c consecutive substring of a given string w. A c-shingling
[10] of a string w of length n is the set (ignoring order or repetition) of all (n− c+ 1)
c-shingles of w. (For instance, a 3-shingling of “abcdecdeah” is {abc, bcd, cde, dec,
ecd, dea, eah}.) Thus, the range of the c-shingling operation consists of all nonempty
subsets of size at most n−c+1 of Fc. Let SDif(Fc) stand for the set difference metric
over subsets of Fc and SHc stand for the c-shingling map from EditF (n) to SDif(Fc).
We now show that SHc is a good biometric embedding.

Lemma 7.3. For any c, SHc is an average-case (t1, t2 = (2c − 1)t1,m1,m2 =
m1 − �n

c � log2(n− c + 1))-biometric embedding of EditF (n) into SDif(Fc).
Proof. Let w,w′ ∈ EditF (n) be such that dis(w,w′) ≤ t1 and I be the sequence

of at most t1 insertions and deletions that transforms w into w′. It is easy to see that
each character deletion or insertion adds at most (2c− 1) to the symmetric difference
between SHc(w) and SHc(w

′), which implies that dis(SHc(w),SHc(w
′)) ≤ (2c − 1)t1,

as needed.
For w ∈ Fn, define gc(w) as follows. Compute SHc(w) and store the resulting

shingles in lexicographic order h1 . . . hk (k ≤ n− c + 1). Next, naturally partition w
into �n/c� c-shingles s1 . . . s�n/c, all disjoint except for (possibly) the last two, which
overlap by c�n/c� − n characters. Next, for 1 ≤ j ≤ �n/c�, set pj to be the index
i ∈ {0 . . . k} such that sj = hi. In other words, pj tells the index of the jth disjoint
shingle of w in the alphabetically ordered k-set SHc(w). Set gc(w) = (p1, . . . , p�n/c).
(For instance, g3(“abcdecdeah”) = (1, 5, 4, 6), representing the alphabetical order of
“abc”, “dec”, “dea”, and “eah” in SH3(“abcdecdeah”).) The number of possible
values for gc(w) is at most (n − c + 1)�

n
c , and w can be completely recovered from

SHc(w) and gc(w).
Now, assume W is any distribution of min-entropy at least m1 on EditF (n).

Applying Lemma 2.2(b), we get H̃∞(W | gc(W )) ≥ m1 − �n
c � log2(n − c + 1). Since

Pr(W = w | gc(W ) = g) = Pr(SHc(W ) = SHc(w) | gc(W ) = g) (because given gc(w),
SHc(w) uniquely determines w and vice versa), by applying the definition of H̃∞, we
obtain H∞(SHc(W )) ≥ H̃∞(SHc(W ) | gc(W )) = H̃∞(W | gc(W )). The same proof
holds for average min-entropy, conditioned on some auxiliary information I.

By Theorem 6.3, for universe Fc of size F c and distance threshold t2 = (2c−1)t1,
we can construct a secure sketch for the set difference metric with entropy loss
t2�log(F c + 1)� (�·� because Theorem 6.3 requires the universe size to be one less
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than a power of 2). By Lemma 4.3, we can obtain a fuzzy extractor from such a
sketch, with additional entropy loss 2 log

(
1
ε

)
− 2. Applying Lemma 4.6 to the above

embedding and this fuzzy extractor, we obtain a fuzzy extractor for EditF (n), any
input entropy m, any distance t, and any security parameter ε, with the following
entropy loss:

⌈n
c

⌉
· log2(n− c + 1) + (2c− 1)t�log(F c + 1)� + 2 log

(
1

ε

)
− 2

(the first component of the entropy loss comes from the embedding, the second from
the secure sketch for set difference, and the third from the extractor). The above
sequence of lemmas results in the following construction, parameterized by shingle
length c and a family of universal hash functions H = {SDif(Fc) → {0, 1}l}x∈X ,
where l is equal to the input entropy m minus the entropy loss above.

Construction 8 (fuzzy extractor for edit distance). To compute Gen(w) for |w| =
n:

1. Compute SHc(w) by computing n − c + 1 shingles (v1, v2, . . . , vn−c+1) and
removing duplicates to form the shingle set v from w.

2. Compute s = syn(xv) as in Construction 6.
3. Select a hash function Hx ∈ H and output (R = Hx(v), P = (s, x)).

To compute Rep(w′, (s, x)):
1. Compute SHc(w

′) as above to get v′.
2. Use Rec(v′, s) from in Construction 6 to recover v.
3. Output R = Hx(v).

We thus obtain the following theorem.
Theorem 7.4. For any n,m, c, and 0 < ε ≤ 1, there is an efficient average-case

(EditF (n),m,m−�n
c � log2(n− c+1)− (2c−1)t�log(F c +1)�−2 log

(
1
ε

)
+2, t, ε)-fuzzy

extractor.
Note that the choice of c is a parameter; by ignoring �·� and replacing n− c + 1

with n, 2c − 1 with 2c, and F c + 1 with F c, we get that the minimum entropy loss
occurs near

c =

(
n log n

4t logF

)1/3

and is about 2.38 (t logF )
1/3

(n log n)
2/3

(2.38 is really 3
√

4 + 1/ 3
√

2). In particular,
if the original string has a linear amount of entropy θ(n logF ), then we can tolerate
t = Ω(n log2 F/ log2 n) insertions and deletions while extracting θ(n logF )− 2 log

(
1
ε

)
bits. The number of bits extracted is linear; if the string length n is polynomial in
the alphabet size F , then the number of errors tolerated is linear also.

Secure sketches. Observe that the proof of Lemma 7.3 actually demonstrates
that our biometric embedding based on shingling is an embedding with recovery in-
formation gc. Observe also that it is easy to reconstruct w from SHc(w) and gc(w).
Finally, note that PinSketch (Construction 6) is an average-case secure sketch (as are
all secure sketches in this work). Thus, combining Theorem 6.3 with Lemma 4.7, we
obtain the following theorem.

Construction 9 (secure sketch for edit distance). For SS(w), compute v = SHc(w)
and s1 = syn(xv) as in Construction 8. Compute s2 = gc(w), writing each pj as a
string of �log n� bits. Output s = (s1, s2). For Rec(w′, (s1, s2)), recover v as in
Construction 8, sort it in alphabetical order, and recover w by stringing along elements
of v according to indices in s2.
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Theorem 7.5. For any n,m, c, and 0 < ε ≤ 1, there is an efficient average-case
(EditF (n),m,m− �n

c � log2(n− c + 1) − (2c− 1)t�log(F c + 1)�, t)-secure sketch.
The discussion about optimal values of c from above applies equally here.
Remark. In our definitions of secure sketches and fuzzy extractors, we required

the original w and the (potentially) modified w′ to come from the same space M.
This requirement was for simplicity of exposition. We can allow w′ to come from a
larger set, as long as distance from w is well defined. In the case of edit distance, for
instance, w′ can be shorter or longer than w; all the above results will apply as long
as it is still within t insertions and deletions.

8. Probabilistic notions of correctness. The error model considered so far
in this work is very strong: we required that secure sketches and fuzzy extractors
accept every secret w′ within distance t of the original input w, with no probability
of error.

Such a stringent model is useful as it makes no assumptions on either the exact
stochastic properties of the error process or the adversary’s computational limits.
However, Lemma C.1 shows that secure sketches (and fuzzy extractors) correcting t
errors can only be as “good” as error-correcting codes with minimum distance 2t+ 1.
By slightly relaxing the correctness condition, we will see that one can tolerate many
more errors. For example, there is no good code which can correct n/4 errors in
the binary Hamming metric: by the Plotkin bound (see, e.g., [69, Lecture 8]) a code
with minimum distance greater than n/2 has at most 2n codewords. Thus, there
is no secure sketch with residual entropy m′ ≥ log n which can correct n/4 errors
with probability 1. However, with the relaxed notions of correctness below, one can
tolerate arbitrarily close to n/2 errors, i.e., correct n( 1

2 − γ) errors for any constant
γ > 0, and still have residual entropy Ω(n).

In this section, we discuss three relaxed error models and show how the construc-
tions of the previous sections can be modified to gain greater error-correction in these
models. We will focus on secure sketches for the binary Hamming metric. The same
constructions yield fuzzy extractors (by Lemma 4.1). Many of the observations here
also apply to metrics other than Hamming.

A common point is that we will require only that the a corrupted input w′ be
recovered with probability at least 1 − α < 1 (the probability space varies). We
describe each model in terms of the additional assumptions made on the error process.
We describe constructions for each model in the subsequent sections.

Random errors (section 8.1). Assume there is a known distribution on the errors
which occur in the data. For the Hamming metric, the most common distribution
is the binary symmetric channel BSCp: each bit of the input is flipped with proba-
bility p and left untouched with probability 1 − p. We require that for any input w,
Rec(W ′,SS(w)) = w with probability at least 1− α over the coins of SS and over W ′

drawn applying the noise distribution to w.
In that case, one can correct an error rate up to Shannon’s bound on noisy channel

coding. This bound is tight. Unfortunately, the assumption of a known noise process is
too strong for most applications: there is no reason to believe we understand the exact
distribution on errors which occur in complex data such as biometrics.12 However, it
provides a useful baseline by which to measure results for other models.

12Since the assumption here plays a role only in correctness, it is still more reasonable than
assuming that we know exact distributions on the data in proofs of secrecy. However, in both cases,
we would like to enlarge the class of distributions for which we can provably satisfy the definition of
security.
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Input-dependent errors (section 8.2). The errors are adversarial, subject only to
the conditions that (a) the error magnitude dis(w,w′) is bounded to a maximum of
t, and (b) the corrupted word depends only on the input w, and not on the secure
sketch SS(w). Here we require that for any pair w,w′ at distance at most t, we have
Rec(w′,SS(w)) = w with probability at least 1 − α over the coins of SS.

This model encompasses any complex noise process which has been observed to
never introduce more than t errors. Unlike the assumption of a particular distribution
on the noise, the bound on magnitude can be checked experimentally. Perhaps sur-
prisingly, in this model we can tolerate just as large an error rate as in the model of
random errors. That is, we can tolerate an error rate up to Shannon’s coding bound
and no more.

Computationally bounded errors (section 8.3). The errors are adversarial and may
depend on both w and the publicly stored information SS(w). However, we assume
that the errors are introduced by a process of bounded computational power. That
is, there is a probabilistic circuit of polynomial size (in the length n) which computes
w′ from w. The adversary cannot, for example, forge a digital signature and base the
error pattern on the signature.

It is not clear whether this model allows correcting errors up to the Shannon
bound, as in the two models above. The question is related to open questions on the
construction of efficiently list-decodable codes. However, when the error rate is either
very high or very low, then the appropriate list-decodable codes exist, and we can
indeed match the Shannon bound.

Analogues for noisy channels and the Hamming metric. Models analogous to
those above have been studied in the literature on codes for noisy binary channels
(with the Hamming metric). Random errors and computationally bounded errors
both make obvious sense in the coding context [64, 48]. The second model—input-
dependent errors—does not immediately make sense in a coding situation, since
there is no data other than the transmitted codeword on which errors could depend.
Nonetheless, there is a natural, analogous model for noisy channels: one can allow the
sender and receiver to share either (1) common, secret random coins (see [22, 43] and
references therein) or (2) a side channel with which they can communicate a small
number of noise-free, secret bits [33].

Existing results on these three models for the Hamming metric can be transported
to our context using the code-offset construction:

SS(w;x) = w ⊕ C(x) .

Roughly, any code which corrects errors in the models above will lead to a secure
sketch (respectively, fuzzy extractor) which corrects errors in the model. We explore
the consequences for each of the three models in the next sections.

8.1. Random errors. The random error model was famously considered by
Shannon [64]. He showed that for any discrete, memoryless channel, the rate at which
information can be reliably transmitted is characterized by the maximum mutual
information between the inputs and outputs of the channel. For the binary symmetric
channel with crossover probability p, this means that there exist codes encoding k bits
into n bits, tolerating error probability p in each bit if and only if

k

n
< 1 − h(p) − δ(n),

where h(p) = −p log p− (1− p) log(1− p) and δ(n) = o(1). Computationally efficient
codes achieving this bound were found later, most notably by Forney [29]. We can use
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the code-offset construction SS(w;x) = w ⊕ C(x) with an appropriate concatenated
code [29] or, equivalently, SS(w) = synC(w) since the codes can be linear. We obtain
the following proposition.

Proposition 8.1. For any error rate 0 < p < 1/2 and constant δ > 0, for large
enough n there exist secure sketches with entropy loss (h(p) + δ)n which correct the
error rate of p in the data with high probability (roughly 2−cδn for a constant cδ > 0).

The probability here is taken over the errors only (the distribution on input strings
w can be arbitrary).

The quantity h(p) is less than 1 for any p in the range (0, 1/2). In particular, one
can get nontrivial secure sketches even for a very high error rate p as long as it is less
than 1/2; in contrast, no secure sketch which corrects errors with probability 1 can
tolerate t ≥ n/4. Note that several other works on biometric cryptosystems consider
the model of randomized errors and obtain similar results, though the analyses assume
that the distribution on inputs is uniform [71, 17].

A matching impossibility result. The bound above is tight. The matching impos-
sibility result also applies to input-dependent and computationally bounded errors,
since random errors are a special case of both more complex models.

We start with an intuitive argument: If a secure sketch allows recovering from
random errors with high probability, then it must contain enough information about
w to describe the error pattern (since given w′ and SS(w), one can recover the error
pattern with high probability). Describing the outcome of n independent coin flips
with probability p of heads requires nh(p) bits, and so the sketch must reveal nh(p)
bits about w.

In fact, that argument simply shows that nh(p) bits of Shannon information
are leaked about w, whereas we are concerned with min-entropy loss as defined in
section 3. To make the argument more formal, let W be uniform over {0, 1}n and
observe that with high probability over the output of the sketching algorithm, v =
SS(w), the conditional distribution Wv = W |SS(W )=v forms a good code for the binary
symmetric channel. That is, for most values v, if we sample a random string w from
W |SS(W )=v and send it through a binary symmetric channel, we will be able to recover
the correct value w. That means there exists some v such that (a) Wv is a good code
and (b) H∞(Wv) is close to H̃∞(W |SS(W )). Shannon’s noisy coding theorem says
that such a code can have entropy at most n(1− h(p) + o(1)). Thus the construction
above is optimal.

Proposition 8.2. For any error rate 0 < p < 1/2, any secure sketch SS which
corrects random errors (with rate p) with probability at least 2/3 has entropy loss at
least n(h(p) − o(1)); that is, H̃∞(W |SS(W )) ≤ n(1 − h(p) − o(1)) when W is drawn
uniformly from {0, 1}n.

8.2. Randomizing input-dependent errors. Assuming errors distributed
randomly according to a known distribution seems very limiting. In the Hamming
metric, one can construct a secure sketch which achieves the same result as with ran-
dom errors for every error process where the magnitude of the error is bounded, as
long as the errors are independent of the output of SS(W ). The same technique was
used previously by Bennett et al. [4, p. 216] and, in a slightly different context, Lipton
[46, 22].

The idea is to choose a random permutation π : [n] → [n], permute the bits
of w before applying the sketch, and store the permutation π along with SS(π(w)).
Specifically, let C be a linear code tolerating a p fraction of random errors with
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redundancy n− k ≈ nh(p). Let

SS(w;π) = (π, synC(π(w))) ,

where π : [n] → [n] is a random permutation and, for w = w1 · · ·wn ∈ {0, 1}n, π(w)
denotes the permuted string wπ(1)wπ(2) · · ·wπ(n). The recovery algorithm operates in
the obvious way: it first permutes the input w′ according to π and then runs the usual
syndrome recovery algorithm to recover π(w).

For any particular pair w,w′, the difference w ⊕ w′ will be mapped to a random
vector of the same weight by π, and any code for the binary symmetric channel (with
rate p ≈ t/n) will correct such an error with high probability.

Thus we can construct a sketch with entropy loss n(h(t/n)− o(1)) which corrects
any t flipped bits with high probability. This is optimal by the lower bound for
random errors (Proposition 8.2), since a sketch for data-dependent errors will also
correct random errors. It is also possible to reduce the amount of randomness, so
that the size of the sketch meets the same optimal bound [67].

An alternative approach to input-dependent errors is discussed in the last para-
graph of section 8.3.

8.3. Handling computationally bounded errors via list decoding. As
mentioned above, many results on noisy coding for other error models in Hamming
space extend to secure sketches. The previous sections discussed random, and ran-
domized, errors. In this section, we discuss constructions [33, 43, 48] which transform
a list-decodable code, defined below, into uniquely decodable codes for a particular
error model. These transformations can also be used in the setting of secure sketches,
leading to better tolerance of computationally bounded errors. For some ranges of
parameters, this yields optimal sketches, that is, sketches which meet the Shannon
bound on the fraction of tolerated errors.

List-decodable codes. A code C in a metric space M is called list-decodable with
list size L and distance t if for every point x ∈ M, there are at most L codewords
within distance t of M. A list-decoding algorithm takes as input a word x and returns
the corresponding list c1, c2, . . . of codewords. The most interesting setting is when
L is a small polynomial (in the description size log |M|), and there exists an efficient
list-decoding algorithm. It is then feasible for an algorithm to go over each word in
the list and accept if it has some desirable property. There are many examples of such
codes for the Hamming space; for a survey see Guruswami’s thesis [32]. Recently there
has been significant progress in constructing list-decodable codes for large alphabets,
e.g., [58, 34].

Similarly, we can define a list-decodable secure sketch with size L and distance
t as follows: for any pair of words w,w′ ∈ M at distance at most t, the algorithm
Rec(w′,SS(w)) returns a list of at most L points in M; if dis(w,w′) ≤ t, then one of the
words in the list must be w itself. The simplest way to obtain a list-decodable secure
sketch is to use the code-offset construction of section 5 with a list-decodable code
for the Hamming space. One obtains a different example by running the improved
Juels–Sudan scheme for set difference (Construction 5), replacing ordinary decoding
of Reed–Solomon codes with list decoding. This yields a significant improvement in
the number of errors tolerated at the price of returning a list of possible candidates
for the original secret.

Sieving the list. Given a list-decodable secure sketch SS, all that is needed is to
store some additional information which allows the receiver to disambiguate w from
the list. Let us suggestively name the additional information Tag(w;R), where R
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is some additional randomness (perhaps a key). Given a list-decodable code C, the
sketch will typically look like

SS(w;x) = ( w ⊕ C(x), Tag(w) ).

On inputs w′ and (Δ, tag), the recovery algorithm consists of running the list-decoding
algorithm on w′ ⊕ Δ to obtain a list of possible codewords C(x1), . . . , C(xL). There
is a corresponding list of candidate inputs w1, . . . , wL, where wi = C(xi) ⊕ Δ, and
the algorithm outputs the first wi in the list such that Tag(wi) = tag. We will choose
the function Tag() so that the adversary cannot arrange to have two values in the list
with valid tags.

We consider two Tag() functions, inspired by [33, 43, 48].
1. Recall that for computationally bounded errors, the corrupted string w′ de-

pends on both w and SS(w), but w′ is computed by a probabilistic circuit of size
polynomial in n.

Consider Tag(w) = hash(w), where hash is drawn from a collision-resistant func-
tion family. More specifically, we will use some extra randomness r to choose a key
key for a collision-resistant hash family. The output of the sketch is then

SS(w;x, r) = ( w ⊕ C(x), key(r), hashkey(r)(w) ).

If the list-decoding algorithm for the code C runs in polynomial time, then the adver-
sary succeeds only if he can find a value wi 	= w such that hashkey(wi) = hashkey(w),
that is, only by finding a collision for the hash function. By assumption, a polynomi-
ally bounded adversary succeeds only with negligible probability.

The additional entropy loss, beyond that of the code-offset part of the sketch, is
bounded above by the output length of the hash function. If α is the desired bound on
the adversary’s success probability, then for standard assumptions on hash functions
this loss will be polynomial in log(1/α).

In principle this transformation can yield sketches which achieve the optimal
entropy loss n(h(t/n) − o(1)), since codes with polynomial list size L are known to
exist for error rates approaching the Shannon bound. However, in order to use the
construction the code must also be equipped with a reasonably efficient algorithm
for finding such a list. This is necessary both so that recovery will be efficient and,
more subtly, for the proof of security to go through (that way we can assume that
the polynomial time adversary knows the list of words generated during the recovery
procedure). We do not know of efficient (i.e., polynomial time constructible and
decodable) binary list-decodable codes which meet the Shannon bound for all choices
of parameters. However, when the error rate is near 1

2 such codes are known [35].
Thus, this type of construction yields essentially optimal sketches when the error
rate is near 1/2. This is quite similar to analogous results on channel coding [48].
Relatively little is known about the performance of efficiently list-decodable codes in
other parameter ranges for binary alphabets [32].

2. A similar, even simpler, transformation can be used in the setting of input-
dependent errors (i.e., when the errors depend only on the input and not on the
sketch, but the adversary is not assumed to be computationally bounded). One can
store Tag(w) = (I, hI(w)), where {hi}i∈I comes from a universal hash family mapping

from M to {0, 1}�, where � = log
(

1
α

)
+ logL, and α is the probability of an incorrect

decoding.
The proof is simple: the values w1, . . . , wL do not depend on I, and so for any

value wi 	= w, the probability that hI(wi) = hI(w) is 2−�. There are at most L
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possible candidates, and so the probability that any one of the elements in the list
is accepted is at most L · 2−� = α. The additional entropy loss incurred is at most
� = log

(
1
α

)
+ log(L).

In principle, this transformation can do as well as the randomization approach of
the previous section. However, we do not know of efficient binary list-decodable codes
meeting the Shannon bound for most parameter ranges. Thus, in general, randomizing
the errors (as in the previous section) works better in the input-dependent setting.

9. Secure sketches and efficient information reconciliation. Suppose Al-
ice holds a set w and Bob holds a set w′ that are close to each other. They wish
to reconcile the sets, i.e., to discover the symmetric difference w�w′ so that they
can take whatever appropriate (application-dependent) action to make their two sets
agree. Moreover, they wish to do this communication-efficiently, without having to
transmit entire sets to each other. This problem is known as set reconciliation and
naturally arises in various settings.

Let (SS,Rec) be a secure sketch for set difference that can handle distance up
to t; furthermore, suppose that |w�w′| ≤ t. Then if Bob receives s = SS(w) from
Alice, he will be able to recover w, and therefore w�w′, from s and w′. Similarly,
Alice will be able find w�w′ upon receiving s′ = SS(w′) from Bob. This will be
communication-efficient if |s| is small. Note that our secure sketches for set difference
of sections 6.2 and 6.3 are indeed short—in fact, they are secure precisely because
they are short. Thus, they also make good set reconciliation schemes.

Conversely, a good (single-message) set reconciliation scheme makes a good secure
sketch: simply make the message the sketch. The entropy loss will be at most the
length of the message, which is short in a communication-efficient scheme. Thus, the
set reconciliation scheme CPISync of [51] makes a good secure sketch. In fact, it is
quite similar to the secure sketch of section 6.2, except instead of the top t coefficients
of the characteristic polynomial it uses the values of the polynomial at t points.

PinSketch of section 6.3, when used for set reconciliation, achieves the same pa-
rameters as CPISync of [51], except decoding is faster, because instead of spending
t3 time to solve a system of linear equations, it spends t2 time for Euclid’s algorithm.
Thus, it can be substituted wherever CPISync is used, such as PDA synchroniza-
tion [68] and PGP key server updates [49]. Furthermore, optimizations that improve
computational complexity of CPISync through the use of interaction [50] can also be
applied to PinSketch.

Of course, secure sketches for other metrics are similarly related to information
reconciliation for those metrics. In particular, ideas for edit distance very similar
to ours were independently considered in the context of information reconciliation
by [15].

Appendix A. Proof of Lemma 2.2. Recall that Lemma 2.2 considered random
variables A,B,C and consisted of two parts, which we prove one after the other.

Part (a) stated that for any δ > 0, the conditional entropy H∞(A|B = b) is
at least H̃∞(A|B) − log(1/δ) with probability at least 1 − δ (the probability here is

taken over the choice of b). Let p = 2−H̃∞(A|B) = Eb

[
2−H∞(A|B=b)

]
. By the Markov

inequality, 2−H∞(A|B=b) ≤ p/δ with probability at least 1 − δ. Taking logarithms,
part (a) follows.

Part (b) stated that if B has at most 2λ possible values, then H̃∞(A | (B,C)) ≥
H̃∞((A,B) | C)−λ ≥ H̃∞(A | C)−λ. In particular, H̃∞(A | B) ≥ H∞((A,B))−λ ≥
H∞(A) − λ. Clearly, it suffices to prove the first assertion (the second follows from
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taking C to be constant). Moreover, the second inequality of the first assertion follows
from the fact that Pr[A = a∧B = b | C = c] ≤ Pr[A = a | C = c] for any c. Thus, we
prove only that H̃∞(A | (B,C)) ≥ H̃∞((A,B) | C) − λ:

H̃∞(A | (B,C)) = − log E
(b,c)←(B,C)

[
max

a
Pr[A = a | B = b ∧ C = c]

]

= − log
∑
(b,c)

max
a

Pr[A = a | B = b ∧ C = c] Pr[B = b ∧ C = c]

= − log
∑
(b,c)

max
a

Pr[A = a ∧B = b | C = c] Pr[C = c]

= − log
∑
b

E
c←C

[
max

a
Pr[A = a ∧B = b | C = c]

]

≥ − log
∑
b

E
c←C

[
max
a,b′

Pr[A = a ∧B = b′ | C = c]

]

= − log
∑
b

2−H̃∞((A,B)|C) ≥ − log 2λ2−H̃∞((A,B)|C)

= H̃∞((A,B) | C) − λ .

The first inequality in the above derivation holds since taking the maximum over all
pairs (a, b′) (instead of over pairs (a, b) where b is fixed) increases the terms of the
sum and hence decreases the negative log of the sum.

Appendix B. On smooth variants of average min-entropy and the re-
lationship to smooth Rényi entropy. Min-entropy is a rather fragile measure; a
single high-probability element can ruin the min-entropy of an otherwise good distri-
bution. This is often circumvented within proofs by considering a distribution which
is close to the distribution of interest, but which has higher entropy. Renner and
Wolf [60] systematized this approach with the notion of ε-smooth min-entropy (they
use the term “Rényi entropy of order ∞” instead of “min-entropy”), which considers
all distributions that are ε-close:

Hε
∞(A) = max

B: SD(A,B)≤ε
H∞(B) .

Smooth min-entropy very closely relates to the amount of extractable nearly uniform
randomness: if one can map A to a distribution that is ε-close to Um, then Hε

∞(A) ≥
m; conversely, from any A such that Hε

∞(A) ≥ m, and for any ε2, one can extract
m−2 log( 1

ε2
) bits that are ε+ε2-close to uniform (see [60] for a more precise statement;

the proof of the first statement follows by considering the inverse map, and the proof
of the second follows from the leftover hash lemma, which is discussed in more detail
in Lemma 2.4). For some distributions, considering the smooth min-entropy will
improve the number and quality of extractable random bits.

A smooth version of average min-entropy can also be considered, defined as

H̃ε
∞(A | B) = max

(C,D): SD((A,B),(C,D))≤ε
H̃∞(C | D) .

It similarly relates very closely to the number of extractable bits that look nearly
uniform to the adversary who knows the value of B and is therefore perhaps a better
measure for the quality of a secure sketch that is used to obtain a fuzzy extractor.
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All our results can be cast in terms of smooth entropies throughout, with appropriate
modifications (if input entropy is ε-smooth, then output entropy will also be ε-smooth,
and extracted random strings will be ε further away from uniform). We avoid doing
so for simplicity of exposition. However, for some input distributions, particularly
ones with few elements of relatively high probability, this will improve the result by
giving more secure sketches or longer-output fuzzy extractors.

Finally, a word is in order on the relation of average min-entropy to conditional
min-entropy, introduced by Renner and Wolf in [61], and defined as H∞(A | B) =
− log maxa,b Pr(A = a | B = b) = minb H∞(A | B = b) (an ε-smooth version is defined
analogously by considering all distributions (C,D) that are within ε of (A,B) and
taking the maximum among them). This definition is too strict: it takes the worst-case
b, while for randomness extraction (and many other settings, such as predictability by
an adversary), average-case b suffices. Average min-entropy leads to more extractable
bits. Nevertheless, after smoothing, the two notions are equivalent up to an additive
log(1

ε ) term: H̃ε
∞(A | B) ≥ Hε

∞(A | B) and H∞
ε+ε2(A | B) ≥ H̃ε

∞(A | B) − log( 1
ε2

)
(for the case of ε = 0, this follows by constructing a new distribution that eliminates
all b for which H∞(A | B = b) < H̃∞(A | B)− log( 1

ε2
), which will be within ε2 of the

(A,B) by Markov’s inequality; for ε > 0, an analogous proof works). Note that by
Lemma 2.2(b), this implies a simple chain rule for Hε

∞ (a more general one is given
in [61, section 2.4]): H∞

ε+ε2(A | B) ≥ H̃ε
∞((A,B)) −H0(B) − log( 1

ε2
), where H0(B)

is the logarithm of the number of possible values of B.

Appendix C. Lower bounds from coding. Recall that an (M,K, t)-code is
a subset of the metric space M which can correct t errors (this is slightly different
from the usual notation of coding theory literature).

Let K(M, t) be the largest K for which there exists an (M,K, t)-code. Given any
set S of 2m points in M, we let K(M, t, S) be the largest K such that there exists
an (M,K, t)-code all of whose K points belong to S. Finally, we let L(M, t,m) =
log(min|S|=2m K(n, t, S)). Of course, when m = log |M|, we get that L(M, t, n) =
logK(M, t). The exact determination of quantities K(M, t) and K(M, t, S) is a
central problem of coding theory and is typically very hard. To the best of our
knowledge, the quantity L(M, t,m) was not explicitly studied in any of three metrics
that we study, and its exact determination seems hard as well.

We give two simple lower bounds on the entropy loss (one for secure sketches and
the other for fuzzy extractors) which show that our constructions for the Hamming
and set difference metrics output as much entropy m′ as possible when the original
input distribution is uniform. In particular, because the constructions have the same
entropy loss regardless of m, they are optimal in terms of the entropy loss m − m′.
We conjecture that the constructions also have the highest possible value m′ for all
values of m, but we do not have a good enough understanding of L(M, t,m) (where
M is the Hamming metric) to substantiate the conjecture.

Lemma C.1. The existence of an (M,m,m′, t)-secure sketch implies that m′ ≤
L(M, t,m). In particular, when m = log |M| (i.e., when the password is truly uni-
form), m′ ≤ logK(M, t).

Proof. Assume that SS is such a secure sketch. Let S be any set of size 2m in
M, and let W be uniform over S. Then we must have H̃∞(W | SS(W )) ≥ m′. In
particular, there must be some value v such that H∞(W | SS(W ) = v) ≥ m′. But this
means that conditioned on SS(W ) = v, there are at least 2m

′
points w in S (call this

set T ) which could produce SS(W ) = v. We claim that these 2m
′
values of w form a

code of error-correcting distance t. Indeed, otherwise there would be a point w′ ∈ M
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such that dis(w0, w
′) ≤ t and dis(w1, w

′) ≤ t for some w0, w1 ∈ T . But then we must
have that Rec(w′, v) is equal to both w0 and w1, which is impossible. Thus, the set T
above must form an (M, 2m

′
, t)-code inside S, which means that m′ ≤ logK(M, t, S).

Since S was arbitrary, the bound follows.
Lemma C.2. The existence of (M,m, �, t, ε)-fuzzy extractors implies that � ≤

L(M, t,m) − log(1 − ε). In particular, when m = log |M| (i.e., when the password is
truly uniform), � ≤ logK(M, t) − log(1 − ε).

Proof. Assume that (Gen,Rep) is such a fuzzy extractor. Let S be any set of
size 2m in M, let W be uniform over S, and let (R,P ) ← Gen(W ). Then we must
have that SD ((R,P ), (U�, P )) ≤ ε. In particular, there must be some value p of P
such that R is ε-close to U� conditioned on P = p. In particular, this means that
conditioned on P = p, there are at least (1 − ε)2� points r ∈ {0, 1}� (call this set T )
which could be extracted with P = p. Now, map every r ∈ T to some arbitrary w ∈ S
which could have produced r with nonzero probability given P = p, and call this map
C. C must define a code with error-correcting distance t by the same reasoning as in
Lemma C.1.

Observe that, as long as ε < 1/2, we have 0 < − log(1 − ε) < 1, so the lower
bounds on secure sketches and fuzzy extractors differ by less than a bit.

Appendix D. Analysis of the original Juels–Sudan construction. In this
section we present a new analysis for the Juels–Sudan secure sketch for set difference.
We will assume that n = |U| is a prime power and work over the field F = GF (n).
On input set w, the original Juels–Sudan sketch is a list of r pairs of points (xi, yi)
in F , for some parameter r, s < r ≤ n. It is computed as follows.

Construction 10 (original Juels–Sudan secure sketch [38]). Input: a set w ⊆ F
of size s and parameters r ∈ {s + 1, . . . , n}, t ∈ {1, . . . , s}.

1. Choose p() at random from the set of polynomials of degree at most k =
s− t− 1 over F .
Write w = {x1, . . . , xs}, and let yi = p(xi) for i = 1, . . . , s.

2. Choose r − s distinct points xs+1, . . . , xr at random from F − w.
3. For i = s + 1, . . . , r, choose yi ∈ F at random such that yi 	= p(xi).
4. Output SS(w) = {(x1, y1), . . . , (xr, yr)} (in lexicographic order of xi).

The parameter t measures the error-tolerance of the scheme: given SS(w) and a
set w′ such that w�w′ ≤ t, one can recover w by considering the pairs (xi, yi) for
xi ∈ w′ and running Reed–Solomon decoding to recover the low-degree polynomial
p(·). When the parameter r is very small, the scheme corrects approximately twice as
many errors with good probability (in the “input-dependent” sense from section 8).
When r is low, however, we show here that the bound on the entropy loss becomes
very weak.

The parameter r dictates the amount of storage necessary, one on hand, and also
the security of the scheme (that is, for r = s the scheme leaks all information and
for larger and larger r there is less information about w). Juels and Sudan actually
propose two analyses for the scheme. First, they analyze the case where the secret w
is distributed uniformly over all subsets of size s. Second, they provide an analysis
of a nonuniform password distribution, but only for the case r = n (that is, their
analysis applies only in the small universe setting, where Ω(n) storage is acceptable).
Here we give a simpler analysis which handles nonuniformity and any r ≤ n. We get
the same results for a broader set of parameters.

Lemma D.1. The entropy loss of the Juels–Sudan scheme is at most t log n +
log

(
n
r

)
− log

(
n−s
r−s

)
+ 2.
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Proof. This is a simple application of Lemma 2.2(b). H∞((W, SS(W ))) can be
computed as follows. Choosing the polynomial p (which can be uniquely recovered
from w and SS(w)) requires s− t random choices from F . The choice of the remain-
ing xi’s requires log

(
n−s
r−s

)
bits, and choosing the y′is requires r − s random choices

from F − {p(xi)}. Thus, H∞((W, SS(W ))) = H∞(W ) + (s − t) log n + log
(
n−s
r−s

)
+

(r− s) log(n− 1). The output can be described in log
((

n
r

)
nr

)
bits. The result follows

by Lemma 2.2(b) after observing that (r − s) log n
n−1 < n log n

n−1 ≤ 2.

In the large universe setting, we will have r � n (since we wish to have storage
polynomial in s). In that setting, the bound on the entropy loss of the Juels–Sudan
scheme is in fact very large. We can rewrite the entropy loss as t log n − log

(
r
s

)
+

log
(
n
s

)
+ 2, using the identity

(
n
r

)(
r
s

)
=

(
n
s

)(
n−s
r−s

)
. Now the entropy of W is at most(

n
s

)
, and so our lower bound on the remaining entropy is (log

(
r
s

)
− t log n − 2). To

make this quantity large requires making r very large.

Appendix E. BCH syndrome decoding in sublinear time. We show that
the standard decoding algorithm for BCH codes can be modified to run in time poly-
nomial in the length of the syndrome. This works for BCH codes over any field
GF (q), which include Hamming codes in the binary case and Reed–Solomon for the
case n = q − 1. BCH codes are handled in detail in many textbooks (e.g., [72]); our
presentation here is quite concise. For simplicity, we discuss only primitive, narrow-
sense BCH codes here; the discussion extends easily to the general case.

The algorithm discussed here has been revised due to an error pointed out by Ari
Trachtenberg. Its implementation is available [36].

We will use a slightly nonstandard formulation of BCH codes. Let n = qm − 1
(in the binary case of interest in section 6.3, q = 2). We will work in two finite fields:
GF (q) and a larger extension field F = GF (qm). BCH codewords, formally defined
below, are then vectors in GF (q)n. In most common presentations, one indexes the
n positions of these vectors by discrete logarithms of the elements of F∗: position
i, for 1 ≤ i ≤ n, corresponds to αi, where α generates the multiplicative group F∗.
However, there is no inherent reason to do so: they can be indexed by elements of F
directly rather than by their discrete logarithms. Thus, we say that a word has value
px at position x, where x ∈ F∗. If one ever needs to write down the entire n-character
word in an ordered fashion, one can arbitrarily choose a convenient ordering of the
elements of F (e.g., by using some standard binary representation of field elements);
for our purposes this is not necessary, as we do not store entire n-bit words explicitly,
but rather represent them by their supports: supp(v) = {(x, px) | px 	= 0}. Note that
for the binary case of interest in section 6.3, we can define supp(v) = {x | px 	= 0},
because px can take only two values: 0 or 1.

Our choice of representation will be crucial for efficient decoding: in the more
common representation, the last step of the decoding algorithm requires one to find
the position i of the error from the field element αi. However, no efficient algorithms
for computing the discrete logarithm are known if qm is large (indeed, a lot of cryp-
tography is based on the assumption that such an efficient algorithm does not exist).
In our representation, the field element αi will in fact be the position of the error.

Definition 8. The (narrow-sense, primitive) BCH code of designed distance δ
over GF (q) (of length n ≥ δ) is given by the set of vectors of the form

(
cx
)
x∈F∗

such that each cx is in the smaller field GF (q), and the vector satisfies the constraints∑
x∈F∗ cxx

i = 0 for i = 1, . . . , δ − 1, with arithmetic done in the larger field F .

To explain this definition, let us fix a generator α of the multiplicative group of
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the large field F∗. For any vector of coefficients
(
cx
)
x∈F∗ , we can define a polynomial

c(z) =
∑

x∈GF(qm)∗

cxz
dlog(x),

where dlog(x) is the discrete logarithm of x with respect to α. The conditions of
the definition are then equivalent to the requirement (more commonly seen in pre-
sentations of BCH codes) that c(αi) = 0 for i = 1, . . . , δ − 1, because (αi)dlog(x) =
(αdlog(x))i = xi.

We can simplify this somewhat. Because the coefficients cx are in GF (q), they
satisfy cqx = cx. Using the identity (x + y)q = xq + yq, which holds even in the large
field F , we have c(αi)q =

∑
x	=0 c

q
xx

iq = c(αiq). Thus, roughly a 1/q fraction of the
conditions in the definition are redundant: we need only to check that they hold for
i ∈ {1, . . . , δ − 1} such that q 	 |i.

The syndrome of a word (not necessarily a codeword) (px)x∈F∗ ∈ GF (q)n with
respect to the BCH code above is the vector

syn(p) = p(α1), . . . , p(αδ−1), where p(αi) =
∑
x∈F∗

pxx
i.

As mentioned above, we do not in fact have to include the values p(αi) such that q|i.
Computing with low-weight words. A low-weight word p ∈ GF (q)n can be rep-

resented either as a long string or, more compactly, as a list of positions where it is
nonzero and its values at those points. We call this representation the support list of
p and denote it supp(p) = {(x, px)}x:px 	=0.

Lemma E.1. For a q-ary BCH code C of designed distance δ, one can compute
(1) syn(p) from supp(p) in time polynomial in δ, log n, and |supp(p)|, and
(2) supp(p) from syn(p) (when p has weight at most (δ−1)/2) in time polynomial

in δ and log n.
Proof. Recall that syn(p) = (p(α), . . . , p(αδ−1)), where p(αi) =

∑
x	=0 pxx

i.
Part (1) is easy, since to compute the syndrome we need only to compute the pow-
ers of x. This requires about δ · weight(p) multiplications in F . For part (2), we
adapt Berlekamp’s BCH decoding algorithm, based on its presentation in [72]. Let
M = {x ∈ F∗|px 	= 0}, and define

σ(z)
def
=

∏
x∈M

(1 − xz) and ω(z)
def
= σ(z)

∑
x∈M

pxxz

(1 − xz)
.

Since (1 − xz) divides σ(z) for x ∈ M , we see that ω(z) is in fact a polynomial
of degree at most |M | = weight(p) ≤ (δ − 1)/2. The polynomials σ(z) and ω(z) are
known as the error locator polynomial and evaluator polynomial, respectively; observe
that gcd(σ(z), ω(z)) = 1.

We will in fact work with our polynomials modulo zδ. In this arithmetic the
inverse of (1 − xz) is

∑δ
�=1(xz)

�−1; that is,

(1 − xz)

δ∑
�=1

(xz)�−1 ≡ 1 mod zδ.

We are given p(α�) for � = 1, . . . , δ. Let S(z) =
∑δ−1

�=1 p(α
�)z�. Note that S(z) ≡∑

x∈M px
xz

(1−xz) mod zδ. This implies that

S(z)σ(z) ≡ ω(z) mod zδ.
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The polynomials σ(z) and ω(z) satisfy the following four conditions: they are of
degree at most (δ − 1)/2 each, they are relatively prime, the constant coefficient of σ
is 1, and they satisfy this congruence. In fact, let w′(z), σ′(z) be any nonzero solution
to this congruence, where degrees of w′(z) and σ′(z) are at most (δ − 1)/2. Then
w′(z)/σ′(z) = ω(z)/σ(z). (To see why this is so, multiply the initial congruence by
σ′() to get ω(z)σ′(z) ≡ σ(z)ω′(z) mod zδ. Since both sides of the congruence have
degree at most δ − 1, they are in fact equal as polynomials.) Thus, there is at most
one solution σ(z), ω(z) satisfying all four conditions, which can be obtained from any
σ′(z), ω′(z) by reducing the resulting fraction ω′(z)/σ′(z) to obtain the solution of
minimal degree with the constant term of σ equal to 1.

Finally, the roots of σ(z) are the points x−1 for x ∈ M , and the exact value of
px can be recovered from ω(x−1) = px

∏
y∈M,y 	=x(1 − yx−1) (this is needed only for

q > 2, because for q = 2, px = 1). Note that it is possible that a solution to the
congruence will be found even if the input syndrome is not a syndrome of any p with
weight(p) > (δ− 1)/2 (it is also possible that a solution to the congruence will not be
found at all, or that the resulting σ(z) will not split into distinct nonzero roots). Such
a solution will not give the correct p. Thus, if there is no guarantee that weight(p)
is actually at most (δ − 1)/2, it is necessary to recompute syn(p) after finding the
solution, in order to verify that p is indeed correct.

Representing coefficients of σ′(z) and ω′(z) as unknowns, we see that solving
the congruence requires only solving a system of δ linear equations (one for each
degree of z, from 0 to δ − 1) involving δ + 1 variables over F , which can be done
in O(δ3) operations in F using, e.g., Gaussian elimination. The reduction of the
fraction ω′(z)/σ′(z) requires simply running Euclid’s algorithm for finding the gcd of
two polynomials of degree less than δ, which takes O(δ2) operations in F . Suppose
the resulting σ has degree e. Then one can find the roots of σ as follows. First test
that σ indeed has e distinct roots by testing that σ(z)|zqm −z (this is a necessary and
sufficient condition, because every element of F is a root of zq

m−z exactly once). This
can be done by computing (zq

m

mod σ(z)) and testing if it equals z mod σ; it takes m
exponentiations of a polynomial to the power q, i.e., O((m log q)e2) operations in F .
Then apply an equal-degree-factorization algorithm (e.g., as described in [66]), which
also takes O((m log q)e2) operations in F . Finally, after taking inverses of the roots
of F and finding px (which takes O(e2) operations in F), recompute syn(p) to verify
that it is equal to the input value.

Because m log q = log(n+ 1) and e ≤ (δ − 1)/2, the total running time is O(δ3 +
δ2 log n) operations in F ; each operation in F can done in time O(log2 n), or faster
using advanced techniques.

One can improve this running time substantially. The error locator polynomial
σ() can be found in O(log δ) convolutions (multiplications) of polynomials over F of
degree (δ−1)/2 each [7, section 11.7] by exploiting the special structure of the system
of linear equations being solved. Each convolution can be performed asymptotically
in time O(δ log δ log log δ) (see, e.g., [74]), and the total time required to find σ gets
reduced to O(δ log2 δ log log δ) operation in F . This replaces the δ3 term in the above
running time.

While this is asymptotically very good, Euclidean-algorithm-based decoding [70],
which runs in O(δ2) operations in F , will find σ(z) faster for reasonable values of δ
(certainly for δ < 1000). The algorithm finds σ as follows:

set Rold(z) ← zδ−1, Rcur(z) ← S(z)/z, Vold(z) ← 0, Vcur(z) ← 1.
while deg(Rcur(z)) ≥ (δ − 1)/2:

divide Rold(z) by Rcur(z) to get quotient q(z) and remainder
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Rnew(z);
set Vnew(z) ← Vold(z) − q(z)Vcur(z);
set Rold(z) ← Rcur(z), Rcur(z) ← Rnew(z), Vold(z) ← Vcur(z),

Vcur(z) ← Vnew(z).
set c ← Vcur(0); set σ(z) ← Vcur(z)/c and ω(z) ← z ·Rcur(z)/c

In the above algorithm, if c = 0, then the correct σ(z) does not exist, i.e.,
weight(p) > (δ−1)/2. The correctness of this algorithm can be seen by observing that
the congruence S(z)σ(z) ≡ ω(z) (mod zδ) can have z factored out of it (because S(z),
ω(z), and zδ are all divisible by z) and rewritten as (S(z)/z)σ(z)+u(z)zδ−1 = ω(z)/z
for some u(z). The obtained σ is easily shown to be the correct one (if one exists at
all) by applying [66, Theorem 18.7] (to use the notation of that theorem, set n = zδ−1,
y = S(z)/z, t∗ = r∗ = (δ − 1)/2, r′ = ω(z)/z, s′ = u(z), t′ = σ(z)).

The root finding of σ can also be sped up. Asymptotically, detecting if a polyno-
mial over F = GF (qm) = GF (n+1) of degree e has e distinct roots and finding these
roots can be performed in time O(e1.815(log n)0.407) operations in F using the algo-
rithm of Kaltofen and Shoup [40], or in time O(e2 + (logn)e log e log log e) operations
in F using the EDF algorithm of Cantor and Zassenhaus.13 For reasonable values of e,
the Cantor–Zassenhaus EDF algorithm with Karatsuba’s multiplication algorithm [41]
for polynomials will be faster, giving root-finding running time of O(e2 + elog2 3 log n)
operations in F . Note that if the actual weight e of p is close to the maximum tolerated
(δ − 1)/2, then finding the roots of σ will actually take longer than finding σ.

A dual view of the algorithm. Readers may be more familiar with a different,
evaluation-based formulation of BCH codes, in which codewords are generated as
follows. Let F again be an extension of GF (q), and let n be the length of the
code (note that |F∗| is not necessarily equal to n in this formulation). Fix distinct
x1, x2, . . . , xn ∈ F . For every polynomial c over the large field F of degree at most
n− δ, the vector (c(x1), c(x2), . . . c(xn)) is a codeword if and only if every coordinate
of the vector happens to be in the smaller field: c(xi) ∈ GF (q) for all i. In particular,
when F = GF (q), then every polynomial leads to a codeword, thus giving Reed–
Solomon codes.

The syndrome in this formulation can be computed as follows: given a vector y =
(y1, y2, . . . , yn) find the interpolating polynomial P = pn−1x

n−1 +pn−2x
n−2 + · · ·+p0

over F of degree at most n− 1 such that P (xi) = yi for all i. The syndrome is then
the negative top δ − 1 coefficients of P : syn(y) = (−pn−1,−pn−2, . . . ,−pn−(δ−1)). (It
is easy to see that this is a syndrome: it is a linear function that is zero exactly on
the codewords.)

When n = |F| − 1, we can index the n-component vectors by elements of F∗,
writing codewords as (c(x))x∈F∗ . In this case, the syndrome of (yx)x∈F∗ defined as
the negative top δ − 1 coefficients of P such that for all x ∈ F ∗, P (x) = yx is equal
to the syndrome defined following Definition 8 as

∑
x∈F yxx

i for i = 1, 2, . . . , δ − 1.14

Thus, when n = |F| − 1, the codewords obtained via the evaluation-based definition
are identical to the codewords obtain via Definition 8, because codewords are simply

13See [66, section 21.3], and substitute the most efficient known polynomial arithmetic. For
example, the procedures described in [74] take time O(e log e log log e) instead of time O(e2) to
perform modular arithmetic operations with degree-e polynomials.

14This statement can be shown as follows: because both maps are linear, it is sufficient to prove
that they agree on a vector (yx)x∈F∗ such that ya = 1 for some a ∈ F∗ and yx = 0 for x 	= a. For
such a vector,

∑
x∈F yxxi = ai. On the other hand, the interpolating polynomial P (x) such that

P (x) = yx is −axn−1 −a2xn−2 −· · ·−an−1x− 1 (indeed, P (a) = −n = 1; furthermore, multiplying
P (x) by x− a gives a(xn − 1), which is zero on all of F∗; hence P (x) is zero for every x 	= a).
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elements with the zero syndrome, and the syndrome maps agree.
This is an example of a remarkable duality between evaluations of polynomials

and their coefficients: the syndrome can be viewed either as the evaluation of a
polynomial whose coefficients are given by the vector, or as the coefficients of the
polynomial whose evaluations are given by a vector.

The syndrome decoding algorithm above has a natural interpretation in the
evaluation-based view. Our presentation is an adaptation of Welch–Berlekamp de-
coding as presented in, e.g., [69, Chapter 10].

Suppose n = |F | − 1 and x1, . . . , xn are the nonzero elements of the field. Let
y = (y1, y2, . . . , yn) be a vector. We are given its syndrome syn(y) = (−pn−1,−pn−2,
. . . ,−pn−(δ−1)), where pn−1, . . . , pn−(δ−1) are the top coefficients of the interpolating
polynomial P . Knowing only syn(y), we need to find at most (δ − 1)/2 locations xi

such that correcting all the corresponding yi will result in a codeword. Suppose that
codeword is given by a degree-(n− δ) polynomial c. Note that c agrees with P on all
but the error locations. Let ρ(z) be the polynomial of degree at most (δ− 1)/2 whose
roots are exactly the error locations. (Note that σ(z) from the decoding algorithm
above is the same ρ(z) but with coefficients in reverse order, because the roots of σ
are the inverses of the roots of ρ.) Then ρ(z) ·P (z) = ρ(z) · c(z) for z = x1, x2, . . . , xn.
Since x1, . . . , xn are all the nonzero field elements,

∏n
i=1(z − xi) = zn − 1. Thus,

ρ(z) · c(z) = ρ(z) · P (z) mod

n∏
i=1

(z − xi) = ρ(z) · P (z) mod (zn − 1) .

If we write the left-hand side as αn−1x
n−1 +αn−2x

n−2 + · · ·+α0, then the above
equation implies that αn−1 = · · · = αn−(δ−1)/2 = 0 (because the degree if ρ(z) · c(z)
is at most n − (δ + 1)/2). Because αn−1, . . . , αn−(δ−1)/2 depend on the coefficients
of ρ as well as on pn−1, . . . , pn−(δ−1), but not on lower coefficients of P , we obtain
a system of (δ − 1)/2 equations for (δ − 1)/2 unknown coefficients of ρ. A careful
examination shows that it is essentially the same system we had for σ(z) in the
algorithm above. The lowest-degree solution to this system is indeed the correct ρ, by
the same argument which was used to prove the correctness of σ in Lemma E.1. The
roots of ρ are the error locations. For q > 2, the actual corrections that are needed
at the error locations (in other words, the light vector corresponding to the given
syndrome) can then be recovered by solving the linear system of equations implied
by the value of the syndrome.
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SUB-CONSTANT ERROR LOW DEGREE TEST OF
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Abstract. Given (the table of) a function f : F
m → F over a finite field F, a low degree tester

tests its agreement with an m-variate polynomial of total degree at most d over F. The tester is
usually given access to an oracle A providing the supposed restrictions of f to affine subspaces of
constant dimension (e.g., lines, planes, etc.). The tester makes very few (probabilistic) queries to f
and to A (say, one query to f and one query to A) and decides whether to accept or reject based
on the replies. We wish to minimize two parameters of the tester: its error and its size. The
error bounds the probability that the tester accepts although the function is far from a low degree
polynomial. The size is the number of bits required to write the oracle replies on all possible tester
queries. Low degree testing is a central ingredient in most constructions of probabilistically checkable
proofs (PCPs). The error of the low degree tester is related to the error of the PCP, and its size
is related to the size of the PCP. We design and analyze new low degree testers that have both
subconstant error o(1) and almost-linear size n1+o(1) (where n = |F|m). Previous constructions of
subconstant error testers had polynomial size. These testers enabled the construction of PCPs with
subconstant error, but polynomial size. Previous constructions of almost-linear size testers obtained
only constant error. These testers were used to construct almost-linear size PCPs with constant
error. The testers we present in this work enabled the construction of PCPs with both subconstant
error and almost-linear size.

Key words. low degree testing, plane vs. point test, sampling, probabilistically checkable proofs
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1. Introduction.

1.1. Low degree testing. Let F be a finite field, and let m and d be two
positive integers. [A particular setting of parameters to have in mind is the one used
in constructions of probabilistically checkable proofs: a large field F, a smaller m, and
a fairly large d that satisfy mO(1)d ≤ o(|F|).]

Define P to be the set of all m-variate polynomials of total degree at most d over
F. The agreement of a function f : Fm → F with a low degree polynomial is

agr(f,P)
def
= max

Q∈P

{
Pr

�x∈Fm
[f(�x) = Q(�x)]

}
.

Note that agr(f,P) is simply 1−Δ(f,P), where Δ denotes the (normalized) Hamming
distance between functions that are given by their tables.

A low degree tester is a probabilistic procedure M that is meant to check the
agreement of a function f with a low degree polynomial by making as few queries
to f as possible. If f ∈ P, M should always accept, while if f is far from P (i.e.,
agr(f,P) is small), M should reject with significant probability.

It is easy to see that, when having oracle access only to f , any low degree tester
must make more than d queries. To break this degree barrier, the low degree tester
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is usually given access to an additional oracle A providing the supposed restrictions
of f to affine subspaces of constant dimension (e.g., lines, planes, etc.). We assume,
without loss of generality, that these restrictions in themselves are polynomials of
total degree at most d over the subspaces.

The tester is required to satisfy:
• Completeness: If f ∈ P, then there is an oracle A that makes the tester

accept with probability 1.
• Soundness: If agr(f,P) is small, then for any oracle A the tester may accept

only with a small probability.
Rubinfeld and Sudan [18] designed the line vs. point tester that makes only two

probabilistic queries. This tester picks independently at random a line l in Fm and
a point �x ∈ l, queries the oracle A for the (supposed) restriction of f to l (which is
simply a univariate polynomial of degree at most d over F), queries f at �x, and checks
whether the two restrictions are consistent on �x, i.e., A(l)(�x) = f(�x).

The importance of low degree testers comes from the key role they play in the
construction of probabilistically checkable proofs (PCPs), which are proofs for NP
statements that can be probabilistically verified by making only a constant number of
queries to the proof [4, 10, 2, 1]. This motivated further improvements to low degree
testing.

Specifically, the following parameters were of interest:
1. Queries. How many queries does the tester make?
2. Error. How sound is the tester?
3. Size. How many bits are needed to write the oracle replies on all possible

queries?
Henceforth, the number of queries will always be 2. The two other parameters are
discussed next.

1.1.1. Error. To prove that a low degree tester is sound, most results address
contrapositive arguments of the following type: assume that the tester accepts with
probability γ ≥ γ0, and show the existence of a low degree polynomial that agrees
with f on at least ≈ γ of the points. In this case, we say that γ0 bounds the error of
the tester, since the probability that the tester accepts although the function is very
far from a low degree polynomial is at most γ0.

The first analyses of the line vs. point tester [18, 2, 12] showed only that the error
of the tester is bounded away from 1. The error can be amplified to any constant, by
a constant number of repetitions. Nevertheless, to keep the total number of queries
constant, one cannot perform more than a constant number of repetitions.

Only a later, more careful, inspection [3, 17] revealed that there are low degree
testers with a subconstant error. Specifically, [3, 17] proved claims of the following type
for various low degree testers: there exist (large enough) constants C ≥ 1, a, b ≥ 0,
and a (small enough) constant 0 < c ≤ 1 such that the error is at most Cmadb/|F|c.
In other words, the error can be made arbitrarily small by taking m and d to be small
enough with respect to |F|. The number of queries remains 2.

Arora and Sudan [3] proved that the error of the line vs. point tester is in fact
subconstant. Their proof was algebraic in nature. Raz and Safra [17] proved a sub-
constant error for a slightly different tester, by considering planes that intersect on a
line or a plane and a point within it. Their proof was more combinatorial in nature.
The two proofs led to the construction of PCPs with subconstant error [3, 17, 9].

1.1.2. Size. Let us represent the set of honest oracles by a code. That is, for
every polynomial Q : Fm → F of degree at most d, we have a code word. The code
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word has an entry for every affine subspace s that the tester may query. This entry
contains the oracle’s reply when it is queried regarding s, i.e., the restriction of Q to
s. The size of a tester is the length (in bits) of a code word.

For instance, the size of Rubinfeld and Sudan’s line vs. point tester [18] is roughly

|F|2m (d + 1) log |F|: for every line (defined by two points), the oracle should provide
a univariate polynomial of degree at most d over F. The size of a tester is measured
with respect to n = |Fm|. The size of the line vs. point tester [18] is quadratic n2+o(1).

Alternatively, we refer to the randomness of the tester, which is the amount of
random bits that the tester requires. Note that the size of a tester that uses r random
bits to make q queries to a proof over alphabet Σ is bounded by 2r · q log |Σ|. Thus,
when the number of queries q is constant and the alphabet Σ is relatively small, 2r is
a good estimate on the size.

For instance, to pick a random line and a random point within it, we merely have
to pick a random point �x ∈ Fm and a random direction �y ∈ Fm. The line is �x+ t ·�y for
t ∈ F. Hence, the randomness of the line vs. point tester [18] is 2m log |F| = log(|F|2m).

The size of a tester is related to the size of probabilistically checkable proofs
and locally testable codes constructed by using it. Hence, Goldreich and Sudan [13]
suggested to improve the line vs. point tester by considering a relatively small subset
of lines (instead of all lines). Goldreich and Sudan achieved nonexplicit constant error
tester of almost-linear size n1+o(1) instead of quadratic size n2+o(1).

Shortly afterwards, Ben-Sasson et al. [7] gave an explicit construction of a constant
error line vs. point tester of almost-linear size. Their idea was to choose a line by
picking a uniformly distributed point over Fm (as before) and a direction that is
uniformly distributed over a small ε-biased set S ⊆ Fm. They showed that the error
of this tester is bounded away from 1. Unfortunately, their analysis is inherently able
to show only error larger than 1

2 . It is possible that their tester has smaller error, but
proving it would require a substantially different analysis.

The work of [13, 7] gave rise to explicit constructions of almost-linear size PCPs
with constant error [13, 7, 5]. The recent work of Dinur [8] also constructs almost-
linear size PCPs with constant error, based on the PCP theorem of [2, 1] and the work
of Ben-Sasson and Sudan [6]. Both use low degree testers with constant error. Dinur’s
work [8] also gives new constructions of PCPs without low degree testers. However,
at this point, these constructions achieve neither subconstant error nor almost-linear
size.

1.2. Our contribution: Randomness-efficient subconstant error testers.
We design and analyze two low degree testers that have both subconstant error and
almost-linear size. Subsequent to this work and by using it, we showed a construction
of a PCP with both subconstant error and almost-linear size [15].

Before we present our testers, let us revisit the construction of Ben-Sasson et al.
[7] for constant error and point out the most severe difficulty one encounters when
trying to argue it has error smaller than 1

2 . The reader who is not familiar with the
work of Ben-Sasson et al. may skip this and move directly to the text after Remark 1.1.

Assume a line vs. point tester that inspects only lines whose directions are taken
from a small random set S ⊆ Fm. Recall that Ben-Sasson et al. used a small ε-biased
set because of its pseudorandom properties [7].

Consider two linearly independent directions �y1, �y2 ∈ S. With high probability,
the set S does not contain any additional vector from the linear span of �y1 and �y2

(since the fractional size of the linear span is merely |F|2 / |F|m). Thus, the only
lines inside this two-dimensional linear subspace that get inspected by the tester are
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Fig. 1.1. Acceptance probability 1
2

inside a plane does not necessarily imply agreement with a
low degree polynomial.

those that are parallel to either �y1 or �y2. It is known by a lemma of Polishchuk
and Spielman [16] that if the acceptance probability of the line vs. point test in this
setting approaches 1, then there exists a low degree polynomial for the entire subspace
that agrees with almost all lines. However, it may be the case that the acceptance
probability is as large as 1

2 , although the agreement of those lines with any low degree
polynomial is very small.

Let us demonstrate this in Figure 1.1.
Note that each of the |F|2 points on the plane spanned by �y1 and �y2 can be

uniquely represented as α1�y1 + α2�y2, where �α = (α1, α2) ∈ F2.

Let d � d′ � |F|
4 . Define polynomials C,R ∈ F[α1, α2] (for columns and rows,

respectively) as follows. The degree of C in α1 is d, and the degree in α2 is d′. The
degree of R in α1 is d′, and the degree in α2 is d. Let the |F| columns, i.e., lines
parallel to �y1, agree with C. Let the |F| rows, i.e., lines parallel to �y2, agree with R.
Note that all lines, columns and rows, are assigned (univariate) polynomials of degree
at most d.

Let points in the dark region agree with columns and points in the bright region
agree with rows. Both R and C are polynomials of degree at least d′ 	 d for the
plane that agree with at least 1

2 of the points. However, no polynomial of degree at

most d for the plane agrees with a fraction of more than 4d′

|F| = o(1) of the points. On

the other hand, the acceptance probability of the line vs. point tester on this plane
(where all lines are assigned polynomials of degree at most d) is at least 1

2 .
Remark 1.1. One may consider other low degree testers, such as the line vs. line

tester, in order to solve the problem we described. However, it is not known whether
or not the line vs. line tester (on the plane) with lines parallel to the axes gives a
probability of error lower than 1

2 .
We manage to overcome this difficulty by considering sets that are not pseudo-

random. Our key idea is to consider a subfield H ⊆ F and generate subspaces by
picking directions uniformly over Hm instead of over Fm. Note that this eliminates
the problem we described: for every two �y1, �y2 ∈ Hm, for every two scalars α1, α2 ∈ H,
we have α1�y1 + α2�y2 ∈ Hm.

Moreover, the field structure of H allows us to use the combinatorial approach of
Raz and Safra [17], and, more importantly, it allows us to use induction: the structure
of the problem when restricted to affine subspaces of dimension k ≤ m is the same as
its structure in Fm.

As in the analysis of Raz and Safra [17], we abandon the line vs. point test and
address subspaces of dimension larger than 1 rather than lines. Specifically, given
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1. Pick uniformly and independently at random �z ∈ Fm, �y1, �y2 ∈ Hm.
2. Accept if either �y1, �y2 are linearly dependent or if the plane p through �z

in directions �y1, �y2 satisfies A(p)(�z) = f(�z).

Fig. 1.2. Randomness-efficient plane vs. point tester.

access to f and to an oracle A, our randomness-efficient plane vs. point tester chooses
a plane and a point within it and checks that they are consistent as shown in Figure
1.2.

Note that the same plane p goes through many points �z ∈ Fm and in many
directions �y1, �y2 ∈ Hm. However, the oracle’s reply A(p) depends on the plane p and
not on its representation given by �z and �y1, �y2.

For H = F, the randomness-efficient plane vs. point tester is exactly the plane
vs. point tester of Raz and Safra [17]. However, in our work the more interesting

case is |H| ≤ |F|o(1). In this case, the tester requires only m log |F| + 2m log |H| =
m log |F| (1 + o(1)) bits of randomness. This corresponds to an almost-linear size
n1+o(1) (recall that n = |Fm|). The tester is randomness efficient in comparison to
all known testers with subconstant error, such as the tester of Arora and Sudan [3]
that requires 2m log |F| bits of randomness and the tester of Raz and Safra [17] that
requires 3m log |F| bits of randomness. As to testers with constant error: that of
Ben-Sasson et al. [7] requires m log |F| + O(log log |Fm|) bits of randomness, which
is (usually) less than the randomness of our tester, but the difference is only in the
dependence of the low order term in m.

The tester is clearly complete; namely, if there exists a polynomial Q : Fm → F
of degree at most d such that for every �x ∈ Fm, f(�x) = Q(�x) and for every affine
subspace s the oracle A replies A(s) = Q|s, then the tester accepts with probability 1.
We show that the tester is also sound : if the tester accepts with probability γ, then f
agrees with a polynomial of total degree at most md on a fraction of at least γ − ε of

the points in Fm, where ε ≤ const ·m( 8

√
1
|H| +

4

√
md
|F| ). Note that the analysis works for

any acceptance probability γ. In particular, this means that, when γ is significantly
larger than ε, say, γ ≥ 100ε, f agrees with a polynomial of total degree at most md
on at least ≈ γ of the points. [Even if H = F, the constants 4 and 8 in the error
expression appear to improve on the results of [3, 17], where unspecified constants
were given.]

The downside of the randomness-efficient plane vs. point tester is that it allows
us only to argue something about the agreement of the oracle with a polynomial of
degree md rather than d. Hence, we design another tester that has essentially the
same parameters but ensures agreement with a polynomial of degree at most d.

The additional consideration that comes into play when designing the new tester
is degree preservation. We want the total degree of a polynomial not to decrease when
restricted to most of the subspaces queried by the tester. We achieve this by picking
one of the directions for the subspace (rather than the base point) uniformly from
Fm. In order to keep the size almost linear, this tester considers linear subspaces (i.e.,
affine subspaces through the origin) rather than general affine subspaces. A related
technique was previously used in [7].

Specifically, given access to f and to an oracle A, the randomness-efficient sub-
space vs. point tester chooses a three-dimensional subspace and a point within it and
checks that they are consistent as shown in Figure 1.3.
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1. Pick uniformly and independently at random �z ∈ Fm, �y1, �y2 ∈ Hm.
2. Accept if either �z, �y1, �y2 are linearly dependent or if the linear subspace s

spanned by �z, �y1, �y2 satisfies A(s)(�z) = f(�z).

Fig. 1.3. Randomness-efficient subspace vs. point tester.

This tester uses the same number of random bits as the randomness-efficient
plane vs. point tester m log |F|+ 2m log |H|, and its size is only slightly larger (as the
answer size is larger: the oracle should provide polynomials over three-dimensional
subspaces rather than two-dimensional subspaces). For this small price, we manage
to prove a stronger soundness claim: if the randomness-efficient subspace vs. point
tester accepts with probability γ, then f agrees with a polynomial of total degree at
most d (rather than md) on a fraction of at least γ − ε of the points in Fm, where

ε ≤ const · m( 8

√
1
|H| + 4

√
md
|F| ). This follows rather easily from the soundness of the

randomness-efficient plane vs. point tester together with an argument showing that
the degree of the recovered polynomials must in fact be at most d.

There is a trade-off between the size of the testers and their error. To make the
size as small as possible, one wishes to minimize |H|. In particular, to get an almost-

linear size, one needs to take |H| ≤ |F|o(1). On the other hand, to make the error
as small as possible, one wishes to maximize |H|. In particular, to get a subconstant
error, one needs to take |H| ≥ ω(m8).

All finite fields are isomorphic to GF (pk) for a prime p and a natural number
k. All subfields of GF (pk) are isomorphic to GF (pr) for r|k. For a wide family of
finite fields GF (pk) there are subfields of suitable sizes (see [14, 11] for analysis of the
distribution of k’s with suitable divisors). Though, indeed, not every finite field is
such. We wish to emphasize that, in the settings that interest us (e.g., construction
of PCPs), we get to choose the field. For instance, we can take F = GF (2r1·r2) for
appropriate r1, r2.

1.3. Sampling. A basic step in our proof is the analysis of the sampling prop-
erties of affine subspaces with directions over a subfield. This analysis may be of
independent interest.

By sampling we refer to assertions of the following nature: if one colors a large
enough fraction of the points in Fm green, then a subspace (e.g., a line) picked at
random is likely to hit the green points in almost their true fraction.

First, let us consider the non-randomness-efficient setting. For instance, consider
choosing a line by picking a point and a direction independently at random from
Fm. The indicator variables “is the ith point on the line green?” for i = 1, . . . , |F| are
pairwise independent. Thus, one can easily bound the variance of the number of green
points on a line. This yields a sampling property by Chebyshev’s inequality (see, e.g.,
[3]).

In the randomness-efficient setting, more subtle arguments are needed. For in-
stance, consider the work of Ben-Sasson et al. [7]. They use an ε-biased set S ⊆ Fm

and choose a line by independently picking a uniformly distributed base point in Fm

and a uniformly distributed direction in S. They show that almost-pairwise inde-
pendence still holds, and this allows them to bound the variance, by bounding the
covariances.

Our set of directions is Hm, which does not have a small bias (when H � F).
Nevertheless, we are still able to prove a sampling property. We observe that we
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can directly bound the variance of the number of green points on a line by analyzing
the convolution of two relatively simple functions. We do this by means of Fourier
analysis. The difference between the previous approaches and our approach is that,
instead of giving one bound for the probability that two points i 
= j on a line are
green for every i 
= j, we directly bound the average probability over all pairs i 
= j.

The extension to higher-dimensional subspaces is a relatively simple consequence
of the analysis for lines.

1.4. More randomness-efficient line samplers. Ariel Gabizon has noted
that our analysis implies numerous randomness-efficient line samplers.

Recall that the set Hm for a subfield H ⊆ F—in addition to implying a sampling
property—also has an algebraic structure that is essential for our analysis. However,
if one is interested only in the sampling property, more randomness-efficient construc-
tions may be obtained.

Jointly with Ariel we arrived at the following corollaries to our analysis.
Direct product construction. Our sampling lemma holds for any field F = GF (pk)

and a subset of it H ⊆ F (not necessarily a subfield). Formally we state the following.
Corollary 1.2. For any subset A ⊆ Fm of density μ = |A| / |Fm|, for any ε > 0,

Pr
�x∈Fm,�y∈Hm

[∣∣∣∣ |l�x,�y ∩A|
|l�x,�y|

− μ

∣∣∣∣ ≥ ε

]
≤ 1

|H| ·
μ

ε2
,

where l�x,�y
def
= {�x + t · �y | t ∈ F}.

Linear code construction. Assume a linear code of length k, dimension m, and
relative distance 1 − δ over alphabet F = GF (p), given by its generating matrix

⎛
⎜⎜⎜⎜⎜⎝

− �y1 −

...

− �yk −

⎞
⎟⎟⎟⎟⎟⎠

.

Let S = {�y1, . . . , �yk} ⊆ Fm be the set of rows of the generating matrix. Then our
analysis actually implies the following.

Corollary 1.3. For any subset A ⊆ Fm of density μ = |A| / |Fm|, for any ε > 0,

Pr
�x∈Fm,�y∈S

[∣∣∣∣ |l�x,�y ∩A|
|l�x,�y|

− μ

∣∣∣∣ ≥ ε

]
≤ δ · μ

ε2
,

where l�x,�y
def
= {�x + t · �y | t ∈ F}.

Note that every S ⊆ Fm that is ε-biased forms a generating matrix of a linear

code with distance 1−( 1
|F| +ε · |F|−1

|F| ). Yet, the converse does not necessarily hold, and

the corollary is a strengthening of the sampling lemma of [7] for the case F = GF (p).
A randomness-efficient line sampler can be constructed by using an efficient linear

code. For instance, we can use the Reed–Solomon code that corresponds to S ={
(1, t, t2, . . . , tm−1) | t ∈ F

}
. This code has relative distance 1 − δ for δ = m−1

|F| .

It gives a line sampler that has randomness complexity (m + 1) log |F| and query
complexity |F|.
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1.5. Proof outline. We first prove the soundness of the randomness-efficient
plane vs. point tester and then deduce the soundness of the randomness-efficient
subspace vs. point tester from it. For the purpose of this outline we consider only the
first. Assume that the randomness-efficient plane vs. point tester, given access to an
input function f : Fm → F and oracle A, accepts with probability γ. Let us prove
the existence of a polynomial over Fm of degree at most md that agrees with f on at

least γ − ε fraction of the points, for ε ≤ const ·m( 8

√
1
|H| + 4

√
md
|F| ).

1.5.1. Reformulating our goal. First, let us reformulate the problem in a
more convenient manner. For dimensions k,m, where k ≤ m, let Sm

k be the family
of all affine subspaces of dimension k in Fm that are of the type in which we are
interested. Namely, a k-dimensional affine subspace s ⊆ Fm is in Sm

k if it can be

written as s = {�z +
∑k

i=1 αi�yi | (α1, . . . , αk) ∈ Fk} for some point �z ∈ Fm and some
linearly independent directions �y1, . . . , �yk ∈ Hm (where the linear independence is
over F).

We can express (up to very small additive errors) the acceptance probability of
the tester given access to f : Fm → F and A as follows:

Pr [tester accepts] ≈ Pr
s∈Sm

2 ,�x∈s
[A(s)(�x) = f(�x)]

= E
s∈Sm

2

[
Pr
�x∈s

[A(s)(�x) = f(�x)]

]
.

For an affine subspace s and a degree d, let Qs,d be the set of polynomials of degree at
most d over s. It is evident from the last expression that an oracle A that optimizes
the acceptance probability of the tester on input f assigns each subspace s ∈ Sm

2

a polynomial Q ∈ Qs,d that maximizes the agreement Q(�x) = f(�x) on points �x ∈
s. Hence, for every dimension m, function f : Fm → F, dimension k, and degree
d, consider the average agreement of f with polynomial of degree at most d over
subspaces s ∈ Sm

k :

agrk,md (f)
def
= E

s∈Sm
k

[
max

Q∈Qs,d

{
Pr
�x∈s

[Q(�x) = f(�x)]

}]
.

Then

γ = Pr [tester accepts] � agr2,md (f).

For every m, the space Fm is the only affine subspace of dimension m in Fm, and Hm

contains a basis for Fm, so Sm
m = {Fm}. Thus, for every dimension m, function f :

Fm → F, degree d, and fraction γ, agrm,m
d (f) ≥ γ means that there exists Q : Fm → F

of degree at most d such that Pr�x∈Fm [Q(�x) = f(�x)] ≥ γ.
We conclude that our goal can be reformulated as showing that a large average

agreement over planes implies a large average agreement over Fm. More accurately,
for every function f : Fm → F and fraction 0 ≤ γ ≤ 1,

agr2,md (f) ≥ γ ⇒ agrm,m
md (f) ≥ γ − ε.

1.5.2. Main idea. We fix a dimension m, and our proof is by induction on the
dimension k of the affine subspaces within Fm. We assume that agr2,md (f) ≥ γ and
show that, for every dimension 2 ≤ k ≤ m,

agrk,mkd (f) ≥ γ − k

m
· ε.
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Fix a dimension k such that agrk−1,m
(k−1)d(f) ≥ γ − k−1

m · ε, and let us outline how the

induction step is done.
Consider any affine subspace s ∈ Sm

k . Assume that s contains the point �z ∈ Fm

and is in directions �y1, . . . , �yk ∈ Hm, where �y1, . . . , �yk are linearly independent over
F. The directions within s, {�x1 − �x2 | �x1, �x2 ∈ s}, are precisely

∑k
i=1 αi�yi for �α =

(α1, . . . , αk) ∈ Fk. Moreover, since H is a subfield of F,

�α ∈ Hk ⇔
k∑

i=1

αi�yi ∈ Hm.

Therefore (unlike the construction of [7] via ε-biased sets), the families of affine sub-
spaces we consider preserve the following two properties enabling induction:

1. Self-similarity. Every affine subspace s ∈ Sm
k is mapped onto Fk (via the

natural bijection �z +
∑k

i=1 αi�yi ∈ s ↔ �α ∈ Fk) such that the directions the
tester considers (namely, the vectors in Hm) that are also in s are mapped
onto Hk.

2. Uniformity. For every dimension k′ ≤ k, each subspace s ∈ Sm
k contains

exactly the same number of subspaces s′ ∈ Sm
k′ , and each subspace s′ ∈ Sm

k′

is contained in exactly the same number of subspaces s ∈ Sm
k .

Let f|s : Fk → F denote the restriction of f to s; namely, for every (α1, . . . , αk) ∈
Fk, let f|s(α1, . . . , αk) = f(�z +

∑k
i=1 αi�yi).

Consider some degree d′ and dimension k′ ≤ k. By self-similarity and uniformity,

(1.1) agrk
′,m

d′ (f) = E
s∈Sm

k

[
agrk

′,k
d′ (f|s)

]
.

Thus, it is sufficient (as we will see shortly) to show that, for every function f : Fk → F
and every fraction 0 ≤ γ ≤ 1,

(1.2) agrk−1,k
(k−1)d(f) ≥ γ ⇒ agrk,kkd (f) ≥ γ − ε

m
.

The inductive step is then completed by applying the induction hypothesis as well as
(1.1) and (1.2) above:

agrk,mkd (f) = E
s∈Sm

k

[
agrk,kkd (f|s)

]

≥ E
s∈Sm

k

[
agrk−1,k

(k−1)d(f|s) −
ε

m

]

= agrk−1,m
(k−1)d(f) − ε

m

≥ γ − k

m
· ε.

1.5.3. Proving (1.2). By an adaptation of an idea by Raz and Safra [17], we
can prove that there exists a small error δ � ε/m such that, for every function
f : Fk → F and every fraction 0 ≤ γ ≤ 1,

agrk−1,k
(k−1)d(f) ≥ γ ⇒ agrk,k2(k−1)d(f) ≥ γ2 − δ.

The idea of Raz and Safra [17] centers around a construction of a consistency graph.
The vertices of the graph are the affine subspaces of dimension (k − 1) within Fk
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(namely, hyperplanes). The edges of the graph indicate whether there is an agreement
between assignments of degree (k − 1)d polynomials to the hyperplanes. Due to its
algebraic structure, the graph has a combinatorial property called almost-transitivity.
It allows us to use a graph-theoretic lemma originally proven in [17] and go up from
dimension (k − 1) to dimension k.

The reduction to the graph-theoretic setting introduces a certain deterioration of
the degree and agreement parameters. The degree doubles (from (k−1)d to 2(k−1)d
rather than to kd), and the agreement is raised to the power of two (from γ to γ2 − δ
rather than to γ−ε/m). We cannot tolerate either deterioration, since they ultimately
cause an exponential decay in k. Hence, we apply steps of what we call consolidation
to retain the desired parameters. Similar techniques were already used in previous
work, and they rely on the sampling properties we discussed above.

1.6. Organization. We state the main theorems regarding the soundness of our
testers in section 2. The rest of the paper is devoted to proving these theorems. We
start with some preliminary definitions and propositions in section 3. We discuss
basic properties of affine subspaces with directions over a subfield in section 4. We
prove sampling properties in section 5. This allows us to prove consolidation claims
in section 6. We present and analyze the consistency graph in section 7 and use it for
going up one dimension in section 8. The soundness of the randomness-efficient plane
vs. point tester is proven via induction in section 9. We show that the soundness of
the randomness-efficient subspace vs. point tester follows in section 10. We give the
proof of the combinatorial lemma of [17] in the appendix.

2. Our results.

2.1. Notation. In all that follows, we consider a finite field F, a subfield H ⊆ F,
a dimension m, and a degree d.

Given vectors �y1, . . . , �yk ∈ Fm, we define the linear subspace they span by

span{�y1, . . . , �yk}
def
= {a1�y1 + · · · + ak�yk | a1, . . . , ak ∈ F} .

We say that �y1, . . . , �yk are linearly independent and denote ind(�y1, . . . , �yk) if for every

a1, . . . , ak ∈ F, if
∑k

i=1 ai�yi = 0, then a1 = · · · = ak = 0. Throughout the paper
we will refer to a span over F (and not over a subfield, even if the vectors are over a
subfield). Note that vectors �y1, . . . , �yk ∈ Hm are linearly independent over H if and
only if �y1, . . . , �yk ∈ Hm are linearly independent over F.

Given two sets A,B ⊆ Fm, we define A + B
def
= {�x + �y | �x ∈ A, �y ∈ B }. Given a

point �x ∈ Fm and a set A ⊆ Fm, define �x + A
def
= {�x} + A. A k-dimensional affine

subspace in the vector space Fm is defined by a base point �x ∈ Fm and k linearly
independent directions �y1, . . . , �yk ∈ Fm as

affine(�x; �y1, . . . , �yk)
def
= �x + span{�y1, . . . , �yk}.

Points are 0-dimensional affine subspaces. Lines are 1-dimensional affine subspaces.
Planes are 2-dimensional affine subspaces. Every affine subspace can be equivalently
represented by many choices of vectors �x; �y1, . . . , �yk, but, clearly, there is an affine
transformation between every two representations of the same affine subspace.

An m-variate polynomial over a field F is a function Q : Fm → F of the form

Q(x1, . . . , xm) =
∑

i1,...,im

ai1,...,imxi1
1 . . . xim

m ,
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where all of the coefficients ai1,...,im are in F. The degree of Q is

degQ
def
= max

⎧⎨
⎩

m∑
j=1

ij | ai1,...,im 
= 0

⎫⎬
⎭ ,

where the degree of the identically zero polynomial is defined to be 0.
The restriction of a polynomial Q : Fm → F to an affine subspace s represented

as s = affine(�x; �y1, . . . , �yk) is a polynomial in k variables: Q|s(α1, . . . , αk)
def
= Q(�x +

α1�y1 + . . .+αk�yk). We will sometimes wish to refer to a polynomial Q defined over an
affine subspace s without specifying the subspace’s representation, in which case we
will use the notation Q(�x) for a point �x ∈ s. Note that the degree of the polynomial
does not depend on the representation of s.

2.2. Oracles. We assume an oracle A that, given any affine subspace s in Fm,
provides a polynomial A(s) of degree at most d defined over s. For the sake of
simplicity, we do not refer to both an oracle A and a function f : Fm → F as in
the introduction. Instead, we assume that f ’s values on points �x are given by A(�x).
Our testers query A only on affine subspaces of constant dimension. However, for the
analysis, it will be convenient to consider oracles queried regarding higher-dimensional
affine subspaces as well. Hence, an oracle A is defined to provide a value for any affine
subspace.

For a polynomial Q : Fm → F, we will use the notation (Q ≡ A)(s) to indicate
that Q and A agree on a subspace s, i.e., for every �x ∈ s, Q(�x) = A(s)(�x).

2.3. Low degree testers. Define two predicates for our two testers: for �z ∈ Fm

and �y1, �y2 ∈ Hm, let the following apply:
1. PlanePointA(�z, �y1, �y2): �y1, �y2 are linearly dependent or

A(affine(�z; �y1, �y2))(�z) = A(�z);

2. SpacePointA(�z, �y1, �y2): �z, �y1, �y2 are linearly dependent or

A(affine(�0;�z, �y1, �y2))(�z) = A(�z).

2.4. Soundness. To prove that a tester is sound we assume that it accepts with
probability γ when given access to an oracle A and show the agreement of A with a
low degree polynomial. Specifically, for a subconstant ε, we prove two claims, which
we argue to be essentially equivalent:

1. (Decoding) There exists a low degree polynomial that is consistent with the
oracle A on at least a γ − ε fraction of the points.

2. (List decoding) For every 0 < δ < 1, there exists a short list of t = t(δ) low
degree polynomials that explains all of the tester’s acceptance but a δ + ε
fraction of the probability (explanation follows).

When saying that a list of polynomials explains almost all of the success, we mean
that, with high probability over the random bits of the tester (i.e., over the choice of
a subspace and a point within it), either the tester rejects or one of the polynomials
agrees with the oracle on the subspace and on the point. There is a trade-off between
the amount of success explained and the length of the list: the more one wishes to
explain, the longer the list is.

We wish ε to be as small as possible. The parameter ε we achieve depends on
md
|F| . This comes from the use of the Schwartz–Zippel lemma. It also depends on 1

|H| ,

which is the price we pay for considering the subfield H instead of the entire field F.
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The statement for the randomness-efficient plane vs. point tester is as follows.
Note that we make no effort to optimize the constants.

Theorem 1 (plane vs. point soundness). Fix a dimension m ≥ 2, a field F, a

subfield H ⊆ F, and a degree d. Denote ε
def
= 27m ( 8

√
1
|H| +

4

√
md
|F| ). For every oracle A:

1. (Decoding) There exists a polynomial Q : Fm → F, with degQ ≤ md, such
that

Pr
�x∈Fm

[Q(�x) = A(�x)] ≥ Pr
�z∈Fm,�y1,�y2∈Hm

[
PlanePointA(�z, �y1, �y2)

]
− ε;

2. (List decoding) For every δ > 2ε, there exist t ≤ 2/δ polynomials Q1, . . . , Qt :
Fm → F, with degQi ≤ md, such that

Pr
�z∈Fm,�y1,�y2∈Hm

[
¬PlanePointA(�z, �y1, �y2) ∨ ∃i (Qi ≡ A)(affine(�z; �y1, �y2))

]

≥ 1 − δ − 2ε.

We prove a similar theorem for the randomness-efficient subspace vs. point tester.
Note that for this tester we manage to show agreement with polynomials of degree at
most d rather than md.

Theorem 2 (subspace vs. point soundness). Fix a dimension m ≥ 3, a field F, a

subfield H ⊆ F, and a degree d. Denote ε
def
= 27m ( 8

√
1
|H| +

4

√
md
|F| ). For every oracle A:

1. (Decoding) There exists a polynomial Q : Fm → F, with degQ ≤ d, such that

Pr
�x∈Fm

[Q(�x) = A(�x)] ≥ Pr
�z∈Fm,�y1,�y2∈Hm

[
SpacePointA(�z, �y1, �y2)

]
− 3ε;

2. (List decoding) For every δ > 3ε, there exist t ≤ 2/δ polynomials Q1, . . . , Qt :
Fm → F, with degQi ≤ d, such that

Pr
�z∈Fm,�y1,�y2∈Hm

[
¬SpacePointA(�z, �y1, �y2) ∨ ∃i (Qi ≡ A)(affine(�0;�z, �y1, �y2))

]

≥ 1 − δ − 3ε.

It is interesting to note that our sampling arguments also imply a converse to the
above theorems: for any polynomial Q : Fm → F, with degQ ≤ d, there exists an
oracle A′ agreeing with A on the points and assigning affine subspaces polynomials
of degree at most d such that both of our testers accept with probability at least
Pr�x∈Fm [Q(�x) = A(�x)] − ε when given access to A′.

3. Preliminaries.

3.1. Orthogonality and vector spaces. Given a vector �y ∈ Fm, we write
�y = (y1, . . . , ym). For a sequence of vectors �y1, . . . , �yk, we write, for every 1 ≤ i ≤ k,
�yi = (yi,1, . . . , yi,m).

We define an inner product between two vectors �x, �y ∈ Fm as (�x, �y)
def
=

∑m
i=1 xi·yi.

We say that �x, �y are orthogonal if (�x, �y) = 0.
Proposition 3.1. For every �y 
= �0 ∈ Fm, for every c ∈ F,

Pr
�z∈Hm

[(�z, �y) = c] ≤ 1

|H| .

Proof. As �y 
= �0 ∈ Fm, there exists 1 ≤ i ≤ m such that yi 
= 0. For every fixing
of all �z’s coordinates but the ith, the condition (�z, �y) = c uniquely determines zi to
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some scalar in F. This scalar may or may not be in the subfield H, but, in any case,
there exists at most one possibility for zi ∈ H.

Proposition 3.2. For every �y 
= �0 ∈ Fm, for every k < m,

Pr
�y1,...,�yk∈Hm

[�y ∈ span{�y1, . . . , �yk} | ind(�y1, . . . , �yk)] ≤
1

|H| .

Proof. Consider uniformly distributed linearly independent �y1, . . . , �yk ∈ Hm.
Pick uniformly and independently at random a vector �z 
= �0 ∈ Hm that is or-
thogonal to �y1, . . . , �yk (there exist such vectors since k < m). Note that for every
�y ∈ span{�y1, . . . , �yk} it holds that (�z, �y) = 0. By Proposition 3.1, since �z is uniformly
distributed over Hm \ {�0}, this happens with probability at most 1

|H| .

Proposition 3.3. For every subset A ⊆ Fm with |A| > |F|m−1
, there exist

linearly independent �y1, . . . , �ym ∈ Fm such that, for every 1 ≤ i ≤ m, �yi ∈ A.
Proof. We have

|span(A)| ≥ |A| > |F|m−1
.

Since span(A) is a linear subspace in Fm, we must have |span(A)| = |F|m. Thus,
span(A) = Fm, and so A contains a basis for Fm.

3.2. Polynomials. The Schwartz–Zippel lemma shows that different low degree
polynomials differ on most points,

Proposition 3.4 (Schwartz–Zippel). For two different polynomials Q,P : Fm →
F with degQ,degP ≤ d,

Pr
�x∈Fm

[Q(�x) = P (�x)] ≤ d

|F| .

The Schwartz–Zippel lemma can be viewed as showing the unique-decoding prop-
erty of the Reed–Muller code. This immediately implies a list-decoding property,
namely, that only a few polynomials can agree with a function on many of the points.

We include a simple proof of this property.
Proposition 3.5 (list decoding). Fix a finite field F and a dimension m. Let

f : Fm → F be some function, and consider some degree d ≤ |F|. Then, for any

δ ≥ 2
√

d
|F| , if Q1, . . . , Ql : Fm → F are different polynomials of degree at most d, and

for every 1 ≤ i ≤ l, the polynomial Qi agrees with f on at least a δ fraction of the
points, i.e., Pr�x∈Fm [Qi(�x) = f(�x)] ≥ δ, then l ≤ 2

δ .

Proof. Let δ ≥ 2
√

d
|F| , and assume by way of contradiction that there exist

l = � 2
δ � + 1 different polynomials Q1, . . . , Ql : Fm → F as stated.

For every 1 ≤ i ≤ l, let Ai
def
= {�x ∈ Fm | Qi(�x) = f(�x)}. By inclusion-exclusion,

|Fm| ≥
∣∣∣∣∣

l⋃
i=1

Ai

∣∣∣∣∣ ≥
l∑

i=1

|Ai| −
∑
i �=j

|Ai ∩Aj | .

By Schwartz–Zippel, for every 1 ≤ i 
= j ≤ l, |Ai ∩Aj | ≤ d
|F| · |Fm|. Therefore, by the

premise,

|Fm| ≥ lδ |Fm| −
(
l

2

)
d

|F| |F
m| .

On one hand, since l > 2
δ , we get lδ > 2. On the other hand, since 2

δ ≤
√

|F|
d and

d ≤ |F|, we get
(
l
2

)
≤ |F|

d . This results in a contradiction.
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4. Affine subspaces with directions over a subfield. In this section we
prove basic facts regarding affine subspaces in Fm that are spanned by directions over
a subfield H ⊆ F. All of the properties we prove for such subspaces are well known
when H = F.

For 0 ≤ k ≤ m, consider the set of representations of affine subspaces with
directions over a subfield

Rm
k

def
= {(�z; �y1, . . . , �yk) | �z ∈ Fm, �y1, . . . , �yk ∈ Hm, ind(�y1, . . . , �yk)} .

The corresponding set of affine subspaces is

Sm
k

def
= {affine(r) | r ∈ Rm

k } .

First we would like to assert that every subspace in Sm
k is associated with the same

number of tuples in Rm
k and that every subspace in Sm

k contains the same number of
subspaces in Sm

k′ for k′ ≤ k.
Proposition 4.1 (uniformity). For every dimension k, there is a number T =

T (k) such that, for every s ∈ Sm
k , |{r ∈ Rm

k | s = affine(r)}| = T .
Proposition 4.2 (uniformity downwards). For every dimension k′ ≤ k, there

is a number T = T (k, k′) such that, for every s ∈ Sm
k , |{s′ ∈ Sm

k′ | s′ ⊆ s}| = T .
To prove both assertions we introduce an additional notation allowing us to re-

fer to affine subspaces in Sm
k as isomorphic copies of Fk. Fix an affine subspace

together with a representation for it: s = affine(�z; �y1, . . . , �yk). For a representation
r = (�α0; �α1, . . . , �αk′) of a k′-dimensional affine subspace within Fk, we define the
representation r relative to (the representation of) the space s by

rs
def
=

(
�z +

k∑
i=1

�α0,i�yi ;

k∑
i=1

�α1,i�yi, . . . ,

k∑
i=1

�αk′,i�yi

)
.

Note that, since �y1, . . . , �yk are linearly independent, if two representations r, r′ are the
same relative to a subspace s, rs = r′s, then they are the same representation r = r′.

Denote the corresponding relative affine subspace:

affines(r)
def
= affine(rs).

Note that, for every r, affines(r) ⊆ s. Moreover, if affine(r) = affine(r′), then
affines(r) = affines(r

′). Now the above two propositions follow from the following
proposition.

Proposition 4.3. For every subspace s ∈ Sm
k , for every dimension k′ ≤ k,

S1
def
= |{r ∈ Rm

k′ | affine(r) ⊆ s}| =
∣∣Rk

k′

∣∣ def
= S2.

Proof. Fix a subspace s ∈ Sm
k , and fix a tuple (�z; �y1, . . . , �yk) ∈ Rm

k , with s =
affine(�z; �y1, . . . , �yk).

1. S1 ≥ S2: For every tuple r = (�α0; �α1, . . . , �αk′) ∈ Rk
k′ , the tuple rs satisfies

rs ∈ Rm
k′ and affine(rs) ⊆ s.

2. S1 ≤ S2: For every tuple r ∈ Rm
k′ satisfying affine(r) ⊆ s, there exists exactly

one α = (�α0; �α1, . . . , �αk′), �α0, �α1, . . . , �αk′ ∈ Fk, ind(�α1, . . . , �αk′), such that
r = αs. Since r ∈ Rm

k′ and �y1, . . . , �yk ∈ Hm, also �α1, . . . , �αk′ ∈ Hk.
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Every subspace in Sm
k is contained in the same number of subspaces in Sm

k′ for
k′ ≥ k.

Proposition 4.4 (uniformity upwards). For every dimension k ≤ k′ ≤ m, there
is a number T = T (m, k, k′) such that, for every subspace s ∈ Sm

k ,

|{s′ ∈ Sm
k′ | s′ ⊇ s}| = T.

Proof. Let us introduce an additional piece of notation: Lm
k′ is the set of all linear

subspaces of dimension k′ in Fm spanned by vectors from Hm.
Fix s = affine(�z; �y1, . . . , �yk) ∈ Sm

k . Since �y1, . . . , �yk ∈ Hm are linearly indepen-
dent, the proposition will clearly follow if we prove the following:

S1
def
= |{s′ ∈ Sm

k′ | s′ ⊇ s}| = |{Y ′ ∈ Lm
k′ | Y ′ ⊇ {�y1, . . . , �yk}}|

def
= S2.

1. S1 ≤ S2: Let s′ = affine(�z′; �y′1, . . . , �y
′
k′) ∈ Sm

k′ , (�z′; �y′1, . . . , �y
′
k′) ∈ Rm

k′ , s′ ⊇ s.
Let Y ′ = span{�y′1, . . . , �y′k′}. Clearly, Y ′ is in Lm

k′ , and Y ′ is uniquely defined
by s′, s′ = �z′ + Y ′. It holds that �z ∈ s ⊆ s′ = �z′ + Y ′; thus �z′ ∈ �z + Y ′, and,
hence, s′ = �z + Y ′. Let 1 ≤ i ≤ k. It holds that �z + �yi ∈ s ⊆ s′. This implies
that �z + �yi ∈ �z + Y ′. Hence, �yi ∈ Y ′. Therefore, {�y1, . . . , �yk} ⊆ Y ′.

2. S1 ≥ S2: Let Y ′ ∈ Lm
k′ , Y ′ ⊇ {�y1, . . . , �yk}. Clearly, �z + Y ′ ∈ Sm

k′ and
s ⊆ �z + Y ′.

Uniformity is so important because it allows us to count in several ways. A simple
argument of this nature is that the fraction of affine subspaces s ∈ Sm

k satisfying some
condition is exactly the same as the fraction of r ∈ Rm

k such that affine(r) satisfies
the condition. Let us demonstrate a more sophisticated argument of this nature. Fix
k′ ≤ k. Suppose that we have a predicate R indicating whether an affine subspace
s ∈ Sm

k and an affine subspace s′ ∈ Sm
k′ contained in it, s′ ⊆ s, satisfy some relation.

Then

E
s

[
Pr
s′⊆s

[R(s, s′)]

]
= E

s′

[
Pr
s⊇s′

[R(s, s′)]

]
.

The intersection between two subspaces s1 ∈ Sm
k(1) and s2 ∈ Sm

k(2) is again (pro-

vided it is not empty) a subspace in Sm
k(3) for some k(3).

Proposition 4.5 (closure under intersection). If s1 ∈ Sm
k(1) and s2 ∈ Sm

k(2) ,

where s1 ∩ s2 
= φ, then there exists k(3) such that s1 ∩ s2 ∈ Sm
k(3) .

Proof. Write s1 = �z1 + V1 and s2 = �z2 + V2, where �z1, �z2 ∈ Fm and V1, V2 ⊆ Fm

are linear subspaces spanned by vectors in Hm. Assume that �x ∈ s1 ∩ s2. Then we
can alternatively write s1 = �x + V1 and s2 = �x + V2. Thus, s1 ∩ s2 = �x + (V1 ∩
V2). The proposition follows by noticing that V1 ∩ V2 can be spanned by vectors
in Hm.

A useful representation of affine subspaces is given in the following proposition.
Proposition 4.6 (affine subspaces as solutions of linear equations). Let s =

affine(�z; �y1, . . . , �yk) ∈ Sm
k , and let �α1, . . . , �αm−k ∈ Hm be (m−k) linearly independent

vectors orthogonal to �y1, . . . , �yk ∈ Hm. Then

s = {�x ∈ Fm | ∀1 ≤ j ≤ m− k, (�x, �αj) = (�z, �αj)} .

Proof. Fix �x ∈ s. Hence, there exists �c ∈ Fk such that �x = �z +
∑k

i=1 ci�yi. For
every 1 ≤ j ≤ m− k,

(�x, �αj) =

(
�z +

k∑
i=1

ci�yi, �αj

)
= (�z, �αj) +

k∑
i=1

ci · (�yi, �αj) = (�z, �αj).
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Thus, s ⊆ {�x ∈ Fm | ∀1 ≤ j ≤ m− k, (�x, �αj) = (�z, �αj)}. The proposition follows by
noticing that, in addition, the two sets are of size

∣∣Fk
∣∣.

5. Affine subspaces with directions over a subfield sample well. We say
that an affine subspace s in Fm samples a set A ⊆ Fm well if the fraction of points

from A contained in it, i.e., |s∩A|
|s| , is approximately |A|

|Fm| . We say that a distribution

D on affine subspaces in Fm samples well if, no matter how one fixes a large enough
subset A ⊆ Fm, a random subspace s ∼ D samples A well with high probability. In
this section we use Fourier analysis to show that the distributions induced by our
testers sample well.

5.1. Fourier transform. Let (G,+) be a finite Abelian group. Consider func-
tions from the group to the complex numbers f : G → C. One example for such
a function is the indicator function of a multiset A ⊆ G, i.e., the function IA that
assigns every �x ∈ G its multiplicity in A.

We define an inner product between functions f, g : G → C as

〈f, g〉 def
=

1

|G|
∑
x∈G

f(x)g(x).

A character of G is a homomorphism χ : G → C∗, where C∗ is the multiplicative
group of the complex numbers. Namely, for every x, y ∈ G,

χ(x + y) = χ(x) · χ(y).

Every group G trivially has identically 1 function as a character.
It can be shown that the set of all characters of G forms an orthonormal basis

for the space of all functions f : G → C under the inner product defined above.
Hence, every function f : G → C can be equivalently represented as f(x) =

∑
χ f̂(χ) ·

χ(x), where f̂(χ)
def
= 〈f, χ〉 is called the Fourier coefficient of f corresponding to the

character χ. The linear transformation from f to f̂ is called the Fourier transform
of f .

We will need two basic facts regarding the Fourier transform.
Proposition 5.1 (Parseval’s identity). For two functions f, g : G → C, 〈f, g〉 =

|G| · 〈f̂ , ĝ〉 =
∑

χ f̂(χ)ĝ(χ).
Define the convolution of two functions f, g : G → C, denoted (f ∗ g) : G → C, as

(f ∗ g)(x)
def
= 1

|G|
∑

y∈G f(y)g(x− y).

Proposition 5.2 (convolution formula). Fix two functions f, g : G → C. For

every character χ of G, (̂f ∗ g)(χ) = f̂(χ) · ĝ(χ).
We focus on the additive group G = Fm for some finite field F = GF (pk). The

field F is also viewed as a vector space of dimension k over the field GF (p).
Denote ωp = e2πi/p the pth primitive root of unity in C. For every α ∈ Fm, there

is a character χα : Fm → C,

χα(x)
def
= ω

∑m
i=1(αi,xi)

p .

Note that we view αi, xi as vectors in GF (p)k. Their inner product is in GF (p) and
so is the sum in the above expression.

For a function f : Fm → C, we denote its Fourier coefficient corresponding to the
character χα by f̂(α).
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5.2. Sampling lemma. In this subsection we prove our basic lemma via Fourier
analysis. Given z, y ∈ Fm and a subset A ⊆ Fm, define Xz,y to be the number of c ∈ F
satisfying z + c · y ∈ A. Clearly, the expectation of Xz,y when picking independently

at random z ∈ Fm and y ∈ Hm is |F| · |A|
|Fm| . We bound the variance of Xz,y, implying

that it is concentrated around its expectation.
Lemma 5.3. For any subset A ⊆ Fm of density μ = |A|/|Fm|,

Var
z∈Fm,y∈Hm

[Xz,y] ≤ |F|2 μ

|H| .

Proof. If we denote the indicator function of A by IA, and the indicator function
of the multiset {c · y | c ∈ F} by IFy, we can express:

Xz,y =
∑
x∈Fm

IA(x)IFy(z − x) = |Fm| · (IA ∗ IFy)(z).

Hence, by Parseval’s identity and the convolution formula,

E
z∈Fm,y∈Hm

[
X2

z,y

]
=

1

|Fm| |Hm| ·
∑

y∈Hm

∑
z∈Fm

(|Fm| (IA ∗ IFy)(z))
2

=
|Fm|2

|Hm| ·
∑

y∈Hm

∑
α∈Fm

∣∣∣ ̂(IA ∗ IFy)(α)
∣∣∣2

=
|Fm|2

|Hm| ·
∑

y∈Hm

∑
α∈Fm

∣∣∣ÎA(α)
∣∣∣2 ·

∣∣∣ÎFy(α)
∣∣∣2 .

By definition, for any multiset S ⊆ Fm, ÎS(�0) = |S|
|Fm| (where |S| =

∑
�x∈Fm IS(�x)),

and hence

E
z∈Fm,y∈Hm

[
X2

z,y

]
=

|Fm|2

|Hm| ·
∑

y∈Hm

⎛
⎝∣∣∣ÎA(�0)

∣∣∣2 ·
∣∣∣ÎFy(�0)

∣∣∣2 +
∑

α�=�0∈Fm

∣∣∣ÎA(α)
∣∣∣2 ·

∣∣∣ÎFy(α)
∣∣∣2
⎞
⎠

=

(
|F| |A|
|Fm|

)2

+
∑

α�=�0∈Fm

⎛
⎝∣∣∣ÎA(α)

∣∣∣2 · |Fm|2

|Hm|
∑

y∈Hm

∣∣∣ÎFy(α)
∣∣∣2
⎞
⎠ .

We will show that |Fm|2
|Hm| ·

∑
y∈Hm |ÎFy(α)|2 ≤ |F|2

|H| . Let us see how the lemma follows.

Bu using this bound and applying Parseval’s identity again, we get

E
z∈Fm,y∈Hm

[
X2

z,y

]
≤

(
|F| |A|
|Fm|

)2

+
|F|2

|H| ·
∑

α�=�0∈Fm

∣∣∣ÎA(α)
∣∣∣2

≤
(
|F| |A|
|Fm|

)2

+
|F|2

|H| · 1

|Fm| ·
∑
z∈Fm

|IA(z)|2

=

(
|F| |A|
|Fm|

)2

+
|F|2

|H| · |A|
|Fm| .

By linearity of expectations,

E
z∈Fm,y∈Hm

[Xz,y] =
|F| |A|
|Fm| .
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Therefore,

Var
z∈Fm,y∈Hm

[Xz,y] = E
z,y

[
X2

z,y

]
− E

z,y
[Xz,y]

2

≤
(
|F| |A|
|Fm|

)2

+
|F|2

|H| · |A|
|Fm| −

(
|F| |A|
|Fm|

)2

= |F|2 μ

|H| .

We conclude that proving the lemma boils down to proving the following.
Claim 5.3.1. For every α 
= �0 ∈ Fm,

1

|Hm| ·
∑

y∈Hm

∣∣∣ÎFy(α)
∣∣∣2 ≤ |F|2

|Fm|2
· 1

|H| .

Proof. Assume that F = GF (pk). Fix some α 
= �0 ∈ Fm.

∣∣∣ÎFy(α)
∣∣∣= |〈IFy, χα〉|=

∣∣∣∣∣
1

|Fm| ·
∑
z∈Fm

IFy(z)ω
−

∑m
i=1(αi,zi)

p

∣∣∣∣∣=
∣∣∣∣∣

1

|Fm| ·
∑
c∈F

ω
−

∑m
i=1(αi,c·yi)

p

∣∣∣∣∣.

Multiplication by a field element a ∈ F in the field F = GF (pk) corresponds to a linear
transformation in the vector space GF (p)k. That is, for every a ∈ F, there exists a
k×k matrix Ma over GF (p) such that, for every b ∈ F = GF (p)k, a ·b = Mab. Hence,

m∑
i=1

(αi, c · yi) =

m∑
i=1

(αi,Myi
c)

=

m∑
i=1

(MT
yi
αi, c)

=

m∑
i=1

(MT
yi
αi, c).

Thus, for every y ∈ Hm,

∣∣∣ÎFy(α)
∣∣∣ =

⎧⎨
⎩

0
∑m

i=1 M
T
yi
αi 
= �0,

|F|
|Fm| otherwise.

Assume that 1 ≤ i ≤ m is such that αi 
= �0 ∈ GF (p)k. Note that, for every
a1 
= a2 ∈ F, we know that MT

a1
αi 
= MT

a2
αi. (For every b 
= 0 ∈ F, a1 · b 
= a2 · b.

Thus, for every b 
= �0 ∈ GF (p)k, (Ma1 −Ma2)b 
= �0 and for every b 
= �0 ∈ GF (p)k,
MT

a1
b −MT

a2
b = (Ma1

−Ma2
)T b 
= �0.) Hence, for every v ∈ GF (p)k, there exists at

most one a ∈ H for which MT
a αi = v. In particular,

Pr
�y∈Hm

⎡
⎣MT

yi
αi = −

∑
j �=i

MT
yj
αj

⎤
⎦ ≤ 1

|H| .

The claim follows.
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Remark 5.4. To get the corollaries stated in the introduction, note the following:
1. Only Claim 5.3.1 uses the nature/structure of Hm.
2. Claim 5.3.1 does not require H to be a subfield of F. Its proof holds for any

subset H ⊆ F.
3. If F = GF (p), then for any subset S ⊆ Fm, for any �α 
= �0 ∈ Fm,

Pr
�y∈S

[
m∑
i=1

MT
yi
αi 
= �0

]
= Pr

�y∈S

[
m∑
i=1

yi · αi 
= 0

]
= Pr

�y∈S
[(�y, �α) 
= 0].

We have that min�α�=�0∈Fm Pr�y∈S [(�y, �α) 
= 0] is the relative distance of the lin-
ear code obtained when using the vectors of S as the rows of a generating
matrix.

5.3. Affine subspaces sample well. By using the sampling lemma (Lemma 5.3),
we can prove that the uniform distribution over lines in Sm

1 samples well. Note that
the sampling lemma does not show exactly this, as it considers y uniformly distributed
over Hm instead of over Hm \ {�0}.

Lemma 5.5. For any A ⊆ Fm of density μ = |A|/|Fm|,

Var
l∈Sm

1

[
|l ∩A|
|l|

]
≤ μ

|H| .

Proof. Note that the probability that a random point in Fm is in A is the same
as the expected fraction of points in A on a random line in Sm

1 :

E
p∈Sm

0

[
|p ∩A|
|p|

]
= E

l∈Sm
1

[
|l ∩A|
|l|

]
= μ,

but the variance may only decrease when considering lines rather than points:

Var
p∈Sm

0

[
|p ∩A|
|p|

]
≥ Var

l∈Sm
1

[
|l ∩A|
|l|

]
.

Hence, since Var [X] = E
[
(X − E [X])2

]
and expectations satisfy that, for every ran-

dom variable Y and set A, E [Y ] = Pr [Y ∈ A]·E [Y |Y ∈ A]+Pr [Y /∈ A]·E [Y |Y /∈ A],

Var
z∈Fm,y∈Hm

[
1

|F| ·Xz,y

]
=

1

|H|m · Var
p∈Sm

0

[
|p ∩A|
|p|

]
+

(
1 − 1

|H|m
)
· Var
l∈Sm

1

[
|l ∩A|
|l|

]

≥ 1

|H|m · Var
l∈Sm

1

[
|l ∩A|
|l|

]
+

(
1 − 1

|H|m
)
· Var
l∈Sm

1

[
|l ∩A|
|l|

]

= Var
l∈Sm

1

[
|l ∩A|
|l|

]
.

The lemma follows from Lemma 5.3.
By using the analysis for dimension 1, we can bound the variance of the hitting

rate for any larger dimension,
Lemma 5.6. Fix dimensions k and m, 1 ≤ k ≤ m. For any A ⊆ Fm of density

μ = |A|/|Fm|,

Var
s∈Sm

k

[
|s ∩A|
|s|

]
≤ μ

|H| .
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Proof. Pick s ∈ Sm
k and additional r ∈ Rk

1 independently at random. Denote by
l = affines(r) the line within s corresponding to r (the notation affines was introduced
in section 4). By uniformity, l is uniformly distributed in Sm

1 . Hence, by Lemma 5.5
and uniformity,

Var
s

[
|s ∩A|
|s|

]
= Var

s

[
E
r

[
|l ∩A|
|l|

]]

≤ Var
s,r

[
|l ∩A|
|l|

]

≤ μ

|H| .

We can now bound the deviation of the hitting rate from its expected value.
Corollary 5.7 (sampling). Fix dimensions k and m, 1 ≤ k ≤ m. Fix A ⊆ Fm

of density μ = |A| / |Fm|. Then, for any ε > 0,

Pr
s∈Sm

k

[∣∣∣∣ |s ∩A|
|s| − μ

∣∣∣∣ ≥ ε

]
≤ μ

ε2 |H| .

Proof. Apply Lemma 5.6 and then Chebyshev’s inequality.

5.4. Linear subspaces sample well. We can similarly prove that linear sub-
spaces with one direction chosen from Fm and all other directions chosen from Hm

sample well. We will need this lemma to analyze the randomness-efficient subspace
vs. point tester.

Lemma 5.8. Fix dimensions k and m, 1 ≤ k < m. Fix a set A ⊆ Fm of density
μ = |A|/|Fm|. Pick uniformly �z ∈ Fm, �y1, . . . , �yk ∈ Hm, such that �z, �y1, . . . , �yk are
linearly independent. Denote s = affine(�0;�z, �y1, . . . , �yk). Then

E
s

[(
|s ∩A|
|s| − μ

)2
]
≤ μ

|H| +
1

|F| .

Proof. Pick an additional scalar α ∈ F independently at random. Let sα =
affine(α�z; �y1, . . . , �yk). Note that sα is distributed in Sm

k as follows: with probability
1
|F| , sα is uniformly distributed in the set of affine subspaces in Sm

k through the origin;
with probability 1 − 1

|F| , sα is uniformly distributed in the set of affine subspaces in

Sm
k that do not contain the origin. Therefore,

E
s,α

[(
|sα ∩A|
|sα|

− μ

)2
]
≤ 1 · E

s′∈Sm
k

[(
|s′ ∩A|
|s′| − μ

)2
]

+
1

|F| · 1

= Var
s′∈Sm

k

[
|s′ ∩A|
|s′|

]
+

1

|F| .

By Lemma 5.6,

E
s,α

[(
|sα ∩A|
|sα|

− μ

)2
]
≤ μ

|H| +
1

|F| .

By Jensen inequality,

E
s

[(
|s ∩A|
|s| − μ

)2
]
≤ E

s,α

[(
|sα ∩A|
|sα|

− μ

)2
]
.

The lemma follows.
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We can now bound the deviation of the hitting rate from its expected value.
Corollary 5.9 (sampling). Fix dimensions k and m, 1 ≤ k < m. Fix a set

A ⊆ Fm of density μ = |A|/|Fm|. Pick uniformly �z ∈ Fm, �y1, . . . , �yk ∈ Hm, such that
�z, �y1, . . . , �yk are linearly independent. Denote s = affine(�0;�z, �y1, . . . , �yk). Then, for
any ε > 0,

Pr
s

[∣∣∣∣ |s ∩A|
|s| − μ

∣∣∣∣ ≥ ε

]
≤ 1

ε2
·
(

μ

|H| +
1

|F|

)
.

Proof. Apply Markov inequality on Lemma 5.8.

6. Consolidation. In this section we show that weak low degree testing claims
imply strong low degree testing claims. Specifically, we are interested in the following
(for exact definitions, see the next subsections):

1. Decoding/list decoding : By decoding we refer to finding a single polynomial
Q : Fm → F agreeing with the oracle on many of the points. By list decoding
we refer to finding a short list of polynomials Q1, . . . , Qt : Fm → F explaining
almost all of the acceptance probability of a tester.

2. Consistency consolidation: We are able to construct polynomials Q : Fm → F
agreeing with the oracle on some fraction of the points and wish to find
polynomials agreeing with the oracle on a larger fraction of the points.

3. Degree consolidation: We are able to construct polynomials Q : Fm → F of
degree at most d′ ≥ d and wish to find polynomials of degree at most d.

We call such arguments consolidating arguments. They are standard in the low
degree testing literature (see, e.g., [3, 17, 9]); however, they require some adaptation
to our new setting. In the following subsections we provide the statements and the
proofs of the exact claims we need.

6.1. From decoding to list decoding. If we have a way to decode, then we
can list decode by repeatedly applying decoding. In our setting, it is easy to force
the decoding process to output a polynomial that differs from existing polynomials
by modifying the oracle.

Lemma 6.1 (from decoding to list decoding). Assume that |F| ≥ 4. Fix a
distribution D over affine subspaces of dimension k > 0 in Fm. Fix a function
f : R → R and a degree d′ such that d ≤ d′ ≤ |F| − 3. If
(decoding):
for every success probability 0 < γ ≤ 1 and oracle A,

(much consistency)

E
s∼D

[
Pr
�x∈s

[A(s)(�x) = A(�x)]

]
≥ γ

implies
(a relatively low degree polynomial that slightly agrees with the oracle),
there exists a polynomial Q : Fm → F, with degQ ≤ d′, such that

Pr
�x∈Fm

[Q(�x) = A(�x)] ≥ f(γ).

Then
(list-decoding):
for every oracle A,
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(almost all consistency is explained by a relatively short list),

fix ε0
def
=

√
d′

|F| . For every ε0 < δ < 1 such that δ′
def
= f (δ − ε0) − ε0 ≥ 2ε0,

there exists a list of t ≤ 2/δ′ polynomials Q1, . . . , Qt : Fm → F, with degQi ≤
d′, such that

E
s∼D

[
Pr
�x∈s

[A(s)(�x) 
= A(�x) ∨ ∃i (Qi ≡ A)(s)]

]
≥ 1 − δ.

Proof. Assume by way of contradiction that decoding holds and there exists an
oracle A for which there exists ε0 < δ < 1 satisfying f (δ − ε0) − ε0 ≥ 2ε0 such that
there is no list decoding for δ.

Let Q1, . . . , Qt : Fm → F be all polynomials of degree at most d′ for which

Pr
�x∈Fm

[Qi(�x) = A(�x)] ≥ δ′.

By Proposition 3.5, t ≤ 2/δ′. By our assumption, Q1, . . . , Qt is not a list decoding
for δ. Note that t ≤ 1/ε0.

When picking a subspace s ∼ D and a point �x uniformly distributed in s, define
the following events:

1. C: A(s)(�x) = A(�x) (consistent).
2. P : ∃i ∈ [t], A(�x) = Qi(�x) (point explained).
3. S: ∃i ∈ [t], (Qi ≡ A)(s) (subspace explained).

By using this notation, the contradicting assumption implies that there is much con-
sistency within unexplained subspaces:

Pr
s,�x

[C ∧ ¬S] = 1 − Pr
s,�x

[¬C ∨ S] = 1 − E
s

[
Pr
�x

[¬C ∨ S]

]
> δ.

When C and P both happen, the polynomial A(s) agrees with a polynomial Qi for
some i ∈ [t] on the point �x. Hence, by a union bound over the i ∈ [t] and by the
Schwartz–Zippel lemma, an unexplained subspace is rarely consistent with explained
points:

Pr
s,�x

[C ∧ P |¬S] ≤ td′

|F| ≤
1

ε0
· ε20 = ε0.

Thus, there is much consistency on unexplained points:

Pr
s,�x

[C ∧ ¬P ] ≥ Pr
s,�x

[C ∧ ¬P ∧ ¬S]

= Pr
s,�x

[C ∧ ¬S] − Pr
s,�x

[C ∧ P ∧ ¬S]

≥ Pr
s,�x

[C ∧ ¬S] − Pr
s,�x

[C ∧ P |¬S]

> δ − ε0.

Pick an arbitrary polynomial Q′ : Fm → F, with degQ′ = d′ + 1. Define a new oracle
A′ as follows: A′ assigns Q′(�x) to all explained points �x and agrees with A on all
other affine subspaces (recall that points are affine subspaces of dimension 0). Hence,

E
s∼D

[
Pr
�x∈s

[A′(s)(�x) = A′(�x)]

]
≥ Pr

s∼D,�x∈s
[A(s)(�x) = A(�x) ∧ A(�x) = A′(�x)]

≥ Pr
s,�x

[C ∧ ¬P ]

> δ − ε0.
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Thus, by decoding, there exists a polynomial Q, degQ ≤ d′, agreeing with A′ on
many of the points

Pr
�x∈Fm

[A′(�x) = Q(�x)] ≥ f (δ − ε0) .

The polynomials Q and Q′ are necessarily distinct (they do not have the same degree).
Thus, by the Schwartz–Zippel lemma,

Pr
�x∈Fm

[A′(�x) = Q(�x) ∧ A′(�x) 
= A(�x)] ≤ Pr
�x∈Fm

[Q′(�x) = Q(�x)] ≤ d′ + 1

|F| ≤ ε0.

Hence,

Pr
�x∈Fm

[A(�x) = Q(�x) = A′(�x)] = Pr
�x∈Fm

[A′(�x) = Q(�x)]

− Pr
�x∈Fm

[A′(�x) = Q(�x) ∧ A′(�x) 
= A(�x)]

≥ f(δ − ε0) − ε0

= δ′.

Therefore,

Pr
�x∈Fm

[A(�x) = Q(�x)] ≥ Pr
�x∈Fm

[A(�x) = Q(�x) = A′(�x)] ≥ δ′.

Hence, there exists i ∈ [t] such that Q = Qi. However, if this is the case, by the
definition of A′,

δ′ ≤ Pr
�x∈Fm

[A(�x) = Qi(�x) = A′(�x)] ≤ Pr
�x∈Fm

[Q′(�x) = Q(�x)] ≤ ε0,

which is a contradiction.
We can additionally demand that each member of the list decoding agrees with

the oracle on many of the subspaces, i.e., there are no nonuseful members in the list.
Lemma 6.2 (pruning the list). Fix a distribution D over affine subspaces in Fm.

For every 0 < ε < 1 and oracle A, if Q1, . . . , Qt : Fm → F are t > 0 polynomials
satisfying

(almost all consistency is explained by the list)

E
s∼D

[
Pr
�x∈s

[A(s)(�x) 
= A(�x) ∨ ∃i (Qi ≡ A)(s)]

]
≥ 1 − δ,

then there exists a sublist T ⊆ [t] such that
1. (each polynomial agrees with the oracle on many of the subspaces)

for every i ∈ T ,

Pr
s∼D

[(Qi ≡ A)(s)] >
ε

t
;

2. (still almost all consistency is explained by the list)

E
s∼D

[
Pr
�x∈s

[A(s)(�x) 
= A(�x) ∨ ∃i ∈ T (Qi ≡ A)(s)]

]
≥ 1 − δ − ε.
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Proof. We prune the given list Q1, . . . , Qt by throwing away any polynomial Qi,
for which the first item does not hold. In other words,

T
def
=

{
i ∈ [t]

∣∣∣ Pr
s∼D

[(Qi ≡ A)(s)] >
ε

t

}
.

By the union bound, Prs∼D [∃i ∈ [t] \ T, (Qi ≡ A)(s)] ≤ t · ε
t = ε. For a subspace

s ∼ D and a point �x uniformly distributed in s, define the following events:
1. C: A(s)(�x) = A(�x) (consistent).
2. B: ∃i ∈ [t], (Qi ≡ A)(s) (explained before).
3. N : ∃i ∈ T , (Qi ≡ A)(s) (explained now).

By using this notation, we have (e.g., by observing the appropriate Venn diagram)

E
s

[
Pr
�x

[¬C ∨N ]

]
= Pr

s,�x
[¬C ∨N ]

≥ Pr
s,�x

[¬C ∨B] − Pr
s,�x

[B ∧ ¬N ]

≥ 1 − δ − ε.

6.2. Consistency consolidation. In this subsection, we prove a lemma allow-
ing us to deduce that a significant consistency γ together with a list decoding for
it imply that at least one of the polynomials in the list agrees with the oracle on
almost a γ fraction of the points. The lemma requires that the distribution over affine
subspaces samples well (see section 5). Together with Lemma 6.1 that transforms de-
coding into list decoding, this lemma allows us to improve the consistency we manage
to recover.

We phrase a rather general lemma addressing distributional oracles instead of
oracles. We say that Ã is a distributional oracle if it assigns each affine subspace s
a distribution over functions s → F (not necessarily a single polynomial of degree at
most d over s). Our semantic even permits the distribution to produce a null function
⊥ with some probability. The null function satisfies that, for every subspace s, point
�x ∈ s, and scalar a ∈ F, the probability (over Ã, namely, over the randomness in

choosing Ã(s)) that Ã(s)(�x) = a, when Ã(s) evaluates to ⊥, is 0.
Lemma 6.3 (from list decoding to decoding). Fix a distribution D over affine

subspaces that sample well; i.e., there exists Δ : [0, 1] → [0, 1] such that, for every set
A ⊆ Fm, for every 0 < ε < 1,

Pr
s∼D

[∣∣∣∣ |s ∩A|
|s| − |A|

|Fm|

∣∣∣∣ ≥ ε

]
≤ Δ(ε).

Let A denote an oracle, and let Ã denote a distributional oracle. Assume that
1. (the oracles are γ-consistent)

E
Ã

[
E

s∼D

[
Pr
�x∈s

[
Ã(s)(�x) = A(�x)

]]]
≥ γ.

2. (most consistency is explained by a relatively short list)
There exist t functions f1, . . . , ft : Fm → F such that

E
Ã

[
E

s∼D

[
Pr
�x∈s

[
Ã(s)(�x) 
= A(�x) ∨ ∃i (fi ≡ Ã)(s)

]]]
≥ 1 − δ.
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Then, for any 0 < ε < 1 such that ε ≥ t · Δ(ε), there exists 1 ≤ i ≤ t such that

Pr
�x∈Fm

[fi(�x) = A(�x)] ≥ γ − δ − 2ε.

Proof. Assume, by way of contradiction, that for every 1 ≤ i ≤ t, Pr�x∈Fm [fi(�x) =
A(�x)] < γ − δ− 2ε. Let us bound the consistency towards a contradiction to the first
item of the premise. For every 1 ≤ i ≤ t, define the set of points explained by fi:

Ai
def
= {�x ∈ Fm | fi(�x) = A(�x)} .

For every 1 ≤ i ≤ t, note that μi
def
= |Ai|

|Fm| < γ − δ − 2ε.

As D samples well, for every 1 ≤ i ≤ t, a random subspace s ∼ D is not likely to
hit Ai much more than it is expected:

Pr
s∼D

[
|s ∩Ai|

|s| ≥ μi + ε

]
≤ Δ(ε) ≤ ε

t
.

By the union bound,

Pr
s∼D

[
∃i ∈ [t],

|s ∩Ai|
|s| ≥ γ − δ − ε

]
≤ ε.

For a random oracle assignment Ã, a subspace s ∼ D, and a uniformly distributed
point �x ∈ s chosen independently at random, define the following events:

1. B: ∃i ∈ [t], |s ∩Ai| ≥ (γ − δ − ε) · |s| (bad subspace).

2. C: Ã(s)(�x) = A(�x) (consistent).

3. E: ∃i ∈ [t], (fi ≡ Ã)(s) (explained).
By using this notation, we have established that

Pr
Ã,s,�x

[C ∧ E] = Pr
Ã,s,�x

[C ∧ E ∧ ¬B] + Pr
Ã,s,�x

[C ∧ E ∧B]

≤ Pr
Ã,s,�x

[C|E ∧ ¬B] + Pr
s

[B]

< (γ − δ − ε) + ε

= γ − δ.

The second item of the premise implies that

Pr
Ã,s,�x

[C] = Pr
Ã,s,�x

[C ∧ ¬E] + Pr
Ã,s,�x

[C ∧ E]

< δ + (γ − δ)

= γ.

This contradicts the first item of the premise.

6.3. Degree consolidation. Degree consolidation shows that, if one recon-
structs a polynomial of not too large degree that agrees with the oracle on many
of our subspaces, the polynomial’s true degree is, in fact, low. The reason is that
the polynomial’s degree does not decrease much when restricted to almost all of our
subspaces.

First we prove a lemma allowing us to deduce degree d if one of the directions
of our subspaces is distributed over Fm (rather than Hm). This is used only in the
analysis of the randomness-efficient subspace vs. point tester.
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Lemma 6.4 (degree d consolidation). Fix dimensions k and m, 0 ≤ k < m. Fix
an oracle A assigning polynomials of degree at most d to all affine subspaces. Suppose
that a polynomial Q : Fm → F satisfies the following for some 0 ≤ δ ≤ 1:

1. degQ ≤ δ |F|.
2. Q and A agree on a linear subspace chosen at random:

Pr
�z∈Fm,�y1,...,�yk∈Hm

[
(Q ≡ A)(affine(�0;�z, �y1, . . . , �yk)) |ind(�z, �y1, . . . , �yk)

]
> δ+

1

|F| .

Then degQ ≤ d.
Proof. Assume by way of contradiction that degQ > d. Consider linearly inde-

pendent �z ∈ Fm and �y1, . . . , �yk ∈ Hm. Denote s = affine(�0;�z, �y1, . . . , �yk), and observe
the polynomial

Q|s(α0, α1, . . . , αk) = Q(α0�z + α1�y1 + · · · + αk�yk).

Note that each of the coefficients of this polynomial can be viewed as a polynomial
in z1, . . . , zm and y1,1, . . . , y1,m, . . . , yk,1, . . . , yk,m of total degree at most degQ. In

particular, consider the coefficient of the degree degQ monomial αdegQ
0 in Q|s. Note

that it depends solely on z1, . . . , zm (and not on y1,1, . . . , y1,m, . . . , yk,1, . . . , yk,m).
Hence, let us denote it by P (z1, . . . , zm).

To analyze P we will need more notation. Denote

Q(x1, . . . , xm) =
∑

i1···im

ai1···imxi1
1 · · ·xim

m .

Define I
def
= {(i1, . . . , im) |

∑
j ij = degQ}. Now,

P (z1, . . . , zm) =
∑

(i1...im)∈I

ai1···imzi11 · · · zimm .

Thus, by definition, degP = degQ, and P is not identically zero.
Clearly,

Pr
�z∈Fm,�y1,...,�yk∈Hm

[
degQ|affine(�0;�z,�y1,...,�yk) > d |ind(�z, �y1, . . . , �yk)

]

≥ Pr
�z∈Fm,�y1,...,�yk∈Hm

[P (�z) 
= 0 |ind(�z, �y1, . . . , �yk) ].

By the Schwartz–Zippel lemma, we have

Pr
�z∈Fm,�y1,...,�yk∈Hm

[P (�z) 
= 0] ≥ 1 − degQ

|F| ≥ 1 − δ.

For any linearly independent �y1, . . . , �yk, the probability that a uniformly distributed
�z ∈ Fm satisfies ¬ind(�z, �y1, . . . , �yk) is at most 1

|F| . Therefore,

Pr
�z∈Fm,�y1,...,�yk∈Hm

[
degQ|affine(�0;�z,�y1,...,�yk) > d | ind(�z, �y1, . . . , �yk)

]
≥ 1 − δ − 1

|F| .

However, Pr�z∈Fm,�y1,...,�yk∈Hm [degQ|affine(�0;�z,�y1,...,�yk) ≤ d | ind(�z, �y1, . . . , �yk) ] > δ +
1
|F| .
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Next we prove a lemma allowing us to deduce degree md (rather than d), even if
we observe only affine subspaces in Sm

k . This lemma will be used in the analysis of
the randomness-efficient plane vs. point tester.

Lemma 6.5 (degree md consolidation). Fix dimensions k and m, 1 ≤ k ≤ m.
Fix an oracle A assigning polynomials of degree at most d to all affine subspaces.
Suppose that a polynomial Q : Fm → F satisfies the following for some 0 ≤ δ ≤ 1:

1. degQ ≤ δ |F|.
2. Prs∈Sm

k
[(Q ≡ A)(s)] > δ + 1

|H| .

Then degQ ≤ md.
Proof. By the premise and uniformity,

Pr
�y1,...,�yk∈Hm

[
Pr

�z∈Fm
[(Q ≡ A)(affine(�z; �y1, . . . , �yk))] > δ | ind(�y1, . . . , �yk)

]
>

1

|H| .

Thus,

Pr
�y �=�0∈Hm

[
Pr

�z∈Fm

[
degQ|affine(�z;�y) ≤ d

]
> δ

]
>

1

|H| .

By Proposition 3.3, there exist linearly independent �y1, . . . , �ym ∈ Hm such that, for
every 1 ≤ i ≤ m,

Pr
�z∈Fm

[
degQ|affine(�z;�yi) ≤ d

]
> δ.

�y1, . . . , �ym is a basis for Fm. Thus, every point �x ∈ Fm can be represented as
�x =

∑m
i=1 αi�yi for some α1, . . . , αm ∈ F. Hence, view Q as a polynomial in variables

α1, . . . , αm. Assume by way of contradiction that degQ > md. Hence, there exists
1 ≤ i ≤ m such that the degree of Q in the variable αi, which we will denote by D,
is larger than d. The coefficient of αD

i in the polynomial Q|affine(�z;�yi) is a nonzero
polynomial P (z1, . . . , zm) of degree at most degQ. Hence, by the Schwartz–Zippel
lemma,

Pr
�z∈Fm

[P (z1, . . . , zm) = 0] ≤ degQ

|F| ≤ δ.

Thus, Pr�z∈Fm

[
degQ|affine(�z;�yi) ≤ d

]
≤ δ, which is a contradiction.

7. Consistency graph. Fix a dimension k ≥ 3. In this section we define and
analyze a graph that captures the consistency among hyperplanes in Fk, i.e., affine
subspaces of dimension (k − 1). By using the graph we prove a list decoding lemma
(Lemma 7.4). This lemma is used in the analysis of the randomness-efficient plane
vs. point tester to go up one dimension (see section 8). Lemma 7.4 is also the only
lemma in this section that is used outside it.

The idea is a variation of the analysis of Raz and Safra for the non-randomness-
efficient setting [17]. Our crucial observation is that we can essentially still apply their
analysis when considering only directions with coordinates in a subfield H ⊆ F instead
of the entire field F.

7.1. Graph construction. Given an oracle A assigning affine subspaces poly-
nomials of degree at most d, define a simple undirected graph GA = (V,EA) that
captures the consistency among affine subspaces in Sk

k−1 as follows. Let the ver-

tices be the set of affine subspaces V
def
= Sk

k−1. Let the edges indicate whether two
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affine subspaces are assigned polynomials that are consistent on the intersection of
the subspaces:

EA
def
= {(s1, s2) | ∀�x ∈ s1 ∩ s2, A(s1)(�x) = A(s2)(�x)} .

Note that every two subspaces in Sk
k−1 are either parallel (i.e., identify or do not inter-

sect) or intersect by an affine subspace from Sk
k−2 (see closedness under intersection;

Proposition 4.5).

7.2. Graph is almost transitive. A graph G = (V,E) is said to be transitive
if, for every three vertices u, v, w ∈ V , if (u, v) ∈ E and (v, w) ∈ E, then (u,w) ∈ E.
In other words, a graph is transitive if and only if for every two vertices u,w ∈ V ,
u 
= w, they are not neighbors, namely, (u,w) /∈ E, no vertex v ∈ V neighbors both
u and w, i.e., for every v ∈ V , either (u, v) /∈ E or (v, w) /∈ E.

We first wish to establish that the graph is almost transitive in the sense that
every two vertices that are not neighbors do not have too many common neighbors
(whereas, if the graph had been transitive, they would not have had common neighbors
at all).

Lemma 7.1 (almost-transitivity). Fix an oracle A assigning affine subspaces
polynomials of degree at most d. Let GA = (V,EA) be its corresponding consistency
graph for affine subspaces of dimension k ≥ 3. Then, for every two different affine
subspaces s1, s2 ∈ V ,

(s1, s2) /∈ EA ⇒ Pr
s3∈V

[(s1, s3) ∈ EA ∧ (s3, s2) ∈ EA] ≤ 1

|H| +
d

|F| .

Proof. Assume that (s1, s2) /∈ EA. By definition, there exists �x ∈ s1 ∩ s2, for

which A(s1)(�x) 
= A(s2)(�x). Hence, a
def
= s1 ∩ s2 ∈ Sk

k−2, and A(s1) and A(s2) induce
two different polynomials of degree at most d on a. Let us denote these polynomials
by P1 and P2, respectively. Fix a representation in Rk

k−2 for a. We say that a vertex
s3 ∈ V spots inconsistency if there exists �x ∈ s3 ∩ a such that P1(�x) 
= P2(�x). We
wish to argue that a random vertex s3 ∈ V is likely to spot inconsistency.

Pick uniformly r = (�z; �y1, . . . , �yk−1) ∈ Rk
k−1. Let us say that s3 = affine(r) is bad

if s3 either contains a or does not intersect it. Since (k− 2)+ (k− 1) ≥ k, for s3 to be
bad, a’s directions must be linearly dependent on �y1, . . . , �yk−1. Hence, by uniformity
and by Proposition 3.2,

(7.1) Pr
s3∈V

[s3 is bad] ≤ 1

|H| .

By the Schwartz–Zippel lemma, Pr�x∈a [P1(�x) 
= P2(�x)] ≥ 1 − d
|F| . For all of the

hyperplanes s that do not contain a but do intersect it, the dimension of their intersec-

tion with a is (k−1)+(k−2)−k = k−3. Let I
def
= {s ∩ a | s ∈ V ; a � s ∧ s ∩ a 
= φ}.

By closedness under intersection and uniformity, Ea′∈I [Pr�x∈a′ [P1(�x) 
= P2(�x)]] =
Pr�x∈a [P1(�x) 
= P2(�x)] ≥ 1 − d

|F| . By uniformity,

(7.2) Pr
s3∈V

[s3 spots inconsistency |s3 is not bad] ≥ 1 − d

|F| .

By combining inequalities (7.1) and (7.2), we get

Pr
s3

[s3 spots inconsistency] ≥ 1 − 1

|H| −
d

|F| .
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If s3 spots inconsistency, then either (s1, s3) /∈ EA or (s3, s2) /∈ EA. Thus, (s1, s3) ∈
EA and (s3, s2) ∈ EA with probability at most 1

|H| + d
|F| .

7.3. Graph-based list decoding. The almost-transitivity of the graph GA can
be used to prove that, other than relatively few edges, the graph is truly transitive,
i.e., composed of disjoint cliques. Moreover, these cliques are relatively large. This
was shown by Raz and Safra [17].

Lemma 7.2 (graph partition). Fix ε = 1
|H| +

d
|F| . Fix an oracle A assigning affine

subspaces polynomials of degree at most d. Let GA = (V,EA) be its corresponding con-
sistency graph for affine subspaces of dimension k ≥ 3. Then there exists a partition
of the vertices of GA into cliques V =

⊎t
i=1 Vi, such that the following apply:

1. (All nontrivial cliques are large) For every 1 ≤ i ≤ t, either |Vi| = 1 or
|Vi| > 2

√
ε |V |.

2. (Almost all edges are within cliques)

Pr
s1,s2∈V

[(s1, s2) /∈ EA ∨ ∃i s1, s2 ∈ Vi] ≥ 1 − 5
√
ε.

Proof. The proof follows by Lemma 7.1 and the combinatorial lemma of Raz and
Safra [17] (for completeness we include a proof for this lemma; see Lemma A.1 in the
appendix).

A large clique in GA corresponds to a single relatively low degree polynomial
agreeing with the oracle A on all affine subspaces associated with the vertices in the
clique.

Lemma 7.3 (from large clique to polynomial). Fix an oracle A assigning affine
subspaces polynomials of degree at most d. Let GA = (V,EA) be its corresponding
consistency graph for affine subspaces of dimension k ≥ 3. Then, for every large
clique U ⊆ V , |U | > ( 2d

|F| + 1
|H| ) · |V |, there exists a polynomial Q : Fk → F, with

degQ ≤ 2d, such that, for every s ∈ U , (Q ≡ A)(s).
Proof. For linearly independent �y1, . . . , �yk−1 ∈ Fk, there are exactly |F| different

hyperplanes of the form �z + span{�y1, . . . , �yk−1} for some �z ∈ Fk. Let us denote their
set by H[�y1, . . . , �yk−1].

Pick uniformly at random linearly independent �y1, . . . , �yk−1 ∈ Hk, and consider
the random variable X denoting the fraction of hyperplanes in H[�y1, . . . , �yk−1] that
land in U .

By linearity of expectations,

E
�y1,...,�yk−1∈Hk : ind(�y1,...,�yk−1)

[X] =
|U |
|V | >

2d

|F| +
1

|H| .

Hence, since 0 ≤ X ≤ 1,

Pr
�y1,...,�yk−1∈Hk

[
X >

2d

|F|

∣∣∣∣ ind(�y1, . . . , �yk−1)

]
>

1

|H| .

Let us say that linearly independent directions �y1, . . . , �yk−1 ∈ Hk are good if the
number of hyperplanes in H[�y1, . . . , �yk−1] that land in U is more than 2d.

It follows from our calculations that there are good linearly independent directions
�y1
1 , . . . , �y

1
k−1 ∈ Hk. Fix any �y1

k ∈ Hk that is not spanned by �y1
1 , . . . , �y

1
k−1 (such

necessarily exists since k−1 < k). Then there exist at least (2d+1) scalars c0, . . . , c2d ∈
F such that for every 0 ≤ i ≤ 2d we have affine(ci�y

1
k; �y

1
1 , . . . , �y

1
k−1) ∈ U .
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But recall that we in fact established that, for uniformly distributed linearly in-
dependent �y1, . . . , �yk−1 ∈ Hk, the probability that �y1, . . . , �yk−1 are good is larger
than 1

|H| . Thus (by using Proposition 3.2), for uniformly distributed linearly in-

dependent �y2
1 , . . . , �y

2
k−1 ∈ Hk, the probability that �y2

1 , . . . , �y
2
k−1 are good and �y1

1 /∈
span

{
�y2
1 , . . . , �y

2
k−1

}
is also positive.

Therefore, there necessarily exists a basis �y1, . . . , �yk ∈ Hk for Fk as well as 2 ·
(2d + 1) scalars c0, . . . , c2d, c

′
0, . . . , c

′
2d ∈ F such that

s0 = affine(c0�yk; �y1, . . . , �yk−1) ∈ U,

...

s2d = affine(c2d�yk; �y1, . . . , �yk−1) ∈ U,

s′0 = affine(c′0�y1; �y2, . . . , �yk) ∈ U,

...

s′2d = affine(c′2d�y1; �y2, . . . , �yk) ∈ U.

Let us define a polynomial Q : Fk → F such that, for every 0 ≤ i ≤ d, (Q ≡ A)(si).
This is done by using Lagrange’s interpolation formula:

Q

(
k∑

i=1

αi�yi

)
=

d∑
i=0

∏
j∈{0,...,d}−{i}(αk − cj)∏
j∈{0,...,d}−{i}(ci − cj)

· A(si)

⎛
⎝ci�yk +

k−1∑
j=1

αj�yj

⎞
⎠ .

The degree of Q in αk is at most d, and its total degree is degQ ≤ 2d.
We would like to argue that, for every s ∈ U , (Q ≡ A)(s). Let 0 ≤ j ≤ 2d. For

every line of the form l = affine(
∑k−1

i=1 ai�yi; �yk) contained in s′j , the polynomial Q|l
has degree at most d. Moreover, for every 0 ≤ i ≤ d, Q|l and A(s′j) identify on l ∩ si.
By the Schwartz–Zippel lemma, Q|l and A(s′j) identify on the entire line l. Thus, for
every 0 ≤ j ≤ 2d, Q and A identify on s′j . Hence, by the Schwartz–Zippel lemma, for
every 0 ≤ j ≤ 2d (and not only for every 0 ≤ j ≤ d), the polynomial Q (of degree at
most 2d) and A identify on sj .

Let s ∈ U . Necessarily, s intersects the sj ’s or the s′j ’s (or both). Hence, Q|s and

A(s) identify on more than 2d
|F| of the points on s. Q|s is of degree at most 2d. Thus,

by the Schwartz–Zippel lemma, Q and A identify on s.
The partition of GA into cliques yields list decoding,
Lemma 7.4 (hyperplane vs. hyperplane). Fix an oracle A assigning affine sub-

spaces polynomials of degree at most d. Let GA = (V,EA) be its corresponding con-

sistency graph for affine subspaces of dimension k ≥ 3. Then for any δ ≥ 8
√

d
|F| + 1

|H|

there exists a list of polynomials Q1, . . . , Qt : Fk → F, t ≤ 4
δ , with degQi ≤ 2d, such

that

Pr
s1,s2∈V

[(s1, s2) /∈ EA ∨ ∃i, (Qi ≡ A)(s1) ∧ (Qi ≡ A)(s2)] > 1 − δ.

Proof. Consider the partition of Lemma 7.2. Let S1, . . . , Sl denote the small
cliques in this partition, i.e., cliques whose size is |Si| < δ

4 |V |. Clearly,

l∑
i=1

|Si|2 <
δ

4
|V | ·

l∑
i=1

|Si| ≤
δ

4
|V |2 .
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Hence, Prs1,s2∈V [∃i, s1, s2 ∈ Si] <
δ
4 . Let L1, . . . , Lt be the set of all large cliques

|Li| ≥ δ
4 |V |. We have t ≤ 4

δ . Moreover,

Pr
s1,s2∈V

[(s1, s2) /∈ EA ∨ ∃i, s1, s2 ∈ Li] > 1 − 5

8
δ − 1

4
δ > 1 − δ.

For every 1 ≤ i ≤ t, let Qi : Fk → F be the polynomial associated with Li according
to Lemma 7.3. We have degQi ≤ 2d and

Pr
s1,s2∈V

[(s1, s2) /∈ EA ∨ ∃i, (Qi ≡ A)(s1) ∧ (Qi ≡ A)(s2)] > 1 − δ.

Note that the lemma is meaningful only when the density of the graph |EA|/|V |2 is
large enough with respect to δ; otherwise, the list might be empty. This corresponds
to the fact that the oracle must assign the affine subspaces somewhat consistent
polynomials if we wish to (list) decode.

8. Going up one dimension. Let A be an oracle assigning polynomials of
degree at most d to affine subspaces in Fm. Let us say that A is γ-consistent over
subspaces of dimension k (we usually omit the dimensions when they are clear from
the context) if

E
s∈Sm

k

[
Pr
�x∈s

[A(s)(�x) = A(�x)]

]
≥ γ.

Fix a dimension k ≥ 3. Let A be an oracle assigning polynomials of degree at
most d to affine subspaces in Fk. In this section we prove that, if A is γ-consistent
over affine subspaces of dimension (k−1) in Fk, there exists a polynomial Q : Fk → F
of degree at most 2d that agrees with the oracle on almost γ of the points. This is
done in three steps:

1. We use an argument of counting in several ways to transform our setting to
one that resembles that of the consistency graph of section 7.

2. We use the analysis of the consistency graph to prove the claim we want while
losing in the consistency parameter.

3. We fix the consistency parameter via the consistency consolidation of sec-
tion 6.

The final result of this section is given in Lemma 8.3. This is also the only lemma
in this section that is used outside it. Note that the degree parameter grows from d
to 2d, and we need to take care of that when we use this lemma.

8.1. From hyperplane vs. point to hyperplane vs. hyperplane. We start
by showing that γ-consistency over hyperplanes implies that, for an average pair
(s1, s2) of intersecting hyperplanes, A(s1) and A(s2) agree (with each other and with
A) on at least a γ2 fraction of the points in the intersection of s1 and s2.

The proof uses repeatedly the trick of counting in several ways, which is made
possible due to uniformity considerations (see section 4).

For an affine subspace a ∈ Sk
k−2, denote the set of hyperplane pairs that intersect

in a by Sa
def
=

{
(s1, s2)

∣∣ s1, s2 ∈ Sk
k−1, s1 ∩ s2 = a

}
.

Lemma 8.1 (counting in several ways). If, for an oracle A,

E
s∈Sk

k−1

[
Pr
�x∈s

[A(s)(�x) = A(�x)]

]
≥ γ,
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then

E
a∈Sk

k−2

[
E

(s1,s2)∈Sa

[
Pr
�x∈a

[A(s1)(�x) = A(�x) = A(s2)(�x)]

]]
≥ γ2 − 1

|H| .

Proof. For an affine subspace s ∈ Sk
k−1, an affine subspace of it a ⊂ s, a ∈ Sk

k−2,
and a point �x ∈ a, let Is,a,�x be the indicator variable of the event A(s)(�x) = A(�x).
By the premise and uniformity,

E
s

[
E
a⊂s

[
E
�x∈a

[Is,a,�x]

]]
≥ γ.

By uniformity, we can also count in a different way and obtain

E
a

[
E
�x∈a

[
E
s⊃a

[Is,a,�x]

]]
≥ γ.

By convexity considerations,

E
a

[
E
�x∈a

[(
E
s⊃a

[Is,a,�x]

)2
]]

≥ γ2,

or, in other words,

E
a

[
E
�x∈a

[
E

s1,s2⊃a
[Is1,a,�xIs2,a,�x]

]]
≥ γ2.

We can change the order of summation once again, and get

E
a

[
E

s1,s2⊃a

[
E
�x∈a

[Is1,a,�xIs2,a,�x]

]]
≥ γ2.

The lemma follows by using uniformity and noticing that the probability that s1 = s2

given that s1, s2 ⊃ a is at most 1
|H| .

8.2. Hyperplane vs. point lemma. Next, we show that considerable consis-
tency between (k − 1)-dimensional affine subspaces and points implies a significant
correspondence of the values assigned to points with a relatively low degree polynomial
over Fk. The heart of the proof is the analysis of the consistency graph (Lemma 7.4).

Lemma 8.2 (hyperplane vs. point). Assume that A assigns polynomials of degree

at most d to affine subspaces. Fix δ
def
= 16 max {

√
d
|F| ,

4

√
1
|H|}. Assume that

E
s∈Sk

k−1

[
Pr
�x∈s

[A(s)(�x) = A(�x)]

]
≥ γ.

Then there exists a polynomial Q : Fk → F, with degQ ≤ 2d, such that

Pr
�x∈Fk

[Q(�x) = A(�x)] ≥ γ2 − 3δ.

Proof. Lemma 8.1 allows us to translate the consistency given in this lemma to
consistency between pairs of hyperplanes on points:

E
a∈Sk

k−2

[
E

(s1,s2)∈Sa

[
Pr
�x∈a

[A(s1)(�x) = A(�x) = A(s2)(�x)]

]]
≥ γ2 − 1

|H| .
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Lemma 7.4 gives list decoding Q1, . . . , Qt : Fk → F, degQi ≤ 2d, t ≤ 4
δ , for

consistency among pairs of hyperplanes. We wish to argue that at least one of these
polynomials also agrees with the oracle on many of the points.

Let us define an appropriate notation. Choose independently and uniformly at
random a subspace a ∈ Sk

k−2, hyperplanes that intersect on a, (s1, s2) ∈ Sa, and a
point �x ∈ a. Define the following events:

1. X: A(s1)(�x) = A(�x) = A(s2)(�x) (hyperplanes are consistent on (and with) a
point).

2. C: (s1, s2) ∈ EA (hyperplanes are consistent).
3. E: ∃i (Qi ≡ A)(s1) ∧ (Qi ≡ A)(s2) (hyperplanes are explained).

By using this notation we have Pra,s1,s2,�x [X] ≥ γ2 − 1
|H| . By uniformity, s1, s2 are

uniformly distributed over the set of all pairs with s1∩s2 ∈ Sk
k−2. Since for a uniformly

distributed pair s1, s2 ∈ V , the probability that s1 ∩ s2 /∈ Sk
k−2 is bounded by 1

|H| (see

Proposition 3.2), the list decoding translates into

Pr
s1,s2

[¬C ∨ E] ≥ 1 − δ − 1

|H| .

�x is uniformly distributed within s1 ∩ s2. Hence, by the Schwartz–Zippel lemma,
Pra,s1,s2,�x [X|¬C] ≤ d

|F| . Therefore, the probability that s1, s2 are consistent on �x but

not explained is small:

Pr
a,s1,s2,�x

[X ∧ ¬E] = Pr
a,s1,s2,�x

[C ∧X ∧ ¬E] + Pr
a,s1,s2,�x

[¬C ∧X ∧ ¬E]

≤ Pr
s1,s2

[C ∧ ¬E] + Pr
a,s1,s2,�x

[¬C ∧X]

≤ 1 − Pr
s1,s2

[¬C ∨ E] + Pr
a,s1,s2,�x

[X|¬C]

≤ δ +
1

|H| +
d

|F| .

Thus, the probability that s1, s2 are consistent on �x and are explained is large:

Pr
a,s1,s2,�x

[X ∧ E] ≥ Pr
a,s1,s2,�x

[X] − Pr
a,s1,s2,�x

[X ∧ ¬E]

≥ γ2 − 1

|H| − δ − 1

|H| −
d

|F|
≥ γ2 − 2δ.(8.1)

Let us define a distributional oracle Ã, assigning each affine subspace a ∈ Sk
k−2,

a distribution over polynomials of degree at most d over a (for clarification of our
notion of distributional oracles, see the discussion before Lemma 6.3). To define the

distribution Ã(a), we indicate how to sample a polynomial accordingly:
• Pick uniformly at random hyperplanes that intersect on a, (s1, s2) ∈ Sa.
• If there is i such that (Qi ≡ A)(s1) and (Qi ≡ A)(s2), output the restriction

of Qi to a (note that if there are two (or more) such polynomials, they must
identify on a).

• Otherwise, output a null polynomial.
If Ã(a) is not null, then there exists i such that (Qi ≡ Ã)(a), while if Ã(a) is null,

Ã(a)(�x) 
= A(�x) for every �x ∈ a. Thus,

E
Ã

[
E

a∈Sk
k−2

[
Pr
�x∈a

[
Ã(a)(�x) 
= A(�x) ∨ ∃i (Qi ≡ Ã)(a)

]]]
= 1.
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By the construction of Ã and inequality (8.1), Ã is (γ2 − 2δ)-consistent with A:

E
Ã

[
E

a∈Sk
k−2

[
Pr
�x∈a

[
Ã(a)(�x) = A(�x)

]]]
≥ γ2 − 2δ.

By Corollary 5.7, the uniform distribution on Sk
k−2 samples well: for every set A ⊆ Fk,

for every 0 < ε < 1,

Pr
a∈Sk

k−2

[∣∣∣∣ |a ∩A|
|a| − |A|

|Fk|

∣∣∣∣ ≥ ε

]
≤ 1

ε2 |H| .

Thus, by Lemma 6.3, since δ
2 ≥ t · 4

δ2|H| , there exists 1 ≤ i ≤ t such that

Pr
�x∈Fk

[Qi(�x) = A(�x)] ≥ γ2 − 3δ.

8.3. Consolidating. We can apply consistency consolidation to improve the
result of the last subsection. The following summarizes what we establish in this
section.

Lemma 8.3 (consistency consolidated). Denote θ0
def
= 24 ·( 8

√
1
|H| +

4

√
d
|F| ). Fix k ≥

3. Fix an oracle A assigning polynomials of degree at most d to all affine subspaces.
Assume that

E
s∈Sk

k−1

[
Pr
�x∈s

[A(s)(�x) = A(�x)]

]
≥ γ.

Then there exists a polynomial Q : Fk → F, with degQ ≤ 2d, such that

Pr
�x∈Fk

[Q(�x) = A(�x)] ≥ γ − 2θ0.

Proof. Assume that θ0 ≤ 1 (otherwise, the claim trivially holds). Denote ε0 =√
2d
|F| and δ0 = 16 max {

√
d
|F| ,

4

√
1
|H|}. Define f(γ)

def
= γ2 − 3δ0. It holds that

f(θ0 − ε0) − ε0 = (θ0 − ε0)
2 − 3δ0 − ε0 ≥ θ2

0/2,

where θ2
0/2 ≥ 2ε0. Apply Lemma 6.1 on Lemma 8.2 to deduce the existence of t ≤ 4/θ2

0

polynomials Q1, . . . , Qt : Fk → F, with degQi ≤ 2d, such that

E
s∈Sk

k−1

[
Pr
�x∈s

[A(s)(�x) 
= A(�x) ∨ ∃i(Qi ≡ A)(s)]

]
≥ 1 − θ0.

For ε = θ0
2 , we have ε ≥ t

ε2|H| . Thus, by Lemma 6.3 (by using sampling Corol-

lary 5.7), there exists 1 ≤ i ≤ t such that

Pr
�x∈Fk

[Qi(�x) = A(�x)] ≥ γ − 2θ0.

9. The randomness-efficient plane vs. point tester is sound. We wish to
show that, if the average consistency between planes and points is large, the oracle
assigns points values that are close to a low degree polynomial. Theorem 1 will follow.
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Lemma 9.1 (from dimension 2 to dimension k). Denote θk
def
= 24( 4

√
kd
|F| + 8

√
1
|H| ).

For every dimension k ≥ 2, for every 0 < γ ≤ 1 and oracle A, if

E
s∈Sk

2

[
Pr
�x∈s

[A(s)(�x) = A(�x)]

]
≥ γ,

then there exists a polynomial Q : Fk → F with degQ ≤ kd such that

Pr
�x∈Fk

[Q(�x) = A(�x)] ≥ γ − (8k − 10)θk.

Proof. We prove the lemma by induction on k. Let us formulate two inductive
claims. The second argues what we wish to show. The first argues slightly better
consistency but worse degree.

Claim1[k]. For every 0 < γ ≤ 1 and oracle A, if

E
s∈Sk

2

[
Pr
�x∈s

[A(s)(�x) = A(�x)]

]
≥ γ,

then there exists a polynomial Q : Fk → F, with degQ ≤ 2(k − 1)d, such that

Pr
�x∈Fk

[Q(�x) = A(�x)] ≥ γ − (8k − 16)θk.

Claim2[k]. For every 0 < γ ≤ 1 and oracle A, if

E
s∈Sk

2

[
Pr
�x∈s

[A(s)(�x) = A(�x)]

]
≥ γ,

then there exists a polynomial Q : Fk → F, with degQ ≤ kd, such that

Pr
�x∈Fk

[Q(�x) = A(�x)] ≥ γ − (8k − 10)θk.

Claim1[2] holds by taking Q to be A(s) for the only plane s. Hence, the lemma will
follow if we prove that, for every k ≥ 2,

Claim1[k] ⇒ Claim2[k] ⇒ Claim1[k + 1].

Claim 9.1.1. Claim1[k] ⇒ Claim2[k].
Proof. Fix 0 < γ ≤ 1 and oracle A such that

E
s∈Sk

2

[
Pr
�x∈s

[A(s)(�x) = A(�x)]

]
≥ γ.

Assume that (8k − 10)θk ≤ 1 (otherwise, we are done). Denote ε0 =
√

2(k − 1)d/|F|.
Define f(γ)

def
= γ − (8k − 16)θk. Let δ = (8k − 14)θk. It holds that

f(δ − ε0) − ε0 = (8k − 14)θk − ε0 − (8k − 16)θk − ε0 ≥ θk,

where θk ≥ 2ε0. By Lemmas 6.1 and 6.2 applied on Claim1[k], there exist t ≤ 2/θk
polynomials Q1, . . . , Qt : Fk → F, degQi ≤ 2(k − 1)d, such that
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1. (each agrees with many planes) for every 1 ≤ i ≤ t,

Pr
s∈Sk

2

[(Qi ≡ A)(s)] ≥ θk
t

>
2(k − 1)d

|F| +
1

|H| ;

2. (all explain almost all of the consistency)

E
s∈Sk

2

[
Pr
�x∈s

[A(s)(�x) 
= A(�x) ∨ ∃i (Qi ≡ A)(s)]

]
≥ 1 − δ − θk.

By Lemma 6.5, for every 1 ≤ i ≤ t, degQi ≤ kd. By Lemma 6.3 (by using sampling
Corollary 5.7), there exists 1 ≤ i ≤ t such that

Pr
�x∈Fk

[Qi(�x) = A(�x)] ≥ γ − (8k − 10)θk.

Claim 9.1.2. Claim2[k] ⇒ Claim1[k + 1].
Proof. Fix 0 < γ ≤ 1 and oracle A such that

E
s∈Sk+1

2

[
Pr
�x∈s

[A(s)(�x) = A(�x)]

]
≥ γ.

Let s ∈ Sk+1
k . Define an oracle relative to s, As, as follows: for every affine subspace

s′ = affine(r) in Fk (this includes the points in Fk), let As(s
′)

def
= A(affines(r)) (the

notation affines was introduced in section 4). Let the consistency within s be

γs
def
= E

s′∈Sk
2

[
Pr
�x∈s′

[As(s
′)(�x) = As(�x)]

]
.

By uniformity, the average consistency within s ∈ Sk+1
k is large:

E
s∈Sk+1

k

[γs] = E
s′∈Sk+1

2

[
Pr
�x∈s′

[A(s′)(�x) = A(�x)]

]
≥ γ.

Claim2[k] implies the existence of a new oracle A′ that assigns each hyperplane
s ∈ Sk+1

k a polynomial of degree at most kd that agrees with A on at least γs− (8k−
10)θk of its points. It holds that

E
s∈Sk+1

k

[
Pr
�x∈s

[A′(s)(�x) = A(�x)]

]
≥ E

s∈Sk+1
k

[γs − (8k − 10)θk] ≥ γ − (8k − 10)θk.

By Lemma 8.3, there exists a polynomial Q : Fk+1 → F, with degQ ≤ 2kd, such that

Pr
�x∈Fk+1

[Q(�x) = A(�x)] ≥ γ − (8(k + 1) − 16)θk+1.

Lemma 9.1 follows by induction.
The soundness of the randomness-efficient plane vs. point tester easily follows.
Proof (of Theorem 1). Assume that

Pr
�z∈Fm,�y1,�y2∈Hm

[
PlanePointA(�z, �y1, �y2)

]
= γ.
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The probability that �y1, �y2 are linearly dependent is at most 1
|H|m + 1

|H|m−1 ≤ 2
|H| .

Thus,

E
s∈Sm

2

[
Pr
�x∈s

[A(s)(�x) = A(�x)]

]
≥ γ − 2

|H| .

By Lemma 9.1, we have decoding: there exists a polynomial Q : Fm → F, with
degQ ≤ md, such that

Pr
�x∈Fm

[Q(�x) = A(�x)] ≥ γ − ε.

By Lemma 6.1, we have list decoding: for every δ, δ > 2ε, there exist t ≤ 2/δ
polynomials Q1, . . . , Qt : Fm → F, with degQi ≤ md, such that

E
s∈Sm

2

[
Pr
�x∈s

[A(s)(�x) 
= A(�x) ∨ ∃i (Qi ≡ A)(s)]

]
≥ 1 − δ − 2ε +

2

|H| .

Therefore,

Pr
�z∈Fm,�y1,�y2∈Hm

[
¬PlanePointA(�z, �y1, �y2) ∨ ∃i (Qi ≡ A)(affine(�z; �y1, �y2))

]
≥ 1−δ−2ε.

The proof is complete.

10. The randomness-efficient subspace vs. point tester is sound. In this
section we use the result from the previous section, namely, the soundness of the
randomness-efficient plane vs. point tester, to prove the soundness of the subspace
vs. point tester.

Consider the distribution D over three-dimensional affine subspaces induced by
the tester: pick uniformly �z ∈ Fm, �y1, �y2 ∈ Hm such that �z, �y1, �y2 are linearly inde-
pendent, and output affine(�0;�z, �y1, �y2).

Lemma 10.1 (from plane vs. point to subspace vs. point). Fix dimension m ≥ 3.

Fix ε
def
= 27m( 4

√
md
|F| + 8

√
1
|H| ). If an oracle A assigning polynomials of degree at most

d to affine subspaces satisfies

E
s∼D

[
Pr
�x∈s

[A(s)(�x) = A(�x)]

]
≥ γ,

then there exists a polynomial Q : Fm → F, with degQ ≤ md, such that

Pr
�x∈Fm

[Q(�x) = A(�x)] ≥ γ − ε.

Proof. Let us construct a new oracle A′. For every plane p ∈ Sm
2 that does not

contain the origin, let A′(p) be the restriction of A(s) to p, where s is the unique
three-dimensional linear subspace that contains p. Let A′ identify with A on all other
affine subspaces.

For a subspace s ∼ D, s = affine(�0;�z, �y1, �y2), and a random scalar α ∈ F, let
sα = affine(α�z; �y1, �y2). Clearly, the premise implies that

E
s,α

[
Pr

�x∈sα
[A(s)(�x) = A(�x)]

]
≥ γ.
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The plane sα is distributed as follows: with probability 1
|F| , sα is uniformly distributed

within the planes in Sm
2 that contain the origin; with probability 1− 1

|F| , sα is uniformly

distributed within the planes in Sm
2 that do not contain the origin.

Hence, by noticing that a uniformly distributed plane in Sm
2 contains the origin

with probability |F|2
|F|m ≤ 1

|F| ,

E
p∈Sm

2

[
Pr
�x∈p

[A′(p)(�x) = A(�x)]

]
≥ γ − 1

|F| .

By Lemma 9.1, there exists a polynomial Q : Fm → F, with degQ ≤ md, such that

Pr
�x∈Fm

[Q(�x) = A(�x)] ≥ γ − ε.

Now we can apply degree consolidation and get the following.

Lemma 10.2 (degree consolidated). Fix dimension m ≥ 3. Fix ε
def
= 27m( 4

√
md
|F| +

8

√
1
|H| ). If an oracle A assigning polynomials of degree at most d to affine subspaces

satisfies

E
s∼D

[
Pr
�x∈s

[A(s)(�x) = A(�x)]

]
≥ γ,

then there exists a polynomial Q : Fm → F, with degQ ≤ d, such that

Pr
�x∈Fm

[Q(�x) = A(�x)] ≥ γ − 2ε.

Proof. Assume that ε ≤ 1
2 (otherwise, we are done). Denote ε0 =

√
md
|F| , δ =

1.5ε− ε0. By applying Lemmas 6.1 and 6.2 on Lemma 10.1, we know that there exist
t ≤ 8/ε polynomials Q1, . . . , Qt : Fm → F, with degQi ≤ md, such that

1. (each agrees with many planes) for every 1 ≤ i ≤ t,

Pr
s∼D

[(Qi ≡ A)(s)] >
ε0
t

≥ md

|F| +
1

|F| ;

2. (all explain almost all of the consistency)

E
s∼D

[
Pr
�x∈s

[A(s)(�x) 
= A(�x) ∨ ∃i(Qi ≡ A)(s)]

]
≥ 1 − δ − ε0.

By Lemma 6.4, for every 1 ≤ i ≤ t, degQi ≤ d. By Corollary 5.9, D samples well: for
every set A ⊆ Fm, for every 0 < ε < 1,

Pr
s∼D

[∣∣∣∣ |s ∩A|
|s| − |A|

|Fm|

∣∣∣∣ ≥ ε

]
≤ 1

ε2
·
(

1

|H| +
1

|F|

)
.

Hence, by Lemma 6.3, there exists 1 ≤ i ≤ t such that

Pr
�x∈Fm

[Qi(�x) = A(�x)] ≥ γ − 2ε.

Our main theorem stating the soundness of the randomness efficient subspace
vs. point tester follows.
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Proof (of Theorem 2). Assume that

Pr
�z∈Fm,�y1,�y2∈Hm

[
SpacePointA(�z, �y1, �y2)

]
= γ.

The probability that �z, �y1, �y2 are linearly dependent is very small:

Pr
�z∈Fm,�y1,�y2∈Hm

[¬ind(�z, �y1, �y2)] ≤
1

|H|m +
1

|H|m−1 +
1

|F|m−2 ≤ 2

|H| +
1

|F| .

Hence,

E
s∼D

[
Pr
�x∈s

[A(s)(�x) = A(�x)]

]
≥ γ − 2

|H| −
2

|F| .

By Lemma 10.2 we have decoding: there exists a polynomial Q : Fm → F, with
degQ ≤ d, such that

Pr
�x∈Fm

[Q(�x) = A(�x)] ≥ γ − 2.5ε.

Lemma 6.1 applied on Lemma 10.2 gives list decoding: there exist t ≤ 2/δ polynomials
Q1, . . . , Qt : Fm → F, with degQi ≤ d, such that

E
s∼D

[
Pr
�x∈s

[A(s)(�x) 
= A(�x) ∨ ∃i (Qi ≡ A)(s)]

]
≥ 1 − δ − 2.75ε.

Therefore,

Pr
�z∈Fm,�y1,�y2∈Hm

[
¬SpacePointA(�z, �y1, �y2) ∨ ∃i (Qi ≡ A)(affine(�0;�z, �y1, �y2))

]
≥ 1−δ−3ε.

The proof is complete.

Appendix A. Combinatorial lemma. Let us prove the lemma of Raz and
Safra [17] that we use. First, let us introduce several notations. Given a graph

G = (V,E) and a vertex v ∈ V , the neighbors of v are NG(v)
def
= {u ∈ V | (v, u) ∈ E }.

The degree of v is dG(v)
def
= |NG(v)|. The connected component of v is CG(v)

def
=

{u ∈ V | u is reachable from v }. The nonneighbors of v within its connected compo-

nent are denoted by DG(v)
def
= CG(v) \ ({v} ∪ NG(v)).

Lemma A.1 (graph partition [17]). Let G = (V,E) be an undirected graph in
which every two nonneighbors u, v ∈ V , (u, v) /∈ E, have at most ε |V | common
neighbors. Then there exists a partition of the vertices into cliques V =

⊎t
i=1 Vi such

that the following apply:
1. (All nontrivial cliques are large) For every 1 ≤ i ≤ t, either |Vi| = 1, or

|Vi| > 2
√
ε |V |.

2. (Almost all edges are within cliques)

Pr
u,v∈V

[(u, v) /∈ E ∨ ∃i u, v ∈ Vi] ≥ 1 − 5
√
ε.

Proof. Consider the following operation on graphs, meant to improve transitivity
by removing some edges: Pick a vertex v ∈ V .

1. If dG(v) ≤ 2
√
ε |V |, remove all of the edges that touch v.
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2. If dG(v) > 2
√
ε |V |, remove all edges between neighbors of v and nonneighbors

of v (these edges are necessarily within v’s connected component).
If there is no vertex for which this operation causes removal of edges, then the graph
is necessarily transitive, and, moreover, all of its nontrivial cliques are of size more
than 2

√
ε |V |.

Hence, iteratively perform this operation, picking each time an arbitrary vertex
for which edges would be removed, until this is no longer possible. Let v1, v2, . . . , vl
denote the picked (not necessarily distinct) vertices. Let G1, G2, . . . , Gl denote the
subgraphs obtained in the l iterations. Let I1 be the set of all indices 1 ≤ i ≤ l in
which step 1 was performed. Let I2 be the set of all indices 1 ≤ i ≤ l in which step 2
was performed.

We will bound the total number of edges removed. Observe that, if step 1 is
performed for a vertex vi, its connected component becomes a singleton. Thus, |I1| ≤
|V |, and we have∑

i∈I1

|NGi
(vi)| ≤

∑
i∈I1

2
√
ε |V | = |I1| · 2

√
ε |V | ≤ 2

√
ε |V |2 .

Observe that, if step 2 is performed for a vertex vi, after the ith operation, the
vertices of NGi(vi) and the vertices of DGi(vi) do not belong to the same connected

component. Thus,
∑

i∈I2
|DGi(vi)| · |NGi(vi)| ≤ |V |2 (no pair of vertices appears twice

in this sum). By the almost-transitivity, for every i ∈ I2, every vertex u ∈ DGi(vi)
has at most ε |V | neighbors in NGi(vi) (each is a common neighbor of u and vi).
Therefore, we can bound the total number of edges removed in step 2 by

∑
i∈I2

|DGi(vi)|·ε |V |<
∑
i∈I2

|DGi(vi)|·ε·
|NGi(vi)|

2
√
ε

≤
√
ε

2
·
∑
i∈I2

|DGi(vi)|·|NGi(vi)| ≤
√
ε

2
|V |2 .

Therefore, the total number of edges removed is at most 2.5
√
ε |V |2, and the total

number of pairs u, v ∈ V for which (u, v) ∈ E but u and v are not in the same clique

is at most 5
√
ε |V |2.
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Abstract. A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one
cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L. The weight
of a cycle cover of an edge-weighted graph is the sum of the weights of its edges. We come close
to settling the complexity and approximability of computing L-cycle covers. On the one hand, we
show that, for almost all L, computing L-cycle covers of maximum weight in directed and undirected
graphs is APX-hard. Most of our hardness results hold even if the edge weights are restricted to zero
and one. On the other hand, we show that the problem of computing L-cycle covers of maximum
weight can be approximated within a factor of 2 for undirected graphs and within a factor of 8/3 in
the case of directed graphs. This holds for arbitrary sets L.
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1. Introduction. A cycle cover of a graph is a spanning subgraph that consists
solely of cycles such that every vertex is part of exactly one cycle. Cycle covers play an
important role in the design of approximation algorithms for the traveling salesman
problem [4, 6, 7, 10, 11, 12, 13, 23], the shortest common superstring problem [9, 28],
and vehicle routing problems [19].

In contrast to Hamiltonian cycles, which are special cases of cycle covers, cycle
covers of maximum weight can be computed efficiently. This is exploited in the
aforementioned approximation algorithms, which usually start by computing an initial
cycle cover and then join cycles to obtain a Hamiltonian cycle. This technique is called
subtour patching [16].

Short cycles in a cycle cover limit the approximation ratios achieved by such al-
gorithms. In general, the longer the cycles in the initial cover, the better the approx-
imation ratio. Thus, we are interested in computing cycle covers that do not contain
short cycles. Moreover, there are approximation algorithms that perform particularly
well if the cycle covers computed do not contain cycles of odd length [6]. Finally, some
vehicle routing problems [19] require covering vertices with cycles of bounded length.

Therefore, we consider restricted cycle covers, where cycles of certain lengths are
ruled out a priori: For L ⊆ N, an L-cycle cover is a cycle cover in which the length of
each cycle is in L. To fathom the possibility of designing approximation algorithms
based on computing cycle covers, we aim to characterize the sets L for which L-cycle
covers of maximum weight can be computed, or at least well approximated, efficiently.
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Beyond being a basic tool for approximation algorithms, cycle covers are inter-
esting in their own right. Matching theory and graph factorization are important
topics in graph theory. The classical matching problem is the problem of find-
ing one-factors, i.e., spanning subgraphs each vertex of which is incident to ex-
actly one edge. Cycle covers of undirected graphs are also known as two-factors
because every vertex is incident to exactly two edges. A considerable amount of
research has been done on structural properties of graph factors and on the com-
plexity of finding graph factors (cf. Lovász and Plummer [24] and Schrijver [27]).
In particular, the complexity of finding restricted two-factors, i.e., L-cycle covers
in undirected graphs, has been investigated, and Hell et al. [22] showed that find-
ing L-cycle covers in undirected graphs is NP-hard for almost all L. However, al-
most nothing is known so far about the complexity of finding directed
L-cycle covers.

1.1. Preliminaries. Let G = (V,E) be a graph with vertex set V and edge set
E. If G is undirected, then a cycle cover of G is a subset C ⊆ E of the edges of G
such that all vertices in V are incident to exactly two edges in C. If G is a directed
graph, then a cycle cover of G is a subset C ⊆ E such that all vertices are incident
to exactly one incoming and one outgoing edge in C. Thus, the graph (V,C) consists
solely of vertex-disjoint cycles. The length of a cycle is the number of edges of which
it consists. Since we do not allow self-loops or multiple edges, the shortest cycles of
undirected and directed graphs are of length three and two, respectively.

We call a cycle of length λ a λ-cycle for short. Cycles of even or odd length will
simply be called even or odd cycles, respectively.

An L-cycle cover of an undirected graph is a cycle cover in which the length
of every cycle is in L ⊆ U = {3, 4, 5, . . . }. An L-cycle cover of a directed graph is
analogously defined except that L ⊆ D = {2, 3, 4, . . . }. A k-cycle cover is a {k, k +
1, . . . }-cycle cover. In the following, let L = U \L in the case of undirected graphs and
L = D \L in the case of directed graphs (whether we consider undirected or directed
cycle covers will be clear from the context).

Given edge weights w : E → N, the weight w(C) of a subset C ⊆ E of the edges
of G is w(C) =

∑
e∈C w(e). In particular, this defines the weight of a cycle cover since

we view cycle covers as sets of edges. Let U ⊆ V be any subset of the vertices of G.
The internal edges of U are all edges of G that have both vertices in U . We denote
by wU (C) the sum of the weights of all internal edges of U that are also contained in
C. The external edges at U are all edges of G with exactly one vertex in U .

For L ⊆ U , L-UCC is the decision problem whether an undirected graph contains
an L-cycle cover as a spanning subgraph.

Max-L-UCC(0,1) is the following optimization problem: Given an undirected
complete graph with edge weights zero and one, find an L-cycle cover of maximum
weight. We can also consider the graph as being not complete and without edge
weights. Then we try to find an L-cycle cover with a minimum number of “nonedges”
(nonedges correspond to weight zero edges, edges to weight one edges); i.e., the L-cycle
cover should contain as many edges as possible. Thus, Max-L-UCC(0,1) generalizes
L-UCC.

Max-L-UCC is the problem of finding L-cycle covers of maximum weight in graphs
with arbitrary nonnegative edge weights.

For k ∈ U , k-UCC, Max-k-UCC(0,1), and Max-k-UCC are defined like L-UCC,
Max-L-UCC(0,1), and Max-L-UCC except that k-cycle covers rather than L-cycle
covers are sought.
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The problems L-DCC, Max-L-DCC(0,1), and Max-L-DCC as well as k-DCC,
Max-k-DCC(0,1), and Max-k-DCC are defined for directed graphs like their undi-
rected counterparts except that L ⊆ D and k ∈ D.

An instance of Min-Vertex-Cover(λ)is an undirected λ-regular graph H = (X,F );
i.e., every vertex in X is incident to exactly λ edges. A vertex cover of H is a subset
X̃ ⊆ X such that at least one vertex of every edge in F is in X̃. The aim is to
find a subset X̃ ⊆ X of minimum cardinality. Min-Vertex-Cover(λ) is APX-complete
for λ ≥ 3 as follows from results by Alimonti and Kann [2] as well as Chleb́ik and
Chleb́iková [14].

An instance of λ-XC (exact cover by λ-sets) is a tuple (X,F ), where X is a finite
set and F is a collection of subsets of X, each of cardinality λ. The question is whether
there exists a subcollection F̃ ⊆ F such that for every x ∈ X there is a unique a ∈ F̃
with x ∈ a. For λ ≥ 3, λ-XC is NP-complete [15, Problem SP2].

Let Π be an optimization problem, and let I be its set of instances. For an
instance X ∈ I, let opt(X) denote the weight of an optimum solution. We say
that Π can be approximated with an approximation ratio of α ≥ 1 if there exists a
polynomial-time algorithm that, for every instance X ∈ I, computes a solution Y of
X whose weight w(Y,X) is at most a factor of α away from opt(X). This means that
w(Y,X) ≤ α · opt(X) if Π is a minimization problem and w(Y,X) ≥ opt(X)/α if Π
is a maximization problem [3, Definition 3.6].

1.2. Previous results. Max-U-UCC, and thus U-UCC and Max-U-UCC(0,1),
can be solved in polynomial time via Tutte’s reduction to the classical perfect matching
problem [24, section 10.1]. Hartvigsen presented a polynomial-time algorithm that
can be used to decide 4-UCC in polynomial time [17]. Furthermore, it can be adapted
to solve Max-4-UCC(0,1) as well.

Max-k-UCC admits a simple factor 3/2 approximation for all k: Compute a
maximum weight cycle cover, break the lightest edge of each cycle, and join the
paths thus obtained to a Hamiltonian cycle. Unfortunately, this algorithm cannot be
generalized to work for Max-L-UCC for general L. For the problem of computing k-
cycle covers of minimum weight in graphs with edge weights one and two, there exists
a factor 7/6 approximation algorithm for all k [8]. Hassin and Rubinstein [20, 21]
devised a randomized approximation algorithm for Max-{3}-UCC that achieves an
approximation ratio of 83/43 + ε.

Hell et al. [22] proved that L-UCC is NP-hard for L �⊆ {3, 4}. For k ≥ 7, Max-
k-UCC(0,1) and Max-k-UCC are APX-complete [5]. Vornberger showed that Max-5-
UCC is NP-hard [29].

The directed cycle cover problems D-DCC, Max-D-DCC(0,1), and Max-D-DCC
can be solved in polynomial time by reduction to the maximum weight perfect match-
ing problem in bipartite graphs [1, Chapter 12]. But already 3-DCC is NP-com-
plete [15]. Max-k-DCC(0,1) and Max-k-DCC are APX-complete for all k ≥ 3 [5].

Similar to the factor 3/2 approximation algorithm for undirected cycle covers,
Max-k-DCC has a simple factor 2 approximation algorithm for all k: Compute a
maximum weight cycle cover, break the lightest edge of every cycle, and join the
cycles to obtain a Hamiltonian cycle. Again, this algorithm cannot be generalized
to work for arbitrary L. There is a factor 4/3 approximation algorithm for Max-3-
DCC [7] and a factor 3/2 approximation algorithm for Max-k-DCC(0,1) for k ≥ 3 [5].

The complexity of finding L-cycle covers in undirected graphs seems to be well
understood. However, hardly anything is known about the complexity of L-cycle
covers in directed graphs and about the approximability of L-cycle covers in both
undirected and directed graphs.
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Fig. 1. An L-clamp and an L-gadget for a set L with max(L) = Λ.

1.3. Our results. We prove that Max-L-UCC(0,1) is APX-hard for all L with
L �⊆ {3, 4} (section 2.2) and that Max-L-UCC is APX-hard if L �⊆ {3} (section 2.3).
The hardness results for Max-L-UCC hold even if we allow only the edge weights zero,
one, and two.

We show a dichotomy for directed graphs: For all L with L �= {2} and L �= D, L-
DCC is NP-hard and Max-L-DCC(0,1) and Max-L-DCC are APX-hard (section 2.5),
while all three problems are solvable in polynomial time if L = {2} or L = D.

The hardness results for Max-L-UCC(0,1) and Max-L-DCC(0,1) carry over to
the problem of computing L-cycle covers of minimum weight in graphs restricted to
edge weights one and two. The hardness results for Max-L-UCC for L = {3, 4} and
L = {4} carry over to the problem of computing L-cycle covers of minimum weight
where the edge weights are required to fulfill the triangle inequality.

To show the hardness of directed cycle covers, we show that certain kinds of
graphs, called L-clamps, exist for nonempty L ⊆ D if and only if L �= D (Theo-
rem 2.10). This graph-theoretical result might be of independent interest.

Finally, we devise approximation algorithms for Max-L-UCC and Max-L-DCC
that achieve ratios of 2 and 8/3, respectively (section 3). Both algorithms work for
all sets L.

2. The hardness of approximating L-cycle covers.

2.1. Clamps and gadgets. To begin the hardness proofs, we introduce clamps,
which were defined by Hell et al. [22]. Clamps are crucial for our hardness proof.

Let K = (U,E) be an undirected graph, and let u, v ∈ U be two vertices of
K, which we call the connectors of K. We denote by K−u and K−v the graphs
obtained from K by deleting u and v, respectively, and their incident edges. K−u−v

is obtained from K by deleting both u and v. For k ∈ N, Kk is the following graph:
Let y1, . . . , yk /∈ U be new vertices, and add edges {u, y1}, {yi, yi+1} for 1 ≤ i ≤ k−1,
and {yk, v}. For k = 0, we directly connect u to v.

Let L ⊆ U . The graph K is called an L-clamp if the following properties hold:
1. Both K−u and K−v contain an L-cycle cover.
2. Neither K nor K−u−v nor Kk for any k ∈ N contains an L-cycle cover.

Figure 1(a) shows an example of an L-clamp for a set L with Λ = max(L). Hell
et al. [22] proved the following result which we will exploit for our reduction.

Lemma 2.1 (Hell et al. [22]). Let L ⊆ U be nonempty. Then there exists an
L-clamp if and only if L �⊆ {3, 4}.

Let G be a graph with vertex set V and U ⊆ V . We say that the vertex set U is
an L-clamp with connectors u, v ∈ U in G if the subgraph of G induced by U is an
L-clamp and the only external edges of U are incident to u or v.

Let us fix some technical terms. For this purpose, let C be a subset of the edges
of G. (In particular, C can be a cycle cover of G.) For any V ′ ⊆ V , we say that V ′ is
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nectors.

Fig. 2. A triple L-clamp and an L-gadget.

isolated in C if there is no edge in C connecting V ′ to V \ V ′. If C is a cycle cover,
then this means that all cycles of C traverse either only nodes of V ′ or only nodes of
V \ V ′. We say that the L-clamp U absorbs u and expels v if U \ {v} is isolated in
C. This means that each cycle of C traverses either only vertices in (V \ U) ∪ {v} or
only vertices in U \ {v} (which includes u). Analogously, U absorbs v and expels u if
U \ {u} is isolated in C.

An L-clamp implements an exclusive-or of u and v: In every L-cycle cover, exactly
one of them is absorbed, and the other one is expelled. For our purpose of reducing
from Min-Vertex-Cover(λ), we need a one-out-of-three behavior. A graph K is called
an L-gadget with connectors x, y, z if the following property is fulfilled: Let G be an
arbitrary graph that contains K as a subgraph such that only x, y, and z are incident
to external edges. Then in all L-cycle covers C of G, exactly two of K’s connectors
are expelled while the third one is absorbed. To put it another way, either K−x−y or
K−x−z or K−y−z is isolated in C.

For finite sets L, we obtain an L-gadget, shown in Figure 1(b), by equipping the
L-clamp of Figure 1(a) with an additional connector.

For infinite sets L, we first build an intermediate subgraph. A triple L-clamp is
built from three L-clamps and has three connectors u1, u2, u3. Figure 2(a) shows the
construction. Triple L-clamps show a two-out-of-three behavior: Only one connector
will be expelled, and the other two will be absorbed. More precisely, one of the three
clamps has to absorb v. The other two absorb their connectors ui, which are also
connectors of the triple clamp.

Now we are prepared to build L-gadgets for infinite sets L. These graphs are
built from three triple L-clamps T1, T2, and T3, where Ti has connectors ui, vi, ti.
Figure 2(b) shows the L-gadget. Since L is infinite, there exists a τ ≥ 1, with
τ + 6 ∈ L. Let us argue why the L-gadget behaves as claimed. For this purpose, let
C be an arbitrary L-cycle cover of G, where G contains the L-gadget as a subgraph.
First, we observe that all τ + 2 vertices of the path connecting a to b must be on the
same cycle c in C. The only other vertices to which a is incident are t1, t2, and t3. By
symmetry, we assume that t1 lies also in c. Therefore, T1 absorbs u1 and v1. Hence,
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v2 and u3 are absorbed by T2 and T3, respectively, and c runs through x, u2, v3 back
to b to form a (τ + 6)-cycle. Thus, x is absorbed by the gadget. T2 expels u2 and
absorbs u3, while T3 expels v3 and absorbs v2. Hence, the gadget expels y and z as
claimed. The other two cases are symmetric.

To conclude this section about clamps, we transfer the notion of L-gadgets to com-
plete graphs with edge weights zero and one and prove some properties. In section 2.3,
we will generalize the notion of L-gadgets to graphs with arbitrary edge weights.

The transformation to graphs with edge weights zero and one is made in the
obvious way: Let G be an undirected complete graph with vertex set V and edge
weights zero and one. Let U ⊆ V . We say that U is an L-gadget with connectors
x, y, z ∈ U if the subgraph of G induced by U restricted to the edges of weight one is
an L-gadget with connectors x, y, z.

Let σ be the number of vertices of an L-gadget U with connectors x, y, and z.
Let C be a subset of the edges of G (in particular, C can be a cycle cover). We
call U healthy in C if U absorbs x, y, or z, expels the other two connectors, and
wU (C) = σ− 2. Since the edge weighted graph is complete, the L-cycle may traverse
L-gadgets arbitrarily. The following lemma shows that we cannot gain weight by not
traversing them healthily.

Lemma 2.2. Let G be an undirected graph with vertex set V and edge weights
zero and one, and let U ⊆ V be an L-gadget with connectors x, y, z. Let C be an
arbitrary L-cycle cover of G and |U | = σ. Then the following properties hold:

1. wU (C) ≤ σ − 1.
2. If there are 2α external edges at U in C, i.e., edges with exactly one end point

in U , then wU (C) ≤ σ − α.
3. Assume that U absorbs exactly one of x, y, or z. Then there exists an L-

cycle cover C̃ that differs from C only in the internal edges of U and has
wU (C̃) = σ − 2.

4. Assume that there are two external edges at U in C that are incident to two
different connectors. Then wU (C) ≤ σ − 2.

Proof. If wU (C) = σ was true, then U would contain an L-cycle cover consisting
solely of weight one edges since |U | = σ. This would contradict U being an L-gadget.

The second claim follows immediately from |U | = σ and the fact that every vertex
is incident to exactly two edges in a cycle cover.

Assume without loss of generality that U absorbs x and expels y and z. Since
U is an L-gadget, U \ {y, z} contains an L-cycle cover consisting of σ − 1 weight one
edges, which proves the third claim.

The fourth claim remains to be proved. If there are more than two external edges
at U in C, we have at least four external edges and thus wU (C) ≤ σ − 2. So assume
that there are exactly two external edges at U in C incident to, say, x and y. We have
σ − 1 internal edges of U in C. If all of them had weight one, this would contradict
the property that in an unweighted L-gadget always U \{x, y}, U \{x, z}, or U \{y, z}
is isolated.

2.2. The reduction for undirected graphs. The notion of L-reductions was
introduced by Papadimitriou and Yannakakis [25] (cf. Ausiello et al. [3, Definition 8.4]).
L-reductions can be used to show the APX-hardness of optimization problems. We
present an L-reduction from Min-Vertex-Cover(λ) to show the inapproximability of
Max-L-UCC(0,1) for L �⊆ {3, 4}. The inapproximability of Max-L-UCC for L �⊆ {3}
and Max-L-DCC(0,1) for L �= {2} and L �= D will be shown in subsequent sections.
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Let L ⊆ U be nonempty with L �⊆ {3, 4}. Thus, L-gadgets exist, and we fix one
as in the previous section. Let λ = min(L). (This choice is arbitrary. We could
choose any number in L.) We will reduce Min-Vertex-Cover(λ) to Max-L-UCC(0,1).
Min-Vertex-Cover(λ) is APX-complete since λ ≥ 3.

Let H = (X,F ) be an instance of Min-Vertex-Cover(λ) with |X| = n vertices and
|F | = m = λn/2 edges. Our instance G for Max-L-UCC(0,1) consists of λ subgraphs
G1, . . . , Gλ, each containing σm vertices, where σ is the number of vertices of the
L-gadget. We start by describing G1. Then we state the differences between G1 and
G2, . . . , Gλ and say to which external edges of G1, . . . , Gλ weight one is assigned.

Let a = {x, y} ∈ F be any edge of H. We construct an L-gadget Fa for a that
has connectors x1

a, y
1
a, and z1

a. We call Fa an edge gadget.
Now let x ∈ X be any vertex of H, and let a1, . . . , aλ ∈ F be the λ edges that are

incident to x. We connect the vertices x1
a1
, . . . , x1

aλ
to form a path by assigning weight

one to the edges {x1
aη
, x1

aη+1
} for η ∈ {1, . . . , λ − 1}. Together with edge {x1

aλ
, x1

a1
},

these edges form a cycle of length λ ∈ L, but note that w({x1
aλ
, x1

a1
}) = 0. These λ

edges are called the junctions of x. The junctions at Fa for some a = {x, y} ∈ F are
the junctions of x and y that are incident to Fa. Overall, the graph G1 consists of
σm vertices since every edge gadget consists of σ vertices.

The graphs G2, . . . , Gλ are almost exact copies of G1. The graph Gξ (ξ ∈
{2, . . . , λ}) consists of L-gadgets with connectors xξ

a, yξa, and zξa for each edge a =
{x, y} ∈ F , just as above. The edge weights are also identical with the single excep-
tion that the edge {xξ

aλ
, xξ

a1
} also has weight one. Note that we use the term “edge

gadget” only for the subgraphs Fa of G1 defined above although almost the same
subgraphs occur in G2, . . . , Gλ as well. Similarly, the term “junction” refers only to
edges in G1.

Finally, we describe how to connect G1, . . . , Gλ with each other. For every edge
a ∈ F , there are λ vertices z1

a, . . . , z
λ
a . These are connected to form a cycle consisting

solely of weight one edges; i.e., we assign weight one to all edges {zξa, zξ+1
a } for ξ ∈

{1, . . . , λ− 1} and to {zλa , z1
a}. Figure 3 shows an example of the whole construction

from the viewpoint of a single vertex.
Edges with both vertices in the same gadget are called internal edges. Besides

junctions and internal edges, the third kind of edges are the z-edges of Fa for a ∈ F ,
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which are the two edges {z1
a, z

2
a} and {z1

a, z
λ
a}. The fourth kind of edges are illegal

edges, which are edges that are not junctions but connect any two vertices of two
different gadgets. The z-edges, however, are not illegal. Edges within G2, . . . , Gλ as
well as edges connecting Gξ to Gξ′ for ξ, ξ′ ≥ 2 have no special name.

We define the following terms for arbitrary subsets C of the edges of the graph G
thus constructed, which includes the case of C being a cycle cover. Let a = {x, y} ∈ F
be an arbitrary edge of H. We say that C legally connects Fa if the following properties
are fulfilled:

(i) C contains either two or four of the junctions at Fa and no illegal edges
incident to Fa.

(ii) If C contains exactly two junctions at Fa, then these belong to the same
vertex, and the two z-edges at Fa are contained in C.

(iii) If C contains four junctions at Fa, then C does not contain the z-edges at Fa.
We call C legal if C legally connects all gadgets. If C̃ is a legal L-cycle cover, then
for all x ∈ X either all junctions of x or no junction of x is in C̃. From a legal L-cycle
cover C̃, we obtain the subset X̃ = {x | the junctions of x are in C̃} ⊆ X. Since at
least two junctions at Fa are in C̃ for every a ∈ F , the set X̃ is a vertex cover of H.

The idea behind the reduction is as follows: Consider an edge a = {x, y} ∈ F .
We interpret x1

a being expelled to mean that x is in the vertex cover. (In this case,
the junctions of x are in the cycle cover.) Analogously, y is in the vertex cover if y1

a

is expelled. The vertex z1
a is absorbed only if both x and y are in the vertex cover. If

only one of x and y is in the vertex cover, z1
a forms a λ-cycle together with z2

a, . . . , z
λ
a .

We considered only G1 when defining the terms “legally connected” and “legal.”
This is because in G1 we lose weight one for putting x into the vertex cover since the
junction {x1

aλ
, x1

a1
} weighs zero. The other λ−1 copies of the construction are needed

only because z1
a must be part of some cycle if z1

a is not absorbed.
Lemma 2.3. Let X̃ be a vertex cover of size ñ of H. Then G contains an L-cycle

cover C̃, with w(C̃) = σλm− ñ.
Proof. We start by describing C̃ in G1. For every vertex x ∈ X̃, the cycle

consisting of all λ junctions is in C̃. Let a = {x, y} ∈ F be any edge. Then either x
or y or both are in X̃. If only x is in X̃, we let Fa absorb y1

a while z1
a is expelled. If

only y is in X̃, we let Fa absorb x1
a while z1

a is again expelled. If both x and y are in
X̃, then we let x1

a and y1
a be expelled while z1

a is absorbed.
We perform the same construction as for G1 for all copies G2, . . . , Gλ. If z1

a is
expelled, then z2

a, . . . , z
λ
a are expelled as well. We let them form a λ-cycle in C̃.

Clearly, C̃ is legal. Furthermore, C̃ is an L-cycle cover: Every cycle either has a
length of λ ∈ L or lies totally inside a single L-gadget. All L-gadgets are healthy in
C̃, and thus C̃ is an L-cycle cover.

All edges of C̃ within G2, . . . , Gλ have weight one. The only edges that connect
different copies Gξ and Gξ′ are edges {zξa, zξ+1

a } and {zλa , x1
a}, which have weight one

as well. Almost all edges used in G1 also have weight one; the only exception is one
junction of weight zero for each x ∈ X̃. Since |X̃| = ñ, there are ñ edges of weight zero
in C̃. The graph G contains σλm vertices, and thus C̃ contains σλm edges, σλm− ñ
of which have weight one.

Let C be an L-cycle cover of G, and let a ∈ F . We define WFa(C) as the sum
of the weights of all internal edges of Fa plus half the number of z-edges in C at Fa.
Analogously, WGξ

(C) is the number of weight one edges with both vertices in Gξ plus
half the number of weight one edges with exactly one vertex in Gξ.

Lemma 2.4. Let C be an L-cycle cover, and let j be the number of weight one
junctions in C. Then w(C) = j +

∑
a∈F WFa(C) +

∑λ
ξ=2 WGξ

(C).
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Proof. Every edge with both vertices in the same Gξ is counted once. The only
edges of weight one between different Gξ are the edges {zξa, zξ+1

a } and {zλa , z1
a}. These

are counted with one-half in both WGξ
(C) and WGξ+1

(C) for 2 ≤ ξ ≤ λ−1 or one-half
in both WGξ

(C) and WFa(C) for ξ ∈ {2, λ}.
In a legal L-cycle cover C̃ as described in Lemma 2.3, we have WGξ

(C̃) = σm for
all ξ ∈ {2, . . . , λ} since every vertex in Gξ is incident only to edges of weight one in

C̃ by construction. Now we show that it is always best to traverse the gadgets legally
and to keep the gadgets healthy.

Lemma 2.5. Given an arbitrary L-cycle cover C, we can compute a legal L-cycle
cover C̃ with w(C̃) ≥ w(C) in polynomial time.

Proof. We proceed as follows to obtain C̃:
1. Let C ′ be C with all illegal edges removed.
2. For all x ∈ X in arbitrary order: If at least one junction of x is in C, then

put all junctions of x into C ′.
3. For all a = {x, y} ∈ F in arbitrary order: If neither the junctions of x nor

the junctions of y are in C ′, choose arbitrarily one vertex of a, say, x, and
add all junctions of x to C ′.

4. Rearrange C ′ within G1 such that all clamps are healthy in C ′.
5. Rearrange C ′ such that all G2, . . . , Gλ are traversed exactly like G1.
6. For all a ∈ F : If z1

a, . . . , z
ξ
a are not absorbed, let them form a λ-cycle. Call

the result C̃.
The running time of the algorithm is polynomial. Moreover, C̃ is a legal L-cycle cover
by construction. What remains is to prove w(C̃) ≥ w(C).

Let w(C) = j +
∑

a∈F WFa(C) +
∑λ

ξ=2 WGξ
(C) be the weight of C according

to Lemma 2.4; i.e., C contains j junctions of weight one. Analogously, let w(C̃) =

j̃+
∑

a∈F WFa(C̃)+
∑λ

ξ=2 WGξ
(C̃); i.e., j̃ is the number of junctions of weight one in C̃.

All illegal edges have weight zero, and we do not remove any junctions. We have
WGξ

(C̃) = σm for all ξ, which is maximal. Thus, no weight is lost in this way. What
remains is to consider the internal edges of the gadgets and the z-edges.

Let a = {x, y} be an arbitrary edge of H. If WFa(C) ≤ WFa(C̃), then nothing has
to be shown. Those gadgets Fa with WFa

(C) > WFa
(C̃) remain to be considered. We

have WFa(C̃) ≥ σ−2 and WFa(C) ≤ σ−1 according to Lemma 2.2. Thus, WFa(C) =
σ − 1 and WFa(C̃) = σ − 2 = WFa(C) − 1 for all a ∈ F with WFa(C) > WFa(C̃).
What remains to be proved is that, for all such gadgets, there is a junction of weight
one in C̃ that is not in C and can thus compensate for the loss of weight one in Fa.
This means that we have to show that j̃ is at least j plus the number of edges a with
WFa

(C) > WFa(C̃).
If WFa(C) = σ − 1, then according to Lemma 2.2(4) the junctions at Fa in C (if

there are any) belong to the same vertex. Since WFa(C̃) = σ−2, all four junctions at
Fa are in C̃. Thus, while executing the above algorithm, there is a moment at which
at least one of, say, y’s junctions at Fa is in C ′, and the junctions of x are added in
the next step. We say that a vertex x compensates Fa if

1. C̃ contains x’s junctions,
2. no junction of x at Fa is in C, and
3. at the moment at which x’s junctions are added, C ′ already contains at least

one junction of y at Fa.
Thus, every gadget Fa with WFa

(C̃) < WFa
(C) is compensated by some vertex x ∈ a.

It remains to be shown that the number of gadgets that are compensated by
some vertex is at most equal to the number of weight one junctions added to C ′.
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Let η ∈ {0, . . . , λ} be the number of junctions of x in C. If η = λ, then x does
not compensate any gadget. If η = 0, i.e., C does not contain any of x’s junctions,
then the junctions of x are added during step 3 of the algorithm because there is
some edge a ∈ F with x ∈ a such that there is no junction at all in C ′ at Fa before
adding x’s junctions. Thus, x does not compensate Fa. At most λ − 1 gadgets are
compensated by x, and λ− 1 junctions of x have weight one. The case that remains
is η ∈ {1, . . . , λ− 1}. Then λ− η junctions of x are added, and at least λ− η − 1 of
them have weight one. On the other hand, there are at least η + 1 gadgets Fa such
that at least one junction of x at Fa is already in C: Every junction is at two gadgets,
and thus η junctions are at η + 1 or more gadgets. Thus, at most λ − η − 1 gadgets
are compensated by x.

Finally, we prove the following counterpart to Lemma 2.3.
Lemma 2.6. Let C̃ be the L-cycle cover constructed as described in the proof of

Lemma 2.5, and let X̃ = {x | x’s junctions are in C̃} be the subset of X obtained
from C̃. Choose ñ such that w(C̃) = σλm− ñ. Then |X̃| = ñ.

Proof. The proof is similar to the proof of Lemma 2.3. We set the weight of all
junctions to one. With respect to the modified edge weights, the weight of C̃ is σλm.
Thus, ñ is the number of weight zero junctions in C̃, which is just |X̃|.

Now we are prepared to prove the main theorem of this section.
Theorem 2.7. For all L ⊆ U with L �⊆ {3, 4}, Max-L-UCC(0,1) is APX-hard.
Proof. We show that the reduction presented is an L-reduction. Then the result

follows from the APX-hardness of Min-Vertex-Cover(λ). Let opt(H) be the size of a
minimum vertex cover of H and opt(G) be the weight of a maximum weight L-cycle
cover of G. From Lemmas 2.3, 2.5, and 2.6, we obtain that opt(G) = σλm−opt(H) ≤
σλm. Since H is λ-regular, we have opt(H) ≥ n/2. Thus,

opt(G) ≤ σλm = σλ · (λn/2) ≤ (σλ2) · opt(H).

Let C be an arbitrary L-cycle cover of G, C̃ be a legal L-cycle cover obtained
from C as in Lemma 2.5, and X̃ ⊆ X be obtained from C̃. Then∣∣|X̃| − opt(H)

∣∣ = ∣∣w(C̃) − opt(G)
∣∣ ≤ ∣∣w(C) − opt(G)

∣∣,
which completes the proof.

2.3. Adaption of the reduction to Max-L-UCC. To prove the APX-hard-
ness of Max-L-UCC for L �⊆ {3}, all we have to do is to deal with L = {4} and
L = {3, 4}. For all other sets L, the inapproximability follows from Theorem 2.7. We
will adapt the reduction presented in the previous section.

To do this, we have to find an edge weighted analogue of an L-clamp. We do not
explicitly define the properties a weighted L-clamp has to fulfill. Instead, we just call
the graph shown in Figure 4(a) a weighted L-clamp for L = {3, 4} and L = {4}.

The basic idea is that all three edges of weight two of the weighted clamp have
to be traversed in a cycle cover. Since 4-cycles are forbidden, we have to take either
the two dotted edges or the two dashed edges. Otherwise, we would have to take an
edge of weight zero. Furthermore, if we take the dashed edges, we have to absorb v
and to expel u, and if we take the dotted edges, we have to absorb u and to expel v
(Figures 4(b) and 4(c)). Again, we would have to take edges of weight zero otherwise.

Using three weighted L-clamps Kx,Ky,Kz, we build an L-gadget as shown in Fig-
ure 5(a). Note that both t and t′ can serve as a connector for each of the clamps. This
weighted L-gadget has essentially the same properties as the L-gadgets of section 2.1,
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u

v
(a) The clamp.

u

v
(b) Absorbing v.

u

v
(c) Absorbing u.

x

p

(d) Illegal traversal of Kx.

Fig. 4. A weighted L-clamp for {4} ⊆ L ⊆ {3, 4} and how to traverse it. Bold edges have
weight two; solid, dashed, and dotted edges have weight one.

t t′

Kx

x

y

Ky

Kz

z

(a) The weighted L-gadget.

t t′x

Kx

y

Ky

Kz

z

(b) How to absorb x.

Fig. 5. A weighted L-gadget and how to use it.

which were stated as Lemma 2.2. The difference is that σ = 32 is no longer the number
of vertices, but the number of vertices plus the number of edges of weight two.

Lemma 2.8. Let G be an undirected graph with vertex set V and edge weights
zero and one, and let U ⊆ V be a weighted L-gadget with connectors x, y, z in G. Let
C be an arbitrary L-cycle cover of G. Then the following properties hold:

1. wU (C) ≤ 31.
2. If there are 2α external edges at U in C, then wU (C) ≤ 32 − α.
3. If U absorbs x, then there exists an L-cycle cover C̃ that differs from C only

in the internal edges of U and has wU (C̃) = 30. The same holds if U absorbs
y or z.

4. Assume that there are two external edges at U in C that are incident to two
different connectors. Then wU (C) ≤ 30.

Proof. The only way to achieve wU (C) > 31 is wU (C) = 32, which requires that
we have 23 internal edges including all nine edges of weight two. Since 4-cycles are
forbidden, such an L-cycle cover does not exist.

If we have 2α external edges, then we have 23 − α internal edges. At most nine
of them are of weight two.

If U absorbs x, then we can achieve a weight of 30 by letting Ky and Kz absorb
t1 and t2, respectively (Figure 5(b)). (We can also connect Ky and Kz via t and t′ to
obtain a 14-cycle. The weight would be the same.) In the same way, we can achieve
weight 30 if U absorbs y or z.

The fourth claim remains to be proved. We have wU (C) ≤ 31 and 22 internal
edges. If wU (C) > 30, then wU (C) = 31, and C contains all nine edges of weight two
and no internal edge of weight zero of U . By symmetry, it suffices to consider the case
that x is incident to one external edge. Figure 4(d) shows which edges are mandatory
in order to keep all three edges of weight two. Since the cycle that contains x must
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x1
u v

(a) A {2}-clamp.

x2 x3 xΛ−2︸ ︷︷ ︸
Λ−3 vertices

xΛ−1x1

u

v

(b) An L-clamp for finite sets L
with max(L) = Λ ≥ 3.

x1 x3

x2

u

v

(c) A {2}-clamp.

︸ ︷︷ ︸
Λ − 3 vertices

u v
x3x2 xΛ−2

x1

xΛ−1

y

z

(d) An L-clamp for Λ �∈ L and Λ + 2 ∈ L
with Λ ≥ 3.

︸ ︷︷ ︸
�Λ/2� − 2 vertices

	Λ/2
 − 2 vertices︷ ︸︸ ︷
x	Λ/2
+1

x	Λ/2
x2x1

xΛ

u v

(e) An L-clamp for Λ,Λ + 2 �∈ L, and Λ + 1 ∈ L with
Λ ≥ 4.

Fig. 6. Directed L-clamps. The connectors are u and v; the internal vertices are x1, x2, . . .
and y, z.

be continued at p, vertex p is incident to an edge of weight zero in C, which proves
the claim.

Given these properties, we can plug the L-gadget into the reduction described
in the previous section to obtain the APX-hardness of Max-L-UCC for L = {4} and
L = {3, 4}. Together with Theorem 2.7, we obtain the following result.

Theorem 2.9. Max-L-UCC is APX-hard for all L with L �⊆ {3} even if the edge
weights are restricted to be zero, one, or two.

2.4. Clamps in directed graphs. The aim of this section is to prove a coun-
terpart to Lemma 2.1 (for the existence of L-clamps) for directed graphs. Let K =
(V,E) be a directed graph and u, v ∈ V . Again, K−u, K−v, and K−u−v denote
the graphs obtained by deleting u, v, and both u and v, respectively. For k ∈
N, Kk

u denotes the following graph: Let y1, . . . , yk /∈ V be new vertices, and add
edges (u, y1), (y1, y2), . . . , (yk, v). For k = 0, we add the edge (u, v). The graph
Kk

v is similarly defined, except that we now start at v; i.e., we add the edges (v, y1),
(y1, y2), . . . , (yk, u). K0

v is K with the additional edge (v, u).
Now we can define clamps for directed graphs: Let L ⊆ D. A directed graph

K = (V,E) with u, v ∈ V is a directed L-clamp with connectors u and v if the
following properties hold:

(i) Both K−u and K−v contain an L-cycle cover.
(ii) Neither K, K−u−v, K

k
u , nor Kk

v for any k ∈ N contains an L-cycle cover.
Let us now prove that directed L-clamps exist for almost all L.
Theorem 2.10. Let L ⊆ D be nonempty. Then there exists a directed L-clamp

if and only if L �= D.
Proof. We first prove that directed L-clamps exist for all nonempty sets L ⊆ D

with L �= D. We start by considering finite L. If L is finite, max(L) = Λ exists. For
L = {2}, the graph shown in Figure 6(a) is a directed L-clamp: Either u or v forms
a 2-cycle with x1, and there are no other possibilities. Otherwise, we have Λ ≥ 3.
Figure 6(b) shows a directed L-clamp for this case, which is a directed variant of the
undirected clamp shown in Figure 1(a).
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Now we consider finite L. Figure 6(c) shows an L-clamp for L = {2}: x1, x2, and
x3 must be on the same path since length two is forbidden. This cycle must include
u or v but cannot include both of them.

Otherwise, max(L) = Λ ≥ 3, Λ + 2 ∈ L, and the graph shown in Figure 6(d) is
an L-clamp: The vertices x1, . . . , xΛ−1 must all be on the same cycle. Thus, either
(y, x1) or (z, x1) is in the cycle cover. By symmetry, it suffices to consider the first
case. Since Λ /∈ L, the edge (xΛ−1, y) cannot be in the cycle cover. Thus, (v, y),
(xΛ−1, z), and hence (z, v) are in the cycle cover.

The case that remains to be considered is that both L and L are infinite. We
distinguish two subcases. First, there exists a Λ ≥ 4 with Λ,Λ+2 /∈ L and Λ+1 ∈ L.
In this case, the graph shown in Figure 6(e) is an L-clamp: x1, . . . , xΛ must be on the
same cycle. Since the lengths Λ and Λ + 2 are not allowed, either v or u is expelled
and the other vertex is absorbed.

Second, if no Λ exists with Λ,Λ+2 /∈ L and Λ+1 ∈ L (but L and L are infinite),
then there exists a Λ ≥ 3 with Λ /∈ L and Λ+2 ∈ L, and we can use the graph already
used for finite L (Figure 6(d)) as a directed L-clamp.

Lemma 2.11 below shows that D-clamps do not exist, which completes the
proof.

Lemma 2.11. Let G = (V,E) be a directed graph, and let u, v ∈ V . If G−u and
G−v both contain a cycle cover, then

(i) both G and G−u−v contain cycle covers or
(ii) all Gk

u and Gk
v for k ∈ N contain cycle covers.

Proof. Let E−u and E−v be the sets of edges of the cycle covers of G−u and
G−v, respectively. We construct two sequences of edges P = (e1, e2, . . . ) and P ′ =
(e′1, e

′
2, . . . ). These sequences can be viewed as augmenting paths, and we use them

to construct cycle covers of G−u−v and G or Gk
u and Gk

v . The sequence P is given
uniquely by traversing edges of E−v forwards and edges of E−u backwards:

(i) e1 = (u, x1) is the unique outgoing edge of u = x0 in E−v.
(ii) If ei = (xi−1, xi) ∈ E−v, i.e., if i is odd, then ei+1 = (xi+1, xi) ∈ E−u is the

unique incoming edge of xi in E−u.
(iii) If ei = (xi, xi−1) ∈ E−u, i.e., if i is even, then ei+1 = (xi, xi+1) ∈ E−v is the

unique outgoing edge of xi in E−v.
(iv) If in any of the above steps no extension of P is possible, then stop.
Let P = (e1, . . . , e�). We observe two properties of the sequence P .
Lemma 2.12. 1. No edge appears more than once in P .
2. If 
 is odd, i.e., e� ∈ E−v, then e� = (x�−1, u). If 
 is even, i.e., e� ∈ E−u,

then e� = (v, x�−1).
Proof. Assume the contrary of the first claim, and let ei = ej (i �= j) be an edge

that appears at least twice in P such that i is minimal. If i = 1, then ej = (u, x1) ∈
E−v. This would imply that ej−1 = (u, xj−2) ∈ E−u, a contradiction. If i > 1,
then assume ei = (xi−1, xi) ∈ E−v without loss of generality. Since exactly one edge
leaves xi−1 in E−u, the edge ei−1 = ej−1 is uniquely determined, which contradicts
the assumption that i be minimal.

Let us now prove the second claim. Without loss of generality, we assume that
the last edge e� belongs to E−v. Let e� = (x�−1, x�). The path P cannot be extended,
which implies that there does not exist an edge (x�+1, x�) ∈ E−u. Since E−u is a cycle
cover of G−u, this implies that x� = u and completes the proof.

We build the sequence P ′ analogously, except that we start with the edge e′1 =
(x′

1, v) ∈ E−u. Again, we traverse edges of E−v forwards and edges of E−u backwards.
Let P ′ = (e′1, . . . , e

′
�′).
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u v

(a) A graph G.

u v

(b) Cycle covers of G−v (dashed and
solid) and G−u (dotted and solid).

u

u

v

v
(c) P (top) and P ′ (bottom).
Dashed and dotted edges belong to
the cycle covers of G−v and G−u, re-
spectively.

u

u

v

v

(d) Cycle covers of G0
v (top) and G0

u
(bottom).

Fig. 7. Constructing cycle covers of G0
v and G0

u from the sequences P and P ′.

u v

(a) Another graph G.

u v

(b) Cycle covers of G−v (dashed
and solid) and G−u (dotted and
solid).

u

u v

v

(c) P (top) and P ′ (bottom).

u v

u v

(d) Cycle covers of G (top) and
G−u−v (bottom).

Fig. 8. Constructing cycle covers of G and G−u−v from the sequences P and P ′.

No edge appears in both P and P ′ as can be proved similarly to the first claim of
Lemma 2.12. Moreover, either P ends at u and P ′ ends at v or vice versa: We have
e� = (x�−1, u) if and only if e′�′ = (v, x�′−1), and we have e� = (v, x�−1) if and only if
e′�′ = (x�′−1, u). Let P−u ⊆ E−u denote the set of edges of E−u that are part of P .
The sets P−v, P

′
−u, P ′

−v are defined similarly.
Two examples are shown in Figures 7 and 8: Figures 7(a) and 7(b) show a graph

with its cycle covers, while Figure 7(c) depicts P and P ′, the former starting at u and
ending at v and the latter starting at v and ending at u. Figures 8(a), 8(b), and 8(c)
show another example graph; this time P starts and ends at u and P ′ starts and ends
at v.

Our aim is now to construct cycle covers of G and G−u−v or of Gk
u and Gk

v . We
distinguish two cases. Let us start with the case that P starts at u and ends at v and,
consequently, P ′ starts at v and ends at u. Then

E0
u = (E−v \ P−v) ∪ P−u ∪ {(u, v)}
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is a cycle cover of G0
u. To prove this, we have to show indegE0

u
(x) = outdegE0

u
(x) = 1

for all x ∈ V :
(i) We removed the outgoing edge of u in E−v, which is in P−v. The incoming

edge of u in E−v is left. P−u does not contain any edge incident to u, and
(u, v) is an outgoing edge of u. Thus, indegE0

u
(u) = outdegE0

u
(u) = 1.

(ii) There is no edge incident to v in E−v. P−u contains an outgoing edge of v,
and (u, v) is an incoming edge of v. Thus, indegE0

u
(v) = outdegE0

u
(v) = 1.

(iii) For all x ∈ V \ {u, v}, either both P−v and P−u contain an incoming edge
of x or neither of them does. Analogously, either both P−v and P−u contain
an outgoing edge of x or neither of them does. Thus, replacing P−v by P−u

changes neither indeg(x) nor outdeg(x).
By replacing the edge (u, v) by a path (u, y1), . . . , (yk, v), we obtain a cycle cover of
Gk

u for all k ∈ N. A cycle cover of G0
v is obtained similarly:

E0
v = (E−u \ P−u) ∪ P−v ∪ {(v, u)}.

As above, we get cycle covers of Gk
v by replacing (v, u) by a path (v, y1), . . . , (yk, u).

Figure 7(d) shows an example of how the new cycle covers are obtained.
The second case is that P starts and ends at u and P ′ starts and ends at v. Then

(E−v \ P−u) ∪ P−v and (E−u \ P ′
−v) ∪ P ′

−u

are cycle covers of G, and

(E−v \ P−v) ∪ P−u and (E−u \ P ′
−u) ∪ P ′

−v

are cycle covers of G−u−v. The proof is similar to the first case. Figure 8(d) shows
an example.

2.5. Intractability for directed graphs. From the hardness results in the
previous sections and the work by Hell et al. [22], we obtain the NP-hardness and
APX-hardness of L-DCC and Max-L-DCC(0,1), respectively, for all L with 2 /∈ L and
L �⊆ {2, 3, 4}: We use the same reduction as for undirected cycle covers and replace
every undirected edge {u, v} by a pair of directed edges (u, v) and (v, u). However,
this does not work if 2 ∈ L and also leaves open the cases when L � {2, 3, 4}. D-
DCC, Max-D-DCC(0,1), and Max-D-DCC can be solved in polynomial time, but the
case L = {2} is also easy: Replace two opposite edges (u, v) and (v, u) by an edge
{u, v} of weight w(u, v) + w(v, u), and compute a matching of maximum weight on
the undirected graph thus obtained.

We will settle the complexity of the directed cycle cover problems by showing that
L = {2} and L = D are the only tractable cases. For all other L, L-DCC is NP-hard,
and Max-L-DCC(0,1) and Max-L-DCC are APX-hard. Let us start by proving the
APX-hardness.

Theorem 2.13. Let L ⊆ D be a nonempty set. If L /∈ {{2},D}, then Max-L-
DCC(0,1) is APX-hard.

Proof. We adapt the proof presented in section 2.2. Since L �= {2}, there exists
a λ ∈ L, with λ ≥ 3. Thus, Min-Vertex-Cover(λ) is APX-complete. All we need
is such a λ and a directed L-clamp. Then we can reduce Min-Vertex-Cover(λ) to
Max-L-DCC(0,1).

We use the L-clamps to build L-gadgets, which again should have the property
that they absorb one of their connectors and expel the other two. In the case of L
being finite, the graph shown in Figure 9(a) is a directed L-gadget. In the case of
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︸ ︷︷ ︸
Λ−3 vertices

x

y

z

(a) L-gadget for finite L.

︸ ︷︷ ︸
τ vertices

ba

x

y

zt2

t3

u3
t1

u2

u1

v2

v3

v1

(b) L-gadget for infinite L with τ + 6 ∈ L. The triple
clamps are represented by their connectors ti, ui, vi.

Fig. 9. Directed L-gadgets with connectors x, y, z.

infinite L, we can build directed triple L-clamps exactly as for undirected graphs. By
using these, we can build directed L-gadgets, which are simply directed variants of
their undirected counterparts (Figure 9(b)).

The edge gadgets build the graph G1: Let x ∈ X be a vertex of H and a1, . . . , aλ ∈
F be the edges incident to x in H (in arbitrary order). Then we assign weight one to
the edges (x1

aξ
, x1

aξ+1
) for all ξ ∈ {1, . . . , λ− 1}. The edge (x1

aλ
, x1

a1
) has weight zero.

These λ edges are called the junctions of x.
Again, G2, . . . , Gλ are exact copies of G1 except that weight one is assigned also

to (xξ
aλ
, xξ

a1
) for all ξ ∈ {2, 3, . . . , λ}.

Again, we let the z-vertices form λ-cycles: For all edges a ∈ F , we assign weight
one to (zξa, z

ξ+1
a ) for ξ ∈ {1, 2, . . . , λ− 1} and to (zλa , z

1
a).

Weight zero is assigned to all edges that are not mentioned.
The remainder of the proof goes along the same lines as the APX-hardness proof

for undirected L-cycle covers.
Note that the NP-hardness of L-DCC for L /∈ {{2},D} does not follow directly

from the APX-hardness of Max-L-DCC(0,1): A famous counterexample is 2SAT, for
which it is APX-hard to maximize the number of simultaneously satisfied clauses [25],
although testing whether a 2CNF formula is satisfiable takes only linear time.

Theorem 2.14. Let L ⊆ D be a nonempty set. If L /∈ {{2},D}, then L-DCC is
NP-hard.

Proof. All we need is an L-clamp and some λ ∈ L, with λ ≥ 3. We present
a reduction from λ-XC (which is NP-complete since λ ≥ 3) that is similar to the
reduction of Hell et al. [22] used to prove the NP-hardness of L-UCC for L �⊆ {3, 4}.

Let (X,F ) be an instance of λ-XC. Note that we will construct a directed graph
G as an instance of L-DCC; i.e., G is neither complete nor edge-weighted. For each
x ∈ X, we have a vertex in G that we again call x. For a = {x1, . . . , xλ} ∈ F , we
construct a λ-cycle consisting of the vertices a1, . . . , aλ. Then we add λ L-clamps K

xη
a ,

with aη and xη as connectors for all η ∈ {1, . . . , λ}. See Figure 10 for an example.
What remains to be shown is that G contains an L-cycle cover if and only if F

is a “yes” instance of λ-XC. Assume first that there exists a subset F̃ ⊆ F such
that

⋃
a∈F̃ a = X and every element x ∈ X is contained in exactly one set of F̃ . We

construct an L-cycle cover of G in which all clamps are healthy: Let a = {x1, . . . , xλ} ∈
F . If a ∈ F̃ , then let K

xη
a expel aη and absorb xη for all η ∈ {1, . . . , λ}, and
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a3a2a1

x y z

Fig. 10. The construction for the NP-hardness of L-DCC from the viewpoint of a = {x, y, z} ∈
F . Each ellipse represents an L-clamp.

let a1, a2, . . . , aλ form a λ-cycle. If a /∈ F̃ , let K
xη
a expel xη and absorb aη for all

η ∈ {1, . . . , λ}. All connectors are absorbed by exactly one clamp or are covered by a
λ-cycle since F̃ is an exact cover.

Now we prove the reverse direction. Let C be an L-cycle cover of G. Then every
clamp of G is healthy in C; i.e., it absorbs one of its connectors and expels the other
one. Let a = {x1, . . . , xλ} ∈ F , and assume that K

xη
a expels aη. Since aη must be

part of a cycle in C, (aη−1, aη) and (aη, aη+1) must be in C. We obtain either that
all a1, . . . , aλ are absorbed by Kx1

a , . . . ,Kxλ
a or that all are expelled by Kx1

a , . . . ,Kxλ
a .

Now consider any x ∈ X, and let a1, a2, . . . , a� ∈ F be all of the sets that contain x.
All clamps Kx

a1
, . . . ,Kx

a�
are healthy, C is an L-cycle cover of G, and x is not incident

to any further edges. Hence, there must be a unique ai such that Kx
ai

absorbs x.
Thus,

F̃ =
{
a = {x1, . . . , xλ} ∈ F | Kxη

a absorbs xη for all η ∈ {1, . . . , λ}
}

is an exact cover of (X,F ).
If the language {1λ | λ ∈ L} is in NP, then L-DCC is also in NP and therefore

NP-complete if L /∈ {{2},D}: We can nondeterministically guess a cycle cover and
then check if λ ∈ L for every cycle length λ occurring in that cover. Conversely, if
{1λ | λ ∈ L} is not in NP, then L-DCC is not in NP either since there is a reduction
of {1λ | λ ∈ L} to L-DCC: On input x = 1λ, construct a graph G on λ vertices that
consists solely of a Hamiltonian cycle. Then x ∈ L if and only if G contains an L-cycle
cover.

3. Approximation algorithms. The goal of this section is to devise approx-
imation algorithms for Max-L-UCC and Max-L-DCC that work for arbitrary L.
The catch is that we have an uncountable number of problems Max-L-UCC and
Max-L-DCC, and for most L it is impossible to decide whether some cycle length is
in L or not.

Assume, for instance, that we have an algorithm that solves Max-L-UCC for some
set L that is not recursively enumerable. We enumerate all instances of Max-L-UCC
and run the algorithm on these instances. This yields an enumeration of a subset of
L. Since L is not recursively enumerable, there exist λ ∈ L such that the algorithm
never outputs λ-cycles. Now consider a graph with λ vertices where all edges have
weight zero except for a Hamiltonian cycle of weight one edges. Then the Hamiltonian
cycle is the unique optimum solution, but our algorithm does not output the λ-cycle,
contradicting the assumption that it solves Max-L-UCC.

One possibility to circumvent this problem would be to restrict ourselves to sets
L such that {1λ | λ ∈ L} is in P. Another possibility to cope with this problem is to
include the permitted cycle lengths in the input. However, while such restrictions are
necessary for finding optimum solutions, it turns out that they are unnecessary for
designing approximation algorithms.
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A necessary and sufficient condition for a complete graph with n vertices to have
an L-cycle cover is that there exist (not necessarily distinct) lengths λ1, . . . , λk ∈ L

for some k ∈ N with
∑k

i=1 λi = n. We call such an n L-admissible and define
〈L〉 = {n | n is L-admissible}. Although L can be arbitrarily complicated, 〈L〉 always
allows efficient membership testing.

Lemma 3.1. For all L ⊆ N, there exists a finite set L′ ⊆ L with 〈L′〉 = 〈L〉.
Proof. Let L≤� = {n ∈ L | n ≤ 
} ⊆ L. Let gL ∈ N be the greatest common

divisor of all numbers in L. There exists an 
0 ∈ L such that gL is also the greatest
common divisor of L≤�0 .

If gL ∈ L, then 〈{gL}〉 = 〈L〉, and we are done. Thus, we assume that gL /∈ L.

There exist ξ1, . . . , ξk ∈ Z and λ1, . . . , λk ∈ L≤�0 for some k ∈ N with
∑k

i=1 ξiλi = gL.
Let ξ = min1≤i≤k ξi. We have ξ < 0 since gL /∈ L. Choose any λ ∈ L≤�0 , and let


 = −ξλ ·
∑k

i=1 λi. Let n ∈ 〈L〉 with n ≥ 
, let m = mod (n− 
, λ), and let s =
⌊
n−�
λ

⌋
.

We can write n as

n = λs + m + 
 = λs +
m

gL
·

k∑
i=1

ξiλi − λξ ·
k∑

i=1

λi = λs +

k∑
i=1

(mξi − λξ) · λi.

Since m < λ and ξi ≥ ξ < 0, we have (mξi −λξ) ≥ 0 for all i. Hence, 〈L≤�0〉 contains
all elements n ∈ 〈L〉, with n ≥ 
. Elements of 〈L〉 smaller than 
 are contained in
〈L≤�〉 ⊇ 〈L≤�0〉. Hence, 〈L≤�〉 = 〈L〉, and L′ = L≤� is the finite set for which we are
looking.

For every fixed L, we can not only test in time polynomial in n whether n is
L-admissible, but we can, provided that n ∈ 〈L〉, also find numbers λ1, . . . , λk ∈ L′

that add up to n, where L′ ⊆ L denotes a finite set with 〈L〉 = 〈L′〉. This can be
done via dynamic programming in time O(n · |L′|), which is O(n) for fixed L.

Although 〈L〉 = 〈L′〉, there are clearly graphs for which the weights of an optimal
L-cycle cover and an optimal L′-cycle cover differ: Let λ ∈ L \ L′, and consider a
λ-vertex graph where all edge weights are zero except for one Hamiltonian cycle of
weight one edges. However, this does not matter for our approximation algorithms.

The two approximation algorithms presented in sections 3.2 and 3.3 are based on
a decomposition technique for cycle covers presented in section 3.1.

3.1. Decomposing cycle covers. In this section, we present a decomposition
technique for cycle covers. The technique can be applied to cycle covers of undirected
graphs but also to directed cycle covers that do not contain 2-cycles.

A single is a single edge (or a path of length one) in a graph, while a double is
a path of length two. Our aim is to decompose a cycle cover C on n vertices into
roughly n/6 singles, n/6 doubles, and n/6 isolated vertices. If n is not divisible by
six, we replace n/6 by �n/6 or �n/6�: If n = 6k + 
 for k, 
 ∈ N and 
 ≤ 5, then we
take k + α� singles and k + β� doubles, where α� and β� are given in Table 1. Thus,
we retain half of the edges of C. We aim to decompose the cycle covers such that at
least half of the weight of the cycle cover is preserved.

The reason why we decompose cycle covers into singles and doubles is the follow-
ing: We cannot decompose them into longer paths in general since this does not work
for {3}-cycle covers. If we restricted ourselves to decomposing the cycle covers into
singles only, then 3-cycles would limit the weight preserved: We would retain only
one-third of the edges of the 3-cycles and thus at most one-third of their weight in
general. Finally, if we restricted ourselves to doubles, then 5-cycles would limit the
weight we could obtain since we would retain only two of their five edges.
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Table 1

A cycle cover on n = 6k + � vertices will be decomposed into k + α� singles and k + β� doubles.

� 0 1 2 3 4 5

α� 0 1 1 0 0 1
β� 0 0 0 1 1 1

(a) A cycle cover. (b) A decomposition of the cycle cover.

Fig. 11. An example of a decomposition according to Lemma 3.2.

In our approximation algorithms, we exploit the following observation: If every
cycle cover on n vertices can be decomposed into α singles and β doubles, then, for
every L, every L-cycle cover on n vertices can be decomposed in the same way. This
implies that we can build cycle covers from such a decomposition: Given α singles
and β doubles, and n−2α−3β isolated vertices, we can join them to form an L-cycle
cover. (The only restriction is that n must be L-admissible.)

Let us now state the decomposition lemma.
Lemma 3.2. Let C = (V,E) be a cycle cover on n = 6k+ 
 vertices such that the

length of each cycle is at least three. Let w : E → N be an edge weight function.
Then there exists a decomposition D ⊆ E of C such that (V,D) consists of vertex-

disjoint k + α� singles, k + β� doubles, and n − 5k − 3β� − 2α� isolated vertices and
w(D) ≥ w(E)/2, where α� and β� are given in Table 1.

The decomposition can be done in polynomial time.
Figure 11 illustrates how a cycle cover is decomposed into singles and doubles.
Let us first prove some helpful lemmas.
Lemma 3.3. Let λ, α, β ∈ N, with α + 2β ≥ λ/2 and 2α + 3β ≤ λ. Then every

cycle c of length λ can be decomposed into α singles and β doubles such that the weight
of the decomposition is at least w(c)/2.

Proof. Every single involves two vertices of c, while every double involves three
vertices. Thus, 2α+ 3β ≤ λ is a necessary condition for c being decomposable into α
singles and β doubles. It is also a sufficient condition.

We assign an arbitrary orientation to c. Let e0, . . . , eλ−1 be the consecutive edges
of c, where e0 is chosen uniformly at random among the edges of c. We take α singles
e0, e2, . . . , e2α−2 and β doubles (e2α, e2α+1), (e2α+3, e2α+4), . . . , (e2α+3β−3, e2α+3β−2).
Since 2α + 3β ≤ λ, this is a feasible decomposition. The probability that any fixed
edge of c is included in the decomposition is α+2β

λ . Thus, the expected weight of the

decomposition is α+2β
λ · w(c) ≥ w(c)/2.

Lemma 3.4. Let λ ∈ N. Suppose that every cycle c of length λ can be decom-
posed into α singles and β doubles of weight at least w(c)/2. Then every cycle c′ of
length λ + 6 can be decomposed into α + 1 singles and β + 1 doubles of weight at
least w(c′)/2.
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Table 2

The induction basis. The columns α and β show the number of singles and doubles needed,
respectively. We denote by λ � (α, β) that a λ-cycle is decomposed into α singles and β doubles. If
there are two lines for a case, then the option that yields more weight is chosen.

Length � α β
3 3 0 1
4 4 0 1
5 5 1 1
6 0 1 1
7 1 2 1
8 2 2 1

(a) One cycle.

Lengths � α β Decomposition
3 + 3 0 1 1 3�(1,0) + 3�(0,1)
3 + 5 2 2 1 3�(1,0) + 5�(1,1)

or 3�(0,1) + 5�(2,0)
3 + 7 4 1 2 3�(1,0) + 7�(0,2)

or 3�(0,1) + 7�(1,1)
5 + 5 4 1 2 5�(0,1) + 5�(1,1)
5 + 7 0 2 2 5�(2,0) + 7�(0,2)

or 5�(1,1) + 7�(1,1)
7 + 7 2 3 2 7�(1,1) + 7�(2,1)

(b) Two odd cycles.

Table 3

Induction step.

Length � α β
4 0,3,4,5 0 1
4 1,2 2 0
6 all 1 1
8 0,1,2,5 2 1
8 3,4 0 2

(a) Removing an even cycle.

Lengths � α β Decomposition
3 + 3 all 1 1 3�(1,0) + 3�(0,1)
3 + 7 0,3,4,5 1 2 3�(1,0) + 7�(0,2)

or 3�(0,1) + 7�(1,1)
3 + 7 1,2 3 1 3�(1,0) + 7�(2,1)

or 3�(0,1) + 7�(3,0)
5 + 5 0,3,4,5 1 2 5�(0,1) + 5�(1,1)
5 + 5 1,2 3 1 5�(2,0) + 5�(1,1)
5 + 7 all 2 2 5�(2,0) + 7�(0,2)

or 5�(1,1) + 7�(1,1)
7 + 7 0,1,2,5 3 2 7�(1,1) + 7�(2,1)
7 + 7 3,4 1 3 7�(1,1) + 7�(0,2)

(b) Removing two odd cycles.

Proof. We have α+2β ≥ λ/2 and 2α+3β ≤ λ. Thus, α+1+2(β+1) ≥ (λ+6)/2
and 2(α + 1) + 3(β + 1) ≤ λ + 6. The lemma follows from Lemma 3.3.

Lemma 3.4 also holds if we consider more than one cycle: Assume that every
collection of k cycles of lengths λ1, . . . , λk can be decomposed into α singles and β
doubles such that the weight of the decomposition is at least half the weight of the
cycles. Then k cycles of lengths λ1+6, λ2, . . . , λk can be decomposed into α+1 singles
and β + 1 doubles such that also at least half of the weight of the cycles is preserved.
Due to Lemma 3.4, we can restrict ourselves to cycles of length at most eight in the
following. The reason for this is the following: If we know how to decompose cycles
of length λ, then we also know how to decompose cycles of length λ + 6, λ + 12, . . .
from Lemma 3.4.

We are now prepared to prove Lemma 3.2.
Proof of Lemma 3.2. We prove the lemma by induction on the number of cycles.

As the induction basis, we consider a cycle cover consisting of either a single cycle
or of two odd cycles. See Table 2. Due to Lemma 3.4, we can restrict ourselves
to considering cycles of length at most eight. Tables 3(a) and 3(b) show how to
decompose a single cycle and two odd cycles, respectively. We always perform the
decomposition such that the weight preserved is maximized. In particular, if there
are two odd cycles of different length, we have two options in how to decompose these
cycles, and we choose the one that yields the larger weight. Overall, we obtain a
decomposition with an appropriate number of singles and doubles that preserves at
least one half of the weight.
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Table 4

The complexity of computing L-cycle covers.

L-UCC Max-L-UCC(0,1) Max-L-UCC

L = ∅ in P in PO in PO

L = {3} in P in PO

L = {4}, {3, 4} APX-complete

L �⊆ {3, 4} NP-hard APX-hard APX-hard

(a) Undirected cycle covers.

L-DCC Max-L-DCC(0,1) Max-L-DCC

L = {2},D in P in PO in PO
L /∈ {{2},D} NP-hard APX-hard APX-hard

(b) Directed cycle covers.

As the induction hypothesis, we assume that the lemma holds if the number of
cycles is less than r. Assume that we have a cycle cover C consisting of r cycles.
Let n = 6k + 
 for the number of its vertices for k, 
 ∈ N and 
 ≤ 5. We remove
either an even cycle or two odd cycles. In the following, let C ′ be the new cycle cover
obtained by removing one or two cycles from C. A little more care is needed than in
the induction basis: Consider, for instance, the case of removing a 4-cycle. If 
 = 4,
then C has to be decomposed into k singles and k+1 doubles, while we have to take k
singles and k doubles from C ′. Thus, the 4-cycle has to be decomposed into a double.
But if 
 = 1, then we need k + 1 singles and k doubles from C and k − 1 singles and
k doubles from C ′. Thus, the 4-cycle has to be decomposed into two singles. Overall,
the 4-cycle has to be decomposed into a double if 
 ∈ {0, 3, 4, 5} and into two singles
if 
 ∈ {1, 2}. Similar case distinctions hold for all other cases. How to remove one
even or two odd cycles is shown in Tables 4(a) and 4(b), respectively.

To complete the proof, we have to deal with the cases of a 3- and a 5-cycle, which
are slightly more complicated and not covered by Table 4(b). We run into trouble
if, for instance, 
 = 3. In this case, we have to take two doubles. If the 5-cycle is
much heavier than the 3-cycle, then it is impossible to preserve half of the weight of
the two cycles. But we can avoid this problem: As long as there is an even cycle, we
decompose this one. After that, as long as there are at least three odd cycles, we can
choose two of them such that we do not have a pair of one (3 + 6ξ)-cycle and one
(5 + 6ξ′)-cycle for some ξ, ξ′ ∈ N. The only situation in which it can happen that we
cannot avoid decomposing a (3+6ξ)-cycle and a (5+6ξ′)-cycle is when there are only
two cycles left. In this case, we have 
 = 2, and we have treated this case already in
the induction basis.

If we consider directed graphs where 2-cycles can also occur, only one-third of
the weight can be preserved. This can be done by decomposing the cycle cover into
a matching of cardinality �n/3�. (Every λ-cycle can be decomposed into a matching
of size up to �λ/2 ≥ �λ/3�. The bottleneck is 3-cycles, which yield only one edge.)

An obvious question is whether the decomposition lemma can be improved in
order to preserve more than half of the weight or more than one-third of the weight
if we additionally allow 2-cycles. Unfortunately, this is not the case.

A generic decomposition lemma states the following: For every n ∈ N, every
k-cycle cover (for k ∈ {2, 3}) on n vertices can be decomposed into α singles and β
doubles such that at least a fraction r of the weight of the cycle cover is preserved.
(As already mentioned, longer paths are impossible due to 3-cycles.) Lemma 3.2
instantiates this generic lemma with α ≈ n/6, β ≈ n/6, and r = 1/2. In case of the
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Input: undirected complete graph G = (V,E), |V | = n; edge weights w : E → N
Output: an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise
1: if n /∈ 〈L〉 then
2: return ⊥
3: compute a cycle cover C init in G of maximum weight
4: decompose C init into a set D ⊆ C init of edges according to Lemma 3.2
5: join the singles and doubles in D to obtain an L-cycle cover Capx

6: return Capx

Algorithm 1: A 2 approximation algorithm for Max-L-UCC.

presence of 2-cycles, we have sketched a decomposition with α ≈ n/3, β = 0, and
r = 1/3.

Lemma 3.5. No decomposition technique for 3-cycle covers can in general pre-
serve more than one-half of the weight of the 3-cycle covers.

Furthermore, no decomposition technique for 2-cycle covers can in general pre-
serve more than one-third of the weight of the 2-cycle covers.

Proof. We exploit the fact that the fraction of edges that are preserved in a
cycle cover decomposition is a lower bound for the fraction of the weight that can be
preserved.

Since, in particular, {3}-cycle covers have to be decomposed, we cannot decom-
pose the cycle cover into paths of length more than two. Now consider decomposing
a {4}-cycle cover. Since paths of length 3 are not allowed, we have to discard two
edges of every 4-cycle. Thus, at most two edges of every 4-cycle are preserved, which
proves the first part of the lemma.

The second part follows analogously by considering 3-cycles and observing that
paths of length two or more are not allowed.

Overall, Lemma 3.5 shows that every approximation algorithm for Max-L-UCC
or Max-L-DCC that works for arbitrary sets L and is purely decomposition-based
achieves approximation ratios of at best 2 or 3, respectively. We achieve an approx-
imation ratio of 8/3 < 3 for Max-L-DCC by paying special attention to 2-cycles
(section 3.3).

3.2. Undirected cycle covers. Our approximation algorithm for Max-L-UCC
(Algorithm 1) directly exploits Lemma 3.2.

Theorem 3.6. Algorithm 1 is a factor 2 approximation algorithm for Max-L-
UCC for all L ⊆ U . Its running time is O(n3).

Proof. If L is infinite, we replace L by a finite set L′ ⊆ L, with 〈L′〉 = 〈L〉
according to Lemma 3.1. Algorithm 1 returns ⊥ if and only if n /∈ 〈L〉. Otherwise, an
L-cycle cover Capx is returned. Let C� denote an L-cycle cover of maximum weight
of G. We have w(C�) ≤ w(C init) ≤ 2 ·w(D) ≤ 2 ·w(Capx). The first inequality holds
because L-cycle covers are special cases of cycle covers. The second inequality holds
due to the decomposition lemma (Lemma 3.2). The last inequality holds since no
weight is lost during the joining. Overall, the algorithm achieves an approximation
ratio of 2.

The running time of the algorithm is dominated by the time needed to compute
the initial cycle cover, which is O(n3) [1, Chapter 12].

3.3. Directed cycle covers. In the following, let Copt be an L-cycle cover of
maximum weight. Let wλ denote the weight of the λ-cycles in Copt; i.e., w(Copt) =∑

λ≥2 wλ.
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We distinguish three cases: First, 2 /∈ L; second, 2 ∈ L and 3 /∈ L; and third,
2, 3 ∈ L.

We use the decomposition lemma (Lemma 3.2) only if 2 /∈ L. In this case, the
weight of an optimal L-cycle cover is at most the weight of an optimal 3-cycle cover
Copt

3 . Thus, we proceed as follows: First, we compute a 4/3 approximation C init
3

for Max-3-DCC, which can be done by using the algorithm of Bläser, Ram, and
Sviridenko [7]. We have w(C init

3 ) ≥ 3
4 · w(Copt

3 ) ≥ 3
4 · w(Copt). Now we decompose

C init
3 into a collection D of singles and doubles according to Lemma 3.2. Finally, we

join the singles, doubles, and isolated vertices of D to form an L-cycle cover Capx.
We obtain a factor 8/3 approximation for the case that 2 /∈ L:

w(Capx) ≥ w(D) ≥ 1

2
· w(C init

3 ) ≥ 3

8
· w(Copt).

Now we consider the case that 2 ∈ L and 3 /∈ L. In this case, a matching-
based algorithm achieves an approximation ratio of 5/2: We compute a matching of
a certain cardinality, which we will specify in a moment, and then we join the edges
of the matching to obtain an L-cycle cover. The cardinality of the matching is chosen
such that an L-cycle cover can be built from such a matching. A λ-cycle yields a
matching of cardinality �λ/2. Thus, a matching of cardinality d in a graph of n
vertices can be extended to form an L-cycle cover if and only if d ≤ D(n,L), where

D(n,L) = max

{
k∑

i=1

�λi/2 | k ∈ N,

k∑
i=1

λi = n, and λi ∈ L for 1 ≤ i ≤ k

}
≤ n

2
.

Given L, we can compute D(n,L) by using dynamic programming. Let us now
estimate the weight of a matching of cardinality at most D(n,L) that has maximum
weight among all such matchings. From Copt, we obtain a matching with a weight of
at least ∑

λ≥2

1

λ
·
⌊
λ

2

⌋
· wλ ≥

∑
λ≥2

2

5
· wλ =

2

5
· w(Copt).

The reason is that w3 = 0 because 3 /∈ L and that minλ∈{2,4,5,6,7,... }
1
λ · �λ/2 ≥

2/5. Thus, by computing a maximum-weight matching M of cardinality at most
D(n,L) ≥ 2n/5 and joining the edges to form an L-cycle cover Capx, we obtain a
factor 5/2 approximation.

What remains to be considered is the case that 2, 3 ∈ L. In this case, we start
by computing an initial cycle cover C init (without any restrictions). Then we do the
following: For every even cycle, we take every other edge such that at least one-half
of its weight is preserved. For every edge thus obtained, we add the converse edge to
obtain a collection of 2-cycles. For every odd cycle, we take every other edge and one
path of length two such that at least half of the weight is preserved. Then we add
edges to obtain 2-cycles and one 3-cycle. In this way, we obtain a {2, 3}-cycle cover
Capx, which is also an L-cycle cover. We have w(Capx) ≥ 1

2 · w(C init) ≥ 1
2 · w(Copt).

Figure 12 shows an example.
Our approximation algorithm is summarized as Algorithm 2. The running time

of the algorithm of Bläser, Ram, and Sviridenko is polynomial [7], and all other steps
can be executed in polynomial time as well. Thus, the running time of Algorithm 2
is also polynomial.

Theorem 3.7. Algorithm 2 is a factor 8/3 approximation algorithm for Max-L-
UCC for all nonempty sets L ⊆ D. Its running time is polynomial.
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(a) Initial cycle cover Cinit. (b) Decomposition of Cinit. (c) {2, 3}-cycle cover Capx.

Fig. 12. Sketch of the algorithm for {2, 3} ⊆ L.

Input: directed complete graph G = (V,E), |V | = n; edge weights w : E → N
Output: an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise
1: if n /∈ 〈L〉 then
2: return ⊥
3: if 2 ∈ L and 3 ∈ L then
4: compute a cycle cover C init (without restrictions)
5: for all even cycles c of C init do
6: take every other edge of c such that at least one-half of c’s weight is pre-

served
7: add the converse edges to obtain 2-cycles; add these cycles to Capx

8: for all odd cycles c of C init do
9: take every other edge and one path of length two of c such that at least

one-half of c’s weight is preserved
10: add edges to obtain 2-cycles plus one 3-cycle; add these cycles to Capx

11: else if 2 ∈ L, 3 /∈ L then
12: compute a matching M of maximum weight of cardinality at most D(n,L)
13: join the edges of M to form an L-cycle cover Capx

14: else (2 /∈ L)
15: compute a 4/3 approximation C init

3 to an optimal 3-cycle cover
16: decompose C init

3 into a set D ⊆ C init
3 of edges according to Lemma 3.2

17: join the singles and doubles in D to obtain an L-cycle Capx

18: return Capx

Algorithm 2: A factor 8/3 approximation algorithm for Max-L-DCC.

4. Conclusions. For almost all L, finding L-cycle covers is NP-hard, and finding
L-cycle covers of maximum weight is APX-hard. Table 4 shows an overview. Although
this shows that computing restricted cycle covers is generally very hard, we have
proved that L-cycle covers of maximum weight can be approximated within a constant
factor in polynomial time for all L.

For directed graphs, we have settled the complexity: If L = {2} or L = D,
then L-DCC, Max-L-DCC(0,1), and Max-L-DCC are solvable in polynomial time;
otherwise, they are intractable. For undirected graphs, the status of only five cycle
cover problems remains open: L-UCC and Max-L-UCC(0,1) for L = {4}, {3, 4} and
Max-4-UCC.
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There are some reasons for optimism that L-UCC and Max-L-UCC(0,1) for L =
{4}, {3, 4} are solvable in polynomial time: Hartvigsen [18] devised a polynomial-
time algorithm for finding {4}-cycle covers in bipartite graphs (forbidding 3-cycles
does not change the problem for bipartite graphs). Moreover, there are augmenting
path theorems for L-cycle covers for all L with L ⊆ {3, 4} [26], which includes the two
cases that are known to be polynomial-time solvable. Augmenting path theorems are
often a building block for matching algorithms. But there are also augmenting path
theorems for L ⊆ {3, 4} [26], even though these L-cycle cover problems are intractable.

Acknowledgments. I thank Jan Arpe and Martin Böhme for valuable discus-
sions and comments.
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[6] M. Bläser, B. Manthey, and J. Sgall, An improved approximation algorithm for the asym-
metric TSP with strengthened triangle inequality, J. Discrete Algorithms, 4 (2006), pp. 623–
632.
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Dehne, Alejandro López-Ortiz, and Jörg-Rüdiger Sack, eds., Springer, New York, 2005,
pp. 350–359.
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TESTING GRAPH ISOMORPHISM∗

ELDAR FISCHER† AND ARIE MATSLIAH†

Abstract. Two graphs G and H on n vertices are ε-far from being isomorphic if at least ε
(n
2

)
edges must be added or removed from E(G) in order to make G and H isomorphic. In this paper
we deal with the question of how many queries are required to distinguish between the case that
two graphs are isomorphic and the case that they are ε-far from being isomorphic. A query is
defined as probing the adjacency matrix of any one of the two graphs, i.e., asking if a pair of vertices
forms an edge of the graph or not. We investigate both one-sided and two-sided error testers under
two possible settings: The first setting is where both graphs need to be queried, and the second
setting is where one of the graphs is fully known to the algorithm in advance. We prove that the
query complexity of the best one-sided error testing algorithm is Θ̃(n3/2) if both graphs need to be

queried, and that it is Θ̃(n) if one of the graphs is known in advance (where the Θ̃ notation hides
polylogarithmic factors in the upper bounds). For two-sided error testers, we prove that the query

complexity of the best tester is Θ̃(
√
n) when one of the graphs is known in advance, and we show

that the query complexity lies between Ω(n) and Õ(n5/4) if both G and H need to be queried. All of
our algorithms are additionally nonadaptive, while all of our lower bounds apply for adaptive testers
as well as nonadaptive ones.

Key words. property testing, graph isomorphism, approximation
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1. Introduction. Combinatorial property testing deals with the following task:
For a fixed ε > 0 and a fixed property P , distinguish using as few queries as possible
(and with probability at least 2

3 ) between the case that an input of length m satisfies
P and the case that the input is ε-far (with respect to an appropriate metric) from
satisfying P . The first time a question formulated in terms of property testing was
considered was in the work of Blum, Luby, and Rubinfeld [8]. The general notion
of property testing was first formally defined by Rubinfeld and Sudan [16], mainly
for the context of the algebraic properties (such as linearity) of functions over finite
fields and vector spaces. The first investigation in the combinatorial context is that of
Goldreich, Goldwasser, and Ron [13], where testing of combinatorial graph properties
was first formalized. The “dense” graph testing model that was defined in [13] is
also the one that will serve us here. In recent years the field of property testing has
enjoyed rapid growth, as witnessed in the surveys [15] and [9].

Formally, our inputs are two functions g : {1, 2, . . . ,
(
n
2

)
} → {0, 1} and h :

{1, 2, . . . ,
(
n
2

)
} → {0, 1}, which represent the edge sets of two corresponding graphs G

and H over the vertex set V = {1, . . . , n}. The distance of a graph from a property P
is measured by the minimum number of bits that have to be modified in the input in
order to make it satisfy P , divided by the input length m, which in our case is taken
to be

(
n
2

)
. For the question of testing graphs with a constant number of queries, there

are many recent advances, such as [4], [11], [3], and [2]. For the properties that we
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consider here the number of required queries is of the form nα for some α > 0, and
our interest will be to find bounds as tight as possible on α. We consider the following
questions:

1. Given two input graphs G and H, how many queries to G and H are required
to test that the two graphs are isomorphic? This property was already used
in [1] for proving lower bounds on property testing, and a lower bound of the
form nα was known for quite a while (see, e.g., [9]).

2. Given a graph Gk, which is known in advance (and for which any amount of
preprocessing is allowed), and an input graph Gu, how many queries to Gu

are required to test that Gu is isomorphic to Gk? Some motivation for this
question comes from [10], where upper and lower bounds that correlate this
question with the “inherent complexity” of the provided Gk are proved. In
this paper, our interest is in finding the bounds for the “worst possible” Gk.

For the case where the testers must have one-sided error, our results show tight
(up to logarithmic factors) upper and lower bounds of Θ̃(n3/2) for the setting where

both graphs need to be queried, and of Θ̃(n) for the setting where one graph is given
in advance. The upper bounds are achieved by trivial algorithms of edge sampling
and exhaustive search. As we are interested in the number of queries, we make no
attempt to optimize the running time. The main work here lies in proving a matching
lower bound for the first setting where both graphs need to be queried, as the lower
bound for the second setting is nearly trivial.

Unusually for graph properties that involve no explicit counting in their definition,
we can do significantly better if we allow our algorithms to have two-sided error.
When one graph is given in advance, we show Θ̃(n1/2) upper and lower bounds. The
upper bound algorithm uses a technique that allows us to greatly reduce the number
of candidate bijections that need to be checked, while assuring that for isomorphic
graphs one of them will still be close to an isomorphism. For this to work we need
to combine it with a distribution testing algorithm from [7], whose lower bound is in
some sense the true cause of the matching lower bound here.

For two-sided error testers where the two graphs need to be queried, a gap in
the bounds remains. We present here a lower bound proof of Ω(n) on the query
complexity—it is in fact the lower bound proof already known from the literature,
only here we analyze it to its fullest potential. The upper bound of Õ(n5/4) uses the
ideas of the algorithm above for the setting where one of the graphs is known, with
an additional mechanism to compensate for having to query from both graphs to find
matching vertices.

To our knowledge, the best known algorithm for deciding this promise problem
in the classical sense (i.e., given two graphs, distinguish whether they are isomorphic
or ε-far from being isomorphic) requires quasi-polynomial running time [6]. Both our
two-sided error testers have the additional property of a quasi-polynomial running
time (similarly to the algorithm in [6]) even with the restriction on the number of
queries.

Table 1.1 summarizes our results for the query complexity in various settings. We
made no effort to optimize the logarithmic factors in the upper bounds, as well as the
exact dependence on ε (which is at most polynomial).

The rest of the paper is organized as follows. We provide some preliminaries and
definitions in section 2. Upper and lower bounds for the one-sided algorithms are
proved in section 3, and the upper and lower bounds for the two-sided algorithms
are proved in section 4. The final section 5 contains some discussion and concluding
comments.
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Table 1.1

Upper bound Lower bound

One-sided error, one graph known Õ(n) Ω(n)

One-sided error, both graphs unknown Õ(n3/2) Ω(n3/2)

Two-sided error, one graph known Õ(n1/2) Ω(n1/2)

Two-sided error, both graphs unknown Õ(n5/4) Ω(n)

2. Notation and preliminaries. All graphs considered here are undirected
and with neither loops nor parallel edges. We also assume (even where not explicitly
stated) that the number of vertices of the input graph is large enough, as a function
of the other parameters. We denote by [n] the set {1, 2, . . . , n}. For a vertex v, N(v)
denotes the set of v’s neighbors. For a pair of vertices u, v we denote by N(u)�N(v)
the symmetric difference between N(u) and N(v). Given a permutation σ : [n] → [n]
and a subset U of [n], we denote by σ(U) the set {σ(i) : i ∈ U}. Given a subset U of
the vertices of a graph G, we denote by G(U) the induced subgraph of G on U . We
denote by G(n, p) the random graph where each pair of vertices forms an edge with
probability p, independently of each other.

Definition 2.1. Given two labeled graphs G and H on the same vertex set V ,
the distance between G and H is the size of the symmetric difference between the edge
sets of G and H, divided by

(|V |
2

)
.

Given a graph G and a graph H on the same vertex set V , we say that H and G
are ε-far if the distance between G and any permutation of H is at least ε.

Given a graph G and a graph property (a set of graphs that is closed under graph
isomorphisms) P , we say that G is ε-far from satisfying the property P if G is ε-far
from any graph H on the same vertex set which satisfies P .

Using this definition of the distance, we give a formal definition of a graph testing
algorithm.

Definition 2.2. An ε-testing algorithm with q queries for a property P is a
probabilistic algorithm that for any input graph G makes up to q queries (a query
consisting of finding whether two vertices u, v of G form an edge of G or not) and
satisfies the following.

• If G satisfies P , then the algorithm accepts G with probability at least 2
3 .

• If G is ε-far from P , then the algorithm rejects G with probability at least 2
3 .

A property testing algorithm has one-sided error probability if it accepts inputs
that satisfy the property with probability 1. We also call such testers one-sided error
testers.

A property testing algorithm is nonadaptive if the outcomes of its queries do not
affect the choice of the following queries but only the decision of whether to reject or
accept the input in the end.

The following is just an extension of the above definition to properties of pairs
of graphs. In our case, we will be interested in the property of two graphs being
isomorphic.

Definition 2.3. An ε-testing algorithm with q queries for a property P of pairs
of graphs is a probabilistic algorithm that for any input pair G,H makes up to q
queries in G and H (a query consisting of finding whether two vertices u, v of G (H)
form an edge of G (H) or not) and satisfies the following.

• If the pair G,H satisfies P , then the algorithm accepts with probability at
least 2

3 .
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• If the pair G,H is ε-far from P , then the algorithm rejects with probability at
least 2

3 .
To simplify the arguments when discussing the properties of the query sets, we

define knowledge charts.
Definition 2.4. Given a query set Q to the adjacency matrix A of the graph

G = (V,E) on n vertices, we define the knowledge chart IG,Q of G as the subgraph of
G known after making the set Q of queries to A. We partition the pairs of vertices of
IG,Q into three classes: Q1, Q0, and Q∗. The pairs in Q1 are those known to be edges
of G, the pairs in Q0 are those that are known not to be edges of G, and all unknown
(unqueried) pairs are in Q∗. In other words, Q1 = E(G) ∩ Q, Q0 = Q \ E(G), and
Q∗ = [V (G)]2 \ Q. For a fixed q, 0 ≤ q ≤ n, and G, we define IG,q as the set of
knowledge charts {IG,Q : |Q| = q}. For example, note that |IG,0| = |IG,(n2)

| = 1.

We will ask the question of whether two query sets are consistent, i.e., do they
provide any evidence for the two graphs being nonisomorphic? We say that the
knowledge charts are knowledge-packable if the query sets that they represent are
consistent. Formally, we have the following definition.

Definition 2.5. A knowledge-packing of two knowledge charts IG1,Q1 , IG2,Q2 ,
where G1 and G2 are graphs with n vertices, is a bijection π of the vertices of G1

into the vertices of G2 such that for all v, u ∈ V (G1), if {v, u} ∈ E(G1) ∩ Q1,
then {π(v), π(u)} /∈ Q2 \ E(G2), and if {v, u} ∈ Q1 \ E(G1), then {π(v), π(u)} /∈
E(G2) ∩Q2.

In particular, if G1 is isomorphic to G2, then for all 0 ≤ q1, q2 ≤
(
n
2

)
, every

member of IG1,q1 is knowledge-packable with every member of IG2,q2 . In other words,
if G1 is isomorphic to G2, then there is a knowledge-packing of IG1,Q1

and IG2,Q2
for

any possible query sets Q1 and Q2.
Lemma 2.6. Any one-sided error isomorphism tester, after completing its queries

Q1, Q2, must always accept G1 and G2 if the corresponding knowledge charts IG1,Q1

and IG2,Q2 on which the decision is based are knowledge-packable. In particular, if for
some G1, G2 and 0 ≤ q ≤

(
n
2

)
, any IG1,Q1 ∈ IG1,q and IG2,Q2 ∈ IG2,q are knowledge-

packable, then every one-sided error isomorphism tester which is allowed to ask at
most q queries must always accept G1 and G2.

Proof. This is true, since if the knowledge charts IG1,Q1
and IG2,Q2 are packable,

it means that there is an extension G
′

1 of G1’s restriction to Q1 to a graph that is
isomorphic to G2. In other words, given G

′

1 and G2 as inputs, there is a positive
probability that the isomorphism tester obtained IG′

1,Q1
= IG1,Q1 and IG2,Q2 after

completing its queries, and hence, a one-sided error tester must always accept in this
case.

Proving lower bounds for the two-sided error testers involves Yao’s method [17],
which for our context informally says that if there is a small enough statistical distance
between the distributions of q query results, from two distributions over inputs that
satisfy the property and inputs that are far from satisfying the property, then there is
no tester for that property which makes at most q queries. We start with definitions
that are adapted to property testing lower bounds.

Definition 2.7 (restriction, variation distance). For a distribution D over in-
puts, where each input is a function f : D → {0, 1}, and for a subset Q of the domain
D, we define the restriction D|Q of D to Q to be the distribution over functions of
the type g : Q → {0, 1} that results from choosing a random function f : D → {0, 1}
according to the distribution D and then setting g to be f |Q, the restriction of f to Q.

Given two distributions D1 and D2 of binary functions from Q, we define the vari-
ation distance between D1 and D2 as follows: d(D1, D2) = 1

2

∑
g:Q→{0,1} |PrD1 [g] −
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PrD2
[g]|, where PrD[g] denotes the probability that a random function chosen accord-

ing to D is identical to g.
The next lemma follows from [17] (see, e.g., [9]).
Lemma 2.8 (see [9]). Suppose that there exist a distribution DP on inputs over

D that satisfy a given property P and a distribution DN on inputs that are ε-far
from satisfying the property, and suppose further that for any Q ⊂ D of size q, the
variation distance between DP |Q and DN |Q is less than 1

3 . Then it is not possible for
a nonadaptive algorithm making q (or less) queries to ε-test for P .

An additional lemma for adaptive testers is proved implicitly in [12], and a detailed
proof appears in [9]. Here we strengthen it somewhat, but exactly the same proof still
works in our case, too.

Lemma 2.9 (Fischer, Newman, and Sgall [12]; see [9]). Suppose that there exists
a distribution DP on inputs over D that satisfy a given property P and a distribution
DN on inputs that are ε-far from satisfying the property. Suppose further that for
any Q ⊂ D of size q and any g : Q → {0, 1}, we have PrDP |Q [g] < 3

2PrDN |Q [g].
Then it is not possible for any algorithm making q (or less) queries to ε-test for P .
The conclusion also holds if instead of the above, for any Q ⊂ D of size q and any
g : Q → {0, 1}, we have PrDN |Q [g] < 3

2PrDP |Q [g].
Often, given two isomorphic graphs G,H on n vertices, we want to estimate

how many vertices from both graphs need to be randomly chosen in order to get an
intersection set of size k with high probability.

Lemma 2.10. Given two graphs G,H on n vertices, a bijection σ of their vertices,
and two uniformly random subsets CG ⊂ V (G), CH ⊂ V (H), the following holds: For
any 0 < α < 1 and any positive integers c, k, if |CG| = knα logc n and |CH | =
n1−α logc n, then with probability 1 − o(2− logc n) the size of CG ∩ σ(CH) is greater
than k.

Proof sketch. By the linearity of expectation, the expected size of the intersection

set is |CG||CH |
n = k log2c n. Using large deviation inequalities, CG ∩ σ(CH) > k with

probability 1 − o(2− logc n).

3. One-sided testers. By Lemma 2.6, one-sided testers for isomorphism look
at some query set Q of the input and accept if and only if the restriction of the input to
Q is extensible to some input satisfying the property. The main idea is to prove that if
the input is far from satisfying the property, then with high probability its restriction
Q will provide the evidence for it. To prove lower bounds for one-sided testers, it is
sufficient to find an input that is ε-far from satisfying the property, but for which the
restriction of the input to any possible set Q is extensible to some alternative input
that satisfies the property. In this section we prove the following.

Theorem 3.1. The query complexity of the best one-sided isomorphism tester is
Θ̃(n3/2) (up to coefficients depending only on the distance parameter ε) if both graphs

are unknown, and it is Θ̃(n) if one of the graphs is known in advance.
We first prove Theorem 3.1 for the case where both graphs are unknown and then

move to the proof of the simpler second case where one of the graphs is known in
advance.

3.1. One-sided testing of two unknown graphs.

The upper bound.
Algorithm 1.

1. For both graphs G1, G2 construct the query sets Q1, Q2 respectively, by choos-

ing every possible query with probability
√

lnn
εn , independently of other que-

ries.
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2. If |Q1| or |Q2| is larger than 1000n3/2
√

lnn
ε , accept without making the que-

ries. Otherwise make the chosen queries.
3. If there is a knowledge-packing of IG1,Q1

and IG2,Q2
, accept. Otherwise reject.

Clearly, the query complexity of Algorithm 1 is O(n3/2
√

log n) for every fixed ε.

Lemma 3.2. Algorithm 1 accepts with probability 1 if G1 and G2 are isomorphic,
and if G1 and G2 are ε-far from being isomorphic, Algorithm 1 rejects with probability
1 − o(1).

Proof. Assume first that G1 and G2 are isomorphic, and let π be an isomorphism
between them. Obviously π is also a knowledge-packing for any pair of knowledge
charts of G1 and G2. Hence, if the algorithm did not accept in the second stage, then
it will accept in the third stage.

Now we turn to the case where G1 and G2 are ε-far from being isomorphic. Due
to large deviation inequalities, the probability that Algorithm 1 terminates in step 2 is
o(1), and therefore we can assume in the proof that it reaches step 3 without harming
the correctness. Since G1 and G2 are ε-far from being isomorphic, every possible
bijection π of their vertices has a set Eπ of at least εn2 pairs of G1’s vertices such that
for every {u, v} ∈ Eπ, either {u, v} is an edge in G1 or {π(u), π(v)} is an edge in G2,
but not both. Now we fix π and let {u, v} ∈ Eπ be one such pair. The probability
that {u, v} was not queried in G1 or {π(u), π(v)} was not queried in G2 is 1 − lnn

εn .
Since the queries were chosen independently, the probability that for all {u, v} ∈ Eπ

either {u, v} was not queried in G1 or {π(u), π(v)} was not queried in G2 is at most

(1 − lnn
εn )εn

2

. Using the union bound, we bound the probability of not revealing at

least one such pair in both graphs for all possible bijections by n!(1 − lnn
εn )εn

2

. This
bound satisfies

n!

(
1 − lnn

εn

)εn2

≤ n!
(
e−

ln n
εn

)εn2

= n!
1

nn
= o(1);

thus the algorithm rejects graphs that are ε-far from being isomorphic with probability
1 − o(1).

The lower bound. Here we construct a pair G,H of 1/100-far graphs on n
vertices such that every knowledge chart from IG,n3/2/200 can be packed with every
knowledge chart from IH,n3/2/200, and hence by Lemma 2.6, any one-sided algorithm

which is allowed to use at most n3/2/200 queries must always accept G and H. Note
that this holds for nonadaptive as well as adaptive algorithms, since we actually prove
that there is no certificate of size n3/2/200 for the nonisomorphism of these graphs.

Lemma 3.3. For every large enough n, there are two graphs G and H on n
vertices such that

1. G is 1/100-far from being isomorphic to H;
2. every knowledge chart from IG,n3/2/200 can be knowledge-packed with any

knowledge chart from IH,n3/2/200

Proof. We set both G and H to be the union of a complete bipartite graph
with a set of isolated vertices. Formally, G has three vertex sets L,Rf , Re, where
|L| = n/2, |Rf | = 26n/100 and |Re| = 24n/100, and it has the following edges:
{{u, v} : u ∈ L ∧ v ∈ Rf}. H has the same structure, but with |Rf | = 24n/100 and
|Re| = 26n/100, as illustrated in Figure 3.1. Clearly, just by the difference in the edge
count, G is 1/100-far from being isomorphic to H, so G and H satisfy the first part
of Lemma 3.3.
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Fig. 3.1. The graphs G and H (with the difference between them exaggerated).

Fig. 3.2. Finding YG and YH .

To prove that the second condition of Lemma 3.3 holds, we will show that for
all possible query sets QG, QH of size n3/2/200 there exist sets YG ∈ Rf (G) and
YH ∈ Re(H) that satisfy the following:

• |YG| = |YH | = n/50.
• The knowledge charts IG,QG

and IH,QH
restricted to L(G)∪YG and L(H)∪YH

can be packed in a way that pairs vertices from L(G) with vertices from L(H).
In Figure 3.2 we illustrate these restricted knowledge charts, where solid lines

are known (queried) edges and dashed lines are known (queried) “nonedges.” The
existence of such YG and YH implies the desired knowledge-packing, since we can
complete the partial packing from the second item by arbitrarily pairing vertices from
Rf (G) \ YG with vertices from Rf (H) and pairing vertices from Re(G) with vertices
from Re(H) \ YH .

Remark 3.4. Note that there is a trivial algorithm that distinguishes between the
two graphs in O(n) queries by sampling vertices and checking their degrees. However,
such an algorithm has two-sided error. Any one-sided error algorithm must find
evidence of the nonisomorphism of the graphs, i.e., two knowledge charts that cannot
be packed (in the sense that there is no isomorphism consistent with them).

Proving the existence of YG and YH . For every vertex v ∈ V (G), we define
its query degree as

dQ(v) = |{{v, u} : u ∈ V (G) ∧ {v, u} ∈ QG}|.

We also denote by NQ(v) the set {u : {v, u} ∈ E(G)∩QG} and denote by NQ(v) the
set {u : {v, u} ∈ QG \E(G)}. In other words, NQ(v) is the set of known neighbors of
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v, NQ(v) is the set of known nonneighbors of v, and dQ(v) = |NQ(v)|+ |NQ(v)|. We
define dQ(v), NQ(v), and NQ(v) for H’s vertices similarly.

Since |QG|, |QH | ≤ n3/2/200, there must be two sets of vertices DG ∈ Rf (G) and
DH ∈ Re(H), both of size n/10, such that ∀v∈DG

: dQ(v) ≤ n1/2/2 and ∀v∈DH
:

dQ(v) ≤ n1/2/2.
Now we prove the existence of YG and YH (as defined above) using a simple

probabilistic argument. First we set an arbitrary pairing

BD = {{v1
G, u

1
H}, {v2

G, u
2
H}, . . . , {vn/10G , u

n/10
H }}

of DG’s and DH ’s elements. Then we choose a bijection BL : L(G) → L(H) uniformly
at random and show that with some positive probability, there are at least n/50
consistent (packable) pairs in BD. Formally, we define

Y =
{
{vG, uH} ∈ BD : BL(NQ(vG)) ∩NQ(uH) = ∅

}

as the set of consistent pairs and show that Pr[|Y | ≥ n/50] > 0.
For a specific pair {v ∈ DG, u ∈ DH}, we have

PrBL
[BL(NQ(v)) ∩NQ(u) = ∅] ≥

n1/2/2−1∏
i=0

(
1 − n1/2/2

n/2 − i

)

≥
(

1 − 2n1/2

n

)n1/2/2

≥ (e + 0.001)−1 ≥ 1/3,

and by the linearity of expectation, E[|Y |] ≥ |DG|/3 > n/50. Therefore, there is at
least one bijection BL for which the size of Y is no less than its expectation. We can
now set

YG = {u : ∃v ∈ V (H) such that {u, v} ∈ Y }

and

YH = {v : ∃u ∈ V (G) such that {u, v} ∈ Y },

concluding the proof.

3.2. One-sided testing where one of the graphs is known in advance.
The algorithm for testing isomorphism between an unknown graph and a graph that is
known in advance is similar to Algorithm 1. In this case the algorithm makes a quasi-
linear number of queries, to accept with probability 1 if the graphs are isomorphic
and reject with probability 1 − o(1) if they are ε-far from being isomorphic. We also
prove an almost matching nearly trivial lower bound for this problem.

The upper bound. Denote by Gk and Gu the known and the unknown graphs,
respectively.

Algorithm 2.

1. Construct a query set Q by choosing every possible query from Gu with
probability lnn

εn , independently at random.

2. If |Q| is larger than 10n lnn
ε , accept without making the queries. Otherwise

make the chosen queries.
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3. If there is a knowledge-packing of IGu,Q and IGk,[V (Gk)]2 , accept. Otherwise
reject.

Clearly the query complexity of Algorithm 2 is O(n log n), and it rejects in step 2
with probability o(1).

Lemma 3.5. Algorithm 2 always accepts isomorphic graphs, and it rejects ε-far
graphs with probability 1 − o(1).

Proof. The proof is almost identical to that of Lemma 3.2. It is clear that
isomorphic graphs are always accepted by Algorithm 2. Now we assume that the
graphs Gk and Gu are ε-far and that the algorithm reached step 3 (as it stops at
step 2 with probability o(1)). Given a bijection π, the probability that no violating

pair {u, v} ∈ Eπ was queried is at most (1 − lnn
εn )εn

2 ≤ e−n lnn = n−n. Applying the
union bound over all n! possible bijections, the acceptance probability is bounded by
n!/nn = o(1).

The lower bound. As before, to give a lower bound on one-sided error algo-
rithms it is sufficient to show that for some Gk and Gu that are far, no “proof” of their
nonisomorphism can be provided with Ω(n) queries. First we formulate the second
part of Lemma 2.6 for the special case where one of the graphs is known in advance.

Lemma 3.6. If for some Gk, Gu, where Gk is known in advance, and some fixed
0 ≤ q ≤

(
n
2

)
, IGk,[v(Gk)]2 is knowledge-packable with every IGu,Q ∈ IGu,q, then every

one-sided error isomorphism tester which is allowed to ask at most q queries must
always accept Gk and Gu.

We set Gk to be a disjoint union of Kn/2 and n/2 isolated vertices and set Gu to
be a completely edgeless graph.

Observation 3.7. Gk and Gu are 1/4-far, and every IGu,Q ∈ IGu,
n
4

is knowl-
edge-packable with IGk,[V (Gk)]2 .

Proof. Clearly, just by the difference in the edge count, Gk is 1/4 far from being
isomorphic to Gu. But since n/4 queries cannot involve more than n/2 vertices
from Gu (all isolated), and Gk has n/2 isolated vertices, the knowledge charts are
packable.

Together with Lemma 3.6, we get the desired lower bound. This concludes the
proof of the last part of Theorem 3.1.

4. Two-sided testers. In the context of graph properties, two-sided error test-
ers are usually not known to achieve significantly lower query complexity than the
one-sided error testers, apart from the properties that explicitly involve counting,
such as Max-Cut and Max-Clique [13]. However, in our case two-sided error isomor-
phism testers have substantially lower query complexity than their one-sided error
counterparts.

4.1. Two-sided testing where one of the graphs is known in advance.
Theorem 4.1. The query complexity of two-sided error isomorphism testers is

Θ̃(
√
n) if one of the graphs is known in advance and the other needs to be queried.
We prove the lower bound first. This way it will be easier to understand why

certain stages of the upper bound testing algorithm are necessary.

The lower bound.
Lemma 4.2. Any isomorphism tester that makes at most

√
n

4 queries to Gu

cannot distinguish between the case that Gk and Gu are isomorphic and the case that
they are 1/32-far from being isomorphic, where Gk is known in advance.

We begin with a few definitions.
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Definition 4.3. Given a graph G and a set W of n
2 vertices of G, we define the

clone G(W ) of G in the following way:

• The vertex set of G(W ) is defined as V (G(W )) = W ∪ {w′ : w ∈ W}
• The edge set of G(W ) is defined as

E(G(W )) =
{
{v, u} : {v, u} ∈ E(G)

}

∪
{
{v′, u} : {v, u} ∈ E(G)

}

∪
{
{v′, u′} : {v, u} ∈ E(G)

}
.

In other words, G(W ) is the product of the subgraph of G induced on W with the
graph K2.

For the two copies v, v′ ∈ V (G(W )) of v ∈ W , we say that v is the source of both
v and v′.

Lemma 4.4. Let G ∼ G(n, 1/2) be a random graph. With probability 1− o(1) the
graph G is such that for every subset W ⊂ V (G) of size n/2, the clone G(W ) of G is
1/32-far from being isomorphic to G.

Proof. Let G be a random graph according to G(n, 1/2), and let W ⊂ V (G) be
an arbitrary subset of G’s vertices of size n/2. First we show that for an arbitrary
bijection σ : V (G(W )) → V (G) the graphs G(W ) and G are 1/32-close under σ with

probability at most 2−Ω(n2), and then we apply the union bound on all bijections and
every possible subset W .

We split the bijection σ : V (G(W )) → V (G) into two injections σ1 : W → V (G)
and σ2 : V (G(W )) \ W → V (G) \ σ1(W ). Note that either |W \ σ1(W )| ≥ n/4 or
|W \ σ2(W )| ≥ n/4. Assume without loss of generality that the first case holds, and
let U denote the set W \ σ1(W ). Since every edge in G is chosen at random with
probability 1/2, the probability that for some pair u, v ∈ U either {u, v} is an edge in
G and {σ(u), σ(v)} is not an edge in G or {u, v} is not an edge in G and {σ(u), σ(v)}
is an edge in G is exactly 1/2. Therefore, using large deviation inequalities, the

probability that in the set U there are less than
(
n
2

)
/32 such pairs is at most 2−Ω(n2)

(as these events are all independent). There are at most n! possible bijections and(
n

n/2

)
possible choices for W , so using the union bound, the probability that for some

W the graph G ∼ G(n, 1/2) is not 1/32-far from being isomorphic to G(W ) is at most

2−Ω(n2)
(

n
n/2

)
n! = o(1).

Given a graph G satisfying the assertion of Lemma 4.4, we set Gk = G and define
two distributions over graphs, from which we choose the unknown graph Gu:

• DP : A permutation of Gk, chosen uniformly at random.

• DN : A permutation of G
(W )
k , where both W and the permutation are chosen

uniformly at random.

According to Lemmas 4.4 and 2.9, it is sufficient to show that the distributions
DP and DN restricted to a set of

√
n/4 queries are close. In particular, we intend

to show that for any Q ⊂ D = V 2 of size
√
n/4 and any Q : Q → {0, 1}, we have

PrDP |Q [Q] < 3
2PrDN |Q [Q]. This will imply a lower bound for adaptive (as well as

nonadaptive) testing algorithms.

Observation 4.5. For a set U of G(W )’s vertices, define the event EU as the
event that there is no pair of copies w,w′ of any one of G’s vertices in U . For a given
set Q of pairs of vertices, let UQ be the set of all vertices that belong to some pair in
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Q. Then the distribution DN |Q conditioned on the event EUQ
(defined above) and the

unconditioned distribution DP |Q are identical.
Proof. In DN , if no two copies of any vertex were involved in the queries, then the

source vertices of the queries to Gu are in fact a uniformly random sequence (with no
repetition) of the vertices of Gk, and this (together with Gk) completely determines
the distribution of the answers to the queries. This is the same as the unconditioned
distribution induced by DP .

Intuitively, the next lemma states that picking two copies of the same vertex in
a randomly permuted G(W ) requires many samples, as per the well-known birthday
problem.

Lemma 4.6. For a fixed set Q of at most
√
n/4 queries and the corresponding set

U = UQ of vertices, the probability that the event EU did not happen is at most 1/4.
Proof. The bound on |Q| implies that |U | ≤

√
n/2. Now we examine the vertices

in U as if we add them one by one. The probability that a vertex v that is added
to U is a copy (with respect to the original graph G) of some vertex u that was

already inserted into U (or vice versa) is at most
√
n

2n . Hence, the probability that
eventually (after

√
n/2 insertions) we have two copies of the same vertex in U is at

most
√
n

2n ·
√
n/2 = 1/4.

From Observation 4.5, the distribution DN |Q conditioned on the event EU and
the unconditioned distribution DP |Q are identical. By Lemma 4.6 it follows that
Pr[EU ] > 2/3. Therefore, for any g : Q → {0, 1} we have

PrDN |Q [g] = Pr[EU ] · PrDP |Q [g] + (1 − Pr[EU ]) · PrDN |Q [g]

≥ Pr[EU ] · PrDP |Q [g] >
2

3
· PrDP |Q [g]

or, equivalently,

PrDP |Q [g] <
3

2
PrDN |Q [g];

hence the distributions DP and DN satisfy the conditions of Lemma 2.9. The following
corollary completes the proof of Lemma 4.2.

Corollary 4.7. It is not possible for any algorithm (adaptive or not) making√
n/4 (or less) queries to test for isomorphism between a known graph and a graph

that needs to be queried.

The upper bound. We start with a few definitions. Given a graph G and a
subset C of V (G), we define the C-labeling of G’s vertices as follows: Every vertex
v ∈ V (G) gets a label according to the set of its neighbors in C. Note that there are
2|C| possible labels for a set C, but even if 2|C| > n, still at most n of the labels occur,
since there are only n vertices in the graph. On the other hand, it is possible that
several vertices will have the same label according to C. Such a labeling implies the
following distribution over the vertices of G.

Definition 4.8. Given a graph G and a C-labeling of its vertices (according
to some C ⊂ V (G)), we denote by DC the distribution over the actual labels of the
C-labeling (at most n labels), in which the probability of a certain label γ is calculated
from the number of vertices from V (G) having the label γ under the C-labeling, divided
by n.

Given a graph G on n vertices and a graph C on k < n vertices, we say that
a one-to-one function η : V (C) → V (G) is an embedding of C in G. We also call
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η(V (C)) the placement of C in G. With a slight abuse of notation, from now on by a
placement η(V (C)) we mean also the correspondence given by η and not just the set.

Given graphs G,H on n vertices, a subset CG of V (G) and a placement CH of
CG in H under an embedding η, we define the distance between the CG-labeling of
G and the CH -labeling of H as

1

2

∑
γ∈2CG

∣∣ |{u ∈ V (G) : N(u) ∩ CG = γ}| − |{v ∈ V (H) : N(v) ∩ η(CG) = γ}|
∣∣.

This distance measure is equal to the usual variation distance between DCG
and DCH

multiplied by n. We are now ready to prove the upper bound.
Lemma 4.9. Given an input graph Gu and a known graph Gk (both of order

n), there is a property tester Aku that accepts with probability at least 2/3 if Gu is
isomorphic to Gk and rejects with probability at least 2/3 if Gu is ε-far from Gk.

Furthermore, Aku makes Õ(
√
n) queries to Gu.

We first outline the algorithm: The test is performed in two main phases. In
Phase 1 we randomly choose a small subset Cu of Gu’s vertices, and try all possible
placements of Cu in the known graph Gk. The placements that imply a large distance
between the labeling of Gu and Gk are discarded. After filtering the good placements
of Cu in Gk, we move to Phase 2. In Phase 2 every one of the good placements is
tested separately, by defining a random bijection π : V (Gu) → V (Gk) and testing
whether π is close to being an isomorphism. Finally, if one of the placements passed
both Phase 1 and Phase 2, the graphs are accepted. Otherwise they are rejected.

Phase 1. In the first phase we choose at random a core set Cu of log2 n ver-
tices from Gu (the unknown graph). For every embedding η of Cu in Gk and the
corresponding placement Ck ∈ Gk, we examine the distributions DCu and DCk

as
in Definition 4.8. Since the graph Gk is known in advance, we know exactly which
are the actual labels according to Ck (in total no more than n labels), so from now
on we will consider the restriction of both distributions to these actual labels only.
Next we test for every embedding of Cu whether DCu is statistically close to DCk

.
Note that the distribution DCk

is explicitly given, and the distribution DCu can be
sampled by choosing a vertex v from V (Gu) uniformly at random and making all
queries {v} ×Cu. If the label of some v ∈ V (Gu) does not exist in the Ck-labeling of
Gk, we immediately reject this placement and move to the next one. Now we use the
following lemma from [7], which states that Õ(

√
n) samples are sufficient for testing

if the sampled distribution is close to the explicitly given distribution.
Lemma 4.10. There is an algorithm that given two distributions DK , DU over n

elements and a distance parameter ε, where DK is given explicitly and DU is given as
a black box that allows sampling according to the distribution, satisfies the following: If
the distributions DK and DU are identical, then the algorithm accepts with probability
at least 1− 2− log7 n, and if the variation distance between DK and DU is larger than
ε/10, then the algorithm accepts with probability at most 2− log7 n. For a fixed ε, the

algorithm uses Õ(
√
n) many samples.

Actually, this is an amplified version of the lemma from [7], which can be achieved
by independently repeating the algorithm provided there polylog(n) many times and

taking the majority vote. This amplification allows us to reuse the same Õ(
√
n)

samples for all possible placements of the core set. As a conclusion of Phase 1, the
algorithm rejects the placements of Cu that imply a large variation distance between
the above distributions and passes all other placements of Cu to Phase 2. Naturally,
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if Phase 1 rejects all placements of Ck due to distribution test failures or due to the
existence of labels in Gu that do not exist in Gk, then Gu is rejected without moving
to Phase 2 at all. First we observe the following.

Observation 4.11. With probability 1 − o(1), all of the placements that passed
Phase 1 imply ε/10-close distributions, and all placements that imply identical distri-
butions passed Phase 1. In other words, the distribution test did not err on any of
the placements.

Proof. There are at most 2log3 n possible placements of Cu. Using the union bound
with Lemma 4.10, we conclude that Phase 1 will not err with probability 1−o(1).

Phase 2. Following Observation 4.11, we need to design a test such that given
a placement Ck of Cu in Gk that implies close distributions, the test satisfies the
following conditions:

1. If the graphs are isomorphic and the embedding of Cu is expandable to some
isomorphism, then the test accepts with probability at least 3/4.

2. If the graphs Gu and Gk are ε-far, then the test accepts with probability at
most o(2− log3 n).

If our test in Phase 2 satisfies these conditions, then we get the desired isomor-
phism tester. From now on, when we refer to some placement of Cu we assume that
it has passed Phase 1 and hence implies close distributions.

In Phase 2 we choose a set Wu of log4 n vertices from V (Gu) and retrieve their
labels according to Cu by making the queries Wu × Cu. Additionally, we split Wu

into 1
2 log4 n pairs {{u1, v1}, . . . , {u 1

2 log4 n, v 1
2 log4 n}} randomly and make all 1

2 log4 n

queries according to these pairs. This is done once, and the same set Wu is used for
all the placements of Cu that are tested in Phase 2. Then, for every placement Ck of
Cu, we would like to define a random bijection πCu,Ck

: V (Gu) → V (Gk) as follows.
For every label γ, the bijection πCu,Ck

pairs the vertices of Gu having label γ with the
vertices of Gk having label γ uniformly at random. There might be labels for which
one of the graphs has more vertices than the other. We call these remaining vertices
leftovers. Note that the amount of leftovers from each graph is equal to the distance
between the Ck-labeling and the Cu-labeling. Finally, after πCu,Ck

pairs all matching
vertices, the leftover vertices are paired arbitrarily. In practice, since we do not know
the labels of Gu’s vertices, we instead define a partial bijection π̃Cu,Ck

(Wu) → V (Gk)
as follows. Every vertex v ∈ Wu that has the label γv is paired uniformly at random
with one of the vertices of Gk which has the same label γv and was not paired yet. If
this is impossible, we reject the current placement of Cu and move to the next one.

Denote by δCu,Ck
the fraction of the queried pairs from Wu for which exactly

one of {ui, vi} and {π̃Cu,Ck
(ui), π̃Cu,Ck

(vi)} is an edge. If δCu,Ck
≤ ε/2, then Gu is

accepted. Otherwise we move to the next placement of Cu. If none of the placements
was accepted, Gu is rejected.

Correctness. A crucial observation in our proof is that with high probability,
any two vertices that have many distinct neighbors in the whole graph will also have
distinct neighbors within a “large enough” random core set.

Formally, given a graph G and a subset C of its vertices, we say that C is β-
separating if for every pair of vertices u, v ∈ V (G) such that duv � 1

n |{N(u)�N(v)}| ≥
β the vertices u and v have different labels under the C-labeling of G.

Claim 4.12. Let β > 0 be fixed, let G be a graph of order n, and let C ⊂ V (G)
be a uniformly chosen random subset of size log2 n. Then C is β-separating with
probability 1 − o(1).
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Proof. Fix a pair u, v ∈ V (G). If u, v are such that duv > β, then the proba-

bility that they share exactly the same neighbors in C is bounded by (1 − β)log
2 n ≤

e−β log2 n = n−β logn. Using the union bound, with probability 1 − o(1) every pair
u, v of vertices with duv > β will not have exactly the same neighbors in C; i.e., the
vertices will have different labels under the C-labeling.

Lemma 4.13 (completeness). Conditioned over the event that Cu is ε/8-separat-
ing, if the graphs Gu and Gk are isomorphic and the placement Ck of Cu is expandable
to some isomorphism, then Pr[δCu,Ck

≤ ε/2] = 1 − o(1), and hence Ck is accepted in
Phase 2 with probability 1 − o(1).

Proof. Let φ : V (Gu) → V (Gk) be an isomorphism to which the placement of
Cu is expandable. By definition, for every pair v1, v2 of Gu’s vertices, {v1, v2} is
an edge in Gu if and only if {φ(v1), φ(v2)} is an edge in Gk. In addition, for every
vertex v ∈ V (Gu), the vertices v and φ(v) have exactly the same labels. Let σ be
the permutation such that πCu,Ck

is the composition of σ and the isomorphism φ. In
the rest of this proof, by distance we mean the absolute distance between two labeled
graphs (which is between 0 and

(
n
2

)
).

First we show that the distance from σ(Gu) to Gk is almost the same as the
distance from φ(Gu) to Gk (which is zero since φ is an isomorphism), and then we
apply large deviation inequalities to conclude that Pr[δCu,Ck

≤ ε/2] = 1 − o(1).

To prove that the distance from σ(Gu) to Gk is close to zero we show a trans-
formation of φ into πCu,Ck

by performing “swaps” between vertices that have the
same label. Namely, we define a sequence of permutations φi, starting from φ0 = φ
and ending with φt = πCu,Ck

. In each step, if there is some vertex v0 such that
φi(v0) = u1 while πCu,Ck

(v0) = u0, then we find a vertex v1 such that φi(v1) = u0,
and set φi+1(v0) = u0 and φi+1(v1) = u1. The rest of the vertices are mapped by
φi+1 as they were mapped by φi.

Since in each step we swap only between vertices with the same label, and since
the core set Cu is ε/8-separating, every such swap can increase the distance by at most
εn/8, so eventually the distance between σ(Gu) and Gk is at most εn2/8. Therefore,
by large deviation inequalities, δCu,Ck

as defined in Phase 2 is at most ε/2 with
probability 1 − o(1), and so the placement Ck is accepted.

We now turn to the case where Gu and Gk are ε-far. Note that until now we did
not use the fact that Cu and Ck imply close distributions. To understand why this
closeness is important, recall the pairs of graphs from the lower bound proof. If we
give up the distribution test in Phase 1, then these graphs will be accepted with high
probability, since the algorithm cannot reveal two copies of the same vertex when
sampling o(

√
n) vertices (recall that |Wu| = O(log4 n)). Intuitively, the problem is

that in these pairs of graphs, the partial random bijection π̃Cu,Ck
will not simulate

a restriction of the random bijection πCu,Ck
to a set of log4 n vertices. In the lower

bound example, π̃Cu,Ck
will have no leftovers with high probability, even though

πCu,Ck
will always have Ω(n) leftovers. The reason is that in the cloned graph Gu, for

each of about half of the labels from Ck there are two times more vertices, while for
the second half there are no vertices at all. The distribution test in Phase 1 actually
checks whether the clustering of the vertices according to the labels is into subsets of
almost equal sizes in both Gu and Gk. If it is so, then the partial random bijection
π̃Cu,Ck

is indeed similar to the restriction of a bijection πCu,Ck
to a set of log4 n

vertices.

Lemma 4.14 (soundness). If the graphs Gu and Gk are ε-far, and the placement

Ck implies ε/10-close distributions, then Pr[δCu,Ck
≤ ε/2] ≤ o(2− log3 n), and hence
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Ck is accepted in Phase 2 with probability at most o(2− log3 n).
Proof. Assume that for a fixed Ck the random bijection πCu,Ck

is ε-far from
isomorphism. We then need to show that δCu,Ck

as defined in Phase 2 is larger than

ε/2 with probability 1 − o(2− log3 n).
Since the variation distance between the distributions DCu and DCk

is at most
ε/10, the amount of leftovers (which is exactly the distance between the Cu-labeling
of Gu and the Ck-labeling of Gk) is at most εn/10. Therefore, even if we first remove
those εn/10 (or less) leftovers, the fraction of pairs u, v for which exactly one of {u, v}
and {π̃Cu,Ck

(u), π̃Cu,Ck
(v)} is an edge is not smaller by more than 4ε/10 from that of

πCu,Ck
.

Let π̃Cu,Ck
be the random partial bijection as defined above. The distribution test

of Phase 1 guarantees that π̃Cu,Ck
is a random restriction of a function that is ε/10-

close to some bijection πCu,Ck
. Since Gu is ε-far from Gk, the bijection πCu,Ck

must be
ε-far from being an isomorphism, and hence π̃Cu,Ck

must exhibit a 6ε/10-fraction of
mismatching edges. Note that the acceptance probability of Ck given π̃Cu,Ck

is equal
to the probability that δCu,Ck

as defined in Phase 2 is at most ε/2. Large deviation

inequalities show that this probability is at most 2−Ω(log4 n) = o(2− log3 n).
In conclusion, if Gk and Gu are isomorphic, then the probability that Cu is not

ε/8-separating is at most o(1), and for a correct (under some isomorphism) embedding
of Cu in Gk, the probability that the distribution test will fail is also o(1); thus in
summary algorithm Aku accepts with probability greater than 2/3. In the case that
Gk and Gu are ε-far from being isomorphic, with probability 1 − o(1) all placements
that are passed to Phase 2 imply close label distributions. Then each such placement
is rejected in Phase 2 with probability 1−o(2− log3 n), and by the union bound over all
possible placements the graphs are accepted with probability less than 1/3. Algorithm

Aku makes Õ(
√
n) queries in Phase 1 and Õ(n1/4) queries in Phase 2. This completes

the proof of Lemma 4.9 and thus of Theorem 4.1.

4.2. Two-sided testing of two unknown graphs.
Theorem 4.15. The query complexity of two-sided error isomorphism testers is

between Ω(n) and Õ(n5/4) if both graphs need to be queried.

The upper bound.
Lemma 4.16. Given two unknown graphs G and H on n vertices, there is a

property tester Auu that accepts with probability at least 2/3 if G is isomorphic to
H, and rejects with probability at least 2/3 if G is ε-far from H. Furthermore, Auu

makes Õ(n5/4) queries to G and H.
We use here ideas similar to those used in the upper bound proof of Lemma 4.9,

but with several modifications. The main difference between this case and the case
where one of the graphs is known in advance is that here we cannot write all label
distributions with all possible core sets in either one of the unknown graphs (because
doing that would require Ω(n2) queries). We overcome this difficulty by sampling from
both graphs in a way that with high probability will make it possible to essentially
simulate the test for isomorphism where one of the graphs is known in advance.

Phase 1. First we randomly pick a set UG of n1/4 log3(n) vertices from G and
a set UH of n3/4 log3(n) vertices from H. Then we make all n5/4 log3(n) possible
queries in UG × V (G). Note that if G and H have an isomorphism σ, then according
to Lemma 2.10 with probability 1 − o(1) the size of UG ∩ σ(UH) will exceed log2(n).

For all subsets CG of UG of size log2 n we try every possible placement CH ⊂ UH

of CG. There are at most 2log3 n subsets CG, and at most 2log3 n possible ways to
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embed each CG in UH . Since we made all n5/4 log3(n) possible queries in UG×V (G),
for every CG ⊂ UG the corresponding distribution DCG

is entirely known.

So now for every possible placement of CG in UH we test if the variation distance
between the distributions DCG

and DCH
is at most ε/10. Since we know the entire

distributions DCG
, we need only sample the distribution DCH

; therefore we can still

use the amplified distribution test of Lemma 4.10. The test there requires Õ(
√
n)

samples, so similarly to the proof of Lemma 4.9, we take a random set S of Õ(
√
n)

vertices from H and make all n5/4polylog(n) queries in S × UH .

We reject the pairs of a set CG and a placement CH that were rejected by the
distribution test for DCG

and DCH
, and pass all other pairs to Phase 2. If Phase 1

rejects all possible pairs, then the graphs G and H are rejected without moving to
Phase 2. The following observation is similar to the one we used in the case where
one of the graphs is known in advance.

Observation 4.17. With probability 1 − o(1), all of the placements that passed
Phase 1 imply ε/10-close distributions, and all placements that imply identical distri-
butions passed Phase 1. In other words, the distribution test did not err on any of
the placements.

Phase 2. As in Lemma 4.9, we need to design a test which, given a placement
CH of CG in H that implies close distributions, satisfies the following conditions:

1. If the graphs are isomorphic and the embedding of CH is expandable to some
isomorphism, then the test accepts with probability at least 3/4.

2. If the graphs G and H are ε-far, then the test accepts with probability at
most o(2−2 log3 n).

In Phase 2 we choose at random a set WG of n1/2 log13 n vertices from V (G), and
a set WH of n1/2 log6 n vertices from V (H). We retrieve the labels in WH according
to any CH by making the queries WH ×UH . Additionally, we make all queries inside
WH and all queries inside WG. This is done once, and the same sets WG,WH are
used for all of the pairs CG, CH that are tested in Phase 2. According to Lemma 2.10,
if the graphs are isomorphic under some isomorphism σ, then |WH ∩σ(WG)| > log7 n
with probability 1 − o(1).

Then, similarly to what is done in Lemma 4.9, for every pair CG, CH , we would
like to define a random bijection πCG,CH

: V (G) → V (H) as follows. For every label
γ, πCG,CH

pairs the vertices of G having label γ with the vertices of H having label γ
uniformly at random. After πCG,CH

pairs all matching vertices, the leftover vertices
are paired arbitrarily. Then again, since we do not know the labels of H’s vertices,
we define a partial bijection π̃CG,CH

(WH) → V (G) instead, in which every vertex
v ∈ WH that has the label γv is paired uniformly at random with one of the vertices
of G which has the same label γv and is not paired yet. If this is impossible, we reject
the current pair CG, CH and move to the next one.

Denote by IH the set π̃CG,CH
(WH)∩WG, and denote by SH the set π̃−1

CG,CH
(IH).

According to Lemma 2.10, |IH | > log7 n with probability 1 − o(2− log6 n); that is,
with probability 1 − o(1) we have |IH | > log7 n for every pair CG, CH (if this is not
the case, we terminate the algorithm and answer arbitrarily). Next we take 1

2 log7 n
pairs {{u1, v1}, . . . , {u 1

2 log7 n, v 1
2 log7 n}} randomly from SH , and denote by δCG,CH

the

fraction of SH ’s pairs for which exactly one of {ui, vi} and {π̃CG,CH
(ui), π̃CG,CH

(vi)}
is an edge. If δCG,CH

≤ ε/2, then the graphs are accepted. Otherwise we move to the
next pair CG, CH . If none of the pairs accepted, then the graphs are rejected.
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As noted above, if G and H are isomorphic, then according to Lemma 2.10 with
probability 1 − o(1), the size of UG ∩ σ(UH) is at least log2(n). Therefore with
probability 1− o(1) for some pair CH , CG, the placement CH of CG is expandable to
an isomorphism. We now need to show that in this case the pair CH , CG is accepted
with sufficient probability.

Lemma 4.18 (completeness). If the graphs G and H are isomorphic and σ is an
isomorphism between them, then with probability at least 3/4 there exists CG ⊂ UG

with a placement CH ⊂ UH which is expandable to σ, and for which δCG,CH
≤ ε/2.

Proof sketch. First we look at the set Δ = UG ∩ σ−1(UH). By Lemma 2.10 the
size of Δ is at least log2 n with probability 1−o(1). Conditioned on this event, we pick
CG ⊆ Δ ⊆ UG uniformly from all subsets of Δ with size log2 n, and set CH = σ(CG)
to be its placement in UH . We now prove that, conditioned on the event that Δ is
large enough, CG and CH will be as required with probability 1 − o(1).

Our main observation is that if we condition only on the event that Δ is large
enough, then CG is distributed uniformly among all subsets with this size of V (G),
so we proceed similarly to the case where one of the graphs is known in advance. We
observe that if two vertices have many distinct neighbors, then with high probability
they will not share exactly the same neighbors within a random core set of size log2 n
(see Lemma 4.12), so CG has a separating property. When this happens, it is possible
to switch between the vertices with identical labels and still retain a small enough
bound on δCG,CH

.

Lemma 4.19 (soundness). If the graphs G and H are ε-far, and the pair CG, CH

implies close distributions, then Pr[δCG,CH
≤ ε/2] ≤ o(2− log6 n), and hence the pair

CG, CH is accepted in Phase 2 with probability at most o(2− log6 n).

Proof sketch. As before, assume that for a fixed pair CG, CH the random bijection
πCG,CH

is ε-far from isomorphism. We then need to show that δCG,CH
as defined in

Phase 2 is at most ε/2 with probability only o(2− log6 n).

Since the variation distance between the distributions DCG
and DCH

is at most
ε/10, the amount of leftovers (which is exactly the distance between the CG-labeling
and the CH -labeling) is at most εn/10. After removing those εn/10 (or less) leftovers,
the fraction of pairs u, v for which exactly one of {u, v} and {π̃CG,CH

(u), π̃CG,CH
(v)}

is an edge is still not smaller than that of πCG,CH
by more than 4ε/10. Now the

distribution test of Phase 1 guarantees that π̃CG,CH
is ε/10-close to the restriction of

some random bijection πCG,CH
. Since the graph G is ε-far from being isomorphic to

the graph H, the bijection πCG,CH
must be ε-far from an isomorphism. Hence π̃CG,CH

must exhibit a 6ε/10-fraction of incompatible edges, and the acceptance probability
of the pair CG, CH given π̃CG,CH

is equal to the probability that δCG,CH
as defined

in Phase 2 is at most ε/2. Applying large deviation inequalities shows that this

probability is at most 2−Ω(log7 n) = o(2− log6 n).

The isomorphism testing algorithm Auu makes Õ(n5/4) queries in total, complet-
ing the proof of Theorem 4.15.

The lower bound. A lower bound of Ω(n) queries is implicitly stated in [9]
following [1]. Here we provide the detailed proof for completeness.

Lemma 4.20. Any adaptive (as well as nonadaptive) testing algorithm that makes
at most n

4 queries cannot distinguish between the case that the unknown input graphs
G and H are isomorphic and the case that they are 1

8 -far from being isomorphic.

Proof. We construct two distributions over pairs of graphs. The distribution DP is
constructed by letting the pair of graphs consist of a random graph G ∼ G(n, 1/2) and
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a graph H that is a random permutation of G. The distribution DN is constructed
by letting the pair of graphs consist of two independently chosen random graphs
G,H ∼ G(n, 1/2).

Clearly DP satisfies the property with probability 1. By large deviation inequali-
ties, it is also clear that in an input chosen according to DN , the graphs G and H are
1
8 -far with probability 1 − 2Ω(n2). The next step is to replace DN with D′

N , in which
the graphs are 1

8 -far from being isomorphic with probability 1. We just set D′
N to

be the distribution that results from conditioning DN on the event that G is indeed
1
8 -far from H.

We now consider any fixed set Q = {p1, . . . , pn
4
} of vertex pairs, some from the

first graph, and others from the second graph. For an input chosen according to the
distribution DN , the values of these pairs (the answers for corresponding queries) are
n
4 uniformly and independently chosen random bits. We now analyze the distribution
DP . Let e1, . . . , ek and f1, . . . , fl be all vertex pairs of the first and the second graph,
respectively, that appear in Q. Clearly k, l ≤ |Q| = n

4 . Let σ : {1, . . . , n} → {1, . . . , n}
be the permutation according to which the second graph is chosen in DP . Let E denote
the event that σ(ei) �= fj for every 1 ≤ i ≤ k and 1 ≤ j ≤ l, where for e = {u, v} we
denote by σ(e) the pair {σ(u), σ(v)}. Clearly, if E occurs, then {p1, . . . , pn

4
} will be

a set of n
4 uniformly and independently chosen random bits.

Claim 4.21. The event E as defined above occurs with probability at least 3/4.
Proof. For a single pair ei and a random permutation σ, the probability that

ei = σ(fj) for some 1 ≤ j ≤ l is bounded by n

2(n2)
. Hence by the union bound,

Pr[E] ≥ 1 − kn

2
(
n
2

) > 3/4.

Since E occurs with probability at least 3/4 and since the event upon which we

conditioned DN to get D′
N occurs with probability 1− 2−Ω(n2) = 1− o(2−|Q|), we get

that for any g : Q → {0, 1}, PrD′
N |Q [g] < 3

2PrDP |Q [g], and therefore the distributions
DP and D′

N satisfy the conditions of Lemma 2.9.

5. Concluding remarks. While our two-sided error algorithms run in time
quasi-polynomial in n (like the general approximation algorithm of [6]), the one-sided
algorithms presented here require an exponential running time. It would be interesting
to reduce the running time of the one-sided algorithms to be quasi-polynomial while
still keeping them one-sided.

Another issue goes back to [1]. There, the graph isomorphism question was used
to prove that certain first order graph properties are impossible to test with a constant
number of queries. However, in view of the situation with graph isomorphism, the
question now is whether every first order graph property is testable with O(n2−α)
many queries for some α > 0 that depends on the property to be tested.

Finally, it would be interesting to close the remaining gap between Ω(n) and

Õ(n5/4) in the setting of two graphs that need to be queried and a two-sided error
algorithm. It appears (with the aid of martingale analysis on the same distributions
DP , DN as above) that at least for nonadaptive algorithms the lower bound can be
increased a little to a bound of the form Ω(n logα n), but we are currently unable to
give tighter bounds on the power of n.
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IMPROVING THE STRETCH FACTOR OF A GEOMETRIC
NETWORK BY EDGE AUGMENTATION∗

MOHAMMAD FARSHI† , PANOS GIANNOPOULOS‡ , AND JOACHIM GUDMUNDSSON§

Abstract. Given a Euclidean graph G in R
d with n vertices and m edges, we consider the

problem of adding an edge to G such that the stretch factor of the resulting graph is minimized.
Currently, the fastest algorithm for computing the stretch factor of a graph with positive edge weights
runs in O(nm+n2 logn) time, resulting in a trivial O(n3m+n4 logn)-time algorithm for computing
the optimal edge. First, we show that a simple modification yields the optimal solution in O(n4)
time using O(n2) space. To reduce the running time we consider several approximation algorithms.

Key words. computational geometry, approximation algorithms, geometric networks
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1. Introduction. Consider a set V of n points in Rd. A network on V can be
modeled as an undirected graph G with vertex set V of size n and an edge set E of
size m where every edge (u, v) has a positive weight w(u, v). A Euclidean network
is a geometric network where the weight of the edge (u, v) is equal to the Euclidean
distance |uv| between its two endpoints u and v.

For two vertices u, v in a weighted graph G we use δG(u, v) to denote a shortest
path between u and v in G, and the length of the path is denoted by dG(u, v). Consider
a weighted graph G = (V,E) and a graph G′ = (V,E′) on the same vertex set but
with edge set E′ ⊆ E. We say that G′ is a t-spanner of G if for each pair of vertices
u, v ∈ V we have that dG′(u, v) ≤ t · dG(u, v). The minimum t such that G is a
t-spanner for V is called the stretch factor, or dilation, of G.

We say that a Euclidean network G = (V,E) is a t-spanner if G = (V,E) is a
t-spanner of the complete network on V . In other words, for any two points p, q ∈ V
the graph distance in G is at most t times the Euclidean distance between the two
points.

Complete graphs represent ideal communication networks, but they are expensive
to build; sparse spanners represent low-cost alternatives. The weight of the spanner
network is a measure of its sparseness; other sparseness measures include the number
of edges, the maximum degree, and the number of Steiner points. Spanners for com-
plete Euclidean graphs as well as for arbitrary weighted graphs find applications in
robotics, network topology design, distributed systems, design of parallel machines,
and many other areas. Recently spanners found interesting practical applications
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Table 1

Complexity bounds for the algorithms presented in the paper.

Input graph
Approximation

factor
Time complexity Space Section

Weighted graph 1 O(n3m + n4 logn) O(m) 2.1

Weighted graph 1 O(n4) O(n2) 2.1

Euclidean graph 1 + ε O(n3/εd) O(n2) 2.2

Weighted graph 3 O(nm + n2 logn) O(m) 3

Euclidean graph 2 + ε O(nm + n2(logn + 1/ε3d)) O(n2) 4

Euclidean t-spanner 1 + ε O((t7/ε4)d · n2) O(m + (t3/ε2)d n log(tn)) 5

in areas such as metric space searching [29, 30] and broadcasting in communication
networks [2, 14, 25].

Several well-known theoretical results also use the construction of t-spanners as a
building block; for example, Rao and Smith [32] made a breakthrough by showing an
optimal O(n log n)-time approximation scheme for the well-known Euclidean travel-
ing salesperson problem, using t-spanners (or banyans). Similarly, Czumaj and Lingas
[7] showed approximation schemes for minimum-cost multiconnectivity problems in
geometric graphs. The problem of constructing geometric spanners has received con-
siderable attention from a theoretical perspective; see [1, 3, 4, 5, 8, 9, 10, 17, 20, 21,
23, 24, 33, 36], the surveys [12, 16, 34], and the book by Narasimhan and Smid [28].
Note that considerable research has also been done in the construction of spanners for
general graphs; see, for example, the book by Peleg [31] or the recent work by Elkin
and Peleg [11] and Thorup and Zwick [35].

All the existing algorithms construct a network from scratch, but in many ap-
plications the network is already given, and the problem at hand is to extend the
network with an additional edge, or edges, while minimizing the stretch factor of the
resulting graph. The problem was first stated by Narasimhan [26] and, surprisingly,
it had not been studied earlier, to the best of the authors’ knowledge. In this paper
we study the following problem.

Problem. Given a graph G, construct a graph G′ by adding an edge to G such
that the stretch factor of G′ is minimized.

The results presented in this paper are summarized in Table 1. Note that some of
the presented bounds hold for any graph with positive edge weights (weighted graphs),
while some hold only for Euclidean graphs.

Finally, throughout this paper we will use GP to denote the optimal solution,
while tP and t denote the stretch factor of GP and the input graph G, respectively.

2. Three simple algorithms. A naive approach to deciding which edge to
add is to test every possible candidate edge. The number of such edges is obviously

(n(n−1)
2 − m) = O(n2). Testing a candidate edge e entails computing the stretch

factor of the graph G′ = (V,E ∪ {e}), denoted the candidate graph. Therefore we
briefly consider the problem of computing the stretch factor of a given graph with
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positive edge weights. This problem has recently received considerable attention; see,
for example, [13, 22, 27].

2.1. Exact algorithms. We consider the problem of computing an optimal
solution GP . That is, we are given a t-spanner G = (V,E), and the aim is to compute
a tP -spanner GP = (V,E ∪ {e}).

A trivial upper bound is obtained by computing the length of the shortest paths
between every pair of vertices in G′. This can be done by running Dijkstra’s algorithm
—implemented using Fibonacci heaps—n times, resulting in an O(mn+n2 log n)-time
algorithm using linear space. This approach is quite slow, and we would like to be able
to compute the stretch factor more efficiently, but no faster algorithm is known for
any graphs except planar graphs, paths, cycles, stars, and trees [13, 22, 27]. Applying
the stated bound to the problem of computing the exact stretch factor of G′ gives
that GP can be computed in time O(n3(m + n log n)) using linear space.

A small improvement can be obtained by observing that when an edge (u, v) is
about to be tested, we do not have to check all possible shortest paths between two
vertices x, y ∈ V again; it suffices to check whether there is a shorter path using
the edge (u, v). That is, we only have to compute dG(x, u) + w(u, v) + dG(v, y),
dG(x, v) +w(v, u) + dG(u, y), and dG(x, y), which can be done in constant time since
the length of a shortest path between every pair of vertices in G has already been
computed (provided that we store this information). Hence, by first computing all-
pair-shortest paths of G we obtain the following lemma.

Lemma 1. Given a graph G with positive edge weights, an optimal solution GP
can be computed in time O(n4) using O(n2) space.

Proof. Computing the all-pair-shortest path requires cubic time, and all the
distances are stored in an n×n matrix. The O(n2) edges are tested for insertion: for
each candidate edge compute the length of the shortest path between every pair of
points in G, each of which can be done in constant time as described above.

2.2. A (1+ε)-approximation for Euclidean graphs. In the previous section
we showed that an optimal solution can be obtained by testing a quadratic number of
candidate edges. Testing each candidate edge entails O(n2) distance queries, where a
distance query asks for the length of a shortest path in the graph between two query
points. One way to speed up the computation is to compute an approximate stretch
factor. t′ is said to be a β-approximate stretch factor of G if tG ≤ t′ ≤ β · tG, where tG
is the stretch factor of G. The problem of computing an approximate stretch factor
of a geometric graph was considered by Narasimhan and Smid in [27]. They showed
the following fact.

Fact 1 (Narasimhan and Smid [27]). Given a Euclidean graph G and a real value
τ > 0, a (1 + τ)2-approximative stretch factor of G can be computed by performing
O(n/τd) many (1 + γ)-approximate distance queries, where γ is a positive constant
smaller than τ .

The algorithm is almost as stated in the previous section with the exception that
when the stretch factor of the candidate graph is computed we approximate it by only
performing O(n/τd) shortest path queries as stated in Fact 1. As a result the time to
compute the stretch factor decreases from O(n2) to O(n/τd); thus the total running
time decreases from O(n4) to O(n3/τd).

Theorem 2. Given a Euclidean graph G = (V,E) and a real constant ε > 0,
one can in O(n3/εd) time, using O(n2) space, compute a t′-spanner G′ = (V,E∪{e})
such that t′ ≤ (1 + ε) · tP .
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Proof. The time bound follows from the above discussion setting τ =
√

1 + ε− 1,
where τ is as stated in Fact 1. It remains to prove that G′ has stretch factor ((1+ε)·tP).

For each candidate graph G′
i, let t′i be its approximate stretch factor as computed

by the algorithm, and let ti be its exact stretch factor. From Fact 1 it follows that
for each candidate graph G′

i, t′i ≤ (1 + τ)2 · ti. Assume that tP = tj and that
t′ = t′k = mini t

′
i, for some indices j and k. As a result we have

t′ = t′k ≤ t′j ≤ (1 + τ)2 · tj = (1 + τ)2 · tP = (1 + ε) · tP and tP ≤ tk ≤ t′k = t′.

Thus, tP ≤ t′ ≤ (1 + ε) · tP .

3. Adding a bottleneck edge. Consider a graph G = (V,E) with positive
edge weights and stretch factor t. In this section we analyze the following simple
algorithm: Add an edge between a pair of vertices in G with stretch factor t; this
edge is called a bottleneck edge of G.

Let GB be a graph obtained from G by adding a bottleneck edge, and let tB be
the stretch factor of GB. Note that GB can be computed in the same time as the
stretch factor of G can be decided, i.e., in O(mn + n2 log n) time for graphs with
positive edge weights.

a

b

x

y

u

v

a

b

x

y

u

v

GP GB

Fig. 1. (x, y) is the optimal edge added to G, and (u, v) is a bottleneck edge.

Lemma 3. Given a graph G with positive edge weights, it holds that tB < 3tP .

Proof. Recall that t denotes the stretch factor of G and that GP denotes the
optimal graph. Let (x, y) be the edge added to G to obtain GP , and let (u, v) be the
edge added to G to obtain GB; i.e., (u, v) is a bottleneck edge of G, as illustrated in
Figure 1.

First note that if tP > t/3, then the lemma holds and we are done. Thus we may
assume that tP ≤ t/3. The proof of the lemma is done by considering a pair of vertices,
denoted (a, b), that are endpoints of a bottleneck edge of GB. Fix a path δGP (a, b). If
this path does not include the edge (x, y), then dGP (a, b) = dG(a, b) ≥ dGB(a, b) and
we are done. Therefore, we may assume that the path δGP (a, b) includes (x, y). Also,
we will assume without loss of generality that a shortest path in GP from a to b goes
from a to x and then to b via y; otherwise the labels a and b may be switched. Note
that δGP (u, v) must pass through (x, y); otherwise we have tP ≥ dGP (u, v)/|uv| =
dG(u, v)/|uv| = t, which means that t = tP , which contradicts the assumption that
tP ≤ t/3. Furthermore, we assume that a shortest path in GP from u to v goes from
u to x and then to v via y; otherwise the labels u and v may be switched.

As a first step we bound the distance between the endpoints of the bottleneck
edge u and v. This is done by bounding the length of the path in G between x and y
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as follows (see Figure 1):

dG(u, v) ≤ dGP (u, v) − |xy| + dG(x, y)

≤ tP · |uv| − |xy| + t · |xy|

≤ t

3
· |uv| − |xy| + t · |xy|

<
t

3
· |uv| + t · |xy|.

Since dG(u, v) = t · |uv| it follows that

(1) |uv| < 3/2 · |xy|.

Also,

t · |uv| = dG(u, v)

≤ dG(u, a) + dG(a, b) + dG(b, v)

≤ dG(u, a) + t · |ab| + dG(b, v),

which implies that

(2) t · (|uv| − |ab|) ≤ dG(u, a) + dG(b, v),

and

dG(a, u) + 2|xy| + dG(v, b) ≤ dG(a, x) + dG(x, u) + 2|xy| + dG(v, y) + dG(y, b)

= dGP (a, b) + dGP (u, v)

≤ tP(|ab| + |uv|),(3)

which gives that

(4) dG(a, u) + dG(v, b) ≤ tP(|ab| + |uv|) − 2|xy|.

By putting together (2) and (4) we have

t(|uv| − |ab|) ≤ dG(a, u) + dG(v, b)

≤ tP(|ab| + |uv|) − 2|xy|
< tP(|ab| + |uv|),

which implies that

|ab|(tP + t) > |uv|(t− tP)

and

|ab| > t− tP
tP + t

· |uv| >
t− t

3
t
3 + t

· |uv| =
1

2
· |uv|.(5)

Now we are ready to put together the results:

tB · |ab| = dGB(a, b)

≤ dG(a, u) + |uv| + dG(v, b)

< dG(a, u) +
3

2
|xy| + dG(v, b) (from (1))

< dG(a, u) + 2|xy| + dG(v, b)

≤ tP (|ab| + |uv|) (from (3))

< 3tP · |ab| (from (5)).
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This completes the proof of the lemma since tB < 3tP .
We conclude by stating the main result of this section followed by a lower bound

for the bottleneck approach.
Theorem 4. Given a graph G = (V,E) with positive edge weights, a tB-spanner

G′ = (V,E ∪ {e}) with tB < 3tP can be computed in O(mn + n2 log n) time using
O(m) space.

Observation 1. There exists a Euclidean graph G such that (2− ε) · tP ≤ tB for
any 0 < ε < 1.

Proof. Consider the graph G, as in Figure 2(a). More specifically, G is a graph
with ten vertices pi = ((i − 1) mod 5, �(i − 1)/5	 · δ), 1 ≤ i ≤ 10, and nine edges
(p5, p10) and (pj , pj+1) for 1 ≤ j ≤ 4 and 6 ≤ j ≤ 9. For any value δ ≤ 1, (p1, p6) is a
bottleneck edge in G and tB = 4+δ

δ ; see Figure 2(b).
In the case where edge (p2, p7) is added to G, as shown in Figure 2(c), the resulting

graph has stretch factor (2 + δ)/δ. Combining the upper and lower bounds gives
tB
tP

≥ 4+δ
2+δ = (2 − ε), where the last equality follows if we set δ = min{1, 2ε

1−ε}.
Grüne [15] improved the lower bound in Observation 1 to (3 − ε), so the upper

bound stated in Lemma 3 is tight.

4

δ

1 3

(a) (b) (c)

p3 p4 p5

p6 p7 p8

p1

p9 p10

p2

Fig. 2. (a) The input graph G, (b) the graph GB, and (c) the graph GP .

4. A (2+ ε)-approximation for Euclidean graphs. In the remainder of the
paper we will develop approximation algorithms for Euclidean graphs. In this section
we present a fast approximation algorithm which guarantees an approximation factor
of (2+ε). The algorithm is similar to the algorithms presented in section 2 in the sense
that it tests candidate edges. Testing a candidate edge entails computing the stretch
factor of the input graph augmented with the candidate edge. The main difference
is that we will show, in section 4.2, that only a linear number of candidate edges
need to be tested to obtain a solution that gives a (2 + ε)-approximation, instead of
a quadratic number of edges.

Moreover, in section 4.3 we show that the same approximation bound can be
achieved by performing only a linear number of shortest path queries for each candi-
date edge. The candidate edges are selected by using the well-separated pair decom-
position, which we briefly define below.

4.1. Well-separated pair decomposition. Our algorithm uses the well-sepa-
rated pair decomposition defined by Callahan and Kosaraju [6]. We briefly review
this decomposition before we state the algorithms.

Definition 5 (see [6]). Let s > 0 be a real number, and let A and B be two
finite sets of points in Rd. We say that A and B are well separated with respect to s
if there are two disjoint d-dimensional balls CA and CB, having the same radius, such
that (i) CA contains the bounding box R(A) of A, (ii) CB contains the bounding box
R(B) of B, and (iii) the minimum distance between CA and CB is at least s times
the radius of CA.



232 M. FARSHI, P. GIANNOPOULOS, AND J. GUDMUNDSSON

The parameter s will be referred to as the separation constant. The next lemma
follows easily from Definition 5.

Lemma 6 (see [6]). Let A and B be two finite sets of points that are well separated
with respect to s, let x and p be points of A, and let y and q be points of B. Then (i)
|xy| ≤ (1 + 4/s) · |pq|, and (ii) |px| ≤ (2/s) · |pq|.

Definition 7 (see [6]). Let S be a set of n points in Rd, and let s > 0 be a real
number. A well-separated pair decomposition (WSPD) for S with respect to s is a
sequence of pairs of nonempty subsets of S, (A1, B1), . . . , (Am, Bm), such that

1. Ai ∩Bi = ∅ for all i = 1, . . . ,m,
2. for any two distinct points p and q of S, there is exactly one pair (Ai, Bi) in

the sequence, such that (i) p ∈ Ai and q ∈ Bi, or (ii) q ∈ Ai and p ∈ Bi,
3. Ai and Bi are well separated with respect to s for 1 ≤ i ≤ m.

The integer m is called the size of the WSPD.
Callahan and Kosaraju showed that a WSPD of size m = O(sdn) can be computed

in O(sdn + n log n) time.

4.2. Linear number of candidate edges. In this section we show how to
obtain a (2 + ε)-approximation in cubic time. As mentioned above, the algorithm is
similar to the algorithm presented in section 2 in the sense that it tests candidate
edges. Here we will show that only a linear number of candidate edges need to be
tested to obtain a solution that gives a (2 + ε)-approximation.

The approach is straightforward. First the algorithm computes the length of the
shortest path in G between every pair of points in V . The distances are saved in a
matrix M . Next, the WSPD is computed. Note that, in step 5, the candidate edges
will be chosen using the WSPD. In step 6, the function StretchFactor returns
the stretch factor of the graph on V with edge set E ∪ (ai, bi); i.e., in steps 5–8, a
candidate edge is tested by computing the stretch factor of G with the candidate edge
(ai, bi) added to G.

Algorithm ExpandGraph(G, ε)
Input: Euclidean graph G = (V,E) and a real constant ε > 0.
Output: Euclidean graph G′ = (V,E ∪ {e}).
1. M ←All-Pairs-Shortest-Path distance matrix of G.
2. {(Ai, Bi)}ki=1 ←WSPD of the set V with respect to separation constant s = 256

ε2 .
3. t′ ←∞.
4. for i←1 to k
5. Select arbitrary points ai ∈ Ai and bi ∈ Bi.
6. ti←StretchFactor(ai, bi,M).
7. if ti < t′

8. then t′ ← ti and e ← (ai, bi)
9. return G′ = (V,E ∪ {e}).

Next, we bound the running time of the approximation algorithm and then prove
the approximation bound.

Lemma 8. Algorithm ExpandGraph requires O(n3/ε2d) time and O(n2) space.
Proof. The complexity of all steps of the algorithm, except step 6, is straight-

forward to calculate. Recall that step 1 requires O(mn+n2 log n) time and quadratic
space, and step 2 requires O(n/ε2d + n log n) time according to section 4.1. Thus, it
remains to consider step 6 of the algorithm. Note that the number of times step 6 is
executed is O(n/ε2d).
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Let Gi = (V,E ∪ {(ai, bi)}). Since we computed the all-pair-shortest distances
of G and stored the results in a matrix M , it holds that shortest path distance
queries in Gi can be computed in constant time. That is, for a query (p, q) return
min{M [p, q],M [p, ai]+ |aibi|+M [bi, q],M [p, bi]+ |biai|+M [ai, q]}. For each candidate
edge, a quadratic number of queries are performed; thus summing up we get O( n

ε2d
·n2),

as stated in the lemma.
It remains to analyze the quality of the solution obtained from Algorithm

ExpandGraph. We need to compare the graph resulting from adding an optimal
edge to G and the graph G′ resulting from ExpandGraph. Let e = (a, b) be an
optimal edge, and let (Ai, Bi) be the well-separated pair such that a ∈ Ai and b ∈ Bi.
At first sight, it seems that the edge (ai, bi) tested by the algorithm should be a good
candidate. However, the separation constant of our WSPD depends only on ε, which
implies that the shortest path between a and ai, and between b and bi, could be very
long compared to the distance between a and b. In Lemma 9, we show the existence
of a “short” edge e′ that is a good approximation of the optimal edge and then, in
Lemma 10, we show that ExpandGraph computes a good approximation of e′.

Let Δ(p, q) denote the set of point pairs in V such that the point pair (u, v)
belongs to Δ(p, q) if and only if (p, q) ∈ δG∪{(p,q)}(u, v). That is, Δ(p, q) is the set
of point pairs for which a shortest path between them in G ∪ {(p, q)} passes through
(p, q).

Lemma 9. For any given constant 0 < λ ≤ 1, there exists a point pair p, q ∈ V
such that

(I) |uv| ≥ λ
2 |pq| for every pair (u, v) ∈ Δ(p, q), and

(II) the stretch factor of G ∪ {(p, q)} is bounded by (2 + λ) · tP .
Proof. The proof is done in two steps. First a point pair pj , qj ∈ V is selected

that fulfills (I). Then we prove that this pair will also fulfill (II), i.e., that the stretch
factor of G ∪ {(pj , qj)} is bounded by (2 + λ) · tP .

Consider an optimal solution G1 = G ∪ {(p1, q1)}. If (p1, q1) fulfills (I), then we
are done; i.e., we have found the point pair (p = p1, q = q1) we are searching for.
Otherwise, let e2 = (p2, q2) denote the closest pair in Δ(p1, q1). Since there exists a
pair (u, v) ∈ Δ(p1, q1) such that |uv| < λ

2 · |p1q1| and since (p2, q2) is the closest pair

in Δ(p1, q1) we have |p2q2| < λ
2 · |p1q1|, as illustrated in Figure 3(a).

If (p2, q2) fulfills (I), then (p = p2, q = q2) and we are done. Otherwise, let
e3 = (p3, q3) denote the closest pair in Δ(p2, q2). We continue this procedure until we
find a point pair (pj , qj) that satisfies (I). Since, for each i > 0, |pi+1qi+1| < λ

2 · |piqi|,
the process must terminate.

Now for each 1 ≤ i ≤ j, let Gi = G ∪ {(pi, qi)} where (pi, qi) are the point pairs
constructed above. We claim that Gj has stretch factor at most (2 + λ) · tP . Before
we continue we need to prove

dGi(pi+1, qi+1) ≤ tP · |pi+1qi+1|.(6)

The inequality is obviously true for i = 1. For i > 1 it holds that |pi+1qi+1| < |p2q2|
which implies that (pi+1, qi+1) /∈ Δ(p1, q1) since (p2, q2) is the closest pair in Δ(p1, q1).
This, in turn, implies that dG(pi+1, qi+1) = dG1(pi+1, qi+1) ≤ tP · |pi+1, qi+1|. Since G
is a subgraph of Gi, the length of the shortest path in Gi between pi+1 and qi+1 must
be bounded by the length of the shortest path in G between pi+1 and qi+1, which is
bounded by tP · |pi+1qi+1|. Thus, inequality (6) holds.

We continue with the second part of the proof. If (u, v) /∈ Δ(p1, q1), then we
are done since dGj (u, v) ≤ dG(u, v) = dG1(u, v). Otherwise, if (u, v) ∈ Δ(p1, q1), the
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Fig. 3. (a) Illustrating the proof of Lemma 9. (b) Illustrating the proof of Lemma 10.

following holds (see Figure 3(a) for an illustration):

dGj (u, v) ≤ dG1(u, v) − |p1q1| + (dG1
(p2, q2) − |p1q1|) + · · ·

+ (dGj−1(pj , qj) − |pj−1qj−1|) + |pjqj |
< tP · |uv| − |p1q1| + (tP · |p2q2| − |p1q1|) + · · ·
+ (tP · |pjqj | − |pj−1qj−1|) + |pjqj | (cf. (6))

= tP · |uv| − 2|p1q1| + ((tP − 1) · |p2q2|) + · · · + ((tP − 1) · |pjqj |) + 2|pjqj |
< tP · |uv| + (tP − 1)(|p2q2| + · · · + |pjqj |) (since |pjqj | < |p1q1|)

< tP · |uv| + tP ·
j∑

i=2

(λ
2

)i−2

|p2q2| (since |pi+1qi+1| ≤ (λ/2) · |piqi|)

≤ tP · |uv| + tP · |uv| ·
j−2∑
i=0

(λ
2

)i

(since |p2q2| ≤ |uv|)

= 2tP · |uv| + tP · |uv| ·
j−2∑
i=1

(λ
2

)i

≤ 2tP · |uv| + tP · |uv| · λ ·
j−2∑
i=1

1

2i
(since λ ≤ 1)

< (2 + λ) · tP · |uv|.

Thus, tj < (2 + λ) · tP , which concludes the lemma.
In the previous lemma we showed the existence of a “short” candidate edge (p, q)

for which the resulting graph has small stretch factor. Note that Algorithm Expand-

Graph might not test (p, q). However, in the following lemma it will be shown that
Algorithm ExpandGraph will test an edge (a, b) that is almost as good as (p, q).

Lemma 10. For any given constant 0 < ε ≤ 1 it holds that the graph G′ returned
by Algorithm ExpandGraph has stretch factor at most (2 + ε) · tP .

Proof. According to Lemma 9, there exists an edge (p, q) such that for every pair
(u, v) ∈ Δ(p, q) it holds that |uv| ≥ λ

2 |pq|, and the stretch factor tH of H = G∪{(p, q)}
is bounded by (2+λ) · tP . Let (Ai, Bi) be the well-separated pair computed in step 2
of the algorithm such that p ∈ Ai and q ∈ Bi. According to Definition 7 such a
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well-separated pair must exist. Next, consider the candidate edge (ai, bi) tested by
the algorithm, such that ai, p ∈ Ai and bi, q ∈ Bi. For simplicity of writing we will
use a and b to denote ai and bi, respectively.

Our claim is that the stretch factor t′ of G′ = G∪{(a, b)} is bounded by (1+ε/4) ·
tH . Thus, setting λ = ε/4 would then prove the lemma since (2+ε/4)(1+ε/4) < (2+ε)
for ε ≤ 1.

Now we are ready to prove the claim. To compute the stretch factor of G′ the
algorithm performs a shortest path distance query between each pair of points in V .
If it holds that (x, y) /∈ Δ(p, q) for every pair of points x, y ∈ V , then the claim is
obviously true; thus we have to consider only the pairs x, y for which it holds that
(x, y) ∈ Δ(p, q); see Figure 3(b). Now the claim is

dG(a, p) = dH(a, p) and dG(b, q) = dH(b, q).(7)

Lemma 9 states that if (x′, y′) ∈ Δ(p, q), then |x′y′| ≥ ε
8 |pq|. But by Lemma 6 the

distances |ap| and |bq| are less than 2
s |pq| = ε2

128 |pq|, which is less than ε
8 |pq| since

ε ≤ 1. As a consequence, (a, p) /∈ Δ(p, q) and (b, q) /∈ Δ(p, q); thus (p, q) /∈ δH(a, p)
and (p, q) /∈ δH(b, q). Hence, claim (7) holds, which we will need below.

Next, we consider the length of the path in G′ between x and y as illustrated in
Figure 3(b). Recall that x and y are two arbitrary points of V for which it holds that
(x, y) ∈ Δ(p, q). Without loss of generality we have

dG′(x, y) ≤ dG(x, p) + dG(p, a) + |ab| + dG(b, q) + dG(q, y)

≤ dG(x, p) + dH(p, a) + |ab| + dH(b, q) + dG(q, y) (cf. (7))

≤ dG(x, p) + |ab| + dG(q, y) + tH · (|pa| + |bq|)

≤ dG(x, p) + (1 + 4/s) · |pq| + dG(q, y) +
4tH
s

· |pq| (Lemma 6)

≤ dH(x, y) +
8tH
s

· |pq|

≤ dH(x, y) +
64tH
εs

· |xy| (Lemma 9)

= dH(x, y) +
ε

4
· tH · |xy|.

The stretch factor of the path in G′ between x and y is

dG′(x, y)

|xy| ≤ dH(x, y)

|xy| +
ε
4 tH |xy|
|xy| ≤

(
1 +

ε

4

)
· tH .

Finally, according to Lemma 9 and the fact that λ = ε/4, it holds that tH ≤ (2 +
ε/4) · tP . This completes the lemma since (2 + ε/4)(1 + ε/4) < (2 + ε).

We may now conclude this section with the following theorem.
Theorem 11. Given a Euclidean graph G = (V,E) in Rd one can in time

O(n3/ε2d), using O(n2) space, compute a t′-spanner G′ = (V,E ∪ {e}), where t′ ≤
(2 + ε) · tP .

4.3. Speeding up Algorithm EXPANDGRAPH. In the previous section we
showed that a (2+ε)-approximate solution can be obtained by testing a linear number
of candidate edges. Testing each candidate edge entails O(n2) shortest path queries.
One way to speed up the computation is to compute an approximate stretch factor.
As in section 2.2 we will use Fact 1 by Narasimhan and Smid [27].
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Their idea is to compute a WSPD of size O(sdn) with respect to s = 4(1 + τ)/τ ,
and then for each well-separated pair (Ai, Bi) select an arbitrary pair ai ∈ Ai and
bi ∈ Bi. They prove that these are the only pairs for which the (1 + τ)2-approximate
stretch factor needs to be computed.

We will use their idea to speed up step 6 of Expandgraph from O(n2) to O(n/εd);
i.e., we check a linear number of pairs in order to compute an approximate stretch
factor using Fact 1. However, we will not use the fact that only approximate distance
queries are needed; instead the exact shortest distance will be computed, and thus γ =
0 where γ is as stated in Fact 1. There will be two main changes in the ExpandGraph

algorithm; two WSPDs will be computed, and the computation of the stretch factor
will be different. Instead of computing the exact stretch factor of G with the candidate
edge (ai, bi) added to G, we compute the approximate stretch factor. This is done by
a call to ApproximateStretchFactor, or ASF for short, with parameters (ai, bi),
M , and S. The ASF algorithm is stated in more detail below. Note that the number
of point pairs in S is bounded by O(n/εd).

Algorithm ExpandGraph2(G, ε)
Input: Euclidean graph G = (V,E) and a real constant ε > 0.
Output: Euclidean graph G′ = (V,E ∪ {e}).
1. M ←All-Pairs-Shortest-Path distance matrix of G.
2. {(Ai, Bi)}ki=1 ←WSPD of the set V with respect to s = 256/ε2.
3. {(Cj , Dj)}�j=1 ←WSPD of the set V with respect to s′ = 4(1 + ε)/ε.
4. for j ←1 to �
5. Select an arbitrary point cj of Cj and an arbitrary point dj of Dj .
6. S = {(c1, d1), . . . , (c�, d�)}.
7. t′ ←∞.
8. for i←1 to k
9. Select an arbitrary point ai of Ai and an arbitrary point bi of Bi.
10. ti←ASF((ai, bi),M,S).
11. if ti < t′

12. then t′ ← ti and e ← (ai, bi)
13. return G′ = (V,E ∪ {e}).

For completeness we also state the ASF algorithm.

Algorithm ASF((a, b),M,S)

Input: Vertex pair (a, b) ∈ V 2, distance matrix M , and a set of point pairs S.
Output: A real value D.
1. D ←1
2. for each point pair (cj , dj) in S
3. dist ←min{M [cj , dj ], M [cj , a]+ |ab|+M [b, dj ], M [cj , b]+ |ba|+M [a, dj ]}
4. D ←max{D, dist/|cjdj |}
5. return D.

Theorem 12. Given a Euclidean graph G = (V,E) and a real constant ε > 0,
one can in O(nm+ n2(log n+ 1/ε3d)) time, using O(n2) space, compute a t′-spanner
G′ = (V,E ∪ {e}) such that t′ ≤ (2 + ε) · tP .

Proof. The complexity of all steps of the algorithm, except step 10, is as in
Lemma 8. Steps 1–7 require O(mn + n2 log n + n/ε2d) time. It remains to consider
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step 10 of the algorithm. Note that the number of times step 10 is executed is
O(n/ε2d). Procedure ASF performs O(n/εd) shortest path queries, instead of O(n2),
thus the total time needed by step 10 is O( n

ε2d
· n
εd

). Summing up the running times
gives the stated time complexity.

In Lemma 10 it was proven that the solution returned by algorithm Expand-

Graph had a stretch factor that was at most a factor (2 + ε) worse than the stretch
factor of an optimal solution. Since the modified algorithm does not compute the ex-
act stretch factor of a candidate graph, but instead computes a (1 + ε)2-approximate
stretch factor it is not hard to verify that the same arguments as in Lemma 10 can
be applied to prove that the algorithm ExpandGraph2 returns a graph with stretch
factor at most (1 + ε)2 · (2 + ε) · tP . Setting ε = min{ε/10, 1} concludes the proof of
the theorem.

5. A special case: G has constant stretch factor. In the special case when
the stretch factor of a graph G is known to be constant there are well-known tools
that we can use to decrease both the time complexity and the space complexity of the
algorithms and improve the approximation factor.

Fact 2 (see [18]). Let V be a set of n points in Rd, let t > 1 and 0 < ε ≤ 1 be

real numbers, and let G = (V,E) be a t-spanner for V . In O(m+ nt5d

ε2d
(log n+(t/ε)d))

time, we can preprocess G into a data structure of size O( t3d

ε2d
n log tn) such that for

any two distinct points p and q in V , a (1 + ε)-approximation to the shortest path
distance between p and q in G can be computed in time O

(
(t5/ε2)d

)
.

The query structure in Fact 2 is denoted M ′ and is constructed by algorithm
QueryStructure. We have to use a modified version of ASF, denoted ASF

′, that
takes the query structure M ′ as input instead of the matrix M . The shortest path
distance queries using M in ASF are replaced in ASF

′ by performing approximate
shortest path distance queries using M ′.

Next we state the main algorithm. Recall that the parameter t is a constant
and an upper bound on the stretch factor of the input graph G. Also note that this
algorithm only needs one WSPD.

Algorithm ExpandGraph3(G, t, ε)
Input: Euclidean t-spanner G = (V,E) and two real constants t > 1 and ε > 0.
Output: Euclidean graph G′ = (V,E ∪ {e}).
1. M ′ ←QueryStructure(G, t, ε) using Fact 2.
2. {(Ai, Bi)}ki=1 ←WSPD of V with respect to the separation constant s = 8(t +

1)/ε.
3. for j ←1 to k
4. Select an arbitrary point aj of Aj and an arbitrary point bj of Bj .
5. S = {(a1, b1), . . . , (ak, bk)}.
6. tC ←∞.
7. for i ←1 to k
8. ti←ASF

′((ai, bi),M
′,S).

9. if ti < tC
10. then tC ← ti and eC ← (ai, bi)
11. return G′ = (V,E ∪ {eC}).

Lemma 13. Algorithm ExpandGraph3 runs in O((t7/ε4)d · n2) time and uses
O((t3/ε2)d n log(tn)) space.
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Proof. The time complexity of steps 1–3 is dominated by step 1; thus O(m +
n(t5/ε2)d(log n+(t/ε)d)) time. Step 8 is executed O((t/ε)dn) times, and each iteration
requires O((t/ε)dn · (t5d/ε2d)) time according to Facts 1 and 2. Summing up the time
bounds gives the time bound stated in the algorithm.

The space bound follows since the approximate distance oracle stated in Fact 2
uses only O((t3/ε2)d n log tn) space instead of the quadratic space needed earlier.

Now, we show that this algorithm computes a (1+ε)-approximation of the optimal
solution. Note that in ExpandGraph3 the separation constant depends on both ε
and t, which is the main difference compared to the previous algorithms. This allows
us to improve the approximation factor.

Lemma 14. Let G = (V,E) be a Euclidean graph with constant stretch factor t
and a positive real constant ε, and let {(Ai, Bi)}ki=1 be a WSPD of V with respect to

s = 8(t+1)
ε . For every pair (Ai, Bi) and any elements a1, a2 ∈ Ai and b1, b2 ∈ Bi, let

G1 = (V,E ∪ {(a1, b1)}) and G2 = (V,E ∪ {(a2, b2)}), and let t1 and t2 denote the
stretch factor of G1 and G2, respectively. It holds that t1 ≤ (1 + ε)t2.

Proof. It suffices to prove that for every pair of points (u, v) ∈ Δ(a2, b2) there
exists a path in G1 of length at most (1+ ε) · dG2(u, v). Without loss of generality we
may assume that the shortest path between u and v in G2 goes from u to a2 and to
v via b2. We have

dG1
(u, v) ≤ dG(u, a2) + dG(a2, a1) + |a1b1| + dG(b1, b2) + dG(b2, v)

≤ dG(u, a2) + t|a1a2| + |a1b1| + t|b1b2| + dG(b2, v)

≤ dG(u, a2) +
4t

s
|a2b2| + (1 + 4/s) · |a2b2| + dG(b2, v)

< dG(u, a2) + |a2b2| + dG(b2, v) +
8t

s
|a2b2|

= dG2
(u, v) +

tε

t + 1
|a2b2|

< (1 + ε) · dG2
(u, v).

In the second inequality we used Lemma 6, in the fifth inequality we used the fact
that s = 8(t + 1)/ε, and in the final step we used that dG2(u, v) ≥ |a2b2| since
(u, v) ∈ Δ(a2, b2). The lemma follows.

Lemma 15. Algorithm ExpandGraph3 returns a graph with stretch factor at
most (1 + ε)3 · tP .

Proof. Assume that tP is the stretch factor of an optimal solution G ∪ {(p, q)},
and let G′ with stretch factor tC be the output of the above algorithm.

We will use the same notation as in the algorithm. For each i let t∗i be the stretch
factor of Gi = G ∪ {(ai, bi)}. According to Fact 1 we have t∗i ≤ ti ≤ (1 + ε)2 · t∗i for
each i.

Let (Aj , Bj) be the pair in the WSPD such that p ∈ Aj and q ∈ Bj , or p ∈ Bj

and q ∈ Aj . From Lemma 14 it follows that t∗j ≤ (1 + ε) · tP . As a result it follows

that tC ≤ tj ≤ (1 + ε)2 · t∗j ≤ (1 + ε)3 · tP . Therefore tP ≤ tC ≤ (1 + ε)3 · tP , which
completes the lemma.

The following theorem follows by setting ε = min{ϕ/15, 1} and combining Lem-
mas 13 and 15.

Theorem 16. Let V be a set of n points in Rd, let t > 1 and ϕ > 0 be real
numbers, and let G = (V,E) be a t-spanner of V . One can in O((t7/ϕ4)d · n2) time,
using O((t3/ϕ)d n log tn) space, compute a t′-spanner G′ = (V,E ∪ {e}) such that
t′ ≤ (1 + ϕ) · tP .
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6. Concluding remarks. We considered the problem of adding an edge to a
Euclidean graph such that the stretch factor of the resulting graph is minimized and
gave several algorithms. Our main result is a (2 + ε)-approximation algorithm with
running time O(nm+n2(log n+1/ε3d)) using O(n2) space. Several problems remain
open:

1. Is there an exact algorithm with running time o(n4) using linear space?
2. Can we achieve a (1 + ε)-approximation within the same time bound as in

Theorem 12?
3. A natural extension is to allow more than one edge to be added. Can we

generalize our results to this case?
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Abstract. Perhaps the strongest notion of truth-revealing in a cost sharing mechanism is group
strategyproofness. However, matters are not so clear-cut on fairness, and many different, sometimes
even conflicting, notions of fairness have been proposed which have relevance in different situations.
We present a large class of group strategyproof cost sharing methods, for submodular cost functions,
satisfying a wide range of fairness criteria, thereby allowing the service provider to choose a method
that best satisfies the notion of fairness that is most relevant to its application. Our class includes
the Dutta–Ray egalitarian method as a special case. It also includes a new cost sharing method,
which we call the opportunity egalitarian method.
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1. Introduction. Distributing the cost of a shared resource in a fair and truth-
revealing manner is a central problem in cooperative game theory. Perhaps the
strongest notion of truth-revealing is group strategyproofness, under which the dom-
inant strategy of users is to reveal their true utility, even if they collude. However,
matters are not so clear-cut on fairness—many different, sometimes conflicting, no-
tions have been proposed which have relevance in different situations. Let us clarify
that we are not necessarily postulating a service provider who is inherently “fair,” but
that in the long run, it is in the best interest of the service provider to subscribe to
some form of fairness in choosing its cost allocations. We will assume that the cost
function is submodular, a natural economies-of-scale condition. Equivalently, these
results also apply to the situation of profit sharing under a convex transferable utility
game; e.g., see [23]. In this paper, we will be concerned with fully budget-balanced
methods; i.e., the total amount accrued from the users should be exactly equal to the
cost of the shared resource.

As shown by Moulin [23], a cross-monotone cost sharing method for the given
cost function gives rise to a group strategyproof mechanism, and for submodular cost
functions, essentially the converse holds as well. Informally, a cost sharing method
is cross-monotone, also called population monotone, if the cost share of any user can
only decrease if a superset is being served.

Two well-known cross-monotone cost sharing methods for submodular cost func-
tions are the Shapley value and the egalitarian method of Dutta and Ray [6] (the
former requires that the cost function be nondecreasing as well; i.e., the cost of serv-
ing a set should not be larger than the cost of serving any of its supersets). Both these
methods have been extensively studied; for the latter, see [12, 11, 13, 16, 21, 3, 2, 5, 7].
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These two methods satisfy different fairness criteria. The Shapley value charges higher
amounts from users who are more expensive to serve. The egalitarian method at-
tempts to charge equal amounts from all users subject to the coalition participation
constraint that the method lies in the core of the game; i.e., no subset is charged more
than its stand-alone cost (thereby precluding the possibility of its seceding).

Consider the following situation in which neither of these criteria appears to be
fair. Suppose that two users, Fred Smith and Gill Bates, are proximally located so that
they are equally expensive to serve. For concreteness, assume that the service provider
is transmitting valuable financial data and needs to recover a cost of $2000, regardless
of whether it serves one or both users. Fred Smith and Gill Bates derive widely
different utilities on receiving this data—the former is a man of modest means, and
the latter is a multimillionaire. Hence, they are also willing to pay different amounts
for this data. In this situation, the Shapley value as well as the egalitarian method
will assign cost shares of $1000 each for the service, an amount that is not acceptable
to Fred Smith. However, Gill Bates considers this data useful for wisely managing
his vast acquisitions and ends up paying the entire $2000 for the service. If, instead,
the cost sharing method were to take into consideration the relative paying powers of
the two users and charge differentially, it may be able to find an outcome that Pareto
dominates the previous outcome. For instance, if it charges Fred Smith $100 and Gill
Bates $1900, both accept the service and both are better off. In addition, the service
provider is also better off since it has a larger and more satisfied pool of customers.

This form of differential pricing, sometimes also called price discrimination, is
widely resorted to and is in fact crucial to the survival of many industries [25, 27, 28,
29]. For instance, it provides mechanisms to the airline industry to charge higher fares
from business travelers, who can afford to pay higher fares, than from casual travelers.
Clearly, the fate of the airline industry, which has been on the brink of bankruptcy
numerous times, would be dire without such a mechanism. Another common example
is differential subscription rates for journals charged from students, professionals, and
institutions.

Can the service provider resort to differential pricing and still ensure that the
mechanism is strategyproof or, better, group strategyproof? In this paper, we pro-
vide a formal setting to accomplish this. We present a large class of group strategy-
proof mechanisms for submodular cost functions, satisfying a wide range of fairness
criteria—hence the name “equitable.” Our class includes the Dutta–Ray egalitarian
method as a special case. It also includes a new cost sharing method, which we call
the opportunity egalitarian method. Assuming that individual utilities are drawn from
probability distributions which are known to the service provider, this method finds
cost shares that attempt to equalize the users’ probabilities of accepting the service,
subject to core constraints. The above-stated examples of differential cost shares can
be viewed as approximations of the opportunity egalitarian method.

Each equitable cost sharing method is parameterized by n equalizing functions
which encode the fairness criterion chosen. The method ensures that w.r.t. the cho-
sen criterion, the cost shares satisfy min-max as well as max-min fairness; i.e., no
one underpays, and no one overpays. Thus, in the case of the egalitarian method
(opportunity egalitarian method), among all cost allocations in the core, the chosen
allocation minimizes the maximum cost shares (probability of accepting service) as
well as maximizes the minimum cost shares (for fairness). Precise definitions appear in
sections 3, 5.1, and 6. Max-min fairness has been used in the networking community
for tackling issues of bandwidth allocation [4, 15] and has also been algorithmically
studied in the context of routing in networks [22, 1, 20]. Approximate versions of this
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notion have also been studied [9].

Our algorithms are inspired by the primal-dual schema from the field of approx-
imation algorithms (see [30]). In the latter setting, it is natural to view the dual
program as “paying” for the primal, and the algorithm as progressive bidding to
get access to a shared resource (this viewpoint is particularly clear in the primal-
dual algorithm presented in [18]). The equalizing functions determine the rates at
which individual users increase their “bids.” Each iteration of our algorithm runs in
polynomial time. We utilize recently discovered polynomial time algorithms for the
minimization of a submodular function [14, 26]. The precise number of iterations
depends upon the accuracy needed.

We have recently found some rather unexpected applications of the results of
this paper. The cross-monotonic cost sharing method developed in this paper for
submodular cost functions has been used for proving competition monotonicity for
submodular utility allocation markets in [19]. Our max-min and min-max fairness
results for these cost sharing methods have also been used in [19] for establishing that
the equilibrium allocations for submodular utility allocation markets are max-min
fair.

It is interesting to note that independently, though somewhat preceding our work,
Hokari [11] generalized Dutta–Ray solutions to give a class of cost sharing methods
that turns out to be identical to ours. He calls his methods monotone path cost allo-
cations. Hokari’s formalization and point of view are quite different from ours—the
definitions of the cost sharing methods are strikingly different,1 and so are the algo-
rithms for computing them (Hokari does not address issues of algorithmic efficiency).
We believe that this class deserves further study—in the past, notions derived from
diverse considerations have turned out to be particularly robust and canonical.

Mutuswami [24] proved the following interesting fact about the Dutta–Ray egal-
itarian method. If the utilities of individual users are independently and identically
distributed (i.i.d.) (and the distribution satisfies the monotone hazard rate condition;
see section 7 for a formal definition), then for every set S of users, the egalitarian
method maximizes the probability that all members of S accept the service, among
all cost sharing methods in the core. We generalize this result by removing the re-
striction that all utilities come from the same distribution. We show that for each
choice of distributions from which the utilities are picked (provided they satisfy the
strict monotone hazard rate condition), there is an equitable cost sharing method
that maximizes, for every set S ⊆ U , the probability that all members of S accept
the service, among all cost sharing methods for S in the core.

2. Basic definitions. Let U = {1, . . . , n} denote the set of users and cost :
2U → R+ denote the function that gives the cost of serving any subset of the users.
We will assume that this function is submodular ; i.e.,

∀S, T ⊆ U, cost(S) + cost(T ) ≥ cost(S ∪ T ) + cost(S ∩ T ).

Following is an equivalent definition that makes it clear that such cost functions satisfy
a natural economies-of-scale condition. The marginal cost of including a new user can
only be smaller if a superset is being served:

∀S ⊂ T ⊂ U, i /∈ T, cost(S + i) − cost(S) ≥ cost(T + i) − cost(T ).

1See section 8 for an implication that is easier to derive from our formulation.
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We consider the following game. The service provider picks a mechanism for
deciding the set S ⊆ U of users that get the service and the individual cost shares
of users in S so as to retrieve the cost of serving them, cost(S). It obtains from the
users their utilities for receiving the service. Thus each user’s strategy is simply the
utility he reports. The service provider is not allowed to charge a user more than his
reported utility (otherwise, the user will refuse the service).

We will say that the service provider’s mechanism is strategyproof if the dominant
strategy of each user is to report his true utility. It is group strategyproof if the above
holds despite collusions among users. Let us make this precise. Consider a coalition
C of users. Let u and u′ be two vectors of bids (we will think of the former as agents’
true values and u′ as strategically chosen bids). Assume that uj = u′

j for all j /∈ C.
Let (q,x) and (q′,x′) denote the users served and costs at u and u′, respectively.
Now, group strategyproofness requires that if the inequality

u′
iqi − xi ≥ u′

iq
′
i − x′

i

holds for all i ∈ C, then it must hold with equality for all i ∈ C as well; i.e., if no
member of C is made worse off by misreporting of their utility values, then no member
of C is made better off either. Moulin [23] showed that it is sufficient for the service
provider to pick a cross-monotone cost sharing method in order to obtain a group
strategyproof mechanism. His procedure for obtaining such a mechanism from the
method is recapitulated below.

A cost sharing method, ξ, specifies how to distribute, for any set S ⊆ U , cost(S)
among the users in S. It satisfies the following:

1. Users will not be paid for receiving service; i.e.,

∀S ⊆ U, i ∈ S, ξ(S, i) ≥ 0.

2. Budget balance

∀S ⊆ U,
∑
i∈S

ξ(S, i) = cost(S).

3. Users not being served will not be charged; i.e.,

∀S ⊆ U, i /∈ S, ξ(S, i) = 0.

For any set S ⊆ U , the slice of ξ at S, i.e., ξ(S, ·), will be denoted by ξS . Thus,
ξS : S → R+ specifies the cost shares of users in S, assuming that S is the set being
served. We will say that ξ is cross-monotonic if it satisfies the following economies of
scale condition:

∀S ⊂ T ⊆ U, ∀i ∈ S, ξS(i) ≥ ξT (i);

i.e., the cost share of a user can only be smaller if a superset is being served.
Let ξ be a cross-monotone cost sharing method. Consider the following mech-

anism. Initialize S ← U . If for each user i ∈ S, his cost share ξ(S, i) is at most
his utility, HALT. Else, drop users whose utilities are smaller than their cost shares,
update S, and repeat.

Theorem 1 (Moulin [23]). If ξ is a cross-monotone cost sharing method, then
the mechanism specified above is group strategyproof.

A cost allocation for set S ⊆ U , α : S → R+ is said to satisfy the coalition
participation constraint if it satisfies the following:
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1. Budget balance, i.e.,

∑
i∈S

α(i) = cost(S).

2. No subset S′ ⊂ S is charged more than the stand-alone cost of serving S′;
i.e.,

∀S′ ⊂ S,
∑
i∈S′

α(i) ≤ cost(S′).

The core is usually defined as the set of all cost allocations for U (i.e., the grand
coalition) satisfying the coalition participation constraint. In this paper, we will
define the core to consist of all cost allocations satisfying the coalition participation
constraint for all sets S ⊆ U , rather than only U . We will say that a cost sharing
method ξ is in the core if for all S ⊆ U , ξS is in the core.

3. Equitable cost sharing methods. Let q and r be n-dimensional vectors
with nonnegative coordinates. We will denote by qINC the vector obtained by sorting
the components of q in increasing order. Thus qINC(i) ≤ qINC(i + 1) for 1 ≤ i ≤
n − 1. Define a partial order as follows: say that q max-min dominates r if qINC is
lexicographically larger than rINC , i.e., if there is an i such that qINC(i) > rINC(i)
and qINC(j) = rINC(j) for j < i. Clearly, qINC = rINC may hold even though
q �= r.

An equitable cost sharing method is parameterized by n strictly increasing, con-
tinuous, and unbounded functions from R+ to R+, f1, . . . , fn satisfying further that
fi(0) = 0. These will be called equalizing functions. The equitable cost sharing method
corresponding to this set of equalizing functions, say ξ, is defined as follows. We will
specify ξS for each set S ⊆ U . Without loss of generality assume that S consists of
users 1, . . . , s. Let α be a cost allocation for S that lies in the core. Let t(α) denote
the s-dimensional vector whose ith component is f−1

i (α(i)). We will show in Theo-
rem 6 that there is a unique cost allocation for set S in the core, say β, such that t(β)
max-min dominates t(α) for all other allocations, α, for S in the core. We will define
ξS = β.

If all n equalizing functions are picked to be the identity function, the resulting
cost sharing method will be the egalitarian method of Dutta and Ray (strictly speak-
ing, this is not the way they defined their method; see section 5.2). The egalitarian
method maximizes the minimum cost shares, i.e., ensures that no one underpays,
subject to core constraints—in that sense, it tries to make the cost shares of individ-
ual users as equal as possible. Our generalization optimizes the max-min objective
function relative to the equalizing functions f1, . . . , fn, which encode the particular
fairness criterion chosen. As shown in Theorem 10, equitable methods (including the
egalitarian method) optimize the min-max objective as well, ensuring that no one
overpays.

4. The algorithm. We now present a primal–dual-type algorithm for obtaining
ξS for any set S. First we give some definitions. Let x : S → R+ be a function
assigning costs to users in S. Set A ⊆ S will be said to be tight if

∑
i∈A xi = cost(A).

It will be said to be overtight if
∑

i∈A xi > cost(A). We will say that x is feasible
if no subset of S is overtight. Note that we have not imposed the condition that∑

i∈S xi = cost(S). The algorithm will utilize the following properties.
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Lemma 2. Let cost be submodular and x be feasible for S. If A,B ⊆ S are both
tight, then A ∪B is also tight.

Proof. By submodularity,

cost(A ∪B) ≤ cost(A) + cost(B) − cost(A ∩B).

Since x is feasible for S,

∑
i∈(A∩B)

xi ≤ cost(A ∩B).

Combining this with the fact that A and B are both tight, we get

cost(A ∪B) ≤
∑
i∈A

xi +
∑
i∈B

xi −
∑

i∈(A∩B)

xi =
∑

i∈(A∪B)

xi.

Therefore, A ∪B must also be tight.
Corollary 3. If cost is submodular and x is feasible for S, then there is a

unique maximal tight set. It is given by {i ∈ S | i belongs to some tight set}.
For each set S ⊆ U , the algorithm below computes a cost allocation for S.
Algorithm 1. We will associate a notion of time with our algorithm. Initially,

the time t is set to zero. As the algorithm proceeds, we raise cost shares of users in
S in proportion to their respective functions fi; thus, at time t, the cost share of a
user i is fi(t). Whenever a set A ⊆ S goes tight, the cost shares of all users in A are
frozen at the current value. The cost shares of the remaining users keep increasing
with time as before. The algorithm terminates when the cost shares of all users are
frozen. For each user i ∈ S, define ξS(i) to be i’s cost share at termination.

By Corollary 3, at any time, there is a unique maximal tight set. This tight set
can be found in polynomial time using a submodular function minimization algorithm
[14, 26] as follows. The difference of a submodular function and a modular function is
a submodular function. Hence, the following function, defined on 2S , is submodular:

cost′(A) = cost(A) −
∑
i∈A

fi(ti)

for A ⊆ S, where ti’s are fixed for each element i ∈ S. For an element i that is already
frozen, fix ti to be the time at which i froze. For an element i that is not yet frozen,
let ti = t. Now we will do a binary search on t to find the smallest time at which
there is a set A ⊆ S such that cost′(A) is a small negative number. At that value of
time, the set whose cost′ is minimum will clearly be the maximal set to go tight next.

Remark 4. Observe that t(ξS) is precisely the vector of times at which individual
elements went tight (t is defined at the beginning of section 3).

Lemma 5. For each set S ⊆ U , the cost allocation given by ξS lies in the core.
Proof. Clearly, ξS is feasible for S and no subset of S is overtight. Furthermore,

by Corollary 3, at termination, set S must be tight.
Theorem 6. For any set S ⊆ U , the cost allocation, ξS, found by Algorithm 1

is such that t(ξS) max-min dominates t(α) for all other cost allocations, α, for S in
the core.

Proof. Let α be an allocation for set S that lies in the core. Suppose that t(ξS)
does not max-min dominate t(α). Then we will show that ξS and α are in fact the
same allocation, hence proving the theorem.
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Let A1 ⊂ A2 ⊂ · · · ⊂ S be the sequence of maximal sets that go tight when the
algorithm is run on set S. We will show by induction on i that all users in Ai must
have the same cost allocation in α and ξS . Observe that all elements in Ai − Ai−1

go tight at the same time, and hence the components corresponding to them in t(ξS)
are identical.

Clearly,

∑
i∈A1

α(i) ≤
∑
i∈A1

ξS(i) = cost(A1).

If this inequality is strict, there exists i ∈ A1 such that α(i) < ξS(i). Since users
i ∈ A1 give rise to the smallest entries of tINC(ξS), t(ξS) max-min dominates t(α),
leading to a contradiction. Therefore, this inequality must hold with equality. If for
some user i ∈ A1, α(i) > ξS(i), then for some other user j ∈ A1, α(j) < ξS(j), and
again t(ξS) max-min dominates t(α), leading to a contradiction. Therefore,

∀i ∈ A1, α(i) = ξS(i).

The idea for the induction step is the same as for the basis.
Remark 7. Observe that the precise manner of “dual” increase in the algorithm

was essential for proving Theorem 6.
For a definition of equitable cost sharing method, see the beginning of section 3.
Corollary 8. The cost sharing method, ξ, found by Algorithm 1 is the equitable

cost sharing method for equalizing functions f1, . . . , fn.
Theorem 9. The cost sharing method ξ is cross-monotonic.
Proof. Suppose that S ⊂ T ⊆ U . Let us call the two runs of the algorithm S-run

and T -run, respectively. It suffices to prove that at each time t, the tight set in the
T -run is a superset of the tight set in the S-run, because then each user i ∈ S can
be frozen only at an earlier time in the T -run and hence can have only a smaller cost
share under the T -run.

Consider time t, and let A and B be the tight sets in the S- and T -runs, respec-
tively. Let xi denote the cost share of i ∈ S at time t under the S-run, and let x′

i

denote the cost share of i ∈ T at time t under the T -run.
By submodularity,

cost(A ∪B) + cost(A ∩B) ≤ cost(A) + cost(B).

Since x is feasible for S, we have

∑
i∈(A∩B)

xi ≤ cost(A ∩B).

Using the additional fact that A and B are tight in the S- and T -runs, respectively,
we get

cost(A ∪B) +
∑

i∈(A∩B)

xi ≤
∑
i∈A

xi +
∑
i∈B

x′
i.

Therefore,

cost(A ∪B) ≤
∑

i∈(A−B)

xi +
∑
i∈B

x′
i.
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Observe that at time t, the users in A − B are frozen in the S-run but not in the
T -run. Therefore for each i ∈ A−B, xi ≤ x′

i. Therefore,

cost(A ∪B) ≤
∑

i∈(A∪B)

x′
i.

Therefore, A ∪ B is tight at time t in the T -run. Hence A ⊆ B, and the theorem
follows.

5. Alternative characterizations of equitable methods. In this section, we
will give two alternative characterizations of equitable methods. The proofs of both
characterizations appeal to Algorithm 1, and we do not know of direct proofs. These
alternative characterizations are as basic as the definition of equitable methods and
could have been taken as alternative definitions of these methods.

5.1. Min-max domination. Let q and r be n-dimensional vectors with non-
negative coordinates. We will denote by qDEC the vector obtained by sorting the com-
ponents of q in decreasing order and will say that q min-max dominates r if qDEC is
lexicographically smaller than rDEC , i.e., if there is an i such that qDEC(i) < rDEC(i)
and qDEC(j) = rDEC(j) for j < i.

Theorem 10. For any set S ⊆ U , the cost allocation, ξS, found by Algorithm 1
is such that t(ξS) min-max dominates t(α) for all other cost allocations, α, for S in
the core.

Proof. The proof is similar to that of Theorem 6. Let α be an allocation for set S
that lies in the core. Suppose that t(ξS) does not min-max dominate t(α). Then we
will show that ξS and α are in fact the same allocation, hence proving the theorem.

Let S = A1 ⊃ A2 ⊃ · · · ⊃ ∅ be the reverse order in which sets go tight when the
algorithm is run on set S. We will show by induction on i that all users in Ai −Ai+1

must have the same cost allocation in α and ξS . Observe that all elements in Ai−Ai+1

go tight at the same time, and hence the components corresponding to them in t(ξS)
are identical.

Clearly,

∑
i∈A2

α(i) ≤
∑
i∈A2

ξS(i) = cost(A2).

Therefore,

∑
i∈A1−A2

α(i) ≥
∑

i∈A1−A2

ξS(i).

If this inequality is strict, there exists i ∈ A1 −A2 such that α(i) > ξS(i). Since users
i ∈ A1 − A2 give rise to the largest entries in tINC(ξS), t(ξS) min-max dominates
t(α), leading to a contradiction. Therefore, this inequality must hold with equality.
If for some user i ∈ A1 − A2, α(i) < ξS(i), then for some other user j ∈ A1 − A2,
α(j) > ξS(j), and again t(ξS) min-max dominates t(α), leading to a contradiction.
Therefore,

∀i ∈ A1 −A2, α(i) = ξS(i).

The idea for the induction step is the same as for the basis.
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5.2. L-domination. The next characterization is along the lines of Dutta and
Ray’s definition of the egalitarian method which uses the notion of Lorentz orderings.
Following is their definition when applied to the case of a submodular cost function
(for the complete definition, which involves a recursive construct, see [6]).

Let α1 ≤ · · · ≤ αn and β1 ≤ · · · ≤ βn be such that α1 + · · ·+ αn = β1 + · · ·+ βn.
We will say that (α1, . . . , αn) Lorentz dominates (β1, . . . , βn) if for 1 ≤ k ≤ n, we
have

α1 + · · · + αk ≥ β1 + · · · + βk,

and the inequality is strict for at least one k.
Dutta and Ray [6] showed that if the underlying cost function is submodular,

there is a core cost allocation for S, say q, such that qINC Lorentz dominates rINC

for all other cost allocations, r, for S in the core. q is the egalitarian cost allocation
for S.

Note that the definition of Lorentz ordering may compare cost shares of different
users, since qINC(i) and rINC(i) may be cost shares of different users. In our setting,
the equalizing functions for different users may be very different, thus making such
comparisons meaningless. We give below an ordering that takes this into consider-
ation. This ordering is not a generalization of Lorentz ordering—if all fi’s are the
identity function, it does not necessarily reduce to the Lorentz ordering, but it does
preserve the property established in Lemma 11.

Let V be the set of all nonnegative s-dimensional vectors q such that f1(q(1)) +
· · · + fs(q(s)) = cost(S). Let Vc ⊆ V be the set of vectors q such that (f1(q(1)), . . . ,
fs(q(s))) forms a cost allocation for S lying in the core. For q, r ∈ V , say that q
L-dominates r if there exists a permutation π such that

1. q(π(1)) ≤ · · · ≤ q(π(s)),
2. for 1 ≤ i ≤ s, we have

i∑
k=1

fπ(k)(q(π(k))) ≥
i∑

k=1

fπ(k)(r(π(k))),

and the inequality is strict for at least one i.
It is easy to construct examples showing that the relation defined above is not

necessarily transitive. However, it is acyclic in the following sense: if q1, . . . , qk ∈ V ,
then it cannot be the case that qi L-dominates qi+1, for 1 ≤ i ≤ k, and qk L-
dominates q1. The definition of L-dominates requires that vectors q and r be ordered
according to the same permutation—it is for this reason that this notion does not
generalize the notion of Lorentz ordering.

Lemma 11. Let q, r ∈ V , and suppose that q L-dominates r. Then qINC is
lexicographically larger than rINC .

Proof. Without loss of generality, assume that the permutation π showing that
q L-dominates r is the identity permutation. Let i be the smallest index, 1 ≤ i ≤ s,
such that

∑i
k=1 fk(q(k)) >

∑i
k=1 fk(r(k)). Clearly, q(k) = r(k), for k < i, and

q(i) > r(i). Therefore, r(1) ≤ · · · ≤ r(i). By assumption, q = qINC . On the other
hand, the first i components of rINC can be only smaller than the corresponding
components of r. Hence qINC is lexicographically larger than rINC .

Since lexicographic domination is acyclic, we get the following corollary.
Corollary 12. The relation of L-domination is acyclic.
We will need the following technical lemma for the main result.
Lemma 13. Let M,a1, . . . , al,m, b1, . . . , bl be nonnegative real numbers satisfying
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• M ≥ m,
• M + a1 + · · · + al ≥ m + b1 + · · · + bl.

Then, there is a permutation π over [1, . . . , l] such that for 1 ≤ i ≤ l,

M +

i∑
k=1

aπ(k) ≥ m +

i∑
k=1

bπ(k).

Proof. Let us show how to construct π. Let us first determine π(1). We claim
that there exists k, 1 ≤ k ≤ l, such that

M + ak ≥ m + bk.

Suppose not. Then, for 1 ≤ k ≤ l,

M + ak < m + bk.

Adding these l inequalities, we get

(l − 1)M + (M + a1 + · · · + al) < (l − 1)m + (m + b1 + · · · + bl).

But this contradicts the assumptions made on these numbers, proving existence of k
satisfying the inequality above. Set π(1) = k. The idea for constructing the rest of π
is the same.

Theorem 14. Let q ∈ Vc correspond to the equitable cost allocation χS, and let
r ∈ Vc be any other vector. Then q L-dominates r.

Proof. We need to construct permutation π that shows that q L-dominates r.
Let A1 ⊂ A2 ⊂ · · · ⊂ S be the sequence in which sets go tight when Algorithm 1
computes cost shares for S. In the simple case that each of Ai+1 −Ai is a singleton,
let π be the order in which elements go tight. Then, for 1 ≤ i ≤ s,

i∑
k=1

fπ(k)(q(π(k))) = cost(Ai) ≥
i∑

k=1

fπ(k)(r(π(k))).

The inequality holds because the cost allocation corresponding to r lies in the core.
Since q �= r, one of these inequalities must be strict, thereby showing that q L-
dominates r.

In the general case, we will order elements of A1 first, the elements of A2 − A1

next, and so on. This ensures that
∑
k∈Ai

fk(q(k)) = cost(Ai) ≥
∑
k∈Ai

fk(r(k)).

Next, let us specify the precise order given to elements of Ai+1 − Ai = {j1, . . . , jl}.
For this, we will use Lemma 13 with

M =
∑
k∈Ai

fk(q(k)) = cost(Ai), m =
∑
k∈Ai

fk(r(k))

and for 1 ≤ k ≤ l,

ak = fjk(q(jk)) and bk = fjk(r(jk)).

Observe that the proof given above uses the fact that the functions fj are strictly
increasing.



EQUITABLE COST ALLOCATIONS 251

6. The opportunity egalitarian method. For each user i ∈ U , let Gi :
R+ → [0, 1] be the cumulative probability distribution function from which i’s util-
ity is drawn; assume that these distributions are independent. Assume that Gi is
monotonically increasing.

Let α be any cost allocation for S ⊆ U that lies in the core. User i will accept the
service only if his utility turns out to be at least α(i), his cost share. The probability
of this event is 1−Gi(α(i)). Let p(α) denote the vector whose ith component is this
probability. We will say that a cost sharing method ξ is the opportunity egalitarian
method for cumulative distribution functions G1, . . . , Gn if for each set S ⊆ U , ξS is
the cost allocation in the core such that

1. p(ξS) max-min dominates p(α) and
2. p(ξS) min-max dominates p(α)

for all other cost allocations, α, for S in the core. Theorem 15 shows that there is a
unique such cost allocation. Observe that ξ is attempting to equalize the probabilities
of users receiving the service, subject to core constraints. The two characterizations,
min-max and max-min, ensure that both extremes are avoided.

Let fi : [0, 1] → R+ denote the inverse of Gi. Let ξ be the equitable cost sharing
method for functions f1, . . . , fn.

Theorem 15. ξ is the opportunity egalitarian method for probability density
functions G1, . . . , Gn.

Proof. Consider any set S ⊆ U , and let α be a cost allocation for S lying in the
core. Clearly, for i ∈ S,

t(α)(i) = f−1
i (α(i)) = Gi(α(i)) = 1 − p(α)(i);

i.e., this is the probability that user i does not accept service under cost allocation
α. Since ξ is the equitable method for f1, . . . , fn, t(ξS) max-min dominates t(α) for
all cost allocations, α, for S in the core. Equivalently, p(ξS) min-max dominates
p(α) for all core cost allocations for S. Its uniqueness follows from Theorem 6. By
Theorem 10, p(ξS) max-min dominates p(α) for all other cost allocations, α, for S in
the core. Hence, ξ is the opportunity egalitarian method for cumulative distribution
functions G1, . . . , Gn.

By Theorem 9, the opportunity egalitarian method is cross-monotone.

7. Maximizing acceptance probability. As in the last section, for each user
i ∈ U , let Gi : R+ → [0, 1] be the cumulative probability distribution function
from which i’s utility is drawn; assume that these distributions are independent. Let

gi be the corresponding probability density function, i.e., gi(x) = ∂Gi(x)
∂x . Assume

that gi(0) = 0. We further assume that Gi satisfies the strict monotone hazard rate
condition, i.e.,

∂

∂x

[
gi(x)

1 −Gi(x)

]
> 0.

If gi represents the failure probability of a component as a function of time, the
above condition says that the failure rate, conditioned on the component still being
intact, strictly increases with age. The monotone hazard rate condition is satisfied by
most standard probability distributions and is a standard assumption in the Bayesian
mechanism design literature [8].

Let λi : R+ → R+ be the function

λi(x) =
gi(x)

1 −Gi(x)
.
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Observe that under the assumption of strict monotone rate hazard rate condition,
λi is an invertible function. Let fi be the inverse of this function, and let χ be the
equitable method corresponding to equalizing functions f1, f2, . . . , fn.

Let ξ be any cost sharing method in the core. Let P (ξS) denote the probability
that all users in S accept service when it is offered at cost shares ξS . Clearly,

P (ξS) =
∏
i∈S

[1 −Gi(ξ
S
i )].

Theorem 16. Let χ be the equitable cost sharing method defined above, and ξ
be any cost sharing method in the core. Then, for each set of users S ⊆ U , P (χS) ≥
P (ξS).

This is a generalization of Mutuswami’s result [24], which deals with the case that
Gi’s are i.i.d. (on the other hand, he requires only monotone hazard rate condition—
not necessarily strict). In this case, χ is the Dutta–Ray egalitarian method. Mu-
tuswami’s proof uses the original definition of Dutta and Ray, in terms of Lorentz
orderings, and a theorem of Hardy, Littlewood, and Polya [10], giving a condition that
is equivalent to Lorentz domination. To prove the generalization, we prove a charac-
terization for L-domination, in Lemma 18, in the style of the Hardy–Littlewood–Polya
theorem. The proof of Theorem 16 is given below.

By Theorem 16, χ simultaneously maximizes the probability of all users accepting
service, for each set S of users, among all cost sharing methods in the core. One may
be led to believe that if the mechanism of Theorem 1 is run with χ, then the expected
size of the set served is maximized, over all cost sharing methods in the core. However,
this is not true, as shown in the example below.

Example. Let U = {a, b} and the cost function be cost(a, b) = 10, cost(a) = 8,
cost(b) = 6, cost(∅) = 0. Suppose the utilities of a and b are picked from the uniform
distribution over the interval [0, 20]. In this case, χ will be the egalitarian method:

χ({a, b}, a) = χ({a, b}, b) = 5, χ({a}, a) = 8, χ({b}, b) = 6.

The expected size of set picked by the mechanism is 1.45. However, using the following
cross-monotonic cost sharing method, ξ, the expected size of set picked is 1.45125:

ξ({a, b}, a) = 5.5, ξ({a, b}, b) = 4.5, ξ({a}, a) = 8, ξ({b}, b) = 6.

For completeness, we first state the following theorem.
Theorem 17 (Hardy, Littlewood, and Polya [10]). Let α1 ≤ · · · ≤ αn and

β1 ≤ · · · ≤ βn be such that α1 + · · · + αn = β1 + · · · + βn. The following two
statements are equivalent.

1. (α1, . . . , αn) Lorentz dominates (β1, . . . , βn).
2. (α1, . . . , αn) can be obtained from (β1, . . . , βn) by applying the following trans-

formations to (β1, . . . , βn) a finite number of times:
(a) Find i < j such that βi < βj and the next step can be performed.
(b) Increase βi and decrease βj by a small ε > 0.

Following is an analogous fact for L-domination. As defined in section 5.2, let V be
the set of all nonnegative s-dimensional vectors q such that f1(q(1))+ · · ·+fs(q(s)) =
cost(S).

Lemma 18. Let q, r ∈ V . The following two statements are equivalent.
1. q L-dominates r, with π being the identity permutation.
2. q can be obtained from r by applying the following transformations to r a

nonzero number of times:
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(a) Find i < j such that r(i) < r(j) and the next step can be performed.
(b) Increase r(i) and decrease r(j) by small positive amounts such that

• fi(r(i)) + fj(r(j)) is preserved,
• r(i) ≤ r(j) is preserved.

Proof. We will prove the forward direction only; the reverse direction is straight-
forward. Let i be the smallest index such that q(i) �= r(i) (if such an index i does not
exist, then q and r are identical). Since q L-dominates r, q(i) > r(i). By definition,

f1(q(1)) + · · · + fs(q(s)) = f1(r(1)) + · · · + fs(r(s)).

Let j be the smallest index > i such that

f1(q(1)) + · · · + fj(q(j)) = f1(r(1)) + · · · + fj(r(j)).

By the choice of j, it must be the case that

f1(q(1)) + · · · + fj−1(q(j − 1)) > f1(r(1)) + · · · + fj−1(r(j − 1));

therefore q(j) < r(j). Since i < j, q(i) ≤ q(j). Now we have r(i) < q(i) ≤ q(j) <
r(j). Increase r(i) and decrease r(j) as much as possible so that the following are
preserved:

1. fi(r(i)) + fj(r(j)).
2. r(i) ≤ r(j).
3. For 1 ≤ k ≤ s,

f1(q(1)) + · · · + fk(q(k)) ≥ f1(r(1)) + · · · + fk(r(k)).

Clearly, r(i) must increase by a positive amount, and r(j) must decrease by a
positive amount. Therefore, in the limit, q can be obtained from r by applying such
steps.

Proof of Theorem 16. Consider any set of users S ⊆ U . Let q, r ∈ Vc correspond
to χS and ξS , respectively. By Theorem 14, q L-dominates r. Now, q can be obtained
from r by steps specified in Lemma 18. Finally, by Lemma 19 given below, each of
these steps will only increase the probability that all users accept service. Hence
P (χS) ≥ P (ξS).

Lemma 19. Let f1, . . . , fs be the equalizing functions specified above. Let xi ≥ 0,
1 ≤ i ≤ s, and define v = (f1(x1), . . . , fs(xs)). Define P (v) =

∏s
i=1[1 − Gi(fi(xi))].

Suppose there exist i and j such that xi < xj. Then,

dP (v) =
s∑

k=1

∂P (v)

∂fk(xk)
dfk(xk) ≥ 0,

where 0 < dfi(xi) = −dfj(xj) and dfk(xk) = 0 if k �= i, j.
Proof.

dP (v) =

s∑
k=1

∂P (v)

∂fk(xk)
dfk(xk)

=

s∑
k=1

P (v)

1 −G(fk(xk))
× (−g(fk(xk))) × dfk(xk)
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= P (v)

[
gj(fj(xj))

1 −Gj(fj(xj))
− gi(fi(xi))

1 −Gi(fi(xi))

]
dx

= P (v)[λj(fj(xj)) − λi(fi(xi))]dx

= P (v)[xj − xi]dx ≥ 0,

where dx = dfi(xi) = −dfj(xj).

The second-to-last step uses the fact that fi is the inverse of λi and the last step
follows from the assumption that xi < xj .

8. Discussion. Submodular cost functions admit a rich class of cross-monotone
cost sharing methods. Of these, equitable methods capture a large subclass, though
not all, as evidenced by the example below. Our definition as well as Hokari’s [11]
appears quite natural, and despite differences, they lead to the same class of cost
sharing methods. This raises the following question: how to impose an economic
criterion on cross-monotone methods so as to obtain precisely the class of equitable
methods.

Example. Consider the following cross-monotone cost sharing method (the costs
of individual sets are simply the sum of cost shares of their elements).

ξ({a, b, c, d}, a) = 2,
ξ({a, b, c, d}, b) = 2, ξ({a, b, c, d}, c) = 1, ξ({a, b, c, d}, d) = 1,
ξ({a, b, c}, a) = 2, ξ({a, b, c}, b) = 3, ξ({a, b, c}, c) = 1,
ξ({a, b, d}, a) = 3, ξ({a, b, d}, b) = 2, ξ({a, b, d}, d) = 1,
ξ({a, c, d}, a) = 2, ξ({a, c, d}, c) = 2, ξ({a, c, d}, d) = 2,
ξ({b, c, d}, b) = 2, ξ({b, c, d}, c) = 2, ξ({b, c, d}, d) = 2,
ξ({a, b}, a) = 3, ξ({a, b}, b) = 3,
ξ({a, c}, a) = 3, ξ({a, c}, c) = 3,
ξ({a, d}, a) = 3, ξ({a, d}, d) = 3,
ξ({b, c}, b) = 3, ξ({b, c}, c) = 3,
ξ({b, d}, b) = 3, ξ({b, d}, d) = 3,
ξ({c, d}, c) = 3, ξ({c, d}, d) = 3,
ξ({a}, a) = 5, ξ({b}, b) = 5, ξ({c}, c) = 5, ξ({d}, d) = 5.

We will show, by contradiction, that this is not an equitable cost sharing method.
First run Algorithm 1 on S = {a, b, c}. In order to produce the above method, S
must be the first set to go tight. Suppose this happens at time t. Clearly, none of the
proper subsets of S is tight at time t. Therefore, fa(t) = 2, and fb(t) = 3. Next, run
Algorithm 1 on set S′ = {a, b, d}. The first set to go tight must be the entire set S′,
at time t′, say. Therefore, fa(t

′) = 3, and fb(t
′) = 2. But then at least one of fa or

fb is not monotonically increasing.

Observe that Algorithm 1 is very explicitly trying to impose equality among users,
as specified by the equalizing functions. Of course, the precise notion of “equality”
or “fairness” imposed depends on these functions. An exciting research direction is
to characterize the notions of fairness captured by particular choices of the equalizing
functions.

This very explicit seeking of “equality” is also the chief difference between our
definition and Hokari’s definition and algorithm. Hokari defines sequential monotone
path cost sharing methods by partitioning the set of users, ordering the partitions
sequentially, and applying monotone path methods within each partition, with an
incremental method applied on the ordered list of partitions. In our setting it is easy
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to see that the resulting method is also equitable, and so this operation does not lead
to new cost sharing methods.

Considering the fact that for submodular cost functions, our definition is a nat-
ural generalization of the Dutta–Ray egalitarian method, one wonders whether there
is a similar generalization for nonsubmodular cost functions as well. L-orderings, pre-
sented in section 5.2, may lead to such a definition. At present it is not clear how to
generalize Algorithm 1 to this setting—if the cost function is not submodular, then
every element may be in a tight set, without the entire set being tight. Algorithm 1
will halt at this point, and the resulting cost allocation will not be budget balanced.

Next, assume that the cost function is nondecreasing and submodular. Let σ be
a permutation on 1, . . . , n. The incremental cost sharing method, ξσ, corresponding
to permutation σ is defined as follows. Let S ⊆ U , |S| = k, and let i1, . . . , ik be the
users in S ordered according to σ. Then, ξσ(S, i1) = cost(i1), and for 2 ≤ j ≤ k,
ξσ(S, ij) = cost({i1, . . . , ij}) − cost({i1, . . . , ij−1}).

In [17] we showed that the class of cross-monotone methods for a nondecreasing
submodular cost function form a polytope and that incremental cost sharing methods
form corner points of this polytope. We also gave an example of a cross-monotone
method that is not in the convex hull of these corner points (corresponding to incre-
mental cost sharing methods) and left the open problem of characterizing the rest of
the corner points. We show below that this example is in fact an equitable method. It
is easy to see that all incremental methods are also equitable. Do equitable methods
capture all corner points of this polytope? Are equitable methods closed under convex
combinations? Since not all cost sharing methods are equitable, the answers to both
these questions cannot be “Yes.”

Example. Consider the following cost sharing method:
ξ({a, b, c}, a) = 2, ξ({a, b, c}, b) = 3, ξ({a, b, c}, c) = 4,
ξ({a, b}, a) = 4, ξ({a, b}, b) = 3,
ξ({a, c}, a) = 3, ξ({a, c}, c) = 4,
ξ({b, c}, b) = 3, ξ({b, c}, c) = 4,
ξ({a}, a) = 4, ξ({b}, b) = 4, ξ({c}, c) = 4.
In [17] we showed that this cross-monotone method is not a convex combination of
incremental cost sharing methods. However, it is an equitable cost sharing method
corresponding to equalizing functions fa, fb, fc satisfying

fa(2) = 0, fb(1) = 0, fb(2) = 3, fb(3) = 3, fb(4) = 4, and fc(1) = 4.

Finally, the example given in section 7 raises the question of identifying the cost
sharing method that maximizes the expected size of the set served.
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Abstract. We present new results for three problems dealing with a set P of n convex constant-
complexity fat polyhedra in 3-space. (i) We describe a data structure for vertical ray shooting in P
that has O(log2 n) query time and uses O(n log2 n) storage. (ii) We give an algorithm to compute in
O(n log3 n) time a depth order on P if it exists. (iii) We give an algorithm to verify in O(n log3 n)
time whether a given order on P is a valid depth order. All three results improve on previous results.
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1. Introduction.
Motivation. Many algorithms and data structures developed in computational

geometry have a rather poor worst-case performance. This behavior is often caused
by sets of objects in very intricate configurations, such as many long and thin objects
packed closely together. For example, the worst-case running time of the best known
general motion-planning algorithm is Θ(nf ), where f is the number of degrees of
freedom of the robot, because for certain configurations of obstacles the free space
has complexity Θ(nf ). The configurations that determine the worst-case behavior,
however, are usually rather artificial constructions; one would expect that in practice
the input is much more well behaved, and that better performance is possible than
the worst-case analysis suggests.

These considerations have led to the study of geometric problems in so-called
realistic input models [9]. Here one places certain restrictions on the shape and/or
distribution of the input objects, so that hypothetical worst-case examples are ex-
cluded. The hope is that this will enable proving much stronger theoretical results
than are possible for arbitrary inputs, while the results are still general enough for
practical applications. One of the most widely studied realistic input models assumes
that the input objects are fat, that is, they are not arbitrarily long and skinny—
see the next section for a formal definition. For motion planning this has proved to
be quite successful: the free space for a not-too-large robot moving amidst a set of
fat obstacles has only linear complexity [26], which has enabled the development of
motion-planning algorithms with near-linear running times in this setting [25].

In this paper we study two problems arising in computer graphics in the context of
realistic input models: the vertical ray-shooting problem and the depth-order problem
for fat polytopes in R3.

Problem statement and previous results. Let P be a set of n disjoint objects in
R3.
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The first problem we study is the ray-shooting problem: preprocess the set P such
that ray-shooting queries (i.e., what is the first object in P hit by a query ray?) can be
answered efficiently. Ray-shooting queries are important for realistic image synthesis:
they form the basis of ray-tracing algorithms and can be used in radiosity methods
to approximate form factors. Hence, data structures for ray shooting have received
ample attention, in both computer graphics and computational geometry; the book
by De Berg [5] and the survey by Pellegrini [24] discuss many of the (computational
geometry) solutions. As for the motion-planning problem, the worst-case bounds that
have been obtained for the general ray-shooting problem are rather disappointing.
For ray-shooting queries with arbitrary rays in a collection of n disjoint triangles, for
example, the best known structures that achieve O(log n) query time use O(n4+ε)
storage [5, 23], and the best structures with near-linear storage have roughly O(n3/4)
query time [3]. For vertical ray shooting in a collection of disjoint triangles the
situation is still not very rosy: to obtain O(log n) query time one needs O(n2+ε)
storage, and with near-linear storage the query time becomes roughly O(

√
n) [5].

Given the prominence of the ray-shooting problem in computational geometry and
the fact that general inputs do not seem to admit very efficient (near-linear) solutions,
it is not surprising that ray shooting has already been studied from the perspective
of realistic input models. In particular, the vertical ray-shooting problem—here the
query ray is required to be vertical—has been studied for fat convex polyhedra. For
this case Katz [19] presented a data structure that uses O(n log3 n) storage and has
O(log4 n) query time. (In fact, Katz’s solution works for polygons whose projections
onto the xy-plane are fat, but it is not difficult to see that it works for fat three-
dimensional polytopes as well.) Using the techniques of Efrat et al. [17], it is possible
to improve the storage bound to O(n log2 n) and the query time to O(log3 n) [20].
Recently De Berg [6] presented a structure with O(log2 n) query time; his structure
uses O(n log3 n(log log n)2) storage.

The second problem we study is the depth-order problem: compute a depth order
for the set P, that is, an ordering P1, . . . , Pn of the objects in P such that if Pi is
below Pj , then i < j. Here we say that Pi is below Pj , denoted by Pi ≺ Pj , if there
are points (x, y, zi) ∈ Pi and (x, y, zj) ∈ Pj with zi < zj . In other words, a depth
order is a linear extension of the ≺-relation. Since there can be cycles in the ≺-
relation—we then say there is cyclic overlap among the objects—a depth order does
not always exist. In that case the algorithm should report that there is cyclic overlap.
Depth orders are useful in several applications. For example, they can be used to
render scenes with the Painter’s algorithm [18] or to do hidden-surface removal with
the algorithm of Katz, Overmars, and Sharir [21]. Depth orders also play a role in
assembly planning [1].

The depth-order problem for arbitrary sets of triangles in 3-space does not seem
to admit a near-linear solution; the best known algorithm runs in O(n4/3+ε) time [11].
This has led researchers to also study this problem for fat objects. Agarwal, Katz,
and Sharir [2] gave an algorithm for computing the depth order of a set of triangles
whose projections onto the xy-plane are fat; their algorithm runs in O(n log5 n) time.
However, their algorithm cannot detect cycles—when there are cycles it reports an
incorrect order. A subsequent result by Katz [19] produced an algorithm that runs
in O(n log5 n) time and that can detect cycles. In this case though, the constant of
proportionality depends on the minimum overlap of the projections of the objects that
do overlap. If there is a pair of objects whose projections barely overlap, then the
running time of the algorithm increases greatly. One advantage that this algorithm
has is that it can deal with convex curved objects.
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Our results. First, we present a new data structure for vertical ray shooting in a
collection of n convex constant-complexity fat polyhedra1 in R3. Our structure uses
O((1/β)n log2 n) storage and has O((1/β2) log2 n) query time. Compared to Katz’s
structure [20] it has a better query time (while the storage is the same) and compared
to De Berg’s structure [6] it has a better storage bound (while keeping the same query
time).

Second, we present a new algorithm for computing a depth order on a collec-
tion of n convex constant-complexity fat polyhedra in R3. Our algorithm runs in
O((1/β3)n log3 n) time, improving the result of Agarwal, Katz, and Sharir [2] by two
logarithmic factors. Like their algorithm, our algorithm unfortunately does not detect
cyclic overlap. Hence, we also study the problem of verifying a given depth order. We
give an algorithm that checks in O((1/β2)n log3 n) time2 whether a given ordering
for a set of fat convex polyhedra is a valid depth order. This is the first result for
this problem. Until now, the only algorithm for verifying a given depth order was an
algorithm for arbitrary triangles [11], which runs in O(n4/3+ε) time.

2. Preliminaries. In this section we introduce some basic definitions and ter-
minology.

For a three-dimensional object o, we use vol(o) to denote the volume of o and
we use proj(o) to denote the vertical projection of o onto the xy-plane. For a two-
dimensional object, we use area(o) to denote its area. We use the following definition
of fatness [9].

Definition 1. An object o in Rd is defined to be β-fat if for any ball b whose
center lies in o and that does not fully contain o, we have vol(b ∩ o) ≥ β · vol(b).

(For convex objects—the case considered in this paper—this definition is equiva-
lent, up to constant factors, to other definitions of fatness that have been proposed.)
It is not hard to show that the projection of a fat object is also fat, as proved by De
Berg [6] and made precise in the following lemma.

Lemma 1 (see [6]). If an object P is a β-fat object in three dimensions, then
proj(P ) has fatness Ω(β) in two dimensions.

Define the size of an object o, denoted by size(o) to be the radius of its smallest
enclosing ball. Note that the size of a ball is simply its radius.

Finally, we need a result that will allow us to stab a set of relatively large fat
objects that all intersect some region R using only a few points. Similar results have
been proved earlier [7].

Lemma 2. Let R be a bounded region in the plane, and let c be a constant with
0 < c ≤ 1. Then there is a collection Q of O(1/(cβ)2) points with the following
property: any β-fat object o with size(o) ≥ c · size(R) that intersects R contains at
least one point from Q.

Proof. Let U be a bounding square of R, and let Û be the square twice the size
of U and with the same center. Consider a β-fat object o with size(o) ≥ c · size(R)

that intersects R. Then area(o ∩ Û) ≥ c′cβ · area(Û) for a suitable constant c′ (cf.

Van der Stappen’s thesis [25, Theorem 2.9]). Hence, a regular grid on Û with �M	2
cells, where M = 2/(c′cβ), must have at least one grid point inside P , because the

area of any convex object missing all grid points is less than 2 · area(Û)/M .
The following lemma was proved in a more general setting by Van Kreveld [22].

1Though results are presented in terms of fat polyhedra, all our results also work in the more
general setting of objects that project to fat polygons.

2This is an improvement over the O(n log4 n) bound that we had in the preliminary version of
the paper [8], which was published in SODA 2006.
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However, his definition of fatness is different from ours. Therefore we have proved it
independently using our definition. The proof can be found in the appendix. In the
lemma below, an α-fat triangle refers to a triangle all of whose angles are at least α.
(Such a triangle is α′-fat, according to Definition 1, for some α′ = Ω(α).)

Lemma 3. Let P be a β-fat convex polygon with n vertices. There is a set T of
α-fat triangles that cover P , where |T | = O(n) and α = Θ(β).

We will also need the following lemma.
Lemma 4. Let P1 and P2 be simple polygons. Let e1 be an edge of P1 and e2 be

an edge of P2. If P1 intersects P2 so that there is no vertex of P1 inside P2 and no
vertex of P2 inside P1, then there is an intersection of edges e3 of P1 and e4 of P2

such that e3 
= e1 and e4 
= e2.
Proof. Let e of P1 and e′ of P2 be edges that intersect. If e 
= e1 and e′ 
= e2, then

we are done. If e 
= e1 and e′ = e2, then there must be an intersection between e and a
different edge of P2 (since there are no vertices of P1 inside P2), meaning that we have
found an intersection between e and some edge e′′ 
= e2, and we are done. Similarly,
we are done if e = e1 and e′ 
= e2. Finally, suppose e = e1 and e′ = e2. Since e1 enters
P2, it must exit it, and that implies that there must be an intersection between e1

and some edge e′′ 
= e2. This puts us in the previous case, so we are done.

3. Vertical ray shooting. Let P = {P1, . . . , Pn} be a collection of n constant-
complexity convex β-fat polyhedra that we wish to preprocess for vertical ray shooting.
We start by studying the simpler case where all the objects are intersected by a
common vertical line. After that we will show how to use this structure to obtain an
efficient solution to the general problem.

Agarwal, Katz, and Sharir [2] already described a data structure for the case
where all objects are intersected by a common vertical line and project to triangles.
We observe that it is possible to apply fractional cascading to their structure to obtain
the following result.

Lemma 5. Let P = {P1, . . . , Pn} be a set of n disjoint convex constant-complexity
β-fat polyhedra that are all stabbed by a vertical line � and that all project to fat
triangles. Then there is a data structure such that vertical ray shooting queries on
P can be answered in O(log n) time. The structure uses O((1/β)n log n) storage and
can be built in O((1/β)n log n) time.

Proof. As stated above, all we need to do is apply fractional cascading to the
structure of Agarwal, Katz, and Sharir [2]. For completeness, we briefly describe
their solution and explain how to apply fractional cascading.

The structure is a balanced binary tree T with the objects in the leaves, sorted
by their position along �; the lowest object is in the leftmost leaf, the second lowest
object in the next leaf, and so on. Since the objects are nonintersecting and convex,
this ordering is well defined.

For a node ν, let P(ν) denote the set of objects stored in the leaves of the subtree
rooted at ν. At each nonleaf node ν of T , we store the union U(ν) of the projections
of the objects in P(ν). We preprocess U(ν) for point-enclosure queries, that is, queries
that ask whether a point q in the xy-plane lies inside U(ν), as follows. Let p� be the
point where � intersects the xy-plane. Then all projections contain p�, and since they
are convex, U(ν) is star-shaped with p� in the kernel. Hence, if we partition the plane
into cones by drawing half-lines from p� through all breakpoints on the boundary
of U(ν), then a point-enclosure query can be answered in O(1) time after we have
determined in which cone the query point lies.

To perform a query with a vertical ray starting above all objects, we walk down
the tree as follows. Suppose we reach a node ν. When the point p where the ray hits
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the xy-plane lies inside the union of the right child of ν, we proceed to the right child;
otherwise we proceed to the left child. The leaf we reach must store the first object
hit (if any object is hit at all). When the starting point of the ray does not lie above
all objects, things are more complicated. However, Agarwal, Katz, and Sharir have
shown that a query can still be answered by walking down the tree, although now up
to four nodes per level may be visited. In any case, we visit O(log n) nodes in total,
and at each node we have to do a point-enclosure query. As explained above, a point-
enclosure query can be answered in O(1) time after we have determined in which cone
the query point lies. Finding the right cone can be done in O(log n) time by binary
search, but this can be made faster: using fractional cascading [13, 14], finding the
cones can be done in O(1) time, except for the search at the root. Since the application
of fractional cascading is completely standard in this setting, we omit further details.

To build the structure, we sort the objects along � in O(n log n) time, and then we
construct the unions to be stored at each node in a bottom-up fashion. Hence, when
we arrive at a node ν, we have to merge the two unions of the children of ν. Because the
unions are star-shaped with respect to the same point, computing the union of these
unions boils down to merging the two circularly sorted lists of breakpoints. Hence, this
can be done in linear time. The total time to construct all unions is therefore equal to
the total size of the data structure, which is

∑
ν O(|P(ν)|) = O(n log n). Adding the

additional pointers for the fractional cascading does not increase the preprocessing
time or the amount of storage asymptotically.

Now consider the general case, where the objects in P are not necessarily stabbed
by a vertical line. We can cover each object by O(1) subobjects whose projections
are fat triangles using the technique of Lemma 3, so we can assume without loss
of generality that all objects project to fat triangles. We shall make use of bal-
anced aspect ratio trees (BAR-trees). BAR-trees are a special type of binary space
partition (BSP) trees for point sets. They were introduced by Duncan, Goodrich,
and Kobourov [15, 16], who showed that BAR-trees have excellent performance for
approximate range searching and approximate nearest-neighbor searching. A BSP
tree T for a set S of points contained in some bounding square σ is a recursive
partitioning of σ by splitting lines, such that the final cells of the subdivision do
not contain any points in their interior. Each node ν of T corresponds to a region
region(ν) ⊂ σ, which is defined recursively as follows. The region region(root(T )) is
the whole square σ. Furthermore, if the splitting line stored at a node ν is �(ν), then
region(leftchild(ν)) = region(ν) ∩ �(ν)−, where �(ν)− is the half-plane below �(ν).
Similarly, region(rightchild(ν)) = region(ν) ∩ �(ν)+, where �(ν)+ is the half-plane
above �(ν).

The special properties of BAR-trees that are relevant for us are the following.
First, a BAR-tree on a set S of points has depth O(log |S|) and size O(|S|). Further-
more, the regions corresponding to a node in a BAR-tree have bounded aspect ratio,
which implies they are c-fat for some constant c. It has been shown by De Berg and
Streppel [12] that this implies the following.

Lemma 6 (see [12]). Let o be a β-fat object. Then there is a set G(o) of 12
points—we call these points guards—such that for any BAR-tree region R that in-
tersects o but does not contain a guard from G(o) in its interior we have size(o) =
Ω(size(R)).

De Berg and Streppel [12] used this to design a so-called object BAR-tree: this
is a BAR-tree that can be used for approximate range searching in a set of objects
rather than in a point set. Our ray-shooting structure combines BAR-trees and the
lemma above in a different way, as described next.
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Let P = {P1, . . . , Pn} be a set of n constant-complexity β-fat polyhedra. Let
Gi = G(proj(Pi)) be a set of guards for the projection of Pi, as in Lemma 6. Our
data structure for vertical ray shooting on P is defined as follows.

• The main tree T is a BAR-tree for the set G = G1 ∪ · · · ∪Gn.
• Let ν be a node in T . We say that an object Pi is large at ν if (i) proj(Pi)

intersects region(ν), and (ii) region(parent(ν)) contains a guard from Gi in its
interior, but region(ν) does not. Note that Lemma 6 implies that size(Pi) =
Ω(size(region(ν))) if Pi is large at ν. Let P(ν) ⊂ P be the subset of objects
that are large at ν.
Let Q(ν) be a set of points such that for any Pi ∈ P(ν), there is a point
q ∈ Q(ν) with q ∈ proj(Pi). By Lemma 2 there exists such a set Q(ν) of
size O(1/β2). Assign each object Pi ∈ P(ν) arbitrarily to one of the points
q ∈ Q(ν) contained in its projection. Let P(q) denote the set of objects
assigned to q. We store the set P(q) in a data structure T (q) for vertical
ray shooting according to Lemma 5. Thus each node ν has |Q(ν)| associated
structures.

Let us first see how to answer a vertical ray shooting query with this structure.
Lemma 7. A vertical ray-shooting query can be answered in O((1/β2) log2 n)

time.
Proof. Let p be the point where the line through the query ray intersects the

xy-plane. Search with p down the tree T . At every node ν on the search path,
perform a query in the associated structure T (q) of each q ∈ Q(ν). A query thus
takes O(log n · log n · (1/β2)) time, that is, the length of every search path, times the
query time in the associated data structures along the search path, times the size of
Q(ν).

To prove the correctness, it suffices to argue that any object Pi whose projection
contains p must be large at one of the nodes on the search path of p. To see this, we
observe that region(root(T )) contains all guards from Gi, while the leaf regions do
not contain any guards in their interior. It follows that when we follow the path of p,
the object Pi must become large at some node.

We can now prove our final result on vertical ray shooting.
Theorem 1. Let P be a collection of n convex disjoint constant-complexity β-fat

polyhedra in R3. Then there is a data structure such that vertical ray-shooting queries
on P can be answered in O((1/β2) log2 n) time. The structure uses O((1/β)n log2 n)
storage and can be built in O((1/β)n log2 n) time.

Proof. The correctness of the query procedure and the query time have been
shown in Lemma 7.

It remains to prove the bound on the construction time; the storage bound then
follows trivially. Computing the guards for each object takes constant time per object,
and constructing the BAR-tree takes O(n log n) time [16]. We claim that an object
Pi is large at O(log n) nodes. Indeed, any guard is contained in the regions of the
nodes on a single path down the tree, and an object can be large at a node only if
the parent region contains one of its guards. Hence,

∑
ν |P(ν)| = O(n log n). We can

generate the sets P(ν) in O(n log n) time by filtering the objects down the tree T .
The set Q(ν) can be constructed in O(|Q(ν)|) time, and associating the objects with
the points in Q(ν) can be done in a brute-force way in O(|Q(ν)| · |P(ν)|). Finally,
constructing the associated structures of ν takes time

∑
q∈Q(ν)

O((1/β)|P(q)| log |P(q)|) = O((1/β)|P(ν)| log |P(ν)|)
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by Lemma 5. Hence, the overall construction time is∑
ν O(|P(ν)| · (|Q(ν)| + (1/β) log |P(ν)|))

= O((1/β)n log2 n + (1/β2)n log n)

= O((1/β)n log2 n).

4. The size of the transitive reduction of depth-order graphs. Let P =
{P1, . . . , Pn} be a set of disjoint objects in R3. Recall that we say that Pi is below
Pj , denoted by Pi ≺ Pj , if there are points (x, y, zi) ∈ Pi and (x, y, zj) ∈ Pj with
zi < zj . We define the depth-order graph of P to be the graph G(P) = (P, E), where
(Pi, Pj) ∈ E if and only if Pi ≺ Pj . Hence, a depth order for P corresponds to a
topological order on G(P).

In general it is too costly to compute G(P) explicitly, since it can have Ω(n2) arcs.
When computing depth orders for segments in the plane, this can be circumvented by
looking only at pairs of segments that “see” each other, that is, that can be connected
vertically without crossing another segment. For objects in 3-space, however, the
number of pairs that see each other can be quadratic, even when the objects are
fat. In this section we therefore study the size of the transitive reduction of depth-
order graphs, since the transitive reduction is the smallest subgraph that is sufficient
to topologically sort a graph. The main result is that the number of arcs in the
transitive reduction of the depth-order graph of a set of fat objects is linear. Then in
the next section we will compute a superset of the arcs in the transitive reduction.

We define the separation of two nodes in the depth-order graph, denoted sep(Pi,
Pj), to be the length of the longest path from Pi to Pj . Notice that if the graph
contains cycles, sep(Pi, Pj) can be infinite. We define G(1)(P) = (P, E(1)) to be
the subgraph of the depth-order graph G(P), where (Pi, Pj) ∈ E(1), if and only if
sep(Pi, Pj) = 1 in G(P). In other words, (Pi, Pj) ∈ E(1) if there exists a vertical line
that intersects both objects, and every such line does not intersect any other object
between Pi and Pj .

Lemma 8. If G(P) is acyclic, the transitive closure of G(1)(P) is the transitive
closure of G(P).

Proof. We have to prove that there is a path Pi � Pj in G(P) if and only if there
is a path Pi � Pj in G(1)(P). The “if” part is obvious since G(1)(P) is a subgraph of
G(P). We prove the “only if” part by induction on sep(Pi, Pj).

If sep(Pi, Pj) = 1, the arc (Pi, Pj) exists in G(1)(P) by construction. Now assume
there is a path in G(1)(P) between all nodes with separation m. Take Pi and Pj in
G(P) which have separation m + 1. Then there is a node x such that sep(Pi, x) = 1
and sep(x, Pj) = m. By the induction hypothesis, we then have a path Pi → x � Pj

in G(1)(P).
For arbitrary triangles in 3-space, the number of arcs in G(1)(P) can still be

Θ(n2). For some special classes of objects, however, the number of arcs is linear. For
example, one can show that this number is linear for a set of disjoint polyhedra whose
projections form a set of polygonal pseudodisks [10]. Here we concentrate on the case
where the objects in the given set P project onto fat convex objects. We show that
in this case the number of arcs is also linear. Since fat convex objects project to fat
objects, showing this also shows that the number of arcs in G(1)(P) is small if the
input is a set of fat objects. We start with an auxiliary lemma.

Lemma 9. Let Pi ∈ P be an object and let P+(i) be the subset of objects Pj ∈ P
that are above Pi and where sep(Pi, Pj) = 1. Then the projections proj(Pj) of the
objects Pj ∈ P+(i) are pairwise disjoint.
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Fig. 1. Illustration of the packing argument.

Proof. Suppose the projections are not pairwise disjoint. Then there are ob-
jects Pj , Pk ∈ P+(i) such that proj(Pj) ∩ proj(Pk) 
= ∅ and sep(Pi, Pj) = 1 and
sep(Pi, Pk) = 1. Since proj(Pj) and proj(Pk) intersect, they must share at least
one point, so there must be an arc between Pj and Pk in G(P). Therefore, either
sep(Pi, Pj) > 1 or sep(Pi, Pk) > 1, either case being a contradiction.

Theorem 2. Let P be a collection of n disjoint objects in R3 that project to
convex β-fat objects. Then the number of edges in G(1)(P) is O(n/β).

Proof. We will charge each arc in G(1)(P) to an object and then use a packing
argument to show that the number of arcs in G(1)(P) charged to each object is O(1/β).

We project all objects onto the xy-plane, making them convex fat objects. In
this setting, we say that one object is above another if the original objects satisfy this
relationship.

Recall that for a planar object o, its size is defined as the radius of its smallest
enclosing disk. Consider an arc (Pi, Pj) in G(1)(P). We charge the arc to the smaller
of the two objects. That is, we charge the arc to Pi if size(proj(Pi)) < size(proj(Pj))
and to Pj otherwise. We claim that any object is charged O(1/β) arcs. To prove this,
take an arbitrary object Pj such that (Pi, Pj) is charged to Pi. Let ρ = size(proj(Pi)).
If there is an arc in G(1)(P) between Pi and Pj , then proj(Pj) intersects proj(Pi).
Let p be a point in this intersection. Then a circle centered at p with radius ρ is
centered in proj(Pj) and does not fully enclose proj(Pj), or else proj(Pj) would have
a smallest enclosing circle that is smaller than or equal to that of proj(Pi). Thus,
this circle contains at least βπρ2 units of area of proj(Pj) by the definition of fatness.
Also, this circle is completely enclosed in a circle of radius 2ρ centered at the center
of the smallest enclosing disk of proj(Pi). This is illustrated in Figure 1.

Since all objects proj(Pj) where Pj is above Pi and sep(Pi, Pj) = 1 must be
disjoint by Lemma 9, and because each must have at least βπρ2 units of area inside
a disk that has 4πρ2 units of area, there can be only 4/β edges of G(1)(P) charged to
Pi. We must double this number to account for objects Pj below Pi such that (Pj , Pi)
is charged to Pi. Therefore, we get an upper bound on the number of arcs charged to
Pi of 8/β. Finally, since there are n objects, G(1)(P) can have at most 8n/β edges,
which is O(n/β).
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Fig. 2. A projection of a polyhedron with witness edges added.

5. Computing depth orders. We now present the algorithm for finding the
depth order of a set P = {P1, . . . , Pn} of n disjoint β-fat convex polyhedra. In contrast
to the proof of Theorem 2, we require the complexity of the projection of each object
to be constant.

Witness edges. One of the basic steps that we need to perform repeatedly in our
algorithm will be to find polyhedra that are above a query polyhedron. To facilitate
this, we will add so-called witness edges inside the projection of each Pi. They are
defined as follows.

Let β′ be defined so that each member of {proj(Pi)|Pi ∈ P} is β′-fat. By Lemma 1
we know that β′ = Ω(β). Also let C = {0, α, 2α, . . . , cα}, where α = (β′π)/8 and
c = �2π/α�. We call the directions in C canonical directions. We require the witness
edges to have the following properties. Let Wi and Wj be the sets of witness edges
constructed for Pi and Pj , respectively.

(i) Each witness edge has one of the canonical directions.
(ii) For any pair of polyhedra Pi and Pj , we have that proj(Pi) intersects proj(Pj)

if and only if at least one of the following is true:
• A vertex of proj(Pi) is inside proj(Pj), or a vertex of proj(Pj) is inside
proj(Pi).

• A witness edge in Wi crosses a witness edge in Wj .
The construction of the set Wi of witness edges for Pi is done as follows. For each
edge e = vw of proj(Pi) we add to Wi two witness edges e′ and e′′ that are incident
to v and w, respectively, extend into the interior of Pi, and form a triangle with e.
The directions of the witness are chosen from the canonical directions, such that the
angles that e′ and e′′ make with e are minimal; see Figure 2. We claim that if we
add the witness edges in this manner, they have the required properties. The first
property holds by construction, so it remains to prove the second property. We first
argue that the witness edges lie completely inside proj(Pi), which implies that the
“if” part of the second property holds.

Lemma 10. The witness edges in Wi lie completely inside proj(Pi).
Proof. Let e be the edge for which we are adding witness edges. Let p be the

midpoint of e and consider the circle C with center p and diameter equal to the length
of e. Suppose an edge of proj(Pi) intersects the region bounded by e′ and e′′. Note
that this region must be inside the lighter region in Figure 3 by the minimal-angle
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Fig. 3. No edge of the polygon may enter the light gray region.

condition which implies that the angles that e makes with e′ and e′′ are at most
α. Then, by convexity of proj(Pi), we know that proj(Pi) ∩ C must be completely
inside the union of the triangular wedges in Figure 3. These wedges have area at
most β′π|e|2/8 inside C. Hence, area(proj(Pi) ∩ C) < β′π|e|2/4, contradicting our
assumption that proj(Pi) is β′-fat.

The following lemma, which follows directly from Lemma 4, finishes the proof
that the witness edges have the required properties.

Lemma 11. If proj(Pi) intersects proj(Pj) and proj(Pi) does not contain a
vertex of proj(Pj) or vice versa, then a witness edge from Pi intersects a witness edge
from Pj.

The algorithm. The general idea of our algorithm is as follows. By Lemma 8
it is sufficient to find all pairs of objects Pi, Pj of separation 1 in the depth-order
graph. Such a pair of objects must, of course, intersect in the projection. Thus,
ideally we would like to find among all pairs Pi, Pj whose projections intersect the
pairs of separation 1. Our algorithm does not quite achieve this—it will find more
pairs, but the number of extra pairs we find will be small. Lemma 11 suggests that
the task of finding the intersecting pairs of projections can be broken into two parts:
finding pairs for which there is a vertex of the projection of one polyhedron inside the
projection of another and finding crossing pairs of witness edges.

Below we give a more detailed description of the algorithm. The algorithm will
find a set A of arcs—a superset of the arcs (Pi, Pj) for objects of separation 1—and
then topologically sort the graph G∗ = (P, A). Initially A is empty.

1. For every vertex v of each object Pi ∈ P, find the objects P b(v) and P a(v)
that are directly below and above v, respectively, and add the arcs (P b(v), Pi)
and (Pi, P

a(v)) to A.
2. Sort the objects by decreasing size so that size(proj(P1)) ≥ · · · ≥ size(proj

(Pn)), and define Si = {P1, . . . , Pi}.
3. For every witness edge e associated with each Pi, find a set P(e) consisting

of objects Pj ∈ Si−1 with the following properties:
(P1) Each Pj ∈ P(e) has a witness edge that intersects e.
(P2) Each Pj ∈ P(e) is above Pi.
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(P3) Each Pj ∈ Si−1 with sep(Pi, Pj) = 1 that satisfies (P1) and (P2) is a
member of P(e).

For each Pi, add the set of arcs {(Pi, Pj) : Pj ∈ P(e) and e is a witness edge
of Pi} to A.

4. Repeat step 3 with “below” substituted for “above” and the directions of the
arcs added reversed.

5. Topologically sort the graph G∗ = (P, A) and report the order.
Lemma 12. The order reported by the algorithm is a valid depth order for P if a

depth order exists.
Proof. Assume a depth order exists for P. It follows directly from the construction

that every arc added to the set A is also an arc in the depth-order graph G(P). It
remains to argue that A is a superset of the set of arcs in the graph G(1)(P).

Consider an arc (Pi, Pj) in G(1)(P). If there is a vertex of proj(Pi) in proj(Pj)
(or vice versa) then, because sep(Pi, Pj) = 1, that vertex is directly below Pj (resp.,
above Pi). Hence, the arc is found in step 1. By Lemma 11, the remaining case is
that a witness edge of proj(Pi) intersects a witness edge from proj(Pj). Without loss
of generality, assume Pi is smaller than Pj . Hence, Pj ∈ Si−1. Since (Pi, Pj) is an arc
in G(1)(P), sep(Pi, Pj) = 1. By condition (P3), the arc will be found in step 3 or 4,
depending on whether Pj is above or below Pi.

Step 1 can be carried out efficiently using the ray-shooting data structure pre-
sented in the previous section. Hence, it remains to describe step 3 in more detail.
This step will be performed as follows. We will treat each P2, . . . , Pn in order. When
we have to handle Pi, we will make sure we have a data structure available that we
can query with each witness edge e of Pi and that will then report the set P(e). After
having queried with all witness edges of Pi, we insert Pi into the data structure and
proceed with Pi+1. Next we describe this data structure.

The witness-edge-intersection data structure. Consider the set of all witness edges
of the objects in Pi−1. These witness edges have canonical directions, so we can
partition them into |C| subsets depending on their directions. The query segment e
has one of the canonical directions as well. Hence, we construct for each subset |C|
different data structures, one for each query direction. We now describe the structure
for one such subset, call it W , and a fixed query direction.

Assume without loss of generality that the witness edges in W are all horizontal,
and that the query edge e is vertical. The structure is a multilevel data structure
defined as follows.

• The top level of the data structure is a segment tree T on the projections of
the edges in W onto the x-axis. Note that each node ν in T corresponds to
a vertical slab in the plane.

• Let W (ν) denote the edges in W whose projection is in the canonical subset
of ν. Such an edge crosses the slab of ν but not the slab of the parent of ν.
We store the edges in W (ν) in a balanced binary tree T (ν), ordered according
to their y-coordinates. We call this the “slab tree.” So far our structure is
just a standard two-level tree to perform intersection queries with vertical
segments in a set of horizontal segments in the plane [10].

• Let μ be a node in T (ν). Let P(μ) denote the subset of objects that have a
witness edge in the subtree rooted at μ. The node μ represents a rectangular3

region R(μ) that is bounded by two slab boundaries and the topmost and

3This is only true because we assumed the edges in W are horizontal and the query edge is
vertical. In general, μ will represent a parallelogram, but this does not influence the arguments.
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bottommost edge stored in the subtree rooted at μ. We associate with μ a
reduced subset P(μ) ⊂ P(μ) of the objects, in the following way: Pj ∈ P(μ)
if and only if Pj ∈ P(μ) and size(proj(Pj)) ≥ size(R(μ))/2

√
2.

By Lemma 2 we can find a set Q(μ) consisting of O(1/β2) points such that

the projection of any object Pj ∈ P(μ) is stabbed. We arbitrarily assign each

Pj ∈ P(μ) to one of the points q it contains, and we associate a balanced
binary search tree T (q) with each point q on the associated objects, where
the sorting order is defined by the height of the objects along the vertical line
through q.

This finishes the description of the data structure. Next we describe the algorithms
to query the structure and to insert an object.

Lemma 13. With the structure described above, we can find the set P(e) referred
to in Step 3 of the depth-order algorithm in O((1/β3) log3 n) time. Furthermore, the
set P(e) contains O((1/β3) log2 n) objects.

Proof. Recall that we actually have to query |C| = O(1/β) different versions of
the structure. We focus on the time spent in one of these structures.

To perform a query with a witness edge e belonging to an object Pi, we search
with e in the first two levels of the tree in the standard way. This gives us O(log2 n)
nodes μ whose subtrees contain exactly those edges that intersect e. At each node
μ, we use the trees T (q) for q ∈ Q(μ) to find the lowest object that is above Pi. We
can search in T (q) since Pi is known to intersect all objects in P(q) in the projection.
Hence, at μ, we find |Q(μ)| objects in O(|Q(μ)| log n) time in total. The query time
and the bound on the size of P(e) follow.

It remains to argue that the reported set has the required properties. Properties
(P1) and (P2) follow immediately from the definition of the data structure and query
algorithm. Furthermore, when we query a tree T (q) we can indeed restrict our atten-
tion to the lowest object that is above Pi, because the other objects Pj will either be
below Pi or have sep(Pi, Pj) > 1. Hence, to prove (P3) it is sufficient to argue that
any Pj satisfying (P1) and (P2) and with sep(Pi, Pj) = 1 will be a member of one of

the sets P(μ). We know that the object will be a member of P(μ) for a visited node
μ.

Suppose for a contradiction that Pj 
∈ P(μ). This means that we must have
size(proj(Pj)) < size(R(μ))/2

√
2. This can happen only when size(proj(Pj)) is less

than d/2, where d is the distance between the top and bottom edges of R(μ), because
Pj crosses the slab of which R(μ) is a part. On the other hand, when we reach a node
μ in the slab tree by querying with a witness edge e of Pi, we have size(proj(Pi)) ≥
length(e)/2 ≥ d/2. This contradicts that when we query with a witness edge e of Pi,
all objects Pj in the data structure have size(proj(Pj)) ≥ size(proj(Pi)).

Lemma 14. An object Pi can be inserted in O((1/β) log2 n(log n + 1/β2)) time
into the structure.

Proof. Each of the O(1) witness edges of Pi has to be inserted into |C| = O(1/β)
structures. To insert a witness edge, we first find each node μ in a slab tree whose
canonical subset contains the witness edge. We test if size(Pj) ≥ size(R(μ))/2 and, if
so, find a point q ∈ Q(μ) that is contained in proj(Pi) and insert Pi into the tree T (q).
This takes O(log2 n(log n + 1/β2)) time per structure, thus O((1/β) log2 n(log n +
1/β2)) time in total.

From Lemmas 13 and 14, we see that steps 3 and 4 of the depth-order algo-
rithm can be performed in O((1/β3)n log3 n) time in total. We get the following
theorem.
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Theorem 3. Let P be a collection of n disjoint constant-complexity β-fat convex
polyhedra in R3. Then we can compute a depth order for P in time O((1/β3)n log3 n)
if it exists.

6. Verifying depth orders. In order for our algorithm to be complete, it should
output the correct depth order if one exists, but it should also not output an incorrect
depth order if no depth order exists. Unfortunately the algorithm of the previous
section does not necessarily detect cycles in the ≺-relation. Hence, we present an
algorithm for checking whether a given order is correct.

We use the general approach by De Berg, Overmars, and Schwarzkopf [11] for veri-
fying depth orders. Let L=P1, . . . , Pn be the given order. Define L1 = {P1, . . . , P�n/2�}
and L2 = {P�n/2�+1, . . . , Pn}. We first check if any object in L1 is above any object
in L2. Clearly, if the answer is “yes,” then the given ordering is not valid. Otherwise,
we verify the lists L1 and L2 recursively. If T (β, n) is the amount of time to check the
objects in L1 against those in L2, then the overall algorithm takes O(T (β, n) log n)
time. We shall see that T (β, n) = O((1/β2)n log2 n), so the algorithm for verifying
the depth order takes O((1/β2)n log3 n) time. Next we describe how to check the
objects in L1 against those in L2.

First we introduce a new type of witness edge. The difference from the witness
edges in section 5 is that the new witness edges will have canonical directions in
three dimensions, rather than in the projection. In order to achieve this we need the
following lemma from Aronov, De Berg, and Gray [4].

Lemma 15 (see [4]). Let σ := �54
√

3/β	. For any convex β-fat object o in R3,
there exist concentric axis-aligned cubes C−(o) and C+(o) with C−(o) ⊆ o ⊆ C+(o)
such that

size(C+(o))

size(C−(o))
= σ .

Assume we are given C−(o) and C+(o) for object o. We partition each face of
C+(o) into squares with side length equal to the side length of C−(o). For each facet
f of C−(o) and each square on the corresponding facet of C+(o), we sweep f so that
it coincides with the square; see Figure 4(i). The sweeping directions form the set of
canonical directions. There are at most σ2 different directions that a facet of C−(o)
can be swept in, so we have O(1/β2) canonical directions. We denote an arbitrary

member of this set of directions by 	d. Note that the set of canonical directions thus
obtained does not depend on o, only on the value σ, which is specified by the fatness
factor β.

For each Pi we construct a set Wi of witness edges as follows. First, we add the
edges of C−(Pi) to Wi. Second, for each silhouette vertex v of Pi (a silhouette vertex
is a vertex whose projection is a boundary vertex of the projection of Pi), we add an
edge ev that connects v to one of the facets of C−(Pi). This edge is allowed to be
in any of the canonical directions as long as it reaches a facet of C−(Pi). We can be
certain that at least one direction works for v since there must be at least one pair
consisting of a facet f of C−(Pi) and a square on a facet of C+(Pi) such that v is hit
when sweeping f to that square.

We also add some vertices to Pi that we call witness vertices as follows (see
Figure 4(ii)). For each witness edge e, we add the intersection point of proj(e) and
∂ proj(C−(Pi)), lifted back to e, to the set of witness vertices for Pi. Moreover, if the
projected witness edges of two consecutive silhouette vertices intersect, then we lift
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(i)
C+

C−

(ii)

C−

f(e)
e

Fig. 4. (i) One of the canonical directions. (ii) Projection of the new witness edges and witness
vertices.

those intersection points to either of the witness edges and make the resulting point
a witness vertex. Finally, we add the vertices of C−(Pi) to the set of witness vertices.

Lemma 16. The witness edges satisfy the following properties.
(i) Each witness edge has one of the canonical directions.
(ii) For any pair of polyhedra Pi and Pj, we have that proj(Pi) intersects proj(Pj)

if and only if at least one of the following is true:
• A projected witness or silhouette vertex of Pi is inside proj(Pj), or a

projected witness or silhouette vertex of Pj is inside proj(Pi).
• A projected witness edge in Wi crosses a projected witness edge in Wj.

Proof. Property (i) is satisfied by construction. Also, if one of the two conditions
in property (ii) is satisfied, then the projections of Pi and Pj must intersect since they
share a point. Therefore, we will concentrate on proving that a projected witness edge
in Wi crosses a projected witness edge in Wj assuming that proj(Pi) ∩ proj(Pj) 
= ∅,
and that no projected witness or silhouette vertex of Pi is contained in proj(Pj) (or
vice versa).

Since proj(Pi) intersects proj(Pj) and no projected silhouette vertex of one is
inside the projection of the other, there must be silhouette edges of proj(Pi) and
proj(Pj) that cross. Take one such pair of edges and call them ei and ej . Consider
the arrangement induced by the projections of the silhouette edges and the witness
edges of Pi, and let f(ei) denote the (bounded) face in this arrangement with ei on
its boundary; see Figure 4(ii). Define f(ej) similarly for the arrangement induced by
the projections of the silhouette edges and the witness edges of Pj . By Lemma 4,
there must be an intersection between a pair of edges from f(ei) and f(ej), neither
of which is proj(ei) or proj(ej). Hence, there must be an intersection between two
projected witness edges.

It follows from Lemma 16 that there is an object from L1 below an object from L2

when at least one of the following conditions holds for some pair Pi, Pj with Pi ∈ L1

and Pj ∈ L2: a witness or silhouette vertex of Pi is below Pj , or a witness or silhouette
vertex of Pj is above Pi, or a witness edge of Pi is below a witness edge of Pj . To
test for the first condition, we construct a data structure for vertical ray shooting
on the objects in L2 and query it with upward rays from the witness and silhouette
vertices of the objects in L1. The second condition can be tested similarly, namely,
by constructing a data structure for vertical ray shooting on the objects in L1 and
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querying it with downward rays from the witness and silhouette vertices of the objects
in L2. By Theorem 1 and the fact that the total number of witness and silhouette
vertices is O(n), this will take O((1/β2) log2 n) in total. To test the third condition
we proceed as follows. Let W (L1) and W (L2) denote the set of all witness edges
defined for the objects in L1 and L2, respectively. We will preprocess W (L2) into a
data structure for querying with witness edges from W (L1), according to the following
lemma.

Lemma 17. We can preprocess the set W (L2) in O((1/β2)n log n) time into a
data structure of size O((1/β2)n log n) such that, for any witness edge e ∈ W (L1),
we can determine in O((1/β2) log2 n) time whether any witness edge from W (L2) is
above e.

Proof. Let W�d(L2) ⊂ W (L2) denote the subset of witness edges of canonical

direction 	d. Note that ∑
�d

|W�d(L2)| = |W (L2)| = O(n).

Define W�d(L1) similarly. For each pair of directions 	d1, 	d2 we build a data structure
on W�d1

(L2) for querying with edges from W�d2
(L1). (In fact, the structure can be

queried with any segment with direction 	d2.) Assume without loss of generality that
	d1 is parallel to the x-axis and 	d2 is parallel to the y-axis. The structure is a multi-
level data structure similar to the structure of section 5. The first two levels are
exactly the same as for the structure in section 5: the first level is a segment tree on
the x-ranges of the witness edges, and the second level is a balanced binary search
tree on their y-values (in section 5 this was called the slab tree). For each canonical
subset of a node in the slab tree, we store its highest witness edge. Note that the
concept of “highest” is well defined since the witness edges in the canonical subset all
have the same direction and the query edge will have a fixed direction as well.

A query with a witness edge e ∈ W�d2
(L1) can be answered in O(log2 n) time,

as follows: query with the x-coordinate of e in the segment tree; for each node ν on
the path, query with the y-range of e in the associated slab tree T (ν); and for each
selected node μ in T (ν), check if the witness stored there is above e.

When we are querying with an edge e, we actually have to query in the sets
W�d(L2) for each canonical direction 	d. Since there are O(1/β2) canonical directions,

this means that the total query time is O((1/β2) log2 n).

Building the structure on W�d1
(L2) for a given query direction 	d2 can be done

in O(|W�d1
(L2)| log |W�d1

(L2)|) time. This is because the associated structures of the
segment tree (the slab trees) can be built in linear time if we presort the witness
edges by y-coordinate. After that we compute the highest edge for each node in a
slab tree in a bottom-up fashion (the highest edge for a node is the higher of the
highest edges of its two children) in linear time. Hence, the overall preprocessing time
is the same as the amount of storage, which is O(|W�d1

(L2)| log |W�d1
(L2)|). Overall,

the preprocessing is therefore

∑
�d1,�d2

O(|W�d1
(L2)| log |W�d1

(L2)|)
= O(1/β2) ·

∑
�d1
O(|W�d1

(L2)| log |W�d1
(L2)|)

= O((1/β2)n log n).

Putting everything together, we get the following theorem.
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Theorem 4. We can verify whether a given order on a set of n disjoint convex
constant-complexity β-fat polyhedra in R3 is a valid depth order in O((1/β2)n log3 n)
time.

7. Concluding remarks. We have presented new and improved solutions to
three problems on fat convex polyhedra in 3-space: vertical ray shooting, computing
depth orders, and verifying depth orders. One open problem is to see if the results
can be extended to fat nonconvex polyhedra or fat curved objects.

Our algorithm for verifying depth orders uses a collection of witness edges that
have canonical directions in three dimensions and allow us to capture (together with
a certain set of points in the objects) the above-below relation between the objects.
It would be interesting to investigate if these witness edges can be useful for other
problems on convex fat objects as well.

Appendix. This appendix contains a proof that was omitted.
Lemma 3. Let P be a β-fat convex polygon with n vertices. There is a set T of

α-fat triangles that cover P where |T | = O(n) and α ≥ β/128.
Proof. Recall that for triangles, we use the definition that the fatness is given by

the smallest angle in the triangle.
Let S be the largest possible square contained in P . Any convex subset of P that

contains all of S is at least β′-fat, where β′ = Θ(β), by Lemma 19 below.
We extend the edges of S until they intersect P and add vertices to P at the

intersection points (see Figure 5). We let Pa denote the part of P above the (extended)
top edge of S, let Pb denote the part below the bottom edge of S, let Pc denote the
part to the right of the right edge of S, and let Pd denote the part to the left of the
left edge of S. We will show how to cover Pa. The three other parts of P are covered
similarly, and S is covered with two triangles that each have a fatness of 45◦.

Pa

Fig. 5. One of the subpolygons of P induced by S.

An ear of a polygon P consists of two consecutive edges of P that have the prop-
erty that a straight edge connecting the first and last vertex of the edges stays com-
pletely inside the polygon. In a convex polygon, any two consecutive edges are ears.

We cover Pa by choosing an arbitrary ear from it (except any ear that also contains
the top edge of S), covering it using Lemma 18, and then replacing P by P with that
ear removed. Since no part of S is ever removed, P remains fat. Thus we keep
removing ears from Pa until it exactly coincides with the extended edge of S.
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Since we cover the ears that we remove using the procedure from Lemma 18, we
add a constant number of triangles to T per vertex, implying that |T | = O(n). The
exact bound on α is given by combining Lemmas 18 and 19.

Lemma 18. An ear of a β-fat polygon P can be covered with at most four α-fat
triangles that all stay inside P where α = (βπ)/16.

Proof. In a convex polygon, an ear is a triangle formed by three consecutive
vertices. Consider the ear defined by vertices vi−1, vi, and vi+1. Let φi−1, φi, and
φi+1 be the angles at the respective vertices—see Figure 6(i). Because P is β-fat, we
know that the angle between any two adjacent edges of P , and in particular the angle
φi, is at least β/(2π). There are three possibilities for the other two angles, φi−1 and
φi+1: either they are both at least α, they are both less than 2α, or one is larger than
2α and one is smaller than α. Note that these cases overlap.

Case (i). φi−1 ≥ α and φi+1 ≥ α. In this case, the ear is trivial to cover: it is
already an α-fat triangle that can be covered by a copy of itself.

Case (ii). φi−1 < 2α and φi+1 < 2α. First, we add triangles to the edges vi−1vi
and vivi+1 where the angles of the edges of the triangles with respect to the boundary
edges are at least 2α. By Lemma 10, these triangles must stay inside P as long as
α ≤ (βπ)/16. However, it is clear that the nonboundary vertex of these triangles
must be outside the ear that we are covering. Therefore, we can place a triangle at
the middle vertex of the ear with two sides that correspond to the sides of the two
triangles that we just added and whose third side is the edge of the ear that goes
between these two edges. This triangle completes the covering of the ear.

(i)

vi−1

vi

vi+1φi−1
φi φi+1

(ii)
vi−1

vi

vi+1ϕ1
ϕ2

φi ϕ3 ϕ4

φi+i

vj

Fig. 6. (i) Case (ii). (ii) Case (iii).

Case (iii). φi−1 > 2α and φi+1 < α (or the symmetric case). See Figure 6(ii). In
this case, we add an edge between the vertex that is at the large angle (vi−1, without
loss of generality) and the edge across from it, making vertex vj . This splits φi into two
angles ϕ1 and ϕ2. We place vj such that ϕ1 is exactly α. Thus, ϕ3 = α + φi+1 > α.
By assumption, ϕ2 > α. Thus, we can cover the triangle vi−1vivj with a copy of
itself. Triangle vi−1vjvi+1 can be covered according to the procedure outlined for
Case (ii) above. Note that in all cases, we have covered the ear with at most four
α-fat triangles.

Lemma 19. Let P be a convex β-fat polygon in R2 and S be the largest square
contained in P . Then any convex subset P ′ such that S ⊆ P ′ ⊆ P is β′-fat where
β′ ≥ β/(8π).

Proof. By the results of section 3.2.1 of Van der Stappen’s thesis [25], the side
length of S is at least βρ/(2

√
2), where ρ is the diameter of P .

Let d = p1p2 be the diameter of P ′. Let S′ ⊆ S be the largest square contained
in S that has an edge parallel to d. The side length of S′ is at least

√
2/2 times the

side length of S. Let p3 and p4 denote the midpoints of the sides of S′ parallel to d;
see Figure 7.

We will make two triangles: p1p3p4 and p2p3p4. By convexity, both of these
triangles must be completely inside P ′. The sum of the area of these triangles is not
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dp1 p2

S

S ′

p3

p4

P ′

Fig. 7. P ′ must be fat.

dependent on the placement of S′—it is always d · s/2, where s is the side length of
S′.

Since P ′ is convex, the fatness of P ′ is determined by a circle placed at p1 with
radius d [25]. The area of that circle is πd2. Thus the fatness of P ′ is

β′ =
d·s
2

πd2
=

s

2dπ
≥ βρ

8dπ
≥ β

8π

since d ≤ ρ.

REFERENCES

[1] P. K. Agarwal, M. de Berg, D. Halperin, and M. Sharir, Efficient generation of k-
directional assembly sequences, in Proceedings of the Seventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 1996, pp. 122–131.

[2] P. K. Agarwal, M. J. Katz, and M. Sharir, Computing depth orders for fat objects and
related problems, Comput. Geom., 5 (1995), pp. 187–206.
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CONVERGENCE OF AUTONOMOUS MOBILE ROBOTS WITH
INACCURATE SENSORS AND MOVEMENTS∗

REUVEN COHEN† AND DAVID PELEG‡

Abstract. A number of recent studies concern algorithms for distributed control and coordi-
nation in systems of autonomous mobile robots. The common theoretical model adopted in these
studies assumes that the positional input of the robots is obtained by perfectly accurate visual sen-
sors, that robot movements are accurate, and that internal calculations performed by the robots on
(real) coordinates are perfectly accurate as well. The current paper concentrates on the effect of
weakening this rather strong set of assumptions and replacing it with the more realistic assumption
that the robot sensors, movement, and internal calculations may have slight inaccuracies. Specifi-
cally, the paper concentrates on the ability of robot systems with inaccurate sensors, movements, and
calculations to carry out the task of convergence. The paper presents several impossibility theorems,
limiting the inaccuracy levels that still allow convergence, and prohibiting a general algorithm for
gathering, namely, meeting at a point, in a finite number of steps. The main positive result is an
algorithm for convergence under bounded measurement, movement, and calculation errors.
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1. Introduction: Background. Distributed systems consisting of autonomous
mobile robots (also known as robot swarms) are motivated by the idea that instead of
using a single, highly sophisticated and expensive robot, it may be advantageous in
certain situations to employ a group of small, simple, and relatively cheap robots. This
approach is of interest for a number of reasons. Multiple robot systems may be used
to accomplish tasks that cannot be achieved by a single robot. Such systems usually
have decreased cost due to the simpler individual robot structure. These systems can
be used in a variety of environments where the acting (human or artificial) agents
may be at risk, such as military operations, exploratory space missions, cleanups of
toxic spills, fire fighting, search and rescue missions, and other hazardous tasks. In
such situations, a multiple robot system has a better chance of successfully carrying
out its mission (while possibly accepting the loss or destruction of some of its robots)
than a single irreplaceable robot. Such systems may also be useful for carrying out
simple repetitive tasks that humans may find extremely boring or tiresome.

Subsequently, studies of autonomous mobile robot systems can be found in dif-
ferent disciplines, from engineering to artificial intelligence (e.g., [17, 23, 24]). No-
table engineering efforts in these directions include the cellular robotic system [18],
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swarm intelligence [5], and the self-assembly machine [20]. Relevant studies in the
realm of artificial intelligence include social interaction and intelligent behavior [19],
behavior-based robot systems [4, 21, 22], multirobot learning [23, 24], and ant robotics
[30]. (A survey on this area is presented in [6].)

A number of recent studies on autonomous mobile robot systems focus on algo-
rithms for distributed control and coordination. Most of the studies mentioned above
handled control and coordination issues following experimental, empirical, or archi-
tectural approaches, which resulted in the design of heuristic protocols. Algorithmic
aspects were handled implicitly, with little or no emphasis on formal analysis of the
correctness, termination, or complexity properties of the algorithms. During the last
decade, various coordination related issues have been studied from a distributed com-
puting point of view (cf. [2, 15, 26, 27, 28]). The approach is to propose suitable
computational models and analyze the minimal capabilities the robots must possess
in order to achieve their common goals. The basic model studied in these papers can
be summarized as follows. The robots execute a given algorithm in order to achieve
a prespecified task. Each robot in the system is assumed to operate individually in
simple cycles consisting of three steps:

(1) Look. Determine the current configuration by identifying the locations of all
visible robots and marking them on your private coordinate system (the model may
assume perfect or limited visibility range);

(2) Compute. Execute the given algorithm, resulting in a goal point pG; and
(3) Move. Travel towards the point pG.
Weak and strong model assumptions. Due to the focus on cheap robot de-

sign and the minimal capabilities allowing the robots to perform some tasks, most
papers in this area (cf. [8, 14, 15, 27]) assume the robots to be rather limited. Specif-
ically, the robots are assumed to be indistinguishable, so when looking at the current
configuration, a robot cannot tell the identity of the robots at each of the points (apart
from itself). Furthermore, the robots are assumed to have no means of direct commu-
nication. This gives rise to challenging “distributed coordination” problems since the
only permissible communication is based on “positional” or “geometric” information
exchange, yielding an interesting variant of the classical (direct communication-based)
distributed model.

Moreover, the robots are also assumed to be oblivious (or memoryless); namely,
they cannot remember their previous states, their previous actions, or the previous
positions of the other robots. Hence the algorithm employed by the robots for the
Compute step cannot rely on information from previous cycles, and its only input is
the current configuration. While this is admittedly an overrestrictive and unrealistic
assumption, developing algorithms for the oblivious model still makes sense in various
settings, for two reasons. First, solutions that rely on nonobliviousness, namely,
storing information regarding history, become more complex when they need to be
applied in a dynamic environment where the robots have different start times, i.e.,
they are activated in different cycles, or robots might be added to or removed from the
system dynamically. In dynamic environments an algorithm relying on the outcome
of previous rounds may enter an inconsistent state and fail to reach the desired result.
In contrast, oblivious solutions are insensitive to changing conditions and thus require
no modification in dynamic settings. Second, any algorithm that works correctly for
oblivious robots is inherently self-stabilizing; i.e., it withstands transient errors that
alter the robots’ local states.

On the other hand, the robot model studied in the literature includes the following
overly strong assumptions:
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• when a robot observes its surroundings, it obtains a perfect map of the
locations of the other robots relative to itself;

• when a robot performs internal calculations on (real) coordinates, the out-
come is exact (infinite precision) and suffers no numerical errors; and

• when a robot decides to move to a point p, it progresses on the straight line
connecting its current location to p, stopping either precisely at p or at some
earlier point on the straight line segment leading to it.

All of these assumptions are unrealistic. In practice, the robot measurements suffer
from nonnegligible inaccuracies in both distance and angle estimations. (The most
common range sensors in mobile robots are sonar sensors. The accuracy in range
estimation of the common models is about ±1%, and the angular separation is about
3◦; see, e.g., [25]. Other possible range detectors are based on laser range detection,
which is usually more accurate than the sonar, and on stereoscopic vision, which is
usually less accurate.) The same applies to the precision of robot movements. Due to
various mechanical factors such as unstable power supply, friction, and force control,
the exact distance a robot traverses in a single cycle is hard to control or to even
predict to a high degree of accuracy. This makes most previous algorithms proposed
in the literature inapplicable in most practical settings. Finally, the robots’ inter-
nal calculations cannot be assumed precise, for a variety of well-understood reasons
such as convergence rates of numerical procedures, truncated numeric representations,
rounding errors, and more.

In this paper we address the issue of imperfections in robot measurements, calcu-
lations, and movements. Specifically, we replace the unrealistic assumptions described
above with more appropriate ones, allowing for measurement, calculation, and move-
ment inaccuracies, and show that efficient algorithmic solutions can still be obtained
in the resulting model.

We focus on the gathering and convergence problems, which have been extensively
studied in the common (fully accurate) model (cf. [7, 8, 15, 27, 28]). The gathering
problem is defined as follows. Starting from any initial configuration, the robots
should occupy a single point within a finite number of steps. The closely related
convergence problem requires the robots to converge to a single point, rather than
reach it (namely, for every c > 0 there must be a time tc by which all robots are
within a distance of at most c of each other).

It is important to note that analyzing the effect of errors is not merely of theoreti-
cal value. In section 3.1 we show that gathering cannot be guaranteed in environments
with errors. In section 3.2 we illustrate how certain existing geometric algorithms,
including ones designed for fault tolerance, fail to guarantee even convergence in the
presence of small errors. We also show (in Theorem 6.10) that the standard center-
of-gravity algorithm may also fail to converge when errors occur.

Related work. A number of problems concerning coordination in autonomous
mobile robot systems have been considered so far in the literature. The gathering
problem was first discussed in [27, 28] in the semisynchronous model. It was proved
that it is impossible to achieve gathering of two oblivious autonomous mobile robots
that have no common sense of orientation under the semisynchronous model. Also, an
algorithm was presented in [28] for gathering N ≥ 3 robots in the semisynchronous
model. In the asynchronous model, an algorithm for gathering N = 3, 4 robots is
brought in [8, 15], and an algorithm for gathering N ≥ 5 robots has recently been
described in [7]. Fault tolerant gathering algorithms (in the crash and Byzantine fault
models) were studied in [1]. The gathering problem was also studied in a system where
the robots have limited visibility. The visibility conditions are modeled by means of
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a visibility graph, representing the (symmetric) visibility relation of the robots with
respect to one another; i.e., an edge exists between robots i and j if and only if i and j
are visible to each other. (Note that in this model visibility is a boolean predicate and
does not involve imprecisions; namely, if robot j is visible to robot i, then its precise
coordinates are measured accurately.) It was shown that the problem is unsolvable in
the case that the visibility graph is not connected [14]. In [2] a convergence algorithm
was provided for any N in limited visibility systems. The effect of sensor and control
errors was also studied numerically in [2]. The natural gravitational algorithm based
on going to the center of gravity and its convergence properties were studied in [10, 11]
in the semisynchronous and asynchronous models, respectively.

Another class of problems studied, e.g., in [12, 13, 26, 27, 28], concerns the for-
mation of geometric patterns. The robots are required to arrange themselves (ap-
proximately) in a simple geometric form (such as a circle, a simple polygon, or a line
segment) within a finite number of cycles. Algorithms were presented for enabling a
group of robots to achieve such self-arrangement and even spread itself nearly evenly
along the form shaped. Flocking (or “following the leader”) is yet another task studied
in the literature, where the robots are required to follow the movements of a prede-
fined leader [15]. Distributed search by a group of robots after a (static or moving)
target in a specified region is a potentially useful application for mobile robot sys-
tems. An important subtask in this context is achieving an even distribution of the
robots, namely, requiring the robots to spread out uniformly over a specified region
of a simple geometric shape. This problem has been studied in [26]. A related task
of interest is partitioning, where the robots are required to organize themselves into a
number of groups. An algorithm for this problem was also presented in [26]. A final
example is the wake-up task, where a single initially awake robot must wake up all
the others (with the help of those already wakened). The freeze-tag problem, which is
a paradigm for the distributed wakeup of a group of robots, was presented in [3, 29]
and given a number of approximation algorithms.

Our results. In this paper we study the convergence problem in the common
semisynchronous model where the robots’ only inputs are obtained by inaccurate vi-
sual sensors, and their movements and internal calculations may be inaccurate as well.
In section 3 we present several impossibility theorems in a model allowing measure-
ment errors, limiting the inaccuracy allowing convergence, and prohibiting a general
algorithm for gathering in a finite number of steps. In section 4 we present an algo-
rithm for convergence under bounded measurement error and prove its correctness,
first in the fully synchronous model and then in the semisynchronous model. In sec-
tion 5 we describe how movement and calculation errors can be treated. In section
6 we consider the fully asynchronous model, where we analyze our algorithm in the
one-dimensional case and compare it with the ordinary center-of-gravity algorithm.
The main contributions are summarized in Table 1. We remark that the paper does
not explicitly concern the question of establishing the convergence rate of our algo-
rithm. Note, however, that our convergence proofs do imply certain lower bounds on
the convergence rate (that is, upper bounds on the time to halve some measure of the
dispersion). Some additional comments on this issue are deferred to the conclusions
section.

2. The model. Robot operation cycle. Each of the N robots i in the system
is assumed to operate individually in simple cycles. Every cycle consists of three steps,
Look, Compute, and Move.

• Look. Identify the locations of all robots in i’s private coordinate system;
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Table 1

The contribution of this paper. Results of convergence or divergence for the Go to COG and RCG

algorithms under different timing models for robots with inaccurate sensors.

Algorithm Go to COG RCG

FSYNC converges (Lemma 4.2) converges (Thm. 4.8)
SSYNC ? converges (Thm. 4.10)
ASYNC diverges (Thm. 6.10) converges in 1 dim (Thm. 6.8)

the result of this step is a multiset of points P = {p1, . . . , pN} defining the
current configuration. The robots are indistinguishable, so each robot i knows
its own location pi, but does not know the identity of the robots at each of
the other points.

• Compute. Execute the given algorithm, resulting in a goal point pG.
• Move. Move towards the point pG.

A common assumption made in a number of papers dealing with this model, known
as premature stopping, is that the robot might stop before reaching its goal point pG,
but is guaranteed to traverse at least some minimal distance s (unless it has reached
the goal first). For ease of presentation, we assume throughout most of this paper
(particularly, in sections 3 and 4, which deal with measurement errors), a slightly
simpler model where the Move step of a robot is ensured to bring it to its goal
point pG. We handle premature stopping in section 5, when we discuss movement
errors.

Note that the Look and Move steps are carried out identically in every cycle,
independently of the algorithm used. The differences between different algorithms
occur in the Compute step. Moreover, the procedure carried out in the Compute
step is identical for all robots. If the robots are oblivious, then the algorithm cannot
rely on information from previous cycles; thus the procedure can be fully specified by
describing a single Compute step, and its only input is the current configuration P ,
giving the locations of the robots.

The synchronization model. As mentioned earlier, our computational model
for studying and analyzing problems of coordinating and controlling a set of au-
tonomous mobile robots follows the well-studied semisynchronous (SSYNC) model.
This model is partially synchronous in the sense that all robots operate according to
the same clock cycles, but not all robots are necessarily active in all cycles. Those
robots which are awake at a given cycle take a measurement of the positions of all
other robots. Then they may make a computation and move instantaneously ac-
cordingly. The activation of the different robots can be thought of as managed by
a hypothetical scheduler, whose only fairness obligation is that each robot must be
activated and given a chance to operate infinitely often in any infinite execution. On
the way to establishing the result on the SSYNC model, we prove it first in the
fully synchronous (FSYNC) model, where each robot moves at each cycle. In section
6.2 we also discuss its performance in the fully asynchronous (ASYNC) model, in
which there is no global clock and the robots operate independently of each other, at
arbitrary and possibly nonuniform rates.

Modeling measurement imprecisions. Our model assumes that the robot’s
location estimation is imprecise, where, in general, this imprecision can affect both
distance and angle estimations. However, we make the following restrictive assump-
tion.
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Bounded imprecision assumption. The distance imprecision is bounded by
some accuracy parameter εd known at the robot’s design. Similarly, the imprecision
in angle measurements is bounded by an accuracy parameter εθ (where it can always
be assumed that εθ ≤ π).

Formally, the bound on distance imprecision means that if the true location of an
observed point in i’s coordinate system is V and the measurement taken by i is v̄, then
this measurement will satisfy (1 − εd)V < v < (1 + εd)V . (Throughout, for a vector
v̄, we denote by v its scalar length, v = |v̄|. Also, capital letters are used for exact
quantities, whereas lowercase letters denote the robots’ views.) Similarly, the bound
on angle imprecision means that the angle θ between the actual distance vector V and

the measured distance vector v̄ satisfies θ ≤ εθ, or, alternatively, cos θ = V v̄
V v ≥ cos εθ.

In what follows, we consider the model ERR, in which both types of imprecision
are possible, and the model ERR−, where only distance estimates are inaccurate.
This gives rise to six composite timing/error models, denoted 〈T , E〉, where T is the
timing model under consideration (FSYNC, SSYNC, or ASYNC) and E is the error
model (ERR or ERR−).

While in reality each robot uses its own private coordinate system, for simplicity
of presentation it is convenient to assume the existence of a global coordinate system
(which is unknown to the robots) and use it for our notation. Throughout, we denote
by R̄j the location of robot j in the global coordinate system. In addition, for every

two robots i and j, denote by V
i

j = R̄j − R̄i the true location of robot j from the

position of robot i (i.e., the true vector from i to j), and by v̄ij the location of robot j
as measured by i, translated to the global coordinate system. Likewise, our algorithm
and its analysis will be described in the global coordinate system, although each of the
robots will apply it in its own local coordinate system. As the functions computed by
the algorithm are all invariant under translations and rotations, this representation
does not violate the correctness of our analysis.

If the robots may have inaccuracies in distance estimation but not in directions,

then i will measure V
i

j as v̄ij = (1 + σi
j)V

i

j , where −εd < σi
j < εd is the actual

local error factor in distance estimation at robot i. For robots with inaccuracy in
angle measurement as well, if the true distance is V i

j , then i will measure it as vij =

(1 + σi
j)V

i
j , where −εd < σi

j < εd and the angle θ between V
i

j and v̄ij will satisfy
|θ| ≤ εθ.

Throughout, values computed at time slot t are denoted by a parameter [t]. Also,
the actual error factor is time dependent, and its value at time t is denoted by σi

j [t].
The parameter t is omitted whenever it is clear from the context.

Modeling movement and calculation imprecisions. Other than inaccu-
racies in measurements, inaccuracies in movement and calculations should also be
taken into account. For movement, we may assume that if the robot wants to move
from its current location R̄i to some goal point pG, then it will move on a vector
in angle of at most εmv

θ from the vector ripG and to any distance d in the interval
d ∈ [1 − εmv

d , 1 + εmv
d ]|ripG|. When it calculates a goal point pG = (x, y), it will

have a multiplicative error of up to εc. Since in the center-of-gravity algorithms pre-
sented below, the calculation error is bounded linearly in the calculated terms, these
inaccuracies can be treated as global inaccuracies in the measurement instead with
the same effect. It can be seen that relative movement and calculation errors can be
replaced with errors in measurement causing the same effect, so these errors can be
treated using the same algorithm by recalibrating εd. Absolute errors in movement
or calculation cannot be treated, since even if the robots have almost converged, they



282 REUVEN COHEN AND DAVID PELEG

may lead to wider spreading. Therefore, throughout most of the ensuing technical
development, we will assume only measurement inaccuracies, where the treatment of
movement and calculation inaccuracies can be conducted by assimilating them into
the measurement errors.

Another often ignored aspect of robot motion is the existence of a consistent sense
of direction. As mentioned earlier, following the commonly used model of [27, 28], it
is assumed in this paper that the robots do not share a common sense of orientation.
Let us remark, however, that this is an expected feature of real robots, since the
robot’s body is positioned in an angle dependent on the previous movement direction.
Hence in practice, this feature may allow the usage of the robot’s direction as a finite
state memory between robot movements. The algorithms presented herein do not
rely on sense of direction. However, one of the impossibility results presented below
(Theorem 3.5) relies on the inability to use sense of direction.

Technical lemmas. We make use of the following technical lemmas. The first
lemma says that if a point b̄ outside the unit circle moves towards the center of the
circle and stops at its boundary, then it gets closer to any point ā inside the circle.
(See Figure 1.)

a

y x

b

Fig. 1. Illustration for Lemma 2.1.

Lemma 2.1. For two vectors ā and b̄ with a ≤ 1 ≤ b, let x = |ā − b̄| and
y = |ā− b̄/b|. Then

(1) x2 − y2 ≥ (b− 1)2 + 2(1 − a)(b− 1) ≥ (b− 1)2,
(2) y ≤ x.
Proof. Note that |ā− b̄|2 = a2 + b2 − 2āb̄ and |ā− b̄/b|2 = a2 + 1 − 2āb̄/b. Thus

|ā− b̄|2 − |ā− b̄/b|2 = b2 − 1 − 2āb̄(1 − 1/b)

≥ b2 − 1 − 2a(b− 1) = (b− 1)2 + 2(1 − a)(b− 1)

≥ b2 − 1 − 2(b− 1) = (b− 1)2 ,

and part (1) of the lemma follows. Part (2) follows from part (1), as (b−1)2 ≥ 0.

Lemma 2.2. For vectors V and v̄, if (1−εd)V < v < (1+εd)V and V v̄
V v ≥ cos(εθ),

then |V − v̄| < V
√

2(1 + εd)(1 − cos εθ) + εd2 .
Proof. Let A = v/V . Then v̄V = AV 2 cos θ, where θ is the angle between the

vectors; hence (v̄ − V )2 = v̄2 + V
2 − 2v̄V = (1 + A2)V 2 − 2AV 2 cos θ. In the range

A ∈ [1 − εd, 1 + εd] and θ ≤ εθ, this function attains its maximum for θ = εθ and
A = 1 + εd, whereby (v̄ − V )2 =

(
1 + (1 + εd)2 − 2(1 + εd) cos εθ

)
V 2, implying the

lemma.
The following lemma is used in conjunction with Lemma 2.1 to show that moving

some fraction of the distance to the circle perimeter will reduce the squared distance
by at least the same fraction of the total improvement.
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Lemma 2.3. For any two vectors Ā and B̄ satisfying A2 − B2 ≥ c, for some
constant c, and for any 0 ≤ μ ≤ 1, the parameterized difference X(μ) = A2 − |μB̄ +
(1 − μ)Ā|2 satisfies X(μ) ≥ μc.

Proof.

X(μ) = A2 − |μB̄ + (1 − μ)Ā|2 ≥ A2 − (1 − μ)2A2 − μ2B2 − 2μ(1 − μ)AB

= μ(A2 −B2) + (μ− μ2)(A−B)2 ≥ μ(A2 −B2) = μc.

3. The effect of measurement errors. To appreciate the importance of error
analysis one must realize two facts. First, computers are limited in their computa-
tional power and therefore cannot perform perfect precision calculations. This may
seem insignificant, since floating point arithmetic can be made to very high accuracy
with modern computers. However, this may prove to be a practical problem. For
instance, the point that minimizes the sum of distances to the robots’ locations, also
known as the Weber point [31], may be used to achieve gathering. However, this point
is not computable, due to its infinite sensitivity to location errors [9].

Second, the correctness of algorithms that use geometric properties of the plane
is usually proved using theorems from Euclidean geometry. However, these theorems
are, in many cases, no longer applicable when measurement or calculation errors occur.

3.1. Impossibility results. We start with some impossibility results. The
proofs of these results are based on the ability of the adversary to partition the space
of possible initial configurations into countably many regions, each of uncountably
many configurations (say, on the basis of the initial distance between the robots),
such that within each region, the outcome of the algorithm (i.e., the instructions to
the robots on how far to move in each round) is the same. Note that our impossibility
proofs for gathering (Theorems 3.1 and 3.3) exploit the requirement of meeting at
a point, and do not preclude the possibility of convergence. In contrast, Theorem
3.5 shows that assuming sufficiently large inaccuracies in angle measurement, and in
the absence of consistent sense of direction, even convergence is impossible, and the
adversary can cause the robots to diverge under any algorithm.

Although this paper does not concern the issue of memory complexity and all the
algorithms presented hereafter are deterministic, it may be of interest to note that
the following two impossibility theorems hold even in a rather strong setting where
the timing model is fully synchronous and the robots have unlimited memory and are
allowed to use randomness. The main idea of the proof is to divide the line into a set
of segments, where each segment is small enough such that each robot may see each
of its points as the location of the other robot due to measurement errors. Since the
algorithm must perform the same movement (or a random movement chosen from the
same distribution), it will fail to meet the other robot, or reach the next landmark
for the algorithm, starting from almost any point in the segment.

Theorem 3.1. Gathering is impossible for two robots on the line with inexact
distance measurements even in the strong setting outlined above.

Proof. Consider two robots 1 and 2 on the line in the FSYNC model and a
potential gathering algorithm ALG. At each round t, the algorithm ALG at robot j
has only one input vjj′ [t], namely, the result of the distance measurement taken by j
to the other robot j′. Assuming the adversary ensures that in each round t the two

robots obtain the same measurement result, i.e., vj
′

j [t] = vjj′ [t] = m[t], the inter-robot
distance change o(t) (namely, the distance reduction between the two robots) on round
t becomes some function of m[t], i.e., o[t] = ϕ(m[t]), and hence the total inter-robot
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distance change L(n) after n cycles is the sum of n outputs of the algorithm, L(n) =∑
t≤n o[t].

The adversary policy exploits this observation as follows. Partition the positive
reals into infinitely many disjoint segments (ai, bi], for i ≥ 1, such that bi/ai <
(1+εd)/(1−εd) for each i. The adversary initially selects for every i a single possible
measurement result mi in the range (1−εd)bi < mi < (1+εd)ai. During the execution
of the algorithm, whenever a robot j takes a measurement where the true inter-robot
distance V j

j′ falls in the ith segment, V j
j′ ∈ (ai, bi], the (inaccurate) measurement result

will be vjj′ = mi.
This policy allows the introduction of only countably many distinct measurement

results. Hence the total inter-robot distance change L[t] after n cycles is the sum of a
finite number of reals from a countable basis. The set of possible inter-robot distance
changes is therefore still countable. As the set of possible initial inter-distances be-
tween the robots in the starting configuration is uncountable, it follows that gathering
is never achieved from almost every starting configuration.

Observe that adding memory (allowing robots to store their previous measure-
ments) or allowing the use of randomness will not help, since now the output of the al-
gorithm on round t is a function of a finite number of variables, o[t] = ϕ(〈m(t′), ρ(1, t′),
ρ(2, t′)〉t′≤t), representing the entire history of the execution till this round, where
ρ(j, t′) is the random number drawn by robot j on round t′. The results of each
measurement are again taken from a countable set, and the values of ρ for each run
form a countable set. It follows that, fixing the sequence of random number pairs
〈ρ(1, t′), ρ(2, t′)〉 drawn in the execution and considering all uncountably many pos-
sible starting configurations, the robots will achieve gathering only from a countable
number of starting configurations, which are of zero measure. Therefore, the robots
cannot gather even with constant probability.

In the case of N > 2 robots on the line it is presumable that a similar construction
can apply. However, in the plane, assuming exact angle measurements, there is a
continuum of possible measurements, and therefore gathering may be possible, using
some method to estimate the distance using the angles (and possibly memory of
several angles). We make the conjecture that (possibly with some limitations on the
model) this does not help to achieve gathering.

Conjecture 3.2. N > 2 robots with inaccurate distance measurements and
accurate angle measurements in the FSYNC model cannot achieve convergence in
the plane.

In the case of angle and distance errors in the plane, gathering is impossible for
any number of robots.

Theorem 3.3. Gathering in the plane is impossible for any number of robots
assuming inaccuracies in both the distance and angle measurements even in the strong
setting outlined above.

Proof. Consider N robots in the plane in the FSYNC model and a potential
gathering algorithm ALG. At each round t, the algorithm ALG at robot j has only
N − 1 inputs v̄jj′(t), namely, the result of the measurement taken by j to any other
robot 1 ≥ j′ �= j ≤ N . Assuming the adversary ensures that the robot j obtains the
distance measurement results mj

j′ [t] and angle measurements αj
j′ for the distance and

angle to the j′ robot, respectively, in each round t, the robot configuration R̄j in round

t becomes R̄j [t+ 1] = R̄j [t] + ΔR̄j [t], where ΔR̄j [t] is some function ϕ({mj
j′ , α

j
j′}) of

mj
j′ [t] and αj

j′ [t], and hence the total change L̄j(n) in each robot j after n cycles is

the sum of n outputs of the algorithm, L̄j(n) =
∑

t≤n ΔR̄j [t].
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The adversary policy exploits this observation as follows. Partition the positive
reals into infinitely many disjoint segments (ai, bi], for i ≥ 1, such that bi/ai <
(1 + εd)/(1 − εd) for each i. Partition the range [0, 2π) into the n > 2π/εθ segments
[0, 2π/n), . . . , [kπ/n, (k + 1)π/n), . . . , [(n− 1)π/n, 2π). The adversary initially selects
for every i a single possible measurement result mi in the range (1 − εd)bi < mi <
(1+εd)ai, and for every k the adversary selects an angle θk such that (k+1)π/n−εθ <
θk < kπ/n + εθ. During the execution of the algorithm, whenever a robot j takes a
measurement where the true inter-robot distance V j

j′ falls in the ith segment, V j
j′ ∈

(ai, bi], the (inaccurate) measurement result will be vjj′ = mi. Whenever the angle
between a robot i and a robot j falls in the range [kπ/n, (k + 1)π/n) the angle will
be measured as θk.

This policy allows the introduction of only countably many distinct measurement
results. Hence each of the changes L̄j(t) after n cycles is the sum of a finite number
of real vectors from a countable basis. The set of possible robot location changes
is therefore still countable. As the set of possible initial inter-distances between the
robots in the starting configuration is uncountable, it follows that gathering is never
achieved from almost every starting configuration.

Observe that adding memory (allowing robots to store their previous measure-
ments) or allowing the use of randomness will not help, since now the output of
the algorithm on round t is a function of a finite number of variables, L̄j(t) =
ϕ(〈mj

j′(t
′), θjj′ , ρ(j, t

′)〉t′≤t), representing the entire history of the execution till this
round, where ρ(j, t′) is the random number drawn by robot j on round t′. The results
of each measurement are again taken from a countable set, and the values of ρ for
each run form a countable set. It follows that, fixing the sequence of random number
lists 〈(ρ(j, t′))〉 drawn in the execution and considering all uncountably many possi-
ble starting configurations, the robots will achieve gathering only from a countable
number of starting configurations, which are of zero measure. Therefore, the robots
cannot gather even with constant probability.

It seems reasonable to conjecture that even convergence is impossible for robots
with large measurement errors. The exact limits are not completely clear. The fol-
lowing theorem gives some rather weak limits on the possibility of convergence. We
start with a technical lemma.

I

A

B C

D

E

FG

H

Fig. 2. Illustration for Lemma 3.4.

Lemma 3.4. If three robots are positioned in an equilateral triangular configu-
ration and every robot moves the same distance counterclockwise parallel to the line
formed by the locations of the other two robots, then the distances between the robots
increase.

Proof. A movement as in the lemma is illustrated in Figure 2, where the robots
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move from the triangle �ABC to �DEF , which by symmetry is also equilateral.
Therefore ∠BAC = 60◦ and ∠EDF = 60◦. Now ∠GHD = ∠FHA. Thus, �HDG ∼
�HAI. Since DA ‖ BC, also ∠HAD = 60◦. Since ∠HAI = 60◦, it follows that
∠AHI < 120◦, and since it is external to �AHD, ∠HDA < 60◦ = ∠HAD. This im-
plies that HD > HA and thus also area(�HDG) > area(�HAI). By similar consid-
erations on the other two corners, it follows that area(�DEF ) > area(�ABC).

In the theorem we assume that the robot has no sense of direction in a strong
way; i.e., at every cycle the adversary can choose each robot’s axes independent of
previous cycles.

Theorem 3.5. For a configuration of N = 3 robots having an error parame-
ter εθ ≥ π/3 in angle measurement, there is no deterministic algorithm for conver-
gence even assuming exact distance estimation, fully synchronous model, and unlim-
ited memory.

Proof. Start with a configuration with the robots positioned at the vertices of
an equilateral triangle. The adversary can distort the measurements of each robot in
such a way that it sees the locations of the other two robots as if its own location were
exactly at the center of the line segment connecting them. This situation is symmetric
under 180◦ rotation around the robot. Therefore, assuming a deterministic algorithm,
the output vector v̄ depends only on the robot’s coordinate system. By rotating
the coordinate system by 180◦, the adversary can always ensure that the vector of
movement is in the half-plane external to the triangle. By symmetry, the adversary
can enforce a similar movement vector (rotated by 120◦) for each of the three robots.
In the resulting configuration, the robots will again be positioned at the vertices of
an equilateral triangle (see Figure 3). Moreover, each of these movement vectors can
be split into two movements: a movement away from the center, which will trivially
increase the distances, and movement perpendicular to the line connecting the robot to
the center, which by Lemma 3.4 will also increase the distances. Hence, the adversary
can cause the algorithm to diverge.

A’

A
v

Fig. 3. Illustration for Theorem 3.5. Robot A observes its environment and deduces that it is
in location A′. It applies the algorithm and moves by vector v (whose projections are dashed). By
symmetry the final configuration is the (larger) dotted triangle.

3.2. Problems with existing algorithms. To illustrate the second point raised
in the beginning of this section, consider the algorithm 3-Gather presented in [1]. This
algorithm achieves gathering of three robots using the following three simple rules:

(1) If two robots already reside in the same point, then the third should go to
that point.

(2) If the robots form an obtuse triangle, they move towards the obtuse angled
vertex.
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(3) If the robots form an acute triangle, they move towards the intersection point
of the angle bisectors.

As shown above, no algorithm can guarantee gathering when measurement errors
occur. Furthermore, by Theorem 3.5, no algorithm can guarantee even convergence
when angle measurement errors of εθ ≥ 60◦ might occur. We now show that even
though Algorithm 3-Gather is designed to robustness and achieves gathering even if
one of the robots fails, we have the following.

Observation 3.6. Algorithm 3-Gather might fail to achieve convergence in the
presence of angle measurement errors of at least εθ ≥ 15◦.

Proof. Suppose the three robots form an equilateral triangle. Due to measurement
errors of 15◦ to each of its neighbors, each robot may think its corner of the triangle
forms a 90◦ angle and subsequently conclude that it need not move. Thus, a deadlock
occurs.

Likewise, for a group of N > 3 robots, the algorithm N-Gather is presented in [1].
In this algorithm (which is more complex and will not be described here), the smallest
enclosing circle of the robot group is calculated, and in case there is a single robot
inside this circle, it does not move. In the presence of measurement inaccuracies, this
rule can potentially cause deadlock, implying the following.

Observation 3.7. Algorithm N-Gather might fail to achieve even convergence
in the presence of angle and distance measurement errors of εd > 0.

Proof. Suppose the N > 3 robots form a regular N -gon. All robots are on the
smallest enclosing circle. Any εd > 0 error in the measurements taken by each of the
robots may cause it to believe it is located inside the circle while all others are on the
circle. Therefore, a deadlock can occur.

4. The convergence algorithm.

4.1. Algorithm Go to COG. Arguably, the most natural algorithm for autono-
mous robot convergence is the gravitational algorithm, where each robot computes
the average position (center of gravity) of the group as perceived by it,

v̄icog =
1

N

∑
j

v̄ij ,

and moves towards it. A formal definition of this algorithm follows.

Algorithm Go to COG (code for robot i):
1. Estimate the measured center of gravity, v̄icog = 1

N

∑
j

v̄ij .

2. Move to the point v̄icog .

The properties of Algorithm Go to COG in a model with fully accurate measure-
ments have been studied in [11]. In particular, the following theorem has been proved
therein.

Theorem 4.1 (see [11]). A group of N robots executing Algorithm Go to COG

will converge in the ASYNC model with no measurement errors.
If distance measurements are not guaranteed to be accurate (but angle mea-

surements are accurate, i.e., εθ = 0), Algorithm Go to COG may not guarantee con-
vergence. Nevertheless, as shown next, convergence is guaranteed in the fully syn-
chronous model.
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Denote the true center of gravity of the robots in the global coordinate system by

R̄cog =
1

N

∑
j

R̄j

and the vector from robot i to the center of gravity by

V
i

cog = R̄cog − R̄i =
1

N

∑
j

V
i

j ,

recalling that V
i

j = R̄j − R̄i. Denote the distance from the true center of gravity of

the robots to the robot farthest from it by Dcog = maxi{V i
cog}. Also, denote the true

distance from i to the robot farthest from it by Di
max = maxj{V i

j }.
We have the following.
Lemma 4.2. In the 〈FSYNC, ERR−〉 model with εd < 1

2 , a group of N robots
performing Algorithm Go to COG converge.

Proof. At every time step, each robot moves to its perceived center of gravity,

v̄icog . For every robot, the perceived center of gravity satisfies |v̄icog − V
i

cog | ≤ εdDcog .
Therefore, after step t, all robots are concentrated in a circle of radius εdDcog [t]
around R̄cog [t]. By convexity, the new center of gravity R̄cog [t + 1] also falls in this
circle; hence the maximum distance between a robot and the new center of gravity is
at most Dcog [t+1] ≤ 2εdDcog [t]. Hence as long as εd < 1

2 , Dcog [t+1] ≤ (1−η)Dcog [t]
for some constant η > 0. Thus, the robots converge.

The convergence of Algorithm Go to COG in the SSYNC model is not clear at the
moment. However, as shown in section 6.2, in the ASYNC model there are scenarios
where robots executing Algorithm Go to COG fail to converge. This leads us to propose
the following slightly more involved algorithm.

4.2. Algorithm RCG. Our algorithm, named Restricted Go to COG, or RCG for
short, is based on calculating the center of gravity of the group of robots and also es-
timating the maximum possible error in the center-of-gravity calculation. The robot
makes no movement if it is within the maximum possible error from the center of
gravity. If it is outside the circle of error, it moves towards the center of gravity but
only up to the bounds of the circle of error. We fix a conservative error estimate
parameter, ε0 > εd. We also fix a parameter 0 < β ≤ 1, controlling the rate of con-
vergence. In subsection 4.4, dealing only with measurement inaccuracies, we assume
β = 1. Later on, in section 5, this parameter needs to be adjusted.

Following is a more detailed explanation of the algorithm. In step 1, the mea-
sured center of gravity is estimated using the conducted measurements. In step 2 the
distance to the farthest robot is found. Notice that this distance may not be accurate
and that this might not even be the real farthest robot. The result of step 2 is used in
step 3 to give an estimate of the possible error in the center-of-gravity calculation. In
step 4 the robot decides to stay in place if it is within the circle of error or calculates
its destination point, which is on the boundary of the error circle centered at the
calculated center of gravity, as illustrated in Figure 4.

A formal description of the algorithm is given next. Note that Algorithm Go to COG

is identical to Algorithm RCG with parameter ε0 = 0.

4.3. Analysis of RCG for measurement errors in the FSYNC model. We
first prove the convergence of Algorithm RCG in the 〈FSYNC, ERR−〉 model. We use
the following two properties of Di

max .
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Algorithm RCG (code for robot i):
1. Estimate the measured center of gravity, v̄icog = 1

N

∑
j v̄

i
j .

2. Let dimax = maxj{vij}
/* max distance measured to another robot */

3. Let ρi =
ε0

1 − ε0
· dimax

/* estimate for max error between calculated and actual CoG */
and F = 1 − ρi/vicog

/* safe movement fraction */
4. If F > 0, then move to the point c̄i = β · F · v̄icog .

Otherwise do not move.

i

i

r

R

i

i

cog

cog

ρ
err

Fig. 4. Illustration of the Algorithm RCG.

Fact 4.3. For every i, the true and perceived maximum distances satisfy
(a) (1− ε0)D

i
max < (1− εd)D

i
max ≤ dimax ≤ (1 + εd)D

i
max < (1 + ε0)D

i
max ,

(b) Dcog ≤ Di
max ≤ 2Dcog .

Proof. The first property is immediate from the definition of Di
max , the choice of

dimax , and the assumption. For the lower bound in the second property notice that
the center of gravity is in the convex hull of the robot group. For the upper bound in
the second property, let � = arg maxj{V i

j }. By the triangle inequality for each j, we
have

Di
max = V i

� ≤ 1

N

∑
j

(V i
j + V �

j ) = V i
cog + V �

cog ≤ 2Dcog .

For the synchronous model, we define the tth round to begin at time t and end
at time t + 1. The robots all perform their Look phase simultaneously. The robots’
moment of inertia at time t is defined as

I[t] =
1

N

∑
j

(
V

j

cog[t]
)2

=
1

N

∑
j

(
R̄j [t] − R̄cog [t]

)2
.

Defining the function Ix̄[t] ≡ 1
N

∑
j(R̄j [t]− x̄)2, we notice the following fact (cf. [16]).

Fact 4.4. Ix̄[t] attains its minimum on x̄ = R̄cog [t].
We now identify a key property required to ensure convergence of Algorithm RCG.

For some time t, denote the error component in the center-of-gravity calculation by
robot i by

err i =
1

N

∑
j

σi
jV

i

j .
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We refer to the ratio erri/Dcog at time t as the error ratio of the algorithm at t.
Algorithm RCG is said to have bounded error ratio if

(1)
erri

Dcog
< 2ε0 at any time t.

Our two main lemmas, presented next, relate the bounded error ratio property
to convergence.

Lemma 4.5. In the 〈FSYNC, ERR〉 model, if ε0 < 0.2 and Algorithm RCG has
bounded error ratio, then the algorithm guarantees that at every round t

1. at least one robot can move,
2. every robot i that makes a move decreases its distance from the true center of

gravity at time t, i.e., |R̄i[t + 1] − R̄cog [t]| < |R̄i[t] − R̄cog [t]|,
3. the robots’ moment of inertia decreases, i.e., I[t + 1] < I[t].

Proof. Consider some time t. By assumption, the algorithm satisfies inequality
(1) at time t, and by the two parts of Fact 4.3, the calculated value ρi is bounded by

ρi ≤ ε0(1 + ε0)

1 − ε0
·Di

max ≤ ε0(1 + ε0)

1 − ε0
· 2Dcog .

By assumption (1), we have for each i

(2) erri + ρi ≤ f(ε0) ·Dcog < Dcog ,

where f(ε0) = 4ε0/(1 − ε0), and the last inequality follows from the assumption that
ε0 < 0.2.

For k = arg maxj{V j
cog}, the robot farthest from the center of gravity, we have

V k
cog = Dcog and v̄kcog = V

k

cog+errk; hence by inequality (2) and the triangle inequality,

ρk < V k
cog − errk ≤ vkcog .

This implies that at round t, robot k is allowed to move in step 4 of the algorithm,
proving part 1 of the Lemma.

To prove part 2, consider a round t and a robot i which moved in round t. Fix
x̄ = R̄cog [t] and take ā = err i[t]/ρi[t] and b̄ = v̄icog [t]/ρi[t]. Note that by (1) and Fact
4.3(a),

erri[t] ≤ εd

1 − εd
· dimax [t] <

ε0
1 − ε0

· dimax [t] = ρi[t];

hence a ≤ 1. Also, at round t+ 1, robot i moves if and only if vicog [t] > ρi[t]; hence if

i moved, then b = vicog [t]/ρi[t] > 1. Hence Lemma 2.1(1) can be applied. Noting that

b̄/b = (R̄i[t + 1] − R̄cog [t])/ρi[t], we get

|R̄i[t + 1] − x̄| < |R̄i[t] − x̄| ,

yielding part 2 of the Lemma. It remains to prove part 3. Note that for a robot that
did not move, |R̄i[t + 1] − x̄| = |R̄i[t] − x̄|. Using this fact and part 2, we have that

Ix̄[t + 1] < Ix̄[t] = I[t] .

Finally, by Fact 4.4 we get I[t+ 1] ≤ Ix̄[t+ 1], yielding part 3 of Lemma 4.5.
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Lemma 4.6. In the 〈FSYNC, ERR〉 model, if ε0 < 0.2 and Algorithm RCG has
bounded error ratio, then in every execution of the algorithm, the robots converge.

Proof. By part 1 of Lemma 4.5, the robot k most distant from the center of
gravity can always move if Algorithm Go to COG is applied. By part 2 of Lemma 4.5,
in round t every robot decreases its distance from the old center of gravity, x̄ = R̄cog [t].
Therefore, to bound from below the decrease in I, we are required only to examine
the behavior of the most distant robot. By Lemma 2.1(1) with a = R̄k[t+1]− R̄cog [t]
and b = R̄k[t] − R̄cog [t], for ε0 < 0.2 we have vkcog > ρk and

(R̄k[t] − R̄cog [t])2 − (R̄k[t + 1] − R̄cog [t])2 ≥ (vkcog − ρk)2 .

Since v̄kcog = V
k

cog + errk, and using the triangle inequality,

(3) (R̄k[t] − R̄cog [t])2 − (R̄k[t + 1] − R̄cog [t])2 ≥
(
V k
cog − (ρk + errk)

)2
.

Recall that since k is the most distant robot, V k
cog = Dcog . Denoting γ = 1 − f(ε0),

we have by (2) that

(4) V k
cog − (ρk + errk) ≥ γ ·Dcog .

As mentioned above, if ε0 < 0.2, then γ > 0. We also use the fact that

(5) I[t] = Ix̄[t] ≤ D2
cog .

Using Fact 4.4 and inequalities (3), (4), and (5), we have that

I[t + 1] ≤ Ix̄[t + 1] =
1

N

(
(R̄k[t + 1] − R̄cog [t])2 +

∑
j �=k

(R̄j [t + 1] − R̄cog [t])2

)

≤ 1

N
(R̄k[t + 1] − R̄cog [t])2 +

1

N

∑
j �=k

(R̄j [t] − R̄cog [t])2

≤ 1

N
(R̄k[t + 1] − R̄cog [t])2 − 1

N
(R̄k[t] − R̄cog [t])2 + I[t]

≤ I[t] − 1

N

(
V k
cog − (ρk + errk)

)2 ≤ I[t] − γ2

N
·D2

cog

≤ I[t]

(
1 − γ2

N

)
,

and therefore the system converges, proving the theorem.
Next, our two main theorems, stating the convergence of Algorithm RCG in the

ERR− and ERR models, respectively, are established by showing that a suitable
selection of ε0 ensures that the algorithm has bounded error ratio.

Theorem 4.7. In the 〈FSYNC, ERR−〉 model, if there exists a fixed ε0 such
that εd < ε0 < 0.2, then in every execution of Algorithm RCG, the robots converge.

Proof. The center of gravity computed by robot i can be expressed as

v̄icog =
1

N

∑
j

r̄ij =
1

N

∑
j

(R̄j + σi
jV

i

j) = V
i

cog + err i .
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By the bounded imprecision assumption and Fact 4.3(b),

(6) erri =
1

N

∣∣∣∣∣∣
∑
j

σi
j · V i

j

∣∣∣∣∣∣ ≤ 1

N

∑
j

|σi
j | ·V i

j ≤ εdD
i
max ≤ 2εdDcog < 2ε0Dcog .

The claim now follows from Lemma 4.6.
We now turn to the ERR model, also allowing inaccuracies in angle measure-

ments.
Theorem 4.8. In the 〈FSYNC, ERR〉 model, if there exists a fixed ε0 such that√

2(1 + εd)(1 − cos εθ) + εd2 < ε0 < 0.2, then in every execution of Algorithm RCG,
the robots converge.

Proof. Recall that v̄icog = V
i

cog + err i. By Lemma 2.2

erri = |v̄icog − V
i

cog | < V i
cog

√
2(1 + εd)(1 − cos εθ) + εd

2

≤
√

2(1 + εd)(1 − cos εθ) + εd
2Di

max

≤ 2
√

2(1 + εd)(1 − cos εθ) + εd
2Dcog < 2ε0Dcog .

Lemma 4.6 can thus be applied, completing the proof.

4.4. Analysis of RCG for measurement errors in the SSYNC model.
Turning to the semisynchronous model, we observe that the results of Theorem 4.8
also hold true for the 〈SSYNC, ERR〉 model. We start with a lemma aiming to
show that in any execution of Algorithm RCG, for any move of a group of robots that
produces a shift of the center of gravity, the moment of inertia decreases.

Lemma 4.9. For a group of N robots performing Algorithm RCG in the SSYNC
model, if at time step t the center of gravity has moved such that |R̄cog [t+1]−R̄cog [t]| ≥
Δx for some Δx, then I[t]− I[t+ 1] ≥ 2ε0(1− a)ΔxDcog [t] for some constant a < 1.

Proof. Consider a robot i moving along a vector ȳi (of size yi) at time t, and let
ρi[t] be the calculated maximum error for this robot at time t. Fix

ā = err i[t]/ρi[t] and b̄ = v̄icog/ρ
i[t] .

We therefore have that a = erri[t]/ρi[t] and, since we know that the motion of the
robot is of size yi, it follows that |b̄− b̄/b| = yi/ρi[t]. Thus, b = 1 + yi/ρi[t]. By (6),

erri ≤ εdD
i
max ≤ εdd

i
max/(1− εd) (with ε′ ≡

√
2(1 + εd)(1 − cos εθ) + εd

2 replacing

εd for the ERR model), while ρi = ε0d
i
max/(1−ε0). This implies that a ≤ εd(1−ε0)

ε0(1−εd) < 1

(where we use the fact that ε0 > εd). Also, clearly b ≥ 1. Hence Lemma 2.1(1) can
be applied, yielding

(ā− b̄)2 − (ā− b̄/b)2 ≥ (b− 1)2 + 2(1− a)(b− 1) ≥ 2(1− a)(b− 1) = 2(1− a)yi/ρi[t].

Now, ā− b̄ = (R̄i[t] − R̄cog [t])/ρi[t], and ā− b̄/b = (R̄i[t + 1] − R̄cog [t])/ρi[t]. Thus,

(R̄i[t] − R̄cog [t])2 − (R̄i[t + 1] − R̄cog [t])2 ≥ 2(1 − a)yiρi[t] .

Note that

(7) ρi[t] =
ε0

1 − ε0
dimax [t] ≥ ε0D

i
max [t] ≥ ε0Dcog [t] ,
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and therefore (R̄i[t]− R̄cog [t])2− (R̄i[t+1]− R̄cog [t])2 ≥ 2(1−a)yiε0Dcog [t]. The total
decrease in I is therefore

(8) I[t] − I[t + 1] ≥ I[t] − Ix̄[t] ≥ 1

N

∑
i

2(1 − a)yiε0Dcog [t],

with x̄ = R̄cog [t].
Now, we know that the center of gravity has moved by at least Δx, and, therefore,

Δx ≤ |R̄cog [t + 1] − R̄cog [t]| =
1

N

∣∣∣∣∣
∑
i

yi

∣∣∣∣∣ ≤
1

N

∑
i

|yi| .

Thus, using (8), one obtains I[t] − I[t + 1] ≥ 2(1 − a)Δxε0Dcog [t].
We now turn to prove the main theorem for the SSYNC model.
Theorem 4.10. In every execution of Algorithm RCG (with ε0 as in Theorem 4.8)

in the 〈SSYNC, ERR〉 model, the robots converge.
Proof. The proof of Lemma 4.5 holds for any movement of any robot, and therefore

also for any partial robot group making a move. Thus, it also applies to the semi-
synchronous model. In Lemma 4.6, it may happen that the robot most distant from
the center of gravity is inactive and does not make a move for a number of steps,
during which the situation changes and the center of gravity approaches it due to
movements taken by the other robots. Hence, we have to deal with the complication
arising from the possibility that the most distant robot at some time t′ is no longer
the most distant when its turn to move arrives at some later time t.

Suppose at time t′ this robot, k, was at distance Dcog [t′] from the center of
gravity. Now take t > t′ as the time of its next activation. Take δ = 1

3 [1 − f(ε0)]. If
V k
cog [t] > (1 − δ)Dcog [t′] and Dcog [t] < (1 + δ)Dcog [t′], then V k

cog [t]/Dcog [t] > 1 − 2δ.
This implies that robot k can still make a move at time t, since

(9) ρk[t] =
ε0

1 − ε0
· dkmax[t] ≤ 2

ε0
1 − ε0

(1+ εd)Dcog [t] <
f(ε0)

1 − 2δ
V k
cog [t] < V k

cog [t] ,

where the last inequality holds as long as f(ε0) < 1. We may now use Lemma 2.1(1),
with b = V k

cog [t]/ρk[t] > (1 − 2δ)/f(ε0), leading to

(R̄k[t] − R̄cog [t])2 − (R̄k[t + 1] − R̄cog [t])2 ≥ (vkcog [t] − ρk)2 ≥
(

1 − 2δ

f(ε0)
− 1

)2

ρk[t] .

Equation (7) implies that ρk[t] ≥ ε0Dcog [t] ≥ (1 − 2δ)ε0D
k
cog [t′], and thus

I[t + 1] ≤
[
1 − 1

N

(
1 − 2δ

f(ε0)
− 1

)2

[(1 − 2δ)ε0]
−2

]
I[t′].

If one of the requirements is violated, this means that the center of gravity has
moved at least a distance of δDcog [t′] in some time interval [t′, t1] ⊂ [t′, t]. Choose t1
to be the first time at which the center of gravity has moved at least δDcog [t′]. Then,
for every time t∗ ∈ [t′, t1 − 1], Dcog [t∗] ≥ (1− δ)Dcog [t′]. Denote by Δx[t∗] the change
in the center of gravity between cycles t∗ and t∗ + 1. We have

∑
t∗∈[t′,t1−1]

Δx[t∗] ≥

∣∣∣∣∣∣
∑

t∗∈[t′,t1−1]

Δx[t∗]

∣∣∣∣∣∣ ≥ δDcog [t′] .
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By Lemma 4.9 we have that for all t∗,

I[t∗] − I[t∗ + 1] ≥ 2(1 − a)Δx[t∗]ε0Dcog [t∗] ≥ 2(1 − a)Δx[t∗]ε0(1 − δ)Dcog [t′].

Therefore, the total improvement in I is

I[t′] − I[t] ≥ I[t′] − I[t1] ≥
∑

t∗∈[t′,t1−1]

2(1 − a)Δx[t∗]ε0(1 − δ)Dcog [t′]

≥ 2(1 − a)δDcog [t′]ε0(1 − δ)Dcog [t′] ≥ 2(1 − a)δε0(1 − δ)I[t′];

hence I[t] ≤ (1 − η)I[t′] for some constant η > 0. Thus, the robots converge.

5. Handling movement and calculation errors. We now turn to treat the
case of movement errors. Assume the robots’ motion is inaccurate, where the robot
aiming to move a distance d0 at an angle α0 will actually move a distance d satisfying
ad0 < d < bd0 at an angle α satisfying |α − α0| < δ, for constants 0 < a < 1, b > 1,
and δ > 0.

As mentioned earlier, another possible type of movement error discussed in the
literature is that the robot might halt its movement prematurely (it is commonly
assumed that the robot’s movement is guaranteed to traverse at least some constant
distance s).

Movement distance errors may be readily treated as measurement errors. In fact,
movement distance errors are somewhat less severe, as they may not cause the robot
to move in the wrong direction but only move an inaccurate distance in the correct
direction. Therefore, no limit on the size of the error is needed (other than b being
finite and a > 0), and the only requirement necessary for ensuring convergence of the
algorithm is to set the calibration parameter β to β = 1/b. We have the following.

Theorem 5.1. Robots having movement errors performing Algorithm RCG will
converge to a point.

Proof. A robot having an angular movement error of α − α0 = θ performing
algorithm RCG will make exactly the same movement as a robot having accurate
movement and viewing all other robots with an error of θ in the angle measurement
(possibly in addition to any measurement errors included in the model). Therefore,
a model with motion angle errors is reducible to a model with εθ = εmv

θ . In general,
if both measurement and movement errors occur, then the model is reducible (for
Algorithm RCG) to a model with total angle measurement inaccuracy of εθ + εmv

θ .
To adjust for the motion distance error, the parameter β is modified to β =

1/b (or any lower value). Thus, every robot attempts to move to the point c̄i =
1
b (1 − ρi/vicog) · v̄icog . This guarantees that the distance travelled is always less than

bc̄i = (1 − ρi/vicog) · v̄icog and at least ac̄i = a
b (1 − ρi/vicog) · v̄icog , a constant multiple

of the distance travelled in the original algorithm. Furthermore, since the calculation
of ρi is not influenced by β, it is guaranteed that any robot that can move in the
original (accurate movement) model can also move in the inaccurate movement model.
Therefore, using Lemma 2.3, one determines that whenever in the accurate movement
model a robot decreases its squared distance from the center of gravity by some
amount c, in the inaccurate movement model its squared distance from the center of
gravity will decrease by at least ca/b, guaranteeing a constant factor improvement in I.
The case presented above in the model definition is equivalent to the case b ≡ 1+εmv

d ,
a ≡ 1 − εmv

d .
The second possible form of movement inaccuracies is the “premature stopping”

model, presented above, in which the robot may fail to move the full distance de-
termined by the algorithm and stop prematurely. This model guarantees, however,
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that the robot will complete a movement of at least some constant distance, s, unless
the distance determined by the algorithm is less than s, in which case the robot is
guaranteed to complete its movement.

Theorem 5.2. In the FSYNC and SSYNC models, a group of N robots per-
forming algorithm RCG with premature stopping will converge to a point.

Proof. We start with the FSYNC model. Take the robot k farthest from the
center of gravity. There are two possibilities for this robot’s movement.

1. Robot k completes its movement. This case is analyzed exactly the same as
in Theorem 4.7 or Theorem 4.8 (depending on the error model), and I can
be shown to decrease by a constant multiplicative factor.

2. Robot k travels some distance s∗ ≥ s at time t. Assume the robot would
have completed the move determined by the algorithm, of some distance
d ≤ Dcog [t]. Then, by Theorem 4.7 or Theorem 4.8, I[t]− I[t+ 1] ≥ η(N)I[t]
for some η(N). The ratio μ between the distance travelled by the robot and
the distance determined by the algorithm satisfies

μ =
s∗

d
≥ s

d
≥ s

Dcog [t]
.

By Lemma 2.3 the decrease in robot k’s distance to the center of gravity
by the actual movement is at least μ times the decrease due to the desired
movement. Thus

I[t] − I[t− 1] ≥ μ2η(N)I ≥ s2

Dcog [t]2
η(N)I[t] .

Since I[t] ≤ Dcog [t]2, it follows that I[t] − I[t− 1] ≥ η(N)s2.
Thus, at every time step, I is decreased by either a multiplicative or an additive
constant. The theorem follows.

In the case of the SSYNC model, as in the proof of Theorem 4.10, either the
farthest robot k is at a distance at least (1 − δ)Dcog [t′] from the center of gravity
when it performs its next move after time t′, in which case it induces a multiplicative
or an additive constant improvement in I (as in the FSYNC model above), or the
center of gravity has moved a distance of at least δDcog [t′], in which case I has
improved by a multiplicative factor.

Calculation errors and limited accuracy can be modeled in several ways. The
most commonly used model assumes that each operand, xi, in each operation can
include an additional error term, εci, which satisfies |εci| ≤ εcxi for some εc.

We begin with a technical lemma relating inaccuracies in a vector’s component
with angle inaccuracies.

Lemma 5.3. Let ā be a vector with components (x, y), and b̄ be a vector with
components (x′, y′), where (1 − ε)x < x′ < (1 + ε)x and (1 − ε)y < y′ < (1 + ε)y
for some 0 < ε < 1. The angle between ā and b̄ is at most (ln(1 + ε) − ln(1 − ε))/2
radians.

Proof. If x = 0 or y = 0, then x′ = 0 or y′ = 0, respectively, so the angle between
ā and b̄ is 0 and the theorem follows immediately. Assume now that x �= 0 and y �= 0
and denote x′ = (1+α)x and y′ = (1+β)y, where −ε < α, β < ε. Notice that ā and b̄
are in the same quadrant. Now choose θ as the angle between ā and the appropriate
axis by the rule

tan θ =

{
|x|/|y|, α > β,

|y|/|x|, α ≤ β,
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and set θ′ to be the angle between the same axis and b̄ defined by

tan θ′ =

{
|x′|/|y′|, α > β,

|y′|/|x′|, α ≤ β.

Thus, tan θ′ = 1+α
1+β tan θ if α > β and tan θ′ = 1+β

1+α tan θ otherwise. Either way, we

have tan θ ≤ tan θ′ ≤ 1+ε
1−ε tan θ or

(10) ln tan θ ≤ ln tan θ′ ≤ ln tan θ + ln(1 + ε) − ln(1 − ε).

Denote θ′ = θ+Δθ. Since tan is a continuous function with continuous derivative
inside each quadrant, we have

ln tan(θ + Δθ) = ln tan θ +

(
d ln tan θ

dθ

)
θ=θ∗

· Δθ= ln tan θ +
1

| cos2 θ| tan θ
Δθ(11)

= ln tan θ +
2

| sin 2θ|Δθ ≥ ln tan θ + 2Δθ,

for some θ ≤ θ∗ ≤ θ + Δθ. From (10) and (11) it follows that the angle Δθ between
ā and b̄ satisfies |Δθ| ≤ (ln(1 + ε) − ln(1 − ε))/2.

Theorem 5.4. A group of robots having inaccurate or limited accuracy calcu-
lations with εc < 0.125 (assuming accurate measurement and movement) executing
Algorithm RCG will converge to a point.

Proof. We use uppercase letters to represent real quantities and lowercase to rep-
resent calculated quantities. For simplicity of notation we assume exact measurements
and inaccurate calculations. A combination of the two with limited errors is expected
to behave similarly using the same lines of argument.

In step 1 of the calculation in Algorithm RCG, the additional errors are equivalent
to inaccurate measurements, since each v̄ij is augmented with an error term of at most

εcv̄
i
j . To bound the error, we notice that the calculated v̄icog for each robot i is

v̄icog =
1

N

∑
j

(v̄ij + σ̄i
j) =

1

N

∑
j

(V
i

j + err i + σ̄i
j) .

It is known that σi
j ≤ εcv

i
j ≤ (1 + εd)εcV

i
j . Defining εt = (1 + εc)(1 + εd) − 1 and

assuming the calculation is done by components (so the error bound holds for each
component and therefore also for the vector size), it follows that

∣∣∣v̄icog − V
i

cog

∣∣∣ =
1

N

∣∣∣∣∣∣
∑
j

(err i + σ̄i
j)

∣∣∣∣∣∣ ≤ 1

N

∑
j

(|err i|+|σ̄i
j |) ≤ 1

N

∑
j

εtV
i
j ≤ εtDmax .

This implies that the inaccuracy in the calculated center of gravity appears in exactly
the same form as in inaccurate measurements.

Step 2 of Algorithm RCG involves a comparison between vectors, which may be
considered accurate up to the limited accuracy in the calculation of the vector sizes.
This may lead to the calculated dimax having a relative error of at most εc. In the
calculation performed in step 3 of the algorithm, another relative error of εc may
be introduced, and yet another may occur in the calculation of ρi/vicog in step 4.
Therefore, it can be concluded that

ε0
1 − ε0

(1 − εc)
3dimax ≤ ρi ≤ ε0

1 − ε0
(1 + εc)

3dimax .
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The choice of ε0 should be large enough to ensure that the value of ρi resulting from
the calculation of step 3 will always be greater than the total error in the target
location (discussed below) but small enough to ensure that at least one robot can
move at every configuration, i.e., such that the calculated ρi satisfies ρi < Dcog . This
imposes the conditions ε0

1−ε0
(1 − εc)

3 > εc
1−εc

and ε0
1−ε0

(1 + εc)
3dimax < Dcog for at

least one i. Since for at least one robot dimax ≥ 2(1 − εd)Dcog , it follows that we
require ε0

1−ε0
(1 + εc)

3(1 − εd) < [2(1 − εd)]−1. That is, we must choose ε0 such that
this condition holds.

Errors in step 4 of the algorithm are relative errors in the motion vector and
therefore are identical to movement errors, treated in Theorem 5.1. Since the calcu-
lated motion vector may contain a relative error of εc, leading to a factor of 1 + εc in
the motion vector size, β should be chosen such that β < (1 + εc)

−1. By Lemma 5.3,
an error of at most θc = (ln(1 + εc)− ln(1− εc))/2 may occur in the angle of motion,
which is similar to the error in Theorem 5.1.

The total error in the aimed location of the center of gravity, using Lemma 2.2,
is therefore √

2(1 + εt)(1 − cos(θc + εθ)) + εt
2 Dmax .

In the case of exact measurements, εd = 0, ε0 should satisfy
√

2(1 + εc)(1 − cos θc) + εc
2

(1 − εc)3
<

ε0
1 − ε0

<
1

2(1 + εc)3
.

For these inequalities to allow a solution, the upper bound should be higher than the
lower bound. Thus, εc should satisfy εc < 0.126 . . . . When εd > 0, the maximum
value of εc should be lower accordingly.

It should be noted that unlike the measurement and movement inaccuracies dis-
cussed earlier, calculation errors are rather negligible. In particular, commercially
available processors, even low-end ones, can be assumed to introduce very small nu-
merical errors; hence it is safe to assume that for any practical purpose εc < 10−3

in any real system. Consequently, the limit above poses no problem in practical
applications.

6. Analysis of RCG in the fully asynchronous model.

6.1. Convergence in the one-dimensional case. So far, we have not been
able to establish the convergence of Algorithm RCG in the fully asynchronous model.
In this section we prove its convergence in the restricted one-dimensional case and
with no angle inaccuracies, i.e., in the 〈ASYNC, ERR−〉 model.

Denote by c̄i[t] the calculated destination of robot i at time t. If robot i has not
gone through a Look yet, or has reached its previous destination, then, by definition,
c̄i[t] = R̄i[t]. Notice that we set c̄i[t] to be the destination of the robot’s motion after
the Look phase even if the robot has not yet completed its computation and is still
unaware of this destination.

Following are some technical lemmas and definitions used to prove the result when
the robots are on a straight line. Define H[t] as the minimum segment containing all
robots and destinations at time t.

Lemma 6.1. In the 〈ASYNC, ERR−〉 model, H[t] ⊆ H[t0] for all times t ≥ t0.
Proof. By the proof of part 2 of Lemma 4.5 it follows that every robot approaches

the true center of gravity; i.e., in the one-dimensional case, it always moves in the
correct direction towards the center of gravity. Furthermore, the size of its motion is
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always an underestimation to the true distance. Therefore, the calculated destination
resides between the current location of the robot and the real center of gravity, which
is always in the segment. Thus no destination is calculated outside the segment.
Therefore, no robot leaves the segment either.

Next, we define the following quantities:

φ1[t] =

N∑
i=1

|R̄cog [t] − c̄i[t]| ,

φ2[t] =

N∑
i=1

|c̄i[t] − R̄i[t]| ,

φ[t] = φ1[t] + φ2[t] ,

h[t] = |H[t]| ,

ψ[t] =
φ[t]

2N
+ h[t] .

We now claim that φ, h, and ψ are nonincreasing functions of time.
Lemma 6.2. For every t1 > t0, φ[t1] ≤ φ[t0].
Proof. Examine the change in φ due to the various robot actions. If a Look

operation is performed by robot i at time t, then the destination c̄i[t] is between
the robot and the real center of gravity. Therefore |R̄cog [t] − c̄i[t]| + |c̄i[t] − c̄i[t]| =
|c̄i[t∗] − R̄cog [t]| for any t∗ ∈ [t′, t], where t′ is the end of the last move performed by
robot i. Therefore, φ is unchanged by the Look performed.

Now consider some time interval [t′0, t
′
1] ⊆ [t0, t1], such that no Look operations

were performed during [t′0, t
′
1]. Suppose that during this interval each robot i moved a

distance Δi (where some of these distances may be 0). Then φ2 decreased by
∑

i Δi,
the maximum change in the center of gravity is |R̄cog [t1]− R̄cog [t0]| ≤

∑
i Δi/N , and

the robots’ calculated centers of gravity have not changed. Therefore, the change in φ1

is at most φ1[t1]− φ1[t] ≤
∑

i Δi. Hence, the sum φ = φ1 + φ2 cannot increase.
Lemma 6.3. ψ is a nonincreasing function of time.
Proof. By Lemma 6.2, φ is nonincreasing. By Corollary 6.1, h is nonincreasing.

Therefore their sum is also nonincreasing.
Lemma 6.4. h ≤ ψ ≤ 2h.
Proof. The lower bound is trivial. For the upper bound, notice that φ is the sum of

2N summands, each of which is at most h (since they all reside in the segment).
We now state a lemma which allows the analysis of the change in φ (and therefore

also ψ) in terms of the contributions of individual robots.
Lemma 6.5. If by the individual action of a robot i alone, in the time interval

[t0, t1] its contribution to φ is δi, then φ[t1] ≤ φ[t0] + δi.
Proof. Lemma 6.2 implies that Look actions have no effect on φ and therefore can

be disregarded. A robot moving a distance Δi will always decrease its term in φ2 by
Δi, and the motions of other robots have no effect on this term. Denote by Δj the
motions of the other robots. Notice that∣∣∣∣∣∣R̄cog +

Δi

N
+

1

N

∑
j �=i

Δj − c̄k

∣∣∣∣∣∣ ≤
∣∣∣∣R̄cog +

Δi

N
− c̄k

∣∣∣∣ +
1

N

∑
j �=i

|Δj |.

The function φ1 contains N summands, each of which contains a contribution of at
most 1

N |Δj | from every robot j �= i. Therefore, the total contribution of each robot to
φ1 is at most |Δj |, which is canceled by the negative contribution of |Δj | to φ2.
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Lemma 6.6. If at some time t0, for some 0 < A < 1, the convex hull of the robot
group H ′[t] satisfies |H ′[t0]| ≤ (1 − A)h[t0], then there exists a time t > t0 such that
ψ[t] ≤ (1 − A

4N2 )ψ[t0].
Proof. Take t∗ to be the time after t0 where all robots finished a complete Look-

Compute-Move cycle. If for some time t1 ∈ [t0, t] it held that h[t1] ≤ (1 − A
2 )h[t0],

then ψ[t1] < (1 − A
4N2 )ψ[t0], and we are done. If no such time (t1) existed, then at

time t0 at least one robot had its calculated destination at a distance A
4 h[t0] from the

convex hull of the robot group. Suppose robot k had the most distant destination
from the group, Δk ≥ A

4 h[t0]. By the movement of robot k alone, the real center of

gravity moves a distance Δk

N towards robot k’s perceived center of gravity. Therefore,

by its motion ψ decreases by 2Δk

N2 . By Lemma 6.5 the decrease of ψ by the motion of
all robots is at least the same, thus proving the claim.

We now proceed to prove the main theorem regarding convergence in the asyn-
chronous model.

Lemma 6.7. For all times t0 there exist a time t1 > t0 and a constant δ such
that ψ[t1] ≤ (1 − δ

16N2 )ψ[t0].
Proof. We have established that ψ is a nonincreasing function of time. Now

assume that at time t0, H[t0] is the convex hull of the locations of the robots and
their destinations. Without loss of generality we assume H[t0] = [0, 1]. Take t∗ > t0
to be the time when all robots completed at least one full cycle. If at some time
t ∈ (t0, t

∗] the size of the interval occupied by the robots is h[t∗] ≤ 1− δ, we are done
by Lemma 6.6.

Suppose now that at all times t ∈ (t0, t
∗] the robots’ interval never shrinks to 1−δ.

This implies that there exist robots in the intervals [0, δ] and [1− δ, 1]. Now, for each
robot, i, there exists at least one robot, j, with distance at least V i

j ≥ 1−δ
2 from it, and

this robot is viewed at a distance at least vij ≥ (1−εc)
1−δ
2 ≥ (1−ε0)

1−δ
2 . Therefore, it

follows that ρi ≥ ε0(1−δ)
2 ≥ ε0

2 , and thus no robot calculates its destination to within ε0
2

of {0, 1}. If we take δ < ε0
2 , then no robot approaches a distance δ from the boundary.

Now take the leftmost and rightmost robots kl = arg mini R̄i and kr = arg maxi R̄i

and take tl > t∗ and tr > t∗ to be their next Look times. By assumption R̄kl
[t∗] ∈ [0, δ]

and R̄kr [t
∗] ∈ [1 − δ, 1]. Assume, without loss of generality, that tl ≤ tr. Then, for

robot kl, either c̄kl
[t∗] ≥ δ or c̄kl

[tl] ≥ δ, or otherwise robot kl decided to maintain its
position. This means that the real center of gravity at time tl was within a distance
ρkl

+ errkl
of R̄kl

. For ε0 < 0.2, ρkl
+ errkl

≤ (ε0 + ε0
1+ε0
1−ε0

)Dmax < 1
2 . Take

2δ < 1
2 − ε0 − ε0

1+ε0
1−ε0

. Since R̄kl
∈ [0, δ], it follows that the center of gravity at time

tl was in the interval R̄cog [tl] ∈ [0, 1
2 − δ]. Now again for kr, either c̄kr [t

∗] ≤ 1 − δ or
c̄kr [tr] ≤ 1 − δ or the center of gravity has moved to the interval [12 + δ, 1], in which
case the center of gravity moved by at least 2δ approaching c̄kr R̄kr , leading to the
desired decrease in ψ. Thus, no robot enters the δ environment of the boundary, and
either one of the robots in this environment has left or ψ decreased by the desired
amount. Since the number of robots is finite, after a finite number of such steps it is
guaranteed that either ψ decreased by the desired amount or the interval shrunk by
at least δ, leading again to the desired decrease in ψ.

Lemma 6.7 yields the following theorem.
Theorem 6.8. In the 〈ASYNC, ERR−〉 model, N robots performing Algorithm

RCG converge on the line.
We make the following more general conjecture.
Conjecture 6.9. Algorithm RCG converges in the 〈ASYNC, ERR〉 model for

sufficiently small error in the angle and distance measurements.
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6.2. Separating Go to COG from RCG in the ASYNC model. This section
establishes the advantage of Algorithm RCG over the basic Algorithm Go to COG. In the
fully synchronous case there is no justification for using the more involved Algorithm
RCG, since the simpler Algorithm Go to COG also guarantees convergence as shown
above in Lemma 4.2.

However, a gap between the two algorithms can be established in the fully asyn-
chronous model. Specifically, we now show that the ordinary center-of-gravity algo-
rithm Go to COG does not converge in the 〈ASYNC, ERR−〉 model, even when the
robots are positioned on a straight line. Contrasting this result with Theorem 6.8
yields the claimed separation between the two algorithms.

Theorem 6.10. In the 〈ASYNC, ERR−〉 model, for every εd and N > 1/εd
there exists an activation schedule for which Algorithm Go to COG does not converge,
even when the robots are restricted to a line.

Proof. Start with a configuration in which the first robot is at R̄1 = 0 and the
other N−1 robots are located at R̄i = 1 for i = 2, . . . , N . Robot 1 makes a Look, and
sees the other robots at location 1 + εd. While robot 1 is at its Compute phase, the
other robots go through a long sequence of cycles, leading them to a distance δ � εd

from robot 1. Robot 1 now finishes its Compute phase, concludes that the center of
gravity is at location N−1

N (1+εd), and moves to this location. The robots are now at a

setup similar to the initial setup but with a distance of 1− 1
N + N−1

N εd−δ > 1 between
robot 1 and the rest of the robots. Repeating this process leads to the divergence of
the algorithm.

7. Conclusions. We have discussed the feasibility of robot swarm convergence
under conditions of inaccuracy in the robots’ sensors, calculations, and movements.
We have presented several impossibility results under various conditions and have
discussed the inadequacy of existing algorithms. We then presented an algorithm
based on restricted movement to the center of gravity of the robot swarm and have
proved its correctness under a range of the inaccuracy parameters.

We have also shown that in the case of the one-dimensional asynchronous model
the restricted center-of-gravity algorithm guarantees convergence, while the standard
center-of-gravity algorithm fails to converge under certain circumstances.

Establishing tight bounds for the convergence rate remains an open problem for
future study. Our proofs provide only some trivial bounds stemming from the time
required to traverse the distance between the two farthest robots. In the model
allowing possible premature stopping of a robot after traversing a distance of at least
S, this time (in terms of number of steps) is at least the distance between the two
farthest robots divided by 2S. Another trivial bound on the convergence rate of
the center-of-gravity algorithm Go to COG follows from the ability of the adversary to
increase or decrease the distance viewed from a robot to all other robots by a factor
of 1 ± εd. This implies that even in the fully synchronous model, instead of meeting
at the center of gravity, after every step the robots may reach a configuration similar
to their previous one, except with all distances multiplied by εd.
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PLOTTABLE REAL NUMBER FUNCTIONS AND THE
COMPUTABLE GRAPH THEOREM∗

VASCO BRATTKA†

Abstract. The Graph Theorem of classical recursion theory states that a total function on
the natural numbers is computable if and only if its graph is recursive. It is known that this result
can be generalized to real number functions where it has an important practical interpretation: the
total computable real number functions are precisely those which can be effectively plotted with any
given resolution. We generalize the Graph Theorem to appropriate partial real number functions
and even further to functions defined on certain computable metric spaces. Besides the nonuniform
version of the Graph Theorem which logically relates computability properties of the function and
computability properties of its graph, we also discuss the uniform version: given a program of a
function, can we algorithmically derive a description of its graph? And, vice versa, given a description
of the graph, can we derive a program of the function? While the passage from functions to graphs
is always computable, the inverse direction from graphs to functions is problematic, and it turns
out that the answers to the uniform and the nonuniform questions do not coincide. We prove that
in both cases certain topological and computational properties (such as compactness or effective
local connectedness) are sufficient for a positive answer, and we provide counterexamples which show
that the corresponding properties are not superfluous. Additionally, we briefly discuss the special
situation of the linear case.

Key words. computable real number functions, recursive graphs
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1. Introduction. The Graph Theorem of classical recursion theory states that
a total function f : N → N on the natural numbers N := {0, 1, 2, . . .} is computable if
and only if its graph, i.e., the set graph(f) := {(n, f(n)) : n ∈ N} ⊆ N×N, is recursive
[17]. In particular, this result shows that the notions of a computable function and
of a recursive subset are logically equivalent (in the sense that one could be derived
from the other).

We will investigate generalizations of the Graph Theorem from the point of view
of computable analysis, which is the Turing machine based theory of computability on
real numbers and other topological spaces. Pioneering work on this theory has been
presented by Turing [19], Banach and Mazur [1], Lacombe [14, 15], and Grzegorczyk
[12]. Recent monographs have been published by Pour-El and Richards [18], Ko [13],
and Weihrauch [20].

Roughly speaking, a real number function f : Rn → R is computable in the sense
of computable analysis if and only if there exists a Turing machine that transforms
better and better rational approximations of x into corresponding approximations of
f(x). Based on the well-known physical Church–Turing thesis [17] one might derive a
thesis that underlines that this notion has a direct relation to the abilities of physical
computers.
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Fig. 1.1. Determination of a pixel color.

Thesis 1.1. A function f : Rn → R is computable if and only if it can be
evaluated on a physical computer with arbitrary given precision.

It is an important feature of computable analysis that the Graph Theorem can
be generalized to continuous real number functions f : R → R (as discussed in [20],
this fact was first proved for continuous functions f : [0, 1] → R by Zhou [23]).1 Thus,
a continuous function f : R → R is computable if and only if its graph graph(f) :=
{(x, f(x)) : x ∈ R} ⊆ R × R is recursive.

Here, a closed subset A ⊆ R × R is called recursive if and only if its distance
function dA : R × R → R, (x, y) �→ inf(a,b)∈A ||(x, y) − (a, b)|| is computable (where
||(x, y)|| := max{|x|, |y|} denotes the maximum norm). Similarly to the computable
functions, the recursive subsets also have a very practical meaning: these are exactly
those subsets that can be effectively displayed.

This is easy to see since, given a screen with pixels of a certain size, the color of any
given pixel can be determined by computing the distance dA(c) from the center c of
the pixel to the set A (cf. the discussions in [8, 20] or in [9]). If ε is the radius of a ball
with center c that completely contains the pixel and if δ > ε is the radius of such a ball
that is completely contained in the pixel and its immediate eight neighbor pixels, then
dA(c) < δ could lead to a black pixel and dA(c) > ε to a white pixel (depending on
which inequality can be verified first; see Figure 1.1). Since in principle the decision
cannot be made with infinite precision, there will always remain a certain area of
indetermination (in our case the values in the interval ε < dA(c) < δ) where the pixel
might be white as well as black. However, this procedure guarantees that, on the one
hand, the pixel will be black if the set hits the pixel and that, if the pixel is black,
then the set does hit at least one of the neighbor pixels or the pixel itself. Altogether,
this justifies the derivation of the following thesis.

Thesis 1.2. A closed subset A ⊆ R2 is recursive if and only if it can be displayed
by a physical computer for an arbitrary given resolution.

If we apply these considerations to functions f : R → R with a recursive graph,
then we obtain that these functions are plottable in the sense that there exists an

1The Graph Theorem does not hold for real number functions in the so-called BSS model, where
it holds only for algebraically closed fields [11].
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algorithm that can display any part of the graph for any given resolution. Thus, in
particular, any computable function f is plottable.

Unfortunately, this pleasant property does not hold true for partial functions.
Topologically, graph(f) := {(x, f(x)) : x ∈ dom(f)} ⊆ R × R is not even closed in
general if f :⊆ R → R is a partial computable function. And even if the graph is
closed, it is not necessarily recursive, as the following counterexample shows.

Example 1.3. There exists a partial computable function f :⊆ R → R with
dom(f) = R \ N such that graph(f) ⊆ R × R is closed but not recursive closed.

Proof. Let a : N → N be some computable and injective enumeration of a non-
recursive set K = range(a). Let the partial function t :⊆ R → R be defined by
t(x) := tan(π(x − 1

2 )). Then t is a computable function with dom(t) = R \ N. We
will define f :⊆ R → R by modifying t. Therefore, for any n ∈ K = range(a) let

pn : [n + 2−a−1(n)−4, n + 2−a−1(n)−2] → R be the polygon defined by the vertices
(
n + 2−a−1(n)−4, t(n + 2−a−1(n)−4)

)
,

(
n + 2−a−1(n)−3, 0

)
,

(
n + 2−a−1(n)−2, t(n + 2−a−1(n)−2)

)
.

Now we define f :⊆ R → R by

f(x) :=

{
pn(x) if (∃n ∈ K) x ∈ [n + 2−a−1(n)−4, n + 2−a−1(n)−2]

t(x) otherwise
,

for all x ∈ R. Figure 1.2 displays the graph of f on some interval [n, n + 1] with the
graph of t and the alternative part pn as a dotted line. Then f with dom(f) = R\N is
computable since a is computable. On the other hand, graph(f) ⊆ R×R is obviously
closed but not recursive closed, since K = range(a) is not co–recursively enumerable
(co-r.e.) and

n �∈ K ⇐⇒ dgraph(f)

(
n +

1

8
, 0

)
>

1

8
.

The intuitive reason for this inconsistency between computability of partial func-
tions and plottability of their graphs is the following: the computation of a function
might take longer when we approach the singularities, while the decision for any pixel
in a plot of its graph has to be made after finite time. In other words, the topology
of the display does not take care of the singularities. It is worth mentioning that
such pathologies are well known in practice. Figure 1.3 shows a standard plot of the
tangent function (produced by gnuplot 3.7.3 with default options).

Of course, Example 1.3 exploits the fact that the domain of the function has
countably many singularities. However, if one is prepared to accept a counterexample
with a graph that is not closed (in R×R), then there is such an example even for the
domain (0, 1).

Example 1.4. Let X = (0, 1) and Y = R. There exists a continuous and com-
putable function f : X → Y such that graph(f) ⊆ R×R is not recursive closed. The
same holds true for Y = [0, 1].

Proof. Let (ai)i∈N be an increasing sequence of positive real numbers that con-
verges to a left but not right computable real number a < 1. We define a function
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Fig. 1.2. The function f on [n, n + 1] in case of a−1(n) = 0.
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Fig. 1.3. An unsatisfactory standard plot of the tangent function.
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Fig. 1.4. The function f .

f : (0, 1) → R as follows. For any n ∈ N let pn : [2−n−1, 2−n] → R be the rational
polygon with vertices

(
2−n−1, 0

)
,
(
2−n−1 + 2−n−2, an

)
,
(
2−n, 0

)
,

and let f(x) := pn(x) for any x ∈ [2−n−1, 2−n) and n ∈ N. The function f is
displayed in Figure 1.4. The function f : (0, 1) → R defined in this way is obviously
computable. However, graph(f) ∩ ({0} × R) = {0} × [0, a], and hence the distance
function distgraph(f) : R2 → R of graph(f) ⊆ R2 is not computable.

These examples show that even for very simple domains X ⊆ R it is no longer true
that the graph of a computable function f : X → R is recursive as a subset of R×R,
and thus it is not necessarily plottable. However, as we will see, it is always true and a
property of interest that the graph is recursive, considered as a subset of X×R. This
change of the topology has a practical interpretation in our examples above: when we
approach the singularities the resolution has to be increased correspondingly.

Actually, we will even address a slightly more general question in the following
(without much extra costs) where we consider as domain of our functions f certain
metric spaces X (and in some cases we will consider metric spaces Y for the images
as well). In this general case the intuitive notion of plottability is no longer meaning-
ful. However, our formal notion of recursiveness is still available and has important
applications in theory. Altogether, we arrive at the following problem.

Nonuniform graph problem. Which computable metric spaces X and Y have
the property that for all continuous functions f : X → Y it holds that f is computable
if and only if graph(f) = {(x, f(x)) : x ∈ X} ⊆ X × Y is recursive?

This nonuniform question relates a computability property of f just logically to a
computability property of graph(f). But given f , can we effectively compute graph(f)
from f? And, vice versa, given graph(f), can we effectively compute f? This uniform
question can be formulated as follows.

Uniform graph problem. Which computable metric spaces X and Y have
the property that the mapping graph : C(X,Y ) → A(X × Y ), f �→ graph(f) and its
inverse are computable?

Here, by C(X,Y ) we denote the set of continuous functions f : X → Y and by
A(X × Y ) the set of closed subsets of X × Y .

We are far from presenting a complete solution of the above questions, and we
will mainly concentrate on the case Y = Rn. Even in this special case it appears
that the answers to these questions sensitively rely on topological and computational
properties of the space X, and even in case of important and well-understood concrete
spaces X we obtain a somewhat surprising variety of answers (see Figure 10.1).
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We close this introduction with a short survey on the organization of this paper.
In section 2 we will provide some basic concepts of computable analysis, and section 3
is devoted to computable metric spaces. To make all the above problems precise, we
have, for instance, to define computability on the hyperspace A(X×Y ) of closed sub-
sets, and we have to define an appropriate notion of recursiveness. The corresponding
definitions will be presented in section 4. In section 5 we discuss one direction of the
Graph Theorem that we will call the weak Graph Theorem: any total computable
function f : X → Y has a recursive graph, and this holds even uniformly. In sec-
tions 6, 7, 8, and 9, we discuss different properties on computable metric spaces that
guarantee that the inverse direction of the Graph Theorem holds as well. Such condi-
tions are recursive compactness of the target space or different effective connectedness
properties of the source space. Finally, in section 10 we give a survey of our results.

2. Preliminaries from computable analysis. In this section we briefly sum-
marize some notions from computable analysis. For details the reader is referred to
[20]. The basic idea of the representation based approach to computable analysis is to
represent infinite objects like real numbers, functions, or sets by infinite strings over
some alphabet Σ (which should contain at least the symbols 0 and 1). Thus, a repre-
sentation of a set X is a surjective mapping δ :⊆ Σω → X, and in this situation we will
call (X, δ) a represented space. Here Σω denotes the set of infinite sequences over Σ,
and the inclusion symbol is used to indicate that the mapping might be partial. If we
have two represented spaces, then we can define the notion of a computable function.

Definition 2.1 (computable function). Let (X, δ) and (Y, δ′) be represented
spaces. A function f :⊆ X → Y is called (δ, δ′)-computable if there exists some
computable function F :⊆ Σω → Σω such that δ′F (p) = fδ(p) for all p ∈ dom(fδ).

Of course, we have to define computability of functions F :⊆ Σω → Σω to make
this definition complete, but this can be done via Turing machines: F is computable
if there exists some Turing machine which computes for an infinitely long time and
transforms each sequence p, written on the input tape, into the corresponding sequence
F (p), written on the one-way output tape. Later, we will also need computable
multivalued operations f :⊆ X ⇒ Y , which are defined analogously to computable
functions by substituting δ′F (p) ∈ fδ(p) for the equation in Definition 2.1 above.
The intuition behind the concept of computable multivalued operations f is that
a computable realization F selects upon input of a name of x one of the possible
values in f(x). In some application f(x) could be, for instance, the set of solutions
of some equation with parameter x. This set could have continuum cardinality, but
in practice we might just be interested in finding one arbitrary solution y ∈ f(x). If
the represented spaces are fixed or clear from the context, then we will simply call a
function or operation f computable.

Analogously to the notion of computability we can define the notion of (δ, δ′)-
continuity for single- and multivalued operations by substituting a continuous function
F :⊆ Σω → Σω for the computable function F in the definitions above. On Σω we use
the Cantor topology, which is simply the product topology of the discrete topology
on Σ. Again we will simply say that the corresponding function is continuous if the
representations are fixed or clear from the context. If not mentioned otherwise, we will
always assume that a represented space is endowed with the final topology induced
by its representation.

This will lead to no confusion with the ordinary topological notion of continuity,
as long as we are dealing with admissible representations. A representation δ of a
topological space X is called admissible if δ is maximal among all continuous repre-
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sentations δ′ of X in the sense that the identity id : X → X is (δ′, δ)-continuous for
all such δ′. If δ, δ′ are admissible representations of T0-spaces with countable bases,
X, Y , then a function f :⊆ X → Y is (δ, δ′)-continuous if and only if it is continuous
in the ordinary topological sense [20].

Given a represented space (X, δ), we will occasionally use the notions of a com-
putable sequence and a computable point. A computable sequence is a computable
function f : N → X, where we assume that N = {0, 1, 2, . . .} is represented by
δN(1n0ω) := n, and a point x ∈ X is called computable if there is a constant com-
putable function with value x.

Given two represented spaces (X, δ) and (Y, δ′), there is a canonical representation
[δ, δ′] of X × Y and a representation [δ → δ′] of certain functions f : X → Y . If δ, δ′

are admissible representations of T0-spaces with countable bases, then [δ → δ′] is
actually a representation of the set C(X,Y ) of continuous functions f : X → Y . If
Y = R, then we write for short C(X) := C(X,R). The function space representation
can be characterized by the fact that it admits evaluation and type conversion.

Proposition 2.2 (evaluation and type conversion). Let (X, δ), (Y, δ′) be admis-
sibly represented T0-spaces with countable bases, and let (Z, δ′′) be a represented space.
Then the following hold:

(1) (Evaluation) ev : C(X,Y ) × X → Y, (f, x) �→ f(x) is ([[δ → δ′], δ], δ′)-
computable.

(2) (Type conversion) f : Z × X → Y , is ([δ′′, δ], δ′)-computable, if and only if
the function f̌ : Z → C(X,Y ), defined by f̌(z)(x) := f(z, x), is (δ′′, [δ → δ′])-
computable.

The proof of this proposition is based on a version of smn and utm theorems and
can be found in [20]. If (X, δ), (Y, δ′) are admissibly represented T0-spaces with count-
able bases, then in the following we will always assume that C(X,Y ) is represented
by [δ → δ′]. It is known that the computable points in (C(X,Y ), [δ → δ′]) are just the
(δ, δ′)-computable functions f : X → Y [20]. If (X, δ) is a represented space, then we
will always assume that the set of sequences XN is represented by δN := [δN → δ]. The
computable points in (XN, δN) are just the computable sequences in (X, δ). Moreover,
we assume that Xn is always represented by δn, which can be defined inductively by
δ1 := δ and δn+1 := [δn, δ].

3. Computable metric spaces. In this section we will briefly discuss com-
putable metric spaces; see also [4] for further details. First, we just mention that we
will denote the open balls of a metric space (X, d) by B(x, ε) := {y ∈ X : d(x, y) < ε}
for all x ∈ X, ε > 0 and correspondingly the closed balls by B(x, ε) := {y ∈ X :
d(x, y) ≤ ε}. Occasionally, we denote complements of sets A ⊆ X by Ac := X \A.

Definition 3.1 (computable metric space). A tuple (X, d, α) is called a com-
putable metric space if

(1) d : X ×X → R is a metric on X,
(2) α : N → X is a sequence that is dense in X, and
(3) d ◦ (α× α) : N2 → R is a computable (double) sequence in R.
Here, we tacitly assume that the reader is familiar with the notion of a computable

sequence of reals, but we will come back to that point below. Occasionally, we will say
for short that X is a computable metric space. Obviously, a computable metric space
is in particular separable. Given a computable metric space (X, d, α), its Cauchy
representation δX :⊆ Σω → X can be defined by

δX(01n0+101n1+101n2+1 . . .) := lim
i→∞

α(ni)
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for all ni such that (α(ni))i∈N converges and d(α(ni), α(nj)) ≤ 2−i for all j > i (and
undefined for all other input sequences). In the following we tacitly assume that
computable metric spaces are represented by their Cauchy representations. If X is a
computable metric space, then it is easy to see that d : X × X → R is computable
(see Proposition 5.3 in [4]). All Cauchy representations are admissible with respect
to the corresponding metric topology.

An important computable metric space is (R, dR, αR) with the Euclidean metric
dR(x, y) := |x − y| and some numbering αR〈i, j, k〉 := (i − j)/(k + 1) of the rational
numbers Q. Here, 〈i, j〉 := 1

2 (i+j)(i+j+1)+j denotes Cantor pairs and this definition

is extended inductively to finite tuples. For short we will occasionally write k :=
αR(k). In the following we assume that R is endowed with the Cauchy representation
δR induced by the computable metric space given above. This representation of R
can also be defined if (R, dR, αR) just fulfills (1) and (2) of the definition above, and
this leads to a definition of computable real number sequences without circularity.
Occasionally, we will also use the represented space (Q, δQ) of rational numbers with
δQ(1n0ω) := αR(n) = n. We close this section with a brief discussion of metric product
spaces.

Proposition 3.2 (product spaces). If (X, d, α), (Y, d′, α′) are computable metric
spaces, then the product space (X × Y, d′′, α′′), defined by

d′′((x, y), (x′, y′)) := max{d(x, x′), d′(y, y′)} and α′′〈i, j〉 := (α(i), α′(j)),

is a computable metric space, too, and the canonical projections of the product space
pr1 : X × Y → X and pr2 : X × Y → Y are computable.

Particularly, the corresponding Cauchy representations δX×Y and [δX , δY ] are
computably equivalent. In the following we will tacitly use the computable metric
spaces Rn, {0, 1}N, and NN, defined in the standard way.

4. Hyperspaces of closed subsets. In this section we want to introduce com-
putability on the hyperspace of closed subsets of computable metric spaces. At this
point we have to carefully consider the fact that different equivalent characterizations
of the notion of a recursive closed subset A ⊆ Rn split into inequivalent notions if
we generalize them to computable metric spaces. The logical relation between several
notions of effectivity of closed subsets of metric spaces is illustrated in Figure 4.1.

The displayed results have been obtained in [7] from a very uniform point of
view and each arrow in the diagram indicates not only an implication but also an
effective reducibility. Below, we will precisely define the notions that are relevant for
the present paper. In case of Euclidean space (and certain other computable metric
spaces) the vertical arrows can be reversed, and thus the three horizontal layers of
the diagram collapse [8]. However, some examples prove that these notions have to
be distinguished in the general case of computable metric spaces [7, 3]. If we consider
a subset A ⊆ N as a closed subset of R (embedded in the canonical way), then the
set is recursively enumerable (r.e.), co-r.e., and recursive in the classical sense if and

located

recursive

lower semilocatedupper semilocated

co-r.e.

effectively separable

��
�

�
strongly recursive strongly co-r.e.

��

r.e. =
�

�

�

����

Fig. 4.1. Notions of effectivity for closed subsets of computable metric spaces.
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only if it is r.e., co-r.e., and recursive in the metric sense, respectively. Thus, all the
displayed notions can be considered as formal generalizations of the corresponding
classical notions of r.e., co-r.e., and recursive sets.

Now the following question appears: Which of these notions fit together with
the Graph Theorem? It could happen, for instance, that the graph of a computable
function is recursive (but not strongly recursive in general), while only continuous
functions with a strongly recursive graph are computable in general. However, our
results show that this does not happen and actually the notion of “recursive” is the
one which optimally fits the Graph Theorem. In the following definition we start
to define corresponding hyperspace representations. Such representations have been
studied in the Euclidean case in [8, 20] and for the metric case in [7].

Definition 4.1 (hyperspace of closed subsets). Let (X, d, α) be a computable
metric space. We endow the hyperspace A(X) := {A ⊆ X : A closed} of closed
subsets with the representation δ<A(X), defined by

δ<A(X)(01〈n0,k0〉+101〈n1,k1〉+101〈n2,k2〉+1 . . .) = A

: ⇐⇒ {(n, k) : A ∩B(α(n), k) �= ∅} = {(ni, ki) ∈ N2 : i ∈ N},

and with the representation δ>A(X), defined by

δ>A(X)(01〈n0,k0〉+101〈n1,k1〉+101〈n2,k2〉+1 . . .) := X \
∞⋃
i=0

B(α(ni), ki).

The intuition behind the representation δ<A(X) is that a closed set A is represented

by a list of positive information on the set A. Such positive pieces of information are
just open rational balls. Analogously, δ>A(X) represents closed sets A by negative in-

formation. A name of A is just a list of open rational balls whose union exhausts
the complement of A. Whenever we have two representations δ, δ′ of some set, we
can define the infimum δ � δ′ of δ and δ′ by (δ � δ′)〈p, q〉 = x : ⇐⇒ δ(p) = x
and δ′(q) = x. We use the short notation A< = A<(X) = (A<(X), δ<A(X)), A> =

A>(X) = (A>(X), δ>A(X)), and A = A(X) = (A(X), δ<A(X) � δ>A(X)) for the corre-

sponding represented spaces. For the computable points of these spaces special names
are used.

Definition 4.2 (r.e. and recursive sets). Let X be a computable metric space
and let A ⊆ X be a closed subset.

(1) A is called r.e. closed if A is a computable point in A<(X).
(2) A is called co-r.e. closed if A is a computable point in A>(X).
(3) A is called recursive closed if A is a computable point in A(X).
Intuitively, a set A is r.e. closed if we can effectively enumerate all rational open

balls that intersect the set, and A is called co-r.e. closed if we can enumerate sufficiently
many open rational balls whose union is the complement of A. Finally, A is called
recursive closed if it has both properties. We continue this section with some helpful
results on hyperspaces, which follow directly from results in [7]. The first result states
that we can represent closed subsets by preimages of continuous functions. It is an
effective version of the statement that closed subsets of metric spaces coincide with
the functional closed subsets.

Proposition 4.3 (functional closed subsets). Let X be a computable metric
space. The map Z : C(X,R) → A>(X), f �→ f−1{0} is computable and admits a
computable right-inverse A>(X)⇒ C(X,R).
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The second result can be considered as an effective version of the statement that
closed subsets of separable metric spaces are separable. Here and in the following A
denotes the topological closure of a subset A ⊆ X of some topological space X.

Proposition 4.4 (separable closed subsets). Let X be a computable metric
space. The mapping range : XN → A<(X), (xn)n∈N �→ {xn : n ∈ N} is computable
and if X is complete, then it admits a computable multivalued partial right-inverse
⊆ A<(X)⇒ XN, defined for all nonempty closed subsets.

We close this section with the definition of the remaining notions of effectivity for
closed subsets that we are going to use in this paper.

Definition 4.5 (strongly recursive and located subsets). Let (X, d, α) be a
computable metric space and let A ⊆ X be a closed subset. Then the following hold:

(1) A is called strongly co-r.e. closed if {〈n, k〉 ∈ N : A ∩B(α(n), k) = ∅} is r.e.
(2) A is called strongly recursive closed if A is r.e. closed and strongly co-r.e.

closed.
(3) A is called located if A = ∅ or the distance function dA : X → R, x �→

infy∈X d(x, y) of A is computable.
The definition of locatedness can even be applied to sets that are not closed.

5. The weak Graph Theorem. In this section we will study the easy direction
of the Graph Theorem, and we will discuss a number of counterexamples that limit
the possibilities for the problematic direction. We immediately obtain the following
positive result, which is based on Propositions 4.4 and 4.3.

Theorem 5.1 (weak Graph Theorem). Let X and Y be computable metric
spaces. The mapping graph : C(X,Y ) → A(X × Y ), f �→ graph(f) is computable.

Proof. We consider the computable metric spaces (X, d, α), (Y, d′, β). Then, α :
N → X is a computable function such that range(α) = X. If f : X → Y is continuous,
then S : X → X × Y, x �→ (x, f(x)) is continuous, too, and because of continuity of S
we obtain that range(Sα) is dense in range(S) = graph(f). Using evaluation and type
conversion as well as Proposition 4.4, it follows that graph : C(X,Y ) → A<(X × Y )
is computable.

Now U : X × Y → R, (x, y) �→ d′(f(x), y) is continuous, since f : X → Y and the
metric d′ : Y × Y → R are continuous, and we obtain

U(x, y) = 0 ⇐⇒ d′(f(x), y) = 0 ⇐⇒ f(x) = y ⇐⇒ (x, y) ∈ graph(f).

Thus U−1{0} = graph(f) and evaluation together with type conversion and Propo-
sition 4.3 allow us to conclude that graph : C(X,Y ) → A>(X × Y ) is computable.
Altogether, this shows that graph : C(X,Y ) → A(X × Y ) is computable.

Unfortunately, the partial inverse graph−1 is not continuous in general, as the
following result shows. Here and in the following we write w � p if w is a finite prefix
of p.

Proposition 5.2. The function graph−1 :⊆ A(X ×R) → C(X) is discontinuous
in case of Cantor space X = {0, 1}N.

Proof. Let fn : {0, 1}N → R be defined by

fn(p) :=

{
n + 1 if 0n � p,

0 otherwise

for all n ∈ N and p ∈ {0, 1}N. Then (fn)n∈N is a sequence in C({0, 1}N) that does not
converge, but (graph(fn))n∈N converges in A({0, 1}N×R) to A := {0, 1}N×{0} (recall
that A({0, 1}N ×R) is endowed with the final topology induced by the representation
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δ<A({0,1}N×R)
� δ>A({0,1}N×R)

, which means that a sequence (An)n∈N converges in this

space to A if and only if for any rational ball B(x, r) with A ∩ B(x, r) �= ∅ it follows
that An ∩ B(x, r) �= ∅ for almost all n and for any closed rational ball B(x, r) with
A ∩ B(x, r) = ∅ it follows that An ∩ B(x, r) = ∅ for almost all n; in other words,
(An)n∈N converges to A if any positive or negative information on A is shared by
almost all sets in the sequence).

Thus, the uniform version of the Graph Theorem does not hold true in general,
not even for compact computable metric spaces X. However, as Corollary 7.3 will
show, this fact cannot be used to construct a computable counterexample for the
nonuniform case. Such a nonuniform counterexample can be obtained if we omit
compactness, as the following example shows.

Example 5.3. Let X = NN be the Baire space. There exists a continuous but
noncomputable function f : X → R such that graph(f) ⊆ X ×R is strongly recursive
closed. The same holds in case of X = N{0, 1}N.

Proof. Let a : N → N be some computable and injective enumeration of a nonre-
cursive set K = range(a). Define f : NN → R by

f(np) :=

{
k + 1 if there exists some k with a(k) = n and 0k � p,

0 otherwise

for all p ∈ NN and n ∈ N. Then f is continuous but noncomputable since K = range(a)
is not co-r.e. and

n �∈ K ⇐⇒ f(n0ω) < 1.

Moreover,
(
wN

N × (r, s)
)
∩ graph(f) �= ∅

⇐⇒ (∃n, k ≥ 0, j ≥ 1)
((

(w 	 n0k or n0k 	 w) and a(k) = n and k + 1 ∈ (r, s)
)

or

(
(w = n0k or n0kj 	 w) and n �∈ {a(0), . . . , a(k)} and 0 ∈ (r, s)

))

for all w ∈ N∗ and r, s ∈ Q with r ≤ s. Since a is computable and only finitely many
values n, k, j have to be checked, it follows that the stated property is recursive in
r, s, and w. Particularly, graph(f) is r.e. closed. Analogously, the equivalence also
holds with [r, s] substituted for (r, s) in all of its three incidences. As the property
is recursive, its negation is in particular r.e. Thus, graph(f) is also strongly co-r.e.
closed. Altogether, graph(f) is strongly recursive closed. The proof for the case
X = N{0, 1}N is the same.

Altogether, this shows that the problematic direction of the Graph Theorem does
not hold in general—neither in the uniform case nor in the nonuniform case. The
previous example additionally shows that in general it does not help to use the stronger
notion of “strongly recursive closed subsets” for the problematic direction (not even
in the nonuniform case).

Finally, we ask whether the positive result of this section could be improved by
obtaining a stronger computability property of the graph. On the one hand, results
of Cenzer and Remmel show that there is a computable function f : NN → NN such
that graph(f) is not strongly recursive (see Corollary 4.6 in [10]). On the other hand,
a reinterpretation of Examples 1.3 and 1.4 shows that the graph of a computable
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function is not located in general. For the reformulation we consider X := R \ N or
X = (0, 1) as a computable metric subspace of R, endowed with the restriction of the
Euclidean metric to X ×X.

Example 5.4. Consider X = R\N or X = (0, 1) as a computable metric subspace
of R endowed with the restriction of the Euclidean metric. There exists a computable
function f : X → R such that graph(f) ⊆ X × R is not located.

Since graph(f) need not be closed as a subset of R×R, we could even obtain the
same result with [0, 1] as the target space instead of R (as Example 1.4 shows). The
reader should notice the fine distinctions: graph(f) is recursive as a closed subset of
X×R by Theorem 5.1, but it is not recursive as a closed subset of R×R in Example 1.3.
Moreover, it is not located as a subset of X × R and thus, in particular, not strongly
recursive in the same sense (however, there is a different but equivalent metric on X
that yields the aforementioned properties). Therefore, Theorem 5.1 formulates the
best possible general result (with respect to the computability properties of subsets
given in Figure 4.1).

6. Compact target spaces. In this section we want to prove that the inverse
graph−1 of the graph mapping becomes computable if the target space is effectively
compact in a certain sense. We start with the definition of some effectiveness notions
for compact subsets (see [7]).

Definition 6.1 (recursive compact sets). Let (X, d, α) be a computable metric
space. A subset K ⊆ X is called co-r.e. compact if it is compact and the set

{
〈〈n0, k0〉, 〈n1, k1〉, . . . , 〈nj , kj〉, j〉 ∈ N : K ⊆

j⋃
i=0

B(α(ni), ki)

}

is r.e. Moreover, a subset K ⊆ X is called recursive compact if it is both r.e. closed
and co-r.e. compact.

One can prove that, for computable metric spaces that fulfill certain additional
properties, a compact subset K ⊆ X is co-r.e. compact if and only if it is co-r.e. closed
[7]. We will call a computable metric space Y recursive compact if it is recursive
compact as a subset of itself. Any computable metric space Y that is co-r.e. compact
as a subset of itself is automatically recursive compact, since any computable metric
space is r.e. closed as a subset of itself. To prepare for the main result of this section,
we prove two lemmas.

Lemma 6.2. Let X,Y be computable metric spaces. Then the section map

sec : A>(X × Y ) ×X → A>(Y ), (A, x) �→ Ax := {y ∈ Y : (x, y) ∈ A}

is computable.
Proof. Let A ⊆ X × Y be a closed subset, and let (xi, yi) ∈ X × Y and ri ∈ Q

for all i ∈ N be points such that
⋃∞

i=0 B((xi, yi), ri) = (X × Y ) \ A. Then one
directly obtains

⋃
{B(yi, ri) : i ∈ N and x ∈ B(xi, ri)} = Y \ Ax. Since the property

“x ∈ B(xi, ri)” is r.e., the claim follows.
The following lemma will be formulated slightly more generally than necessary for

the proof of Theorem 6.4 (the case Z �= Y will be used in order to prove Proposition 7.2
in the next section).

Lemma 6.3. Let Y be a computable metric space, and let Z ⊆ Y be recursive
compact. The injection map inZ : Z → A>(Y ), y �→ {y} and its partial inverse
in−1

Z :⊆ A>(Y ) → Z are computable.
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Proof. Consider the computable metric space (Y, d, α). Since Z is r.e. closed we
can consider it as a computable metric subspace (Z, d|Z×Z , β) of Y . Without loss of
generality we can assume range(β) ⊆ range(α). Computability of the injection map
inZ follows directly since

Y \ {y} =
⋃

{B(α(n), k) : n, k ∈ N, and d(y, α(n)) > k}

for all y ∈ Y . Now let y ∈ Z and assume that xi ∈ range(α) and ri ∈ Q for all i ∈ N
are points such that Y \ {y} =

⋃∞
i=0 B(xi, ri). Then

y ∈ B(x, r) ⇐⇒ Z ⊆ B(x, r) ∪
∞⋃
i=0

B(xi, ri)

⇐⇒ (∃j)Z ⊆ B(x, r) ∪
j⋃

i=0

B(xi, ri)

for all x ∈ range(β) and r ∈ Q with r > 0, where the last equivalence holds since Z is
compact. Since Z is even co-r.e. compact, it follows that in−1

Z is computable.
Using the previous two lemmas we can now prove the main result of this section.
Theorem 6.4 (compact Graph Theorem). Let X and Y be computable metric

spaces and let Y be co-r.e. compact. The graph map graph : C(X,Y ) → A>(X × Y ),
f �→ graph(f) as well as its partial inverse

graph−1 :⊆ A>(X × Y ) → C(X,Y )

are computable.
Proof. The first part of the claim follows from the weak Graph Theorem, Theo-

rem 5.1. Now any continuous function f : X → Y can be represented as

f(x) = in−1
Y ◦ sec(graph(f), x)

for any x ∈ X, where sec : A>(X × Y ) × X → A>(Y ) and inY : Y → A>(Y ) are
the mappings defined in Lemmas 6.2 and 6.3. Since sec and in−1

Y are computable, it
follows by type conversion that graph−1 is computable.

As a corollary of Theorems 5.1 and 6.4 we immediately obtain the following
nonuniform version of the Graph Theorem.

Corollary 6.5. Let X,Y be computable metric spaces, let Y be co-r.e. compact,
and let f : X → Y be a (continuous) function. Then f is computable if and only if
graph(f) is co-r.e. closed and if and only if graph(f) is recursive closed.

The formula in the proof of Theorem 6.4 additionally shows that f is automati-
cally continuous whenever graph(f) is closed (under the assumptions of the previous
corollary). Hence, the corollary remains true without the word “continuous.” The pre-
vious corollary has been proved directly in case of X = Y = [0, 1] and X = Y = {0, 1}N

by Cenzer and Remmel (see Theorem 4.7 in [10]). In these cases one can even replace
co-r.e. by strongly co-r.e. Proposition 5.2 and Example 5.3 show that the compactness
conditions are not superfluous in the previous results. The following example shows
that co-r.e. closed graphs cannot be replaced by r.e. closed graphs in the previous
corollary.

Example 6.6. Let X = Y = [0, 1]. There exists a continuous but noncomputable
function f : X → Y such that graph(f) ⊆ X × Y is r.e. closed. The same holds in
case of X = Y = R.
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Fig. 6.1. The function f in case of a(0) = 2, a(1) = 0 and 1, 3, 4, 5, 6, . . . �∈ K.

Proof. Let a : N → N be some computable and injective enumeration of a non-
recursive set K = range(a). We define a function f : [0, 1] → [0, 1] as follows. For
any n ∈ K = range(a) let pn : [2−n−1 − 2−n−3, 2−n−1 + 2−n−3] → R be the rational
polygon with vertices

(
2−n−1 − 2−n−3, 0

)
,
(
2−n−1 − 2−n−3−a−1(n), 0

)
,
(
2−n−1, 2−n

)
,

(
2−n−1 + 2−n−3−a−1(n), 0

)
,
(
2−n−1 + 2−n−3, 0

)
,

and let

f(x) :=

⎧⎪⎨
⎪⎩

pn(x) if there exists some n ∈ range(a) = K with

x ∈ [2−n−1 − 2−n−3, 2−n−1 + 2−n−3],

0 otherwise

for all x ∈ [0, 1]; see Figure 6.1.
It is easy to see that f is continuous and graph(f) ⊆ [0, 1] × [0, 1] is r.e. closed

since a is computable. On the other hand, f is not computable, since K = range(a)
is not co-r.e. and

n �∈ K ⇐⇒ f
(
2−n−1

)
< 2−n.

Similar counterexamples have been presented by Cenzer and Remmel (also for the
case X = Y = NN; see Theorem 4.8 in [10]). As a further corollary of Theorems 5.1
and 6.4, we can formulate a uniform version of the statement that negative information
on the graph of a continuous function with compact target can be translated into
positive information.

Corollary 6.7. Let X,Y be computable metric spaces and let Y be co-r.e.
compact. Then the identity id : A>(X × Y ) → A(X × Y ), A �→ A, restricted to
such subsets A ⊆ X × Y that are graphs of (continuous) functions f : X → Y , is
computable.

The following proposition shows that this does not hold in the general case of
arbitrary computable metric spaces Y .

Proposition 6.8. The function graph−1 :⊆ A>(X × Y ) → C(X,Y ) is discon-
tinuous in case of the unit interval X = [0, 1] and Y = R. The same holds true with
A< instead of A> (and in this case one can even choose Y = [0, 1]).

Proof. Now let fn : [0, 1] → R be defined by fn(x) := n for all x ∈ [0, 1] and n ∈ N.
Then (fn)n∈N is a sequence in C[0, 1] that does not converge, but (graph(fn))n∈N
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converges in A>([0, 1] × R) to A := [0, 1] × {0} (since any negative information on
A is shared by almost all sets in the sequence; we mention that A>([0, 1] × R) is
not a Hausdorff space, and hence limits of converging sequences are not uniquely
determined, and the given limit A is just one of many possible limits). This proves
the claim for A>.

Let fn : [0, 1] → R be defined by

graph(fn) :=
{

(x, 2n+1x) : x ∈ [0, 2−n−1]
}

∪
{

(x, 2 − 2n+1x) : x ∈ [2−n−1, 2−n]
}
∪
(
[2−n, 1] × {0}

)
.

Then (fn)n∈N is a sequence of continuous functions in C[0, 1] that does not converge,
but the sequence (graph(fn))n∈N converges in A<([0, 1] × R) to A := [0, 1] × {0}
(since any positive information on A is shared by almost all sets in the sequence).
This proves the claim for A<. Since range(fn) ⊆ [0, 1], the same holds true in case of
Y = [0, 1].

The second part of the previous proposition shows that the previous corollary
does not hold true if we replace A> by A<—not even if both X and Y are recursive
compact.

7. Locally compact target spaces. In this section we will show that the
nonuniform version of the compact Graph Theorem, i.e., Corollary 6.5, can be trans-
ferred to the case that the source space X is compact and the target space Y is
effectively locally compact. Up to now different notions of “effective local compact-
ness” have been used (see, for instance, [22, 7]), and the terminology is not stable yet.
In the next definition we do not want to propose a new version, but we just formulate
a very weak property that should be met by most of the reasonable definitions of
effective local compactness and which is sufficient for our proofs.

Definition 7.1 (locally computable). A computable metric space X is called
locally computable if for any compact subset A ⊆ X there exists a recursive compact
subset K ⊆ X such that A ⊆ K.

It is obvious that, for instance, the Euclidean space Rn is locally computable in
this sense (since any closed ball is recursive compact). Next we will show that if the
target space is locally computable, then we can deduce that any continuous function
with co-r.e. graph-maps computable points to computable points. Furthermore, it is
computable restricted to any r.e. compact subset. If f : X → Y is a total function
and A ⊆ X, then we denote by f |A :⊆ X → Y the restriction of f to A, defined by
f |A(x) := f(x) and dom(f) := A.

Proposition 7.2. Let X,Y be computable metric spaces, let Y be locally com-
putable, and let f : X → Y be a continuous function. If graph(f) is co-r.e. closed,
then f |K is computable for any compact subset K ⊆ X. Particularly, f maps com-
putable points to computable points.

Proof. Since f is continuous, it follows that f(K) is compact for any compact set
K ⊆ X. Since Y is locally computable, there is a recursive compact set L ⊆ Y such
that f(K) ⊆ L. Particularly, L can be considered as a computable metric subspace
of Y , and thus the injection L ↪→ Y is computable. Now f can be represented as

f(x) = in−1
L ◦ sec(graph(f), x)

for any x ∈ K, where sec : A>(X × Y ) ×X → A>(Y ) and inL : L → A>(Y ) are the
functions defined in Lemmas 6.2 and 6.3. Since sec, in−1

L and L ↪→ Y are computable,
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the partial function f |K :⊆ X → Y is computable. The last part of the claim holds
since K := {x} is a compact subset for any x ∈ X.

We obtain the following corollary of the previous result and the weak Graph
Theorem (Theorem 5.1) for compact source spaces and locally computable target
spaces.

Corollary 7.3. Let X,Y be computable metric spaces, let X be compact, let
Y be locally computable, and let f : X → Y be a continuous function. Then f is
computable if and only if graph(f) is co-r.e. closed and if and only if graph(f) is
recursive closed.

This corollary in particular applies to continuous functions f : [0, 1] → R. Propo-
sition 6.8 shows that the uniform version of the first equivalence of the previous
corollary does not hold true in general. Here, continuity of f does not automatically
follow if graph(f) is closed (see Example 4.3 in [10]). Finally, Example 5.3 shows that
the previous corollary does not hold true for locally compact source spaces X. The
next example proves that local computability of the target space is not a superfluous
property in the previous corollary. The example is a modified version of Example 6.6,
and as target space we will use the computable metric space (see, e.g., [6] for details)

�2 := {x ∈ RN : ||x||2 < ∞} with ||(xk)k∈N||2 :=

√√√√ ∞∑
k=0

|xk|2.

Example 7.4. Let X = [0, 1] and Y = �2. There exists a continuous but noncom-
putable function f : X → Y such that graph(f) ⊆ X × Y is recursive closed.

Proof. Let a : N → N be some computable and injective enumeration of a nonre-
cursive set K = range(a). We define a function f : [0, 1] → �2 using the polygons pn
as defined in Example 6.6 as follows:

f(x)(k) :=

{
pn(x) if a(k) = n and x ∈ [2−n−1 − 2−n−3, 2−n−1 + 2−n−3] =: In,

0 otherwise

for all x ∈ [0, 1] and k ∈ N.
It is easy to see that f is continuous and graph(f) ⊆ [0, 1]× �2 is r.e. closed since

a is computable. One can also show that graph(f) is co-r.e. In case that x ∈ In
and we already know that n �∈ a({0, . . . , k}), we obtain B((x, y), r) ⊆ graph(f)c for
any y = (y0, y1, . . . , yk, 0, 0, . . .) ∈ �2 with ||y|| > 0 and 0 < r < min{||y||, 2−n−4}.
Exploiting this idea, one can exhaust graph(f)c effectively by open balls, and thus
graph(f) is co-r.e.

On the other hand, f is not computable, since K = range(a) is not co-r.e. and

n �∈ K ⇐⇒ ||f
(
2−n−1

)
||2 < 2−n.

In the previous example f : [0, 1] → �2 is continuous and thus K := f [0, 1] is
compact. However, K cannot be co-r.e. compact by Corollary 6.5, and by Corollary 7.3
�2 is not locally computable. In particular, there is no recursive compact set K ′ ⊆ �2
such that K ⊆ K ′. This observation in particular proves that pure compactness of Y
is not sufficient in Theorem 6.4 (and correspondingly for Corollary 6.5). Moreover,
local computability of Y cannot be replaced by compactness in Corollary 7.3.

8. Locally connected source spaces. In this section we will discuss another
property of the source space that guarantees that the uniform inverse direction of
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the Graph Theorem becomes computable. We will call a computable metric space X
effectively locally connected (cf. [16]) if for any point x ∈ X and any open ball B(x, r)
we can effectively find some connected neighborhood U of x that is contained in
B(x, r). For the precise formulation we employ the hyperspace O(X) of open subsets
of X, represented by δO(X)(p) = X \ δA>(X)(p).

Definition 8.1 (effective local connectedness). A computable metric space X is
called effectively locally connected if there exists a computable multivalued function
C :⊆ X×R⇒ O(X) such that for any x ∈ X and r > 0 there exists some U ∈ C(x, r)
and any such U is connected and fulfills x ∈ U ⊆ B(x, r).

One should mention that it would not suffice to consider balls U = B(x, s) with
some s ≤ r because it might happen that any such ball is not connected although
there exists some connected (more complicated) U (consider an appropriate spiral line
in R2 such that any box with the same center as the spiral cuts the spiral into several
distinct connectedness components).

The main result of this section will be based on the following lemma, which
employs the hyperspace K(X) := {K ⊆ X : K nonempty and compact} of nonempty
compact subsets of a metric space X, endowed with the Hausdorff metric dK : K(X)×
K(X) → R, defined by

dK(A,B) := max

{
sup
a∈A

dB(a), sup
b∈B

dA(b)

}
.

If (X, d, α) is a computable metric space, then a standard numbering αK of the set Q of
finite subsets of range(α) can be defined by αK〈k, 〈n0, . . . , nk〉〉 := {α(n0), . . . , α(nk)}.
It is easy to see that under these assumptions (K(X), dK, αK) is a computable metric
space, too. In the following we assume that K(X) is endowed with the corresponding
Cauchy representation δK. It is easy to prove that the canonical injection K(X) ↪→
A(X) is computable [7]. To prepare for our main result, we formulate a lemma. Here,
∂A denotes the boundary of a subset A ⊆ X of a metric space X.

Lemma 8.2. Let n ≥ 1 a natural number. The function

I :⊆ Rn × R → K(Rn), (y, ε) �→ ∂B(y, ε),

defined for all (y, ε) ∈ Rn × R with ε > 0, is computable.
The proof is straightforward. The fact that the target space Rn is locally com-

pact and has balls whose boundaries are compact is essential for the following result.
Proposition 8.6 will show that the same result does not hold true in case of the Hilbert
space �2 as target space. Now we are prepared to prove the following theorem.

Theorem 8.3 (locally connected Graph Theorem). Let X be an effectively locally
connected computable metric space and let n ≥ 1 be a natural number. The graph
mapping graph : C(X,Rn) → A(X × Rn), f �→ graph(f) as well as its partial inverse

graph−1 :⊆ A(X × Rn) → C(X,Rn)

are computable.
Proof. We consider the computable metric space (X, d, α). Computability of the

map graph follows from Theorem 5.1. We investigate the mapping graph−1. Thus,
let f : X → Rn be a continuous function. We can assume that graph(f) ∈ A(X×Rn)
is given. Furthermore, let x ∈ X and a precision k ∈ N be given. We prove that we
can effectively evaluate f(x) up to precision 2−k, which implies by type conversion
the desired result. Since graph(f) is given as a point of A(X × Rn), we can, on the
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one hand, find points (xi, yi) ∈ range(α)×Qn and rational numbers ri > 0 such that

graph(f)c = (X × Rn) \ graph(f) =

∞⋃
i=0

B((xi, yi), ri) =

∞⋃
i=0

(B(xi, ri) ×B(yi, ri)) ,

and, on the other hand, given some open set U ∈ O(X × Rn), we can effectively
recognize that U∩graph(f) �= ∅ if this is the case. Given a compact subset K ∈ K(Rn)
such that K ⊆

⋃∞
i=0 B(yi, ri), the computable Heine–Borel theorem (cf. Theorems 4.6

and 4.10 in [8]) ensures that we can effectively find a natural number m ∈ N such
that K ⊆

⋃m
i=0 B(yi, ri). Now the evaluation of f(x) up to precision 2−k works as

follows: we systematically search for some y ∈ Qn, some rational numbers r > 0,
t ≥ 1, and natural numbers n0, . . . , nm ∈ N such that for some arbitrary determined
W ∈ C(x, r) the following conditions are satisfied (where (1) holds automatically):

(1) x ∈ W ⊆ B(x, r) and W is connected and open,
(2) U ∩ graph(f) �= ∅ with U := W ×B(y, r),
(3) d(xni , x) + r < rni for all i = 0, . . . ,m,
(4) ∂B(y, tr) ⊆

⋃m
i=0 B(yni , rni), and

(5) tr < 2−k.
Figure 8.1 illustrates the situation. If for certain values y, r, t, n0, . . . , nm and W ∈
C(x, r) the conditions (2)–(5) are fulfilled, then we can eventually recognize this by
the previous considerations and the previous lemma and since X is effectively locally
connected. Now we claim that such values always exist and ||f(x) − y|| < 2−k if
(1)–(5) are fulfilled.

Thus, let us first assume that (1)–(5) hold. It is obvious that (3) implies B(x, r) ⊆⋂m
i=0 B(xni , rni

) and thus by (4) it follows that

B(x, r) × ∂B(y, tr) ⊆
m⋃
i=0

(B(xni , rni) ×B(yni , rni)) ⊆ graph(f)c.

Thus, by (1) we obtain f(W ) ⊆ B(y, tr)∪ (Rn \B(y, tr)), and hence f(W ) is covered
by a disjoint union of open subsets. Since W is connected and f is continuous,
it follows that f(W ) is connected, too, and thus f(W ) has empty intersection with
either B(y, tr) or Rn\B(y, tr). By (2) there is some z ∈ W such that f(z) ∈ B(y, r) ⊆
B(y, tr) and hence f(W ) ∩ B(y, tr)c = ∅. This implies f(x) ∈ B(y, tr) by (1) and
hence ||f(x) − y|| < tr < 2−k by (5).

Now we still have to prove that there are always values y, r, t, n0, . . . , nm such
that (1)–(5) are fulfilled with arbitrary W ∈ C(x, r). Therefore, let 0 < s < 2−k be a

Fig. 8.1. A graph of some function f with two potential sets U .
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rational number. Then ∂B(f(x), s) ⊆
⋃
{B(yi, ri) : i ∈ N and x ∈ B(xi, ri)} and by

compactness there exist n0, . . . , nm ∈ N such that ∂B(f(x), s) ⊆
⋃m

i=0 B(yni , rni) and
x ∈

⋂m
i=0 B(xni , rni) =: V . Thus, V is an open neighborhood of x and we can choose

some rational r with 0 < r < s such that d(xni , x) + r < rni for all i = 0, . . . ,m, in
particular, B(x, r) ⊆ V . Now there exists some y ∈ Qn such that ||f(x) − y|| < r
and still ∂B(y, s) ⊆

⋃m
i=0 B(yni

, rni
). For this choice of y, r, n0, . . . , nm, t := s

r , and
W ∈ C(x, r), conditions (1)–(5) are fulfilled: (1) holds since W ∈ C(x, r). (2) holds
since by definition x ∈ W and f(x) ∈ B(y, r), and thus (x, f(x)) ∈ graph(f) ∩ U .
(4) holds by choice of y and t and (3) by choice of r. (5) holds since tr = s < 2−k by
choice of s and definition of t.

This result in particular applies to computable normed spaces X and other spaces
with connected balls (such as locally convex spaces). We directly obtain the following
nonuniform corollary.

Corollary 8.4. Let X be an effectively locally connected computable metric
space and let f : X → Rn be a continuous function. Then f is computable if and only
if graph(f) is recursive closed.

Example 5.3 already showed that “effective local connectedness” is not a superflu-
ous condition—neither in the previous result nor in its uniform version. The following
proposition shows that in the uniform case the target space Y = Rn cannot be re-
placed by an arbitrary computable metric space (not even if we restrict ourselves to
linear operators). The result is based on the following easy lemma and results from [6].

Lemma 8.5. Let X,Y be computable metric spaces. The “swap map”

S : A(X × Y ) → A(Y ×X), A �→ {(y, x) ∈ Y ×X : (x, y) ∈ A}

is computable.
The proof follows from the fact that the pointwise “swap function” s : X × Y →

Y ×X, (x, y) �→ (y, x) operates on centers of balls, i.e.,

sB((x, y), r) = B((y, x), r) = B(s(x, y), r)

for all (x, y) ∈ X × Y and r > 0 provided that X × Y and Y ×X are endowed with
the product space structure according to Proposition 3.2.

Proposition 8.6. The mapping graph−1 :⊆ A(�2 × �2) → C(�2, �2), defined for
all closed subsets A ⊆ �2 × �2 such that A = graph(T ) for some linear bounded and
bijective operator T : �2 → �2 with ||T || = 1, is discontinuous.

Proof. Let us assume that graph−1 :⊆ A(�2 × �2) → C(�2, �2) would be con-
tinuous in the stated sense. By the previous lemma and the weak Graph Theorem
(Theorem 5.1) it follows that the inversion I :⊆ C(�2, �2) → C(�2, �2), T �→ T−1, re-
stricted to linear bounded and bijective operators T : �2 → �2 with ||T || = 1, would
be continuous, too, since I = graph−1 ◦ S ◦ graph. This contradicts Example 17 in
[6].

Finally, we want to prove that with the same assumptions on the spaces The-
orem 8.3 cannot be strengthened in the way that only negative information on the
graph is required in order to determine the function. In the following example we
consider R \N as a computable metric subspace of R, endowed with the restriction of
the Euclidean metric.

Example 8.7. Consider X = R \ N as a computable metric subspace of R en-
dowed with the restriction of the Euclidean metric. There exists a continuous but
noncomputable function f : X → R such that graph(f) ⊆ X × R is strongly co-r.e.
closed.



322 VASCO BRATTKA

Proof. Let a : N → N be some computable and injective enumeration of a nonre-
cursive set K = range(a). Define f : R \ N → R by

f(x) :=

{
n + 1 if (∃n, k) x ∈ (k, k + 1) and a(n) = k,

0 otherwise

for all x ∈ R \N. Then f is continuous but noncomputable since K = range(a) is not
co-r.e. and

k �∈ K ⇐⇒ f

(
k +

1

2

)
< 1.

Moreover, graph(f) is strongly co-r.e. closed since a is computable and

([c, d] × [r, s]) ∩ graph(f) = ∅

⇐⇒ (∃k)
((

k < c ≤ d < k + 1 and (∀n + 1 ∈ [r, s])(a(n) �= k)
)

and
(
0 ∈ [r, s] =⇒ (∃n)(a(n) = k)

))

for all c, d, r, s ∈ Q such that r ≤ s and there exists some k with k < c ≤ d < k + 1.
The general case of those c ≤ d that are not subject to the previous inequality can
easily be reduced to the presented special case.

9. Pathwise connected source spaces. In this section we will discuss another
connectedness property of the source space which guarantees that the uniform inverse
direction of the Graph Theorem becomes computable, even if essentially only negative
information on the graph is available. The only positive information that we will
require is a single point (a, b) ∈ graph(f).

We will call a computable metric space X effectively pathwise connected if for all
points x, y ∈ X we can effectively find some continuous function p : [0, 1] → X such
that p(0) = x and p(1) = y. More precisely, we have the following definition.

Definition 9.1 (effective pathwise connectedness). A computable metric space
X is called effectively pathwise connected if there exists a computable multivalued
function P : X ×X ⇒ C([0, 1], X) such that for all x, y ∈ X and p ∈ P (x, y) it holds
that p(0) = x and p(1) = y.

It is easy to see that the Euclidean space Rn and computable normed spaces X
are effectively pathwise connected (a path p : [0, 1] → X can simply be obtained by
p(r) := x + r(y − x) in these cases). Now we are prepared to prove the following
theorem. The proof is a modified version of the proof of Theorem 8.3.

Theorem 9.2 (pathwise connected Graph Theorem). Let X be an effectively
pathwise connected computable metric space and let n ≥ 1 be a natural number. The
mapping

F :⊆ A>(X × Rn) ×X × Rn → C(X,Rn), (A, a, b) �→ graph−1(A),

which is defined for all (A, a, b) such that A = graph(f) and f(a) = b for some
f ∈ C(X,Rn), is computable.

Proof. We consider the computable metric space (X, d, α). Let f : X → Rn be a
continuous function and let (a, b) ∈ X × Rn with f(a) = b. Furthermore, let x ∈ X
and a precision k ∈ N be given. We prove that we can effectively evaluate f(x) up
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to precision 2−k, which implies by type conversion the desired result. We can assume
that graph(f) is given as point graph(f) ∈ A>(X ×Rn), and thus we can find points
(xi, yi) ∈ range(α) × Qn and rational numbers ri > 0 such that

graph(f)c = (X × Rn) \ graph(f) =

∞⋃
i=0

(B(xi, ri) ×B(yi, ri)) .

Since X is effectively pathwise connected, we can effectively find a continuous function
p : [0, 1] → X such that p(0) = a and p(1) = x. The strategy of the proof is to follow
the graph along the path p from a to x in order to evaluate f at x. Therefore, we
systematically search for values m ∈ N and a partition 0 = a0 < a1 < a2 < · · · < am =
1 with aj ∈ Q, and we guess possible function values b0 := b, bj+1 ∈ B(bj , 2

−k) ∩ Qn

for j = 0, . . . ,m− 1 such that we obtain

p[aj , aj+1] × ∂B(bj , 2
−k) ⊆

∞⋃
i=0

(B(xi, ri) ×B(yi, ri))(9.1)

and such that we obtain for all j = 0, . . . ,m− 2

{p(aj+1)} × (B(bj , 2−k)ΔB(bj+1, 2−k)) ⊆
∞⋃
i=0

(B(xi, ri) ×B(yi, ri)) .(9.2)

Here CΔD := C \ D ∪ D \ C denotes the symmetric difference. Figure 9.1 illus-
trates the situation. We first mention that the inclusions in (9.1) and (9.2) are
r.e. in all parameters by the computable Heine–Borel theorem (cf. Theorems 4.6
and 4.10 in [8]). This follows from Lemma 8.2 together with the fact that the mapping
C([0, 1], X) × K[0, 1] → K(X), (p,A) �→ p(A) is computable (see Theorem 3.3 in [21]

and Theorem 4.12 in [7]) and since x �→ {x} and (x, y, k) �→ (B(x, 2−k)ΔB(y, 2−k))
are both computable with respect to δK on the output.

Now we claim that always appropriate values m, aj , bj exist such that (9.1) and
(9.2) are fulfilled, and we claim that ||f(x)− y|| < 2−k holds for y := bm in this case.

Thus, let us first assume that (9.1) and (9.2) hold. Since the composition fp :
[0, 1] → Rn is continuous, it follows that graph(fp) is connected, and since fp(a0) =
fp(0) = f(a) = b = b0, it follows that

graph(fp) ⊆
m−1⋃
j=0

(
[aj , aj+1] ×B(bj , 2

−k)
)
.

In particular, f(x) = fp(1) = fp(am) ∈ B(bm, 2−k), and thus ||f(x) − y|| < 2−k, as
we have claimed.

aj+1aj aj+2

bj
bj+1

Fig. 9.1. The tube constructed around the path p.
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Now we still have to prove that there always exist appropriate values m, aj , bj
such that (9.1) and (9.2) are fulfilled. Since fp : [0, 1] → Rn is continuous and [0, 1] is
compact, it follows that fp is even uniformly continuous and there exists some value
l ∈ N such that fp[aj , aj+1] ⊆ B(fp(aj), 2

−k−2) for all j = 0, . . . ,m− 1 with m := 2l

and aj := j · 2−l. Thus, if we choose bj ∈ Qn such that ||fp(aj) − bj || ≤ 2−k−2, then
(9.1) and (9.2) are fulfilled.

Since in case of complete spaces X positive information on the graph allows us
to find some x and y with f(x) = y (which follows from Proposition 4.4), we obtain
the following corollary.

Corollary 9.3. Let X be an effectively pathwise connected and complete com-
putable metric space. The mapping graph : C(X,Rn) → A(X ×Rn), f �→ graph(f) as
well as its inverse graph−1 :⊆ A(X × Rn) → C(X,Rn) are computable.

We do not know whether completeness is a superfluous property in this case. In
the nonuniform case we have learned by Proposition 7.2 that a continuous function
f : X → Rn with a co-r.e. graph always maps computable inputs to computable
outputs. Therefore, we obtain the following corollary of Theorem 9.2.

Corollary 9.4. Let X be an effectively pathwise connected computable metric
space and let f : X → Rn be a continuous function. Then f is computable if and only
if graph(f) is recursive closed and if and only if graph(f) is co-r.e. closed.

Moreover, we can easily conclude a linear version of the previous theorem (where
we consider only negative information on the graph) since in the linear case f(0) = 0
and thus the additional input information (a pair from the graph of f) is automatically
available. Here, a computable normed space is a computable metric space with an
additional vector space structure such that the algebraic operations are computable
(see, e.g., [6] for details).

Corollary 9.5. Let X be a computable normed space and let n ≥ 1 be a natural
number. The mapping graph :⊆ C(X,Rn) → A>(X × Rn), f �→ graph(f), defined for
linear mappings f : X → Rn, as well as its partial inverse graph−1 :⊆ A>(X×Rn) →
C(X,Rn) are computable.

We close this section with an example that shows that in general a linear function
f : X → Y with a co-r.e. closed graph need not be computable. For any x = (xi)i∈N ∈
RN we denote by x[j] := (x0, x1, . . . , xj , 0, 0, . . .) ∈ RN the sequence up to element j
and filled up with zeros.

Example 9.6. There exists a linear and continuous but noncomputable map
f : �2 → �2 with a co-r.e. closed graph(f) ⊆ �2 × �2.

Proof. Let a : N → N be an injective computable function such that range(a) = K
is r.e. but not recursive. We define a linear map f : �2 → �2 by f(ej) := aijei, where

aij :=

{
1 if a(i) = j,

0 otherwise

for all i, j ∈ N. Then ||f || ≤ 1 and f is obviously not computable, as

||f(ej)||2 =

{
1 if j ∈ K,

0 otherwise

for all j ∈ N. However, graph(f) is co-r.e. closed, as we will prove now. Therefore, let
(x, y) = ((xi)i∈N, (yi)i∈N) ∈ (�2 × �2) \ graph(f). Then there is some m ∈ N such that
B((x, y), 2−m) ⊆ (�2 × �2) \ graph(f) and, in particular, ||f(x)− y||2 ≥ 2−m. For this
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m there exist n, k ∈ N and q = (q0, . . . , qn, 0, 0, . . .), r = (r0, . . . , rk, 0, 0, . . .) ∈ QN

such that

||q − x||2 < 2−m−2 and ||r − y||2 < 2−m−2.(9.3)

Due to the definition of f , k can even be chosen large enough such that f(q) = f(q)[k].
Equation (9.3) implies ||f(q) − f(x)||2 < ||f || · 2−m−2 ≤ 2−m−2, and we obtain

||f(q)[k] − r||2 ≥ ||f(x) − y||2 − ||f(q) − f(x)||2 − ||r − y||2

> 2−m − 2−m−2 − 2−m−2 = 2−m−1.

Thus, given some arbitrary (x, y) ∈ �2×�2, we can systematically search for n, k,m ∈ N
such that (9.3) and

||f(q)[k] − r||2 > 2−m−1(9.4)

hold. Due to the definition of f this condition is decidable for q, r of the particular
form. In the case that both conditions are satisfied, it follows that

||f(x) − y||2 ≥ ||f(q) − r||2 − ||f(q) − f(x)||2 − ||y − r||2

≥ ||f(q)[k] − r||2 − ||f(q) − f(x)||2 − ||y − r||2

> 2−m−1 − 2−m−2 − 2−m−2 = 0

and, in particular, (x, y) �∈ graph(f). Altogether, the proof shows that the algorithm
finds suitable n, k,m for given (x, y) if and only if (x, y) �∈ graph(f). But this means
that graph(f) is co-r.e. closed.

10. Conclusions. The table in Figure 10.1 gives a survey of our results. We
assume that X,Y are computable metric spaces and f : X → Y is a continuous
function. Each double row lists a certain version of the Graph Theorem (where the
first row of any double row contains a nonuniform version and the second row the
corresponding uniform version). The first double row treats the easy direction of the
Graph Theorem, the remaining double rows of the table consider the problematic
direction, and they are split into three cases where positive, negative, and both types
of information on graphs are considered (in reverse order). The columns correspond
to different additional conditions on the spaces X and Y (and on the functions f
in the second half, which is devoted to the linear case). Any symbol “+” indicates
that the statement of the corresponding row holds in general under the assumptions
of the corresponding column. Any “−” indicates that there are counterexamples of
spaces (and functions) that fulfill the assumptions of the corresponding column, but
the statement of the corresponding row does not hold in case of the counterexample
(in the uniform case it typically indicates that the corresponding mapping is not even
continuous). Finally, the bottom of the columns contains examples of functionali-
ties X → Y that simultaneously meet all indicated properties of the corresponding
column.

The results of the first double row follow directly from Theorem 5.1, the weak
version of the Graph Theorem. The positive results in the second column follow from
Theorem 8.3, the Graph Theorem for locally connected source spaces. The additional
positive results in the third column follow from Corollary 7.3, the Graph Theorem
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f : X → Y computable =⇒ graph(f) recursive + + + + + + + +
graph : C(X,Y ) → A(X × Y ) computable + + + + + + + +
graph(f) recursive closed =⇒ f : X → Y computable − + + + + + + +

graph−1 :⊆ A(X × Y ) → C(X,Y ) computable − + − + + − + +
graph(f) co-r.e. closed =⇒ f : X → Y computable − − + + + − + +

graph−1 :⊆ A>(X × Y ) → C(X,Y ) computable − − − − + − + +
graph(f) r.e. closed =⇒ f : X → Y computable − − − − − + + +

graph−1 :⊆ A<(X × Y ) → C(X,Y ) computable − − − − − − − +
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Fig. 10.1. Survey of different versions of the Graph Theorem.

for compact source spaces and locally computable target spaces. The positive results
in the fourth column follow from Corollaries 9.3 and 9.4, the Graph Theorem for
pathwise connected source spaces. The positive results in the fifth column follow from
Theorem 6.4, the Graph Theorem for compact target spaces. All positive results in
the first row of the second and fourth double row concerning the linear case follow
from the effective version of the closed Graph Theorem [2]. The remaining positive
results in the second double row are implied by the corresponding positive results of
the second column. The remaining positive results in the third double row follow from
Corollary 9.5. The remaining positive result of the fourth double row is a consequence
of Theorem 4.7 in [5]. All negative results in the first column follow from Example 5.3
for the space X = NN and Proposition 5.2. The negative results in the second column
of the third double row follow from Example 8.7 for the space X = R \ N. The
negative results in the third column and second and third double rows follow from
Proposition 5.2 for the space X = {0, 1}N. The negative results in the second, third,
fourth, and fifth columns of the fourth double row follow from Example 6.6 for the
spaces X = Y = [0, 1] or X = Y = R. This example can easily be modified in order
to obtain the negative results concerning the third column for the space X = {0, 1}N.
The remaining negative result in the fourth column is a consequence of Proposition 6.8
for the spaces X = Y = R. The negative results in the sixth column are consequences
of Proposition 8.6 for the spaces X = Y = �2 and of Example 9.6. The negative result
in the seventh column is a consequence of Theorem 4.5 in [5]. It should be mentioned
that completeness in the fourth column has been used only for the positive result of
the third row.
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Of course the table leaves open many further questions. We just formulate one
example.

Open problem. Is there an effectively pathwise connected computable metric
space X such that graph−1 :⊆ A(X × Rn) → C(X,Rn) is not computable?

By the known results it follows that such a space X can be neither effectively
locally connected nor complete. The space X = (R × {0}) ∪ (Q × R), endowed with
the subtopology of the Euclidean topology, is an example of an effectively pathwise
connected computable metric space that is neither locally connected nor complete and
thus a potential candidate.

One interesting consequence of the Graph Theorem is that it allows certain con-
clusions with respect to the inversion problem: spaces X,Y such that the mapping
from graph(f) to f : X → Y is computable also have the property that the mapping
from any homeomorphism g : Y → X to its inverse g−1 : X → Y is computable (in
the uniform case as well as in the nonuniform case). This follows since information
on the graph is symmetric (this is made precise by Lemma 8.5). Thus, in all those
cases where the second double row in Figure 10.1 carries a plus, it follows that in-
version is effective. However, the negative results cannot be transferred that easily
(since it might happen that inversion can be established without using the graph as
an intermediate step). This interesting problem deserves further investigation.

Acknowledgments. The author would like to express his gratitude to the anony-
mous referees who made a number of very valuable comments that helped to clarify
and improve the presentation. One referee pointed out an omission in the proof of
Theorem 9.2 that led to the introduction of (9.2).
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MAX ONES GENERALIZED TO LARGER DOMAINS∗
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Abstract. We study a family of problems, called Maximum Solution, where the objective is to
maximize a linear goal function over the feasible integer assignments to a set of variables subject to
a set of constraints. When the domain is Boolean (i.e., restricted to {0, 1}), the maximum solution
problem is identical to the well-studied Max Ones problem, and the approximability is completely
understood for all restrictions on the underlying constraints [S. Khanna, M. Sudan, L. Trevisan, and
D. P. Williamson, SIAM J. Comput., 30 (2001), pp. 1863–1920]. We continue this line of research by
considering domains containing more than two elements. We present two main results: a complete
classification for the approximability of all maximal constraint languages over domains of cardinality
at most 4, and a complete classification of the approximability of the problem when the set of
allowed constraints contains all permutation constraints. Under the assumption that a conjecture
due to Szczepara [Minimal Clones Generated by Groupoids, Ph.D. thesis, Université de Móntreal,
Montreal, QC, 1996] holds, we give a complete classification for all maximal constraint languages.
These classes of languages are well studied in universal algebra and computer science; they have,
for instance, been considered in connection with machine learning and constraint satisfaction. Our
results are proved by using algebraic results from clone theory, and the results indicate that this
approach is very powerful for classifying the approximability of certain optimization problems.
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1. Introduction. Our starting point is the general combinatorial optimization
problem Max Ones(Γ), where Γ (known as the constraint language) is a finite set of
finitary relations over {0, 1}. An instance of this problem consists of constraints from
Γ applied to a number of Boolean variables, and the goal is to find an assignment that
satisfies all constraints while maximizing the number of variables set to 1. It is easy to
see that by choosing the constraint language appropriately, Max Ones(Γ) captures
a number of well-known problems, for instance, Max Independent Set (problem
GT23 in [2]) and certain variants of Max 0/1 Programming (problem MP2 in [2]).
Many other problems are equivalent to Max Ones under different reductions: for
instance, Max Set Packing (also known as Max Hypergraph Matching) and
Max Ones are equivalent under Ptas-reductions [3].

The approximability (and thus the computational complexity) is known for all
choices of Γ [37]. For any Boolean constraint language Γ, Max Ones(Γ) is either in
PO or is APX-complete or poly-APX-complete, or finding a solution of nonzero
value is NP-hard or finding any solution is NP-hard. The exact borderlines between
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the different cases are given in [37]. Actually, two different problems are studied in [37]:
the weighted problem (where each variable is assigned a nonnegative weight and the
objective is to find a solution of maximum total weight) and the unweighted problem
(where each variable is assigned the weight 1). They prove that the approximabilities
for the weighted and unweighted versions of the problem coincide.

We will study a generalization of Max Ones where variable domains are dif-
ferent from {0, 1}: this allows us to capture more problems than with Max Ones.
For instance, this enables the study of certain problems in integer linear program-
ming [28], problems in multiple-valued logic [36], and in equation solving over Abelian
groups [38]. For larger domains, it seems significantly harder to obtain an exact char-
acterization of approximability than in the Boolean case. Such a characterization
would, for instance, show whether the dichotomy conjecture for constraint satisfaction
problems is true or not—a famous open question which is believed to be difficult [25].
Hence, we exhibit restricted (but still fairly general) families of constraint languages
where the approximability can be determined.

Let us now formally define the problem that we will study: let D ⊂ N (the
domain) be a finite set. The set of all n-tuples of elements from D is denoted by Dn.
Any subset of Dn is called an n-ary relation on D. The set of all finitary relations over
D is denoted by RD. A constraint language over a finite set, D, is a finite set Γ ⊆ RD.
Constraint languages are the way in which we specify restrictions on our problems.
The constraint satisfaction problem over the constraint language Γ, denoted Csp(Γ),
is defined to be the decision problem with instance (V,D,C), where

• V is a set of variables,
• D is a finite set of values (sometimes called a domain), and
• C is a set of constraints {C1, . . . , Cq}, in which each constraint Ci is a pair

(si, Ri), where si is a list of variables of length mi, called the constraint
scope, and Ri is an mi-ary relation over the set D, belonging to Γ, called the
constraint relation.

The question is whether there exists a solution to (V,D,C) or not, that is, a function
from V to D such that, for each constraint in C, the image of the constraint scope
is a member of the constraint relation. To exemplify this definition, let NAE be
the following ternary relation on {0, 1}: NAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. It is
easy to see that the well-known NP-complete problem Not-All-Equal Sat can be
expressed as Csp({NAE}).

The optimization problem that we are going to study, Weighted Maximum

Solution(Γ) (which we abbreviate W-Max Sol(Γ)), is defined as follows:
Instance: Tuple (V,D,C,w), where D is a finite subset of N, (V,D,C) is a Csp(Γ)

instance, and w : V → N is a weight function.
Solution: An assignment f : V → D to the variables such that all constraints are

satisfied.
Measure:

∑
v∈V w(v) · f(v).

Example 1.1. Consider the domain D = {0, 1} and the binary relation R =
{(0, 0), (1, 0), (0, 1)}. Then, W-Max Sol({R}) is exactly the weighted Maximum

Independent Set problem.
Although the W-Max Sol(Γ) problem is defined only for finite constraint lan-

guages, we will, in order to simplify the presentation, sometimes deal with sets of
relations which are infinite. For a (possible infinite) set of relations X we will say
that W-Max Sol(X) is tractable if W-Max Sol(Y ) is tractable for every finite
subset Y of X. Here “tractable” may be containment in one of PO, APX, or poly-
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APX. Similarly, we say that W-Max Sol(X) is hard if there is a finite subset Y
of X such that W-Max Sol(Y ) is hard. Here “hard” will be one of APX-hard,
poly-APX-hard, or that it is NP-hard to find feasible solutions.

Note that our choice of measure function in the definition of W-Max Sol(Γ) is
just one of several reasonable choices. Another reasonable alternative, used in [38],
would be to let the domain D be any finite set and introduce an additional function
g : D → N mapping elements from the domain to natural numbers. The measure
could then be defined as

∑
v∈V w(v) · g(f(v)). This would result in a parameterized

problem W-Max Sol(Γ, g) where the goal is to classify the complexity of W-Max

Sol(Γ, g) for all combinations of constraint languages Γ and functions g. Note that
our definition of W-Max Sol(Γ) is equivalent to the definition of W-Max Sol(Γ, g)
if, in addition, g is required to be injective. One of our motivations for the choice of
measure function in the definition of W-Max Sol(Γ) is to stay closer to the definition
of integer programming.

Considering only finite constraint language is in many cases not very restrictive.
Consider, for instance, integer programming over the bounded domain {0, . . . , d− 1}.
Each row in the constraint matrix can be viewed as an inequality

a1x1 + a2x2 + · · · + akxk ≥ b.

Obviously, such an inequality is equivalent to the following three inequalities:

a1x1 + a2x2 + · · · + a�k/2�x�k/2� − z ≥ 0,
−a1x1 − a2x2 − · · · − a�k/2�x�k/2� + z ≥ 0,

z + a�k/2�+1 + · · · + akxk ≥ b,

where z denotes a fresh variable that is given the weight 0 in the objective function.
By repeating this process, one ends up with a set of inequalities where each inequality
contains at most three variables, and the optimal solution to this instance has the
same measure as the original instance. There are at most 2d + 2d

2

+ 2d
3

different
inequalities of length ≤ 3 since the domain contains d elements; that is, we have
reduced the problem to one with a finite constraint language. Finally, this reduction
is polynomial-time: each inequality of length k in the original instance gives rise to
at most 3�log2 k� = O(k2) inequalities and at most O(k2) new variables.

While the approximability of W-Max Sol is well understood for the Boolean
domain, this is not the case for larger domains. For larger domains we are aware of
three results, the first one being a tight (in)approximability result for W-Max Sol(Γ)
when Γ is the set of relations that can be expressed as linear equations over Zp [38] (see
also section 6.3.1 where we define the problem formally). The second result is due to
Hochbaum and Naor [28] who study integer programming with monotone constraints,
i.e., every constraint is of the form ax−by ≤ c, where x and y are variables and a, b ∈ N
and c ∈ Z. In our setting, their result is a polynomial-time algorithm for certain
constraint languages. The third result is a study of the approximability of certain
logically defined constraint languages [36]. The main goal of this article is to gain a
better understanding of non-Boolean W-Max Sol—for doing so, we will adapt the
algebraic approach for Csps [13, 32] for studying the approximability of W-Max Sol.

When the algebraic approach is applicable to a certain problem, there is an equiv-
alence relation on the constraint languages such that two constraint languages which
are equivalent under this relation have the same complexity. More specifically, two
constraint languages are in the same equivalence class if they generate the same rela-
tional clone. The relational clone generated by Γ captures the expressive power of Γ
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and is denoted by 〈Γ〉. Hence, instead of studying every possible finite set of relations
it is enough to study the relational clones. Thus, given two constraint languages Γ1

and Γ2 such that 〈Γ1〉 = 〈Γ2〉, it follows that W-Max Sol(Γ1) and W-Max Sol(Γ2)
are equivalent under polynomial-time reductions.

The clone-theoretic approach for studying the complexity of Csps has been very
successful: it has, for instance, made it possible to design new efficient algorithms and
to clarify the borderline between tractability and intractability in many important
cases. In particular the complexity of the Csp problem over three-element domains is
now completely understood [10]. In addition to the Csp problem it is possible to use
the tools from universal algebra to prove complexity results in many other Csp-like
problems. One example of such a problem is the quantified constraint satisfaction
problem (QCsp), where variables can not only be existentially quantified but also
universally quantified. The complexity of QCsp has been successfully attacked with
the clone-theoretic approach [7, 17]. Furthermore, the #Csp problem [11] (where the
number of solutions to a Csp is counted) has also benefitted from this approach. How-
ever, it seems that this technique cannot be used for some other Csp-like problems:
notable exceptions are Max Csp [34] and the problem of enumerating all solutions
to a Csp instance [46]. For some problems it is the case that the relational clones are
a useable tool in the Boolean domain but not in larger domains. The enumeration
problem is one such case [46].

We begin by proving that the algebraic approach is applicable to W-Max Sol,
and this result can be found in Theorem 3.3.1 In fact, we show that, given two
constraint languages Γ1 and Γ2 such that 〈Γ1〉 = 〈Γ2〉, W-Max Sol(Γ1) S-reduces to
W-Max Sol(Γ2), and vice versa. An S-reduction is a certain strong approximation-
preserving reduction: if 〈Γ1〉 = 〈Γ2〉, then Γ1 and Γ2 are very similar with respect
to approximability. For instance, if W-Max Sol(Γ1) is NP-hard to approximate
within some constant c, then W-Max Sol(Γ2) is NP-hard to approximate within
c, too. The proof is accompanied by an example of how the approach can be used
“in practice” for proving approximability results. We note that the clone-theoretic
approach was not used in the original classification of Max Ones and, consequently,
the technique we use differs substantially from those used in [37]. The results that we
prove with the aid of Theorem 3.3 are the following.

Result 1. Our first result concerns the complexity of W-Max Sol for maximal
constraint languages. A constraint language Γ is maximal if, for any R 
∈ 〈Γ〉, Γ∪{R}
has the ability to express (in a sense to be formally defined later) every relation in RD.
Such languages have attracted much attention lately: for instance, the complexity of
the corresponding Csp problems has been completely classified. In [14] the complex-
ity was classified for domains |D| ≤ 3, and necessary conditions for tractability were
proved for the general case. More recently, in [8], it was proved that those necessary
conditions also are sufficient for tractability. Maximal constraint languages have also
been studied in the context of machine learning [24] and quantified Csps [18], and
they attract a great deal of attention in universal algebra; cf. the survey by Quacken-
bush [44].

Our results show that if Γ is maximal and |D| ≤ 4, then W-Max Sol(Γ) is
tractable, or APX-complete, or poly-APX-complete, or finding any solution with
nonzero measure is NP-hard, or Csp(Γ) is not tractable. Moreover, we prove that

1The proof is easy to adapt to other problems such as W-Min Sol (the minimization version of
W-Max Sol) and AW-Max Sol (where both positive and negative weights are allowed).
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under a conjecture by Szczepara [47] our classification of maximal constraint languages
extends to arbitrary finite domains. In the conference version [35] of this article
we claimed that we had characterized the complexity of Max Sol for all maximal
constraint languages. Unfortunately, there was a flaw in one of the proofs. We have
managed to repair some of it by proving the weaker results as stated above, but
the general case, when |D| > 4 and Szczepara’s conjecture is not assumed to hold,
remains open. We also note that the different cases can be efficiently recognized; i.e.,
the approximability of a maximal constraint language Γ can be decided in polynomial
time (in the size of Γ).

When proving this result, we identified a new large tractable class of W-Max

Sol(Γ): generalized max-closed constraints. This class (which may be of independent
interest) significantly extends some of the tractable classes of Max Ones that were
identified by Khanna et al. [37]. It is also related to monotone constraints which have
been studied in mathematical programming and computer science [27, 28, 51]. In
fact, generalized max-closed constraints generalize monotone constraints over finite
domains. A certain kind of generalized max-closed constraints is relevant in con-
straint programming languages such as Chip [50], as is pointed out in [33]. It may
thus be possible to extend such languages with optimization capabilities by using the
techniques presented in this article.

Result 2. We completely characterize the approximability of W-Max Sol(Γ)
when Γ contains all permutation constraints. Such languages are known as homoge-
neous languages, and Dalmau [23] has determined the complexity of Csp(Γ) for all
such languages, while the complexity of the corresponding quantified Csps has been
studied by Börner et al. [6]. Szendrei [48] provides a compact presentation of algebraic
results on homogeneous algebras and languages.

We show that W-Max Sol(Γ) is either tractable, APX-complete, or poly-APX-
complete, or that Csp(Γ) is not tractable. The four different cases can, just as in
Result 1, be efficiently recognized. The proof is based on the characterization of
homogeneous algebras by Marczewski [40] and Marchenkov [39]. For each domain
D, there exists a set of relations QD such that every tractable homogeneous con-
straint language on D is a subset of QD. The relations in QD are invariant under a
certain operation t : D3 → D (known as the discriminator on D), and the algebra
(D; t) is an example of a quasi-primal algebra in the sense of Pixley [41]. We note
that the tractable homogeneous constraint languages have been considered earlier in
connection with soft constraints [21], i.e., constraints which allow different levels of
“desirability” to be associated with different value assignments [5]. In the terminology
of [21], these languages are invariant under a 〈Mjrty1,Mjrty2,Mnrty3〉 multimorphism.
We also note that the tractable homogeneous languages extend the width-2 affine class
of Max Ones that was identified by Khanna et al. [37].

We remark that we do not deal explicitly with the unweighted version of the
problem (denoted Max Sol(Γ)), where all variables have weight 1. The reason for
this is that the approximability classifications for Max Sol(Γ) can be deduced from
the classifications for W-Max Sol(Γ) (for all constraint languages Γ considered in this
paper). In fact, as we explain in section 8, Max Sol(Γ) has the same approximability
as W-Max Sol(Γ) when Γ is one of the constraint languages considered in this
article.

The article is structured as follows: we begin by presenting some basics on ap-
proximability in section 2. The algebraic approach for studying W-Max Sol is
presented in section 3, section 4 identifies certain hard constraint languages, and sec-
tion 5 contains some tractability results. We continue with section 6 that contains
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Result 1 and section 7 that contains Result 2. Finally, section 8 contains some final
remarks.

2. Approximability, reductions, and completeness. A combinatorial op-
timization problem is defined over a set of instances (admissible input data); each
instance I has a finite set sol(I) of feasible solutions associated with it. Given an
instance I and a feasible solution s of I, m(I, s) denotes the positive integer measure
of s. The objective is, given an instance I, to find a feasible solution of optimum value
with respect to the measure m. The optimal value is the largest one for maximization
problems and the smallest one for minimization problems. A combinatorial optimiza-
tion problem is said to be an NPO problem if its instances and solutions can be
recognized in polynomial time, the solutions are polynomially bounded in the input
size, and the objective function can be computed in polynomial time (see, e.g., [2]).

We say that a solution s ∈ sol(I) to an instance I of an NPO problem Π is
r-approximate if it satisfies

max

{
m(I, s)

opt(I)
,
opt(I)

m(I, s)

}
≤ r,

where opt(I) is the optimal value for a solution to I. An approximation algorithm
for an NPO problem Π has performance ratio R(n) if, given any instance I of Π with
|I| = n, it outputs an R(n)-approximate solution.

We define PO to be the class of NPO problems that can be solved (to opti-
mality) in polynomial time. An NPO problem Π is in the class APX if there is a
polynomial-time approximation algorithm for Π whose performance ratio is bounded
by a constant. Similarly, Π is in the class poly-APX if there is a polynomial-time
approximation algorithm for Π whose performance ratio is bounded by a polynomial
in the size of the input. Completeness in APX and poly-APX is defined using
appropriate reductions, called AP -reductions and A-reductions, respectively [22, 37].
AP -reductions are more sensitive than A-reductions, and every AP -reduction is also
an A-reduction [37]. In this paper we will not need the added flexibility of A-reductions
for proving our poly-APX-completeness results. Hence, we need only the definition
of AP -reductions.

Definition 2.1. An NPO problem Π1 is said to be AP -reducible to an NPO
problem Π2 if two polynomial-time computable functions F and G and a constant α
exist such that

(a) for any instance I of Π1, F (I) is an instance of Π2;
(b) for any instance I of Π1 and any feasible solution s′ of F (I), G(I, s′) is a

feasible solution of I;
(c) for any instance I of Π1 and any r ≥ 1, if s′ is an r-approximate solution

of F (I), then G(I, s′) is an (1 + (r − 1)α + o(1))-approximate solution of I,
where the o-notation is with respect to |I|.

An NPO problem Π is APX-hard (poly-APX-hard) if every problem in APX
(poly-APX) is AP -reducible (A-reducible) to it. If, in addition, Π is in APX
(poly-APX), then Π is called APX-complete (poly-APX-complete). It is a well-
known fact (see, e.g., section 8.2.1 in [2]) that AP -reductions compose. In some proofs
we will use another kind of reduction, S-reductions. They are defined as follows.

Definition 2.2. An NPO problem Π1 is said to be S-reducible to an NPO
problem Π2 if two polynomial-time computable functions F and G exist such that the
following hold:

(a) Given any instance I of Π1, algorithm F produces an instance I ′ = F (I) of
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Π2, such that the measure of an optimal solution for I ′, opt(I ′), is exactly
opt(I).

(b) Given I ′ = F (I) and any solution s′ to I ′, algorithm G produces a solution s
to I such that m1(I,G(s′)) = m2(I

′, s′), where m1 is the measure for Π1 and
m2 is the measure for Π2.

Obviously, the existence of an S-reduction from Π1 to Π2 implies the existence
of an AP -reduction from Π1 to Π2. The reason why we need S-reductions is that
AP -reductions do not (generally) preserve membership in PO [37]. We also note
that S-reductions preserve approximation thresholds exactly for problems in APX:
letting Π1,Π2 be problems in APX, assume that it is NP-hard to approximate Π1

within c, and that there exists an S-reduction from Π1 to Π2. Then, it is NP-hard
to approximate Π2 within c, too.

In some of our hardness proofs, it will be convenient for us to use a type of
approximation-preserving reduction called L-reduction [2].

Definition 2.3. An NPO maximization problem Π1 is said to be L-reducible
to an NPO maximization problem Π2 if two polynomial-time computable functions
F and G and positive constants β and γ exist such that

(a) given any instance I of Π1, algorithm F produces an instance I ′ = F (I) of
Π2 such that the measure of an optimal solution for I ′, opt(I ′), is at most
β · opt(I);

(b) given I ′ = F (I) and any solution s′ to I ′, algorithm G produces a solution s
to I such that |m1(I, s)−opt(I)| ≤ γ · |m2(I

′, s′)−opt(I ′)|, where m1 is the
measure for Π1 and m2 is the measure for Π2.

It is well known (see, e.g., Lemma 8.2 in [2]) that, if Π1 is L-reducible to Π2 and
Π1 ∈ APX, then there is an AP -reduction from Π1 to Π2.

3. Algebraic approach. We sometimes need to define relations in terms of
other relations, using certain logical formulas. In these definitions we use the standard
correspondence between constraints and relations: a relation consists of all tuples
of values satisfying the corresponding constraint. Although we sometimes use the
same symbol for a constraint and its corresponding relation, the meaning will always
be clear from the context. More specifically, for a relation R with arity a we will
sometimes write R(x1, . . . , xa) with the meaning (x1, . . . , xa) ∈ R, and the constraint
((x1, . . . , xa), R) will sometimes be written as R(x1, . . . , xa).

An operation on a finite set D (the domain) is an arbitrary function f : Dk → D.
Any operation on D can be extended in a standard way to an operation on tuples over
D as follows: let f be a k-ary operation on D and let R be an n-ary relation over D. For
any collection of k tuples, t1, t2, . . . , tk ∈ R, the n-tuple f(t1, t2, . . . , tk) is defined
as follows: f(t1, t2, . . . , tk) = (f(t1[1], t2[1], . . . , tk[1]), f(t1[2], t2[2], . . . , tk[2]), . . . ,
f(t1[n], t2[n], . . . , tk[n])), where tj [i] is the ith component in tuple tj . A technique
that has shown to be useful in determining the computational complexity of Csp(Γ)
is that of investigating whether the constraint language Γ is invariant under certain
families of operations [32].

Now, let Ri ∈ Γ. If f is an operation such that for all t1, t2, . . . , tk ∈ Ri,
f(t1, t2, . . . , tk) ∈ Ri, then Ri is invariant (or, in other words, closed) under f . If
all constraint relations in Γ are invariant under f , then Γ is invariant under f . An
operation f such that Γ is invariant under f is called a polymorphism of Γ. The set of
all polymorphisms of Γ is denoted Pol(Γ). Given a set of operations F , the set of all
relations that are invariant under all the operations in F is denoted Inv(F ). Whenever
there is only one operation under consideration, we write Inv(f) instead of Inv({f}).
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We will need a number of operations in what follows: an operation f over D is
said to be

• a constant operation if f is unary and f(a) = c for all a ∈ D and some c ∈ D;
• a majority operation if f is ternary and f(a, a, b) = f(a, b, a) = f(b, a, a) = a

for all a, b ∈ D;
• a binary commutative idempotent operation if f is binary, f(a, a) = a for all
a ∈ D, and f(a, b) = f(b, a) for all a, b ∈ D;

• an affine operation if f is ternary and f(a, b, c) = a− b+ c for all a, b, c ∈ D,
where + and − are the binary operations of an Abelian group (D,+,−).

Example 3.1. Let D = {0, 1, 2} and let f be the majority operation on D where
f(a, b, c) = a if a, b, and c are all distinct. Furthermore, let

R = {(0, 0, 1), (1, 0, 0), (2, 1, 1), (2, 0, 1), (1, 0, 1)}.

It is then easy to verify that for every triple of tuples, x,y,z ∈ R, we have f(x,y,z) ∈
R. For example, if x = (0, 0, 1), y = (2, 1, 1), and z = (1, 0, 1), then

f(x,y,z) = (f(x[1],y[1],z[1]), f(x[2],y[2],z[2]), f(x[3],y[3],z[3]))

= (f(0, 2, 1), f(0, 1, 0), f(1, 1, 1)) = (0, 0, 1) ∈ R.

We can conclude that R is invariant under f or, equivalently, that f is a polymorphism
of R.

We continue by defining a closure operation 〈·〉 on sets of relations: for any set
Γ ⊆ RD the set 〈Γ〉 consists of all relations that can be expressed using relations from
Γ ∪ {=D} (=D is the equality relation on D), conjunction, and existential quantifi-
cation. Intuitively, constraints using relations from 〈Γ〉 are exactly those which can
be simulated by constraints using relations from Γ. The sets of relations of the form
〈Γ〉 are referred to as relational clones. An alternative characterization of relational
clones is given in the following theorem.

Theorem 3.2 (see [43]). For every set Γ ⊆ RD, 〈Γ〉 = Inv(Pol(Γ)).
The following theorem states that when we are studying the approximability of

W-Max Sol(Γ), it is sufficient to consider constraint languages that are relational
clones.

Theorem 3.3. Let Γ be a constraint language and let Γ′ ⊆ 〈Γ〉 be finite. Then
W-Max Sol(Γ′) is S-reducible to W-Max Sol(Γ).

Proof. Consider an instance I = (V,D,C,w) of W-Max Sol(Γ′). We transform
I into an instance F (I) = (V ′, D,C ′, w′) of W-Max Sol(Γ).

For every constraint C = ((v1, . . . , vm), R) in I, R can be represented as

∃vm+1
, . . . ,∃vnR1(v11, . . . , v1n1) ∧ · · · ∧Rk(vk1, . . . , vknk

),

where R1, . . . , Rk ∈ Γ ∪ {=D}, vm+1, . . . , vn are fresh variables, and v11, . . . , v1n1 ,
v21, . . . , vknk

∈ {v1, . . . , vn}. Replace the constraint C with the constraints

((v11, . . . , v1n1), R1), . . . , ((vk1, . . . , vknk
), Rk),

add vm+1, . . . , vn to V , and extend w so that vm+1, . . . , vn are given weight 0. If we
repeat the same reduction for every constraint in C, then it results in an equivalent
instance of W-Max Sol(Γ1 ∪ {=D}).

For each equality constraint ((vi, vj),=D), we do the following:
• replace all occurrences of vj with vi, update w′ so that the weight of vj is

added to the weight of vi, remove vj from V , and remove the weight corre-
sponding to vj from w′; and



GENERALIZED MAX ONES 337

• remove ((vi, vj),=D) from C.
The resulting instance F (I) = (V ′, D,C ′, w′) of W-Max Sol(Γ) has the same opti-
mum as I (i.e., opt(I) = opt(F (I))) and has been obtained in polynomial time.

Now, given a feasible solution S′ for F (I), let G(I, S′) be the feasible solution for
I where the following hold:

• The variables in I assigned by S′ inherit their value from S′.
• The variables in I which are still unassigned all occur in equality constraints,

and their values can be found by simply propagating the values of the variables
which have already been assigned.

It should be clear that m(I,G(I, S′)) = m(F (I), S′) for any feasible solution S′

for F (I). Hence, the functions F and G, as described above, are the two parts of an
S-reduction from W-Max Sol(Γ′) to W-Max Sol(Γ).

To exemplify the use of the results in this section, we prove the following tight
approximability result.

Lemma 3.4. Let Γ be a finite constraint language over the domain {0, 1}. If
Max Ones(Γ) is in APX and not in PO, then there is a polynomial-time approxi-
mation algorithm for Max Ones(Γ) with performance ratio 2, and it is NP-hard to
approximate Max Ones(Γ) within 2 − ε, for any ε > 0.

Proof sketch. It follows from the classification results in [37] that if Max Ones(Γ)
is in APX and not in PO, then Γ is closed under the affine function f(x, y, z) =
x − y + z (mod 2). It also follows from [37, Lemma 6.6] that Max Ones(Γ) is
approximable within 2.

In the Boolean domain, the structure of all relational clones is known. This
classification was made by Post in [42] and is often referred to as Post’s lattice. A
gentle introduction to Boolean relations and Post’s lattice can be found in [15, 16].

By Theorem 3.3, it is enough to study the relational clones. By studying Post’s
lattice and the results for Max Ones in [37], one can conclude that there are three
relational clones which are interesting in our case (i.e., there are three relational clones
such that Max Ones(Γ) is in APX but not in PO). Those relational clones are called
IL0, IL2, and IL3 and can be defined as follows [16]:

IL0 = {x1 + · · · + xk = 0 (mod 2) | k ∈ N},
IL2 = {x1 + · · · + xk = c (mod 2) | k ∈ N, c ∈ {0, 1}},
IL3 = {x1 + · · · + xk = c (mod 2) | k even, c ∈ {0, 1}}.

We get the following inclusions from Post’s lattice: IL0 ⊂ IL2 and IL3 ⊂ IL2.
It is proved in [38] that for a certain finite subset Γ of IL3, Max Ones(Γ) is

NP-hard to approximate within 2 − ε for all ε > 0. As IL3 ⊂ IL2 we get that Max

Ones(Γ) is NP-hard to approximate within 2 − ε for all ε > 0 if 〈Γ〉 = IL2.
What remains to be done is to prove NP-hardness for approximating Max

Ones(Γ) within 2 − ε if 〈Γ〉 = IL0. We do this with a reduction from Max-E3-

Lin-2 which is the following problem: given a set of equations over Z2 with exactly
three variables per equation, satisfy as many equations as possible. It is proved in [29]
that it is NP-hard to approximate Max-E3-Lin-2 within 2 − ε for any ε > 0.

Let I be an instance of Max-E3-Lin-2. We will construct an instance I ′ of Max

Ones(Γ) for a subset Γ of IL0. Given an equation x1 + x2 + x3 = 1 (mod 2) in I (we
can assume that all equations have 1 on the right-hand side [29]), we add the equation
x1 + x2 + x3 = z (where z is a fresh variable that occurs only in one equation) to I ′.
Furthermore, we assign the weight 0 to x1, x2, and x3 and the weight 1 to z. It is
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not hard to see that a solution with measure m to I can easily be transformed into a
solution with measure m for I ′. It is also the case that a solution of measure m for I ′

can be seen as a solution with measure m for I.

4. Hardness and membership results. In this section, we first prove some
general APX and poly-APX membership results for W-Max Sol(Γ). We also prove
APX-completeness and poly-APX-completeness for some particular constraint lan-
guages. Most of our hardness results in subsequent sections are based on these results.

We begin by making the following easy but interesting observation: we know
from the classification of W-Max Sol(Γ) over the Boolean domain {0, 1} that there
exist many constraint languages Γ for which W-Max Sol(Γ) is poly-APX-complete.
However, if 0 is not in the domain, then there are no constraint languages Γ such that
W-Max Sol(Γ) is poly-APX-complete.

Proposition 4.1. If Csp(Γ) is in P and 0 /∈ D, then W-Max Sol(Γ) is in
APX.

Proof. It is proved in [19] that if Csp(Γ) is in P, then we can also find a solution

in polynomial time. It should be clear that this solution is a max(D)
min(D) -approximate

solution. Hence, we have a trivial approximation algorithm with performance ratio
max(D)
min(D) .

Next, we present a general membership result for W-Max Sol(Γ). The proof is
similar to the proof of the corresponding result for the Boolean domain in [37, Lemma
6.2] so we omit the proof.

Lemma 4.2. Let Γc = Γ ∪ {{(d1)}, . . . , {(dn)}}, where D = {d1, . . . , dn} (i.e.,
Γc is the constraint language corresponding to Γ where we can force variables to take
any given value in the domain). If Csp(Γc) is in P, then W-Max Sol(Γ) is in
poly-APX.

We continue by proving the APX-completeness of some constraint languages.
Lemma 4.3. Let R = {(a, a), (a, b), (b, a)} and a, b ∈ D such that 0 < a < b.

Then, W-Max Sol({R}) is APX-complete.
Proof. Containment in APX follows from Proposition 4.1. To prove the hardness

result we give an L-reduction (with parameters β = 4b and γ = 1
b−a ) from the

APX-complete problem Independent Set restricted to degree 3 graphs [1] to Max

Sol({R}). Given an instance I = (V,E) of Independent Set (restricted to graphs
of degree at most 3 and containing no isolated vertices), let F (I) = (V,D,C) be the
instance of Max Sol({R}) where, for each edge (vi, vj) ∈ E, we add the constraint
R(xi, xj) to C. For any feasible solution S′ for F (I), let G(I, S′) be the solution for
I where all vertices corresponding to variables assigned b in S′ form the independent
set. We have |V |/4 ≤ opt(I) and opt(F (I)) ≤ b|V |, so opt(F (I)) ≤ 4bopt(I).
Thus, β = 4b is an appropriate parameter.

Let K be the number of variables being set to b in an arbitrary solution S′ for
F (I). Then,

|opt(I) −m(I,G(I, S′))| = opt(I) −K and

|opt(F (I)) −m(F (I), S′)| = (b− a)(opt(I) −K).

Hence,

|opt(I) −m(I,G(I, S′))| =
1

b− a
|opt(F (I)) −m(F (I), S′)|,

and γ = 1
b−a is an appropriate parameter.
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The generic poly-APX-complete constraint languages are presented in the fol-
lowing lemma.

Lemma 4.4. Let R = {(0, 0), (0, b), (b, 0)} and b ∈ D such that 0 < b. Then,
W-Max Sol({R}) is poly-APX-complete.

Proof. It is proved in [37, Lemma 6.15] that for Q = {(0, 0), (0, 1), (1, 0)}, it is
the case that W-Max Sol({Q}) is poly-APX-complete. To prove the poly-APX-
hardness we give an AP -reduction from W-Max Sol({Q}) to W-Max Sol({R}).
Given an instance I of W-Max Sol({Q}), let F (I) be the instance of W-Max

Sol({R}) where all occurrences of Q have been replaced by R. For any feasible
solution S′ for F (I), let G(I, S′) be the solution for I where all variables assigned b
in S′ are instead assigned 1. It should be clear that this is an AP -reduction, since if
S′ is an α-approximate solution to F (I), then G(I, S′) is an α-approximate solution
for I.

To see that W-Max Sol({R}) is in poly-APX, let D = {d1, . . . , dn} and note
that Γc = {R, {(d1)}, . . . , {(dn)}} is invariant under the min function. As the min
function is associative, commutative, and idempotent, Csp(Γc) is solvable in polyno-
mial time [32]. Hence, W-Max Sol({R}) is in poly-APX due to Lemma 4.2.

5. Tractable constraint languages. In this section, we present tractability
results for two classes of constraint languages: injective constraint languages and
generalized max-closed constraint languages. The tractability of injective constraints
follows from Cohen et al. [21, sect. 4.4], but we present a simple proof for increased
readability. The tractability result for generalized max-closed constraints is new, and
its proof constitutes the main part of this section.

These two classes can be seen as substantial and nontrivial generalizations of the
tractable classes known for the corresponding (Weighted) Max Ones problem over
the Boolean domain. There are only three tractable classes of constraint languages
over the Boolean domain, namely, width-2 affine, 1-valid, and weakly positive [37].
Width-2 affine constraint languages are examples of injective constraint languages,
and the classes of 1-valid and weakly positive constraint languages are examples of
generalized max-closed constraint languages. The monotone constraints which are,
for instance, studied by Hochbaum et al. [27] and Hochbaum and Naor [28] (in relation
to integer programming) and Woeginger [51] (in relation to constraint satisfaction)
are also related to generalized max-closed constraints. Hochbaum and Naor [28] show
that monotone constraints can be characterized as those constraints that are simul-
taneously invariant under the max and min operators. Hence, monotone constraints
are also generalized max-closed constraints as long as the underlying domain is finite.

5.1. Injective relations. We begin by formally defining injective relations.
Definition 5.1. A relation R ∈ RD is called injective if there exists a subset

D′ ⊆ D and an injective function π : D′ → D such that

R = {(x, π(x)) | x ∈ D′}.

It is important to note that the function π is not assumed to be total on D. Let
ID denote the set of all injective relations on the domain D and let ΓD

I = 〈ID〉.
Example 5.2. Let D = {0, 1} and let R = {(x, y) | x, y ∈ D, x+y ≡ 1 (mod 2)}.

The relation R is injective because the function f : D → D defined as f(0) = 1 and
f(1) = 0 is injective. More generally, let G = (D′,+,−) be an arbitrary Abelian
group and let c ∈ D′ be an arbitrary group element. It is easy to see that the relation
{(x, y) | x, y ∈ D′, x + y = c} is injective.
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R is an example of a relation which is invariant under an affine operation. Such
relations have previously been studied in relation to the Max Ones problem in [37,
38]. We will give some additional results for such constraints in section 6.3. With the
terminology used in [37, 38], R is said to be width-2 affine. The relations which can
be expressed as the set of solutions to an equation with two variables over an Abelian
group are exactly the width-2 affine relations, so the injective relations are a superset
of the width-2 affine relations.

To see that W-Max Sol(Γ) is in PO for every finite constraint language Γ ⊆
〈ID〉, it is sufficient to prove that W-Max Sol(ID) is in PO by Theorem 3.3. Given
an instance of W-Max Sol(ID), consider the graph having the variables as ver-
tices and edges between the vertices/variables occurring together in the same con-
straint. Each connected component of this graph represents an independent sub-
problem that can be solved separately. If a value is assigned to a variable/vertex, all
variables/vertices in the same component will be forced to take a value by propagating
this assignment. Hence, each connected component has at most |D| different solutions
(that can be easily enumerated), and an optimal one can be found in polynomial time.

5.2. Generalized max-closed relations. We begin by giving the following
basic definition.

Definition 5.3. A constraint language Γ over a domain D ⊂ N is generalized
max-closed if and only if there exists a binary operation f ∈ Pol(Γ) such that for all
a, b ∈ D,

1. if a 
= b and f(a, b) ≤ min(a, b), then f(b, a) > max(a, b); and
2. f(a, a) ≥ a.

In the conference version of this article [35], the definition of generalized max-
closed constraint languages was slightly more restrictive. The following two examples
will clarify the definition above.

Example 5.4. Assume that the domain D is {0, 1, 2, 3}. As an example of a
generalized max-closed relation consider

R = {(0, 0), (1, 0), (0, 2), (1, 2)}.

R is invariant under max and is therefore generalized max-closed since max satisfies
the properties of Definition 5.3. Now, consider the relation Q defined as

Q = {(0, 1), (1, 0), (2, 1), (2, 2), (2, 3)}.

Q is not invariant under max because

max((0, 1), (1, 0)) = (max(0, 1),max(1, 0)) = (1, 1) /∈ Q.

Let the operation ◦ : D2 → D be defined by the following Cayley table:2

◦ 0 1 2 3
0 0 2 2 3
1 2 1 2 2
2 2 2 2 3
3 3 2 3 3

Now, it is easy to verify that Inv(◦) is a set of generalized max-closed relations and
that Q ∈ Inv(◦).

2Note that we write x ◦ y instead of ◦(x, y).
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Example 5.5. Consider the relations R1 and R2 defined as

R1 = {(1, 1, 1), (1, 0, 0), (0, 0, 1), (1, 0, 1)}

and R2 = R1 \ {(1, 1, 1)}. The relation R1 is 1-valid because the all-1 tuple is in R1,
i.e., (1, 1, 1) ∈ R1. R2, on the other hand, is not 1-valid but is weakly positive3 because
it is invariant under max. Note that both R1 and R2 are generalized max-closed since
R1 is invariant under f(x, y) = 1 and R2 is invariant under f(x, y) = max(x, y). It
is in fact the case that every weakly positive relation is invariant under max (more is
true in the Boolean domain: a relation is weakly positive if and only if it is invariant
under max), so the 1-valid and weakly positive relations are subsets of the generalized
max-closed relations.

The tractability of generalized max-closed constraint languages crucially depends
on the following lemma.

Lemma 5.6. If Γ is generalized max-closed, then all relations

R = {(d11, d12, . . . , d1m), . . . , (dt1, dt2, . . . , dtm)}

in Γ have the property that the tuple

tmax = (max{d11, . . . , dt1}, . . . ,max{d1m, . . . , dtm})

is in R, too.
Proof. Assume that there is a relation R in Γ such that the tuple

tmax = (max{d11, . . . , dt1}, . . . ,max{d1m, . . . , dtm})

is not in R. Define the distance between two tuples to be the number of coordinates
where they disagree (i.e., the Hamming distance). Let a be a tuple in R with minimal
distance from tmax and let I denote the set of coordinates where a agrees with tmax.
By the assumption that tmax is not in R, we know that the distance between a and
tmax is at least 1. Hence, without loss of generality, assume that a[1] 
= tmax[1] and
that a[1] is maximal for all tuples in R agreeing with tmax on the coordinates in I.
Let b be a tuple in R such that b[1] = tmax[1].

Since Γ is generalized max-closed, there exists an operation f ∈ Pol(Γ) such that
for all a, b ∈ D (a 
= b), it holds that f(a, b) > max(a, b) whenever f(b, a) ≤ min(a, b).
Furthermore, for all a ∈ D it holds that f(a, a) ≥ a. Now consider the tuple xn

(n = |D|) defined as follows: x1 = f(a, b) and

xi+1 =

{
f(xi,a) if f(xi[1],a[1]) > a[1],
f(a,xi) otherwise.

We begin by proving that xn agrees with a on all coordinates in I. Let z be an
arbitrary tuple in R. Note that for each i ∈ I such that z[i] 
= a[i], it is the case
that f(a[i],z[i]) ≤ min(a[i],z[i]) implies that f(z[i],a[i]) > max(a[i],z[i]). Hence,
as a[i] = tmax[i], we cannot have that f(a[i],z[i]) ≤ min(a[i],z[i]). So, for each
z ∈ R and i ∈ I, we must have f(a[i],z[i]) > min(a[i],z[i]) whenever a[i] 
= z[i].
By an analogous argument, it follows that for each z ∈ R and i ∈ I we must have
f(z[i],a[i]) > min(a[i],z[i]) whenever a[i] 
= z[i].

3A relation is weakly positive if it can be expressed as a formula in conjunctive normal form
having at most one negated variable in each clause.
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This together with the fact that f(d, d) ≥ d for all d ∈ D and that a agrees with
tmax on I implies that f(a,xn) agrees with a on I.

We now show that xn[1] > a[1]. This follows from essentially the same argument
as above. First note that f(a[1], b[1]) = x1[1] > a[1]. If f(a[1], b[1]) ≤ min(a[1], b[1]),
then f(b[1],a[1]) > b[1] which is not possible since b[1] = tmax[1]. Hence, we must
have f(a[1], b[1]) = x1[1] > min(a[1], b[1]). Now, by the definition of xi+1, it follows
that if xi[1] > a[1], then xi+1[1] > min(xi[1],a[1]) = a[1] (just note that at least
one of f(xi[1],a[1]) and f(a[1],xi[1]) is strictly larger than min(xi[1],a[1]) = a[1]).
Hence, it follows by induction that xn[1] > a[1].

Thus, we have a contradiction with the fact that a[1] is maximal for all tuples in
R agreeing with tmax on the coordinates in I. Hence, our assumption was wrong and
tmax is in R.

The algorithm for solving W-Max Sol(Γ) when Γ is generalized max-closed
is a simple consistency-based algorithm. The algorithm, which is based on pair-
wise consistency, closely follows the algorithm for Csps over max-closed constraint
languages from [33].

We first need to introduce some terminology.
Definition 5.7. Given a constraint Ci = (si, Ri) and an (ordered) subset s′i

of the variables in si, where (i1, i2, . . . , ik) are the indices in si of the elements in
s′i, the projection of Ci onto the variables in s′i is denoted by πs′i

Ci and defined as
πs′i

Ci = C ′
i = (s′i, R

′
i), where R′

i is the relation {(a[i1],a[i2], . . . ,a[ik]) | a ∈ Ri}.
Definition 5.8. For any pair of constraints Ci = (si, Ri), Cj = (sj , Rj), the

join of Ci and Cj, denoted Ci � Cj, is the constraint on si ∪ sj containing all tuples
t such that πsi{t} ∈ Ri and πsj{t} ∈ Rj.

Definition 5.9 (see [30]). An instance of a constraint satisfaction problem I =
(V,D,C) is pairwise consistent if and only if for any pair of constraints Ci = (si, Ri),
Cj = (sj , Rj) in C, it holds that the constraint resulting from projecting Ci onto the
variables in si∩sj equals the constraint resulting from projecting Cj onto the variables
in si ∩ sj; i.e., πsi∩sjCi = πsi∩sjCj.

We are now ready to prove the tractability of generalized max-closed constraint
languages.

Theorem 5.10. If Γ is generalized max-closed, then W-Max Sol(Γ) is in PO.
Proof. Since Inv(f) is a relational clone, constraints built over Inv(f) are invari-

ant when taking joins and projections [31, Lemma 2.8] (i.e., the underlying relations
are still invariant under f). It was proved in [30] that any set of constraints can be
reduced to an equivalent set of pairwise consistent constraints in polynomial time.
Since the set of pairwise consistent constraints can be obtained by repeated applica-
tion of the join and projection operations, the underlying relations in the resulting
constraints are still in Inv(f).

Hence, given an instance I = (V,D,C,w) of W-Max Sol(Inv(f)), we can assume
that the constraints in C are pairwise consistent. We prove that for pairwise consistent
C, either C has a constraint with a constraint relation that does not contain any tuples
(i.e., no assignment satisfies the constraint and there is no solution) or we can find
the optimal solution in polynomial time.

Assume that C has no empty constraints. For each variable xi, let di be the
maximum value allowed for that variable by some constraint Cj (where xi is in the
constraint scope of Cj). We will prove that (d1, . . . , dn) is an optimal solution to I.
Obviously, if (d1, . . . , dn) is a solution to I, then it is the optimal solution. Hence, it
is sufficient to prove that (d1, . . . , dn) is a solution to I.
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Assume, with the aim of reaching a contradiction, that (d1, . . . , dn) is not a solu-
tion to I. Then, there exists a constraint Cj in C not satisfied by (d1, . . . , dn). Since
the constraint relation corresponding to Cj is generalized max-closed, there exists a
variable xi in the constraint scope of Cj such that Cj has no solution where di is
assigned to xi. Note that it is essential that Cj is generalized max-closed to rule out
the possibility that there exist two variables xi and xj in the constraint scope of Cj

such that Cj has two solutions t, u where t(xi) = di and u(xj) = dj , but Cj has no
solution s where s(xi) = di and s(xj) = dj . We know that there exists a constraint Ci

in C having xi in its constraint scope and di an allowed value for xi. This contradicts
the fact that C is pairwise consistent. Thus, (d1, . . . , dn) is a solution to I.

6. Maximal constraint languages. A maximal constraint language Γ is a con-
straint language such that 〈Γ〉 ⊂ RD, and if R /∈ 〈Γ〉, then 〈Γ ∪ {R}〉 = RD. That
is, the maximal constraint languages are the largest constraint languages that are
not able to express all finitary relations over D. This implies, among other things,
that there exists an operation f such that 〈Γ〉 = Inv(f) whenever Γ is a maximal
constraint language [45]. Relational clones 〈Γ〉 such that Γ is a maximal constraint
language are called maximal relational clones. The complexity of the Csp(Γ) prob-
lem for all maximal constraint languages on domains |D| ≤ 3 was determined in [14].
Moreover, it was shown in [14] that the only case that remained to be classified in
order to extend the classification to all maximal constraint languages over a finite do-
main was the case where 〈Γ〉 = Inv(f) for binary commutative idempotent operations
f . These constraint languages were finally classified by Bulatov in [8].

Theorem 6.1 (see [8, 14]). Let Γ be a maximal constraint language on an arbi-
trary finite domain D. Then, Csp(Γ) is in P if 〈Γ〉 = Inv(f) where f is a constant
operation, a majority operation, a binary commutative idempotent operation, or an
affine operation. Otherwise, Csp(Γ) is NP-complete.

In this section, we classify the approximability of W-Max Sol(Γ) for all maximal
constraint languages Γ over |D| ≤ 4. Moreover, we prove that the only cases that re-
main to be classified, in order to extend the classification to all maximal constraint lan-
guages over finite domains, are constraint languages Γ such that 〈Γ〉 is invariant under
a binary commutative idempotent operation. We also prove that if a certain conjec-
ture regarding minimal clones generated by binary operations, due to Szczepara [47],
holds, then our classification can be extended to also capture these last cases.

Theorem 6.2. Let Γ be maximal constraint language on a finite domain D, with
|D| ≤ 4, and 〈Γ〉 = Inv(f).

1. If Γ is generalized max-closed or an injective constraint language, then W-

Max Sol(Γ) is in PO;
2. else if f is an affine operation, a constant operation different from the con-

stant 0 operation, or a binary commutative idempotent operation satisfying
f(0, b) > 0 for all b ∈ D \ {0} (assuming 0 ∈ D), or if 0 /∈ D and f is a
binary commutative idempotent operation or a majority operation, then W-

Max Sol(Γ) is APX-complete;
3. else if f is a binary commutative idempotent operation or a majority opera-

tion, then W-Max Sol(Γ) is poly-APX-complete;
4. else if f is the constant 0 operation, then finding a solution with nonzero

measure is NP-hard;
5. otherwise, finding a feasible solution is NP-hard.

Moreover, if Conjecture 131 from [47] holds, then the results above hold for arbitrary
finite domains D.
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The proof of the preceding theorem consists of a careful analysis of the ap-
proximability of W-Max Sol(Γ) for all maximal constraint languages Γ such that
〈Γ〉 = Inv(f), where f is one of the types of operations in Theorem 6.1. These results
are presented below.

6.1. Constant operation. We begin by considering maximal constraint lan-
guages that are invariant under constant operations. Given an instance I = (V,D,C)
of a Csp problem, we define the constraint graph of I to be G = (V,E), where
{v, v′} ∈ E if there is at least one constraint c ∈ C which has both v and v′ in its
constraint scope.

Lemma 6.3. Let d∗ = max(D) and let Cd be a constraint language such that
〈Cd〉 = Inv(fd), where fd : D → D satisfies fd(x) = d for all x ∈ D. Then, W-Max

Sol(Cd∗) is in PO, W-Max Sol(Cd) is APX-complete if d ∈ D\{d∗, 0}, and it is
NP-hard to find a solution with nonzero measure for W-Max Sol(C0).

Proof. The tractability of W-Max Sol(Cd∗) is trivial, since the optimum solution
is obtained by assigning d∗ to all variables.

For the APX-hardness of W-Max Sol(Cd) (d ∈ D\{d∗, 0}), it is sufficient to
note that {(d, d), (d, d∗), (d∗, d)} is in 〈Cd〉, and since 0 < d < d∗ it follows from
Lemma 4.3 that W-Max Sol(Cd) is APX-hard. It is easy to realize that W-Max

Sol(Cd) is in APX, since we can obtain a d∗

d -approximate solution by assigning the
value d to all variables.

The fact that it is NP-hard to find a solution with nonzero measure for W-Max

Sol(C0) over the Boolean domain {0, 1} is proved in [37, Lemma 6.23]. To prove that
it is NP-hard to find a solution with nonzero measure for W-Max Sol(C0) over a
domain D of size ≥ 3, we give a reduction from the well-known NP-complete problem
Positive-1-in-3-Sat [26], i.e., Csp({R}) with R = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. It is
easy to see that Positive-1-in-3-Sat restricted to instances where the constraint
graph is connected is still NP-complete.

Now, let R′ = {(b, a, a), (a, b, a), (a, a, b), (0, 0, 0)}, where 0 < a < b and a, b, 0 ∈
D. For an instance I = (V,D,C) of Csp({R}) where the constraint graph of I is
connected, create an instance I ′ of W-Max Sol({R′}) by replacing all occurrences
of R by R′ and giving all variables weight 1. Since the constraint graph is connected,
I has a solution if and only if I ′ has a solution with nonzero measure, and since
R′ ∈ C0, it follows that it is NP-hard to find a solution with nonzero measure for
W-Max Sol(C0).

6.2. Majority operation. Maximal constraint languages based on majority
operations are fairly easy to analyze due to the results in section 4.

Lemma 6.4. Let m be an arbitrary majority operation on D. Then, W-Max

Sol(Inv(m)) is APX-complete if 0 /∈ D and poly-APX-complete if 0 ∈ D.
Proof. Arbitrarily choose elements a, b ∈ D such that a < b. Then, it is easy

to see that {(a, a), (a, b), (b, a)} is in Inv(m). Thus, by Proposition 4.1 and Lem-
mas 4.3 and 4.4, it follows that W-Max Sol(Inv(m)) is APX-complete or poly-
APX-complete depending on whether 0 is in D or not.

6.3. Affine operation. We split the proof of this result into two parts. The first
part, section 6.3.1, contains the hardness result: for every affine operation a : D3 → D,
W-Max Sol(Inv(a)) is APX-hard. The proof is based on a reduction from Max-

p-Cut which is a well-known APX-complete problem [2]. Membership in APX
is proved in section 6.3.2 by presenting an approximation algorithm with constant
performance ratio.
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We will denote the affine operation on the group G by aG; i.e., if G = (D,+G,−G),
then aG(x, y, z) = x−G y +G z.

6.3.1. APX-hardness. In this section we will prove Theorem 6.11, which states
that relations invariant under an affine operation give rise to APX-hard W-Max Sol-
problems. We need a number of lemmas before we can prove this result. We begin
by giving an L-reduction from Max-p-Cut to W-Max Sol Eqn(Zp, g), where p is
prime. Max-p-Cut and W-Max Sol Eqn are defined as follows.

Definition 6.5 (see [2]). Max-p-Cut is an optimization problem with the fol-
lowing:
Instance: A graph G = (V,E).
Solution: A partition of V into p disjoint sets C1, C2, . . . , Cp.
Measure: The number of edges between the disjoint sets, i.e.,

p−1∑
i=1

p∑
j=i+1

|{{v, v′} ∈ E | v ∈ Ci and v′ ∈ Cj}|.

Definition 6.6 (see [38]). Let G = (D,+G,−G) be a group and g : D → N a
function. W-Max Sol Eqn(G, g) is an optimization problem with the following:
Instance: A triple (V,E,w), where V = {v1, v2, . . . , vn} is a set of variables, E

is a set of equations of the form u1 +G . . . +G uk = 0G, where each ui is
either a variable (e.g., “ v4”), an inverted variable (e.g., “−G v7”), or a group
constant, and w is a weight function w : V → N.

Solution: An assignment f : V → D to the variables such that all equations are
satisfied.

Measure:
∑

v∈V w(v)g(f(v)).
We do not require the group G to be Abelian in the definition of W-Max Sol

Eqn, but this will always be the case in this article. Note that the function g and
the group G are not parts of the input so W-Max Sol Eqn(G, g) is a problem
parameterized by G and g. We refer the reader to [38] for more information on the
problem W-Max Sol Eqn(Zp, g).

The following lemma follows from the proof of Proposition 2.3 in [20].
Lemma 6.7. For any instance I = (V,E) of Max-p-Cut, we have opt(I) ≥

|E|(1 − 1/p).
We can now prove the APX-hardness of W-Max Sol Eqn.
Lemma 6.8. For every prime p and every nonconstant function g : Zp → N,

W-Max Sol Eqn(Zp, g) is APX-hard.
Proof. Given an instance I = (V,E) of Max-p-Cut, we construct an instance

F (I) of W-Max Sol Eqn(Zp, g), where, for every vertex vi ∈ V , we create a variable

xi and give it weight 0 and, for every edge {vi, vj} ∈ E, we create p variables z
(k)
ij

for k = 0, . . . , p − 1 and give them weight 1. Let gmin denote an element in Zp that
minimizes g, i.e.,

min
x∈Zp

g(x) = g(gmin),

and let gs denote the sum

p−1∑
k=0

g(k).
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For every edge {vi, vj} ∈ E, we introduce the equations

k(xi − xj) + gmin = z
(k)
ij

for k = 0, . . . , p − 1. If xi = xj , then the p equations for the edge {vi, vj} will
contribute pg(gmin) to the measure of the solution. On the other hand, if xi 
= xj ,
then the p equations will contribute gs to the measure.

Given a solution s′ to F (I), we can construct a solution s to I in the following
way: let s(vi) = s′(xi); i.e., for every vertex vi, place this vertex in partition s′(xi).
The measures of the solutions s and s′ are related to each other by the equality

(6.1) m′(F (I), s′) = |E| · p · g(gmin) + (gs − p · g(gmin)) ·m(I, s).

From (6.1), we get

(6.2) opt(F (I)) = |E| · p · g(gmin) + (gs − p · g(gmin)) · opt(I)

and from Lemma 6.7, we have that opt(I) ≥ |E| · (1− 1/p), which implies opt(I) ≥
|E|/p. By combining this with (6.2), we can conclude that

opt(F (I)) = opt(I)

(
|E| · p · g(gmin)

opt(I)
+ gs − p · g(gmin)

)

≤ opt(I)
(
p2 · g(gmin) + gs − p · g(gmin)

)
.

Hence, β = p(p− 1) · g(gmin) + gs is an appropriate parameter for the L-reduction.
We will now deduce an appropriate γ-parameter for the L-reduction: from (6.1)

and (6.2) we get

|opt(F (I)) −m′(F (I), s′)| = (gs − p · g(gmin)) · |opt(I) −m(I, s)|;

thus, γ = 1/(gs − p · g(gmin)) is sufficient (γ is well defined because a nonconstant g
implies gs > p · gmin).

We need two lemmas before we can prove the APX-hardness of affine relations.
Let v1, v2, . . . , vk be a collection of variables, G = (D,+G,−G) an Abelian group, and
E an equation of the form x1 +G x2 +G . . . +G xn = c, where each xi is a (possibly
inverted) variable and c ∈ D. Note that each variable may occur several times in E.
The set of all solutions to E may be seen as a k-ary relation RE on Dk. The following
two lemmas are well known [32].

Lemma 6.9. The relation RE is invariant under aG.
Lemma 6.10. If P is a coset of G, then P is invariant under aG.
We now have all results needed to prove the main theorem of this section.
Theorem 6.11. W-Max Sol(Inv(aG)) is APX-hard for every affine opera-

tion aG.
Proof. We show that there exists a prime p and a nonconstant function h : Zp → N

such that W-Max Sol Eqn(Zp, h) can be S-reduced to W-Max Sol(Inv(aG)). The
result will then follow from Lemma 6.8.

Let p be a prime such that Zp is isomorphic to a subgroup H of G. We know
that such a p always exists by the fundamental theorem of finitely generated Abelian
groups. Let α be the isomorphism which maps elements of Zp to elements of H and
let h = α. (Note that H ⊂ N since the domain is a subset of N. Consequently, h may
be viewed as a function from Zp to N.)
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Let I = (V,E,w) be an instance of W-Max Sol Eqn(Zp, h) with variables
V = {v1, . . . , vn} and equations E = {e1, . . . , em}. We will construct an instance
I ′ = (V,D,C,w) of W-Max Sol(Inv(aG)).

Let U be the unary relation for which x ∈ U ⇐⇒ x ∈ H; this relation is in
Inv(aG) by Lemma 6.10. For every equation Ei ∈ E, there is a corresponding pair
(si, Ri), where si is a list of variables and Ri is a relation in Inv(aG) such that the
set of solutions to Ei contains exactly the tuples which satisfy (si, Ri) by Lemma 6.9.
We can now construct C:

C = {(vi, U) | 1 ≤ i ≤ n} ∪ {(si, Ri) | 1 ≤ i ≤ m}.

It is easy to see that I and I ′ are essentially the same in the sense that every feasible
solution to I is also a feasible solution to I ′, and that they have the same measure.
The converse is also true: every feasible solution to I ′ is also a feasible solution to
I. Hence, we have given an S-reduction from W-Max Sol Eqn(Zp, h) to W-Max

Sol(Inv(aG)). As h is not constant (it is in fact injective), it follows from Lemma 6.8
that W-Max Sol Eqn(Zp, h) is APX-hard. This S-reduction implies that W-Max

Sol(Inv(aG)) is APX-hard.

6.3.2. Membership in APX. We will now prove that relations that are in-
variant under an affine operation give rise to problems which are in APX. It has
been proved that a relation which is invariant under an affine operation is a coset of
a subgroup of some Abelian group [32]. We will give an approximation algorithm for
the more general problem when the relations are cosets of subgroups of a finite group.

Our algorithm is based on an algorithm by Bulatov and Dalmau [12] for deciding
the satisfiability of Mal’tsev constraints. A Mal’tsev operation is a ternary operation
m such that m(x, y, y) = m(y, y, x) = x for all x, y ∈ D. If a constraint language
Γ is invariant under a Mal’tsev operation, then Bulatov and Dalmau have proved
that Csp(Γ) is solvable in polynomial time. We note that every affine operation is a
Mal’tsev operation since x−G y +G y = x and y −G y +G x = x.

Let Gk denote the direct product of k copies of G. We are now ready to prove
containment in APX.

Theorem 6.12. Let G = (D; +G,−G) be a finite group and let Γ be a constraint
language such that for each R ∈ Γ there is an integer k such that R is a coset of some
subgroup of Gk. Then W-Max Sol(Γ) is in APX.

Proof. Let I = (V,D,C,w) be an arbitrary instance of W-Max Sol(Γ), where
V = {v1, . . . , vn}. Feasible solutions to our optimization problem can be viewed as
certain elements in H = Gn. Each constraint Ci ∈ C defines a coset ai +G Ji of H
with representative ai ∈ H, for some subgroup Ji of H. The set of solutions to the

problem is the intersection of all those cosets. Thus, S =
⋂|C|

i=1 ai +G Ji denotes the
set of all solutions.

Since Γ is invariant under the affine operation aG(x, y, z) = x−G y +G z and aG
is a Mal’tsev operation, we can decide if there are any solutions to I in polynomial
time [12]. Clearly, S is empty if and only if there are no solutions. It is well known
that an intersection of a set of cosets is either empty or a coset so if S 
= ∅, then S is
a coset.

We will represent the elements of Gn by vectors x = (x1, . . . , xn) where each xi

is an element of G. For any instance I, we define R(I) to be the random variable
which is uniformly distributed over the set of solutions to I. Let Vi denote the random
variable which corresponds to the value which will be assigned to vi by R(I). We
claim that Vi is uniformly distributed over some subset of G. As S is a coset, there
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are a subgroup S′ of Gn and an element s ∈ S such that S = s +G S′. Assume, for
the sake of contradiction, that Vi is not uniformly distributed. Then, there are group
elements a, b ∈ G such that the sets

Xa = {x ∈ S′ | xi = a} and Xb = {x ∈ S′ | xi = b}

have different cardinality. Assume that |Xa| > |Xb|. Arbitrarily pick y ∈ Xa,z ∈ Xb

and construct the set Z = {x −G y +G z | x ∈ Xa}. From the definition of Z and
the fact that S′ is invariant under aG, it follows that Z ⊆ S′. For each x ∈ Z we
have x1 = b; hence Z ⊆ Xb. However, we also have |Z| = |Xa|, which contradicts
the assumption that |Xa| > |Xb|. We conclude that this cannot hold, and thus Vi is
uniformly distributed. Hence, for each 1 ≤ i ≤ n, Vi is uniformly distributed.

Now, let A denote the set of indices such that for every i ∈ A, Pr [Vi = ci] = 1 for
some ci ∈ G. That is, A contains the indices of the variables Vi which are constant
in every feasible solution. Let B contain the indices for the variables which are not
constant in every solution, i.e., B = [n] \ A.

Let S∗ =
∑

i∈B w(vi) max(D) +
∑

i∈A w(vi)ci and note that S∗ ≥ opt. Further-
more, let

Emin = min
X⊆G,|X|>1

1

|X| ·
∑
x∈X

x

and note that max(D) > Emin > 0.
The expected value of the measure of R(I) can now be estimated as

E

[
n∑

i=1

w(vi)Vi

]
=

∑
i∈A

w(vi)E [Vi] +
∑
i∈B

w(vi)E [Vi](6.3)

≥
∑
i∈A

w(vi)ci + Emin

∑
i∈B

w(vi) ≥
Emin

max(D)
S∗ ≥ Emin

max(D)
opt.

Since Emin/max(D) > 0, it follows that the measure of R(I) has, in expectation, a
constant performance ratio. We will denote Emin

max(D) · opt by E.

To get a deterministic polynomial-time algorithm, note that for any instance I
we can use the algorithm by Bulatov and Dalmau [12] to compute the two sums
in (6.3) in polynomial time. Hence, we can compute the expected measure of R(I) in
polynomial time. Our algorithm is presented in Figure 6.1.

We claim that the following loop invariant holds in the algorithm: before line 4
is executed it is always the case that the expected measure of R(Ii) is at least E.

We first prove the correctness of the algorithm assuming that the loop invariant
holds. From the loop invariant it follows that the expected measure of R(I|V |+1) is at
least E. In I|V |+1 there is, for each variable vi ∈ V , a constraint of the form vi = xi;
therefore there is only one solution to I|V |+1. This solution will be returned by the
algorithm.

We now prove that the loop invariant holds. The first time line 4 is reached the
expected performance ratio of R(I1) is at least E, per the calculations above. Now
assume that the loop invariant holds in iteration i = k ≤ |V |; we will prove that it
also holds in iteration i = k + 1. Since the performance ratio of R(Ik) is at least E,
there must be some value x ∈ D such that when vi is fixed to x, the performance
ratio of R(Ik+1) is at least E. This element will be found by the algorithm as it
maximizes the expected performance ratio R(Ik+1). Hence, the loop invariant holds
for i = k + 1.
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Input: An instance I = (V,D,C,w) of W-Max Sol(Γ).
Output: A solution with performance ratio at least Emin/max(D), or “no solution”
if there are no solutions.

1. Return “no solution” if there are no solutions (use Bulatov and Dalmau’s
algorithm to check this).

2. Let I1 = I.
3. For each i from 1 to |V |:
4. For each x ∈ D:
5. Let Ii = I and add the constraint vi = x to Ii.
6. If there is no solution to Ii, then go to 8.
7. Compute the expected measure of R(Ii).
8. Remove the constraint vi = x from Ii.
9. Let xi ∈ D be the value which maximizes the expected measure of

R(Ii) in the computations in 4–8. Create a new instance, Ii+1, which
is identical to Ii except for the addition of the constraint vi = xi.

10. Return the unique solution to I|V |+1.

Fig. 6.1. The algorithm in Theorem 6.12.

6.4. Binary commutative idempotent operation. We now investigate the
complexity of W-Max Sol(Γ) for maximal constraint languages Γ satisfying 〈Γ〉 =
Inv(f) where f is a binary commutative idempotent operation.

Let (F ; +F ,−F , ·F , 1F ) be a finite field of prime order p, where +F ,−F , ·F , and 1F
denote addition, subtraction, multiplication, and multiplicative identity, respectively
(we refrain from defining a notation for multiplicative inverses, as we do not need it).
Furthermore, let zF be the unique element in F such that zF + zF = 1F . Note that
for F = Zp we get 1F = 1 and zF = p+1

2 .
Let A denote the set of operations f(x, y) = zF ·F (x +F y), where F is a finite

field of prime order p = |D| and p > 2. The proof will be partitioned into two main
cases due to the following result.

Lemma 6.13 (see [14, 49]). If Inv(f) is a maximal relational clone and f is a
binary idempotent operation, then either

1. Inv(f) = Inv(g), where g ∈ A, or
2. B ∈ Inv(f) for some two-element B ⊆ D.

The classification result is given in the next lemma together with a proof outline.
Full proofs concerning the case when Inv(f) = Inv(g) and g ∈ A can be found in
section 6.4.1. In section 6.4.2 we give a complete characterization of the complexity
for the second case for domains D such that |D| ≤ 4. Finally, in section 6.4.3 we
extend the classification to general domains under the assumption of a conjecture due
to Szczepara (Conjecture 6.18).

Lemma 6.14. Let f be a binary commutative idempotent operation on D such
that Inv(f) is a maximal relational clone, and let Γ be a constraint language such
that 〈Γ〉 = Inv(f).

• If Inv(f) = Inv(g) for some g ∈ A, then W-Max Sol(Γ) is APX-complete.
• Else if |D| ≤ 4 and there exist a, b ∈ D such that a < b and f(a, b) = a, then

let a∗ be the minimal such element (according to <). Then
– W-Max Sol(Γ) is poly-APX-complete if a∗ = 0, and
– APX-complete if a∗ > 0.

• Otherwise, if |D| ≤ 4, then W-Max Sol(Γ) is in PO.
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Proof. If Inv(f) = Inv(g) and g ∈ A, then the result follows from section 6.4.1.
If there exist a, b ∈ D such that a < b and f(a, b) = a, then we need to consider

two cases depending on a∗. If a∗ = 0, then W-Max Sol(Γ) is poly-APX-hard by
Lemma 4.4 and a member of poly-APX by Lemma 4.2 since Csp is in P [14]. If
a∗ > 0, then W-Max Sol(Γ) is APX-complete by Lemma 6.25 in section 6.4.2.

Finally, if there do not exist any a, b ∈ D such that a < b and f(a, b) = a, then
f acts as the max operation on every two-element B ⊆ D such that B ∈ Inv(f).
Lemma 6.26 shows that f is a generalized max operation in this case, and W-Max

Sol(Γ) is in PO by Theorem 5.10.

6.4.1. f is contained in A. We will now prove that W-Max Sol(Γ) is APX-
complete whenever f ∈ A and 〈Γ〉 = Inv(f).

Lemma 6.15. Let f(x, y) = zF ·F (x +F y), where F is a finite field of prime
order p = |D| > 2 and Inv(f) is a maximal relational clone. Then, W-Max Sol(Γ)
is APX-complete if 〈Γ〉 = Inv(f).

Proof. We will give the proof for F = Zp and after that we will argue that the
proof can easily be adapted to the general case.

Let q = p+1
2 and f be the function f(x, y) = q(x+y) (mod p). We will show that

we can express x− y + z through f .
Note that

p−1∑
i=1

qi =
1 − qp

1 − q
− 1 = 0 (mod p).(6.4)

(The second equality follows from Fermat’s little theorem: ap−1 = 1 (mod p) for any
prime p and integer a not divisible by p.) By using (6.4) and Fermat’s little theorem
again, we get

p−2∑
i=1

qi = −1 (mod p).(6.5)

We can now express x− y + z as follows:

f(f(f(. . . f(f(f(︸ ︷︷ ︸
p−1 times

x, z), y), y) . . .), y), y)

= q(q(q(. . . q(q(q(x + z) + y) + y) + · · · ) + y) + y)

= qp−1x + qp−1z +

p−2∑
i=1

qiy

= x− y + z (mod p),

where the final equality follows from (6.4), (6.5), and Fermat’s little theorem.
As any finite field F of prime order is isomorphic to Zp, it is not hard to see that

x−F y+F z can be expressed through f for any such field. Since Inv(f) is a maximal
relational clone, x −F y +F z can be expressed through f , and x −F y +F z is not a
projection, it follows that Inv(f) = Inv(x −F y +F z). We now get containment in
APX from Theorem 6.12 and APX-hardness from Theorem 6.11.
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6.4.2. f is not contained in A. In the first part of this section we classify
the complexity of W-Max Sol(Γ) when 〈Γ〉 = Inv(f) for all 2-semilattice operations
f . Recall that a 2-semilattice operation f is an operation satisfying the conditions
f(x, x) = x, f(x, y) = f(y, x), and f(x, f(x, y)) = f(x, y). It is noted in [9] that binary
operations f such that Inv(f) is a maximal constraint language on |D| ≤ 4 are either
2-semilattices or otherwise Csp(Γ) is NP-complete. Hence, we get a classification
of the complexity of W-Max Sol(Γ) when 〈Γ〉 = Inv(f) is a maximal constraint
language over |D| ≤ 4 and f is a binary operation.

The second result in this section is a complete complexity classification of W-

Max Sol(Γ) for maximal constraint languages Γ, such that 〈Γ〉 = Inv(f) where f is
a binary operation, under the condition that Conjecture 131 from [47] holds.

Lemma 6.16. Let f be a 2-semilattice operation on D and let 〈Γ〉 = Inv(f).
If there exist a, b ∈ D such that a < b, f(a, b) = a, and a∗ > 0, where a∗ is the
minimal element such that there is b∗ with f(a∗, b∗) = a∗, then W-Max Sol(Γ) is
APX-complete.

Proof. The APX-hardness part is clear. What remains is to show that the
problem is in APX. We can assume, without loss of generality, that a = a∗ and b = b∗.
We begin by proving that U = D \ {0} is in Inv(f). Assume that f(a, b) = 0 and
a, b > 0; then f(a, f(a, b)) = f(a, b) = 0 and, consequently, f(a, 0) = 0, contradicting
the assumption that a > 0 was the minimal such element. Hence, f(a, b) = 0 if and
only if a = b = 0. In particular U is in Inv(f).

We continue with the actual proof of the lemma. Let I = (V,D,C,w) be an
arbitrary instance of W-Max Sol(Γ). Define V ′ ⊆ V such that

V ′ = {v ∈ V | S(v) = 0 for every solution S of I}.
We see that V ′ can be computed in polynomial time: a variable v is in V ′ if and only
if the Csp instance (V,D,C ∪ {((v), U)}) is not satisfiable.

Given two assignments A,B : V → D, we define the assignment f(A,B) such that
f(A,B)(v) = f(A(v), B(v)). We note that if A and B are solutions of I, then f(A,B)
is a solution to I, too: indeed, arbitrarily choose one constraint ((x1, . . . , xk), r) ∈
C. Then, (A(x1), . . . , A(xk)) ∈ r and (B(x1), . . . , B(xk)) ∈ r, which implies that
(f(A(x1), B(x1)), . . . , f(A(xk), B(xk))) ∈ r, too.

Let S1, . . . , Sm be an enumeration of all solutions of I and define

S+ = f(S1, f(S2, f(S3 . . . f(Sm−1, Sm) . . .))).

By the choice of V ′ and the fact that f(c, d) = 0 if and only if c = d = 0, we see that the
solution S+ has the following property: S+(v) = 0 if and only if v ∈ V ′. Let p denote
the second least element in D, and note that opt(I) ≥

∑
v∈V \V ′ w(v)p = c. Thus,

by finding a solution with measure ≥ c, we have approximated I within (maxD)/p,
and W-Max Sol(Γ) is in APX. To find such a solution, we consider the instance
I ′ = (V,D,C ′, w), where C ′ = C ∪ {((v), u) | v ∈ V \ V ′}. This instance has feasible
solutions (since S+ is a solution), and every solution has measure ≥ c. Finally, a
concrete solution can be found in polynomial time by the result in [19].

Lemma 6.17. If f is a 2-semilattice operation such that f 
∈ A, Γ is a maximal
constraint language satisfying 〈Γ〉 = Inv(f), and for all two-element B ∈ Inv(f) the
operation f acts as the max operation on B, then W-Max Sol(Γ) is in PO.

Proof. What we will prove is that if f acts as max on all two-element B ∈ Inv(f),
then f is a generalized max operation and consequently W-Max Sol(Γ) is in PO.

First note that if a 
= b and f(a, b) = a, then by assumption a > b and f(a, b) >
min{a, b}. Now, if f(a, b) 
= a, then f(a, f(a, b)) = f(a, b) and by assumption f
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is max on {a, f(a, b)}. As a consequence of this we get f(a, b) > min{a, b}. Now,
f(a, b) > min{a, b} for all a 
= b. Moreover, f is idempotent, so f is a generalized max
operation and tractability follows from Theorem 5.10.

We have now completely classified the complexity of W-Max Sol(Γ) for all
constraint languages Γ such that 〈Γ〉 is maximal and |D| ≤ 4.

6.4.3. Complete classification under a conjecture. In this section we will
prove that the validity of Conjecture 131 from [47] implies a complete complexity clas-
sification of W-Max Sol(Γ) for all constraint languages Γ such that 〈Γ〉 is maximal.
Given a binary operation f on D, the fixity of f is denoted F(f) and is defined by

F(f) = {(x, y) ∈ D2 | f(x, y) ∈ {x, y}}.

The fixity-count of f is defined to be the cardinality of F(f) and is denoted |F(f)|.
Conjecture 6.18 (see Conjecture 131). If Inv(f) is a maximal relational clone

and Inv(f ′) = Inv(f), then |F(f)| = |F(f ′)|.
Although Conjecture 6.18 is not known to hold in the general case, it has been

verified for small domains. In particular, it was shown in [47] that for domains D such
that |D| ≤ 4 the conjecture holds. Our proof builds on a construction that facilitates
the study of operation f—the details are collected in Lemma 6.19. The underlying
idea and the proof of Lemma 6.19 are inspired by Lemma 3 in [14].

Let f be a binary operation on D and define operations f1, f2, . . . : D2 → D
inductively:

f1(x, y) = f(x, y),

fn+1(x, y) = f(x, fn(x, y)).

Lemma 6.19. Assume f to be a binary commutative idempotent operation on D
such that Inv(f) is a maximal relational clone and Inv(f) 
= Inv(g) for every g ∈ A.
The following hold:

1. f |B = fn|B for every n ≥ 1 and every two-element B ⊆ D in Inv(f); and
2. Inv(f) = Inv(fn), n ≥ 1.

Proof. 1. Arbitrarily choose a two-element {a, b} = B ⊆ D in Inv(f). There
are two possible binary commutative idempotent operations on B, namely, max and
min. We assume without loss of generality that f |B = max and prove the result
by induction over n. Since f1 = f , the claim holds for n = 1. Assume it holds for
n = k and consider fk+1. We see that fk+1(a, b) = f(a, fk(a, b)) and, by the induction
hypothesis, fk(a, b) = max(a, b). Hence, fk+1(a, b) = max(a,max(a, b)) = max(a, b).

2. Obviously, fn ∈ Pol(Inv(f)), and, thus, Inv(f) ⊆ Inv(fn) ⊆ RD. Since
Inv(f) 
= Inv(g) for every g ∈ A, we know from Lemma 6.13 that there is some two-
element B ∈ Inv(f). By the proof above, we also know that f |B = fn|B so fn|B (and
consequently fn) is not a projection. Thus, Inv(fn) 
= RD, since Inv(f ′) = RD if
and only if f ′ is a projection. By the assumption that Inv(f) is a maximal relational
clone and the fact that Inv(f) ⊆ Inv(fn) � RD, we can draw the conclusion that
Inv(f) = Inv(fn).

We will now present some technical machinery that is needed for proving Lemmas
6.25 and 6.26.

Lemma 6.20 (see [47, Lemma 28]). Let f be an idempotent binary operation and
let n ∈ N. Then, F(f) ⊆ F(fn).
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Proof. Let (x, y) ∈ F(f). Then, either f(x, y) = x or f(x, y) = y. Now

f(x, y) = x =⇒ fn(x, y) = f(x, f(x, . . . , f(x, y) . . . ))︸ ︷︷ ︸
n times

= f(x, f(x, . . . , f(x, x) . . . ))︸ ︷︷ ︸
n−1 times

= x =⇒ fn(x, y) = x,

while

f(x, y) = y =⇒ fn(x, y) = f(x, f(x, . . . , f(x, y) . . . ))︸ ︷︷ ︸
n times

= f(x, f(x, . . . , f(x, y) . . . ))︸ ︷︷ ︸
n−1 times

=⇒ fn(x, y) = y.

Assuming that Conjecture 6.18 holds, we get the following corollary as a conse-
quence of Lemma 6.20.

Corollary 6.21. If Inv(f) is a maximal relational clone such that f is com-
mutative and idempotent, and (x, y) ∈ F(fk) (i.e., fk(x, y) ∈ {x, y}), then {x, y} ∈
Inv(f).

Proof. By Lemma 6.20, we have F(f) ⊆ F(fk), and if Conjecture 6.18 holds,
then |F(f)| = |F(fk)|, which implies that F(f) = F(fk). Now, if fk(x, y) ∈ {x, y},
then f(x, y) ∈ {x, y}, and by the commutativity of f we have f(y, x) ∈ {x, y}. Since
f is idempotent, it is clear that {x, y} ∈ Inv(f).

We continue by introducing a digraph associated with the binary operation f .
This digraph enables us to make efficient use of Lemma 6.19. Given a binary op-
eration f : D2 → D, we define Gf = (V,E) such that V = D × D and E =
{((a, b), (a, f(a, b))) | a, b ∈ D}. We make the following observations about Gf :

(1) an edge ((a, b), (a, c)) implies that f(a, b) = c;
(2) every vertex has out-degree 1; and
(3) there is no edge ((a, b), (c, d)) with a 
= c.
We extract some more information about Gf in the next three lemmas.
Lemma 6.22. The digraph Gf contains no directed cycle.
Proof. Assume Gf contains a directed cycle. Fact (3) allows us to assume (without

loss of generality) that the cycle is (0, 1), (0, 2), . . . , (0, k), (0, 1) for some k ≥ 2. Fact
(1) tells us that f(0, 1) = 2, f(0, 2) = 3, . . . , f(0, k − 1) = k, and f(0, k) = 1.
Furthermore, one can see that f2(0, 1) = 3, f2(0, 2) = 4, . . . , and inductively fp(0, i) =
i + p (mod k). This implies that fk(0, 1) = 1 + k (mod k) = 1. By Corollary 6.21,
{0, 1} is a subalgebra of Inv(f), which contradicts the fact that f(0, 1) = 2.

Lemma 6.23. Every path in Gf of length n ≥ |D| ends in a reflexive vertex; i.e.,
fn(a, b) = c implies that (a, c) is a reflexive vertex.

Proof. Assume that Gf contains a path P of length n ≥ |D|. This path can
contain at most |D| distinct vertices by fact (3). Fact (2) together with the acyclicity
of Gf implies that at least one vertex v on P is reflexive; by using fact (2) once again,
we see that there exists exactly one reflexive vertex on P and that it must be the last
vertex.

Lemma 6.24. If fn(a, b) = c, then (a, c) is a reflexive vertex in Gf .
Proof. By Lemma 6.23, every path in Gf of length n ≥ |D| ends in a reflexive

vertex. Hence, (a, fn(a, b)) = (a, c) is a reflexive vertex.
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Lemma 6.25. Let f be a binary commutative idempotent operation on D such that
Γ is a maximal constraint language satisfying 〈Γ〉 = Inv(f). If there exist a, b ∈ D
such that a < b, f(a, b) = a, and a∗ > 0, where a∗ is the minimal element such that
there is b∗ with f(a∗, b∗) = a∗, then (assuming Conjecture 6.18) W-Max Sol(Γ) is
APX-complete.

Proof. We can assume, without loss of generality, that a = a∗ and b = b∗.
The APX-hardness part follows from Lemma 4.3. What remains is to show that the
problem is in APX. We begin the proof by proving that the unary relation U = D\{0}
is a member of Inv(f). Consider the digraph Gf . As we have already observed in
Lemma 6.22, there are no cycles (a, b1), . . . , (a, bk), (a, b1), k ≥ 2, in Gf , and every
path of length n ≥ |D| ends in a reflexive vertex (by Lemma 6.23). Obviously, no
vertex (a, 0) (a > 0) in Gf is reflexive since this implies that f(a, 0) = 0 which is a
contradiction. In particular, there exists no path in Gf of length n ≥ |D| starting in
a vertex (a, b) (a > 0) and ending in a vertex (a, 0), since this implies that (a, 0) is
reflexive by Lemma 6.23.

We can now conclude that fn(a, b) > 0 when a > 0: if fn(a, b) = 0, then (a, 0)
is reflexive by Lemma 6.24, which would lead to a contradiction. Hence, fn(a, b) > 0
whenever a, b ∈ D \ {0} = U so U is in Inv(fn), and, by Lemma 6.19(2), U is
in Inv(f), too. We also note that U ∈ Inv(f) together with the assumption that
f(0, b) > 0 for all b > 0 implies that f(c, d) = 0 if and only if c = d = 0. The rest of
the proof is identical to the second part of the proof of Lemma 6.16.

Lemma 6.26. If f is a binary commutative idempotent operation such that f 
∈
A, Γ is a maximal constraint language satisfying 〈Γ〉 = Inv(f), and for all two-
element B ∈ Inv(f) the operation f acts as the max operation on B, then (assuming
Conjecture 6.18) W-Max Sol(Γ) is in PO.

Proof. What we will prove is that if f 
∈ A and f acts as max on all two-element
B ∈ Inv(f), then there exists a generalized max function f ′ such that Inv(f ′) =
Inv(f) and, hence, W-Max Sol(Γ) is in PO.

Recall that there are no cycles in Gf and every path of length n = |D| must end
in a reflexive vertex by Lemmas 6.22 and 6.23. We also note that if Gf contains a
reflexive vertex (a, c) with a 
= c, then f(a, c) = c and c > a since f is assumed to act
as the max operation on all two-element B ∈ Inv(f).

We now claim that fn is a generalized max operation. Arbitrarily choose a, b ∈ D.
If fn(a, b) = c (a 
= c), then there is a path in Gf from (a, b) to a reflexive vertex (a, c),
and c > a as explained above. If fn(a, b) = a, then {a, b} ∈ Inv(f) by Corollary 6.21.
Since f(a, b) = max(a, b), Lemma 6.19(1) implies that fn(a, b) = max(a, b). Thus, fn
is a generalized max-operation.

7. Homogeneous constraint languages. In this section, we will classify the
complexity of Max Sol when the constraint language is homogeneous. A constraint
language is called homogeneous if every permutation relation is contained in the lan-
guage.

Definition 7.1. A relation R is a permutation relation if there is a permutation
π : D → D such that

R = {(x, π(x)) | x ∈ D}.

Let Q denote the set of all permutation relations on D. The main result of
this section is Theorem 7.16 which gives a complete classification of the complexity
of W-Max Sol(Γ) when Q ⊆ Γ. The theorem provides the exact borderlines be-
tween tractability, APX-completeness, poly-APX-completeness, and NP-hardness
of finding a feasible solution.
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As a direct consequence of Theorem 7.16, we get that the class of injective relations
is a maximal tractable class for W-Max Sol(Γ). That is, if we add a single relation
which is not an injective relation to the class of all injective relations, then the problem
is no longer in PO (unless P = NP).

Dalmau has completely classified the complexity of Csp(Γ) when Γ is a homoge-
neous constraint language [23], and this classification relies heavily on the structure
of homogeneous algebras. An algebra is called homogeneous if and only if every per-
mutation on its universe is an automorphism of the algebra. We will not need a
formal definition of homogeneous algebras and refer the reader to [39, 40, 48] for fur-
ther information on their properties. All homogeneous algebras have been completely
classified by Marczewski [40] and Marchenkov [39].

Our classification for the approximability of W-Max Sol(Γ) when Γ is a homo-
geneous constraint language uses the same approach as in [23], namely, we exploit the
inclusion structure of homogeneous algebras (as proved in [39, 40]). By Theorem 3.3,
it is sufficient to consider constraint languages Γ that are relational clones. This is
where the homogeneous algebras comes in: the classification of homogeneous algebras
gives us a classification of all homogeneous relational clones and, in particular, their
inclusion structure (lattice) under set inclusion. We refer the reader to [48] for a
deeper treatment of homogeneous algebras and their inclusion structure.

The lattice of all homogeneous relational clones on a domain D having n (≥ 5)
elements is given in Figure 7.1. The lattices for the corresponding relational clones
over smaller domains (i.e., 2 ≤ |D| ≤ 4) contain some exceptional relational clones
and are presented separately in Figures 7.2–7.4. Note that the corresponding lattices
presented in [23] and [48] are the duals of ours, since they instead consider the inclusion
structure among the corresponding clones of operations (but the two approaches are
in fact equivalent as shown in [43, Satz 3.1.2]). To understand the lattices we first
need some definitions.

Throughout this section n denotes the size of the domain D, i.e., n = |D|.
Definition 7.2.

• The switching operation s is defined by

s(a, b, c) =

⎧⎨
⎩

c if a = b,
b if a = c,
a otherwise.

• The discriminator operation t is defined by

t(a, b, c) =

{
c if a = b,
a otherwise.

• The dual discriminator operation d is defined by

d(a, b, c) =

{
a if a = b,
c otherwise.

• The k-ary near projection operation lk (3 ≤ k ≤ n) is defined by

lk(a1, . . . , ak) =

{
a1 if |{a1, . . . , ak}| < k,
ak otherwise.
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Fig. 7.1. Lattice of all homogeneous relational clones over domain size n ≥ 5.

• The (n− 1)-ary operation rn is defined by

rn(a1, . . . , an−1) =

{
a1 if |{a1, . . . , an−1}| < n− 1,
an otherwise.

In the second case we have {an} = D \ {a1, . . . , an−1}.
• The (n− 1)-ary operation dn (where n ≥ 4) is defined by

dn(a1, . . . , an−1) =

{
d(a1, a2, a3) if |{a1, . . . , an−1}| < n− 1,
an otherwise.

In the second case we have {an} = D \ {a1, . . . , an−1}.
• The operation [x + y + z] is defined by x + y + z where (D,+,−) is a four-

element group of exponent 2.
The notation in the lattices in Figures 7.1–7.4 is explained below.
• D0

1 = Inv(t);

• D0
i = Inv({d, li+1}) for 2 ≤ i ≤ n− 1;
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Fig. 7.2. Lattice of all homogeneous relational clones over domain size n = 4.
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Fig. 7.4. Lattice of all homogeneous relational clones over domain size n = 2.



358 PETER JONSSON, FREDRIK KUIVINEN, AND GUSTAV NORDH

• D0
n = Inv(d);

• D1
1 = Inv({t, rn});

• D1
i = Inv({d, li+1, rn}) for 2 ≤ i ≤ n− 2;

• D1
n = Inv(dn);

• E0
1 = Inv(s);

• E0
i = Inv(li+1) for 2 ≤ i ≤ n− 1;

• E0
n = RD, i.e., all finitary relations over D;

• E1
1 = Inv({s, rn}) for n 
= 3;

• E1
i = Inv({li+1, rn}) for 2 ≤ i ≤ n− 3;

• E1
n−2 = Inv(rn) for n ≥ 4.

Note that the relational clones described above depend on the size of the domain
|D| = n. Hence, E0

2 in Figure 7.3 (|D| = 3) is not the same relational clone as E0
2

(|D| = 4) in Figure 7.2. Also note that when we state our (in)approximability results
by saying, for example, that W-Max Sol(E1

1) is APX-complete, we mean that W-

Max Sol(E1
1) is APX-complete for all sizes of the domain where E1

1 is defined (e.g.,
E1

1 is not defined for n = 3). We always assume that n = |D| ≥ 2.
We now state Dalmau’s classification for the complexity of Csp(Γ) for homoge-

neous constraint languages Γ.
Theorem 7.3 (see [23]). Let Γ be a homogeneous constraint language. Then,

Csp(Γ) is in P if Pol(Γ) contains the dual discriminator operation d, the switching
operation s, or an affine operation. Otherwise, Csp(Γ) is NP-complete.

We have the following corollary of Dalmau’s classification.
Corollary 7.4. Let Γ be a homogeneous constraint language. Then, W-Max

Sol(Γ) is in poly-APX if Pol(Γ) contains the dual discriminator operation d, the
switching operation s, or an affine operation. Otherwise, it is NP-hard to find a
feasible solution to W-Max Sol(Γ).

Proof. All dual discriminator operations, switching operations, and affine opera-
tions are idempotent (i.e., f(x, x, x) = x for all x ∈ D). Hence, Γ is invariant under a
dual discriminator operation, switching operation, or an affine operation if and only if
Γc = {Γ∪ {{(d1)}, . . . , {(dn)}} is invariant under the corresponding operation. Thus,
it follows from Theorem 7.3 that Csp(Γc) is in P if Pol(Γ) contains the dual discrim-
inator operation d, the switching operation s, or an affine operation. This together
with Lemma 4.2 gives us that W-Max Sol(Γ) is in poly-APX if Pol(Γ) contains
the dual discriminator operation d, the switching operation s, or an affine operation.

The NP-hardness part follows immediately from Theorem 7.3.
We begin by investigating the approximability of W-Max Sol(Γ) for some par-

ticular homogeneous constraint languages Γ.
Lemma 7.5. W-Max Sol(D0

n) is in APX if 0 /∈ D and in poly-APX other-
wise.

Proof. Remember that D0
n = Inv(d). Hence, membership in poly-APX follows

directly from Corollary 7.4. It is known from Dalmau’s classification that Csp(D0
n)

is in P. Thus, by Proposition 4.1, it follows that W-Max Sol(D0
n) is in APX when

0 /∈ D.
Lemma 7.6. W-Max Sol(D1

2) is APX-complete if 0 /∈ D and poly-APX-
complete if 0 ∈ D.

Proof. Choose any a, b ∈ D such that a < b. The relation r = {(a, a), (a, b), (b, a)}
is in D1

i = Inv({d, li+1, rn}) for 2 ≤ i ≤ n − 2. Hence, by Lemmas 4.3 and 4.4, it
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follows that W-Max Sol(D1
2) is APX-hard if 0 /∈ D and poly-APX-hard if 0 ∈ D.

This together with Lemma 7.5 and the fact that D1
i ⊆ D0

n gives us that W-Max

Sol(D1
2) is APX-complete if 0 /∈ D and poly-APX-complete if 0 ∈ D.

Lemma 7.7. Finding a feasible solution to W-Max Sol(E1
2) is NP-hard.

Proof. Remember that E1
2 = Inv({l3, rn}) when n > 4 and E1

2 = Inv(rn) when
n = 4, so it follows from Dalmau’s classification that Csp(E1

2) is NP-complete.
Lemma 7.8. W-Max Sol(D0

1) is in PO.
Proof. It is well known that D0

1 = Inv(t) = 〈ID〉; for instance, it is a direct
consequence of Theorem 4.2 in [48]. Hence, W-Max Sol(D0

1) is in PO by the results
in section 5.1.

Lemma 7.9. W-Max Sol(E0
1) is in APX.

Proof. Remember that E0
1 = Inv(s). Dalmau gives a polynomial-time algorithm

for Csp(Inv(s)) in [23] (he actually gives a polynomial-time algorithm for the more
general class of paraprimal problems). Dalmau’s algorithm exploits in a clever way the
internal structure of paraprimal algebras to show that any instance I of Csp(Inv(s))
can be split into independent subproblems I1, . . . , Ij , such that

• the set of solutions is preserved (i.e., any solution to I is also a solution to each
of the independent subproblems, and any solution to all of the independent
subproblems is also a solution to I); and

• each Ii (1 ≤ i ≤ j) is either an instance of Csp(Inv(t)) or an instance
of Csp(Inv(a)), where t is the discriminator operation and a is an affine
operation.

Hence, to show that W-Max Sol(E0
1) is in APX, we first use Dalmau’s algorithm

to reduce the problem (in a solution preserving manner) to a set of independent W-

Max Sol(Γ) problems where Γ is either invariant under an affine operation or the
discriminator operation. We know from Lemma 7.8 that W-Max Sol(Γ) is in PO
when Γ is invariant under the discriminator operation, and from Theorem 6.12 we
know that W-Max Sol(Γ) is in APX when Γ is invariant under an affine operation.
Since all the independent subproblems are in APX, we get that the original W-Max

Sol(E0
1) problem is also in APX.

Lemma 7.10. W-Max Sol(E1
1) is APX-complete.

Proof. Remember that E1
1 = Inv({s, rn}). Note that E1

1 ⊆ E0
1 ; thus membership

in APX follows from Lemma 7.9.
For the hardness part, we begin by considering the general case when n = |D| ≥ 4.

Choose an arbitrary two-element subset {a, b} of D (without loss of generality assume
that a < b) and let (G,+,−) be the two-element group on G = {a, b} defined by
a+a = a, a+ b = b+a = b, and b+ b = a. Let Γ be the set of all relations expressible
as the set of solutions to equations over (G,+,−). It is easy to realize that Γ is
invariant under rn (since rn (n ≥ 4) acts as a projection on {a, b}). Furthermore Γ
is invariant under s since s(x, y, z) acts as the affine operation x + y + z on {a, b}.
It is proved in Lemma 6.8 that W-Max Sol Eqn(Z2, g) is APX-hard, so W-Max

Sol(Γ) is APX-complete. For n = |D| = 3 there is no relational clone of the type
E1

1 = Inv({s, rn}), so the only case that remains to be dealt with is the case where
n = |D| = 2.

Without loss of generality assume that D = {a, b}, where a < b. Again consider
the group (G,+,−) on {a, b}. Let Γ = {R1, R2}, where R1 is the (4-ary) relation
on D which is the set of solutions to the equation x1 + x2 + x3 + x4 = a and R2 is
the (binary) relation representing the set of solutions to the equation y1 + y2 = b.
Furthermore, let Γ0,1 = {R1, R2} denote the special case where a = 0, b = 1 (i.e.,
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D = {0, 1}). It has been proved in [37, Lemma 6.9] that Max Sol(Γ0,1) is APX-
complete. Let I be an instance of Max Sol(Γ0,1) containing k variables. It is easy
to realize that if I has a solution, then opt(I) ≥ k/2 (just note that the complement
of any solution to I is also a solution to I). We give an L-reduction from Max

Sol(Γ0,1) to Max Sol(Γa,b). Let F (I) be the instance of Max Sol(Γa,b) where all
occurrences of 0 have been replaced by a and all occurrences of 1 have been replaced
by b. Since opt(I) ≥ k/2, we get that opt(F (I)) ≤ bk ≤ 2b · opt(I) and β = 2b is a
valid parameter in the L-reduction. Let s be an arbitrary solution to F (I) and define
G(F (I), s) to be the corresponding solution to I, where a is replaced by 0 and b is
replaced by 1. Then,

|m(I,G(F (I), s)) − opt(I)| ≤ 1

b− a
|m(F (I), s) − opt(F (I))|,

and γ = 1
b−a is a valid parameter in the L-reduction. This completes the APX-

hardness proof for Max Sol(Γa,b). Now, the unary operation r2 acts as the non-
identity permutation on {a, b} (i.e., r2(a) = b, and r2(b) = a) so both R1 and R2 are
invariant under r2. As we have already observed, s acts as the affine operation on
{a, b} and R1 and R2 are invariant under s, too. Hence, Γa,b ⊆ Inv({s, r2}), which
concludes the proof.

We have now proved all the results needed to give a complete classification for
the approximability of W-Max Sol(Γ) for all homogeneous relational clones Γ over
domains D of size at least 5. In order to complete the classification also for domains
of sizes 2, 3, and 4, we need to consider some exceptional homogeneous relational
clones. For domains of size 4, we need to consider the homogeneous relational clone
Inv(x+y+z), where + is the operation of a four-element group (D,+,−) of exponent
2 (i.e., a four-element group such that, for all a ∈ D, a+a = e, where e is the identity
element in (D,+,−)).

Lemma 7.11. Let f(x, y, z) = x + y + z, where (D,+,−) is a group of exponent
2. Then, W-Max Sol(Inv(f)) is APX-complete.

Proof. The operation x+ y+x is the affine operation on (D,+,−) (since −y = y
in (D,+,−)), and it follows directly from Theorems 6.11 and 6.12 that W-Max

Sol(Inv(x + y + z)) is APX-complete.
For three-element domains, it remains to classify the approximability of W-Max

Sol(Inv(r3)), where r3 is the binary operation defined as follows:

r(a1, a2) =

{
a1 if a1 = a2,
a3 where {a3} = D \ {a1, a2} otherwise.

Lemma 7.12. W-Max Sol(Inv(r3)) is APX-complete.
Proof. The operation r3(x, y) is actually an example of an operation of the type

p+1
2 (x + y) (where + is the operation of an Abelian group of order |D| = p) from

Lemma 6.15. In our case p = 3 and r3(x, y) = 2x + 2y, where + is the operation of
the Abelian group (D,+,−) isomorphic to Z3. Hence, it follows from Lemma 6.15
that W-Max Sol(Inv(r3)) is APX-complete.

For three-element domains we also need to classify the approximability of W-

Max Sol(E0
2) since hardness no longer follows from the hardness of W-Max Sol(E1

2)
(there is no relational clone E1

2 over three-element domains).
Lemma 7.13. It is NP-hard to find a feasible solution to W-Max Sol(E0

2).
Proof. The proof is an immediate consequence of Theorem 7.3.
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Similarly, we also need to classify the approximability of W-Max Sol(D0
2) since

hardness no longer follows from the hardness of W-Max Sol(D1
2) (there is no rela-

tional clone D1
2 over three-element domains).

Lemma 7.14. W-Max Sol(D0
2) is APX-complete if 0 /∈ D and poly-APX-

complete if 0 ∈ D.
Proof. Remember that D0

2 = Inv({d, l3}). It follows from the proof of Lemma
7.6 that W-Max Sol(D0

2) is APX-complete if 0 /∈ D and poly-APX-complete if
0 ∈ D.

For two-element domains {a, b}, we need to classify the unary operation r2 which
acts as the nonidentity permutation (i.e., r2(a) = b and r2(b) = a).

Lemma 7.15. Finding a feasible solution to W-Max Sol(Inv(r2)) is NP-hard.
Proof. The proof follows from Dalmau’s classification.
Finally, we are in a position to present the complete classification for the approx-

imability of all homogeneous constraint languages.
Theorem 7.16. Let Γ be a homogeneous constraint language.
1. If 〈Γ〉 ∈ {Ei

j | i ∈ {0, 1}, j ≥ 2} or 〈Γ〉 = Inv(r2), then it is NP-hard to find
a feasible solution to W-Max Sol(Γ);

2. else, if 0 ∈ D and 〈Γ〉 ∈ {Di
j | i ∈ {0, 1}, j ≥ 2}, then W-Max Sol(Γ) is

poly-APX-complete;
3. else, if

〈Γ〉 ∈ {E1
1 , E

0
1 , Inv(x + y + z), Inv(r3)} or

〈Γ〉 ∈ {Di
j | i ∈ {0, 1}, j ≥ 2} and 0 /∈ D,

then W-Max Sol(Γ) is APX-complete;
4. otherwise, 〈Γ〉 ∈ {D1

1, D
0
1} and W-Max Sol(Γ) is in PO.

Proof. We know from Theorem 3.3 that it is sufficient to consider constraint
languages that are relational clones.

1. It is proved in Lemmas 7.7 and 7.13 that it is NP-hard to find a feasible
solution to W-Max Sol(E1

2) and W-Max Sol(E0
2). NP-hardness of finding

a feasible solution to W-Max Sol(Inv(r2)) was proved in Lemma 7.15. The
result follows from the fact that E1

2 ⊆ E1
j and E0

2 ⊆ E0
j (2 ≤ j ≤ n).

2. Membership in poly-APX is proved in Lemma 7.5, and poly-APX-hardness
of W-Max Sol(D1

2) and W-Max Sol(D0
2) when 0 ∈ D is proved in Lem-

mas 7.6 and 7.14. The result follows from the fact that D1
2 ⊆ D1

j ⊆ D0
n and

D0
2 ⊆ D0

j ⊆ D0
n (2 ≤ j ≤ n).

3. It is proved in Lemmas 7.11 and 7.12 that W-Max Sol(Inv(x + y + z))
and W-Max Sol(Inv(r3)) are APX-complete. It is proved in Lemma 7.9
that W-Max Sol(E0

1) is in APX. APX-hardness for W-Max Sol(E1
1) is

proved in Lemma 7.10. For n ≥ 4 or n = 2 we have that E1
1 ⊆ E0

1 , and
it follows that W-Max Sol(E0

1) and W-Max Sol(E1
1) are APX-complete.

For n = 3, there exists no E1
1 so APX-hardness for W-Max Sol(E0

1) must
be proved separately. Since E0

1 = Inv(s) it is easy to see that the proof of
Lemma 7.10 gives APX-hardness for W-Max Sol(E0

1).
Membership in APX for W-Max Sol(D0

n) when 0 
∈ D is proved in the
first part of Lemma 7.5. APX-hardness of W-Max Sol(D1

2) and W-Max

Sol(D0
2) is proved in Lemmas 7.6 and 7.14, respectively. Hence, APX-

completeness of W-Max Sol(D0
j ) and W-Max Sol(D1

j ) (2 ≤ j ≤ n) when

0 /∈ D follows from the fact that D1
2 ⊆ D1

j ⊆ D0
n, D0

2 ⊆ D0
j ⊆ D0

n (2 ≤ j ≤ n).

4. It is proved in Lemma 7.8 that W-Max Sol(D0
1) is in PO, and the result

follows from the fact that D1
1 ⊆ D0

1.
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As a direct consequence of the preceding theorem, we get that the class of injective
relations is a maximal tractable class for W-Max Sol(Γ). That is, if we add a single
relation which is not an injective relation to the class of all injective relations, then
the problem is no longer in PO (unless P = NP).

Corollary 7.17. Let ΓD
I be the class of injective relations and let R be an

arbitrary relation which is not in ΓD
I . Then, W-Max Sol(ΓD

I ∪ {R}) is not in PO
(unless P = NP).

Proof. We know from the proof of Lemma 7.8 that D0
1 = Inv(t) = ΓD

I = 〈ID〉. It
follows from the lattices of homogeneous relational clones that either E0

1 ⊆ 〈D0
1∪{R}〉

or D0
2 ⊆ 〈D0

1∪{R}〉. We know from Lemmas 7.10 and 7.6 that both W-Max Sol(E0
1)

and W-Max Sol(D0
2) are APX-hard. Thus, W-Max Sol(D0

1 ∪{R}) is APX-hard,
and it follows that W-Max Sol(ΓD

I ∪ {R}) is not in PO (unless P = NP).

8. Conclusions. We view this article as a first step toward a better understand-
ing of the approximability of non-Boolean W-Max Sol. The ultimate long-term goal
for this research is, of course, to completely classify the approximability for all finite
constraint languages. However, we expect this to be a hard problem since not even
a complete classification for the corresponding decision problem Csp is known. A
more manageable task would be to completely classify W-Max Sol for constraint
languages over small domains (say, of size 3 or 4). For size 3, this has already been
accomplished for Csp [10] and Max Csp [34]. Another obvious way to extend the
results of this paper would be to complete the classification of maximal constraint
languages over arbitrary finite domains, perhaps by proving Conjecture 131 from [47].

Our results combined with the results of Khanna et al. [37] for Boolean domains
suggest the following conjecture.

Conjecture 8.1. For every constraint language Γ, one of the following holds:
1. W-Max Sol(Γ) is in PO;
2. W-Max Sol(Γ) is APX-complete;
3. W-Max Sol(Γ) poly-APX-complete;
4. it is NP-hard to find a nonzero solution to W-Max Sol(Γ); or
5. it is NP-hard to find any solution to W-Max Sol(Γ).

If this conjecture is true, then there does not exist any constraint language Γ1

such that W-Max Sol(Γ1) has a polynomial-time approximation scheme (Ptas)
but W-Max Sol(Γ1) is not in PO. Such natural classes exist, however, if one
restricts the way constraints are applied to variables (instead of restricting the al-
lowed constraint types). Maximum Independent Set (and, equivalently, Max

Ones({(0, 0), (1, 0), (0, 1)})) is one example: the unrestricted problem is poly-APX-
complete and not approximable within O(n1−ε), ε > 0 (unless P=NP) [52], but the
problem restricted to planar instances admits a Ptas [4]. One may ask several ques-
tions in connection with this: is there a constraint language with the properties of
Γ1 above? For which constraint languages does W-Max Sol admit a Ptas on pla-
nar instances? Or more generally: under which restrictions on variable scopes does
W-Max Sol(Γ) admit a Ptas?

It is interesting to note that the applicability of the algebraic approach to W-

Max Sol demonstrated in this article also holds for the corresponding minimization
problem W-Min Sol; that is, Theorem 3.3 still holds. The question of whether
the algebraic approach can shed some new light on the intriguing approximability of
minimization problems (as manifested, e.g., in [37]) is an interesting open question.

As mentioned in the introduction, it is known from [37] that the approximability
of the weighted and unweighted versions of (W)-Max Sol coincide for all Boolean
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constraint languages. We remark that the same result holds for all constraint lan-
guages considered in this article. This can be readily verified by observing that the
AP -reduction from W-Max Ones to Max Ones in the proof of Lemma 3.11 in [37]
easily generalizes to arbitrary finite domains. Hence, we get an AP -reduction from
W-Max Sol to Max Sol. Furthermore, our tractability proofs are given for the
weighted version of the problem. In general, it is still an open problem if tractability
(i.e., membership in PO) of Max Sol(Γ) implies tractability of W-Max Sol(Γ) for
every constraint language Γ (the AP -reduction used above does not give us this result,
as AP -reductions do not, in general, preserve membership in PO).

Acknowledgment. The authors would like to thank the anonymous referees
for many valuable comments and in particular for pointing out a serious flaw in the
(previous) proof of Lemma 6.14.
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EXPONENTIAL SEPARATION OF QUANTUM AND CLASSICAL
ONE-WAY COMMUNICATION COMPLEXITY∗

ZIV BAR-YOSSEF† , T. S. JAYRAM‡ , AND IORDANIS KERENIDIS§

Abstract. We give the first exponential separation between quantum and bounded-error ran-
domized one-way communication complexity. Specifically, we define the Hidden Matching Problem
HMn: Alice gets as input a string x ∈ {0, 1}n, and Bob gets a perfect matching M on the n co-
ordinates. Bob’s goal is to output a tuple 〈i, j, b〉 such that the edge (i, j) belongs to the matching
M and b = xi ⊕ xj . We prove that the quantum one-way communication complexity of HMn is
O(logn), yet any randomized one-way protocol with bounded error must use Ω(

√
n) bits of com-

munication. No asymptotic gap for one-way communication was previously known. Our bounds
also hold in the model of Simultaneous Messages (SM), and hence we provide the first exponential
separation between quantum SM and randomized SM with public coins. For a Boolean decision
version of HMn, we show that the quantum one-way communication complexity remains O(logn)
and that the 0-error randomized one-way communication complexity is Ω(n). We prove that any
randomized linear one-way protocol with bounded error for this problem requires Ω( 3

√
n logn) bits

of communication.

Key words. communication complexity, quantum computation, separation, hidden matching
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1. Introduction. The investigation of the strength and limitations of quantum
computing has become an important field of study in theoretical computer science.
The celebrated algorithm of Shor [22] for factoring numbers in polynomial time on a
quantum computer gives strong evidence that quantum computers are more powerful
than classical ones. The further study of the relationship between quantum and
classical computing in models like black-box computation, communication complexity,
and interactive proof systems contributes to a better understanding of quantum and
classical computing.

In this paper we answer an open question about the relative power of quantum
one-way communication protocols. We describe a problem which can be solved by a
quantum one-way communication protocol exponentially faster than any classical one.
No asymptotic gap was previously known. We prove a similar result in the model of
Simultaneous Messages.

Communication complexity, defined by Yao [23] in 1979, is a central model of
computation with numerous applications. It has been used for proving lower bounds
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in many areas including Boolean circuits, time-space tradeoffs, data structures, au-
tomata, and formula size. Examples of these applications can be found in the textbook
of Kushilevitz and Nisan [15]. A communication complexity problem is defined by
three sets X,Y, Z and a relation R ⊆ X × Y × Z. Two computationally all-powerful
players, Alice and Bob, are given inputs x ∈ X and y ∈ Y , respectively. Neither of
the players has any information about the other player’s input. Alice and Bob ex-
change messages according to a shared protocol, until Bob has sufficient information
to announce an output z ∈ Z such that (x, y, z) ∈ R. The communication cost of a
protocol is the sum of the lengths of messages (in bits) that Alice and Bob exchange
on the worst-case choice of inputs x and y. The communication complexity of the
problem R is the cost of the best protocol that computes R correctly.

One important special case of the above model is one-way communication com-
plexity [19, 2, 14], where Alice is allowed to send only one message to Bob, after which
Bob announces the output. Simultaneous Messages (SM) is a variant in which Alice
and Bob cannot communicate directly with each other; instead, each of them sends
a single message to a third party, the “referee,” who announces the output based on
the two messages.

Depending on the kind of allowed protocols, we can define different measures of
communication complexity for a problem R. The classical deterministic communi-
cation complexity of R is the one described above. In a bounded-error randomized
protocol with error probability δ > 0, both players have access to public random coins,
and for any inputs x, y, the output z announced should be correct (i.e., should satisfy
(x, y, z) ∈ R) with probability at least 1−δ (the probability is over the public random
coins). The cost of such a protocol is the number of bits that Alice and Bob exchange
on the worst-case choice of inputs and values for the random coins. The randomized
communication complexity of R (w.r.t. δ) is the cost of the optimal randomized pro-
tocol for R. In a 0-error randomized protocol (also known as Las Vegas protocol) the
output announced should be correct with probability 1. The cost of such a protocol
is the expected number of bits that Alice and Bob exchange on the worst-case choice
of inputs. These complexity measures can also be specialized by restricting the com-
munication model to be SM or one-way communication. An interesting variant for
randomized protocols in the SM model is when the random coins are restricted to be
private (i.e., each player has access to his/her own private random coins, and these
coins are independent of each other).1

Quantum communication complexity, also introduced by Yao [25], apart from
being of interest in itself, has been used to prove bounds on quantum formula size,
automata, data structures, etc. (e.g., [25, 12, 21]). In this setting, Alice and Bob hold
qubits, some of which are initialized to the input. In a communication round, each
player can perform some arbitrary unitary operation on his/her part of the qubits
and send some of them to the other player. At the end of the protocol they perform
a measurement and decide on an outcome. The output of the protocol is required
to be correct with probability 1 − δ for some δ > 0. The quantum communication
complexity of R is the number of qubits exchanged in the optimal bounded-error
quantum protocol for R. It can be shown that the quantum communication is as
powerful as bounded-error randomized communication with private coins,2 even when

1The difference in complexity between public and private coins for the other models is only
O(log log(|X||Y |) + log(1/δ)) [16].

2As noted earlier, the distinction between public and private coins is significant only for the SM
model.
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restricted to variants such as one-way communication and SM. It is a natural and
important question to ask whether quantum channels can significantly reduce the
amount of communication necessary to solve certain problems.

It is known that randomized one-way communication protocols can be much more
efficient than deterministic protocols. For example, the equality function on bitstrings
of length n can be solved by an O(1) randomized one-way protocol, though its deter-
ministic one-way communication complexity is Ω(n) (cf. [15]). However, the question
of whether quantum one-way communication protocols could be exponentially more ef-
ficient than randomized one-way communication protocols remained open. We resolve
this in the affirmative, by exhibiting a problem for which the quantum complexity is
exponentially smaller than the randomized one.

1.1. Related work. The area of quantum communication complexity was in-
troduced by Yao [25]. Since then, a series of papers have investigated the power and
limitations of quantum communication complexity. Buhrman, Cleve, and Wigderson
[7] described a relation R with deterministic communication complexity of Θ(n) and
0-error quantum communication complexity of Θ(logn). However, the bounded-error
randomized communication complexity of this problem is O(1). An exponential sep-
aration w.r.t. bounded-error randomized protocols was given by Ambainis et al. [4] in
the so-called sampling model. However, the separation does not hold in the presence
of public coins. Buhrman et al. [6] were able to solve the equality problem in the SM
model with a quantum protocol of complexity O(log n) rather than the Θ(

√
n) bits

necessary in any bounded-error randomized SM protocol with private coins [17, 5].
Again, if we allow the players to share random coins, then equality can be solved
classically with O(1) communication.

Raz [20] was the first to show an exponential gap between the quantum and
the bounded-error public-coin randomized communication complexity models. He de-
scribed a relation P1 with an efficient quantum protocol of complexity O(log n). He
then proved a lower bound of Ω(n1/4) on the classical randomized communication
complexity of P1. Since the quantum protocol given for P1 uses two rounds, the sepa-
ration holds only for protocols that use two rounds or more. The definition of P1 was
motivated, in part, by another relation P0. The latter was first introduced by Kremer
[13], who showed that P0 is a complete problem for quantum one-way communication
complexity (in particular, it has an O(log n) quantum one-way protocol). However,
no lower bound is given for the one-way randomized communication complexity of P0.
Proving an exponential separation of classical and quantum one-way communication
complexity has been an open question ever since.

Klauck [12] proved that the 0-error quantum one-way communication complexity
of total functions (i.e., problems R ⊆ X × Y × Z, for which every x ∈ X and y ∈ Y
have exactly one z ∈ Z with (x, y, z) ∈ R) is equal to the classical deterministic one.
It is still an open question whether, for total functions, quantum and bounded-error
randomized one-way communication complexity are polynomially related.

Subsequent to our work, Aaronson [1] showed that for any Boolean function f , the
deterministic one-way communication complexity of f is O(log |Y | ·Q1(f) · logQ1(f)),
where Q1(f) is the bounded-error quantum one-way communication complexity of f ;
namely, if the given communication problem is a Boolean function in which Bob’s
domain is small, then deterministic one-way communication complexity is almost as
efficient as bounded-error quantum one-way communication complexity. Moreover,
Gavinsky et al. [10] described a relation which has randomized communication com-
plexity O(log n) in the SM with public coins model, though its quantum SM commu-
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nication complexity is Ω(
√
n). This separation in the opposite direction from ours

shows that the two models are incomparable.

1.2. Our results. Our main result is the definition and analysis of the com-
munication complexity of the Hidden Matching Problem. This provides the first
exponential separation between quantum and classical one-way communication com-
plexity.

The Hidden Matching Problem. Let n be a positive even integer. In the
Hidden Matching Problem, denoted HMn, Alice is given x ∈ {0, 1}n and Bob is given
M ∈ Mn (Mn denotes the family of all possible perfect matchings on n nodes). Their
goal is to output a tuple 〈i, j, b〉 such that the edge (i, j) belongs to the matching M
and b = xi ⊕ xj .

This problem is new, and we believe that its definition plays the major role in
obtaining our result. The inspiration comes from the work by Kerenidis and de Wolf
on Locally Decodable Codes [11]. Let us give the intuition for why this problem is hard
for classical communication complexity protocols. Suppose (to make the problem even
easier) that Bob’s matching M is restricted to be one of n fixed disjoint matchings
on x. Bob’s goal is to find the value of xi ⊕ xj for some (i, j) ∈ M . However,
since Alice has no information about which matching Bob has, her message needs to
contain information about the parity of at least one pair from each matching. Hence,
she needs to communicate parities of Ω(n) different pairs to Bob. It can be shown
that such message must be of size Ω(

√
n). In section 4 we turn this intuition into

a proof for the randomized one-way communication complexity of HMn. We also
show that our lower bound is tight by describing a randomized one-way protocol with
communication O(

√
n). In this protocol, Alice just sends O(

√
n) random bits of her

input. By the birthday paradox, with high probability, Bob can recover the value of
at least one of his matching pairs from Alice’s message.

Remarkably, this problem remains easy for quantum one-way communication.
Alice only needs to send a uniform superposition of her string x, hence communicating
only O(log n) qubits. Bob can perform a measurement on this superposition which
depends on the matching M and then output the parity of some pair in M . In section
3 we describe the quantum protocol in more detail.

In section 5 we show that HMn also provides the first exponential separation
between quantum SM and randomized SM with public coins. Previously such a bound
was known only in the private-coin model. This result, together with the exponential
separation in the opposite direction proved by Gavinsky et al. [10], shows that, in
fact, the models of quantum SM and public-coin randomized SM are incomparable.

Our main result exhibits a separation between quantum and classical one-way
communication complexity for a relation. Ideally, one would like to prove such a
separation for the most basic type of problems—total Boolean functions. The best-
known separation between quantum and classical communication complexity (even
for an arbitrary number of rounds) for such functions is only quadratic [7]. It is still
conceivable that for total functions, the two models are polynomially related. Raz’s
result [20] shows an exponential gap for a partial Boolean function (i.e., a Boolean
function that is defined only on a subset of the domain X × Y) and for two-way
communication protocols.

We consider a partial Boolean function induced by the Hidden Matching Problem,
defined below. In the definition we view each matching M ∈ Mn as an n

2 × n edge-
vertex incidence matrix. For two Boolean vectors v,w, we denote by v⊕w the vector
obtained by taking the XOR v and w coordinatewise. For a bit b ∈ {0, 1}, we denote
by b the vector all of whose entries are b.
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The Boolean Hidden Matching Problem. Let n be a positive integer mul-
tiple of 4. In the Boolean Hidden Matching Problem, denoted BHMn, Alice is given
x ∈ {0, 1}n and Bob is given M ∈ Mn and w ∈ {0, 1}n/2, which satisfy the following
promise: either Mx⊕w = 1 (a Yes instance) or Mx⊕w = 0 (a No instance). Their
goal is to decide which of the two cases holds.

With a slight modification, the quantum protocol for HMn also solves BHMn

using O(log n) qubits. We believe that BHMn should also exhibit an exponential gap
in its quantum and classical one-way communication complexity.

Conjecture 1. The one-way randomized communication complexity of the
Boolean Hidden Matching Problem is nΩ(1).

Although we were unable to resolve the above conjecture, we give a strong in-
dication for our belief with two lower bounds. First, we prove an Ω(n) lower bound
on the 0-error randomized one-way communication complexity of BHMn. We then
show that a natural class of randomized bounded-error protocols require Ω̃( 3

√
n) bits

of communication to compute BHMn. The protocols we refer to are linear ; that is,
Alice and Bob use the public coins to choose a random matrix A, and Alice’s message
on input x is simply Ax. These protocols are natural for our problem, because Bob
needs to compute a linear transformation of Alice’s input. In particular, the O(

√
n)

communication protocol that we described earlier is trivially a linear protocol. We
note that the study of linear protocols is not unique to our problem. For example,
one-way linear protocols for the indexing function can be viewed as linear random
access codes [3]. Thus, lower bounds for linear protocols preclude the feasibility of
a natural class of protocols. Generalizing this lower bound to the case of nonlinear
randomized protocols still remains an open problem. These results are described in
section 6.

2. Preliminaries.

2.1. Information theory. Throughout the paper we use basic notions and facts
from information theory, which we briefly review next. We refer the reader to the
textbook of Cover and Thomas [8] for details and proofs.

We deal only with finite discrete probability spaces. The distribution of a random

variable X is denoted by μX , and we let μX(x)
def
= Pr[X = x]. The entropy of X (or,

equivalently, of μX) is H(X)
def
=

∑
x∈X μX(x) log 1

μX(x) , where X is the domain of X.

The entropy of a Bernoulli random variable with probability of success p is called the
binary entropy function of p and is denoted H2(p). The joint entropy of X and Y is the
entropy of the joint distribution μXY of X and Y . The conditional entropy of X given
an event A, denoted H(X|A), is the entropy of the conditional distribution of μX given

A. The conditional entropy of X given Y is H(X|Y )
def
=

∑
y∈Y μY (y) H(X|Y = y),

where Y is the domain of Y . The mutual information between X and Y is I(X;Y )
def
=

H(X)−H(X|Y ) = H(Y )−H(Y |X). The conditional mutual information between X
and Y given Z is I(X;Y |Z) = H(X|Z) − H(X|Y,Z) = H(Y |Z) − H(Y |X,Z).

Some basic properties of entropy and mutual information we are using in this
paper are given in the following theorem.

Theorem 2.1. Let X,Y, Z be random variables.

1. H(X) ≤ log |supp(X)|, where supp(X) is the support of X. Equality holds if
and only if X is uniform on supp(X).

2. Conditioning reduces entropy: H(X|Y ) ≤ H(X). Equality holds if and only
if X,Y are independent.
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3. Entropy subadditivity: H(X,Y ) ≤ H(X) + H(Y ). Equality holds if and only
if X,Y are independent.

4. Data processing inequality I: for any k-to-1 function f , H(X) ≤ H(f(X)) +
log k.

5. Data processing inequality II: for any function f , I(X; f(Y )) ≤ I(X;Y ).
Equality holds if f is 1-1.

6. Chain rule for mutual information: I(X;Y,Z) = I(X;Y ) + I(X;Z|Y ).
7. I(X;Y ) = 0 if and only if X,Y are independent.
8. If X,Y are jointly independent of Z, then I(X;Y |Z) = I(X;Y ).
9. For any positive integers n and m ≤ n/2,

∑m
i=0

(
n
i

)
≤ 2nH2(m/n).

We will also use the following theorems.
Theorem 2.2 (Fano’s inequality). Let X be a binary random variable, and let Y

be any random variable on a domain Y. Let f : Y → {0, 1} be a prediction function,

which tries to predict the value of X based on an observation of Y . Let δ
def
= Pr(f(Y ) 
=

X) be the error probability of the prediction function. Then, H2(δ) ≥ H(X|Y ).
Theorem 2.3. Let C ⊆ {0, 1}∗ be a finite prefix-free code (i.e., no codeword in

C is a prefix of any other codeword in C). Let X be a random variable corresponding
to a uniformly chosen codeword in C. Then, H(X) ≤ E(|X|).

2.2. Quantum computation. We explain the standard notation of quantum
computing and describe the basic notions that will be useful in this paper. For more
details we refer the reader to the textbook of Nielsen and Chuang [18].

Let H denote a 2-dimensional complex vector space, equipped with the standard
inner product. We pick an orthonormal basis for this space, label the two basis vectors
|0〉 and |1〉, and for simplicity identify them with the vectors

(
1
0

)
and

(
0
1

)
, respectively.

A qubit is a unit length vector in this space and thus can be expressed as a linear
combination of the basis states:

α0|0〉 + α1|1〉 =

(
α0

α1

)
.

Here α0, α1 are complex amplitudes, and |α0|2 + |α1|2 = 1.
An m-qubit system is a unit vector in the m-fold tensor space H⊗· · ·⊗H. The 2m

basis states of this space are the m-fold tensor products of the states |0〉 and |1〉. For
example, the basis states of a 2-qubit system are the four 4-dimensional unit vectors
|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, and |1〉 ⊗ |1〉. We abbreviate, e.g., |1〉 ⊗ |0〉 to |1〉|0〉, or
|1, 0〉, or |10〉, or even |2〉 (since 2 is 10 in binary). With these basis states, an m-qubit
state |φ〉 is a 2m-dimensional complex unit vector

|φ〉 =
∑

i∈{0,1}m

αi|i〉.

We use 〈φ| = |φ〉∗ to denote the conjugate transpose of the vector |φ〉, and 〈φ|ψ〉 =
〈φ| · |ψ〉 for the inner product between states |φ〉 and |ψ〉. These two states are
orthogonal if 〈φ|ψ〉 = 0. The norm of |φ〉 is ‖φ‖ =

√
〈φ|φ〉.

Let |φ〉 be an m-qubit state and B = {|b1〉, . . . , |b2m〉} an orthonormal basis of the
m-qubit space. A measurement of the state |φ〉 in the B basis means that we apply
the projection operators Pi = |bi〉〈bi| to |φ〉. The resulting quantum state is |bi〉 with
probability pi = |〈φ|bi〉|2.

3. The quantum upper bound. We present a quantum protocol for the Hid-
den Matching Problem with communication complexity of O(log n) qubits. Let x =
x1 . . . xn be Alice’s input and M ∈ Mn be Bob’s input.
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Quantum protocol for HMn.
1. Alice sends the state |ψ〉 = 1√

n

∑n
i=1(−1)xi |i〉.

2. Bob performs a measurement on the state |ψ〉 in the orthonormal basis B =
{ 1√

2
(|k〉 ± |�〉) | (k, �) ∈ M}.

The probability that the outcome of the measurement is a basis state 1√
2
(|k〉+|�〉)

is

∣∣∣∣〈ψ| 1√
2
(|k〉 + |�〉)〉

∣∣∣∣
2

=
1

2n
((−1)xk + (−1)x�)2.

This equals 2/n if xk⊕x� = 0, and 0 otherwise. Similarly for the states 1√
2
(|k〉−|�〉) we

have that |〈ψ| 1√
2
(|k〉 − |�〉)〉|2 equals 0 if xk ⊕x� = 0 and 2/n if xk ⊕x� = 1. Hence, if

the outcome of the measurement is a state 1√
2
(|k〉+|�〉), then Bob knows with certainty

that xk ⊕ x� = 0 and outputs 〈k, �, 0〉. If the outcome is a state 1√
2
(|k〉 − |�〉), then

Bob knows with certainty that xk ⊕ x� = 1 and hence outputs 〈k, �, 1〉. Note that the
measurement depends only on Bob’s input and that the algorithm is 0-error.

This protocol can be tweaked to also solve BHMn: after obtaining the value
〈k, �, c〉 from that protocol, where (k, �) is the ith pair in Bob’s input matching M ,
Bob outputs wi ⊕ c. Note that if c = xk ⊕ x�, then wi ⊕ c equals the desired bit b.

Remark. As mentioned above, the inspiration for this problem comes from Lo-
cally Decodable Codes. We can think of a 2-query Locally Decodable Code as a code
C : {0, 1}n → {0, 1}m with the property that for every index k ∈ [n] there exists
a matching Mk on the coordinates of C(x), such that for every pair (i, j) ∈ Mk,
xk = C(x)i ⊕ C(x)j . We can cast this problem as a communication problem, by
letting Alice have the codeword C(x), letting Bob have the index k and the corre-
sponding matching Mk, and setting the goal for Bob to output C(x)i ⊕ C(x)j for
some (i, j) ∈ Mk. This gives rise to our Hidden Matching Problem. The fact that
a uniform superposition of C(x) is sufficient to compute the parity of some pair in
each matching was used by Kerenidis and de Wolf [11] to prove a lower bound on the
length of classical 2-query Locally Decodable Codes.

4. The randomized lower bound. We prove an Ω(
√
n) lower bound on the

one-way communication complexity of the Hidden Matching Problem.
Theorem 4.1. Any one-way randomized protocol for computing HMn with error

probability less than 1/8 requires Ω(
√
n) bits of communication.

Proof. Using Yao’s lemma [24], in order to prove the lower bound, it suffices to
construct a “hard” distribution μ over instances of HMn and prove a lower bound
for deterministic one-way protocols whose distributional error w.r.t. μ is at most δ,
where δ < 1/8. This is accomplished as follows.

For a deterministic one-way protocol Π and for inputs x and M to Alice and
Bob, respectively, we denote by Π(x,M) the output of the protocol on x and M .
This output is a triple (i, j, b), where i, j ∈ [n] and b is a bit. The protocol is correct
on (x,M) if (i, j, b) ∈ HMn(x,M). That is, (i, j) is an edge in M and b = xi ⊕ xj .
Since Bob knows the matching M and also is the one who announces the output
Π(x,M), we can assume without loss of generality that the pair (i, j) is always an
edge in M . Therefore, an error can occur only if b 
= xi ⊕ xj .

The following notation will be used in the proof. For a pair of random inputs U
and V to Alice and Bob, respectively, let ErrΠ(U, V ) denote the distributional error
of Π when the inputs are drawn according to the joint distribution μ of U and V .
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That is,

ErrΠ(U, V ) = Pr
(U,V )∼μ

(Π(U, V ) 
∈ HMn(U, V )).

We define the hard distribution μ as follows: let X be a uniformly chosen bitstring
in {0, 1}n; let M be an independent and uniformly chosen perfect matching in M,
where M is any set of m = Ω(n) pairwise edge-disjoint matchings. (For example,
let m = n/2 and M = {M1,M2, . . . ,Mm}, where Mi is defined by the edge set
{(j,m+ (j + i) mod m) | j = 0, . . . ,m− 1}.) Fix any deterministic protocol Π whose
distributional error on μ is at most δ, i.e., ErrΠ(X,M) ≤ δ.

For each x, let êx = ErrΠ(x,M) denote the distributional error of Π on the fixed
input x to Alice and a random input M to Bob. Note that E[êX] = ErrΠ(X,M) ≤ δ.
By Markov’s inequality, Pr[êX ≥ 2δ] ≤ 1/2. Since X is uniformly distributed, this
means that êx ≤ 2δ for at least half of the individual x’s.

Let A(x) denote the message that Alice sends on input x in the protocol Π. For
every message τ , define

Sτ = {x | A(x) = τ and êx ≤ 2δ}.

Since êx ≤ 2δ for at least half of the x’s, we have

(1)
∑
τ

|Sτ | ≥ 2n−1.

On the other hand, we will prove the following upper bound on the size of Sτ .
Lemma 4.2. For every message τ ,

|Sτ | ≤ 2n−Ω(
√
n).

Before we prove the lemma observe that (1) and Lemma 4.2 imply that the number
of distinct τ ’s is at least 2Ω(

√
n). Thus, the communication cost of Π is Ω(

√
n), proving

the theorem.
Proof of Lemma 4.2. Fix a message τ of Alice, and let Xτ be uniformly distributed

in Sτ . Define eτ = ErrΠ(Xτ ,M) to be the distributional error of Π on the random
inputs (Xτ ,M). By the definition of Sτ , êx ≤ 2δ for every input x in Sτ . It follows
that eτ ≤ 2δ as well.

For each matching M ∈ M, let eτ,M = ErrΠ(Xτ ,M). Note that E[eτ,M] = eτ .
By Markov’s inequality,

Pr(eτ,M ≥ 2eτ ) ≤
1

2
.

Therefore, for at least half of the matchings M , eτ,M ≤ 2eτ ≤ 4δ (recall that M is
uniform on the matchings). Let M′ be the set of matchings M for which eτ,M ≤ 2eτ .
By the above, |M′| ≥ |M|/2 = m/2 = Ω(n).

The output of Π depends only on τ and on the input to Bob. Therefore, for
each fixed matching M , the output of the protocol on inputs Xτ and M is a constant
triple (iM , jM , bM ), where (iM , jM ) is an edge in M and bM is a bit. Let Gτ be
the graph defined by the set of edges {(iM , jM )|M ∈ M′}. The graph has n nodes
and |M′| ≥ Ω(n) edges. (Note that here we use the fact the matchings are pairwise
disjoint; hence edges corresponding to different matchings must be distinct.) Let
u ∈ {0, 1}|M′| be the sequence of bits bM for M ∈ M′.
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We will use the following proposition to extract an acyclic subgraph of Gτ .

Proposition 4.3. Every graph G with t edges has an acyclic subgraph with
Ω(

√
t) edges.

The proof of the proposition is given below. Then let F be an acyclic subgraph of
Gτ with |F | = Ω(

√
n) (here, |F | denotes the number of edges in F ). Let N denote the

n× |F | vertex-edge incidence matrix of F , and let v ∈ {0, 1}|F | denote the projection
of u on F . For any x ∈ {0, 1}n, the vector xN taken over GF [2] is of length |F |.

Since F is a subgraph of Gτ and each edge of Gτ is associated with a unique
matching M ∈ M′, we can label the coordinates of the vectors xN and v by match-
ings. Let MF be the set of matchings M ∈ M′, for which (iM , jM ) ∈ F . For a
matching M ∈ MF , we know vM = bM . On the other hand, (xN)M = xiM ⊕ xjM .
Thus, disagreements of the vectors v and xN correspond to errors of Π on the input
x. In fact, the number of errors of Π on inputs of the form (x,M), where M varies
over MF , is exactly the Hamming distance between the vectors xN and v.

Let F be a uniformly chosen matching from MF and consider ErrΠ(Xτ ,F)—
the distributional error of Π on inputs drawn from Xτ and F independently. Let
h(xN,v) denote the relative Hamming distance between the vectors xN and v. (That
is, h(xN,v) = (1/|F |) · |{M ∈ MF |(xN)M 
= vM}|.) By the above observation,
ErrΠ(Xτ ,F) = E[h(XτN,v)].

There is another way to look at ErrΠ(Xτ ,F). Recall that for a fixed matching
M , eτ,M = ErrΠ(Xτ ,M). Recall also that for every matching M ∈ M′, eτ,M ≤ 2eτ .
Hence, ErrΠ(Xτ ,F) = E[eτ,F] ≤ 2eτ . We conclude that E[h(XτN,v)] ≤ 2eτ .

Next, we resort to another proposition, whose proof appears below.

Proposition 4.4. Let Z be a random variable on {0, 1}k and suppose there
exists a vector v ∈ {0, 1}k such that E[h(Z,v)] ≤ ε with 0 ≤ ε ≤ 1/2. Then, H(Z) ≤
k ·H2(ε).

It follows from the above proposition and the fact E[h(XτN,v)] ≤ 2eτ that
H(XτN) ≤ |F | ·H2(2eτ ). Note that 2eτ ≤ 4δ < 1/2 as required by the proposition.

The matrix N has full rank, because it is the vertex-edge incidence matrix of an
acyclic graph. It follows that the dimension of the null space of N is n− rank(N) =
n − |F |. Hence, the mapping x �→ xN is a 2n−|F |-to-1 mapping. By the first data
processing inequality (Theorem 2.1, part 4), since H(XτN) ≤ |F | ·H2(2eτ ),

H(Xτ ) ≤ |F | ·H2(2eτ ) + log(2n−|F |) = n− |F | · (1 −H2(2eτ )) = n− Ω(
√
n),

since H2(2eτ ) ≤ H2(4δ) < 1 when 2eτ ≤ 4δ < 1/2. This completes the proof of the
lemma.

Proof of Proposition 4.3. Let C1, C2, . . . , Cs be the connected components of
G, and let b1, b2, . . . , bs be the number of edges they have (b1 + b2 + · · · + bs = t).
Ci has Ω(

√
bi) nodes and thus has a spanning tree with Ω(

√
bi) edges. Therefore,

G contains a forest F with at least
∑

i Ω(
√
bi) = Ω(

√
t) edges, using the fact that√

u +
√
v ≥

√
u + v. F is the desired acyclic subgraph.

Proof of Proposition 4.4. We will prove the proposition for the case v = 0k. The
generalization to other v’s is straightforward.

Let (Z1, . . . , Zk) be the coordinates of Z. Each Zi is a Bernoulli random variable,
and we let αi = Pr[Zi = 1]. We have

(2) E[h(Z, 0k)] =
1

k

k∑
i=1

E[Zi] =
1

k

k∑
i=1

Pr(Zi = 1) =
1

k

k∑
i=1

αi.
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Applying the subadditivity of entropy (Theorem 2.1, part 3) and the concavity of the
binary entropy function,

(3) H(Z) ≤
k∑

i=1

H(Zi) =

k∑
i=1

H2(αi) ≤ k ·H2

(
1

k

k∑
i=1

αi

)
.

Combining (2) and (3), we obtain

H(Z) ≤ k ·H2(E[h(Z, 0k)]) ≤ k ·H2(ε),

since E[h(Z, 0k)] ≤ ε ≤ 1/2 and H2(·) is nondecreasing in [0, 1/2].
Next, we describe a public-coin randomized protocol of complexity O(

√
n) for

HMn. Alice uses the shared random string to pick O(
√
n) locations in [n] and sends

the corresponding bits to Bob. A standard birthday paradox argument shows that
these bits include the end-points of at least one edge of the matching with constant
probability. This shows that our lower bound is tight, and thus we have the following
theorem.

Theorem 4.5. The randomized one-way communication complexity of HMn is
Θ(

√
n).

5. An exponential separation for Simultaneous Messages. Recall that in
the model of SM, Alice and Bob both send a single message to a referee, after which
he computes the output. We prove an exponential separation in this model between
quantum and public-coin randomized communication complexity. To this end, we use
a restricted version of the Hidden Matching Problem.

The Restricted Hidden Matching Problem (RHMn).
Let n be a positive even integer. In the Restricted Hidden Matching Problem,

fix M to be any set of m = Ω(n) pairwise edge-disjoint matchings. Alice is given
x ∈ {0, 1}n, and Bob is given M ∈ M. Their goal is to output a tuple 〈i, j, b〉 such
that the edge (i, j) belongs to the matching M and b = xi ⊕ xj .

The lower bound we proved for HMn in the model of one-way communication
(Theorem 4.1) is in fact a lower bound for RHMn. This lower bound holds also in
the SM model since this model is no more powerful than one-way communication (cf.
[14]). Hence, we have the following theorem.

Theorem 5.1. Any public-coin SM protocol for computing RHMn with error
probability at most 1/8 requires Ω(

√
n) bits of communication.

On the other hand, the Restricted Hidden Matching Problem can be solved by
a quantum protocol with only O(log n) communication. Bob sends the index of his
matching to the referee using O(log n) bits, and Alice sends a superposition of her
input string using O(log n) qubits, similarly to the one-way protocol. Since the referee
knows Bob’s input matching M , he can perform the same measurement Bob performed
in the one-way protocol and compute the XOR of some pair in the matching.

6. The complexity of Boolean Hidden Matching.

6.1. Lower bound for 0-error protocols. In order to prove the lower bound
for 0-error randomized one-way protocols, we note the following characterization of
such protocols for partial functions. Let f : X × Y → {0, 1, ∗} be a partial Boolean
function. We say that the input (x, y) is legal if f(x, y) 
= ∗. A protocol for f is
required to be correct only on legal inputs; it is allowed to output arbitrary answers
on illegal inputs. The confusion graph Gf of f is a graph whose vertex set is X ; (x, x′)
is an edge in Gf if and only if there exists a y such that both (x, y) and (x′, y) are
legal inputs and f(x, y) 
= f(x′, y).
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It is known [15] that the deterministic one-way communication complexity of f
is logχ(Gf ) + O(1), where χ(Gf ) is the chromatic number of the graph Gf . We will
obtain a lower bound on the 0-error randomized one-way communication complexity
via another measure on Gf . For any graph G = (V,E), let

θ(G) = max
W⊆V

|W |
α(GW )

,

where GW is the subgraph of G induced on W and α(GW ) is the independence number
of GW . It is easy to see that χ(G) ≥ θ(G). The following theorem gives a lower bound
on the 0-error communication complexity of f in terms of θ(Gf ).

Theorem 6.1. The 0-error randomized one-way communication complexity of
any partial Boolean function f is at least Ω(log θ(Gf )).

Proof. Let Gf = (V,E) and let W ⊆ V achieve the maximum for θ(Gf ). Define
μ to be the uniform distribution on W .

Suppose Π is a randomized 0-error one-way protocol for f with public randomness
R, and whose cost is c+1 (Bob just outputs a bit which is the last bit of the transcript).
Let A(x, R) be the message sent by Alice on input x, and let B(τ, y, R) be the output
of the protocol given by Bob on input y when the message sent by Alice is τ . For any
legal input (x, y), we have E[|A(x,R)|] ≤ c, and Pr[B(A(x,R), y, R) = f(x, y)] = 1.

Let X be a random input for Alice whose distribution is μ. Then E[|A(X,R)|] ≤ c,
where the randomness is now over both X and R. Therefore, there exists a choice
r∗ for R such that E[|A(X, r∗)|] ≤ c. Define a deterministic protocol where A′(x) =
A(x, r∗) and B′(τ, y) = B(τ, y, r∗). Note that this protocol correctly computes f and
E[|A′(X)|] ≤ c. Let T be the set of messages sent by Alice in this new protocol. For
any message τ ∈ T , define Sτ = {x ∈ W : A′(x) = τ}. By the definition of Gf , it
follows that Sτ is an independent set, so |Sτ | ≤ α(GW ). Therefore, the entropy of the
random variable A′(X) satisfies

H(A′(X)) =
∑
τ∈T

|Sτ |
|W | log

(
|W |
|Sτ |

)
(4)

≥
∑
τ∈T

|Sτ |
|W | log

(
|W |

α(GW )

)
= log θ(Gf ),

because the Sτ ’s partition W .
Finally, if we assume that the messages are prefix-free (which can be achieved with

a constant factor blow-up in the communication cost), then E[|A′(X)|] ≥ H(A′(X))
(Theorem 2.3). It follows from (4) that c = Ω(log θ(Gf )).

We use this characterization to prove the lower bound for BHMn.
Theorem 6.2. Let n = 4p, where p is prime. Then, the 0-error randomized

one-way communication complexity of BHMn is Ω(n).
Proof. Let f denote the partial function BHMn. The vertex set of the confusion

graph Gf is {0, 1}n. We next show that (x,x′) is an edge in Gf if and only if the
Hamming distance between x and x′ is exactly n/2.

Suppose (x,x′) is an edge in Gf . Therefore, there exist a matching M and a
vector w, so that Mx⊕w = 0 and Mx′ ⊕w = 1, or vice versa. That means that for
every edge (i, j) ∈ M , xi ⊕ xj 
= x′

i ⊕ x′
j , and thus x,x′ agree on one of the position

i, j and disagree on the other. Hence, the Hamming distance between x and x′ is
exactly n/2. Conversely, given two strings x,x′ of Hamming distance n/2, let M be
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any matching between the positions on which x,x′ agree and the positions on which
they disagree. Let w = Mx. Clearly, Mx⊕w = 0. For each edge (i, j) in M we have
xi ⊕xj 
= x′

i ⊕x′
j , and therefore Mx′ ⊕w = 1, implying that (x,x′) is an edge in Gf .

If n/2 is odd, Gf is the bipartite graph between the even and odd parity vertices.
Therefore, Gf is 2-colorable, implying that f has a O(1) protocol (Alice just sends
the parity of her input). We will show that the situation changes dramatically when
n is a prime multiple of 4.

Proposition 6.3 (Frankl and Wilson [9]). Let m = 4p − 1, where p is prime.
Define the graph G = (V,E) where V = {A ⊆ [m] : |A| = 2p− 1}, and (A,B) ∈ E if
and only if |A ∩B| = p− 1. Then,

α(G) ≤
p−1∑
i=0

(
m

i

)
.

Let m = 4p− 1 = n− 1, and let G be the graph defined by Proposition 6.3. We
claim that G is isomorphic to a vertex-induced subgraph of the confusion graph Gf :
for every vertex A in G, the corresponding vertex in Gf is the characteristic vector of
the set A∪{4p}. Let V denote the vertex set of G; it follows that θ(Gf ) ≥ |V |/α(G).

We have |V | =
(

m
2p−1

)
≈ 2m/

√
m, and by Proposition 6.3 and Theorem 2.1, part

9, α(G) ≤ 2mH2(γ), where H2 is the binary entropy function and γ = (p−1)/(4p−1) ≤
1/4. The result now follows from Theorem 6.1.

6.2. Lower bound for linear randomized protocols. In this section, we
study a natural class of randomized bounded-error protocols for BHMn and show a
Ω̃( 3

√
n) communication lower bound for them.
Definition 6.4 (linear protocols). A deterministic one-way communication com-

plexity protocol is called linear if for any input x ∈ {0, 1}n, Alice’s message on x is
of the form Ax, where A is a fixed c× n Boolean matrix.

A public-coin one-way protocol is linear if for any input x ∈ {0, 1}n, Alice’s
message on x is of the form Ax, where A is a random c× n Boolean matrix chosen
using the public random bits.

Theorem 6.5. Let n be a positive integer multiple of 4 and let 0 < δ < 1/2
be a constant bounded away from 1/2. Then, any δ-error public-coin one-way linear
protocol for BHMn requires Ω( 3

√
n log n) bits of communication.

Proof. Using Yao’s lemma [24], to prove the lower bound, it suffices to construct a
“hard” distribution μ over instances of BHMn and prove a distributional lower bound
w.r.t. deterministic one-way linear protocols. We define μ as follows: let X be a
uniformly chosen bitstring in {0, 1}n; let M be a uniformly chosen perfect matching
in Mn; and let B be a uniformly chosen bit. W is a random bitstring in {0, 1}n/2,
defined as W

def
= MX ⊕ B (recall that B is the vector all of whose entries are B).

Let Π be any deterministic one-way linear protocol that has error probability
of at most δ when solving BHMn on inputs drawn according to μ. Let c be the
communication cost of Π.

Since Π is deterministic, one-way, and linear, there exists a fixed c × n Boolean
matrix A, such that the message of Π on any input x is Ax. By adding at most one
bit to the communication cost of Π, we can assume 1 is one of the rows of A. We
also assume, without loss of generality, that A has a full row rank, because otherwise
Alice sends redundant information, which Bob can figure out by himself.

We assume c satisfies c3/ log c ≤ 3n/4, since, otherwise, c ≥ Ω( 3
√
n log n), and we

are done.
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For a matrix T , we denote by sp(T ) the span of the row vectors of T over the
field GF (2). Clearly, for any matrix T , 0 ∈ sp(T ). In particular, 0 ∈ sp(M) ∩ sp(A)
for any matching M ∈ Mn (recall that we view a matching M as an n

2 × n edge-
vertex incidence matrix). By our assumption about A, 1 ∈ sp(A). Since M is a
perfect matching, the sum of its rows is 1; thus 1 ∈ sp(M). We conclude that for
any M , {0,1} ⊆ sp(M) ∩ sp(A). Let Z be an indicator random variable of the
event {sp(M) ∩ sp(A) = {0,1}}, meaning that 0 and 1 are the only vectors in the
intersection of the spans.

At a high level, our plan for the rest of the proof is as follows. Loosely speaking,
for any matching M belonging to the above event (i.e., spM ∩sp(A) = {0,1}) and for
any possible input x 
= 0,1, the vectors Mx and Ax are linearly independent. This
linear independence also implies statistical independence of the random variables MX
and AX. In particular, it means that Alice’s message, AX, has no information about
MX, and thus Bob cannot determine whether MX ⊕ W = 1 or MX ⊕ W = 0. We
conclude that the protocol can succeed only when the event does not happen. We will
prove that the probability of this event not happening is Õ(c3/n), and thus only when
c ≥ Ω̃( 3

√
n), is the success probability of the protocol sufficiently high. The formal

argument follows.
In the protocol Π, Bob observes values of the random variables AX,M, and W

and uses them to predict the random variable B with error probability δ. Therefore,
by Fano’s inequality (Theorem 2.2),

(5) H2(δ) ≥ H(B | AX,M,W).

Since conditioning reduces entropy,

H(B | AX,M,W) ≥ H(B | AX,M,W, Z)

= H(B | AX,M,W, Z = 1) · Pr(Z = 1)

+ H(B | AX,M,W, Z = 0) · Pr(Z = 0)

≥ H(B | AX,M,W, Z = 1) · Pr(Z = 1).(6)

The following two lemmas bound the two factors in the last expression.
Lemma 6.6. H(B | AX,M,W, Z = 1) = 1.

Lemma 6.7. Pr(Z = 1) ≥ 1 −O( c3

n log c ).

The proofs of Lemmas 6.6 and 6.7 are provided below. Let us first show how the
two lemmas derive the theorem. By combining (5) and (6), and Lemmas 6.6 and 6.7,
we have

H2(δ) ≥ 1 −O

(
c3

n log c

)
.

Therefore,

c ≥ Ω( 3
√
n(1 −H2(δ)) · log(n(1 −H2(δ))))

= Ω( 3
√
n log n),

since H2(δ) is a constant bounded away from 1. This completes the proof of the
theorem.

Proof of Lemma 6.6. Recall that we assume that 1 is one of the rows of A and
that A has a full row rank. Let A′ be the submatrix of A consisting of all the rows
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of A, except 1. Clearly, sp(A′) ⊆ sp(A) and 1 
∈ sp(A′). It follows that the event
{sp(M) ∩ sp(A) = {0,1}} is the same as the event {sp(M) ∩ sp(A′) = {0}}. Thus,
from now on we will think of Z as an indicator random variable of the latter.

Observe that since n is a multiple of 4, the parity of the bits of w is always
equal to the parity of the bits of x. The parity of the bits of x is exactly the inner
product 1t · x, which is one of the bits in the vector Ax. It follows that there is a
1-1 mapping f such that f(A(x),w) = (A′(x),w). By the second data processing
inequality (Theorem 2.1, part 5), we can therefore rewrite H(B | AX,M,W, Z = 1)
as H(B | A′X,M,W, Z = 1).

By the definition of mutual information,

H(B | A′X,M,W, Z = 1)

= H(B | M,W, Z = 1) − I(B ; A′X | M,W, Z = 1).

The next proposition shows that the random variables B,M, and W are mutually
independent given the event {Z = 1}, which together with Theorem 2.1, part 2,
implies that H(B | M,W, Z = 1) = H(B|Z = 1). Since B and Z are independent
(Z is a function of M only), H(B|Z = 1) = H(B) = 1. Thus, in order to prove the
lemma it would suffice to show that I(B ; A′X | M,W, Z = 1) = 0.

Proposition 6.8. The random variables B,M, and W are mutually indepen-
dent, given the event {Z = 1}.

Proof. We will show that the random variables B,M, and W are mutually in-
dependent unconditionally. This independence would then hold even given the event
{Z = 1}, because this event is a function of M only.

The random variables B and M are independent, by definition. Let M be any
value of the random variable M, and let b be any value of the random variable B. In
order to show the desired independence, we need to prove that for any possible value
w of W, Pr(W = w | M = M,B = b) = Pr(W = w).

Using conditional probability, we can rewrite Pr(W = w | M = M,B = b) as
follows:

Pr(W = w | M = M,B = b)

=
∑

x∈{0,1}n

Pr(W = w | M = M,B = b,X = x)

· Pr(X = x | M = M,B = b).

Since X,M, and B are mutually independent by definition, Pr(X = x | M = M,B =
b) = Pr(X = x) = 1/2n. Pr(W = w | M = M,B = b,X = x) = 1 only if
w = Mx ⊕ b, and it is 0 otherwise. The number of x’s that satisfy this condition is
the number of solutions to the linear system Mx = w ⊕ b over Zn

2 . Since M is an
n
2 × n matrix that has a full row rank, this number is 2n/2. Therefore, Pr(W = w |
M = M,B = b) = 2n/2/2n = 1/2n/2.

Consider now the quantity Pr(W = w). Using conditional probability we can
rewrite it as

Pr(W = w)

=
∑
M,b

Pr(W = w | M = M,B = b) · Pr(M = M,B = b).

We already proved that for all M and b, Pr(W = w | M = M,B = b) = 1/2n/2.
Therefore, also Pr(W = w) = 1/2n/2, completing the proof.
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Next we prove I(B ; A′X | M,W, Z = 1) = 0. By the chain rule for mutual
information,

I(B,M,W ; A′X | Z = 1)

= I(M,W ; A′X | Z = 1) + I(B ; A′X | M,W, Z = 1).

Since mutual information is always a nonnegative quantity, it would thus suffice to
show that I(B,M,W ; A′X | Z = 1) = 0.

The function f(b,M,w) = (b,M,w⊕b) is a 1-1 function. Note that f(B,M,W) =
(B,M,W ⊕ B) = (B,M,MX). Therefore, by the second data processing inequality
(Theorem 2.1, part 5), we have

I(B,M,W ; A′X | Z = 1) = I(B,M,MX ; A′X | Z = 1).

Using again the chain rule for mutual information we have

I(B,M,MX ; A′X | Z = 1)(7)

= I(B,M ; A′X | Z = 1) + I(MX ; A′X | B,M, Z = 1).

We next show that each of the above mutual information quantities is 0. By the
definition of the input distribution μ, the random variables B,M, and X are mutually
independent. This holds even given the event {Z = 1}, because the latter is a function
of M only. It follows that B,M, A′X are also mutually independent given the event
{Z = 1}, and thus I(B,M ; A′X | Z = 1) = 0 (Theorem 2.1, part 7).

As for the second mutual information quantity on the right-hand side of (7), we
use again the independence of B,M, and A′X given {Z = 1} as well as Theorem
2.1, part 8, to derive I(MX ; A′X | B,M, Z = 1) = I(MX ; A′X | M, Z = 1).
The following proposition proves that for any matching M satisfying the condition
indicated by the event {Z = 1}, the random variables MX and A′X are independent.
It then follows that I(MX ; A′X | M, Z = 1) = 0.

Proposition 6.9. For any matching M ∈ Mn satisfying the condition sp(M)∩
sp(A′) = {0}, the random variables MX and A′X are independent.

Proof. Let z be any possible value for the random variable MX, and let y be any
possible value for the random variable A′X. In order to prove the independence, we
need to show that Pr(MX = z | A′X = y) = Pr(MX = z).

M is an n
2 × n Boolean matrix that has a full row rank. Therefore, the number

of solutions to the linear system Mx = z over Zn
2 is exactly 2n/2. Recall that X was

chosen uniformly at random from Zn
2 . Therefore, Pr(MX = z) = 1/2n/2.

By the definition of conditional probability, Pr(MX = z | A′X = y) = Pr(MX =
z, A′X = y)/Pr(A′X = y). Since A′ is a (c − 1) × n Boolean matrix and has a
full row rank, the same argument as above shows that Pr(A′X = y) = 1/2n−c+1.
Let D be an (n2 + c − 1) × n matrix, which is created by putting M on top of A′.
Since sp(M) ∩ sp(A′) = {0}, D has a full row rank. We thus obtain Pr(MX =
z, A′X = y) = Pr(DX = (z,y)) = 1/2n/2−c+1. Hence, Pr(MX = z | A′X = y) =
2n/2−c+1/2n−c+1 = 1/2n/2 = Pr(MX = z). The proposition follows.

This completes the proof of Lemma 6.6.
We now turn to the proof of Lemma 6.7.
Proof of Lemma 6.7. Denote the event {sp(M)∩sp(A) 
= {0,1}} by E. We would

like to prove Pr(E) ≤ O(c3/(n log c)). For 0 ≤ k ≤ n, define spk(A) to be the vectors
in sp(A) whose Hamming weight is k. Define Ek to be the event {sp(M)∩spk(A) 
= ∅}.
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Since sp0(A) = {0} and spn(A) = {1}, the event E can be rewritten as
∨n−1

k=1 Ek.
Thus, using the union bound, we can bound the probability of E as follows:

(8) Pr(E) ≤
n−1∑
k=1

Pr(sp(M) ∩ spk(A) 
= ∅).

Let M be any matching in Mn. Any vector v in sp(M), when viewed as a set Sv

(i.e., v is the characteristic vector of Sv), is a disjoint union of edges from M . We
thus immediately conclude that v has to have an even Hamming weight. This implies
that for all odd 1 ≤ k ≤ n− 1,

(9) Pr(sp(M) ∩ spk(A) 
= ∅) = 0.

Consider then an even k, and let v be any vector in spk(A). If v belongs to sp(M),
then M can be partitioned into two perfect “submatchings”: a perfect matching on
Sv and perfect matching on [n] \ Sv. We conclude that the number of matchings M
in Mn, for which v ∈ sp(M), is exactly mk ·mn−k, where m� is the number of perfect
matchings on � nodes. Note that m� = �!

(�/2)!2�/2 , and thus,

Pr(v ∈ sp(M)) =
mk ·mn−k

mn
=

(
n
2
k
2

)
(
n
k

) .

It follows, by the union bound, that for any even k,

(10) Pr(sp(M) ∩ spk(A) 
= ∅) ≤ | spk(A)| ·

(
n
2
k
2

)
(
n
k

) .

Since 1 ∈ sp(A), | spk(A)| = | spn−k(A)| for all 0 ≤ k ≤ n. Combining this and
(8), (9), and (10), it would thus suffice to prove the following:

(11)

n/4∑
j=1

| sp2j(A)| ·
(n

2
j

)
(
n
2j

) ≤ O

(
c3

n log c

)
.

We start by bounding the ratio in each of the terms:

(
n
2
j

)
(
n
2j

) =
(n2 )! · (2j)! · (n− 2j)!

(n2 − j)! · j! · n!

=
n
2 · · · (n2 − j + 1) · (2j) · · · (j + 1)

n · · · (n− 2j + 1)

≤
(

1

2

)j

·
(

2j

n− j

)j

=

(
j

n− j

)j

≤
(

4j

3n

)j

.(12)

The last inequality follows from the fact j ≤ n/4. We next bound | sp2j(A)| for small
values of j.

Proposition 6.10. For every 1 ≤ j ≤ �c/2�, | sp2j(A)| ≤
∑2j

i=1

(
c
i

)
.

Proof. Using just the elementary row operations of Gaussian elimination, we can
transform A into a matrix A′ which has exactly the same span as A and has the c× c
identity matrix as a submatrix. (Recall that A has a full row rank of c.) It follows
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that any linear combination of t rows of A′ results in a vector of Hamming weight at
least t. Therefore, the only linear combinations to give vectors in sp2j(A) are ones
that use at most 2j rows of A′. The proposition follows, since the number of the latter
is

∑2j
i=1

(
c
i

)
.

We conclude that for 1 ≤ j ≤ �c/2�, | sp2j(A)| ≤
∑2j

i=1 c
i = c2j−1

c−1 · c ≤ 2c2j

(assuming c ≥ 2). On the other hand, we have for all 1 ≤ j ≤ n/4, | sp2j(A)| ≤
| sp(A)| ≤ 2c. Note that the quantity 2c2j exceeds 2c, when j ≥ c−1

2 log c . We thus

define �
def
= � c−1

2 log c� and break the sum on the right-hand side of (11), which we need
to bound, into two parts as follows:

n/4∑
j=1

| sp2j(A)| ·
(n

2
j

)
(
n
2j

)

=

�∑
j=1

| sp2j(A)| ·
(n

2
j

)
(
n
2j

) +

n/4∑
j=�+1

| sp2j(A)| ·
(n

2
j

)
(
n
2j

)

≤
�∑

j=1

(2c2j) ·
(

4j

3n

)j

+ 2c · max
�<j≤n/4

(
4j

3n

)j

.(13)

The last inequality follows from (12), from Proposition 6.10, and from the fact that∑n/4
j=�+1 | sp2j(A)| ≤ | sp(A)| ≤ 2c. We bound each of the terms on the right-hand side

of (13) separately. We start with the first one:

�∑
j=1

(2c2j) ·
(

4j

3n

)j

= 2 ·
�∑

j=1

(
4c2j

3n

)j

≤ 2 ·
�∑

j=1

(
4c2�

3n

)j

.

Recall that we assumed c3/ log c ≤ 3n/4. Hence, 4c2�/(3n) ≤ 2c3/(3n log c) ≤ 1/2.
We can thus bound the geometric series as follows:

2 ·
�∑

j=1

(
4c2�

3n

)j

≤ 2 · 4c2�

3n
· 1

1 − 4c2�
3n

≤ 16c2�

3n

≤ 8c3

3n log c
.(14)

We now turn to bounding the second term on the right-hand side of (13).
Proposition 6.11. The function g(j) = (aj)j, where a > 0, has a local minimum

at j∗ = 1
ae in the interval (0,∞).

Proof. We rewrite g as follows: g(j) = ej ln(aj). The derivative of g is the following:

g′(j) = ej ln(aj) · (ln(aj) + 1).

Thus, g has a local extremum at j∗ = 1
ae . We next verify that it is a local minimum.

The second derivative of g is the following:

g′′(j) = g′(j) · (ln(aj) + 1) + g(j) · 1

j
= g(j) ·

(
(ln(aj) + 1)2 +

1

j

)
.

Since g is positive in the interval (0,∞), g′′(j) > 0 for all j in this interval. In
particular, g′′(j∗) > 0, implying that j∗ is a local minimum.
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Proposition 6.11 shows that the function g(j) = (aj)j has a local minimum at
j∗ = 1

ae in the interval (0,∞). In our case a = 4
3n , and thus j∗ = 3n/(4e) ≥ n/4.

Therefore the maximum of ( 4j
3n )j in the interval [�, n/4] is obtained at j = �. We

conclude that

2c · max
�<j≤n/4

(
4j

3n

)j

≤ 2c ·
(

4�

3n

)�

≤ 2c ·
(

2c

3n log c

) c
2 log c

≤
(

4c

3n log c

)c

≤
(

2c

n

)c

≤ c

n

≤ c3

n log c
.(15)

In the next-to-last inequality we used the fact 2 ≤ c ≤ n/4. Combining (13), (14),
and (15), we have

n/4∑
j=1

| sp2j(A)| ·
(n

2
j

)
(
n
2j

) ≤ 8c3

3n log c
+

c3

n log c
≤ O

(
c3

n log c

)
.

This completes the proof of Lemma 6.7.
Remark. As mentioned previously, the randomized lower bound for HMn also

holds for a restricted version of the Hidden Matching Problem (which we denoted by
RHMn), in which Bob’s input is a matching M taken from a small set M of Θ(n)
disjoint matchings only. One can define an analogous restricted version of BHMn,
denoted RBHMn. However, in this case the complexities of BHMn and RBHMn are
entirely different. By Aaronson’s result [1], and by our O(log n)-bit quantum upper
bound for BHMn (which, of course, also works for RBHMn), the deterministic one-way
communication complexity of RBHMn is only O(log2 n · log log n). On the other hand,
the deterministic (and even 0-error randomized) one-way communication complexity
of BHMn is Ω(n) (Theorem 6.2). Hence, there is an exponential gap between the two.

7. Open problems. The main question in quantum communication complexity
is to characterize its power in relation to classical communication complexity. For
partial Boolean functions it was known that quantum two-way communication com-
plexity could be exponentially lower than the classical complexity [20]. Here we prove
a similar result for a relation for one-way communication complexity and SM. The
main open question is to find the relation between quantum and classical commu-
nication complexity for total functions. Are they polynomially related for all total
functions? Is this relationship even tighter in the case of one-way communication com-
plexity? Moreover, can we show an exponential separation between quantum one-way
communication complexity and randomized two-way communication complexity?

Acknowledgments. We would like to thank Umesh Vazirani, Ashwin Nayak,
and Kunal Talwar for helpful discussions.
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THE EUCLIDEAN ORIENTEERING PROBLEM REVISITED∗

KE CHEN† AND SARIEL HAR-PELED†

Abstract. We consider the rooted orienteering problem: Given a set P of n points in the
plane, a starting point r ∈ P , and a length constraint B, one needs to find a path starting from r
that visits as many points of P as possible and of length not exceeding B. We present a (1 − ε)-
approximation algorithm for this problem that runs in nO(1/ε) time; the computed path visits at
least (1− ε)kopt points of P , where kopt is the number of points visited by an optimal solution. This
is the first polynomial time approximation scheme for this problem. The algorithm also works in
higher dimensions.

Key words. orienteering problem, k-TSP, approximation algorithms, PTAS
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1. Introduction. Consider a traveling salesperson who has a fixed amount of
gasoline and wants to maximize the number of customers visited under this constraint.
This is an instance of the orienteering problem that requires us to design a network
that visits a maximum number of points, subject to an upper bound on the total length
of the network. This problem is “dual” to the classical k-TSP problem [3, 10, 9], which
asks for a minimum length path visiting at least k points.

In this paper, we consider the rooted path orienteering problem in the plane,
specified by P , r, and B, where P is a set of n points in the plane, r is the starting
point, and B > 0 is the maximum length allowed. The solution to this problem is
a path that starts at r and visits as many points of P as possible, such that the
path length does not exceed B. The effect of fixing the starting point is significant
as far as approximation algorithms are concerned. Indeed, approximation algorithms
for k-TSP extend easily to the unrooted orienteering problem, where there is no fixed
starting point, while the approximation algorithm for the rooted orienteering problem
is more challenging. The difficulty stems from the fact that an optimal path may visit
a large number of points that lie in a small cluster at a distance nearly B from r, thus
making it difficult to visit at least a large fraction of these points unless the path is
very efficient [2].

Some related problems include the prize-collecting traveling salesman problem
and the vehicle routing problem. They arise from real world applications such as
delivering goods to locations or assigning technicians to maintenance service jobs.
A substantial amount of work on heuristics for these problems can be found in the
operations research literature [12].

Arkin, Mitchell, and Narasimhan [2] were the first to design approximation algo-
rithms for the rooted orienteering problem. They considered the rooted orienteering
problem for points in the plane when the underlying network is a path, a cycle, or
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a tree. Their algorithms provide a 2-approximation for the rooted path orienteering
problem, and a 2- (resp., 3-) approximation when the networks considered are cycles
(resp., trees). Blum et al. [6] proposed the first constant-factor approximation algo-
rithm for the rooted path orienteering problem when the points lie in a general metric
space. Bansal et al. [5] improved the approximation factor to 3. Arkin, Mitchell, and
Narasimhan [2] asked whether a better approximation is possible in Euclidean spaces.

One difficulty in assailing this problem is the relative lack of algorithmic tools
to handle rigid budget constraints. Since the development of (1 + ε)-approximation
algorithms for TSP [3, 10], a large class of the problems that aim to minimize the
tour length, subject to certain constraints on the points visited by the tour, have
been resolved. See the surveys by Mitchell [11] and Arora [4] for further information.
In contrast, the behavior of the optimization problems that seek to maximize some
function on the points visited, subject to constraints on the length of the path used
or the timespans the points are being visited [7, 5, 8], are not as well understood.

The main idea in the previous approximation algorithms for the orienteering prob-
lem [2, 6, 5] was to transform an approximation algorithm for the rooted k-TSP prob-
lem into an approximation algorithm for the orienteering problem. In particular,
Blum et al. [6] formulated the notion of the excess for a path (which is defined to be
the difference between the length of a path and the distance between the endpoints of
the path) and then combined dynamic programming with the use of k-TSP to obtain
an algorithm for orienteering in a metric space. These techniques were also implicitly
used in the work of Arkin, Mitchell, and Narasimhan [2].

Our results. To obtain a polynomial time approximation scheme (PTAS) for the
orienteering problem, we extend the concept of the excess of a path into the u-excess
of a path, which is (loosely) the difference in lengths between π and the best ap-
proximation to π by a polygonal line having u vertices; see Figure 1. (Therefore, the
previous notion of excess is 2-excess in our notation.)

To this end, we revisit the rooted k-TSP problem in the plane and show that
Mitchell’s algorithm [10] computes an (ε, u)-approximation for rooted k-TSP; that is,
the algorithm outputs a rooted path of length ≤ ‖π‖ + ε · Eπ,u, where π is any path
that starts from the root and visits k points, ‖π‖ denotes the length of π, and Eπ,u is
the u-excess of π. Note that the quantity Eπ,u might be smaller than ‖π‖ by several
orders of magnitude. Therefore, we show that Mitchell’s algorithm provides a much
tighter approximation for k-TSP than what was previously known. See section 3.

Armed with the new approximation algorithm for k-TSP, it is now possible to
reduce the orienteering problem to an instance of k-TSP. The PTAS for orienteering
is presented in section 5.

The rest of the paper is organized as follows. Section 2 defines the problem.
Section 3 presents the new analysis of Mitchell’s algorithm. Section 4 extends the
new k-TSP algorithm into higher dimensions by combining Mitchell’s technique and
Arora’s k-TSP algorithm. Section 5 gives the PTAS for the orienteering problem. We
conclude in section 6.

2. Problem statement and definitions. Let π = 〈p1, p2, . . . , pk〉 be a path
that visits k points of P , starting at p1 and ending at pk. The length of π is denoted by
‖π‖ =

∑k−1
i=1 ‖pi+1 − pi‖. More generally, for a collection S of segments, ‖S‖ denotes

the total length of segments in S. Let 1 = i1 < · · · < iu = k be a sequence of u ≤ k
integers. The path 〈pi1 , pi2 , . . . , piu〉 is a u-skeleton of π. The optimal u-skeleton of π
is the u-skeleton of π with maximum total length, denoted by Su

opt(π). See Figure 1.
The u-excess of a path π is the difference between the length of π and its optimal
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(i) (ii)

Fig. 1. (i) The segment σ is the 2-skeleton of the path π. The 2-excess of π, namely, Eπ,2,
is the difference between the length of π and the length of σ. (ii) The polygonal line τ forms a
6-skeleton of π. The 6-excess of π, namely, Eπ,6, is at most ‖π‖–‖τ‖.

u-skeleton, that is, Eπ,u = ‖π‖ −
∥∥Su

opt(π)
∥∥. Note that the u-excess of π may be

considerably smaller than the length of π.
Given a set P of n points and a starting point r ∈ P , the rooted k-TSP problem is

to find a shortest path that visits k points of P starting at r. An (ε, u)-approximation
to the rooted k-TSP is a path φ that visits k points of P starting at r, such that the
length of φ is no more than ‖T‖ + ε · ET,u, for any path T that visits k points of P
starting at r.

Definition 2.1 (the rooted orienteering problem). Given a set P of n points,
a budget B, and a starting point r ∈ P , the rooted orienteering problem is to find a
path ωopt that visits as many points of P as possible, under the constraint that the
length of ωopt is at most B. Let kopt denote the number of points visited by ωopt. A
(1 − ε)-approximation to the rooted orienteering problem is a path ω (starting at r)
that visits at least (1 − ε)kopt points of P , such that the length of ω is at most B.

3. An (ε, u)-approximation algorithm for k-TSP. In this section, we present
an (ε, u)-approximation algorithm for k-TSP. The algorithm is the k-TSP algorithm of
Mitchell [10], and our contribution is the new tighter analysis of its performance (see
section 3.3). In the following, we first review Mitchell’s algorithm and then present
our new improved analysis.

3.1. Preliminaries. In the following, m is a fixed constant. We assume, without
loss of generality, that the points of P all have distinct x and y coordinates and that
P is contained in an axis-parallel square Q. Let π be a given path visiting k points
of P .

Definition 3.1. A closed, axis-parallel rectangle w is a window if w ⊆ Q. The
extent of a window w is the larger of the width and height of w and is denoted by Δw.
Let π(w) denote the subset of π consisting of the union of segments of π having at
least one endpoint inside (or on the boundary of) w. Given a collection S of segments,
we slightly abuse notation and denote the set of segments of S clipped to w by S ∩w.
See Figure 2.

A line � is a cut for π, with respect to w, if � is a horizontal or vertical line
and � intersects w; � is an m-perfect cut for π, with respect to w, if � intersects the
segments of π(w) ∩ w at most m times.

Definition 3.2. The combinatorial type of a window w with respect to π is the
subset of P inside (or on the boundary of) w and a listing, for each of the four sides
of w, of the identities of the line segments of π(w) that intersect it. (In particular, if
a segment of π intersects w, but both its endpoints are outside w, then the segment is
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(i) π (ii) π ∩ w (iii) π(w) (iv) π(w) ∩ w

Fig. 2. The different ways of clipping a path π to a window w.

not considered in the combinatorial type of w.) We say that w is a minimal window
if there is no window w′ that is strictly contained in w with the same combinatorial
type as w.

For a minimal window w, if there is no m-perfect cut for π, with respect to w,
then it is m-dense. Namely, any horizontal or vertical line that intersects w has more
than m intersection points with π(w) ∩ w.

Given a window w, Mitchell [10] described how to “shrink” w into a minimal
window by “pinning” all four sides of w. It is not hard to see that the number of all
possible minimal windows is O(n4), since (intuitively) it has four degrees of freedom.

Claim 3.3. If a window w is m-dense, then ‖π(w) ∩ w‖ ≥ m · Δw.
Proof. Assume, without loss of generality, that the width of w is greater than the

height of w, and the interval [x1, x2] is the projection of w onto the x-axis. Let f(α)
denote the number of segments of π(w) within w that intersect the vertical line x = α.
By the density of w, f(x) > m for x ∈ [x1, x2]. The total length of the segments of
π(w)∩w is lower bounded by the integral of f(x) over [x1, x2], which in turn is lower
bounded by m(x2 − x1) = m · Δw.

3.2. Review of the k-TSP algorithm. The “new” (ε, u)-approximation algo-
rithm for k-TSP is the algorithm of Mitchell [10] for k-TSP, and we review it here
only for the sake of completeness. We remind the reader that m is a fixed (constant)
number.

A problem instance of WindowTSP consists of (i) a (minimal) window w that
contains at least one point of P , with its boundaries determined by (up to) four points
of P , (ii) an integer h ≥ 0, indicating how many points interior to w should be visited,
(iii) boundary information specifying at most m crossing segments (each determined
by a pair of points of P , one interior to or on the boundary of w, and another outside
w) for each side of the boundary of w, and (iv) connectivity constraints, indicating
which pairs of crossing segments are required to be connected within w. The solution
to the WindowTSP problem is a set of (hopefully short) paths inside window w
such that (i) all of the boundary constraints are satisfied, (ii) all of the connectivity
constraints within w are satisfied, and (iii) h points of P are visited by the paths
inside w. See Figure 3.

Clearly, the rooted k-TSP problem can be formulated as a WindowTSP instance
consisting of a bounding box Q of P , a parameter k, empty boundary information,
and connectivity constraints requiring that k points of P inside Q must be connected
by a single path, with r as an endpoint of the path.

The recursive algorithm for WindowTSP works as follows. If the window w has
at most m points of P in its interior, then the problem is solved by enumeration of
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(i) (ii)

Fig. 3. (i) An instance of the WindowTSP problem. The segments specify how the solution
crosses the boundary of w. The connectivity constraints are as follows: p1 is required to connect
to p2 (possibly via other points within w), p3 is required to connect to p4 (possibly via other points
within w), and p5 is the starting point r of the path (namely, the degree of p5 is 1). The multipaths
are required to visit nine points in the window. (ii) A possible solution.

all possible solutions. Otherwise, the algorithm tries all possible cuts for the current
window recursively, enumerating over all the possible choices of valid boundary infor-
mation along this cut and computing the cheapest option. If there is no m-perfect
cut, then the algorithm performs a cut and reduces the intersection by introducing
bridges; see Remark 1 below. For our analysis, we care only whether a cut used by
the algorithm is an m-perfect cut or a more complicated cut.

When a cut divides a window into two smaller windows, we need to “shrink” those
two windows into minimal windows. In particular, segments that just pass through a
window are ignored during the shrinking. This is a small but important technicality.
See Figure 4.

Remark 1. The algorithm of Mitchell [10] also introduces bridges (close to, or)
on the boundary of the window w, where a bridge is a vertical or horizontal segment.
To simplify our exposition, we ignored those bridges in describing the algorithm. Of
course, for a correct working implementation those bridges are necessary. See [10] for
full details. See also Remark 2 below.

3.3. Analysis of the algorithm. The key observation in our analysis is that the
approximation algorithm does not introduce any error when a cut is m-perfect. Thus,
the error is introduced only when the algorithm works inside an m-dense window, but
such windows have high “excess.”

Definition 3.4. For a set S of segments, let Ix(S) denote the projection of S
onto the x-axis; namely, Ix(S) is the set of all points α (on the x-axis), such that the
vertical line x = α intersects the segments of S. Let lenx(S) denote the total length of
Ix(S). Note that Ix(S) is a set of (disjoint) intervals on the real line, and lenx(S) is
the total length of these intervals. We define Iy(S) and leny(S) in a similar fashion.

Definition 3.5. For a window w and a path π, the surplus of π in w is

ρ(w, π) = ‖π ∩ w‖ −
√

(lenx(π ∩ w))
2

+(leny(π ∩ w))
2
.

It is easy to verify that the surplus is always nonnegative. See Figure 5.
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(i) (ii)

(iii)

Fig. 4. Performing a cut on the WindowTSP instance of Figure 3. (i) A cut l divides the
window w into smaller windows w ∩ H+ and w ∩ H−. (ii) The minimal window for w ∩ H+.
The segments represent the crossing boundary information for the new window. In particular, the
segment p1p2 is introduced when “guessing” the boundary information along the cut l before the
recursive call. The other segments intersecting the boundary are inherited from the original instance.
(iii) The minimal window for w ∩H−.

ay

by

bx dx fxax

w

a

b
c
d f

e

Fig. 5. Illustrating the intersection of a polygonal line π = 〈a, b, c, d, e, f〉 with a window w.
The set Ix(π∩w) consists of the segments axbx and dxfx; the set Iy(π∩w) consists of segment ayby.

The surplus of π in w is ‖a− b‖ + ‖d− e‖ + ‖e− f‖−
√

(‖ax − bx‖ + ‖dx − fx‖)2 + ‖ay − by‖2.



EUCLIDEAN ORIENTEERING PROBLEM REVISITED 391

Lemma 3.6. If X,Y,X1, . . . , Xn, Y1, . . . , Yn are nonnegative real numbers such
that

n∑
i=1

Xi ≥ X and

n∑
i=1

Yi ≥ Y,

then
∑n

i=1

√
X2

i + Y 2
i ≥

√
X2 + Y 2.

Proof. This is an easy application of the triangle inequality. Indeed, let qi be the
point (

∑i
j=1 Xj ,

∑i
j=1 Yj) in the plane for 1 ≤ i ≤ n, and let q0 = (0, 0). Consider

the path π = 〈q0, q1, . . . , qn〉. Clearly, we have that

‖π‖ =

n∑
i=1

√
X2

i + Y 2
i =

n∑
i=1

‖qi − qi−1‖ ≥ ‖qn − q0‖

=

√√√√
(

n∑
i=1

Xi

)2

+

(
n∑

i=1

Yi

)2

≥
√
X2 + Y 2,

as required.
Lemma 3.7. Let D be a set of interior disjoint windows (inside Q), and let π be

a polygonal path inside Q. We have that Eπ,2 ≥
∑

w∈D

(
‖π ∩ w‖ −

√
2Δw

)
.

Proof. Let Ψ be a decomposition of Q into interior disjoint axis-parallel rectangles
such that Ψ contains all of the rectangles of D. Let X = lenx(π ∩Q) and Y =
leny(π ∩Q). For a window w, let Xw = lenx(π ∩ w) and Yw = leny(π ∩ w). Clearly,
X ≤

∑
w∈Ψ Xw and Y ≤

∑
w∈Ψ Yw, since Ix(π) =

⋃
w∈Ψ Ix(π ∩ w) and Iy(π) =⋃

w∈Ψ Iy(π ∩ w). Let s and t be the two endpoints of π. We have that

Eπ,2 = ‖π‖ − ‖s− t‖ = ‖π‖ −
√

lenx(st)
2

+ leny(st)
2 ≥ ‖π‖ −

√
X2 + Y 2,

since lenx(st) ≤ X and leny(st) ≤ Y . On the other hand, by Lemma 3.6, we

get
√
X2 + Y 2 ≤

∑
w∈Ψ

√
Xw

2 + Yw
2, since

∑
w∈Ψ Xw ≥ X and

∑
w∈Ψ Yw ≥ Y .

Therefore,

Eπ,2 ≥ ‖π‖ −
√
X2 + Y 2 ≥ ‖π‖ −

∑
w∈Ψ

√
Xw

2 + Yw
2 =

∑
w∈Ψ

(
‖π ∩ w‖ −

√
Xw

2 + Yw
2

)

=
∑
w∈Ψ

ρ(w, π) =
∑
w∈D

ρ(w, π) +
∑

w∈Ψ\D

ρ(w, π) ≥
∑
w∈D

ρ(w, π),

because the surplus ρ(w, π) is always nonnegative. Now, since

ρ(w, π) = ‖π ∩ w‖ −
√

Xw
2 + Yw

2 ≥ ‖π ∩ w‖ −
√

Δw
2 + Δw

2 = ‖π ∩ w‖ −
√

2Δw,

we obtain Eπ,2 ≥
∑

w∈D ρ(w, π) ≥
∑

w∈D

(
‖π ∩ w‖ −

√
2Δw

)
, as claimed.

Theorem 3.8. Let π = 〈p1, p2, . . . , pk〉 be an arbitrary path that visits k points
of P , and let u ≥ 2 be an arbitrary fixed integer. One can compute, in nO(u) time, a
path that starts at p1 and visits k points of P , with length at most ‖π‖ + Eπ,u/u.

Proof. Set m =
⌈
2
√

2u
⌉
, and use the algorithm presented above. The running

time bound follows readily. Thus, we need only argue that the path computed is
indeed within the claimed bound on the length.
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Thus, consider the (conceptual) execution of the recursive algorithm over the
path π, performing the recursive calls according to π. Specifically, let w be a minimal
window that is visited by the recursive algorithm when applied to π. If an m-perfect
cut (for π) exists with respect to w, then we use it to cut the window w into two parts
and proceed recursively on each side of the cut. If such an m-perfect cut does not
exist for w (that is, w is m-dense), then we (conceptually) stop, and use the results
returned by the recursive call on this window. We claim that for these specific choices,
the recursive algorithm computes a path σ, such that ‖σ‖ is as required. Since the
recursive algorithm returns a path no longer than σ, this would imply the theorem.

Let D be the set of m-dense windows (which by the algorithm execution are
minimal windows) visited by the algorithm when applied to π. Let S = Su

opt(π) be an
optimal u-skeleton for π, and let π1, . . . , πu−1 be the breakup of π into subpaths by
the vertices of S. By Lemma 3.7, we have that

Eπ,u =

u−1∑
j=1

Eπj ,2 ≥
u−1∑
j=1

∑
w∈D

(
‖πj ∩ w‖ −

√
2Δw

)
=

∑
w∈D

u−1∑
j=1

(
‖πj ∩ w‖ −

√
2Δw

)

=
∑
w∈D

(
‖π ∩ w‖ −

√
2(u − 1)Δw

)
≥

∑
w∈D

‖π ∩ w‖
2

,

since ‖π ∩ w‖ ≥ mΔw, for each w ∈ D (by Claim 3.3), and m =
⌈
2
√

2u
⌉
≥ 2

√
2u.

Now, note that π(w) ∩ w is a subset of π ∩ w, and henceforth it holds that

Eπ,u ≥
∑
w∈D

‖π ∩ w‖
2

≥
∑
w∈D

‖π(w) ∩ w‖
2

.(1)

For an m-dense window w ∈ D, the path σ output by the algorithm (when applied
to π) inside w is of length ≤ (1 + 1/m) · ‖π(w) ∩ w‖, as this is the performance
guarantee provided by Mitchell’s analysis [10]. Namely, the error introduced by the
approximation inside w is bounded by ‖π(w) ∩ w‖ /m. For windows (visited by the
algorithm when applied to π) that are not m-dense, the path σ within them is identical
to the path π. Thus, for the path σ, it follows from (1) that

‖σ‖ − ‖π‖ ≤
∑
w∈D

‖π(w) ∩ w‖
m

=
2

m

∑
w∈D

‖π(w) ∩ w‖
2

≤ 2Eπ,u

m
<

Eπ,u

u
,

since m ≥ 2
√

2u.
It is possible to prove Lemma 3.7 and Theorem 3.8 directly, by arguing that the

skeleton can be replaced by an alternative skeleton that is longer and is still shorter,
by the excess in the dense windows, than an optimal path. (Since excess is a global
property that is not directly defined for windows, the resulting argument is somewhat
more complicated.) We provide the more technical proof above, since it brings to the
forefront the notion of surplus. Note that the surplus is decomposition sensitive; as
such, it might be much smaller than the excess. Therefore, the analysis of Theorem 3.8
is probably loose, as the bound on the error depends solely on the surplus in the dense
windows.

Remark 2. As mentioned in Remark 1, we ignored the use of bridges in describ-
ing Mitchell’s algorithm [10]. Our analysis implies that the use of those bridges is
restricted only to dense windows, where all we need is the performance guarantees
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already provided by Mitchell’s analysis. In particular, for those dense windows, we
can also use Arora’s algorithm. This is the main insight we use in extending our
algorithm to higher dimensions.

4. An (ε, u)-approximation algorithm for k-TSP in Rd. In this section,
we present an (ε, u)-approximation algorithm for k-TSP in higher dimensions, by
combining Mitchell’s methods together with Arora’s k-TSP algorithm [3]. Throughout
the section, we are concerned with Rd, where d > 2 is a fixed constant.

Let Q be an axis-parallel d-dimensional hypercube that contains the point set P .
In the following, m is a fixed constant, and π is a given path visiting k points of P .
The following definitions are analogous to the ones in section 3.

Definition 4.1. A closed, axis-parallel d-dimensional box w is a window if
w ⊆ Q. The extent of a window w is the largest side length of w and is denoted by
Δw.

A (d − 1)-dimensional hyperplane � is a cut for π, with respect to w, if � is
axis-parallel and � intersects w; � is an m-perfect cut for π, with respect to w, if �
intersects the segments of π(w) ∩ w at most m times.

Definition 4.2. The combinatorial type of a window w with respect to π is
the subset of P inside (or on the boundary of) w and a listing, for each facet of w,
of the identities of the line segments of π(w) that intersect it. We say that w is a
minimal window if there is no window w′ that is strictly contained in w with the same
combinatorial type as w.

For a minimal window w, if there is no m-perfect cut for π, with respect to w,
then it is m-dense. Namely, any axis-parallel (d − 1)-dimensional hyperplane that
intersects w has more than m intersection points with π(w) ∩ w.

The following claim is an immediate extension of Claim 3.3.
Claim 4.3. If a window w is m-dense, then ‖w ∩ π‖ ≥ m · Δw.
To bootstrap our algorithm, we need a (1 + ε)-approximation algorithm for the

WindowTSP problem in Rd. To this end, note that the WindowTSP problem
seeks a set of O(md) paths (with prespecified endpoints) that collectively visits a
prespecified number of points inside the given window; it is not hard to adapt Arora’s

technique to solve the WindowTSP problem in nO(md) · O(m log n)(m
√
d)O(d)

time,
such that the solution has a total length ≤ (1 + 1/m)L(w), where L(w) denotes the
length of an optimal solution inside the specified window w. (This problem can be
solved even faster, but it has no impact on the overall performance of our algorithm.)
The required adaption is straightforward, and we omit the tedious but easy details;
see [3, 1]. We denote this subroutine by kDenseAprxTSP.

For an instance of the WindowTSP problem, the algorithm works as follows. If
w has at most m points of P in its interior, then the subproblem is solved by brute
force. Otherwise, the algorithm chooses the smaller value returned by the following
two options.

(a) Use kDenseAprxTSP to solve this problem, providing a solution with total
length at most (1 + 1/m)L(w), where L(w) denotes the length of an optimal
solution inside w.

(b) Solve the problem recursively, optimizing over all choices associated with
an m-perfect cut of window w. (As in the R2 case, before performing the
recursive calls, we need to shrink the windows formed by the cut into minimal
windows.)

(i) There are O(d·n2) choices for a cut. More specifically, there are d choices
of (axial) directions, and we can always let the cut pass through either
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a point of P or an intersection point between π(w) and the boundary of
w. Since π(w) is a subset of the set of

(
n
2

)
possible segments (namely,

all segments connecting a pair of points of P ), it follows that there are
O(n2) possible intersection points between π(w) and the boundary of w.

(ii) There are O(k) choices of the number of points visited in new subprob-
lems, subject to the requirement that the total number of points visited
within the two subproblems is equal to the number specified in the given
instance.

(iii) There are O(n2m) choices of new boundary information on the cut.
Specifically, we select ≤ m segments (each determined by a pair of points
of P ) that cross the cut. We require that the boundary information of
the new subproblems be consistent with the boundary information of
the given instance.

(iv) There are a constant number of choices (since m and d are fixed con-
stants) of connectivity constraints for the two new subproblems deter-
mined by the cut, subject to the requirement that these constraints be
consistent with the constraints of the given instance.

Let kTSPAprxAlg denote this recursive algorithm. One can easily use mem-
oization to turn it into an efficient dynamic programming algorithm. There are
O
(
k · n2d · (n2m)2d

)
= O

(
k n(4m+2)d

)
possible subproblems, since there are O(k)

choices for the number of points that should be visited within w, O(n2d) choices of w,
and O(n2m) choices of crossing segments on each of the 2d facets of w. (The number
of possible connectivity constraints is a constant since m and d are fixed constants.)

Remark 3. Before analyzing this algorithm, observe that it can be viewed as the
combination of Mitchell’s method [10] with Arora’s k-TSP algorithm [3]. Specifically,
the algorithm’s top structure follows Mitchell’s method. However, conceptually, when-
ever the algorithm “encounters” a dense window, it uses kDenseAprxTSP (which
is an easy extension of Arora’s k-TSP algorithm).

To see why we had to modify Mitchell’s algorithm, observe that the algorithm
in section 3 cannot be used in higher dimensions directly, because part of Mitchell’s
k-TSP algorithm relies on a crucial property of m-guillotine subdivisions in the plane.
Namely, it introduces (and accounts for the additional length of) bridges on the path
to decrease the interaction of the path with the outside world when considering dense
windows. It is not known how to extend this directly to higher dimensions. However,
the need for bridges arises only when a window is dense. In a dense window (in
higher dimensions) we can circumvent this issue altogether by using Arora’s algorithm
(namely kDenseAprxTSP). Similarly, using Arora’s algorithm on its own does not
suffice here, since it introduces errors (by deflecting paths through “portals”) even in
windows which are not dense.

Analysis. To analyze the algorithm, we extend the definition of surplus (see Defi-
nition 3.5) to higher dimensions in a natural way. The following lemma is the analogue
of Lemma 3.7.

Lemma 4.4. Let D be a set of interior disjoint windows (inside Q), and let π be
a polygonal path inside Q. We have that Eπ,2 ≥

∑
w∈D(‖π ∩ w‖ −

√
dΔw).

The following theorem is similar to Theorem 3.8.
Theorem 4.5. Let π = 〈p1, p2, . . . , pk〉 be an arbitrary path that visits k points

of P , and let u ≥ 2 be an arbitrary fixed integer. One can compute, in nO(ud
√
d) ·

(u
√
d log n)(ud)

O(d)

time, a path that starts at p1 and visits k points of P , with length
at most ‖π‖ + Eπ,u/u.
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(i) (ii)

Fig. 6. (i) The path π∗
opt is divided into u = 5 subpaths, each of which visits a (roughly) equal

number of points. (ii) Since E2 ≥
∑

u
i=1 Ei/u, we obtain the desired path π′ by connecting pα2 to pα3 .

Proof. Set m =
⌈
2
√
d · u

⌉
. Observe that the algorithm kTSPAprxAlg uses

the algorithm kDenseAprxTSP inside the dense windows, which provides the re-
quired approximation guarantee. The argument now follows the proof of Theorem 3.8
(almost) verbatim, and is thus omitted.

Note that the algorithm in this section also works for the planar case (namely,
d = 2).

5. A PTAS for orienteering. Next, we apply the algorithm of Theorem 4.5
to the rooted orienteering problem.

Lemma 5.1. Given a set P of n points in Rd, a budget B, and a root r = p1,
let π∗

opt = 〈p1, p2, . . . , pk〉 be an optimal rooted orienteering path starting at r with

budget B. One can compute, in nO(d
√
d/ε) · (

√
d log n/ε)(d/ε)

O(d)

time, a path such that
it starts at r and visits at least (1 − ε)k points of P , with length at most B.

Proof. Set u = �2/ε�. Let π∗
opt(i, j) = 〈pi, pi+1, . . . , pj〉 denote the portion of the

path π∗
opt from pi to pj , and let E(i, j) =

∥∥π∗
opt(i, j)

∥∥− ‖pi − pj‖ denote its 2-excess.
Let αi = �(i− 1)(k − 1)/u�+1. By the definition, we have α1 = 1 and αu+1 = k, and
furthermore, each subpath π∗

opt(αi, αi+1) visits

αi+1 − αi − 1 =

(⌈
i(k − 1)

u

⌉
+ 1

)
−
(⌈

(i− 1)(k − 1)

u

⌉
+ 1

)
− 1 ≤

⌊
k − 1

u

⌋
(2)

points (excluding the endpoints pαi and pαi+1).
Consider the subpaths π∗

opt(α1, α2), . . . , π
∗
opt(αu, αu+1) of π∗

opt and their 2-excesses
E1 = E(α1, α2), . . . ,Eu = E(αu, αu+1), respectively. Clearly, there exists an index ν,
1 ≤ ν ≤ u, such that Eν ≥ (

∑u

i=1 Ei)/u.
By connecting the vertex pαν directly to the vertex pαν+1 in π∗

opt, we obtain a new

path π′ =
〈
p1, p2, . . . , pαν , pαν+1 , pαν+1+1, . . . , pk

〉
. Observe that ‖π′‖ =

∥∥π∗
opt

∥∥− Eν ,
and by (2), π′ visits at least k−(αν+1 − αν − 1) ≥ k−(k − 1)/u� ≥ (1−1/u)k points
of P . See Figure 6.

Consider the (u + 1)-skeleton S′ =
〈
pα1 , pα2 , . . . , pαu+1

〉
of π′. By the definition

of Ei, we have that ‖S′‖ =
∥∥π∗

opt

∥∥−
∑u

i=1 Ei. Therefore, by the definition of Eπ′,u+1,
we have that

Eπ′,u+1 ≤ ‖π′‖ − ‖S′‖ =
(∥∥π∗

opt

∥∥− Eν

)
−
(∥∥π∗

opt

∥∥−
u∑

i=1

Ei

)
=

u∑
i=1

Ei − Eν .
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By applying Theorem 4.5 to the path π′, one can compute a path ξ that visits
(1 − 1/u)k ≥ (1 − ε)k points of P , of length

‖ξ‖ ≤ ‖π′‖ +
Eπ′,u+1

u + 1
≤
(∥∥π∗

opt

∥∥− Eν

)
+

1

u + 1

(
u∑

i=1

Ei − Eν

)

=
∥∥π∗

opt

∥∥ +
1

u + 1

(
u∑

i=1

Ei − (u + 2)Eν

)
≤

∥∥π∗
opt

∥∥ ≤ B,

since
∑u

i=1 Ei − (u + 2)Eν ≤ 0, implied by Eν ≥ (
∑u

i=1 Ei)/u.
Of course, the value of k is not known in advance. Therefore, the algorithm tries

all possible values of k from 1 to n and returns the maximum value such that k points
of P can be visited within the budget B.

Theorem 5.2. Given a set P of n points in Rd, a budget B, and a root r, let
kopt be the number of points of P visited by an optimal orienteering path starting at

r with budget B. One can compute, in nO(d
√
d/ε) · (

√
d log n/ε)(d/ε)

O(d)

time, a path
that starts at r and visits at least (1 − ε)kopt points of P , with length at most B.

6. Conclusions. In this paper, we defined the notion of (ε, u)-approximation
to k-TSP, and showed that Mitchell’s k-TSP algorithm [10] actually works as an
(ε, u)-approximation algorithm for the k-TSP problem in the plane. We used it to
develop a (1− ε)-approximation algorithm for the orienteering problem. The analysis
easily extends to handling the case where both the starting and ending vertices of the
orienteering problem are specified. In particular, the algorithm can approximate the
best orienteering cycle rooted at a point r.

Our algorithm sheds a light on the power of Mitchell’s approach [10], which has
the advantage that it introduces errors only when the underlying path is “dense.”
This is in contrast to Arora’s technique [3], which inherently introduces error in the
approximation generated.

In the new analysis of the k-TSP algorithm the notion of surplus emerges natu-
rally. We expect it to be much smaller than the excess in a lot of cases, and it might
be of independent interest and useful in analyzing other algorithms.

There are numerous problems for further research, including the following:
• Can the running time be significantly improved?
• Can one extend the algorithms presented here to the problem of visiting points

with time window constraints [7, 5, 8], where one has to visit a point inside
a prespecified time window? This problem seems to be more challenging.
Currently, even a constant-factor approximation algorithm is not known for
the simple case of visiting points on the line.

Acknowledgment. The authors would like to thank the anonymous referees for
their useful comments.
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WITH RESTRICTED REPACKING∗
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Abstract. In 1996 Ivkovič and Lloyd [A fundamental restriction on fully dynamic maintenance
of bin packing, Inform. Process. Lett., 59 (1996), pp. 229–232] gave the lower bound 4

3
on the

asymptotic worst-case ratio for so-called fully dynamic bin packing algorithms, where the number
of repackable items in each step is restricted by a constant. In this paper we improve this result to
about 1.3871. We present our proof for a semionline case of the classical bin packing, but it works
for fully dynamic bin packing as well. We prove the lower bound by analyzing and solving a specific
optimization problem. The bound can be expressed exactly using the Lambert W function.
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1. Introduction. The classical one-dimensional bin packing problem is among
the most frequently studied combinatorial optimization problems. In its traditional
definition a list L = {x1, x2, . . . , xn} of elements (also called items) with sizes in the
interval (0, 1] and an infinite list of unit capacity bins are given. Each element xi

from the list L has to be assigned to a unique bin such that the sum of the sizes of
the elements in a bin does not exceed the bin capacity. The size of an element will
also be denoted by xi. The bin packing problem consists of packing the items into the
bins in such a way that as few bins as possible are used.

It is well known that finding an optimal packing is NP-hard [8]. Consequently, a
large number of papers have been published which look for polynomial time algorithms
that find feasible solutions with an acceptable approximation quality.

For measuring the efficiency of algorithms there are two general methods: the
investigation of the worst-case behavior or—assuming some probability distribution
of the elements—a probabilistic analysis. In this paper we will concentrate on the
asymptotic worst-case ratio of an algorithm. For a given list L, denote by A(L) and
OPT (L) the number of bins used by algorithm A and the number of bins used in
an optimal packing, respectively. Then the asymptotic worst-case ratio (AWR) of
algorithm A is

RA := lim sup
k→∞

{
max
L

{
A(L)

k

∣∣∣∣OPT (L) = k

}}
.

If an algorithm has an AWR of RA, we also say that it is RA-competitive.
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In recent decades many different types of algorithms have been proposed and also
several variants of the classical problem have been introduced and studied [2]. Since
the terminology used for classifying algorithms or problems is not unique, we start
the paper with a proposal for a new classification based on a different view of the
problem. To this end, we distinguish two contributors: the scheduler, who provides
information on the problem data, and the loader, who packs the items. The actual
problem then depends on how the scheduler gives the data and which strategies the
loader uses for packing.

We suppose that the scheduler reveals information about the items at subsequent
discrete time steps. The information consists of messages that certain elements (with
respective sizes) arrive and/or that certain elements can be deleted. The total number
of such time steps is at most n because information about several items can be given
in the same step. If the element xi appears in step j to be added to the list, then we
say that its arrival time ai is j. In some step k, the scheduler may also inform about
the fact that the item xi can be deleted. We say that the deletion time di of xi is k.
From this time the item may be deleted from the bin into which it was packed earlier.
Of course, ai < di, for 1 ≤ i ≤ n. By setting di = ∞ we indicate that no deletion
time for item xi has been given.

At every time step the loader decides on its actions for packing the items. If some
elements are packed and some others are deleted, we assume that first the deletion
operations are performed.

In short, the scheduler decides on how the problem data is given, and the loader
finds a feasible packing of all items depending on arrival and deletion times. Special
strategies now lead to different variants of bin packing.

If ai = 1 and di = ∞ for every i, 1 ≤ i ≤ n, then the loader immediately receives
complete knowledge about the list. In this case the scheduler produces an offline
problem and the loader applies an offline algorithm.

If ai = i and di = ∞ and the loader packs the items one by one in each step
without knowing anything about subsequent elements (neither the sizes nor the num-
ber of the elements), and the packed items may not be repacked anymore during the
algorithm, then we speak about an online problem and an online algorithm.

In the case of semionline (SOL) algorithms the scheduler specifies the problem
online as above, but the loader is allowed to apply at least one of the following
operations: a repacking of some items, a lookahead into the next several elements,
or some kind of preordering. SOL algorithms allowing only a restricted number of
elements to be repacked in each step are called c-repacking SOL algorithms.

If the scheduler also allows the deletion of elements, then we speak about a dy-
namic bin packing problem (DBP), and if the loader exploits this additional informa-
tion for deleting items then his algorithm is a dynamic bin-packing algorithm. In this
case A(L) is considered as the maximum number of used bins during the packing. An
offline DBP basically would be a special type of scheduling problem. Therefore, in
the context of bin packing, only online and SOL dynamic problems are investigated.

If, in the SOL case, only repacking is allowed for the loader, and the scheduler
may specify some elements to be deleted, then Ivkovič and Lloyd in [12] use the terms
fully dynamic bin packing problem (FDBP) and fully dynamic bin packing algorithm.
The c-repacking FDBP can be defined similarly to the definition of c-repacking SOL
problems.

For offline bin packing algorithms the best results were achieved in [5] and [13],
where the authors proved that for any ε > 0, there are algorithms which can solve
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the bin packing problem in linear time, while their AWR is 1 + ε. Recently, the best
online algorithm was given by Seiden in [15] and its AWR is 1.58889. The best-known
lower bound 1.5401 is due to van Vliet [16].

SOL algorithms were investigated in [9], [10], and [6]. The first and the second ref-
erences use different types of lookaheads, and the last one allows repacking. Gambosi,
Postiglione, and Talamo [7] also analyzed certain SOL algorithms. In their algorithms
repacking was allowed in a special way: those elements which were “large enough”
were repacked one by one, while the “small” elements were moved together in a bun-
dle between the bins. In this sense these algorithms can repack even O(n) elements
in one step. They analyzed two algorithms. The faster one has linear time and is
3
2 -competitive, and the other one runs in O(n log n) time and is 4

3 -competitive. Re-
cently, except for trivial results, no good lower bound has been found for the efficiency
of SOL algorithms.

Various dynamic approximation algorithms were investigated in [3].
Ivkovič and Lloyd constructed an approximation algorithm to solve the FDBP

(see [12]). Similar to the technique used in [7], they also repacked the small elements
using a “bundle technique.” The competitive ratio of their algorithm is 5

4 and requires
Θ(log n) time per step; i.e., its running time is Θ(n log n). Investigating the lower
bounds, they proved that there is no FDBP algorithm with deletions and where only
a constant number of elements may be repacked with a better competitive ratio than
4
3 [11] (i.e., for the c-repacking FDBP for any c). Using a similar construction in
the proof, we can apply this bound to SOL algorithms as well. This fact was also
mentioned by Csirik and Woeginger in [4].

In this paper we improve the lower bound to 1.3871 for the c-repacking SOL al-
gorithms, but it follows from the construction that this lower bound is also valid for
c-repacking fully dynamic bin packing algorithms. This last fact is coming from the fol-
lowing observation. While we try to construct lower bounds either for the c-repacking
SOL problem or the c-repacking FDBP, we realize that the two constructions differ
slightly from each other: to allow some deletions will not spoil the c-repacking SOL
lower-bound construction for the c-repacking FDBP case.

During our analysis we will use different instruments: LP techniques will be
combined with results from linear algebra, and finally we will solve a nonlinear opti-
mization problem.

2. Construction of the linear program. For k ≥ 1, n ≥ 1, let x1, x2, . . . ,
xk

(
1
2 ≤ x1 < x2 < · · · < xk < 1

)
be fixed real numbers and c ≥ 1 be an arbitrary

integer. Define yi = 1 − xi (i = 1, . . . , k) and yk+1 = 0. Furthermore, let ε <
minj=1,...,k {yj − yj+1} be an arbitrary positive number and εj := ε

� n
2yj

� .

Denote the first list by L0. Define L0 as a list of N items of size a, where

a < εk
� n
yk

�c and N := �
n
2 −ε

a �. We can see that L0 contains very small elements with

equal, suitably chosen size. The cumulative size of the small items converges to n
2

from below if n → ∞. Denote by Li (1 ≤ i ≤ k, k ≥ 2) the lists containing big
elements. Define Li as a list of � n

2yi
	 items of size xi + εi. This means that the sizes

of the elements are equal in list Li. Suppose we need to pack the elements of the lists
L0, L1, . . . , Lk with an SOL algorithm which can repack only a constant number of
elements. We call these kinds of algorithms c-repacking algorithms. We analyze the
behavior of an arbitrary c-repacking algorithm for the lists L0 and L0Li (1 ≤ i ≤ k).
In our analysis size(B) denotes the total size of items in bin B. We present the lower
bound as a solution of a linear programming problem.
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Lemma 1.

lim sup
n→∞

A (L0)

OPT (L0)
≥ 1 +

k∑
j=1

2zj

(
1

yj
− 1

)
.

Proof. Consider an arbitrary c-repacking algorithm A that has to pack list L0

first. It is clear that the above-defined a is a very small number, and the total size
of the repackable items in � n

2yj
	 (j = 1, . . . , k) steps is less than εk, which is the

smallest among ε1, . . . , εk. We want to give a lower bound on A (L0). Denote by zin
the cumulative size of the items that have been packed in yi-type bins (i = 1, . . . , k).
Bin B is called a yi-type bin if size(B) ∈ (yi+1, yi]. It is easy to see that the total
number of yi-type bins is at least zin

yi
. The cumulative size of the items that have not

been packed in any yi-type bin is Na− n
∑k

j=1 zj . So we get that

A (L0) ≥
k∑

j=1

zjn

yj
+ Na− n

k∑
j=1

zj = Na + n

k∑
j=1

zj

(
1

yj
− 1

)
.

Because of the definition of N we have Na ≥ n
2 − ε− a. This means that

(1) A (L0) ≥ n

⎛
⎝1

2
+

k∑
j=1

zj

(
1

yj
− 1

)⎞
⎠− ε− a.

In the following we investigate the behavior of the optimal algorithm on L0. In the
optimal packing each bin B is loaded such that size(B) > 1 − a. So we get

(2) OPT (L0) ≤
Na

1 − a
+ 1 ≤

n
2 − ε

1 − a
+ 1 ≤

n
2

1 − a
+ 1.

From (1) and (2) it follows that

(3) lim sup
n→∞

A (L0)

OPT (L0)
≥ 1 +

k∑
j=1

2zj

(
1

yj
− 1

)
.

Lemma 2. For i = 1, . . . , k,

lim sup
n→∞

A (L0Li)

OPT (L0Li)
≥ 1 + yi + 2yi

⎛
⎝i−1∑

j=1

zj

(
1

yj
− 1

)
−

k∑
j=i

zj

⎞
⎠ .

Proof. Consider now the packing of the concatenated list L0Li (1 ≤ i ≤ k) for
fixed i. Let B be a bin which contains an element from Li. Because the size of the
big item is xi + εi, the total size of the small elements in the bin is at most yi − εi.
This can also happen in such a way that, after L0 has been packed, the bin contains
more items, but during the processing of Li, some of them have been repacked to
other bins. Since the list Li has exactly � n

2yi
	 elements, at most c� n

2yi
	 elements could

have been repacked. The size of each small item is a, so from the definition of a and
εi we get that A can repack small items with at most εi cumulative size. So we can
say that after packing L0 size(B) ≤ yi must hold for B. From this it follows that the

cumulative size of the small items packed together with an item from Li is
∑k

j=i zjn.
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Other small items from L0 can be packed in yj-type bins, where j = 1, . . . , i− 1. The

total size of the remaining elements of L0 is Na− n
∑k

j=1 zj . So we can estimate the
number of bins used by A in the following way:

(4) A (L0Li) ≥
n

2yi
+ n

i−1∑
j=1

zj
yj

+ Na− n

k∑
j=1

zj (i = 1, . . . , k) .

For the optimal packing of L0Li (1 ≤ i ≤ k) we get that

(5) OPT (L0Li) ≤
⌈

n

2yi

⌉
+ Si ≤

n

2yi
+ Si + 1,

where Si is the total number of bins which contain only items from L0 in an optimal
packing. A bin containing an Li-element will be denoted by Bi. We obtain for the
cumulative size small(Bi) of the small elements in Bi that

small(Bi) ≥
⌈

n

2yi

⌉
(yi − εi − a) ≥ n

2
−
⌈

n

2yi

⌉
εi −

⌈
n

2yi

⌉
a

≥ Na−
⌈

n

2yi

⌉
a ≥ Na− ε,

because a < ε⌈
n

2yi

⌉ . So

(6) Si ≤ 1.

From (5) and (6)

(7) OPT (L0Li) ≤
n

2yi
+ 2.

Combining (4) and (7) we get that

lim sup
n→∞

A (L0Li)

OPT (L0Li)
≥ 1 + yi + 2yi

⎛
⎝i−1∑

j=1

zj

(
1

yj
− 1

)
−

k∑
j=i

zj

⎞
⎠(8)

(i = 1, . . . , k) .

Theorem 3. The solution of the following linear programming problem is a lower
bound for any SOL c-repacking algorithm:

min b

b ≥ 1 + yi + 2yi

⎛
⎝i−1∑

j=1

zj

(
1

yj
− 1

)
−

k∑
j=i

zj

⎞
⎠ (i = 1, . . . , k) ,

b ≥ 1 +

k∑
j=1

2zj

(
1

yj
− 1

)
,(9)

zi ≥ 0 (i = 1, . . . , k) ,

k∑
j=1

zj <
1

2
.
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Proof. The definition of zj (j = 1, . . . , k) obviously implies that
∑k

j=1 zj < 1
2 .

The statement of the theorem then follows from Lemmas 1 and 2.

3. Solution of the linear program. To simplify our model we introduce a
new variable z, which is the sum of all zj ’s, i.e., z =

∑k
j=1 zj . Using this substitution

and some reordering, we can rewrite (9) in the following form:

min b

−2yiz + 2yi

i−1∑
j=1

zj
yj

− b ≤ − (1 + yi) (i = 1, . . . , k) ,

−2z + 2

k∑
j=1

zj
yj

− b ≤ −1,(10)

−z +

k∑
j=1

zj = 0,

zi ≥ 0 (i = 1, . . . , k) ,

z <
1

2
.

Instead of (10) we first solve a linear system of equations related to our problem.
The number of equations is k + 2. The variables of the system are z, z1, . . . , zk, b,
while y1, . . . , yk are some fixed parameters, satisfying the conditions of Theorem 3.

−2yiz + 2yi

i−1∑
j=1

zj
yj

− b = − (1 + yi) (i = 1, . . . , k) ,

−2z + 2

k∑
j=1

zj
yj

− b = −1,(11)

−z +

k∑
j=1

zj = 0.

Lemma 4. The system (11) has a unique solution.
Proof. Let M be the matrix of (11). Then

(12) M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2y1 0 . . . 0 0 −1

−2y2 2y2

y1
. . . 0 0 −1

...
...

. . .
...

...
...

−2yk 2yk

y1
. . . 2 yk

yk−1
0 −1

−2 2
y1

. . . 2
yk−1

2
yk

−1

−1 1 . . . 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Denote by det(M) the determinant of M . We prove that det(M) < 0, and so from
Cramer’s rule the statement of the lemma follows. Let us expand det(M) using the
last column of M . So we obtain

(13) det(M) =

k+1∑
i=1

− 1 (−1)
k+2+i

det(Mi) =

k+1∑
i=1

(−1)
k+1+i

det(Mi),

where Mi is a (k + 1)× (k + 1) matrix, which is obtained from M by deleting its last
column and ith row. Expand det(Mi) by its last row. So

(14) det(Mi) = (−1)(−1)k+2 det(Mi1) +

k+1∑
j=2

(−1)
k+1+j

det(Mij),

where Mij is a k × k matrix, which is obtained from Mi by deleting its last row and
jth column. Now we investigate how Mij looks:

Mij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2y1 0 . . . 0 0 . . . 0 0

−2y2 2y2

y1
. . . 0 0 . . . 0 0

...
...

. . .
...

...
. . .

...
...

−2yi−1 2yi−1

y1
. . . 2 yi−1

yj−2
2yi−1

yj
. . . 0 0

−2yi+1 2yi+1

y1
. . . 2 yi+1

yj−2
2yi+1

yj

. . . 0 0

...
...

. . .
...

...
. . .

. . .
...

−2yk 2yk

y1
. . . 2 yk

yj−2
2yk

yj
. . . 2 yk

yk−1
0

−2 2
y1

. . . 2
yj−2

2
yj

. . . 2
yk−1

2
yk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Case A. Suppose that j �= i and j �= i+ 1 and consider only the ith and (i+ 1)th
columns of Mij . The two columns are the following:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

...
...

0 0

2 yi+1

yi−1
2yi+1

yi

...
...

2 yk

yi−1
2yk

yi

2
yi−1

2
yi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is easy to see that these columns are not independent, so we obtain that det(Mij) =
0 if j �= i and j �= i + 1.
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Case B. If j = i, then Mii is a lower triangular matrix of the form

Mii =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2y1 0 . . . 0 0 . . . 0 0

−2y2 2y2

y1
. . . 0 0 . . . 0 0

...
...

. . .
...

...
. . .

...
...

−2yi−1 2yi−1

y1
. . . 2yi−1

yi−2
0 . . . 0 0

−2yi+1 2yi+1

y1
. . . 2 yi+1

yi−2
2yi+1

yi

. . . 0 0

...
...

. . .
...

...
. . .

. . .
...

−2yk 2yk

y1
. . . 2 yk

yi−2
2yk

yi
. . . 2 yk

yk−1
0

−2 2
y1

. . . 2
yi−2

2
yi

. . . 2
yk−1

2
yk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From this we get that det(M11) = 2k 1
y1

, det(M(k+1)(k+1)) = −2kyk, and that for

2 ≤ i ≤ k, det(Mii) = −2k yi−1

yi
.

Case C. Similarly, if j = i + 1, then Mi(i+1) is also a lower triangular matrix:

Mi(i+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2y1 0 . . . 0 0 . . . 0 0

−2y2 2y2

y1
. . . 0 0 . . . 0 0

...
...

. . .
...

...
. . .

...
...

−2yi−1 2yi−1

y1
. . . 2yi−1

yi−2
0 . . . 0 0

−2yi+1 2yi+1

y1
. . . 2 yi+1

yi−2
2 yi+1

yi−1

. . . 0 0

...
...

. . .
...

...
. . .

. . .
...

−2yk 2yk

y1
. . . 2 yk

yi−2
2 yk

yi−1
. . . 2 yk

yk−1
0

−2 2
y1

. . . 2
yi−2

2
yi−1

. . . 2
yk−1

2
yk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is easy to see that det(Mi(i+1)) = −2k if i �= 1 and det(M12) = 2k.
Using these results, we get from (14) that

det(M1) = −2k
(

(−1)k+2 1

y1
+ (−1)

k+3

)
,

det(Mi) = −2k
(

(−1)
k+1+i yi−1

yi
+ (−1)

k+1+i+1

)
, i = 2, . . . , k,

det(Mk+1) = −2kyk.
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So from (13) we obtain

det(M) = −2k
(

(−1)
2(k+1) 1

y1
+ (−1)

2(k+1)+1

)

+ −2k

(
k∑

i=2

(
(−1)

2(k+1+i) yi−1

yi
+ (−1)

2(k+1+i)+1

)
+ (−1)

2(k+1)
yk

)

= −2k

(
1

y1
+

k∑
i=2

yi−1

yi
+ yk − k

)
.

Since yi−1 > yi (i = 2, . . . , k) and 1
2 ≥ y1 we get 1

y1
+

∑k
i=2

yi−1

yi
> k, and so

det(M) < 0.
Lemma 5. The solution of system (11) satisfies the conditions of the linear

program (10) and

b = 1 +
1 − yk

1
y1

+
k∑

i=2

yi−1

yi
+ yk − k

.

Proof. By substituting the right-hand side of (11) into M , we obtain the matrix
Mb,

Mb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2y1 0 . . . 0 0 −1 − y1

−2y2 2y2

y1
. . . 0 0 −1 − y2

...
...

. . .
...

...
...

−2yk 2yk

y1
. . . 2 yk

yk−1
0 −1 − yk

−2 2
y1

. . . 2
yk−1

2
yk

−1

−1 1 . . . 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

det(Mb) = det(M) +

k∑
i=1

yi (−1)
k+1+i

det(Mi) = det(M) − 2k (1 − yk) .

Using again Cramer’s rule,

b =
det(Mb)

det(M)
= 1 +

1 − yk

1
y1

+
k∑

i=2

yi−1

yi
+ yk − k

.

By a similar analysis we can prove that the other conditions of (10) also hold. As an
example we present only the inequality

z =
det(Mz)

det(M)
=

1
2 det(M) − 2k−1 yk−1

y1

det(M)
=

1

2
+

yk − 1

2y1

(
1
y1

+
k∑

i=2

yi−1

yi
+ yk − k

) <
1

2
,
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where

Mz =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 − y1 0 . . . 0 0 −1 − y1

−1 − y2 2y2

y1
. . . 0 0 −1 − y2

...
...

. . .
...

...
...

−1 − yk 2yk

y1
. . . 2 yk

yk−1
0 −1 − yk

−1 2
y1

. . . 2
yk−1

2
yk

−1

0 1 . . . 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The validity of the other inequalities can be shown easily.
Lemma 6. The solution of system (11) is an optimal solution of the linear program

(10).
Proof. Consider the solution vector v of (11). Because of Lemma 5 it is a feasible

solution of (10). Let v be a basis solution. The objective function contains only
b, which has a positive coefficient, satisfying the optimum criterion. So we get the
statement of the lemma.

4. Getting the lower bound. In this section we deal with the optimal choice
of the variables y1, y2, . . . , yk. To choose them in an optimal way, we have to solve
the following nonlinear optimization problem:

max

{
1 +

1 − yk

1
y1

+
k∑

i=2

yi−1

yi
+ yk − k

}
(15)

subject to
1

2
≥ y1 > · · · > yk > 0.

It does not seem to be easy to solve (15) analytically for arbitrary fixed k, but it
can be done numerically by global optimization tools. Details can be found in [1]. In
this paper we analyze (15) for the case when k → ∞.

Lemma 7. The optimal solution of (15) converges to the maximum of the function

f(x) := 1 +
1 − x

x + 1 + ln
(

1
x

)
− ln (2)

in the interval
(
0, 1

2

]
if k → ∞.

Proof. We distinguish two cases.
Case 1. In this case we assume that y2 ≤ y1

2 . Then 2 ≤ y1

y2
. Using y1 ≤ 1

2 , y2 ≤
1
4 , yk ≤ y2, 4 ≥ 2 + yk, and applying the inequality between the arithmetic and
geometric means for the numbers y2

y3
, y3

y4
, . . . , yk−1

yk
, yk in the denominator of (15), we

obtain the upper approximation (see [14])

1 +
1 − yk

1
y1

+
k∑

i=2

yi−1

yi
+ yk − k

≤ 1 +
1 − yk

4 +
k∑

i=3

yi−1

yi
+ yk − k

≤ 1 +
1 − yk

2 + yk − k + (k − 1) k−1
√
yk

.
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x

Fig. 1. Graph of the function f(x) in the interval
(
0, 1

2

]
.

Using that limk→∞ (k − 1) k−1
√
x− k = ln (x)− 1 and ln(x) < − 5

4 if x ≤ 1
4 , we obtain

that

lim
k→∞

1 +
1 − yk

1
y1

+
k∑

i=2

yi−1

yi
+ yk − k

≤ 1 +
1 − yk

yk + 1 + ln (yk)
< 1.

Case 2. Suppose that y2 > y1

2 . From this we get 2y2 (1 − 2y1) ≥ y1 (1 − 2y1), and
so

(16)
1

y1
+

y1

y2
≥ 2 +

1

2y2
.

Using (16) and y1 ≤ 1
2 and then applying again the inequality between the arithmetic

and geometric means for the numbers 1
2y2

, y2

y3
, . . . , yk−1

yk
in the denominator of (15),

we obtain the upper approximation

1 +
1 − yk

1
y1

+
k∑

i=2

yi−1

yi
+ yk − k

≤ 1 +
1 − yk

2 + 1
2y2

+
k∑

i=3

yi−1

yi
+ yk − k

≤ 1 +
1 − yk

2 + yk − k + (k − 1) k−1

√
1

2yk

.

Since limk→∞ (k − 1) k−1

√
1
2x − k = ln

(
1
x

)
− ln(2) − 1, we get that

lim
k→∞

1 +
1 − yk

1
y1

+
k∑

i=2

yi−1

yi
+ yk − k

≤ 1 +
1 − yk

yk + 1 + ln
(

1
yk

)
− ln (2)

.

Since 1−x
x+1+ln( 1

x )−ln(2)
≥ 0 if x ∈ (0, 1

2 ], we get that the maximum of the limit comes

from Case 2, which proves the statement of the lemma. The graph of function f(x)
of Case 2 can be seen in Figure 1.
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Fig. 2. Graph of the function W−1(x) in the interval [−0.3, 0).

Here we used the fact that, if we compute the maximum of f(x) in the given
interval, then we can construct a series of values y1, y2, . . . , yk which gives an optimal
solution for (15). The construction sets y1 to 1

2 and defines the geometrical series

yi = 1
2 (2yk)

i−1
k−1 , i = 2, . . . , k, which ends with yk.

Lemma 8. The maximum of the function f(x) is 1− 1

W−1(−2

e3
)+1

≈ 1.3871 in the

interval
(
0, 1

2

]
, where W−1 (x) is the real branch of the Lambert W function for which

W (x) ≤ −1 holds.
Proof. The proof is straightforward by taking the derivative of f(x) and investi-

gating the function analytically. Figure 2 displays the graph of the function W−1(x)
in the interval [−0.3, 0).

5. Conclusions. In this paper we discussed improved lower bounds for the c-
repacking version of the classical online bin packing problem. Note, however, that
these bounds are valid for c-repacking fully dynamic bin packing algorithms as well.
Namely, when deletions are allowed, our construction can be applied in the following
way. We first give the list L0, then insert L1, and after deleting this, we insert L2, etc.
By examining the list L0 and the L0L1, L0L2, . . . , L0Lk configurations, we obtain the
same lower bound with similar arguments as above.
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AN APTAS FOR GENERALIZED COST
VARIABLE-SIZED BIN PACKING∗
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Abstract. Bin packing is a well-known problem which has a large number of applications.
Classical bin packing is a simple model in which all bins are identical. In the bin packing problem
with variable-sized bins, we are given a supply of a variety of sizes. This latter model assumes,
however, that the cost of a bin is always defined to be its exact size. In this paper we study the more
general problem where an available bin size is associated with a fixed cost, which may be smaller
or larger than its size. The costs of different bin sizes are unrelated. This generalized problem has
various applications in storage and scheduling. In order to generalize previous work, we design new
rounding and allocation methods. Our main result is an asymptotic polynomial time approximation
scheme for the generalized problem.
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1. Introduction. Bin packing is a natural and well-studied problem which has
applications in computer storage, bandwidth allocation, stock cutting, transportation,
and many other important fields. The study of bin packing started more than 30 years
ago [5, 7]. Since then, a large amount of research has been dedicated to this problem
and its variants (see, e.g., [1, 3, 10]).

An interesting variant of this problem is variable-sized bin packing, in which a
supply of containers of some fixed (finite) number of given sizes is available, instead of
just a supply of a single bin type. The cost of using a bin is simply its size. The first
to investigate the variable-sized bin packing problem were Friesen and Langston [4].
Several papers studied this problem in offline and online environments [12, 2, 13, 14].

We consider the following variant of one-dimensional bin packing, which is a
natural generalization of both classical bin packing and variable-sized bin packing.
We are given an infinite supply of bins of r types whose sizes are denoted by br <
· · · < b1 = 1. We denote B = {b1, . . . , br}. Items of sizes in (0, 1] are to be partitioned
into subsets. The set of items is denoted S, and the items have indices in the set
{1, 2, . . . , n}. The size of item j is denoted by sj . Each subset J in the partition has
to be assigned (packed) to some bin type i, such that the set of items fits into an
instance of this bin type, i.e.,

∑
j∈J sj ≤ bi. A bin type i is associated with a cost ci.

We assume c1 = 1. Thus, the cost of a solution is the sum of costs of the bins used,
taking multiple subsets which are using the same bin type into account. That is, if
the subsets are J1, . . . , Jk, and subset � is packed into a bin of type i� (for 1 ≤ � ≤ k),

we get the cost
∑k

�=1 ci� . The goal is to find a feasible solution whose total cost is
minimized. Without loss of generality we let br+1 = cr+1 = 0. We call this problem
generalized cost variable-sized bin packing (GCVS).

This problem clearly generalizes the classical bin packing problem (where B =
{b1}) and variable-sized bin packing (where ci = bi for 1 ≤ i ≤ r). Classical bin
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packing assumes a very simple model with uniform bin sizes. Although a large number
of real-world problems can indeed be defined as such a problem, an even larger number
of problems involve bins of various sizes. This started the study of variable-sized bin
packing. To simplify reality, such models usually assume that the cost per unit of
storage area is constant. Once again, this is not always the case in real life, as can be
easily seen from prices of memory sticks and portable hard disks. Moreover, typically
a smaller container has a larger cost per unit of storage, as is the case with various
current storage devices. On the other hand, we sometimes encounter a phenomenon
where we find that due to technological barriers, the cost of a memory storage device
with a capacity twice as large is more than twice the cost of the more modest device.

These are just examples that in reality the cost of storage containers just cannot
be assumed to be linear in their sizes. Previous studies of generalized costs functions
assumed that the price per unit decreases as the bin size grows. Kang and Park
[9], who studied a generalized problem with cost functions satisfying ci

bi
≤ cj

bj
for

i > j, suggested an algorithm of asymptotic approximation ratio 3
2 . Another possibly

reasonable assumption is a concave cost function (see [11]). From the scenarios stated
above, showing that pricing policies can be arbitrary, we deduce that neither option
describes the typical real situation. This leads to the study of general cost functions.

It is known that no approximation algorithm for the classical bin packing problem
can have a cost within a constant factor r of the minimum number of required bins
for r < 3

2 unless P = NP. This leads to the usage of the standard quality measure
for the performance of bin packing algorithms which is the asymptotic approximation
ratio or asymptotic performance guarantee. For an algorithm A, we denote its cost on
an input X by A(X ). An optimal algorithm is denoted by opt, and its cost of input
X is denoted by opt(X ).

The asymptotic approximation ratio for an algorithm A is defined to be

R(A) = lim sup
n→∞

sup
X

{
A(X )

opt(X )

∣∣∣∣∣opt(X ) = n

}
.

The natural question, which was whether this measure allows one to find an ap-
proximation scheme for classical bin packing, was answered affirmatively by Fernandez
de la Vega and Lueker [3]. They designed an algorithm whose output never exceeds
(1 + ε)opt(I) + f(ε) bins for an input I and a given ε > 0. The running time was
linear in n but depended exponentially on ε. Such a class of algorithms is considered
to be an asymptotic polynomial time approximation scheme (APTAS).

Karmarkar and Karp [10] developed an asymptotic fully polynomial time approx-
imation scheme (AFPTAS) for the same problem. This means that using a similar
(but much more complex) algorithm, it is possible to achieve a running time which
depends on 1

ε polynomially, without any loss in the approximation ratio. Karmarkar

and Karp [10] also designed an algorithm which uses at most opt(I) + log2[opt(I)]
bins for an input I.

Murgolo [12] designed an APTAS and an AFPTAS for the bin packing problem
with variable-sized bins. These results are relatively similar to those of [3, 10] and
rely heavily on the fact that the cost of a bin equals its size.

Outline. In this paper, we design an APTAS for GCVS. In section 2 we state and
prove some reductions which allow us to seek a slightly simpler structure of solution.
These reductions need to be handled carefully to enable the usage of some simplifying
assumptions later. In particular, we define a structure for optimal packings, which
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turns out to give a solution which is not very different from an overall optimal solution
but allows one to simplify the search for optimal solutions. Such a solution allows
one to pack an item into a bin that is much larger than the smallest bin that can
contain this item or whose cost is not more than a constant multiplicative factor (in
terms of ε) away from the cost of such a minimal bin. Before describing the scheme
in full detail, we present an outline in section 3. In section 4 we show how to apply
grouping and rounding procedures on the input. We partition the input into sets
as a function of the smallest bin they can fit into. To be able to apply rounding
techniques on each set, we show that the largest items of every group can be packed
according to one of two very different packing rules. We note that the number of item
sizes resulting from the rounding procedure is not a constant. Therefore, many of
the known methods for solving such rounded problems cannot be applied to solve our
rounded problem. One example of a standard approach which fails is to formulate an
integer programming formulation for the rounded problem. However, in our case its
dimension is not constant, and therefore we cannot simply use Lenstra’s algorithm
[8] to solve the rounded instance and find an optimal packing for it. Despite these
difficulties, we show in section 5 that we can get a near-optimal solution to the original
problem using a shortest path computation. We use the properties proved in section
2 to reduce to a polynomial size the size of the graph in which we look for the shortest
path. Our shortest path computation allocates items to bins, where bin sizes are
considered along the path in an increasing order of costs, starting with the cheapest
bins. We prove the correctness of our scheme in section 6. We conclude this paper
with some remarks in section 7.

This algorithm uses methods of rounding and grouping that are based on ideas
from [3] and [12]. However, as the adaptation of these ideas into a scheme with general
costs requires a treatment of the bin types in a sorted order, we apply a layered
graph based scheme for this. Such a scheme (for a scheduling problem) was given
by Hochbaum and Shmoys [6]. To be able to design a solution for the most general
problem with no assumptions on the cost function, we additionally apply some novel
methods. Note that the running time of our APTAS depends on the number of bin
types, r, polynomially (i.e., r is seen as a part of the input). Throughout this paper
we denote by ε a fixed positive constant such that ε < 1

100 and 1
ε is an integer.

2. Some reductions. In this section we show a series of modifications on B
and restrictions on the optimal solution. We do not apply any modifications on the
input items at this time. In the following sections we will compute a solution that
uses only the modified set of bins and approximates an optimal solution among the
possible solutions under the specified restrictions. The first reduction keeps at least
one optimal solution unaffected, whereas the other reductions change the optimal
solutions and moreover result in an increase in the total cost of an optimal solution.
However, we will show that this increase is bounded by a (multiplicative) factor of
1 + ε.

Lemma 1. Without loss of generality we assume that the values ci are monoton-
ically decreasing (i.e., for i < j, ci > cj).

Proof. To achieve this we show that, given a set of bin types and a solution, we
can omit some bins from B and change any solution (to a given input) into a solution
that does not use bins removed from B and whose cost is not larger than the cost of
the original solution. To achieve this, we apply the following process on B. While
there exist i, j such that i < j but ci ≤ cj , remove bin type j from B. Note that
since bi > bj , we can move the contents of every bin of size bj into a bin of size bi
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without increasing the cost of a given solution. This is done until no such pair i, j
exists and thus results in a set B′ where the sequence of values ci is monotonically
decreasing.

Since the process described in Lemma 1 can be applied to B without changing
the cost of optimal solutions, we use the notation B for the set of bin type to which
the process was already applied. We assume in the remainder of the paper that the
values ci are monotonically decreasing.

The following reductions increase the cost of an optimal solution by a factor of
at most 1 + ε. In our analysis, we compare the cost of our approximation algorithm
to the cost of an optimal solution for the instance resulting from the reductions and
prove an approximation ratio of 1 + O(ε). We get that even though the “real” ap-
proximation ratio (i.e., the approximation ratio with respect to an optimal solution of
the original problem) may be slightly larger, it is at most 1 + ε times the approxima-
tion ratio that we prove, and thus our analysis results in an approximation factor of
1 +O(ε). Therefore, since we are interested in designing an APTAS for the problem,
the reductions are harmless from our point of view. The next lemma shows that we
can assume that the sequence of bin costs decreases geometrically or faster.

Lemma 2. Without loss of generality we may assume that for all i, ci
ci+1

≥ 1+ε.

Proof. If the claim does not already hold for the input bin types, we apply the
following process on the bin types of the input. Traverse the list of bin types from the
largest bin (i.e., j = 1) to the smallest bin (j = r). During the traversal keep only a
subset of the types, and remove the other types from B. We keep the first bin type
(j = 1) and recursively assume that the last bin type that is kept has index j. Then,
given the value j for i = j + 1, j + 2, . . . , as long as

cj
ci

< 1 + ε and i > j we remove
the ith type from the list of bin types. We always keep the bin type with smallest
index i such that

cj
ci

≥ 1 + ε and i becomes the new value of j. If there is no such
value of i, we remove all bin types j + 1, j + 2, . . . , r from B.

Consider a feasible solution that packs the set of items S using a bin of type i
that is removed during this process. Then, the set of resulting bins contains a bin
type j such that

cj
1+ε < ci < cj . Then, we modify the solution by using a bin of

type j to pack all the items in S. Applying this procedure on all bins of types that
were removed from B results in a feasible solution to the new instance, whose total
cost is at most 1 + ε times the cost of the original solution. Therefore, the cost of an
optimal solution for the new instance is at most 1 + ε times the cost of an optimal
solution for the original instance. Thus, if we design APTAS for instances satisfying
the assumption of the lemma, then the resulting solution will also be an APTAS for
the original instances. We conclude that it suffices to consider instances satisfying the
property.

We say that a feasible solution is nice if it satisfies the following condition for
every pair of a bin and an item. Assume that the solution uses a bin of type i to pack
a set of items S. For a given j ∈ S, let kj be the maximum index such that bkj ≥ sj
(i.e., bkj is the smallest bin size where j can be packed). Then, either bkj ≤ ε6bi or
ckj ≥ ε8ci (or both). This means either that an item packed in a bin can fit into a
much smaller bin or that the smallest (and thus cheapest) bin that can accommodate
this item has a cost which differs from the cost of the current bin by a constant
factor. Note that an item that does not fit into any bin of index strictly larger than
i immediately satisfies the second condition.

The next lemma shows that we can restrict ourselves to looking for an approxi-
mated nice solution.
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Lemma 3. Given an instance of the GCVS problem, denote by optn the minimum
cost of a nice solution and by opt the cost of an optimal solution (which is not
necessarily nice). Then, optn ≤ (1 + 3ε)opt.

Proof. Fix an optimal solution O whose cost is opt. It suffices to show how
to transform it into a nice solution whose cost is at most (1 + 3ε)opt. We do the
transformation for each packed bin in O separately. Assume that O uses a bin of type
i to pack the item set which is denoted by C. We use a set of bins to pack C in order to
convert the packing of C into a nice packing. To do so, we first identify the sequence
i1, i2, . . . . This sequence is independent of C and can be computed as a function of i
as follows. Let i� be the smallest value of an index q such that cq ≤ ε�+6 · ci. Then,
instead of using just one bin (of type i) to pack the items in C, we use one bin of
type i and in addition, for each � = 1, 2, . . . , we use 2

ε6 bins of type i�. This set of
bins is used to pack C as follows. We use the single bin of type i to pack two sets of
items. The first set consists of all items of C with size larger than bi1 . The second
set consists of all items j such that bkj ≤ ε6bi (where kj is as defined above, the
index of a smallest type of bin into which item j can fit). Note that for such items it
holds that sj ≤ ε6bi. Denote the set of items that we pack using this unique bin of
type i by C0. The rest of the items from C is partitioned into classes, where the �th
class, denoted by C�, contains all items whose size is between bi�+1

and bi� . That is,
C� = {a ∈ C \ C0 : bi�+1

< sa ≤ bi�}.
Then, the items of set C0 clearly fit into the bin of type i, since C was originally

packed into this bin and C0 ⊆ C. The items of C� for � ≥ 1 are packed using the
first-fit algorithm into at most 2

ε6 bins of type i�. To see this last claim, note that if

C� �= ∅, then bi� ≥ ε6bi. Therefore, the total size of the items in C� is at most
bi�
ε6 (as

they are packed into a single bin of type i). Since first-fit opens a new bin only if the
total size of the items in the previous bin and the new item is at least the capacity of
the bin, it has at most one bin with a total size of less than half the size of the bin,
and therefore we conclude that first-fit, when applied to C� and bins of type i�, will
use at most 2

ε6 bins.
Therefore, instead of using one bin of type i whose cost is ci, we use a set of bins

whose total cost is at most ci +
∑∞

�=1
2
ε6 · ci� ≤ ci +

∑∞
�=1

2
ε6 · ε�+6 · ci = ci · (1 +

2
∑∞

�=1 ε
�) = ci(1 + 2ε

1−ε ) ≤ ci(1 + 3ε), where the last inequality holds since ε ≤ 1
3 .

It is clear that the resulting packing of C0 into the bin of type i satisfies the
conditions of a nice packing since all items violating the condition were removed from
this bin. We next prove that the packing of every newly created bin satisfies the
conditions of a nice packing as well. Consider an item j ∈ C� (which is packed into a
bin of type i�). We show that this item satisfies the second condition of nice packings.
By definition, ci� ≤ ε�+6ci. Note that i�+1 must exist since cr+1 = 0. Consider the
bin type kj . By definition of C�, sj > bi�+1

, and thus kj < i�+1. However, i�+1 is the
smallest index q for which cq ≤ ε�+7 · ci, and thus ckj

> ε�+7 · ci ≥ εci� ≥ ε8ci� .
Application of the above transformation on all the bins of O results in a feasible

solution that is also nice (as shown above, by the definition of the sets C� for � ≥ 0)
whose cost is at most (1 + 3ε)opt.

In what follows we assume that the instance satisfies the assumptions of Lemma 2.
We approximate the minimum cost nice solution whose cost is denoted by optn, and
we construct a feasible solution whose cost is at most (1+O(ε)) ·optn + f( 1

ε ), where
f is some function (which will turn out to be polynomial). Note that the solution that
we obtain is not necessarily nice, since the original problem does not require this. (It
is possible, however, to convert it into a nice solution in polynomial time by applying
a construction as above.)
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3. Outline of the scheme. In this section we provide the outline of the scheme.
The complete details will be given in the following sections.

The first step of the scheme is to preprocess the list of bin sizes so that this list
will satisfy the properties of Lemmas 1 and 2.

We next partition the set of items into types. For a bin of type i, we say that an
item of size sj is large for a bin of type i if ε6bi ≤ sj ≤ bi. It is small for a bin of type
i if sj < ε6bi, and otherwise it is huge for a bin of type i. An item j is large if there
is a type i such that it is large for a bin of type i. We denote by L the set of large
items. We partition L into sets: for all i, Li consists of all the large items for a bin of
type i that are huge for a bin of type i + 1, and Lr consists of all the large items for
a bin of type r.

The next step of the scheme is to apply linear grouping for each Li separately.
We denote by Si

1 the set of the largest items resulting from the linear grouping of Li.
Our scheme looks for solutions that satisfy an additional property. That is, for

each i we consider only two possibilities for packing Si
1: either we have |Si

1| dedicated
bins of size bi, each of which contains exactly one item from the set Si

1 and no other
item is packed into such a special bin, or the items of Si

1 are packed as small items in
much larger bins. (Note that we do not allow mixtures of the two options for a given
value of i.) We will show that there exists such a solution that does not cost much
more than an optimal nice solution.

To find our solution we construct a layered graph. The graph is split into levels,
where each level i corresponds to decisions regarding the packing of bins of type i.
Each level consists of 3n + 1 layers, where each layer is associated with packing at
most one bin of the corresponding type. At the entry for each level we decide whether
Si

1 is packed in dedicated bins or the items of Si
1 are packed as small items in much

larger bins (the graph contains edges of both possibilities). Each vertex encodes the
number of (large) items of each rounded size that still needs to be packed. A vertex
encodes also the rounded total size of the small items (i.e., small for the bin type of
its level) that still need to be packed. Each vertex needs to recall the subset of the
indices i such that Si

1 is packed as small items only if for the current level the items
of Si

1 are still large items (and not small items).
We then look for a shortest path in this (very large but still polynomial size)

layered graph. This shortest path corresponds to a well-defined packing of the items
that are packed as large items. Afterwards, the remaining items need to be distributed
to the empty slots in the resulting packing. To this end, additional bins (of each size)
are used, if the process of packing small items as indicated by our path did not result
in packing a large enough total size of small items. We show that these additional
bins have a small cost and do not hurt the returned solution too much. Thus we show
that the resulting solution is a good approximation of an optimal solution.

4. Linear grouping. Recall that for a bin of type i, we say that an item of
size sj is large for a bin of type i if ε6bi ≤ sj ≤ bi. It is small for a bin of type i if
sj < ε6bi, and otherwise it is huge for a bin of type i. An item j is large if there is a
type i such that it is large for a bin of type i. We denote by L the set of large items.

We next partition L into subsets according to the size of the items. Lr is the set
of large items for a bin of type r. If we defined Lj+1, . . . ,Lr, then Lj is defined as the
intersection of the set of large items for a bin of type j and the set L\(Lj+1 ∪ · · · ∪ Lr).

For each i such that |Li| ≤ 1
ε16 we pack each item of Li in a bin of type i by itself.

(Such a bin is called a dedicated bin.) Such a class Li with at most 1
ε16 elements is

called thin.
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Lemma 4. The total cost of packing each item of a thin class into a dedicated bin
is at most 1+ε

ε17 .

Proof. Since each bin type is used to pack at most 1
ε16 items, the total cost of these

bins is at most the total cost of using 1
ε16 copies of every bin in the input sequence;

i.e., it is at most 1
ε16 ·

∑r
i=1 ci ≤ 1

ε16 · c1 ·
∑r−1

i=0 ( 1
1+ε )

i ≤ 1
ε16 · c1 ·

∑∞
i=0(

1
1+ε )

i = 1+ε
ε17 ,

where the first inequality holds by Lemma 2.

By Lemma 4, we can assume without loss of generality that for each nonempty
class of large items, the class has at least 1

ε16 elements.

Next, we perform a linear grouping of each class Li separately. More precisely, let
|Li| = ni (recall that we assume that ni ≥ 1

ε16 ). We sort the elements ai1, a
i
2, . . . a

i
ni

of
Li according to their size. That is, we denote the size of the element aij by sij , and we

assume without loss of generality that si1 ≥ si2 ≥ · · · ≥ sini
. We partition Li into 1

ε16

subclasses denoted by S̄i
1, S̄

i
2, . . . , S̄

i
1/ε16 . The partition is defined by the following two

conditions: |S̄i
p| =

⌊
niε

16
⌋

or |S̄i
p| =

⌈
niε

16
⌉

for all p ≥ 1, and if p < q, then |S̄i
p| ≥ |S̄i

q|
(thus we always have |S̄i

1| =
⌈
niε

16
⌉
). Moreover, we require that if aij ∈ S̄i

p and aik ∈ S̄i
q

such that p < q, then sij ≥ sik. Thus S̄i
1 is a set which contains the largest

⌈
niε

16
⌉

elements of Li (breaking ties arbitrarily). In general, we partition Li to approximately
equal-size sets (sets of lower indices may have one additional item compared to sets of
higher indices) so that S̄i

j contains the largest elements from Li\
(
S̄i

1 ∪ · · · ∪ S̄i
j−1

)
. We

note that niε
16 ≤ |S̄i

1| ≤
⌊
niε

16
⌋
+1 ≤ 3|Li \ S̄i

1| · ε16, where the last inequality can be
proved using simple algebra and the properties |Li \ S̄i

1| = ni−|S̄i
1| ≥ ni− (niε

16 +1),
ε < 1

3 , and ni ≥ 1
ε16 .

For all i and all j ≥ 2, we round up the size of all the elements of S̄i
j to the size of

the largest element of S̄i
j , the set of rounded items is denoted by Si

j , and we denote by

σi
j the rounded up size of an item in Si

j . We also define Si
1 = S̄i

1. The set of rounded
(large) items, resulting from Li is denoted by L′

i, and the set of all rounded (large)
items is denoted by L′. In the APTAS of [3] for the classical bin packing problem, the
set of the largest elements in the linear grouping is packed using a separate bin for
each such item. This packing is applied also for the later APTAS of Murgolo [12] for
the variable-sized bin packing problem. In both cases, such a packing increases the
cost of a packing only by an arbitrarily small factor. In the generalized problem, the
important property that a small number of items of Li can be packed into separate
bins of size bi does not hold, since an optimal packing may pack many items of Li

into larger bins. Instead, for each i, we allow the algorithm to choose between two
possibilities: in the first possibility the algorithm packs Si

1 using a separate bin of
size bi for each item in Si

1. This is the typical packing of the set of largest items of
the linear grouping, and it is useful (by the analysis of the algorithm) in cases where
most of the items of Li are packed in optn into bins of size smaller than bi

ε6 . For
other cases, we allow the algorithm to pack the set Si

1, seeing them as a part of the
set of small items of larger bins. In this case the algorithm will pack the elements
of Si

1 using bins of size at least bi
ε6 . That is, in our scheme the total size of elements

of Si
1 will be added to the total size of small elements that the algorithm needs to

pack using bins whose size is at least bi
ε6 . To state the next lemma we consider a fixed

optimal nice solution (the optimum among the nice solutions) denoted by optn. We
use Ai to denote the subset of elements of Li \ S̄i

1 which optn packs into bins of size
smaller than bi

ε6 . If |Ai| ≥ 1
2 |Li \ S̄i

1|, we say that Li is good.

Lemma 5. Assume that Li is good. Consider a packing where each item of Si
1

is packed into a separate bin of size bi. In this case, the total cost of bins containing
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the items of Si
1 is at most 6 · ε4 · ψi, where ψi is the total cost of the subset of bins in

optn, that consists of all bins that contain at least one item of Ai.
Proof. We first argue that each bin that is used to pack an element of Ai has size

of at least bi. Since Ai ⊂ Li, such an item is not large for bi+1, and since bi+1 < bi this
means that it is huge for it and does not fit into smaller-size bins. Therefore, the cost
for such a bin is at least ci. Next note that each bin that is used to pack an element of
Ai packs at most 1

ε12 such elements. This follows since each such element has size of

at least ε6bi, and the size of such bin is smaller than bi
ε6 (due to the definition of Ai).

Therefore, there exist at least
|Li\S̄i

1|
2 ε12 bins of optn, where each one of them costs at

least ci, and each one of them contains at least one element of Ai. So ψi ≥ |Li\S̄i
1|

2 ε12ci.
As already stated in the proof of Lemma 4, |Si

1| = |S̄i
1| ≤ 3|Li \ S̄i

1|ε16, and therefore
|Si

1| is at most 6 · ε4 times the number of bins that are used by optn to pack the
elements of Ai. The claim follows since each bin used to pack an element of Li costs
at least ci which is exactly the cost of the bins used to pack each element of Si

1.
Lemma 6. The total cost of assigning each element of Si

1 a separate bin, for all
values of i such that Li is good, is at most 3ε2 · optn.

Proof. By Lemma 5, the total cost incurred by Si
1 for a value of i such that Li is

good is at most 6ε4 times the total cost of the bins that optn uses to pack elements
of Ai. Since optn is nice, and the first property of nice packings does not hold for
the bin sizes that we consider here, we conclude that each of these bins has a cost
of at least ci and at most ci

ε8 . By Lemma 2, there are at most
⌈
log1+ε

1
ε8

⌉
bin types

with cost in the interval
[
ci,

ci
ε8

]
. Therefore, a specific bin can be used by optn to

pack elements from at most
⌈
log1+ε

1
ε8

⌉
different sets Ai. Thus, the total cost of

assigning each element of Si
1 a separate bin for all i such that Li is good is at most

6ε4 ·
⌈
log1+ε

1
ε8

⌉
· optn ≤ 3ε2

optn, where the last inequality can be easily verified
and holds since ε < 1

100 .
By Lemma 6, if we allow our scheme to choose one of the two possibilities described

above for each i, then the cost of the largest sets in the linear groupings can be
disregarded if the class is good. We argue in the next lemma that if the class Li is
not good, then by deciding to pack Si

1 in bins of size at least bi
ε6 , we increase the space

demand for such bins by a multiplicative factor of at most (1 + 6ε10). This increase
does not cause any harm, since in any case we will have more dominant rounding
errors (that will still lead to an (1 + O(ε))-approximate solution with respect to the
asymptotic approximation ratio).

Lemma 7. If Li is not good, then the total size of the elements of Si
1 is at most

6ε10 times the total size of elements of Li \ S̄i
1 that are packed in optn into bins which

are of size at least bi
ε6 .

Proof. Using Ai < 1
2 |Li \ S̄i

1|, we get |Li \ (S̄i
1 ∪ Ai)| ≥ 1

2 |Li \ S̄i
1| and thus

|Si
1|

|Li\(S̄i
1∪Ai)| ≤ 3|Li\S̄i

1|ε
16

1
2 |Li\S̄i

1|
≤ 6ε16. Since ε6bi ≤ sij ≤ bi for all j, the claim

follows.
The next lemma holds by a similar argument to the arguments of [3]. Namely,

using the fact that if the items of Si
1 are removed for all i, the rounded input can be

mapped back into the original input, so that every item is mapped to an item that is
no smaller than it.

Lemma 8. Given an instance of the GCVS problem, the optimal solution cost of
the instance after applying the linear grouping step as described above (with rounded-
up sizes), and removing all items in Si

1 for all i, is at most the cost of the optimal
solution to the original instance.
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5. The main scheme. In this section we show how to use the linear grouping,
as it is described in the previous section, to compute an approximated nice solution.
Our method is based on constructing a layered graph and then computing a shortest
path in this graph. This shortest path is then used to construct a feasible solution of
the GCVS problem.

For i = 1, 2, . . . , r we denote by di the total size of elements whose individual
sizes are in the interval (bi+1, ε

6bi). Such elements are huge with respect to bin types
i+1, i+2, . . . , r and small with respect to bin type i. They are not large with respect
to any type of bin. If bi+1 ≥ ε6bi, then di = 0.

A level in a layered graph is defined as a consecutive set of layers. Our layered
directed graph G = (V,E) is composed of r+1 levels, where the ith level corresponds
to decisions regarding the packing of elements into bins of type i. (Recall that br+1 = 0
and hence there are no elements packed into bins of type r + 1. We add this level
to unify the presentation of our scheme.) Each level consists of 3n + 1 layers, where
n is the total number of items in the input. Each edge connects a vertex of one
layer with a vertex of the consecutive layer, where the layers are ordered so that
first there are the 3n + 1 layers of level r + 1, then the layers of level r, and so
on up to the layers of level 1. We add to G one additional vertex denoted by t,
which is defined to be the very last layer. We partition the levels into phases as
follows. A level i is a phase p level if bi ∈

(
εp, εp−1

]
. For a bin type i, we denote by

Bi = {k : bk ∈
[
ε6bi, bi

]
and ck ∈

[
ε8ci, ci

]
}.

For a phase p level i, a pattern of level i corresponds to a packing of a bin of size
bi with elements resulting from the linear grouping, which are of size in the interval
[ε6bi, bi]. These are elements in

⋃
k∈Bi
j≥2

Sk
j ∩ {a ∈ S : σa ∈ [ε6bi, bi]}. Each such bin

can contain space for smaller items as well, where the space defined by the pattern is
an integer multiple of ε6bi. This integer is called the number of slots for small items of
the pattern and is denoted by nslot. Formally, a pattern of level i is (nslot, (n

k
j ) k∈Bi

j≥2

),

where nk
j is the number of items from Sk

j that are packed into this bin. In this notation

we assume that nk
j = 0 if σk

j < ε6bi.

Lemma 9. The number of possible patterns of level i is O((nε16 + 2)
8 log1+ε

1
ε
+1

ε16 ·
( 1
ε6 + 1)); i.e., it is bounded by a polynomial in the input size.

Proof. The number nslot is an integer in the interval [0, 1
ε6 ]. The number nk

j

is an integer in the interval [0, �nε16�]. By Lemma 2, |Bi| is at most log1+ε
1
ε8 + 1.

Since each such class (whose index belong to Bi) has at most 1
ε16 different values of

element size, we conclude that the number of possible patterns of level i is at most

O((nε16 + 2)
8 log1+ε

1
ε
+1

ε16 · ( 1
ε6 + 1)).

We next describe the vertex set of our layered graph G. A vertex u of the ith
level, which is a phase p level, is associated with a label consisting of the following
information, which has four parts. The first part contains information on the number
nk
j (u) of items from Sk

j that still needs to be packed, for relevant values of k and j,
if the current vertex is reached. That is, for every k ∈ Bi and for all j ≥ 2, the label
contains the number nk

j (u) of remaining such elements. The second part of the label
contains information on the total size D of small elements for a bin of type i that
needs to be packed. This information in the label is nslot(u) =  D

biε6
�. Note that D

is an approximated sum of such items, which never exceeds the real amount to be
packed. The third part of the label contains approximated sums of items that we
decided to pack as small items but that are still considered to be large items for bins
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of type i, and thus this information should be carried over to future phases. To be
more precise, if level i is a phase p level, then the label contains six integer numbers
np
slot(u), np+1

slot (u), . . . , np+5
slot (u), where nq

slot(u) · biε6 (for q = p, p + 1, . . . , p + 5) is
an approximated sum of the sizes of all items whose sizes are in

(
εq, εq−1

]
, and the

smallest bin that is large enough to contain such items is of type k for some k > i
such that ck < ε8ci (and therefore k �∈ Bi). Note that such items are packed as small
items in a nice solution; however, they are still large items for a bin of type i (this is so
since for an item x we have εq < sx ≤ bk < bi ≤ εp−1 ≤ εq−6 and therefore sx ≥ ε6bi).
The fourth part of the label is described next. For all k ∈ Bi, the label contains the
information regarding whether we decide to pack each member of Sk

1 using its own
bin of size bk, or all elements of Sk

1 are packed as small items in bins of size at least
bk
ε6 . Therefore, the label encodes a subset I(u) of the index set Bi and if k belongs to
this subset, we decide to pack each element of Sk

1 using a dedicated bin of size bk.

Lemma 10. The number of vertices in the graph is polynomial in the input size.

Proof. Consider a phase p level i and a given layer of this level. In this layer there
is a vertex for each possible value of the label. Since the number of levels is r + 1
and the number of layers in each level is 3n + 1 (plus one last layer which consists
of a single vertex), in order to prove the claim it suffices to show that the number of
possible labels for level i is polynomial. The number nk

j (u) is an integer in the range
[0, ni], and therefore there are at most n + 1 such possibilities. We have to identify
this number for the pairs of indices k and j such that bk ∈ [ε6bi, bi], ck ∈ [ε8ci, ci] and
j = 2, 3, . . . , 1

ε16 , and by Lemma 2 there are at most 1 + log1+ε
1
ε8 values that k can

have. Therefore, the number of possibilities for the first part of the label is at most

(n + 1)(1+log1+ε
1
ε8

)· 1
ε16 and since ε is a fixed constant, this number is polynomial in

the input size. Next, consider the number of possibilities for nslot(u). Note that the
number of small elements for a bin of type i is at most n, and each one of them has
size less than ε6bi. Therefore, D < nbiε

6, and we conclude that nslot(u) =  D
biε6

� is
an integer in the interval [0, n − 1]. Hence, the number of possibilities for nslot(u) is
at most n. We next bound the value of nq

slot(u) for q = p, p + 1, . . . , p + 5. Note that
each item considered so far has a size smaller than bi, and there are at most n such
items. Therefore, the total size of these items (that still needs to be packed) is less
than nbi. Hence, nq

slot(u) ∈ [0, nbi
biε6

). Since this is an integer, we get that the number
of possibilities for this value is polynomial (for a fixed value of ε). It remains to bound
the number of possibilities for I(u). By Lemma 2, |Bi| = log1+ε

1
ε8 + O(1), and the

number of possibilities for I(u) is the number of subsets of Bi that is O(2log1+ε
1
ε8 )

that is a constant (for a fixed value of ε).

We define five types of edges. The first two types are edges connecting two vertices
from a common level (and consecutive layers). The last three types of edges connect
vertices from consecutive levels. The first type has the purpose of assigning a set of
items into a bin. The second type allows us to bypass a bin and not use it. The
next two types translate configurations of different levels. The last type allows us to
terminate all paths in the target vertex t.

1. The first type of an edge connects two vertices from two consecutive layers of a
common level i, where i is a phase p level. It corresponds to a packing of a single bin of
size bi according to a pattern of level i denoted by (nslot, (n

k
j ) k∈Bi

j≥2

). The two vertices

connected by such an edge (u, v) have labels that differ only in the first and second part
of the label (so I(u) = I(v) and nq

slot(u) = nq
slot(v) for q = p, p+1, . . . , p+5). The first

part of the label changes according to nk
j (v) =

(
nk
j (u) − nk

j

)+
for all k ∈ Bi and for all
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j ≥ 2 (where for a real number a we let a+ = max{a, 0}). That is, the first part of the
the label of v results from the label of u by decreasing the number of items that need to
be packed from the set Sk

j by exactly the number of elements from Sk
j that are packed

by the pattern corresponding to this edge. Similarly, nslot(v) = (nslot(u) − nslot)
+
.

Such an edge has a cost of ci.

2. The second type of an edge is an edge connecting two vertices in consecutive
layers of a common level with equal labels. Such an edge has a zero cost. Such an
edge corresponds to the decision not to pack an additional bin of the corresponding
size.

3. The third type of an edge connects a vertex u that belongs to the last layer
of phase p level i + 1 to a vertex v that belongs to the first layer of level i, where
level i is also a phase p level. In order to obtain the label of v from the label of u we
need to apply the following changes. For each value of k ∈ Bi+1 \Bi, we remove the
entries nk

j (u), for all j ≥ 2, from the first part of the label of u. These are items that
lost their opportunity to be packed as large items and must be packed as small items
to maintain the properties of a nice packing. Out of these elements, we compute the
total size of elements that need to be packed as small elements according to u and
they are already small elements for bin of type i. We need to add to this total size
the value of di, which are items that are immediately small without being large for
any previous bin. However, since the two levels are of the same phase, bi and bi+1

are within a factor of 1
ε , which implies that such items do not exist and so di = 0.

Denote the resulting value, which is the sum of all items that became small, by T .

Then, the second part of the label of v is exactly nslot(v) =  T
ε6bi

+ nslot(u)·bi+1

bi
�.

The first part of the label of v is augmented with new entries for the number of
elements of Si

j that need to be packed for j ≥ 2; we showed how to compute this

number earlier, and it is either ni
j =

⌊
niε

16
⌋

or ni
j =

⌈
niε

16
⌉

for all j ≥ 2. Note
that Bi \Bi+1 = {i}; thus these are the only new entries. For q = p, p + 1, . . . , p + 5,
we define nq

slot(v) as follows: for each k ∈ Bi+1 such that ck < ε8ci, we compute
Sizeqk(u) =

∑
j≥2:σk

j ∈(εq,εq−1] n
k
j (u) · σk

j . We sum up all the values Sizeqk(u) for all

k such that k ∈ Bi+1 and ck < ε8ci, and we denote this sum by Eq(u). That is,

Eq(u) =
∑

k∈Bi+1:ck<ε8ci
Sizeqk(u). Then we let nq

slot(v) = nq
slot(u)·bi+1

bi
+

Eq(u)
biε6

�. We

finish the definition of the label of v by setting either I(v) = I(u) ∩ Bi+1 ∩ Bi or
I(v) = (I(u) ∩Bi+1 ∩Bi) ∪ {i} (both edges are constructed, having the exact same
cost). The cost of the edge (u, v) is

∑
k∈I(u)\I(v) |Sk

1 | · ck, and this cost reflects the

cost of packing each element of Sk
1 in a separate bin of type k if k ∈ I(u). We charge

this packing of the Sk
1 to an edge of type 3 or 4, which is a transition between levels,

at the time that the packing of Sk
1 stops being indicated in the label.

4. The fourth type of edge connects a vertex u that belongs to the last layer
of phase p level i + 1 to a vertex v that belongs to the first layer of level i, where
level i is a phase p′ level for p′ ≤ p − 1. In order to obtain the label of v from the
label of u we need to apply the following changes. For each value of k ∈ Bi+1 \ Bi,
we remove from the first part of the label of u the entries nk

j (u) for all j ≥ 2. Out
of these items, we compute the total size of such elements that need to be packed
according to u and that are already small for a bin of type i, and we add to this
total size the value of di. We denote the resulting value by T . We need to take
into account the term Y =

∑p+5
q=max{p,p′+6} n

q
slot(u). The last term corresponds to

items that we previously decided to pack as small items but that were still large for
bins of type i + 1, and now such an item x satisfies sx < ε5bi, as sx ≤ εq−1 and
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bi > εp
′ ≥ εq−6. Note that we slightly relax the condition of packing items as small

and sometimes allow items that are smaller than a bin by a factor of at least ε5

(instead of ε6) to be packed as small items in this bin. Then, the second part of the

label of v is exactly nslot(v) =  T
ε6bi

+ (nslot(u)+Y )·bi+1

bi
�. The first part of the label

of v is augmented with new entries for the number of elements of Si
j that needs to

be packed for j ≥ 2, and this number is either ni
j =

⌊
niε

16
⌋

or ni
j =

⌈
niε

16
⌉

for
all j ≥ 2. For q = p′, p′ + 1, . . . , p′ + 5, we define nq

slot(v) as follows. For a given
value of q, denote by Yq the set of pairs (k, j) such that (k, j) ∈ Yq if and only if
k ∈ Bi+1 \ Bi and σk

j ∈ (εq, εq−1]. We compute Eq(u) =
∑

(k,j)∈Yq
nk
j (u) · σk

j . For

q �∈ {p, p + 1, . . . , p + 5} , we denote nq
slot(u) = 0. Then, for q = p′, p′ + 1, . . . , p′ + 5,

we let nq
slot(v) = nq

slot(u)·bi+1

bi
+

Eq(u)
ε6bi

�. Note that every entry nq
slot(u) was translated

either into a part of the small jobs or into a part of an entry nq
slot(v) but not to both.

We finish the definition of the label of v by setting either I(v) = I(u)∩Bi+1 ∩Bi

or I(v) = (I(u) ∩Bi+1 ∩Bi) ∪ {i} (again, both edges exist with the same cost). The
cost of the edge (u, v) is

∑
k∈I(u)\I(v) |Sk

1 | · ck and this cost reflects the cost of packing

each element of Sk
1 in a separate bin of type k if k ∈ I(u). As in the previous type of

edge, we charge this packing of the Sk
1 items to the edges the level transition, where

the packing of Sk
1 stops being indicated in the label.

5. The last type of edge connects vertices u of the last layer of level 1 to t. Such
a vertex u is adjacent to t only if all parts of the label of u except for the last one
are either empty sets or are equal to zero. The cost of such an edge if it exists is∑

k∈I(u) |Sk
1 | · ck.

Note that br+1 = 0 and thus no items can fit into this bin (which was created so
that the levels of the graph can be created uniformly). Let a be the vertex of the first
layer of level r + 1 whose label is defined as follows. The first part, which indicates
the number of items in Sj

k for 2 ≤ j ≤ 1
ε16 and k ∈ Br+1, is empty as Br+1 = ∅. The

second part is zero and so are the six amounts in the third part. Finally, I(a) = ∅.
Our scheme finds the minimum cost path P from a to t. Note that items to be packed
are added to the graph as soon as the first level of any bin that can accommodate
them is reached.

We next construct a feasible solution based on the path found by the algorithm.
If the path uses an edge connecting (u, v), where both of them belong to a common
level i and the label of u differs from the label of v, then this edge corresponds to a
pattern (nslot, (n

k
j ) k∈Bi

j≥2

). We open a bin of type i and allocate it exactly nk
j items of

Sk
j for all k ∈ Bi and j ≥ 2. (The actual allocation is of the S̄k

j items, but we may

assume that each of them occupies the same space which is the size of an Sk
j item.)

We also reserve a space of size nslotε
6bi for small items (which will be allocated later

to these spaces). We apply this for all edges of the first type that P uses. Edges of
the second type in P do not affect the solution (they have cost zero with an empty
configuration and are associated with bins that are bypassed). Next assume that P
uses an edge (u, v) of the third or fourth type, where u belongs to the (i + 1)th level
(and v to level i). The effect of such an edge except for translation between levels is to
assign large items from a set Sk

1 such that k ∈ Bi+1 and k /∈ Bi, which are supposed
to be packed in their own bins, one item per bin. In this case for all k ∈ I(u) \ I(v)
we open |Sk

1 | bins of size bk and allocate them the items of Sk
1 . It remains to consider

the edge of the last type that P uses. Assume that this edge is (u, t); then for all
k ∈ I(u) we open |Sk

1 | bins of size bk and allocate them the items of Sk
1 . Note that

the total cost of the bins that we open is exactly the cost of P.
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We next consider the nonallocated items (which are supposed to be packed as
small items as implied by the chosen path). We sort the nonallocated items in a
nonincreasing size order. We start to allocate them into the space kept for small
items as follows.

Let μi be the number of slots for small items in bins of level i in the solution as
implied by the sum of values nslot in the patterns. Let Ri be the number of edges of
the first type in the path (inside level i) that contain at least one slot for small items.
We would like to allow a total size of at least ε6bi(μi + 37) that will be allocated to
items to be packed, and for that we open Riε

5(1 + ε) + 2 new bins of type i for small
items.

We start to allocate the largest remaining item to the space in the smallest-type
bin (the largest bin) and keep allocating items according to the sorted list into the
space in the bins. While allocating items into bins of level i, if there is not enough
room for the current item in the current space we move to the next space. We do this
as long as there are free slots in the bins that correspond to edges of the first type.
We use the new bins of size bi and assign small items into them until either we run
out of small items to be packed completely or we have used all new bins that were
opened for level i as stated above. A new bin that is opened in this step is called a
small item bin of type i. We later show that our bound (i.e., the number of new bins
per level) is large enough, and we bound the additional cost caused by the new bins.

We conclude this section by noting that since the layered graph has polynomial
size, and its construction takes polynomial time, finding the shortest path in G takes a
polynomial time and constructing the solution based on this path is also polynomial.
Therefore, our scheme (for a fixed value of ε) is a polynomial time algorithm. Hence
we establish the following corollary.

Corollary 11. Given a fixed value of ε, the time complexity of the scheme is
polynomial.

6. Analysis. In this section we prove that our algorithm is an APTAS for
GCVS. We first bound the cost of P. To do so, we present a path from a to t
in G whose cost is (1 + 3ε2 + 2ε6)optn + 1+ε

ε .

Lemma 12. There exists a path P̃ from a to t whose cost is at most (1 + 3ε2 +
2ε6)optn + 1+ε

ε .

Proof. Consider an optimal solution optn. From this solution, remove all items
which belong to thin classes, as such items do not exist in the layered graph.

Before we can define a path in the graph, we make some adaptations to the
solution, and, specifically, we convert it into a packing of the rounded items, where
some of the items that are packed as small items are converted into tiny items in the
packing.

This packing is later translated into a path in the graph, where items that are
packed as small need to be considered carefully. We are going to use the space
allocated in the solution to the items of S̄k

j to accommodate the items of Sk
j+1, which

are (by definition) no larger of items of S̄k
j . This leaves the items of S̄k

1 unpacked.

Thus we create a new instance of each item of S̄k
1 = Sk

1 , the additional set with the
new instances of these items is denoted by Sk. The room taken by each item of the
original set S̄k

1 will be used later for items of Sk
2 . No adaptations are performed on

the placement of a new set Sk. The replacement of S̄k
j items into the Sk

j+1 items is

done after a packing for the new set Sk is created.

We next define a packing of the items in Si for 1 ≤ i ≤ r. For every such i such
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that Li is good, i.e., if optn packs at least half of the elements of Li using bins of
size smaller than bi

ε6 , we put each item of Si into a bin of size bi. We earlier showed
in Lemma 6 that this transformation increases the cost of the solution by at most an
additive factor of 3ε2

optn.

We would like to pack the items of Si for values of i such that Li is not good.
This packing is composed of several steps. These items are converted into “sand,”
which are infinitely small items. We insert a set of empty bins into the packing and
bound the resulting increase in the cost. Next, we show that these bins are sufficient
to accommodate all sand resulting from items of the sets Si for values of i, such that
Li is not good. We do not convert the items into their original sizes since these items
are small for the bins into which they are packed, and the graph takes into account
only an approximated sum of sizes of such items rather than the specific sizes. Given
the list of bins used by optn we do the following. Let Ni be the number of bins of
type i used by optn. We open another �2Niε

6� ≤ 2Niε
6 + 1 bins of type i. This

increases the cost of the solution by an additive factor of at most 2ε6
optn+ 1+ε

ε . (The
last term is found by summing up on the costs of all types, similar to the summation
in the proof of Lemma 4.)

By Lemma 7, the space required for the sand resulting from a set Si (where Li is
not good) is at most 6ε10 times the total size of items in Li \ S̄i

1 that are packed into
bins of size at least bi

ε6 . The value Di,k is now defined for values of i, k such that Li

is not good, and bk ≥ bi. We let Di,k be the sum of sizes of the items of Li \ S̄i
1 that

are packed into bins of type k as small items for these bins. For other values of i, k
we let Di,k = 0. We associate a total size of (at most) 6ε10Di,k of sand created from
items of Si with these items and, specifically, for every item in Li \ S̄i

1 packed in a
bin of type k such that Di,k > 0, which has size x, we associate a total size of sand of
6ε10x, which is a part of the sand resulting from Si. This is done unless the amount
of sand that is not associated with any items is smaller, and in this case we associate
the remainder and stop. Due to Lemma 7, every portion of the sand is associated
with some item. For every bin size bi, the total size of sand associated with items
packed in these bins is therefore at most 6ε10Nibi. Thus this sand can be packed into
the new bins.

We now replace the S̄k
j items by Sk

j+1 items. We have a solution for the rounded
items, where all items are packed, but some items that are packed as small (not all
of them) are seen as sand. We say that an item j is tiny for bin i if the smallest
bin that can be used for packing j has size bk such that bk < ε6bi. We next convert
all items that are packed as tiny items for their bins into sand. We would like to
convert the total amount of sand in a bin of type k to be an integer multiple of
ε6bk. Given a bin with a total amount of sand which is Δ, we keep an amount of
Δ′ =  Δ

ε6bk
�ε6bk and move the remainder of total size Δ − Δ′ to the new bins of this

type. The total size of sand that these new bins need to accommodate increases to
at most 6ε10Nkbk + ε6bkNk ≤ 2Nkε

6bk. Thus the new bins have enough space to
accommodate these items. Empty bins are removed from the solution.

The cost of the current solution is at most (1 + 3ε2 + 2ε6)optn + 1+ε
ε . We show

a path in the graph with at most the cost of the current solution.

In order to proceed, we identify a subset of the vertex set U as follows. Consider
a vertex u of level i. We define a set of indices J(u) ⊆ Bi as follows. For every k ∈ Bi,
k ∈ J(u) if and only if the items of Sk are packed in separate bins, i.e., if Lk is good.
The set U is defined to contain the vertex u if and only if I(u) = J(u). We also define
t ∈ U .
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Then, a ∈ U by definition, we start the path in a and proceed to define the path
edge by edge until t is reached. We show a path in the induced subgraph of G over
U whose cost is at most the cost of the current solution.

Since the number of layers in a level of the graph is 3n + 1 (corresponds to the
packing of at most 3n bins), we show that for all values of k, the number of bins of
type k in the current solution never exceeds 3n. Clearly, Nk ≤ n, since optn packs at
least one item in every bin. Therefore, we get Nk + �2Nkε

6� ≤ Nk(1 + 2ε6) + 1 ≤ 3n.

We are ready to construct the path. The first vertex in the path is a. At each
step, we need to show which edges are traversed inside levels and which edges are
used between levels.

When we reach a first vertex of a level, we traverse an edge for every bin, except
for bins of the solution that contain single items of Si. The cost of these bins is added
to the cost of the path in the edges of the third, fourth, and fifth type. For a given
bin f , denote by Δ the total size of the items that are tiny items for a bin of type
i, which are packed into this bin. Recall that Δ is an integer multiple of ε6bi, unless
this is the last bin of sand. If there is at least one item in the bin that is not sand,
we further calculate the number νkj of items from Sk

j for all k ∈ Bi and for all j ≥ 1.

Then we use in our path an edge of pattern (nslot = Δ
ε6bi

, (nk
j = νkj )). For every bin

which contains only sand, we traverse an edge of pattern (nslot = 1
ε6 , (n

k
j = 0)). The

edges that are traversed are those that decrease nslot by the largest possible value
(i.e., by 1

ε6 , unless nslot is smaller than this value at some point, and then it becomes
zero in the next vertex).

The remaining edges connecting vertices inside level i will be the zero cost edges.

Next, we need to define the edges we traverse that connect levels. However, since
we use only the subset U of vertices, there is a unique edge connecting the last vertex
we reached in a level to a vertex of the next level. For an outgoing edge (u, v) the
label of v is defined by the label of u and the vertex set U . Therefore, there is a
unique edge left for every u.

Therefore, this identifies a path in the network. The cost of the path up to the
last layer of level 1 is identical to the cost of the adapted solution.

Finally, we need to show that the path reaches vertex t. Since there is one-to-one
correspondence between the location of items, which are defined to be packed not as
tiny items, in the packing and in the path, we need to consider items that are packed
as tiny. That is, we need to show that in the last vertex of the last level which we
defined for the path, the value of nslot is zero.

Since the sum of items that are to be packed as tiny in the graph is only rounded
down and never rounded up, the space in the solution that is used for sand is large
enough to pack these items. In the packing, the total size of sand in a bin of type k
is always an integer multiple of ε6bk, except for possibly the last bin, which contains
only sand. However, we allow the edge of the graph that corresponds to this bin to
use the complete bin for sand, which may only result in allocation of additional space
for items that are packed as tiny.

Denote by G the set of indices i such that Li is good. Then, we note that nontiny
items in optn that are not in ∪i/∈GSi are transformed to sand if and only if they
are tiny, and the items in ∪i/∈GSi are transformed to sand (items in ∪i∈GSi are not
transformed to sand).

We next need to consider the path P that the algorithm finds. For this path we
show how a packing is created and bound its cost.

Clearly, the cost of P is at most the cost of P̃.
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Since the total cost of the bins corresponding to the patterns that belong to
P is at most the total cost of P̃, we conclude that the total cost of P is at most
(1 + 3ε2 + 2ε6)optn + 1+ε

ε . We denote the total cost of P by c(P). Since the total
cost of the solution is partitioned into the total cost of the path P and the total cost of
the small item bins of type i for all i, in order to prove that our scheme is an APTAS,
it suffices to show that the total cost of the small item bins is at most ε4c(P) + 2

ε .

Lemma 13. The total cost of the small item bins is at most ε4c(P) + 2(1+ε)
ε .

Proof. We first prove that items packed as tiny items of bins of type i are of size
at most ε5bi. To prove this it is enough to show by induction that for every level i,
the items that were supposed to be packed as tiny in levels 1, . . . , i as implied by the
selected path can indeed be packed in such bins. These are items that are large for
bins i + 1, . . . , r but are not packed as large items there according to the path, and
items that belong to some set S�

1 that are supposed to be packed as tiny in bins of
types 1, . . . , i. The claim must hold for i = 0 before any tiny items are packed, since
no such items exist. Assume that the claim holds for a level k − 1. This means that
the items that need to be packed in level k or in smaller bins are no larger than ε5bk.
The loss of a factor of ε (i.e., the reason that we consider ε5bk and not ε6bk) is due
to the fact that levels are partitioned into phases and we may allow a large item for
a bin of type k to be packed in bin of type k as tiny, if its size is at most ε5bk and it
is supposed to be packed as tiny in a bin. This happens only if it belongs to some set
S�

1 where c� < ε8ck.

The edges of the path assign spaces for the sum of all items (in terms of sand)
except an amount that was lost when rounding down was applied. Such rounding for
the current level was applied at most 37 times; one such time is in the calculation of
the total number of slots needed for the tiny items. The other times were applied on
the information on items that had to be packed as tiny, but were not small enough just
yet, which were kept in six components. Each such component is updated at most six
times (it is changed only between phases and not between every pair of levels) before
it is added to the total number of tiny items.

Thus by increasing the space, reserved for items which are packed as tiny in this
level, to ε6bk(μk + 37), the allocated space is large enough for the items if they are
packed as sand.

We conclude that here may be an additional amount of sand at most 37ε6bk.
Thus, if we make sure that at least this total sum of items can always be packed
in bins of level k + 1 (unless all tiny items are packed, and no additional tiny items
remain to be packed into smaller bins), the inductive claim is proved. We need to
take into account that the real items are not sand but are of size at most ε5bk.

If no new bins for small items are opened in level k we are done, since this means
that all remaining unpacked items are packed. Assume therefore that in level k, at
least one bin for small items was opened. When the items are packed greedily into
the existing bins, the space that is reserved in each bin is filled except for possibly a
remainder of size at most ε5bi in a bin of size bi. The reason is that some item of size
at most ε5bi did not fit in it. This is true for the original bins as well as for the new
bins.

The total size of tiny items that can be packed into the original bins of this level
is therefore at least ε6bkμk − ε5bkRk, where Rk is the number of edges in the path
which belong to level k and correspond to nonempty patterns. After the original
bins are used, new ones are opened, where each new one is opened only after a
previous bin is full up to a level of at least bk − ε5bk. Thus, if we keep opening
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bins until all required items are packed, the number of additional bins is at most

� ε5bkRk+37ε6bk
bk−ε5bk

� ≤ ε5(1 + ε)(Rk + 37ε) + 1 ≤ Rkε
5(1 + ε) + 2. The inequalities hold

since ε < 1
100 . Since the algorithm opens this number of bins, we can conclude that

it succeeds to pack all required items. The claim is therefore proved for level k.

We next calculate the additional cost, on top of the cost of the path. Since∑r
i=1 ci ≤

∑r
i=1

1
(1+ε)i ≤ 1+ε

ε , we conclude that if we ignore the last two small item

bins of each type i and consider only the remaining small item bins, it suffices to
show that the total cost of these bins is at most ε4c(P). However, this holds since
the original cost is at least

∑r
i=1 Rici (recall that Ri is the number of edges of the

first type inside level i that contain some tiny items), and the additional cost is∑r
i=1 ε

5(1 + ε)(Rici) ≤
∑r

i=1 ε
4(Rici) (since ε(1 + ε) < 1).

We next show our main result of this paper, i.e., that our scheme is an APTAS
for GCVS.

Theorem 14. The main scheme is an APTAS for GCVS.

Proof. Recall that ε is a fixed positive constant. Then, by Corollary 11, finding a
feasible solution based on our scheme can be done in polynomial time. It remains to
bound the performance guarantee of our algorithm.

By Lemmas 4, 12, and 13, we conclude that the total cost of the solution is at

most (1 + ε4)((1 + 3ε2 + 2ε6)optn + 1+ε
ε ) + (1+ε)

ε17 + 2(1+ε)
ε ≤ (1 + 4ε2)optn + 8

ε17

(since ε < 1
100 ). By Lemma 3, optn ≤ (1 + 3ε)opt, and, therefore, the cost of

the solution returned by the scheme is at most (1 + 4ε2)(1 + 3ε)opt + 8
ε17 . Taking

the value of opt before applying Lemma 2 the performance guarantee increases to
(1 + 4ε2)(1 + 3ε)(1 + ε)opt + 8

ε17 . The claim follows from (1 + ε)(1 + 4ε2)(1 + 3ε) ≤
1 + 6ε = 1 + O(ε) (since ε < 1

100 ) and from 8
ε17 = O(1).

7. Concluding remarks. We showed how to obtain an APTAS for the variant
of variable-sized bin packing where the cost of a bin of size bi is a general cost and
not necessarily bi. In order to establish our scheme we needed to reduce the problem
using Lemmas 2 and 3. We note that even though the reduction in Lemma 2 uses
standard tricks, the property of the nice solution is a novel method and is the crucial
tool in the construction of our scheme. It is clear that the notion of a nice solution
is the main combinatorial structure that allowed us to reduce the time complexity of
the scheme into a polynomial scheme. We argue that similar approaches can provide
generalizations of approximation results for unweighted problems into approximations
for weighted variants (using different notions of nice solutions that would be tailored
per problem).
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Abstract. It is shown that for any n disjoint axis-aligned fat rectangles in three-space there is
a binary space partition (BSP) of O(n log8 n) size and O(log5 n) height and it can be constructed in
O(npolylogn) time. This improves earlier bounds of Agarwal et al. [SIAM J. Comput., 29 (2000),
pp. 1422–1448]. On the other hand, for every n ∈ N, there are n disjoint axis-aligned fat rectangles
in R

3 such that their smallest axis-aligned BSP has Ω(n logn) size.
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1. Introduction. For a set of input objects in the Euclidean space, a binary
space partition (BSP) is a recursive cutting scheme that dissects the space along hy-
perplanes into convex cells and, in the meantime, dissects the input objects as well.
A BSP corresponds to a data structure, called a BSP tree, that stores all cutting
hyperplanes and the final fragments of the input objects. Initially, the BSP tree data
structure was designed for efficient hidden-surface removal from a moving viewpoint
by Fuchs, Kedem, and Naylor [16] based on ideas of Schumacker et al. [22] in the com-
puter graphics community. Ever since, BSPs have found innumerable applications in
robotics [7], shadow generation [8, 9], solid modeling [23], graph drawing [6], network
design [18], collision detection [2, 3], range counting [13], point location [5, 10], and
in many other fields.

The efficiency of most applications depends crucially on the space complexity of
the underlying BSP tree. The size of a BSP is the total number of fragments into
which the input objects are partitioned. The BSP size gives an upper bound on the
number of leaf nodes in the BSP tree if the BSP does not make redundant cuts; i.e., the
cutting hyperplane always partitions the convex hull of the objects. Ideally, none of
the input objects are cut during the partitioning, and the BSP size equals the number
of input objects. In many cases, however, it is inevitable that input objects are also
fragmented, and the size of the BSP becomes superlinear. There are configurations
where the smallest BSP for n disjoint convex objects (for instance, line segments
in three-space [14]) has Θ(n2) size, which is often prohibitive for applications. The
height of a BSP is the height of the corresponding BSP tree. Balanced BSP trees are
important for some applications, such as ray tracing and solid modeling, and for the
efficient construction of the BSPs [4].

After numerous heuristic algorithms constructing small size BSPs [16, 19, 23], Pa-
terson and Yao [20] were the first to study their combinatorial properties. They showed
that for any n disjoint line segments in the plane there is a BSP of O(n log n) size and
O(log n) height. The currently known best lower bound is Ω(n log n/ log log n) [24].
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Paterson and Yao [20] showed that n disjoint triangles in three-space always have a
BSP of O(n2) size and O(n) height. There is a set of n disjoint triangles (each having
one side along a hyperbolic paraboloid) for which every BSP has Ω(n2) size [14]. The
best currently known upper bound for the BSP size of disjoint (d − 1)-dimensional
simplices in Rd, d ≥ 3, is O(nd).

Theoretical research focused on object classes where near linear size BSP is pos-
sible. There is an O(n) size BSP for n disjoint segments in the plane if they have
a constant number of distinct orientations [25], if the ratio of the longest and the
shortest segment is bounded by a constant [12], or if they are convexly independent
(every line segment has an end point along the convex hull) [12].

Paterson and Yao [21] constructed a BSP of O(n3/2) size and O(log n) height for
n disjoint axis-aligned objects in R3. They also showed that this bound is tight in
the worst case apart from a constant factor. Dumitrescu, Mitchell, and Sharir [15]
extended this result and proved an upper bound of O(nd/(d−k)) on the BSP size of n
disjoint axis-aligned k-dimensional boxes in Rd, 1 ≤ k ≤ d − 1. This bound is tight
for k < d/2. For d/2 ≤ k < d − 1, only one tight bound is known currently: there
is an O(n5/3) size an O(log n) height BSP for n disjoint axis-aligned (2-dimensional)
rectangles in four-space [15]. Results of Dumitrescu, Mitchell, and Sharir, combined
with ideas of Paterson and Yao, imply an O(nd/2) upper bound on the minimal size
of a BSP for disjoint axis-aligned boxes in d-space [17].

Disjoint fat objects also have small size BSPs in some cases. We say that a k-
dimensional object r is fat if the ratio of side length of the smallest enclosing cube
and the largest inscribed cube in the affine k-dimensional space spanned by r is at
most a constant.1 If this constant is α ≥ 1, then r is said to be α-fat. Specifically,
every line segment is 1-fat, and the aspect ratio of every α-fat rectangle is at most
α. De Berg [10] constructed an O(n) size BSP for n full-dimensional fat objects of
constant combinatorial complexity (e.g., fat boxes) in Rd for any dimension d ∈ N.
This technique can be generalized, and it leads to linear size BSPs for a wider class
of input sets, such as uncluttered scenes [10] and guardable scenes [11]. None of these
results gives a bound for (d−1)-dimensional or lower-dimensional fat polygonal objects
in Rd, d ≥ 3.

Agarwal et al. [1] studied BSPs for n disjoint axis-aligned fat rectangles in three-

space. They have constructed a BSP of n2O(
√

logn) size and O(log n) height in

n2O(
√

logn) time. Our main result improves upon this bound.
Theorem 1. For every set of n disjoint axis-aligned fat rectangles in R3, there

is a BSP of O(n log8 n) size and O(log5 n) height. Such a BSP can be computed in
O(n log12 n) time and O(n log8 n) space.

If the input rectangles are α-fat, 1 ≤ α ≤ n, then our proof gives a BSP of
O(nα4 log8 n) size and O(log5 n) height. Our proof is constructive; we present an
explicit algorithm to compute a BSP for fat rectangles. In our algorithm, every
partition hyperplane is axis-aligned (i.e., parallel to (d − 1) coordinate axes). Such
a BSP is called an axis-aligned BSP. We complement our upper bound with a lower
bound construction and present a set of n disjoint axis-aligned fat rectangles in R3

that requires a Ω(n log n) size axis-aligned BSP.
Theorem 2. For every n ∈ N, there are n pairwise disjoint axis-aligned squares

in R3 such that any axis-aligned BSP for them has Ω(n log n) size.

1Fat objects are usually defined in terms of enclosing and inscribed disks. Our definition, in
terms of cubes, is more convenient for our analysis of axis-aligned objects, and it is equivalent to the
usual definition (with a possibly different constant).
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That is, the minimal size of an axis-aligned BSP for n disjoint axis-aligned fat
rectangles in R3 is always O(n log8 n) and it is sometimes Ω(n log n). No attempts
were made to optimize the degree of the polylogarithmic factors; it is left open for
future research.

The and remainder of the paper is organized as follows. In section 2, we define
several BSP schemes. We distinguish between different types of axis-aligned rectangles
with respect to an axis-aligned box in section 3. We present a hierarchy of recursive
partition schemes for special classes of axis-aligned fat rectangles in section 4. Based
on these building blocks, we prove Theorem 1 in section 5. We present our lower
bound construction and prove Theorem 2 in section 6. Finally, we conclude with
some conjectures in section 7.

2. Preliminaries: BSP schemes and BSPs. We start with defining a slightly
more general partitioning procedure than the classical BSP. A binary space partition
scheme (BSP scheme) is a recursive partitioning algorithm for a pair (R,C) of an input
set R of objects lying in an open bounding volume C. The volume C is called the cell
associated with the input. (If C is not given with the input set R, then C may be
considered as the entire space, a convex hull, or a bounding box of the input.) Unless
the input satisfies an end condition, the cell C is split along a hyperplane h into two
open subcells C1 and C2, and then a BSP scheme is applied recursively for (R1, C2)
and (R2, C2), where Ri = {r ∩ Ci : r ∈ R}, i = 1, 2, is the set of object fragments
clipped to the subcell Ci. (Notice that the fragments lying in the hyperplane h are
not fragmented any further.)

A classical BSP is, in our terminology, a BSP scheme with a specific end condition.
A cell C is partitioned until the input consists of at most one full-dimensional and
no lower-dimensional input object. Specifically, for rectangles in three-space, the end
condition requires that the input is empty.

Every BSP scheme naturally corresponds to a binary tree. Every node v of the
tree corresponds to a subproblem (Rv, Cv): the root corresponds to the initial input
R = R0 and its bounding volume C0. The two children of a nonleaf node v correspond
to the two subproblems in the two open subcells of the spitting hyperplane hv. The
BSP scheme can be encoded (or stored) in a data structure, called a BSP tree, based
on this binary tree: every nonleaf node stores a splitting hyperplane and all fragments
of k-dimensional input objects, k < d, lying on the splitting plane. Every leaf node
stores at most one fragment of a full-dimensional input object, which is the input
of the corresponding subproblem (for an input of rectangles in three-space, the leaf
nodes do not store any fragment).

The size of a BSP scheme is the total number of fragments of input objects stored
in the corresponding BSP tree. If the BSP scheme does not make redundant cuts, i.e.,
if every splitting plane partitions the convex hull of the input objects, then the size of
the BSP scheme is an upper bound on the number of nonleaf nodes of the BSP tree.
Our explicit algorithms can be implemented with no redundant cuts (cf., Lemma 4),
and so our bounds on the size of various BSP schemes lead to the same asymptotic
bounds on the size of a corresponding BSP trees.

Every BSP scheme defines a subdivision of the input volume C. The subdivision
of a BSP scheme is the collection of nonoverlapping cells corresponding to the leaf
nodes of the BSP tree. The cells in the subdivision jointly tile the volume C.

Colorful BSPs. We have defined the classical BSP as a BSP scheme with
a specific end condition. The (classical) BSP terminates when every subproblem
consists of at most one full-dimensional object. In our algorithms, we use another
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BSP scheme: a colorful binary space partition is defined as a BSP scheme where some
input object is colored, each object with at most one color, and the end condition
is satisfied if and only if in each subproblem no two objects have different colors. A
(classical) BSP for the complete input is, of course, a colorful BSP. A colorful BSP,
however, may have a smaller size than a BSP (i.e., it may dissect the input into much
fewer fragments).

Overlays of BSPs. We define a powerful tool to concatenate several BSP
schemes while keeping the total size small. Consider two BSP schemes P1 and P2

(their inputs (R1, C1) and (R2, C2) may be different, and their end conditions may
also be different). For i = 1, 2, let T (Pi) denote the BSP tree of Pi, and let Li denote
the subdivision of Pi. Assume C2 can be tiled with cells of L1 (i.e., the closure of C2

is the union of the closures of some cells of L1).
The overlay BSP scheme P1 ◦P2 is defined for the input (R1 ∪R2, C1) as follows.

First P1 ◦ P2 performs P1; then in each cell L ∈ L1, independently, it performs
P2 restricted to L. Technically, in each cell L ∈ L1, we run P2 on the input set
({r ∩ L : r ∈ R2}, L) and partition L with the splitting planes of P2 recursively. See
Figure 1 for an example in the plane.

For a set A of objects, we also define the restricted overlay BSP scheme P1 ◦A P2,
which first performs P1; then in each cell L ∈ L1 that contains a portion of some
object in A, it performs P2 restricted to L (while cells L ∈ L1 that are disjoint from
A are not partitioned any further).

We obtain the BSP tree T (P1 ◦ P2) by appending to every leaf node v ∈ T (P1)
the BSP tree obtained when we perform the binary partition P2 restricted to the tile
Cv ∈ L1 until the end condition of P2 is satisfied in each subproblem. Notice that
the subdivision corresponding to the overlay BSP scheme P1 ◦ P2 satisfies the end
conditions of both P1 and P2. More importantly, if P1 is a (classical) BSP for a set
R1 of (d−1)-dimensional objects, then P2 does not partition any object in R1 because
they all lie on the boundaries of the tiling L1. Intuitively, P1 eliminates the objects
in R1 from further fragmentation. Similarly, if P1 is a colorful BSP for a set A of
red objects and a set B of blue objects, and P2 is a (classical) BSP for A, then the
splitting planes of P2 cannot partition any blue objects in P1 ◦AP2. We will use these
properties in our algorithms.
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Fig. 1. An example with an axis-aligned BSP scheme P1 (whose input objects are not shown
in the figure) and a colorful BSP P2 for a set of disks and hexagons (shown in the figure). (Left)
The axis-aligned subdivision L1 and the input objects of R2 in their common bounding box C1 = C2.
(Middle) The subdivision L2 produced by P2. (Right) The subdivision produced by the overlay BSP
scheme P1 ◦ P2. Redundant cuts made by the overlay BSP scheme are drawn with dotted lines.
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The overlay ©k
i=1Pi = P1 ◦P2 ◦ · · · ◦Pk = (. . . ((P1 ◦P2) ◦P3) ◦ · · · ◦Pk) of k BSP

schemes is obtained by successively overlaying the partition schemes P1, P2, . . . , Pk.
Let us point out an immediate consequence of our definition.

Proposition 3. Consider k BSP schemes P1, P2, . . . , Pk. The height of the
overlay ©k

i=1Pi is no more than the sum of the heights of P1, P2, . . . , Pk.
Redundant cuts of overlays. Even if neither of the BSP schemes P1 and P2

makes redundant cuts, the overlay P1 ◦ P2 may perform redundant cuts (e.g., along
the dotted lines in Figure 1, right).

Recall that the number of nodes in the BSP tree is proportional to the number
of fragments of the input objects only if the BSP makes no redundant cuts. Since we
want to use the fragmentation of the objects to measure the size of our data structure,
we need to filter out all redundant cuts. This can be easily done by simply skipping
all redundant cuts.

Lemma 4. Given a BSP scheme P for an input (R,C) that partitions R into
a set F of fragments and has height H (but possibly makes redundant cuts), we can
construct a BSP scheme P ′ for (R,C) that has the same end condition as P , partitions
R into the same set F of fragments, has height at most H, and makes no redundant
cuts.

Proof. We construct P ′ by performing the cuts made by P but skipping redundant
cuts. We use the following auxiliary data structure: for every intermediate cell C of
P , we create an open convex volume Ĉ ⊆ C that contains all portions of the input
objects clipped to C (i.e., {r∩C : r ∈ R} ⊂ Ĉ). We construct the cells Ĉ and the BSP
scheme P ′ as the partitioning algorithm P progresses. If P performs a redundant cut
that splits a cell C into subcells C1 and C2 such that {r ∩ C : r ∈ R} ⊂ C1, then
P ′ does nothing, but we put Ĉ1 := Ĉ ∩ C1 and Ĉ2 = ∅ (in fact, we can remove C2

from further consideration). If P performs a nonredundant cut that splits a cell C
into subcells C1 and C2 along a hyperplane h, then we look up the (unique) cell C ′

at the current level of partition of P ′ that contains Ĉ and make P ′ partition C ′ along
h into subcells C ′

1 and C ′
2, and we put Ĉ1 := Ĉ ∩ C1 and Ĉ2 := Ĉ ∩ C2.

Note that by skipping redundant cuts, the cell C ′ of P ′ may be much larger than
the corresponding cell C of P . Hence, the cut along h can extend beyond the cell C
(in Figure 1, e.g., the cut along 3 would extend above 2). This, however, has no effect
on the number of fragments of the input objects in R or whether the end condition is
reached: P and P ′ differ only in the way they partition C ′ \ Ĉ and C \ Ĉ which are
empty of input objects.

In our algorithms, we sometimes overlay several BSP schemes whose input objects
are the same (namely, the set of axis-aligned fat rectangles) but whose input cells
are different. In this case, a redundant cut has the same meaning for each BSP
scheme: it is a splitting hyperplane for a cell C that is disjoint from the convex hull
of {r ∩C : r ∈ R}. In the following sections, we present explicit algorithms that may
perform redundant cuts (due to overlaying several BSP schemes). These BSP schemes
together with the filtering done by Lemma 4 lead to BSP trees of size proportional to
the number of fragments into which the input objects are partitioned.

3. Basic properties of axis-aligned objects. An axis-aligned box in R3 is the
cross product of three nonempty intervals, which we call the extents of the box. The
lengths of the x-, y-, and z-extent of a box B are denoted by x(B), y(B), and z(B),
respectively. A box is full-dimensional if all three extents have nonzero length. An
axis-aligned rectangle is a box where exactly two extents have positive lengths and
one extent has zero length (i.e., it is a point). Finally, an axis-aligned rectangle is
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α-fat (or fat if α is clear from the context) if its aspect ratio (the ratio of its longer
and shorter positive extents) is at most a constant α ≥ 1.

If all input objects of a BSP scheme are axis-aligned, then we assume that the
initial cell C0 is the axis-aligned bounding box of the input. If C0 is axis-aligned
and every splitting plane is orthogonal to a coordinate axis, then the cell of every
subproblem is an open axis-aligned box.

Shelves and bridges. The input of a subproblem (Rv, Cv) is the set of rectangles
clipped to the cell Cv. Even if a rectangle r of the initial input is fat, the fragment
r∩Cv clipped to Cv is not necessarily fat. In the following definition, we describe the
possible positions of a fat rectangle relative to an axis-aligned cell C.

Definition 5. Consider an axis-aligned full-dimensional open box C and an axis-
aligned closed rectangle r such that r∩C is nonempty. We say that r is pass-through
for C, if an extent of r contains the corresponding extent of C. We distinguish three
classes of pass-through rectangles for C (see Figure 2):

• r is free for C if both positive extents of r contain the corresponding extents
of C;

• r is a shelf for C if one extent of r contains the corresponding extent of C
and the other positive extent of r contains an end point of the corresponding
extent of C;

• r is a bridge for C if one extent of r contains the corresponding extent of
C and the other positive extent of r lies in the interior of the corresponding
extent of C.

Each type of pass-through rectangle has a specific role in our algorithms. When-
ever an input rectangle r is free for an intermediate cell C of the partitioning, we split
C along r ∩ C. This partition step is called a free cut. It is always a nonredundant
cut and it does not increase the number of fragments of the input objects.

The fragment r ∩ C of a fat shelf r can have an arbitrary aspect ratio, but we
can construct an O(n log n) size BSP for any n shelves in a cell C (cf., Lemma 10).
The fragment r ∩ C of a fat bridge r is not necessarily fat, either, but it preserves
some properties of the fatness of r: if r is α-fat, then the extent of r ∩C which is the
same as the corresponding extent of C is at most α times as long as the other positive
extent (which lies in the interior of that of C).

Agarwal et al. [1] proved that for n disjoint axis-aligned fat rectangles, all of
which are pass-through for their bounding box C0, there is a BSP of O(n) size and
O(n) height. (They also give an O(n log n) size and O(log n) height BSP for such
an input.) These BSPs, however, do not provide a good partitioning for a set of fat
axis-aligned rectangles, in general, because they may partition a rectangle lying in the
interior of C into O(n) fragments, resulting in a BSP of size O(n2). We can improve

Fig. 2. Free rectangles, shelves, and bridges clipped to an axis-aligned box.
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x

y

z

Fig. 3. Pass-through xy-rectangles (left) and y-class pass-through rectangles (right).

upon the upper bound n2O(
√
n) of Agarwal et al. because we distinguish shelves and

bridges. This allows us to better exploit the particular geometric properties of these
objects.

Orientation of edges and rectangles. A line segment (or an edge of a rect-
angle) is called an x-, y-, or z-segment (x-, y-, or z-edge) if it is parallel to the x-, y-,
or z-coordinate axis, respectively. The orientation of an axis-aligned rectangle is the
pair of orientations of its edges; thus we can talk about xy-, yz-, and xz-rectangles
(Figure 3). The base of a shelf r for a cell C is a side s of C such that the segment r∩s
is the common extent of C and r∩C. Every shelf for C has a unique base. All shelves
based at the same side s of a cell C must have the same orientation: the orientation
of every shelf based at s is different from that of s, and if two shelves r1 and r2 based
at s had the remaining two distinct orientations, then the segments s ∩ r1 and s ∩ r2
would intersect.

For pass-through (but not free) rectangles with respect to a cell C, we distinguish
three classes depending on their extent dimension covering that of C: a pass-through
rectangle r is in the x-class for C (resp., y-class and z-class) if x(r ∩ C) = x(C)
(resp., y(r ∩ C) = y(C) and z(r ∩ C) = z(C)), i.e., the x-extent of r contains the
corresponding extent of C. (Agarwal et al. [1] also distinguished these classes and
called them front, right, and top.)

Computation of BSP size. We do not count directly the number of fragments
of input rectangles in the analyses of our algorithms. Instead, we deduce a bound
on the BSP size from the number of fragments of segments clipped to the input
rectangles.

Definition 6. Consider a set R of disjoint axis-aligned rectangles in R3. For
every rectangle r ∈ R and every axis-parallel line �, the line segment � ∩ r is called a
mast of R.

Proposition 7. Assume that we are given a set R of axis-aligned rectangles
in R3 and an axis-aligned BSP scheme P that applies every possible free cut. If P
partitions any mast of R into at most k pieces, then it partitions every rectangle of R
into O(k2) fragments.

Proof. The BSP scheme P restricted to an axis-aligned rectangle r ∈ R is a
2-dimensional BSP-scheme. During the partition algorithm, only the fragments of r
adjacent to the boundary ∂r may be further partitioned: if a fragment of r is not
adjacent to any edge of r (see Figure 4(a)), then it is free for the cell in which it is
contained, and we assume that P makes a (free) cut along every free fragment of the
input.

Consider the steps of the BSP scheme that partition a fragment r′ of r. Each of
these steps increases the number of fragments of r by one. We distinguish two types
of splitting planes: (i) The splitting plane h ∩ r′ subdivides the common boundary
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r

r′1 r′2
r′3

h ∩ r′3

h
∩
r′ 1

h
∩
r′ 3

(a) (b) (c) (d)

Fig. 4. The subdivision of a rectangle r after a few steps of a partition algorithm. Fragment r′2
of r is free (a). The splitting plane h ∩ r′ subdivides the set ∂r ∩ r′ (b) and (c). The splitting plane
h ∩ r′ does not subdivide ∂r ∩ r′ (d).

∂r ∩ r′ (i.e., ∂r ∩ r′ has points on both sides of h; see Figures 4(b),(c)). Since every
edge of r is subdivided into at most k fragments, at most 4k − 4 steps can partition
∂r this way. (ii) The splitting plane h∩ r′ partitions the fragment r′ ⊂ r but does not
subdivide the set ∂r ∩ r′ (see Figure 4(d)). In this case, h∩ r′ is parallel to a portion
of ∂R∩r′, which is part of an edge e of r. Let us project h∩r′ orthogonally to such an
edge e. The projections of all splitting segments of type (ii) give a multiple coverage
of e. Consider a final fragment e′ of an edge e of r. Note that the projection of every
splitting segment either contains e′ or is disjoint from e′. If e′ is �-fold covered, then
any mast of r orthogonal to e′ and having an end point on e′ is partitioned into at
least � + 1 pieces. Each final fragment of the four edges along ∂r is covered at most
k − 1 times, and so the number of splitting segments of type (ii) is no more than
(4k − 4)(k − 1).

The upper bound O(k2) of Proposition 7 is optimal apart from a constant factor.
An xy-rectangle might be split along x-lines into k slabs, and then each slab can be
split along y-lines into k pieces, which gives a total of k2 fragments.

4. Building blocks. We present our BSP scheme for fat axis-aligned rectangles
in R3 in the next section. It is composed of several layers of recursive BSP schemes.
In this section, we build up these layers gradually, starting with simple BSP schemes
and culminating with a BSP for pass-through rectangles for a cell C. We discuss
each level in a separate subsection below. In subsection 4.1, we describe how the free
cuts are performed. In subsection 4.2, we present a BSP for shelves such that every
mast of an input rectangle is partitioned into O(log n) pieces. In subsections 4.3 and
4.4, we present a colorful BSP separating pass-through rectangles of different classes.
Finally, in subsection 4.5, we describe a BSP for z-class pass-through rectangles. All
our BSP schemes and their analyses are similar; they apply recursion and partition a
cell along some kind of median plane in each recursive step.

4.1. Free cuts. We construct our BSP schemes recursively, and we often have to
partition every cell along all free cuts. A free cut does not increase the total number
of fragments of input objects, but it increases the height of the corresponding BSP
tree. Since several input rectangles may be free for the same cell, it does matter how
we perform the free cuts.

Consider a set of n disjoint axis-aligned rectangles, and let P be an axis-aligned
BSP scheme. For each cell C of the subdivision defined by P , we partition C recur-
sively along all free rectangles of C. Since the input rectangles are disjoint, all free
rectangles for C are parallel. In one recursive step, we split C along the median free
rectangle. Therefore in O(log n) recursive calls, we eliminate all free cuts.
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Let P � FreeCut(R) denote the BSP scheme obtained by performing the recur-
sive free cuts described above in each cell of the subdivision of P . The BSP tree
T (P � FreeCut(R)) can be obtained from T (P ) by appending a binary tree of height
O(log f(C)) to each leaf node of T (P ) that corresponds to a cell with f(C) free
rectangles.

Proposition 8. The operation P ← P � FreeCut(R) does not increase the size
of P , but it increases its height by O(log n).

4.2. BSP for shelves. Given a set R of disjoint axis-aligned rectangles and an
axis-aligned cell C, we present the BSP scheme Shelf(R,C), which is a classical BSP
for the set S = {r ∩ C : r ∈ R is a shelf for C}. That is, Shelf(R,C) partitions the
cell C recursively until every (open) subcell is disjoint from elements of S. A rectangle
r ∈ R may be a shelf for a resulting subcell C ′ ⊂ C, but Shelf(R,C) eliminates all
fragments of r ∩ C if r is a shelf for the input cell C.

We construct Shelf(R,C) as an overlay of six BSPs for shelves with a common
base side. Let s be a side of cell C. We may assume without loss of generality (w.l.o.g.)
that s is the lower xz-side of C and the orientation of every shelf with base s is yz
(see Figure 5, left). Notice that the x-coordinates of shelves with base s are distinct.

Algorithm 1 (OneShelfs(R,C)).
Input: R is a set of disjoint axis-aligned fat rectangles, C is an axis-aligned cell,

and s is a side of C. Ss(C) = {r ∩ C : r ∈ R is a shelf for C with base side s} = ∅.
1. Permute the coordinate axes (temporarily, for the sake of this algorithm only)

such that s is the lower xz-side of C and every shelf based at s is a yz-
rectangle.

2. Let P be a BSP scheme that partitions C along an xz-plane h through an
edge of a shelf of Ss(C) with a maximum y coordinate, and then P partitions
the subcell between h and s by a yz-plane along the median shelf into two
cells C1 and C2. (See an example in Figure 5, middle.)

3. P ← P � FreeCut(R).
4. For i = 1, 2 do: If a rectangle of Ss(C) intersects Ci, then P ← P◦

OneShelfs∩Ci
(R,Ci).

5. Return P .
Rounds. We analyze Algorithm 1 (and other recursive BSP schemes) in incre-

ments of work done in one level of the recursion, which we call a round. In the first
round, the algorithm is called for the initial input cell C; the second round calls the
algorithm for the cells C1 and C2 independently. In round i, in general, Algorithm 1
is called for up to 2i disjoint cells, in parallel. The work done in round i includes a

x

y

x0

y0

Fig. 5. The partition done in two consecutive rounds of Algorithm 2.
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median cut and the free cuts performed in each of these cells. (Note that free cuts may
partition C1 and C2 into several smaller subcells, yet the recursive calls are applied
for C1 and C2.)

Lemma 9. If R is a set of n disjoint axis-aligned rectangles and Ss = {r ∩ C :
r ∈ R is a shelf for C with base side s} is nonempty, then OneShelfs(R,C) is a BSP
for Ss. It partitions every mast of R into O(log(|Ss| + 1)) fragments, and its height
is O(log(|Ss| + 1) · log n) = O(log2 n).

Proof. We analyze Algorithm 1 in rounds (increments of work done in one level
of the recursion). In each round, the number of elements of Ss(Ci) in a cell Ci (for
which the OneShelfs∩Ci(R,Ci) is applied) decreases by a factor of at least two. After
O(log(|Ss(C)| + 1)) rounds, no cell contains any fragment of Ss(C) in its interior. It
follows that OneShelfs(R,C) is a BSP for Ss(C) and it terminates in O(log(|Ss(C)|+
1)) rounds. By Proposition 8, its height increases by O(log n) in every round, and so
its total height is O(log n · log(|Ss(C)| + 1)) = O(log2 n).

Consider a mast along a rectangle r ∈ R. We assume w.l.o.g. that s is the
lower xz-side of C and every shelf based at s is a yz-rectangle. Since we split the
cells by xz- and yz-planes in step 2, no z-segment is ever cut. Every y-mast is
dissected into O(log(|Ss|+ 1)) fragments because it can be cut at most once in every
round. Now let e be an x-mast. Consider a fragment e ∩ Ci in a cell Ci for which
OneShelfs∩Ci(R,Ci) is called in round j. Observe that e ∩ Ci can only be cut if Ci

contains an end point of e in its interior: otherwise e is pass-through for Ci, and since
e is disjoint from all the shelves of Ss(Ci), it must lie above the highest shelf of Ss(Ci).
This implies that e is cut at most twice in every round, and so it is partitioned into
O(log(|Ss(C)| + 1)) = O(log n) fragments during the entire algorithm.

By overlaying the BSP scheme OneShelfs(R,C) for the six sides of a cell C, we
obtain a BSP for all portions of shelves for C that lie in cell C.

Algorithm 2 (Shelf(R,C)).
Input: R is a set of disjoint axis-aligned fat rectangles, and C is an axis-aligned cell.
1. Let J be the set of (at most six) sides of C such that Ss(C) = ∅ for s ∈ J .
2. Return ©s∈J OneShelfs(R,C).

By combining Lemma 9 with Proposition 3, we obtain the following result.
Lemma 10. If R is a set of n disjoint axis-aligned rectangles, then Shelf(R,C)

is a BSP for the set S = {r ∩ C : r ∈ R is a shelf for C}. It partitions every mast of
R into O(log n) fragments, and its height is O(log2 n).

4.3. A colorful BSP to separate xy-oriented y-class rectangles from
the z-class. Next, we present a colorful BSP that separates the y- and z-class pass-
through rectangles in a cell C under certain conditions. Consider a set R of n disjoint
α-fat axis-aligned rectangles in R3. Let C be an axis-aligned cell such that the lengths
of its three extents are ordered as x(C) ≥ y(C) ≥ z(C).

We distinguish a red set A = {r∩C : r ∈ R is a z-class bridge for C} and a blue set
B = {r∩C : r ∈ R is a y-class bridge for C of orientation xy} (see Figure 6). Project
every rectangle r ∈ A ∪ B to the x-axis. Since the projections of red and blue pass-
through rectangles do not overlap, we can subdivide the x-extent of C into intervals
x0x1, x1x2, . . . , xkxk+1 for some k ∈ N, 0 ≤ k ≤ n, such that each interval contains
projections of rectangles from one color class only and any two consecutive intervals
contain projections of different color classes. We define X(R,C) = (x1, x2, . . . , xk) to
be a sequence of such interval end points.

If we partition C by yz-planes through x1, x2, . . . , xk, then we separate the red
and blue rectangles within C. These k yz-planes, however, might partition other
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Fig. 6. Bridges from two classes and a subdivision of the extent x(C) into five intervals.

rectangles of R into too many fragments. We can show, however, that all α-fat
rectangles that intersect more than 2α2 such yz-planes must intersect the boundary
of the cell C.

Proposition 11. Consider a cell C such that x(C) ≥ y(C) ≥ z(C). An α-fat
rectangle whose y- and z-extents lie in the interior of the corresponding extents of C
intersects at most 2α2 yz-planes through points of X(R,C).

Proof. We have assumed that every blue bridge is an α-fat xy-rectangle. The
length of the interval xixi+1 corresponding to projections of blue bridges is at least
y(C)/α. The x-extent of an α-fat rectangle r whose y- and z-extents lie in the
interior of the corresponding extents of C is less than α · y(C) independently of the
orientation of r because y(C) ≥ z(C). Therefore, r intersects fewer than α2 intervals
corresponding to blue bridges. Since the intervals correspond to red and blue bridges
alternately, we conclude that r intersects less than 2α2 yz-planes through points of
X(R,C).

Based on the above observations, we may now present a colorful BSP for A and B.
Algorithm 3 (Sep2(R,C)).
Input: R is a set of disjoint axis-aligned rectangles, and C is an axis-aligned cell

such that x(C) ≥ y(C) ≥ z(C) and X(R,C) is nonempty.
Let P be the trivial BSP scheme for (R,C) (its BSP tree T (P ) consists of the

root only).
1. If R contains shelves for C, then P ← P◦Shelf(R,C).
2. P ← P ◦ Myz(R,C), where Myz(R,C) is a BSP scheme that partitions C

into two cells C1 and C2 along the yz-plane through the median element of
the sequence X(R,C).

3. P ← P � FreeCut(R).
4. For i = 1, 2 do: If the sequence X(R,Ci) is nonempty, then P ← P◦

Sep2(R,Ci).
5. Return P .

Lemma 12. If R is a set of n disjoint α-fat axis-aligned rectangles and x(C) ≥
y(C) ≥ z(C), then Sep2(R,C) is a colorful BSP for the red set A = {r ∩C : r ∈ R is
a z-class bridge for C} and the blue set B = {r ∩ C : r ∈ R is a y-class bridge for C
of orientation xy}. It partitions every x-mast of R into O(α2 log2 n) fragments, every
y- or z-mast of R into O(log2 n) fragments, and its height is O(log3 n).

Proof. We analyze Algorithm 3 in rounds (increments of work done in one level
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of the recursion). Since the y- and z-extents of C1 and C2 are the same as that of
C, and Myz(R,C) does not partition any y- or z-bridges for C, we have X(R,C1) ∪
X(R,C2) ⊂ X(R,C). Since Myz(R,C) cuts along a median element of X(R,C), we
have |X(R,C1)| ≤ |X(R,C)|/2 and |X(R,C2)| ≤ |X(R,C)|/2. After log(|X(R,C)|+
1) ≤ O(log n) rounds, Algorithm 3 partitions C along yz-planes through all points of
X(R,C). It follows that Sep2(R,C) is a colorful BSP for A and B and it terminates
in O(log n) rounds. Every round may call Shelf(R,C), which produces a BSP-scheme
of height O(log2 n), so the total height of P amounts to O(log3 n).

A y- or z-mast e is never cut by a splitting yz-plane of Myz(R,C), and so it is
in the interior of at most one cell C for which Sep2(R,C) is called. In each round,
Shelf(R,C) is called for a cell C containing e. By Lemma 10, e is partitioned into
O(log n) fragments in each round. In O(log n) rounds, the overlay of O(log n) algo-
rithms Shelf(R,Ci) dissects e into O(log2 n) fragments.

Now consider an x-mast f along an input rectangle r ∈ R. First, suppose that
the y- and z-extents of r lie in the interior of the corresponding extents of C. By
Proposition 11, yz-planes through points of X(R,C) can dissect r into at most 2α2

pieces. Each piece is dissected into O(log2 n) fragments by the overlay of O(log n)
calls to Shelf(R,Ci), one in each round, which gives a total of O(α2 log2 n) fragments.
Next, suppose that the y- or z-extent of r contains an end point of the corresponding
extent of C. A cut Myz(R,C) can partition a fragment f ∩ C only if C contains one
end point of f . If f is pass-through for C, then r is a shelf for C and r ∩ C has
been eliminated by a call to Shelf(R,C) in step 1 of the same round. In each round,
Myz(R,C) partitions at most two fragments of f (those incident to the end points of
f). In the next round, the resulting four or fewer fragments of f may be partitioned
by calls to Shelf(R,C) in step 1. So the mast f is cut O(log n) times in each round.
In a total of O(log n) rounds, f is partitioned into O(log2 n) fragments.

4.4. A colorful BSP to separate y- and z-class rectangles. In the previous
subsection, we separated y- and z-class pass-through rectangles under certain condi-
tions. In this section, we create an environment where those conditions are satisfied,
and we separate all y- and z-class pass-through rectangles.

We define the BSP scheme P (α,C) that splits C into (�α� + 1)2 congruent cells
by �α� equally spaced xy-planes and by �α� equally spaced xz-planes (i.e., P (α,C)
splits the y- and z-extents of C while keeping the x-extent). This can be accomplished
by a BSP scheme of height 2 log�α� = O(logα). We denote by Π(α,C) the resulting
set of (�α� + 1)2 cells.

Proposition 13. Consider a cell C such that x(C) ≥ y(C) ≥ z(C). Every α-fat
pass-through rectangle for C satisfies one of the following four conditions for every
Ci ∈ Π(α,C):

(i) it is free for Ci;

(ii) it is a shelf for Ci;

(iii) it is a z-class bridge for Ci;

(iv) it is a y-class bridge for Ci with orientation xy.
Proof. Consider a subcell Ci ∈ Π(α,C). Since the x-edge of Ci is more than α

times as long as its y- and z-edges, there is no bridge for Ci in the x-class. Similarly,
the y-edge of the initial cell C is more than α times as long as the z-edge of Ci;
therefore, a y-class bridge for C with orientation yz cannot be a bridge for Ci.

We partition every cell Ci ∈ Π(α,C) so that the x-, y-, and z-class pass-through
rectangles are separated. Free rectangles can be eliminated by free cuts. By Lemma 10,
the BSP scheme Shelf(R,Ci) can eliminate shelves. By Lemma 12, the colorful BSP
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Sep2(R,Ci) can separate pass-through rectangles of types (iii) and (iv). We combine
these algorithms to separate x-, y-, and z-class bridges, independently of the length of
the three extents of the cell C. Since we use the next algorithm as a subroutine of an-
other BSP scheme, it rotates its input cell C in a position where x(C) ≥ y(C) ≥ z(C).

Algorithm 4 (Sep3(R,C)).
Input: R is a set of disjoint axis-aligned fat rectangles, and C is an axis-aligned cell.
1. Permute the coordinate axes (temporarily for this algorithm) such that x(C) ≥

y(C) ≥ z(C).
2. P ← P (α,C).
3. P ← P � FreeCut(R).
4. For every Ci ∈ Π(α,C) do: If there are shelves for Ci, then P ← P◦

Shelf(R,Ci).
5. For Ci ∈ Π(α,C) do: If the sequence X(R,Ci) is nonempty, then P ←

P◦ Sep2(R,Ci).
6. Return P .

Lemma 14. Assume that R is a set of n disjoint α-fat axis-aligned rectangles,
1 ≤ α ≤ n, and C is an axis-aligned cell with x(C) ≥ y(C) ≥ z(C). Then the BSP
scheme Sep3(R,C) is a colorful BSP for the red set A = {r ∩ C : r ∈ R is a y-class
bridge for C} and the blue set B = {r∩C : r ∈ R is a z-class bridge for C}; it is also
a (classical) BSP for the set {r ∩ C : r ∈ R is an x-class bridge for C}. It partitions
every mast of R into O(α2 log2 n) fragments, and its height is O(log3 n).

Proof. By Proposition 13, a pass-through α-fat rectangle for C can have four
different positions in a subcell Ci ∈ Π(α,C). Free rectangles are eliminated in step 3,
and the shelves are eliminated in step 4. Finally, Sep2(R,Ci) separates z-class bridges
of C from y-class bridges of C with orientation xy in each subcell Ci ∈ Π(α,C).

The height of the BSP scheme P (α,C) is O(logα). By Proposition 8, step 3
increases the height by O(log n). Finally, by Lemma 12 and Proposition 3, the height
increases by O(log3 n) in step 5.

Step 2 of Algorithm 4 cuts every y- and z-mast into O(α) fragments but does
not partition any x-mast. By Lemma 12, Sep2(R,Ci) partitions every x-mast into
O(α2 log2 n) fragments and any y- or z-mast into O(log2 n) fragments in each Ci ∈
Π(R,C). Altogether, Algorithm 4 partitions every mast (of any orientation) into
O(α2 log2 n) ⊂ O(log2 n) fragments.

4.5. BSP for one class of pass-through rectangles. We are now ready
to present a (classical) BSP for z-class pass-through rectangles for a cell C. Our
algorithm is based on a simple intuition: we partition C recursively along xz-medians
of the vertex set of the z-class pass-through rectangles. (The xz-median of a set of
m points is an xz-plane h with a minimal y-coordinate such that the open half-space
behind h contains fewer than m/2 points.) In order to avoid the possibility that pass-
through rectangles of the y-class are fragmented into too many pieces, we separate
z-class pass-through rectangles from any other classes by applying Sep3(R,Ci) in each
subcell in every round of the recursion.

Algorithm 5 (Long(R,C)).
Input: R is a set of disjoint axis-aligned fat rectangles, and C is an axis-aligned

cell.
Let L(R,C) = {r∩C : r ∈ R is pass-through for C in class z} = ∅ and V (R,C) =

{v ∈ R3 : v is a vertex of a r ∈ L(R,C), v lies on the boundary of C but not on any
xz-side of C}. Let P be the trivial BSP scheme for the input (R,C).

1. If the sequence X(R,C) is nonempty, then P ←Sep3(R,C).
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2. P ← P ◦L(R,C)Nxz(R,C), where Nxz(R,C) is a BSP scheme that partitions C
into two cells C1 and C2 along the median xz-plane of the point set V (R,C).

3. P ← P � FreeCut(R).
4. For i = 1, 2, do: If V (R,Ci) = ∅, then P ← P◦L(R,C) Long(R,Ci).
5. Return P .

Lemma 15. If R is a set of n disjoint α-fat axis-aligned rectangles, 1 ≤ α ≤ n,
then the BSP scheme Long(R,C) is a BSP for the set L(R,C) = {r ∩ C : r ∈ R
is pass-through for C in class z}. It partitions every mast of R into O(α2 log3 n)
fragments, and its height is O(log4 n).

Proof. We analyze Algorithm 5 in rounds (increments of work done in one level
of the recursion). Since the z-extents of C1 and C2 are the same as that of C,
we have L(R,C1) ∪ L(R,C2) ⊂ L(R,C). In every round, Nxy(R,C) decreases the
number of vertices in V (R,C). If V (R,C) = ∅, then every element of L(R,C) is
free for C, which is eliminated in step 3. It follows that Algorithm 5 is a BSP
for L(R,C) and it terminates in O(log(|V (R,C)| + 1)) = O(log n) rounds. Every
round may call Sep3(R,C), which has height O(log3 n), so the total height of P is
O(log4 n).

It remains to show that Algorithm 5 dissects every mast e into O(α2 log3 n) frag-
ments. First, consider an x- or z-mast e. Note that Nxz(R,Ci) in step 2 cannot cut e,
and so in every round e lies in the interior of at most one cell Ci for which Long(R,Ci)
is applied. By Lemma 14, Sep3(R,Ci) can dissect e into O(α2 log2 n) fragments, and
so e is partitioned into O(α2 log3 n) fragments in total.

Now consider a y-mast f . A fragment f ∩ Ci can be cut if Ci contains an end
point of f in its interior. Otherwise f lies along a rectangle r, where r ∩Ci is y-class
pass-through for the cell Ci. Therefore Sep3(R,Ci) in step 1 separated r ∩ Ci from
elements of L(R,C) (i.e., partitioned Ci into subcells whose interiors do not contain
fragments of both r ∩ Ci and L(R,C)). By the definition of restricted overlay BSPs,
that means that Nxz(R,Ci) does not partition f ∩Ci (in this and all recursive calls).
Hence, the cuts Nxz(R,Ci) can successively dissect f into at most O(log n) pieces.
In each round, at most four pieces are partitioned by Sep3(R,Ci) in step 2. So the
mast f is cut O(α2 log2 n) times in each round. In a total of O(log n) rounds, f is
partitioned into O(α2 log3 n) fragments.

5. Binary space partition algorithm for fat rectangles. In this section we
present our main algorithm, a BSP for n disjoint axis-aligned fat rectangles in three-
space, and its analysis. The algorithm is based on a simple heuristic: we split the
space recursively along the median xy-plane of the clipped rectangles. After each cut,
fragments of input rectangles may become pass-through with respect to the resulting
cells. All new pass-through rectangles belong to the z-class. In order to prevent
subsequent xy-median cuts from further partitioning a pass-through rectangle, we
eliminate all z-class pass-through rectangles. By Lemma 15, we can remove the set
L(R,C) of z-class pass-through rectangles by overlaying the current BSP scheme with
Long(R,C).

Algorithm 6 (Main(R,C)).
Input: R is a set of disjoint axis-aligned fat rectangles, and C is an axis-aligned

cell. R(C) = {r∩C : r ∈ R, r∩C = ∅} is nonempty. Initially, let P denote the trivial
BSP scheme for the input (R,C).

1. If L(R,C) = ∅, then P ← P◦Long(R,C).
2. P ← P ◦Qxy(R,C), where Qxy(R,C) is a BSP scheme that partitions C into

two cells C1 and C2 along the median xy-plane of the point set {v ∈ R3 : v is
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a vertex of a rectangle r ∈ R(C), and v does not lie on any xy-side of C}.
3. P ← P � FreeCut(R).
4. For i = 1, 2, do: If R(Ci) = ∅, then P ← P◦ Main(R,Ci).
5. Return P .

Lemma 16. If R is a set of n disjoint α-fat axis-aligned rectangles, 1 ≤ α ≤ n,
then the BSP scheme Main(R,C) is a BSP for R(C) = {r ∩C : r ∈ R, r ∩C = ∅}. It
partitions every mast of R into O(α2 log4 n) fragments, and its height is O(log5 n).

Proof. We analyze Algorithm 6 in rounds (increments of work done in one level of
the recursion). In step 2, Qxy(R,C) decreases the number of rectangle vertices that do
not lie on either xy-side of a cell by a factor of at least two. If a clipped rectangle r∩C
intersects C but all its vertices lie on xy-sides of C, then r is pass-through for C in the
z-class, and Long(R,C) in step 1 eliminates it. It follows that Algorithm 6 is a BSP
for R(C) and it terminates in O(log n) rounds. Since Main(R,C) calls Long(R,C) in
every round, its height is O(log n) ·O(log4 n) = O(log5 n).

It remains to show that Algorithm 6 partitions every mast into O(α2 log4 n) frag-
ments. Consider an x- or y-mast e. In step 2, Qxy(R,C) does not cut e. Therefore, in
each round e is in the interior of at most one cell Ci for which Main(R,Ci) is applied.
By Lemma 15, each call to Long(R,Ci) can partition e into O(α2 log3 n) fragments.
In a total of O(log n) rounds, e is partitioned into O(α2 log4 n) fragments.

Now, consider a z-mast f along an input rectangle r. Both Long(R,Ci) and
Qxy(R,Ci) can dissect f , and so its fragments may lie in several cells for which
Main(R,Ci) is called in a round. A fragment f ∩ Ci may be dissected only if an end
point of f is in the interior of Ci; otherwise, r is a z-class pass-through rectangle for
Ci and was eliminated by Long(R,Ci) in step 1. Thus in each round, step 2 may cut
f twice, and Long(R,Ci) may cut it O(α2 log3 n) times. In a total of O(log n) rounds,
f may be partitioned into O(α2 log4 n) fragments.

We are now ready to prove our main result, which we reiterate here.
Theorem 1. For every set of n disjoint axis-aligned fat rectangles in R3, there

is a BSP of O(n log8 n) size and O(log5 n) height. Such a BSP can be computed in
O(n log12 n) time and O(n log8 n) space.

Proof. Consider a set R of n disjoint α-fat axis-aligned rectangles, and let C
be their axis-aligned bounding box. By Lemma 16, Main(R,C) is a BSP for R. It
partitions every mast into O(α2 log4 n) fragments. By Proposition 7, it partitions
every rectangle r ∈ R into O(α4 log8 n) fragments. In particular, for α = O(1), every
rectangle r ∈ R is partitioned into O(log8 n) fragments, and the size of the BSP is
O(n log8 n).

Computational complexity. Our algorithm relies heavily on overlaying several
simple BSP schemes. We present a simple data structure that leads to straightforward
implementation of Algorithm 6 in O(n log12 n) time and O(n log8 n) space. For an
input of n disjoint axis-aligned rectangles, Algorithm 6 constructs a BSP tree P
starting from a single root node by repeating the following operation: choose a leaf
node v (corresponding to a cell C), store a splitting hyperplane h at v, and append
two new leaf nodes to v (corresponding to the subcells of C on the two sides of h).
In order to keep the size of the BSP tree proportional to the number of fragments of
R, we also construct the variant of the main BSP algorithm that skips all redundant
cuts, as described in Lemma 4.

Our data structure maintains several subdivisions of the bounding box C of the
input rectangles. We maintain the subdivision of the current BSP scheme P . Besides
the main BSP scheme P , we have several algorithms (namely, Main(R,C), Long(R,C),
Sep3(R,C), Sep2(R,C), Shelf(R,C), and OneShelf(R,C)), which are applied in
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each round to a family of disjoint cells. Initially all of these algorithms are applied
in the bounding box C of the input R, but later they are applied in cells of different
subdivisions. For each of these algorithms, we maintain the set of cells in which
these algorithms are applied in the current level of recursion and which contain some
portions of input objects. Since R is partitioned into O(n log8 n) fragments, this is
an upper bound on the number of cells that we need to store at any point in our
algorithm for each subdivision.

For every cell C in every subdivision that contains any fragment of an input object,
we maintain the set R(C) = {r ∩ C : r ∈ R, r ∩ C = ∅} of clipped rectangles and the
axis-aligned bounding box Ĉ of R(C). Empty cells are discarded from any further
consideration. For each clipped rectangle r ∩ C, we store its status with respect to
C (orientation; pass-through or not; if pass-through then free, shelf, or bridge; x-, y-,
or z-class). We maintain a vector for C indicating if R(C) contains any pass-through
rectangles; x-, y-, or z-class rectangles; or shelves. From the sorted list of m clipped
rectangles we can extract the sorted list of vertices of clipped pass-through rectangles,
bridges, and shelves in O(m) time, and so we can quickly find the median planes for
the steps Myz(R,C), Nxz(R,C), and Qxy(R,C).

Assume that the input rectangles are partitioned into N fragments in the current
BSP scheme P . There are two types of operations we apply. The first type is operation
P ← P �FreeCut(R), which partitions every cell along all free cuts. We can scan each
cell C for free rectangles and partition C along all of them at once. If R(C) contained
m fragments, then we can extract the data structure for all of the resulting subcells
in O(m) time. Operation P ← P � FreeCut(R) can be done in O(N) time.

The second type of operation corresponds to the median cuts of one round
of an algorithm Main(R,C), Long(R,C), Sep3(R,C), Sep2(R,C), Shelf(R,C), or
OneShelf(R,C). We are given a family C of disjoint cells, each cell C ∈ C may con-
tain several cells of the subdivision L of the current BSP scheme P , and we overlay
some kind of median cut h(C) for each C ∈ C with P . For each cell C ∈ C and its
splitting plane h(C), we identify all cells in L that lie in C and intersect h(C). For
each such cell L ∈ L, we decide in O(1) time whether L should be partitioned along
h(C) or not. Since each cell of L is partitioned into at most two subcells, we can
update the data structure in O(N) time.

In total, our algorithm has O(log4 n) rounds (the height of the BSP tree is
O(log5 n), where one O(log n) factor corresponds to the free cuts). Each round can
be performed in O(N) = O(n log8 n) time, so the total time complexity amounts to
O(n log12 n).

6. Lower bound. We present a set of 3n disjoint axis-aligned squares in R3 such
that any axis-aligned BSP for them has Ω(n log n) size. The 3n squares are grouped
into three families, each of size n, as follows (refer to Figure 7):

A(n) = {ai = [3i, 3i + 3n] × [3i− 3n, 3i] × [3i] : i = 0, 1, . . . , n− 1},
B(n) = {bi = [3i + 1] × [3i + 1, 3i + 1 + 3n] × [3i + 1 − 3n, 3i + 1] : i = 0, 1, . . . , n− 1},
C(n) = {ci = [3i + 2 − 3n, 3i + 2] × [3i + 2] × [3i + 2, 3i + 2 + 3n] : i = 0, 1, . . . , n− 1}.

Each of the families A(n), B(n), and C(n) consists of n parallel and pairwise
disjoint axis-aligned squares. Every square has a vertex along the line x = y = z.
Squares of different families are disjoint because any two families are separated by a
plane. A(n) and B(n) are separated by the plane x = y. Similarly, A(n) and C(n) lie
on different sides of x = z, while B(n) and C(n) are separated by y = z.
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Fig. 7. The lower bound construction for n = 5. View of 15 squares from the negative octant,
where the dashed segment lies in the positive octant (top), and a projection to the xy-plane (bottom).

For every k = 1, 2, . . . , n, let F (k) denote the set of fragments of input squares
clipped in the cube Q(k) = [0, 3k] × [0, 3k] × [0, 3k]. Let f(k) denote the minimum
size of an axis-aligned BSP for F (k). We show that the following recursion relations
hold:

f(0) = 0,(1)

f(1) ≥ 1,(2)

f(k) ≥ k − 1 + min
0≤i≤k−1

(f(i) + f(k − 1 − i)) for 2 ≤ k ≤ n.(3)

The solution to this recursion is f(n) = Ω(n log n), and so Theorem 2 follows imme-
diately.
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Inequalities (1) and (2) are obvious. For inequality (3), consider a configura-
tion F (k), 1 < k ≤ n, and suppose that an axis-aligned splitting plane h cuts
the cube Q(k). Suppose that h cuts the diagonal [(0, 0, 0), (3k, 3k, 3k)] of Q(k) at
a point on the segment [(3i, 3i, 3i), (3i + 3, 3i + 3, 3i + 3)] for some i ∈ {0, 1, . . . , n −
1}. First, we show that h cuts at least k − 1 elements of F (k). If h is an xy-
plane, then it cuts c0, c1, . . . , ci−1 and bi+1, bi+2, . . . , bk−1. If h is an xz-plane, then
it cuts b0, b1, . . . , bi−1 and ai+1, ai+2, . . . , ak−1. If h is an yz-plane, then it cuts
a0, a2, . . . , ai−1 and ci+1, ci+2, . . . , ck−1.

Let us denote by Q1 and Q2 the cubes spanned by the segments [(0, 0, 0), (3i, 3i, 3i)]
and [(3i + 3, 3i + 3, 3i + 3), (3k, 3k, 3k)], respectively. The set of rectangles of F (k)
clipped in Q1 is F (i), and the set of rectangles of F (k) clipped in Q2 is a configura-
tion congruent to F (k− i− 1). The cubes Q1 and Q2 are disjoint from h, and so the
subconfigurations F (i) and F (k− i− 1) are intact. Hence the size of the axis-aligned
BSP F (k) is at least k − 1 + f(i) + f(k − i − 1). This confirms inequality (3) and
completes our proof.

7. Conclusion. Let f(Fn(k, d)) denote the minimum size of an axis-aligned
BSP for a set Fn(k, d) of n disjoint fat axis-aligned k-flats in Rd, and let fn(k, d) =
maxFn(k,d){f(Fn(k, d))}. We have shown that fn(2, 3) = O(n log8 n) and fn(2, 3) =

Ω(n log n). Moreover, there is an O(n log8 n) size and O(log5 n) height BSP for any
Fn(2, 3) such that every input rectangle is partitioned into O(log8 n) fragments.

In general we would like to determine the asymptotic behavior of fn(k, d) for
every k, d ∈ N , 1 < k < d, when n → ∞. It is easy to see that we cannot hope
for anything better than fn(k, d) = Θ(fn(1, d − k + 1)). Indeed, consider a worst
case construction Fn(1, d− k+1) for n axis-parallel line segments in Rd−k+1. Embed
Fn(1, d − k + 1) into a (d − k + 1)-dimensional affine subspace H of Rd, and draw
a k-dimensional square above every line segment orthogonally to H. We obtain n
disjoint k-dimensional squares in Rd. The size of an axis-aligned BSP for this set
Fn(k, d) cannot be smaller than fn(1, d− k + 1). We conjecture that this bound can
be attained apart from a polylogarithmic factor, i.e., k-dimensional axis-aligned fat
rectangles allow (in some sense) for reducing the dimension of the space by k − 1.

Conjecture 1. For any d ∈ N, 4 ≤ d, there is a BSP of O(n polylogn) size and
O(polylogn) height for any set Fn(d− 1, d).

Conjecture 2. For any k, d ∈ N, where 1 < k and k + 1 < d, there is a BSP of

O(n
d−k+1
d−k polylogn) size and O(polylogn) height for any set Fn(k, d).
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Abstract. We present a deterministic O(logn log logn) space algorithm for undirected st-
connectivity. It is based on a space-efficient simulation of the deterministic EREW algorithm of
Chong and Lam [J. Algorithms, 18 (1995), pp. 378–402], an approach suggested by Prof. Vijaya
Ramachandran, and uses the universal exploration sequences for trees constructed by Koucký in
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Our result improves the O(log4/3 n) bound of Armoni et al. in [Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, 1997, pp. 230–239] and is a big step towards the optimal
O(logn). Independently of our result and using a different set of techniques, the optimal bound was
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1. Introduction. The problem we are concerned with is st-connectivity in an
undirected graph G with n vertices (USTCONN); i.e., given two vertices s and t
of G, we want to answer the question whether there is a path between s and t.
This is one of the most basic graph problems with applications ranging from image
processing and VLSI design to solving more complex graph problems. Furthermore,
st-connectivity plays an important role in complexity theory because directed st-
connectivity (STCONN) is NL-complete [20] and USTCONN is SL-complete [14].

Linear time and space sequential algorithms for solving even the harder STCONN
problem have been known for a long time [22]. The problem of developing more ef-
ficient space and parallel algorithms was posed. The result of Aleliunas et al. [1]
shows that USTCONN can be solved in O(log n) space with a randomized algorithm
with one-sided error, i.e., an algorithm which produces an answer in polynomial time,
and, if the two vertices are not connected, then the algorithm is correct; otherwise, it
answers incorrectly with probability at most 1/2. The starting point of deterministic
space-efficient sequential algorithms is the O(log2 n) space algorithm for STCONN of
Savitch [20]. For a long time, this was the best result even for USTCONN. The
space bound for undirected graphs was first improved by Nisan, Szemerédi, and
Wigderson [16] to O(log3/2 n) and then to O(log4/3 n) by Armoni et al. [2]. Both
of these results depend on the efficient construction of universal traversal sequences
by Nisan [15]. Finally, simultaneous to our result and using different set of techniques,
the space complexity of USTCONN was shown by Reingold [18] to be O(log n).

Developing efficient parallel algorithms for USTCONN has a very rich history.
The situation here is complicated further by the existence of multiple models of par-
allel computation. The models from the PRAM family are generally considered to be
of great theoretical value. The results of [10, 19, 4, 11, 12] are concerned with the
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CREW PRAM model, [21, 3, 7, 8] with the CRCW PRAM model, and [9, 6, 5, 17] with
the EREW PRAM. The state of the art in parallel algorithms for USTCONN are the
results of Chong, Han, and Lam [5], which shows that the problem can be solved on the
EREW PRAM in O(log n) time with O(m+n) processors, and Pettie and Ramachan-
dran [17], which demonstrates a randomized EREW PRAM algorithm running in time
O(log n) with optimal number of processors. The algorithms of [5] and [17] actually
solve the harder problem of finding the minimum spanning tree of a weighted graph.

The starting point of our algorithm is the O(log n log log n) time deterministic
EREW PRAM algorithm with O(m+ n) processors of Chong and Lam [6], which we
call the CL algorithm. This parallel algorithm can be trivially simulated sequentially
in linear space. We use the sequential algorithm to define a mathematical structure
called configuration, which captures the state of the algorithm. We define also a
sequence of configurations, such that every element of this sequence corresponds to
the state of the sequential algorithm at a certain point of its execution. We use
the sequence of configurations to trivially define an O(log2 n) space algorithm, which
instead of storing all of its current state recomputes parts of it when it needs them.
This technique is standard for designing space-efficient algorithms. Finally, we modify
the O(log2 n) space algorithm into an algorithm which uses O(log n log log n) space.

The possibility of simulating parallel algorithms for USTCONN space-efficiently
was suggested to the author by Prof. Vijaya Ramachandran in 2000. She conjec-
tured an O(log n log log n) space algorithm derived from the CL algorithm and an

alternate simple O(log3/2 n) space algorithm derived from the algorithm of Johnson
and Metaxas [11], by using the max-degree hooking scheme of [6]. She observed that
the step needing derandomization in [16] is not necessary in a tree-based hook and
contract approach, because the trees automatically give rise to disjoint clusters of ver-
tices. The max-degree hooking scheme employed by [6] gives the additional benefit
that small trees have small neighborhoods. The main challenge was to implement
the levels of recursion, so that they process small trees in o(log n) space. Solving this
problem is the main contribution of this paper.

In the algorithm presented here the space of a level of recursion is between
Ω(log log n) and Θ(logn), depending on the level. A key tool for our method are
the exploration walks on trees defined by Koucký [13]. Exploration walks on trees are
similar to the Euler tour technique used by Tarjan and Vishkin [23] in the parallel
context. These walks play the role of the edge-list plugging technique and pointer
jumping employed by the CL algorithm, because they allow us to traverse trees very
efficiently.

Section 2 contains a high-level overview of the CL algorithm. Section 3 defines
formally a labeled multigraph and operations on it. Furthermore, it provides a com-
plete description of the sequential version of the CL algorithm. Section 4 gives a
detailed description of the space-efficient implementation of the CL algorithm. Sec-
tion 5 proves the correctness of the sequential CL algorithm. The proofs in section 5
are from [6] and for completeness are adapted here to our framework. Although we
make frequent references to [6], the exposition in this paper is self-contained, except
for Proposition 3.4, whose proof is not too difficult.

Define [k] = {1, . . . , k} and the double exponential function dexp(x) = 22x

. All
logarithms in the paper are of base 2.

2. The Chong–Lam algorithm. This section gives a high-level overview of
the Chong–Lam (CL) algorithm [6] to motivate the definitions in the next section.
The CL algorithm uses a hook and contract approach. There are several phases of
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hooking and contraction. Before every phase, every vertex of the current graph is in
exactly one of three states—active, inactive, and done; all active and inactive vertices
have nonzero degree, the done vertices have zero degree, and there are no multiedges
between active vertices; the inactive vertices are organized in a set of hooking trees.
A hooking tree is a subgraph of the current graph, which is a tree and whose internal
edges, which we call hooking edges, are obtained as described below. Initially all
vertices with nonzero degree are active, and the rest are done.

In a hooking phase the active vertices in parallel choose to hook to one of their
current neighbors, establishing their hooking edges, and thus either become part of
existing hooking trees or form new ones. The fact that the connected components
formed by the hooking of vertices are trees is ensured by the hooking scheme of the CL
algorithm. This hooking scheme uses an ordering <d of the vertices such that u <d v
iff the degree of u is less than the degree of v or they are the same, but u is less than
v, thinking of the vertices as elements of N. To choose their hooking edges, the active
vertices of the graph perform in parallel two consecutive, synchronized steps. First,
if a vertex v has a neighbor larger according to <d than itself, then v hooks to the
largest such neighbor. Second, if after the first step all neighbors of v are hooked to
it, then v hooks to itself; i.e., it does not choose a hooking edge. Otherwise, if after
the first step a neighbor u of v is hooked to a vertex different from v, then v hooks
to u.

In a contraction phase some of the current hooking trees are contracted to a
representative vertex. The representative vertex is the only vertex in the tree which
is hooked to itself. Which trees are contracted is determined by a parameter, which
depends on the phase and sets an upper bound on the total degree, i.e., the sum of
the degrees of the vertices, of the trees which are contracted. For every contracted
tree, its representative becomes a new active vertex and the rest of its vertices become
done. Also all multiedges between new active vertices are cleaned up. Finally, the
vertices of every uncontracted tree become inactive.

The processing required by a hooking phase is performed in parallel time O(log d),
where d is the degree of the active vertex, using pointer jumping. The important part
of a contraction phase is checking the degree of a hooking tree. In parallel this could be
done in O(log c) time, where c is the contraction parameter, by using pointer jumping
and a constant time edge-list plugging technique.

Finally, the CL algorithm is given by the following recursive procedure. Here
MaxHook and Contract(c) denote correspondingly a hooking and a contracting phase
with parameter c.
procedure Connect(k)

MaxHook;

if k > 0 then
Contract(dexp(k));

Connect(k − 1);
Connect(k − 1);

Contract(dexp(k+1));

The correctness of the CL algorithm ensures that a call to Connect(�log log n�)
contracts every connected component of the graph to a single vertex and all the other
vertices are organized in a set of rooted parent trees such that the root of the tree of
a vertex u is the vertex to which the connected component of u contracted.

We simulate the CL algorithm trivially with a sequential algorithm using linear
space. We fix an ordering on the edges incident to a vertex, and instead of performing
the hooking in parallel for all active vertices, we do it sequentially for each of them.
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This is possible, because by changing the hooking scheme of CL slightly we can ensure
that the hooking of an active vertex does not depend on the hooking of the other
active vertices. The new hooking strategy gives preference to neighbors which are
inactive or have an inactive neighbor, but it still ensures that small trees composed
of active vertices have small degree. The details of the sequential algorithm are given
in the following section, and space-efficient versions of the same algorithm are given
in section 4.

3. Definitions.

3.1. Multigraphs and exploration walks. An undirected multigraph is a
graph with possibly multiple edges between two vertices and such that every edge has
a label on each side, where the labels of the edges incident to a vertex v have distinct
labels on the side of v. We also have a single self-loop with label 0 at every vertex.
Formally, we have the following.

Definition 3.1. An undirected multigraph G is a triple 〈V, δ, μ〉, where V
is a set, δ : V → N, and μ : E → E is a bijection such that μ(μ(e)) = e and
μ(v, 0) = (v, 0), where E = {(v, i) : v ∈ V and 0 ≤ i ≤ δ(v)}.

V is the set of vertices of G, E is the set of edges of G, δ(v) is the degree of v,
and μ(e) is the reverse edge of e. For an edge e, call the set {e, μ(e)} an undirected
edge.

Let η : E → V and β : E → N be the first and the second component of μ,
respectively. Then η(v, i) is the ith neighbor of v, i is the label of the edge (v, i), and
β(v, i) is its back-label.

Define the size of G, size(G), to be |V |.
In the following a graph means undirected multigraph.
Definition 3.2. A graph G′ = 〈V ′, δ′, μ′〉 is a subgraph of a graph G = 〈V, δ, μ〉

if V ′ ⊆ V and for every u, v ∈ V ′,

|{i : η′(u, i) = v}| ≤ |{i : η(u, i) = v}|.

Define (simple) path, connected vertices, forest, and tree in the usual way.
Definition 3.3. Let G be a graph. Let Δ : E × Z → E be such that Δ((v, i), j)

changes by j the label of the edge (v, i). More precisely, for i 
= 0,

Δ((v, i), j) = (v, 1 + (i− 1 + j mod δ(v))).

Define ΓG,k,Γ
′
G,k : E → E inductively on k ≥ 0. First, ΓG,0(e) = Γ′

G,0(e) = e.
Now let

ΓG,k+1(e) = Δ(μ(ΓG,k(e)), 1),

Γ′
G,k+1(e) = μ(Δ(Γ′

G,k(e),−1)).

The sequence ΓG,≤l(e) = 〈ΓG,0(e),ΓG,1(e), . . . ,ΓG,l(e)〉 is called the exploration
walk of length l + 1 starting from the edge e. We will also refer to the corresponding
infinite sequence as the exploration walk. Let ek = (vk, ik) = ΓG,k(e). Then vk
and ek are correspondingly the kth vertex and the kth edge visited by the exploration
walk starting from e. We have the equivalent notions for the reverse exploration walk,
where Γ is replaced with Γ′.

Exploration walks were introduced by Koucký [13]. We define them only for
the exploration sequence which always changes by one the label of the current edge
because this is the case of interest to us. The fact that exploration walks are reversible,



SPACE-EFFICIENT ALGORITHM FOR USTCONN 453

i.e., Γ′
G,l(ΓG,l(e)) = e, was noticed by Koucký and is what makes them important to

us. We will use the following property of exploration walks on trees.
Proposition 3.4 (see [13]). Let G be a tree with at most one undirected edge

between any two vertices, let e = (v, i) ∈ E, i 
= 0, be an edge of G, and let l =
2(size(G)−1). Then the exploration walk ΓG,≤l−1(e) of length l starting from e visits
every edge of G which is not a self-loop exactly once. Furthermore, this is the shortest
exploration walk which visits v exactly δ(v) + 1 times.

3.2. Operations on graphs.

3.2.1. Configuration. A configuration is the state of the sequential algorithm
outlined at the end of section 2. Formally, we have the following.

Definition 3.5. A configuration is a tuple C = 〈G,A, I,D,H,R〉, where G is a
graph with V = [n], for some n ∈ N. A, I, and D form a partition of V . v ∈ D iff
δ(v) = 0. H : V → N and R : V → V are such that H(v) ≤ δ(v), and if R(v) 
= v,
then v ∈ D.

The elements of A, I, and D are called correspondingly the active, the inactive,
and the done vertices of G. For u ∈ V , (u,H(u)) is the hooking edge of u, and R(u)
is the immediate representative of u.

We require that H and R do not have nontrivial cycles in the following sense. Let
v1, . . . , vk ∈ V , k ≥ 2. Then

(i) if vi+1 = η(vi, H(vi)), i ∈ [k − 1], and v1 = η(vk, H(vk)), then H(v1) = 0;
(ii) if vi+1 = R(vi), i ∈ [k − 1], and v1 = R(vk), then R(v1) = v1.
We also require that there is at most one undirected edge between any two active

vertices, i.e., if u, v ∈ A, then |{i : η(v, i) = u}| ≤ 1, and that there is no hooking
edge from an inactive to an active vertex, i.e., if u ∈ I, then η(u,H(u)) ∈ I.

Define the representative of v according to R to be

repR(v) =

{
v, R(v) = v,
repR(R(v)) otherwise.

Definition 3.5(ii) ensures the correctness of this definition.
Definition 3.6. Let C = 〈G,A, I,D,H,R〉 be a configuration. H defines a

subforest F = 〈V, δF , μF 〉 of G, called the hooking forest of C, with at most one
undirected edge between any two vertices in the following way. Fix v ∈ V . Let ε be 1,
if H(v) 
= 0, and 0 otherwise. Let 0 < i1 < · · · < ik be such that

{i1, . . . , ik} = {i : ∃u ∈ V such that μ(u,H(u)) = (v, i)}.

First, define δF (v) = k + ε. Now define ηF (v, j) = η(v, ij), for 1 ≤ j ≤ k, and, if
ε = 1, ηF (v, k + ε) = η(v,H(v)). Finally, define βF (v, j) = i, where ηF (v, j) = u and
ηF (u, i) = v.

Let T be a maximal connected subtree of the forest F . We call T a hooking tree in
C. The root of T , root(T ), is the only vertex v in T such that H(v) = 0. The degree
of T , deg(T ), is

∑
v∈VT

δ(v). For a vertex v ∈ V , we denote with Tv the subtree of F
which contains v.

The correctness of this definition and the fact that F is a forest with at most one
undirected edge between any two vertices follow from Definition 3.5(i).

3.2.2. Hooking. We will define Hook(C) so that if C describes the state of the
sequential algorithm, then Hook(C) is its state after a hooking phase.
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Being elements of N, the elements of V are ordered. Define the linear ordering
<d on V so that

u <d v iff δ(u) < δ(v) or δ(u) = δ(v) and u < v.

The hooking operation Hook(C) produces the configuration 〈G,A, I,D,H ′, R〉
defined in the following way. If v is inactive, then H ′(v) = H(v). If v is active, let
v1, . . . , vδ(v) be the neighbors of v, i.e., vi = η(v, i). For the rest of the definition when
we have to choose an index i, we always pick the smallest one with the corresponding
property. If v has an inactive neighbor vi, let H ′(v) = i. If all neighbors of v are
active, let vi be the largest according to <d amongst the neighbors of v. If v <d vi, let
H ′(v) = i. If all neighbors of v are active and smaller than v according to <d, then
if v has a neighbor vi which has an inactive neighbor, let H ′(v) = i. If all neighbors
of v and their neighbors are active, then if v has a neighbor vi which has a neighbor
larger than v according to <d, let H ′(v) = i. Finally, if all neighbors of v and their
neighbors are active and smaller than v according to <d, define H ′(v) = 0.

The hooking strategy described above differs from the hooking strategy of the
CL algorithm because it gives preference to neighbors which are inactive or have an
inactive neighbor. For example, in our hooking strategy a vertex hooks to an inactive
neighbor, if it has one, regardless of its degree. In the hooking strategy of the CL
algorithm, a vertex hooks to its largest according to <d neighbor, regardless of its
state. The new hooking strategy does not change the correctness of the CL algorithm
because first an active vertex still hooks to itself iff all of its neighbors are active
and hooked to it, and second along a sequence of hooking edges of active vertices the
vertices increase according to <d the same way as in the CL algorithm. The reason we
chose the new strategy is to ensure that we do not look up the degree of an inactive
vertex. The essential properties of the hooking operation are given by the following
lemmas. The proofs are the same as in [6].

Lemma 3.7. Let k ≥ 3 and vi ∈ A, i ∈ [k], be distinct and such that vi+1 =
η(vi, H

′(vi)), i ∈ [k − 1]. Then v1 <d maxd{vk−1, vk}.
Proof. The proof is by induction on k. For k = 3, the statement holds, because v1

is hooked to v2, either because v2 >d v1 or because v2 <d v1, but v2 had an inactive
neighbor or an active neighbor larger than v1. Since v2 is hooked to v3, the latter must
be the case. So v1 <d maxd{v2, v3}. For the inductive step, we have that vk−1 <d

maxd{vk, vk+1} and v1 <d maxd{vk−1, vk}, and so v1 <d maxd{vk, vk+1}.
Corollary 3.8. Hook(C) is a configuration.
Proof. Since Hook changes only the hooking edges of active vertices, the only thing

we have to check is that it does not create nontrivial cycles of active vertices. Assume
that there is k ≥ 2, and vi ∈ A, i ∈ [k], distinct and such that vi+1 = η(vi, H

′(vi))
and v1 = η(vk, H

′(vk)). The case k = 2 is impossible because we must have either
v1 <d v2 or v1 >d v2. In the first case v2 will hook to v1 only if v1 is hooked to a
vertex different from v2. The second case is also impossible, and hence k ≥ 3. By
Lemma 3.7, v1 <d maxd{vk−1, vk} and v2 <d maxd{vk, v1}. If vk−1 <d vk, then
v1, v2 <d vk, a contradiction with Lemma 3.7 for vk, v1, and v2. If vk <d vk−1, then
v1, vk <d vk−1, a contradiction with Lemma 3.7 for vk−1, vk, and v1. Thus we must
have that H ′(v1) = 0.

Lemma 3.9. Let T be a hooking tree in Hook(C) composed of active vertices.
Then size(T ) ≥ 2 and deg(T ) < size2(T ).

Proof. Let r = root(T ). r hooks to itself, i.e., H ′(r) = 0, iff all of its neighbors are
active and hooked to it. So T must contain at least two vertices—r and its neighbors.
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Let us see now that for v ∈ VT ,

(3.1) δ(v) ≤ δ(r).

If v is a neighbor of r in T , then since r is hooked to itself, we must have that v <d r
and hence that δ(v) ≤ δ(r). Otherwise, let u be the neighbor of r on the path in T
from v to r. Then, by Lemma 3.7, v <d maxd{u, r}, and so again δ(v) ≤ δ(r).

We have that

deg(T ) =
∑
v∈VT

δ(v) ≤ size(T )δ(r) < size2(T ),

where in the first inequality we use (3.1), and the second follows because, as explained
earlier, T must contain all neighbors of r. δ(r) is exactly the number of distinct
neighbors of r, since there are no multiple edges between active vertices.

3.2.3. Contraction. We will define Contract(C, d) so that if C describes the
state of the sequential algorithm, then Contract(C, d) is its state after a contraction
phase with parameter d. A hooking tree T in C is d-contractable if deg(T ) ≤ d.

The result of Contract(C, d) is the configuration C′ = 〈G′, A′, I ′, D′, H ′, R′〉 de-
fined in the following way. First, define

A′′ = {v : v /∈ D and deg(Tv) ≤ d and root(Tv) = v},
I ′ = {v : v /∈ D and deg(Tv) > d},

D′′ = {v : v ∈ D or deg(Tv) ≤ d and root(Tv) 
= v}.

Now define

H ′(v) =

{
H(v), v ∈ I ′,
0 otherwise

and

R′(v) =

⎧⎨
⎩

R(v), v ∈ D,
root(Tv), v ∈ D′′ −D,
v otherwise.

Let T be a hooking tree in C and s = size(T ). Let 〈v1, . . . , vs〉 be the sequence
of the vertices of T in the order in which they are visited by the exploration walk
on T of length 2(s − 1) starting from the edge (root(T ), 1) of T , where we include
a vertex only the first time it is visited by the exploration walk. Let 〈e1, . . . , ek〉 be
the sequence of the edges of G incident to the vertices of T defined in the following
way—list in order of their labels all edges incident to v1, then all edges incident to
v2, and so on. Obviously, k = deg(T ).

Let us now define G′. For u ∈ A′′, define lu ≥ 0 and the sequence of edges
〈eu,1, . . . , eu,lu〉. First, consider the sequence 〈e1, . . . , ek〉 of the edges of G incident
to the vertices of Tu from the previous paragraph. Remove from this sequence all
edges which are internal to Tu, i.e., such that η(ei) ∈ VTu . From every subsequence
of edges whose other end belongs to the same d-contractable hooking tree, leave only
the first edge; i.e., for every d-contractable hooking tree T 
= Tu of C, if the sequence
〈ei1 , . . . , eih〉, i1 < · · · < ih, contains all the edges from the sequence 〈e1, . . . , ek〉 such
that η(eij ) ∈ VT , then remove eij , j > 1. Let lu be the number of remaining edges
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in the sequence and 〈eu,1, . . . , eu,lu〉 be the resulting sequence. Naturally, we call the
edges eu,j the remaining edges of Tu.

Define

A′ = A′′ − {v ∈ A′′ : lv = 0},
D′ = D′′ ∪ {v ∈ A′′ : lv = 0}

and

δ′(v) =

⎧⎨
⎩

lv, v ∈ A′,
δ(v), v ∈ I ′,
0, v ∈ D′.

We are left to define μ′(v, i). First, assume v ∈ A′. Let (u, j) = μ(ev,i). If Tu is
not d-contractable, then define μ′(v, i) = (u, j). If Tu is d-contractable, then define
μ′(v, i) = (w, k), where w = root(Tu) and k is the only index such that η(ew,k) ∈ VTv .
Now assume v ∈ I ′. Let (u, j) = μ(v, i). If Tu is not d-contractable, then define
μ′(v, i) = (u, j). If Tu is d-contractable, let μ′(v, i) = (w, k), where w = root(Tu) and
k is the only index such that ew,k = (u, j).

Lemma 3.10. Let C′ = Contract(C, d). Then C′ is a configuration such that
δ′(v) ≤ d for v ∈ A′, and deg(Tv) > d for v ∈ I ′. Furthermore, in the hooking forest
of C′ every v ∈ A′ ∪D′ is in a hooking tree which contains only v.

Proof. The proof is immediate from the definition of Contract(C, d).
3.3. Sequential version of the CL algorithm. For every k ∈ N, we will

define a sequence of configurations Cl = 〈Gl, Al, Il, Dl, Hl, Rl〉, 0 ≤ l ≤ r(k), where
r(k) = 5 · 2k − 3.

First, define recursively a sequence of pairs, the first element of which is always
either Hook or Contract, and the second is a natural number, in the following way:

Sk =

{
(〈Hook, 0〉, 〈Contract, 1〉), k = 0,
(〈Hook, k〉, 〈Contract, k〉, Sk−1, Sk−1, 〈Contract, k + 1〉), k > 0.

The definition of Sk is obtained by “linearizing” the recursive definition of Connect(k).
By induction, Sk has r(k) elements P1, . . . , Pr(k). Let Pl = 〈Opl, Argl〉, 1 ≤ l ≤

r(k). Let C0 be some configuration. Assume that we have already defined C0, . . . , Cl−1

for 1 ≤ l ≤ r(k). Define

Cl =

{
Hook(Cl−1), Opl = Hook,
Contract(Cl−1,dexp(Argl + 1)) otherwise.

The sequential version of the CL algorithm for testing whether two vertices u and
v are connected in a graph G consists of computing the sequence of configurations
C0, . . . , Cr(k), where C0 is initialized according to G and k = �log log n�, and checking
whether u and v have the same representative in Cr(k): the two vertices are connected
iff they have the same representative. The correctness of this algorithm follows from
the statements below (see section 5 for their proofs). We make the following definition
first.

Definition 3.11. A configuration Cl, 0 ≤ l < r(k), is nice if the following hold:
(i) if Opl+1 = Hook, then for every v ∈ Il, size(Tv) > dexp(Argl+1 + 1) and

deg(Tv) > dexp(Argl+1 + 2); and
(ii) for every v ∈ Al, δl(v) ≤ dexp(Argl+1 + 2).
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By definition, if Opl+1 = Hook, then Cl is nice iff the state described by it fulfills
the preconditions given in [6] for executing Connect(Argl+1). These preconditions
ensure the correctness of the algorithm and that it can be executed efficiently in
parallel. Considering the correspondence between the sequence C0, . . . , Cr(k) and the
Connect(k) procedure of the CL algorithm, the following theorem is a consequence of
the results in [6].

Theorem 3.12. If C0 is a nice configuration, then Cl is nice, for every 1 ≤ l <
r(k), |Ar(k)| ≤ max{|A0|/dexp(k), 1}, and size(Tv) > dexp(k + 1) for v ∈ Ir(k).

Finally, again similarly to [6], we have the following corollary, which says that if
we initialize C0 according to some undirected graph G, then in Cr all components of
G are contracted.

Corollary 3.13. Let G be a graph with at most one undirected edge between
any two vertices and V = [n]. Let k = �log log n� and C0 = 〈G,A, I,D,H,R〉, where
A = {v : δ(v) 
= 0}, I = ∅, D = V − A, H(v) = 0, and R(v) = v, for v ∈ V . Then u
and v are connected in G iff repRr(k)

(u) = repRr(k)
(v).

4. Space-efficient algorithm. Since giving directly the Turing machine which
solves the problem and reasoning about its space complexity is rather cumbersome,
we define the algorithms outlined in sections 4.1 and 4.2 using pseudocode and then
explain how to translate the pseudocode to a Turing machine. The algorithms, as
given by the pseudocode, are almost a literal rephrasing of the definitions given in
sections 3.2 and 3.3 into a precise language in which analyzing space complexity
is possible. The deviations from a literal rephrasing exist only to decrease the space
requirements of the algorithms. Besides that, the correctness of the algorithms follows
essentially from Corollary 3.13. In fact, the algorithm in section 4.1 can be thought
of as a literal O(log2 n) space implementation of the sequential algorithm described
in section 3.3.

In section 4.1 we outline an O(log2 n) space implementation of the sequential algo-
rithm derived from the definitions in sections 3.2 and 3.3, which instead of storing all
of the current configuration recomputes parts of it when it needs them. In section 4.2
we describe the changes we make to the algorithm from section 4.1 to reduce its space
complexity to O(log n log log n). Section 4.4 discusses in detail the pseudocode for the
algorithm from section 4.2.

4.1. An O(log2 n) space algorithm. Let G be a graph with V = [n] and with
at most one undirected edge between any two vertices. Let

r = 5 · 2�log log n� − 3.

Consider the sequence of configurations C0, . . . , Cr from Corollary 3.13 for k equal to
�log log n�. The starting point for a space-efficient algorithm comes directly from
the definition of this sequence. More precisely, we define functions Active(l, v),
Inactive(l, v), Done(l, v), Degree(l, v), Neighbor(l, v, i), BackLabel(l, v, i), Rep(l, v),
and Hook(l, v), where 0 ≤ l ≤ r, v is a vertex, and i is the label of an edge inci-
dent to v, which return the corresponding component of Cl. Namely, Active(l, v),
Inactive(l, v), and Done(l, v) check, correspondingly, whether v is active, inactive,
or done in Cl, i.e., whether it belongs to Al, Il, or Dl; Degree(l, v) returns δl(v),
the degree of v in Gl; Neighbor(l, v, i) returns ηl(v, i), the ith neighbor of v in Gl;
BackLabel(l, v, i) returns βl(v, i), the back-label of the ith edge of v; Hook(l, v) returns
Hl(v), the label of the hooking edge of v in Cl; Rep(l, v) returns Rl(v), the immediate
representative of v in Cl.
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Call the parameter l of the above functions the level of recursion. Thus the levels
of recursion of our algorithm correspond to the elements of the sequence C0, . . . , Cr.
For l = 0, the bottom of the recursion, all of these functions just use the input graph
G (see Corollary 3.13). According to the definitions in section 3.3, Cl+1 is derived
from Cl, and thus the outputs of the functions mentioned in the previous paragraph
for level l + 1 is determined recursively from their output for level l. Using these
functions, we apply Corollary 3.13 to solve undirected st-connectivity.

If Opl = Contract, then Cl is obtained from Cl−1 by contracting some of its
hooking trees as defined in section 3.2.3. In this case for a hooking tree T in Cl−1, we
must determine deg(T ) and be able to enumerate the vertices of T as they are visited
by the exploration walk on T starting from (v, 1) for v ∈ VT . For these purposes,
we define TreeSize(l, v) and TreeWalk(l, v, i). Let T be the hooking tree in Cl−1

containing v. If s is the size of T , TreeSize(l, v) returns 2(s−1). Notice that 2(s−1)
is the length of the exploration walk on T given in Proposition 3.4. TreeWalk(l, v, i)
returns ΓT,i(v, 1).

Going over the details of the definitions of each of the functions mentioned above,
it is not hard to see that each level of recursion can be implemented in O(log n)
space, and since we have r = O(log n) levels of recursion, this results in an O(log2 n)
algorithm for USTCONN. We omit those details, because they are rather immediate
and are superceded by the discussion in the next section and the precise definitions
in section 4.4.

4.2. The O(logn log logn) space algorithm. The O(log n) space per level
of recursion in the algorithm outlined in the previous section comes mainly from
having to store vertices in the local variables of the functions, since each vertex takes
Θ(log n) space. To see more precisely what is going on, consider the following. The
definition of Hl(v) contains a comparison of the ith neighbor of v in Cl−1 with its jth
neighbor; i.e., the definition of Hook(l, v) contains a comparison Neighbor(l−1, v, i) =
Neighbor(l − 1, v, j). Let us say that v is passed to Hook through a global variable.
Obviously, this global variable must be stored locally before the execution of such
comparison, because otherwise its value might be overwritten during the two calls to
Neighbor. To take care of this bottleneck, we define the functions so that they never
store a vertex in their local variables.

The first step towards such definitions is to remove the vertex v from the argument
list of the functions. Instead of this argument, we maintain one current vertex in a
global variable, and all functions return information about this vertex. A function
which otherwise must return a vertex is defined so that after its execution the current
vertex is its result (in this case we say that the function moves the current vertex). It
is a responsibility of the calling function to keep enough information locally to restore
the original current vertex if it needs to. Denote the current vertex with cv.

To implement this, first we change the definitions of some of our functions. In-
stead of Neighbor(l, v, i), we have Neighbor(l, i), which moves the current vertex to
ηl(cv, i), its ith neighbor in Cl. Let T be the hooking tree of cv in Cl−1. Instead of
TreeWalk(l, v, i) we have TreeForward(l, i), which returns j and moves the current
vertex to u, where (u, j) = ΓT,i(cv, 1). Similarly, we have TreeBack(l, i, j), which
moves the current vertex to the vertex of Γ′

T,i(cv, j).

The most important part of our idea to avoid storing vertices locally is to be
able to move the current vertex temporarily, perform something at the new current
vertex, and then return to the original current vertex. For this, define Move(l, i) to
return βl−1(cv, i), i.e., BackLabel(l−1, i), and move the current vertex to ηl−1(cv, i),
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i.e., a call to Neighbor(l− 1, i). Call Move(l, i) and TreeForward(l, i) forward moves.
For a forward move M , let Reverse(M, j) be its reverse, i.e., it is correspondingly
Move(l, j) or TreeBack(l, i, j), where j is the result of M . We use the reversibility of
exploration walks here, so that TreeBack reverts TreeForward. Finally, we have a
“dummy” forward move Current which does not change the current vertex and whose
purpose is to address the current vertex. The reverse of Current is Current again.

We use forward moves to change the current vertex and their reverses to restore
it. Call a sequence of forward moves path description relative to the current vertex.
If P is a path description relative to the current vertex and B is some instruction(s),
then define after P do B to change the current vertex according to P, perform B, and
then use the reverses of the moves in P to restore the current vertex.

A simple example of the use of after is the comparison operator =, which compares
two vertices given their path descriptions relative to the current vertex and returns
true iff they are the same. Using after, we can move to the first vertex and store
it in a local variable, and then go to the second vertex and compare the two. This
takes Θ(log n) space. Instead of this, going back and forth between the two vertices,
using the reversibility of the moves along the edges and the exploration walks on the
trees, we perform the comparison bit by bit. Aside from the information stored for
the ways back, this takes only the Θ(log logn) space necessary to store the index of a
bit. This way the bottleneck of Ω(logn) space is reduced to Ω(log log n).

For example, the = operator is used in the definition of TreeSize(l), which de-
termines the size of the hooking tree T of cv in Cl−1, in the following way. Starting
at cv and using Proposition 3.4, we can make steps from the exploration walk on T
until we go back to cv sufficiently many times. For this, we can store cv, so that
we can compare it with each new vertex of the walk. This takes Θ(log n) space, in-
dependent of the size of T . Instead, we incrementally find i with properties as in
Proposition 3.4, where to check if the ith vertex of the walk is equal to cv we keep the
current vertex at cv and use the = operator, as defined above, to compare it to the
vertex with path description TreeForward(l, i). More precisely, we use the compari-
son Current=TreeForward(l, i) to check whether the ith vertex of the walk is equal
to cv, where the semantics of the comparison in this case is explained in the previous
paragraph. Thus, if size(T ) ≤ s, then we can find its size in space O(log s+ log logn)
(the log logn appears because of counters used during comparison of vertices). Alter-
natively, if size(T ) > s, we can still use only O(log s + log logn) space to learn this
without actually computing size(T ), because it is enough to stop the exploration walk
on T as soon as we learn that size(T ) > s.

The second part of our idea to reduce the space of the algorithm is to have an
upper bound v(l) on the values which variables can take at level l; i.e., during the
execution of all functions at level l, the values of their local variables are at most v(l).
We set

v(l) = 2 · dexp(Argl + 2).

Call a number x valid for level l if it is at most v(l). A vertex v is valid for level l if
its degree δl−1(v) is valid for level l.

Using the concept of a current vertex, we can eliminate the need to store a vertex
in a local variable, and thus our local variables contain essentially only degrees of
vertices, labels and back-labels of edges, and lengths of exploration walks on hooking
trees. For example, the information stored for reversing a forward move is a back-
label (for Move) or a tree-edge label (for TreeForward). We still have to make sure
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that every time we store a value in a local variable it is valid. For this the following
observation is helpful.

Observation 4.1.

(i) The labels of the edges incident to vertex v valid for level l are valid for level
l. This is not necessarily true for their back-labels.

(ii) All vertices which are active in Cl−1 are valid for level l.
(iii) If Opl = Contract, then if a hooking tree T in Cl−1 has degree at most

dexp(Argl + 1), then all of its vertices are valid for level l.
The first item of the observation is trivial, the second follows from Theorem 3.12,

because all Cl are nice, and the third follows because dexp(Argl + 1) < v(l).
Our goal has become to prove the following lemma. The functions mentioned in

the lemma are the ones outlined previously in this section. Their precise definitions
are given in section 4.4. Let T be a hooking tree in Cl−1. T is contractable for level
l if deg(T ) ≤ dexp(Argl + 1). Let (v, i) be an edge of T and u = ηT (v, i). A move
along (v, i) is possible for level l if u is valid for level l.

Lemma 4.2. Let T be the hooking tree in Cl−1 of the current vertex cv.
(i) Active(l), Inactive(l), Done(l), Hook(l), and Degree(l) correctly return the

value of the corresponding component of Cl for cv.
(ii) If T is uncontractable for level l or cv ∈ Dl−1, then Root(l) returns 0; other-

wise, it returns the index of the first occurrence of root(T ) in the exploration
walk on T starting from (cv, 1).
TreeSize(l) returns 2(size(T )−1), if T is contractable for level l, and null

otherwise.
Assume that cv is valid for level l. If all moves of ΓT,≤i(cv, 1) are possible for
level l and it ends in (v, j), then TreeForward(l, i) moves the current vertex
to v and returns j. If all moves of Γ′

T,≤i(cv, j) are possible for level l and it
ends in v, then TreeBack(l, i, j) moves the current vertex to v.

(iii) Let (v, j) = μl(cv, i).
Neighbor(l, i) moves the current vertex to v.
BackLabel(l, i) returns j, if j is valid for the level at which BackLabel(l, i)
was called (see the discussion on returning values in section 4.4.2), and null

otherwise.
All local variables are valid.
The proof of the lemma is done by induction on the level of recursion. For this,

we need the correctness of the functions which a given function calls. Sometimes we
have to use correctness for the same level of recursion, but this does not result in
a circular reasoning because for any two functions F and G, there are no chains of
function calls within the same level of recursion both from F to G and from G to F.

The correctness essentially follows from the correctness of the CL algorithm
(Corollary 3.13). It can be easily seen that the introduction of one global current
vertex and always returning information about this vertex maintains the faithfulness
of our implementation to the CL algorithm—the current vertex is an implicit argu-
ment to all functions describing a configuration, and calling it “current” just facilitates
our intuition about how the algorithm proceeds.

The only real deviation from the definitions given in section 3.2 is that we have
an upper bound on the numerical values which can be stored at a level, and so we
might be unable to process the result of a function if it is invalid for the current level
of recursion. Actually, as can be seen from Lemma 4.2, some functions are specified
to return null if their result is invalid for the level requesting it. By Observation 4.1,
the only information we can derive from an invalid or null result is that either the



SPACE-EFFICIENT ALGORITHM FOR USTCONN 461

current vertex is invalid (if Degree(l) is invalid), a neighbor of the current vertex is
invalid (if BackLabel(l, i) is null), or the current vertex is part of an uncontractable
tree (if TreeSize is null). This information is enough to define the functions as in
Lemma 4.2. First, we never move to a vertex from which we cannot return, i.e., along
an edge with an invalid back-label, so that we never have to store an invalid back-
label locally. Second, during contraction, vertices which are either invalid or part
of an uncontractable tree will become inactive and thus, by definition, will inherit
their properties, e.g., degree and hooking edge, from the previous level. In a hooking
operation (section 3.2.2), we do not need to look up the degree of an invalid (and
even inactive) vertex. In a contraction operation (section 3.2.3), we can stop the
exploration walk on a tree as soon as the walk runs into an invalid vertex, because
then the tree is clearly uncontractable.

To ensure that all local variables are valid for the current level of recursion, we
use Observation 4.1 in the following way. First, notice that since the value returned
from a function resides in a global variable we can check whether it is valid by simply
inspecting this global variable. Furthermore, some functions (e.g., TreeSize and
BackLabel) return null if their result is invalid for the current level of recursion. In
any case, we can easily learn when the return value of a function is invalid without
having to store it locally. According to Observation 4.1(i), if the result of BackLabel is
null, then the corresponding neighbor is invalid and we never move the current vertex
along such edges. Also, Observation 4.1(ii) ensures that we can always process locally
active vertices. Finally, according to Observation 4.1(iii), if the result of TreeSize is
null, then the hooking tree of the current vertex is uncontractable.

4.3. Solving undirected st-connectivity. Using Lemma 4.2, we can prove
the main theorem of this paper.

Theorem 4.3. USTCONN on a graph with n vertices can be solved in space
O(log n log log n).

Let m = �log log n�. Recall that r = 5 · 2m − 3 = O(log n). By Corollary 3.13, s
and t are connected iff repRr

(s) = repRr
(t). Thus to solve USTCONN it is enough to

define a function MoveToRep(l) which moves the current vertex cv to its representative
repRl

(cv) in Cl. Then, to check whether s and t are connected, we call MoveToRep(r)
twice, once from s and once from t, and compare the two resulting final current
vertices (see the defintion of Connected in section 4.4.10). MoveToRep is defined by
first calling itself recursively. This moves the current vertex cv to its representative
v = repRl−1

(cv) in Cl−1. Then, if Opl = Contract and the hooking tree T in Cl of
the new current vertex v is contractable for level l, MoveToRep moves v to the root
of T . We use here that the root of T will be the immediate representative of v after
contracting T . See section 4.4.10 for a precise definition of MoveToRep.

The space complexity of the algorithm is dominated by the space taken by the
execution stack. From Lemma 4.2, it follows that each local variable at level l is at
most v(l). Since there are a constant number of local variables per function and the
length of every chain of function calls within the same level of recursion is bounded
by a constant, the space taken by level l is O(log v(l) + m) (the additional O(m)
space appears because of the counters used during comparison of vertices). Since
log v(l) = 4 · 2Argl + 1, 1 ≤ l ≤ r, and r ·m = O(log n log log n), we have to prove that

r∑
l=1

2Argl = O(log n log log n).

Consider the recurrence given by
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S(k) =

{
3, k = 0,
2S(k − 1) + 2 · 2k + 2k+1, k > 0.

From the recursive definition of Sm given in section 3.3, it follows that the left-hand
side of the equation which we want to prove is exactly S(m). Finally, it is not hard
to prove by induction on k that S(k) = 2k(4k + 3). Hence S(m) = O(log n log log n).

4.4. Pseudocode. The language of the pseudocode is self-explanatory. The dif-
ference between a function and a procedure, marked with function and procedure
correspondingly, is that the first returns a value and the second does not. In the
following we will refer to both as functions. Operators, marked with operator, are
functions for which a more traditional in-fix position of their usage is emphasized. The
semantics of statements, marked with statement, is closer to what is traditionally
known as macroses than to procedures and functions; namely, they do not allocate
a new stack frame. Blocks are marked by indentation, break exits the closest sur-
rounding loop, continue continues with the next cycle of the execution of the closest
surrounding loop, and return exits the current function, returning a value, if neces-
sary. We use a fixed width font to denote the names of functions and variables from
the pseudocode, e.g., F and i, and a roman italics font for mathematical functions
and variables, e.g., f and i.

4.4.1. Execution of the pseudocode. The variable usage and execution of
the pseudocode is standard. During its execution, a function can use only its own
local variables and the global variables. For the execution of the functions, we use a
stack which contains the local variables of the functions executed at the moment. The
part of the stack devoted to the execution of a function is called the stack frame of
the function. Statements use the stack frame of their surrounding function. The top
of this stack contains the stack frame of the function being executed at the moment.
When the current function calls another function, first a new stack frame is allocated
on the top of the stack and then the new function is executed. Part of the stack frame
of a function contains information about the address (the place in the program) from
which the function was called. Once the current function is finished, its stack frame is
removed from the top of the stack, and the execution resumes from the address from
which the current function was called.

In addition to functions which are executed using the stack, we have global func-
tions, which do not use the stack for their execution. Such functions use only global
variables for their execution; i.e., their “local” variables are in fact global variables
which are visible only from the particular global function. Since in what follows we
are concerned only with the contents of the stack, we will concentrate on functions
which use the stack.

The execution of the pseudocode proceeds in the following way. Every function is
executed at some level of recursion. Every function has an argument l, which contains
the current level of recursion. During its execution, a function can either call other
functions on the same level of recursion, i.e., calls like F(l, . . .), or make calls to the
previous level of recursion, i.e., calls like F(l− 1, . . .). There is a constant c such that
the length of a chain of function calls within the same level of recursion is at most c.
The stack frames of functions executed in the same level of recursion are consecutive
on the stack. We call such a sequence of stack frames the stack frame for the level.
From the fact that any stack frame for a level contains at most c stack frames for
functions and that each function uses a constant number of variables, it follows that
there is a constant d such that the stack frame of every level contains a total of at
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most d variables.

The local and global variables contain only numerical and boolean values, and
a special value null, different from any other value. For every level of recursion
l, we have an upper bound v(l), computed by a global function, on the numerical
values which are valid for this level; i.e., all numerical values at level l are at most
v(l). Boolean values and null are always valid. The counters used for comparison of
vertices are at most �log n�.

4.4.2. Passing arguments and returning values. We have two methods of
passing arguments to a function and returning a value. The first is through global
variables, and the second is through global arrays which contain an entry for every
level of recursion.

The method which uses global variables is straightforward. We have global vari-
ables which are set to the arguments of the function before it is called. We denote
the global variables for the arguments of a function F with arg1F, arg2F, and so on.
During its execution, a function can look up its arguments from these global variables.
It might decide to store them as local variables, but this might not always be possible,
because the arguments might be invalid for the current level of recursion.

To return a value a function sets a global variable. After a return from a call of
a function, the calling function decides whether it wants to store the returned value
locally. We have a special assignment operator, ::=, which assigns the return value r
of a function returning through a global variable to a local variable in the following
way: if r is valid for the current level of recursion, the result of the assignment is r;
otherwise, it is null.

The method which uses arrays is more subtle. Let F be a function which uses this
method of passing arguments and returning values. This method can be used only if
all calls to F at the current level of recursion l are recursive; i.e., all calls to F look
like F(l − 1, . . .). We have two global arrays—one, argF, for passing arguments to F

and one, retF, for returning a value from it. Those arrays contain exactly one entry
for every possible level of recursion, and each entry could be marked. Also each entry
holds values which are valid for the corresponding level of recursion, so that the space
taken by each such array is the same as the space taken by the execution stack.

Let H call F. If H uses the value returned by F, then before the call to F the entry of
retF for the current level of recursion is marked; otherwise, it is left unmarked. When
F produces a result at level l, it finds the smallest index i > l such that the ith entry
of retF is marked and tries to store its result there. If the value produced is too large
for the corresponding entry, F writes null. After the call to F returns, H unmarks the
entry of retF for the current level of recursion. The only time when H does not use
the value returned by F is when H is actually F and the call to F is a recursive call
whose result is passed back without modification, e.g., a call like return F(l − 1, . . .)
in the definition of F.

Similarly, if H provides arguments to F, then before the call to F, H marks the entry
of argF for the current level of recursion and provides values for it. When F wants to
access its arguments at level l, it finds the smallest index i > l such that the ith entry
of argF is marked and uses the values stored in the entry as its arguments. After
the call to F returns, H unmarks the entry of argF for the current level of recursion.
Again we have that the only time when H does not provide arguments to F is when
H is F and the call to F is a recursive call whose arguments are the same as for the
current call to F, e.g., a call like F(l− 1, y) in the definition of F(l, x) at a place where
it is always true that x = y.
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Since this method is used only if all calls to F are recursive, there is no danger
of overwriting F’s arguments or returned value. For passing arguments, this method
helps when we need to store an argument only at the level which generates it, where
it is valid, but still allow for lower levels of recursion to access it, where it might
be invalid. For returning values, this method helps when we want to return a value
exactly at the level which requested it originally. This method allows for nested calls
from different levels of recursion to the same function, which the ordinary method of
passing variables through global variables does not always allow.

The restriction we have on the space of a level is the reason why we chose those
methods of passing arguments and returning value. The method using arrays is more
unusual, and it is used only in two functions, BackLabel and BackLabelAux. The
reason why we introduced it is explained in the notes for those functions.

In the code, we use F(l, x1, . . . , xk) to call a function F at level l with arguments
x1, . . . , xk. If a function F takes arguments, but is called without ones, it uses the
values currently located in the global variables (or the arrays) for F.

4.4.3. Translation of the pseudocode to a Turing machine. Let us ad-
dress now the issue of translating the pseudocode to a Turing machine with a binary
alphabet. Most of the details, like doing arithmetic and performing conditionals, are
rather straightforward, and so we skip them and concentrate only on variable usage.
Numerical values are represented in binary. To represent the null value, we use one
additional bit to designate whether or not the value is null. We have a separate tape
for each global variable (there are only a constant number of them). The space taken
by each global variable is O(log n).

There is a tape assigned for the stack, and the head of this tape is positioned at
the stack frame of the current function, i.e., at the top of the stack. The stack frame
of a function contains the state to which the Turing machine must return after the
execution of the function (this takes a constant number of bits depending only on the
Turing machine) and the values of the local variables of the function.

The space taken by each local variable depends on the level of recursion at which
the stack frame occurs. Since at a level l the value of every valid local variable is at
most v(l), the space s(l) taken by such a variable at level l is O(log v(l)). This space is
known to the current function, because it can be computed by a global function from
the current level of recursion. So to use the ith local variable the current function
must move the head of the stack tape to the place where the variable is located.
This place can be computed by the current function from i and s(l). As discussed
earlier, there is a constant d such that the stack frame of the lth level of recursion
contains at most d variables. Thus the space taken by the stack frame of level l is
O(log v(l) + log logn). The O(log log n) appears because of comparison of vertices, as
explained in section 4.2.

After the execution of the current function, the state of the Turing machine is
restored to the value stored on the stack, and the head of the stack tape is moved to
the stack frame of the caller.

4.4.4. Preliminaries. To simplify the exposition of the algorithm, we remove
the level of recursion from the argument lists of the functions. Instead we have one
global variable, level, which contains the current level of recursion. level is set
to 5 · 2�log log n� − 3 initially. Let F be a function which calls a function G on the
previous level of recursion. This task is performed by Prev; namely, Prev(G(. . .))
passes arguments to G, decreases the current level of recursion, calls G, and upon
return from G increases the current level of recursion. This is the only way that the
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current level of recursion is changed—all functions can look up the value of level,
but none of them changes it. We denote the current level of recursion with cl.

The global variable currvertex contains the current vertex cv.
In the following, T denotes the hooking tree of the current vertex in Ccl−1. Unless

specified otherwise, the exploration walk refers to the exploration walk on T starting
from (cv, 1). A hooking tree in Ccl−1 is called contractable if its degree is at most
dexp(Argcl + 1). A value is valid if it is at most v(cl).

We use the following observation. It follows from Observation 4.1 and the cor-
rectness of the functions mentioned in it. MoveValid(i) checks whether the back-label
βcl−1(cv, i) of the ith edge of cv in Ccl−1 is valid, i.e., whether βcl−1(cv, i) ≤ v(cl).

Observation 4.4.

(i) If TreeSize 
= null, then all moves of TreeForward(i) are possible for
level cl.

(ii) If MoveValid(i) is true, then the result of Move(i) is not null and valid for
level cl; otherwise, βcl−1(cv, i) is invalid for level cl.

By this observation, TreeSize and MoveValid serve as “safeguard” checks for
forward moves. Thus, before making a forward move to change the current vertex, if
we want to be able to return, e.g., in an after statement, we always first make sure
that the forward move returns a valid result. In this case we say that the forward
move is valid.

All functions, except BackLabel and BackLabelAux, take arguments and return
values through global variables.

Every function is preceded by paragraphs which give its specification. Also notes
are made on the definition and correctness of the function, and on the validity of its
local variables. In the notes we use interchangeably the name of a local variable, given
in fixed font, and its value at a particular point of the execution of the function. To
facilitate the reading of the pseudocode, we have annotated the meaning of the local
variables of the nonglobal functions.

4.4.5. Important functions. Global function ArgOp. Input l. Output
2 · Argl + εl, where εl is 0, if Opl = Hook, and 1 otherwise. Assumes 1 ≤ l ≤
5 · 2�log log n� − 3.
global function ArgOp

l := argArgOp;

k := �log log n�;
while true

if k = 0 then return 2 · (l− 1) + (l− 1);
else

if l ≤ 2 then return 2 · k + (l− 1);
else

if l = 5 · 2k − 3 then return 2 · (k + 1) + 1;
else

if l ≥ 5 · 2k−1 then l := l − 5 · 2k−1 + 1;
else l := l− 2;
k := k − 1;

Global functions Valid, ContractDegree, and Contraction. Input None.
Output Correspondingly 2 · dexp(Argcl + 2), dexp(Argcl + 1), and whether Opcl =
Contract.
global function Valid

return 2 · dexp(2 + ArgOp(level) div 2);
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global function ContractDegree

return dexp(1 + ArgOp(level) div 2);

global function Contraction

return ArgOp(level) mod 2 = 1;
Statement “after M1, M2, . . . , Mk do B.” Input M1, . . . , Mk—path description rel-

ative to the current vertex, B some instruction(s). Output Moves the current vertex
according to the forward moves in M1, . . . , Mk, executes B, and finally restores the
original current vertex. Assumes All forward moves are valid. Local variables
l1, . . . , lk (results of the forward moves).
statement after M1, M2, ..., Mk do B

l1 := M1; l2 := M2; ...; lk := Mk;

B;

Reverse(Mk, lk); ...; Reverse(M2, l2); Reverse(M1, l1);

Operators <, =, and <d. Input P1 and P2—path descriptions relative to the
current vertex. Output Let v1 and v2 be the end vertex of P1 and P2, correspondingly.
The three operators check correspondingly, whether v1 < v2, v1 = v2, and v1 <d v2.
Assumes All forward moves are valid. <d assumes also that v1 and v2 are valid.
Local variables i (counter for indices of bits), b1 (ith bit of v1), and b2 (ith bit
of v2) for < and =. d1 (degree of v1) and d2 (degree of v2) for <d. Notes Bit(s, t)
returns the sth most significant bit of t. b1 and b2 are single bits.
operator P1 < P2

for i := 1 to �log n� do
after P1 do b1 := Bit(i, currvertex);

after P2 do b2 := Bit(i, currvertex);

if b1 
= b2 then return b1 < b2;

return false;

operator P1 = P2

for i := 1 to �log n� do
after P1 do b1 := Bit(i, currvertex);

after P2 do b2 := Bit(i, currvertex);

if b1 
= b2 then return false;

return true;

operator P1 <d P2

after P1 do d1 ::= Prev(Degree);

after P2 do d2 ::= Prev(Degree);

return (d1 < d2) or (d1 = d2 and P1 < P2);

4.4.6. State functions. Functions Done, Active, and Inactive. Input None.
Output Correspondingly whether cv ∈ Dcl, cv ∈ Acl, and cv ∈ Icl. Assumes None.
Local variables None.
function Done

return (level = 0 and Degree = 0) or
(level > 0 and not Contraction and Prev(Done)) or
(level > 0 and Contraction and

(Prev(Done) or Root 
= 0 or Degree = 0));

function Active

return (level = 0 and Degree 
= 0) or
(level > 0 and not Contraction and Prev(Active)) or
(level > 0 and Contraction and



SPACE-EFFICIENT ALGORITHM FOR USTCONN 467

not Done and TreeSize 
= null);

function Inactive

return (level > 0 and not Contraction and Prev(Inactive)) or
(level > 0 and Contraction and

not Done and TreeSize = null);

4.4.7. Hooking. Function Hook. Input None. Output Hcl(cv). Assumes
None. Local variables d1 (degree of cv), i (counter for neighbors of cv), d2 (degree
of the ith neighbor of cv), j (counter for neighbors of the ith neighbor of cv), and m

(current candidate neighbor for hooking). Notes Hook is defined as given in section
3.2.2. In line 9 we use Observation 4.1(i) to deduce that ηcl−1(cv, i) ∈ Icl−1. At line 5
cv ∈ Acl−1, and hence d1 is valid and non-null. So i and m are also valid. At line 12
we have that ηcl−1(cv, i), ηcl−1(cv, m) ∈ Acl−1. At line 14 all neighbors of cv are in
Acl−1. Hence d2 and j are valid.

function Hook

1 if level = 0 then return 0;

2 if not Contraction and Prev(Inactive) then return Prev(Hook);

3 if Contraction and Inactive then return Prev(Hook);

4 if Prev(Done) or Contraction then return 0;

5 d1 ::= Prev(Degree);

6 m := 0;

7 for i := 1 to d1 do
8 || if the ith neighbor is inactive, then hook to it

9 if not MoveValid(i) then return i;

10 after Move(i) do fl := Prev(Inactive);

11 if fl then return i;

|| otherwise, check if it is bigger than the current biggest

|| active neighbor

12 if Move(m) <d Move(i) then m := i;

13 if m > 0 then return m;

14 for i := 1 to d1 do
15 after Move(i) do d2 ::= Prev(Degree);

16 for j := 1 to d2 do
|| if the jth neighbor of the ith neighbor

|| is inactive, then hook to the ith neighbor

17 after Move(i) do fl := MoveValid(j);

18 if not fl then return i;

19 after Move(i), Move(j) do fl := Prev(Inactive);

20 if fl then return i;

|| otherwise, hook to the ith neighbor

|| if its jth neighbor is bigger than currvertex

21 if Current <d (Move(i), Move(j)) then m := i;

22 return m;

Function IsHooked. Input i. Output Let (v, j) = μcl−1(cv, i) and h =
Hcl−1(v). IsHooked is true iff h = j. Assumes cl ≥ 1, 0 ≤ i ≤ δcl−1(cv), and
cv is valid or δcl−1(cv) ≤ δcl−1(v). Local variables i, j, and h (contain their equiv-
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alents from the definition of the output). Notes i is valid because of line 2, j is valid
because of the assignment in line 5, and h is valid because of the assignment in line 9.

function IsHooked

1 if argIsHooked = 0 then return Prev(Hook) = 0;

2 if argIsHooked > Valid then return Prev(IsHooked);

3 i := argIsHooked;

4 if Prev(Degree) > Valid then return Prev(IsHooked(i));

5 j := Prev(BackLabel(i));

6 if j = null then
7 if Prev(Active) then return false;

8 return Prev(IsHooked(i));

9 after Move(i) do h ::= Prev(Hook);

10 return h = j;

Correctness We will prove the correctness of IsHooked by induction on cl. No-
tice that for cl = 1, the checks in lines 2, 4, and 6 all fail because at level 1 all vertices
are valid, and we compare h and j in line 10.

First, consider the case when cv ∈ Acl−1. In this case cv is valid by Observation
4.1(ii). If j is invalid, then v ∈ Icl−1, and it is not hooked to cv (otherwise, cv ∈ Icl−1

by Definition 3.5). We catch this in line 7. If j is valid, then in line 10 we check
whether it is equal to h.

Now let cv ∈ Icl−1 and v ∈ Acl−1. Since v is valid, cv is valid also, because this
follows from v being valid, and cv being valid or δcl−1(cv) ≤ δcl−1(v). So i, j, and h

are valid, and we can compare h and j in line 10.
Assume now that cv, v ∈ Icl−1. In this case the only way IsHooked returns an

answer without calling recursively is in line 10; then j is valid, and we have compared
it to h. Notice now that if IsHooked calls itself recursively, then δcl−1(cv) ≤ δcl−1(v).
This is true for the calls in lines 2 and 4, because then cv is invalid. For the call
in line 8, this is true, because cv is valid and v is invalid. Since cv, v ∈ Icl−1, we
have that cl ≥ 2, δcl−2(cv) = δcl−1(cv), δcl−2(v) = δcl−1(v), (v, j) = μcl−2(cv, i), and
h = Hcl−2(v). Thus the correctness in this case is ensured by the inductive hypothesis.

4.4.8. Exploration walk. The functions in this section come from the definition
of a hooking forest of a configuration given in section 3.2.1. Throughout, it is assumed
that cl ≥ 1 and Opcl = Contract.

Function TreeDegree. Input None. Output If cv is valid, TreeDegree returns
δT (cv); otherwise, it returns null. Assumes None. Local variables i (counter for
steps of the exploration walk), d (degree of cv), and td (output). Notes In line 5 we
use that cv is valid to apply the correctness of IsHooked. d is valid because of the
assignment in line 1, and i and td are valid because at line 3 cv is valid.

function TreeDegree

|| if currvertex is invalid, return null

1 d ::= Prev(Degree);

2 if d = null then return null;

3 td := 0;

|| count the number of neighbors which are hooked to currvertex

4 for i := 1 to d do
5 if IsHooked(i) then td := td + 1;

|| add 1 if currvertex did not hook to itself
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6 if Prev(Hook) 
= 0 then td := td + 1;

7 return td

Function TreeMove. Input i. Output Let (v, r) = μT (cv, i). If a move along
(cv, i) is possible, i.e., v is valid, TreeMove returns r and moves the current vertex
to v; otherwise, it does not change the current vertex and returns null. Assumes
0 ≤ i ≤ δT (cv), cv is valid. Local variables i (input), j (graph-edge label of the
ith T -edge of cv), k (counter for the neighbors of v), l (counter for vertices which are
hooked to cv), d (degree of cv), d1 (degree of v), and r (back-label of the ith T -edge
of cv).

Notes Lines 2–7 convert from the label i of a T -edge e = (v, i) to a label j of
an edge in the graph. In line 5 we use that cv is valid to apply IsHooked. Lines 8–10
handle the case when v is invalid. Lines 11–26 compute the tree back-label r of e and
move the current vertex to v. Lines 11–13 handle the case when v is hooked to the
current vertex. Lines 14–26 handle the case when e is the hooking edge of the current
vertex. In lines 19–21 we use that if the kth neighbor of v is invalid, then it is not cv,
because cv is valid.

i, j, l, and d are valid, because cv is valid (the assignments in lines 3 and 7 are
non-null). d1 is valid because of the assignment in line 9. k and r are valid because
at line 14 v is valid.

function TreeMove

i := argTreeMove;

1 if i = 0 then return 0;

|| convert from T-edge label to graph-edge label

2 l := i;

3 d ::= Prev(Degree);

4 for j := 1 to d do
5 if IsHooked(j) then l := l - 1;

6 if l = 0 then break;
7 if j > d then j ::= Prev(Hook);

|| if the new vertex is invalid, return null

8 if not MoveValid(j) then return null;

9 after Move(j) do d1 ::= Prev(Degree);

10 if d1 = null then return null;

11 if i < TreeDegree or (i = TreeDegree and Prev(Hook) = 0) then
|| e goes to a neighbor which is hooked to currvertex

12 Move(j);

13 return TreeDegree;

|| e is the hooking edge of currvertex

|| compute the tree back-label

14 r := 1;

15 for k := 1 to d1 do
16 after Move(j) do fl := IsHooked(k);

17 if not fl then continue;
|| enumerate all the edges with which neighbors

|| of the new vertex hooked to it
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18 after Move(j) do fl := MoveValid(k);

19 if not fl then
20 || the kth neighbor of the new vertex is invalid

21 r := r + 1;

22 continue;

|| check if this is the edge with which currvertex

|| is hooked to the new vertex

23 if (Move(j), Move(k)) = Current then break;
24 r := r + 1;

|| move to the new vertex

25 Move(j);

|| return the tree back-label

26 return r;

Function TreeForwardStep. Input i. Output Let (v, j) = ΓT,1(cv, i). If a
move along (cv, i) is possible, i.e., v is valid, then TreeForwardStep returns j and
moves the current vertex to v; otherwise, it returns null and does not change the
current vertex. Assumes 0 ≤ i ≤ δT (cv), cv is valid. Local variables j (back-label
of the ith T -edge of cv).
function TreeForwardStep

j := TreeMove(argTreeForwardStep);

if j = null then return null;

j := j + 1;

if j > TreeDegree then j := 1;

return j;

Function TreeForward. Input i. Output If (v, j) = ΓT,i(cv, 1), then the
function TreeForward returns j and moves the current vertex to v. Assumes cv
and i are valid, all moves of ΓT,≤i(v, 1) are possible. Local variables i (input), j
(output), and k (counter for steps of the exploration walk).
function TreeForward

i := argTreeForward;

j := 1;

for k := 1 to i do
j := TreeForwardStep(j);

return j;

Function TreeBack. Input i, j. Output If v is the vertex of Γ′
T,i(cv, j), then

TreeBack moves the current vertex to v. Assumes 0 ≤ j ≤ δT (cv), cv and i are
valid, all moves of Γ′

T,≤i(v, j) are possible. Local variables i (input), j (input), and
k (counter for steps of the exploration walk). Notes TreeBack is defined in a way
similar to TreeForward using a function TreeBackStep.
function TreeBackStep

j := argTreeBackStep - 1;

if j = 0 then j := TreeDegree;

return TreeMove(j);

procedure TreeBack

i := arg1TreeBack; j := arg2TreeBack;

for k := 1 to i do
j := TreeBackStep(j);
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Function TreeSize. Input None. Output 2(size(T )− 1), if T is contractable,
and null otherwise. Assumes None. Local variables i (length of the exploration
walk), i1 (counter for steps of the exploration walk), k1 (T -edge label of the (i− 1)st
edge of the exploration walk), k2 (T -edge label of the ith edge of the exploration
walk), d (T -degree of cv), d1 (T -degree of the ith vertex of the exploration walk), and
td (degree of T ).

Notes 2(size(T ) − 1) is the length of the exploration walk given in Proposi-
tion 3.4. The method to compute it is provided by the same proposition; i.e., TreeSize
incrementally finds (lines 6–22) the length of a walk which visits the current vertex
exactly the number of times equal to its tree-degree plus 1 (the check is done in lines
13 and 14). Before increasing the length of the walk, we first make sure that the next
move is possible (lines 7–12). If it is not, TreeSize returns null. This is correct,
because if T has an invalid vertex, it is not contractable (Valid > ContractDegree).
Otherwise, it checks, if the walk went back to the starting vertex and returns, if the
starting vertex was visited sufficiently many times. Also when TreeSize visits a ver-
tex for the first time (lines 15–17), it adds its degree to the current total degree of
T and returns null if the total degree becomes larger than ContractDegree (lines
18–21).

The condition of the loop in line 6 makes sure that the current length i of the
exploration walk is valid. If it is not, line 23 returns null because T is uncontractable.
This is correct because, on one hand, size(T ) ≤ deg(T ) (at line 6 T has at least one
edge) and, on the other, by Proposition 3.4, exploration walk of length 2(size(T )− 1)
visits all vertices of a tree of size size(T ) and returns to the starting vertex sufficiently
many times. Since Valid ≥ 2 ContractDegree, if the length of the exploration
walk becomes bigger than Valid, then size(T ) > ContractDegree, so that deg(T ) >
ContractDegree and T is uncontractable.

i and i1 are valid because of the condition of the loop in line 6. k1 is valid because
of the assumption that all vertices visited by the exploration walk of length i− 1 in
line 7 are valid. k2 is valid because of the condition on the output of TreeForwardStep
in line 8. d is valid because of the condition on the output of TreeDegree in line 1.
td is valid because at line 20 both td and d1 are at most ContractDegree, and since
Valid ≥ 2 ContractDegree, the addition in line 20 produces a valid result.

function TreeSize

1 d := TreeDegree;

|| if currvertex is invalid, then the tree is uncontractable

2 if d = null then return null;

3 if d = 0 then return 0;

4 i := 1;

5 td := 0;

6 while i ≤ Valid do
|| check if we can make one more step

|| from the exploration walk

7 k1 := TreeForward(i-1);

8 k2 := TreeForwardStep(k1);

9 if k2 = null then
|| if we cannot, then the tree is uncontractable

10 TreeBack(i-1, k1);

11 return null;

12 TreeBack(i, k2);
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|| check if we have visited the starting vertex

|| sufficiently many times

13 if TreeForward(i) = Current then d := d - 1;

|| if yes, then return the current length of

|| the exploration walk

14 if d = 0 then return i;

|| check if the end of the current exploration walk

|| is visited for the first time

15 for i1 := 0 to i - 1 do
16 if TreeForward(i) = TreeForward(i1) then break;
17 if i1 = i then

|| if it is, add its degree to the total degree

18 after TreeForward(i) do d1 ::= Prev(Degree)

|| if the total degree becomes too large,

|| then the tree is uncontractable

19 if d1 > ContractDegree then return null;

20 td := td + d1;

21 if td > ContractDegree then return null;

|| increase the length of the exploration walk by 1

22 i := i + 1;

23 return null;

Function Root. Input None. Output If T is uncontractable or cv ∈ Dcl−1,
then Root returns 0; otherwise, it returns the index of the first occurrence of root(T )
in the exploration walk. Assumes None. Local variables d (2(size(T ) − 1)) and i

(counter for steps of the exploration walk).

Notes According to the definition of root(T ) given in section 3.2.1, Root enu-
merates the vertices of T using the exploration walk starting from (cv, 1) (lines 3–5)
and finds the first vertex which is hooked to itself (line 4). d is valid because of the
assignment in line 1, and i is valid because at line 3 T is contractable.

function Root

|| check if T is contractable

1 d := TreeSize;

2 if d = null or Prev(Done) then return 0;

|| if it is, find the first vertex in it which is hooked

|| to itself

3 for i := 0 to d-1 do
4 after TreeForward(i) do fl := (Prev(Hook) = 0);

5 if fl then return i;

4.4.9. Contraction. The definitions of the functions in this section come from
the definition of the contraction operation given in section 3.2.3.

Function IsEdge. Input i and j. Output If v is the vertex of ΓT,i(cv, 1), then
IsEdge returns true iff (v, j) is a remaining edge of T (see the definition in section
3.2.3). Assumes i is valid, 0 ≤ j ≤ δcl−1(v), cv = root(T ), and T is contractable.
Local variables i (input), j (input), k (counter for steps of the exploration walk),
j1 (counter for neighbors of the kth vertex of the exploration walk), k1 (counter for
steps of the exploration walk on the tree of the jth neighbor of v), d (2(size(T )− 1)),
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d1 (degree of the kth vertex of the exploration walk), and d2 (2(s− 1), where s is the
size of the tree of the jth neighbor of v).

Notes The definition of IsEdge follows exactly the definition of the remaining
edges of T given in section 3.2.3. Let e = (v, j), w = ηcl−1(e), and T ′ be the hooking
tree of w in Ccl−1. Lines 2–5 check if T ′ is contractable. Line 7 checks if e is internal.
Let u be the kth vertex in the exploration walk of T starting from cv. Because of
lines 9 and 10, at line 12 (u, j1) is an edge before e in the sequence of the remaining
edges of T given in section 3.2.3. Let u′ = ηcl−1(u, j1). Lines 14–16 check whether
u′ is in T ′. In line 13 we use that if the hooking tree of u′ in Ccl−1 is uncontractable,
then u′ is not from T ′, because at this point T ′ is contractable.

i, j, and d are valid because T is contractable. d2 and k1 are valid, because at
line 6 T ′ is contractable. Lines 9 and 10 ensure the validity of d1 and j1.

function IsEdge

i := arg1IsEdge; j := arg2IsEdge;

1 d := TreeSize;

|| if T’ is uncontractable, then e remains

2 after TreeForward(i) do fl := MoveValid(j);

3 if not fl then return true;

4 after TreeForward(i), Move(j) do d2 := TreeSize;

5 if d2 = null then return true;

|| T’ is contractable

6 for k := 0 to d-1 do
|| e does not remain if it is an internal edge

7 if TreeForward(k) = (TreeForward(i), Move(j)) then
return false;

8 if k > i then continue;

9 if k = i then d1 := j - 1;

else
10 after TreeForward(k) do d1 ::= Prev(Degree);

|| e does not remain if it is not the first edge

|| from T to T’

11 for j1 := 1 to d1 do
12 after TreeForward(k) do fl := MoveValid(j1);

13 if not fl then continue;

14 for k1 := 0 to d2-1 do
15 if (Treeforward(i), Move(j), TreeForward(k1)) =

(TreeForward(k), Move(j1)) then
16 return false;

17 return true;

Statement “after P for every edge (i, j) do B.” Input P a path description
relative to the current vertex, i and j names of local variables using this statement,
B instruction(s) which might depend on the variables i and j. Output Let v be the
vertex with path description P, and T ′ is its hooking tree in Ccl−1. This statement
executes B for all possible values of (i, j) such that (u, j) is a remaining edge of T ′,
where u is the vertex of ΓT ′,i(v, 1). Assumes cl ≥ 1, all forward moves in P are valid,
T ′ is contractable and v = root(T ′). Local variables i1 (counter for steps of the
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exploration walk on T ′ starting from (v, 1)), d1 (2(size(T ′) − 1)), and d2 (degree of
the ith vertex of the exploration walk on T ′ starting from (v, 1)).

Notes Lines 3–5 check if this is the first time the exploration walk on T ′ starting
from (v, 1) visits the ith vertex v. If so, lines 7–9 enumerate the remaining edges of
T ′ incident to v. All local variables, and i and j, are valid because T ′ is contractable.

statement after P for every edge (i, j) do B

1 after P do d1 := TreeSize;

2 for i := 0 to d1 - 1 do
|| visit only once every vertex of T’

3 for i1 := 0 to i - 1 do
4 if (P, TreeForward(i)) = (P, TreeForward(i1)) then

break;
5 if i1 < i then continue;

6 after P, TreeForward(i) do d2 ::= Prev(Degree);

7 for j := 1 to d2 do
8 after P do fl := IsEdge(i, j);

9 if not fl then continue;

|| if (i, j) is a remaining edge, then execute B

10 B;

Function Degree. Input None. Output δcl(cv). Assumes None. Local
variables i (counter for steps of the exploration walk), j (counter for neighbors of
the ith vertex of the exploration walk), and d (degree of cv). Notes To obtain the
degree of the current vertex, we just enumerate all remaining edges of T . If T is
not contractable, then, by definition, the degree comes from a previous level (line 2).
Line 2 handles the case when cv ∈ Icl and line 3 the case when cv ∈ Dcl. All local
variables are valid because at line 3 T is contractable.

GraphDegree returns the degree of the current vertex in the input graph G.
function Degree

1 if level = 0 then return GraphDegree;

2 if not Contraction or TreeSize = null then return Prev(Degree);

3 if Prev(Done) or Root 
= 0 then return 0;

4 d := 0;

5 after Current for every edge (i,j) do d := d + 1;

6 return d;

Procedure Neighbor. Input i. Output Moves the current vertex to ηcl(cv, i).
Assumes 0 ≤ i ≤ δcl(cv). Local variables i (input), l (counter for steps of the
exploration walk), j (counter for neighbors of the lth vertex of the exploration walk),
and d (2(size(T ) − 1)).

Notes The definition of Neighbor follows the definitions in section 3.2.3. First,
we make sure that T is contractable (lines 4 and 10). If not, then we call recursively.
Otherwise, i is the index of a remaining edge e of T , and we locate e and move along it
(lines 14–20). Once we move along e, we move the current vertex to the representative
of the new current vertex, i.e., the root of the new current hooking tree T ′, if it is
contractable (lines 6, 12, and 19).

i is valid because at line 8 argNeighbor is valid, and the other local variables are
valid because at line 14 T is contractable.

GraphNeighbor(i) moves the current vertex to its ith neighbor in the input



SPACE-EFFICIENT ALGORITHM FOR USTCONN 475

graph G.
procedure Neighbor

1 if level = 0 then GraphNeighbor(argNeighbor);

if not Contraction then Prev(Neighbor);

2 || handle the self-loop case

3 if argNeighbor = 0 then return;

4 if argNeighbor > Valid then
|| if T is uncontractable, call recursively

5 Prev(Neighbor);

|| if T’ is contractable, move to its root

6 if TreeSize 
= null then TreeForward(Root);

7 return;
8 i := argNeighbor;

9 d := TreeSize;

10 if d = null then
|| T is uncontractable

11 Prev(Neighbor(i));

12 if TreeSize 
= null then TreeForward(Root);

13 return;

|| T is contractable

14 after Current for every edge (l, j) do
15 i := i - 1;

|| check if (l, j) is e

16 if i > 0 then continue;

|| move to e and then along e

17 TreeForward(l);

18 Prev(Neighbor(j));

|| move to the root of T’

19 if TreeSize 
= null then TreeForward(Root);

20 return;
Function BackLabel. Input i. Output βcl(cv, i). Uses the array method

described in section 4.4.2 of taking arguments and returning values. Assumes 0 ≤
i ≤ δcl(cv). Local variables i (input), l (counter for steps of the exploration walk),
k1 (same as l), j (counter for the neighbors of the lth vertex of the exploration
walk), d (2(size(T )− 1)), nd (output), k (counter for steps of the exploration walk on
T ′ starting from (u, 1)), j1 (counter for neighbors of the kth vertex of the exploration
walk on T ′ starting from (u, 1)), and r (index of the first occurrence of the root of T ′

in the exploration walk on T ′ starting from (u, 1)), where u is the jth neighbor of the
lth vertex of the exploration walk and T ′ is the hooking tree of u.

Notes The first case of BackLabel is when T is contractable. In this case we
find the remaining edge e of T with index i (lines 12–14). Let v = ηcl−1(e) and T ′

be the hooking tree of v in Ccl−1. If T ′ is uncontractable, then we call recursively,
because in this case the back-label comes from the previous level of recursion (line 22).
Otherwise, we have to find the index nd of the first remaining edge e′ of T ′ which goes
from T ′ to T (lines 24–32). This is the new back-label. To find the index of e′, first
we find the root of T ′ (line 20) and then enumerate all remaining edges of T ′ (lines
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25–32). For each remaining edge of T ′, we check if it goes to T (line 30–32). In lines
27–29, we use that if a remaining edge of T ′ goes to an uncontractable hooking tree,
then it does not go to T , because at this point T is contractable. The case when T is
uncontractable is handled by BackLabelAux (lines 5 and 10).

i is valid because of line 4. d is valid because of the assignment in line 8. l, j,
and k1 are valid because at line 12 T is contractable. r is valid because of line 20. j1,
k, and nd are valid because at line 24 T ′ is contractable.

The recursive call in line 22 does not assign the returned value to a local variable;
i.e., this call returns a value at some higher level of recursion, depending on the array
for returning values of BackLabel. This call is the reason why BackLabel returns
through an array instead of a global variable. The conventional thing to do is to store
the result of this call locally, and once the after statement has restored the original
current vertex, return the stored value. This will not work for us, because the value
returned from the recursive call might be invalid. Instead, using that the only reason
why we store the returned value is to pass it back, when BackLabel produces a result
we let it store the result at the level at which it is requested. This works because
BackLabel is always called on the previous level of recursion.

GraphBackLabel(i) returns the back-label of the ith edge incident to cv in the
input graph G.

function BackLabel

1 if level = 0 then return GraphBackLabel(argBackLabel);

2 if not Contraction then return Prev(BackLabel);

3 if argBackLabel = 0 then return 0;

|| if currvertex is invalid, call BackLabelAux

4 if argBackLabel > Valid then
5 BackLabelAux;

6 return;
7 i := argBackLabel;

|| if T is uncontractable, call BackLabelAux

8 d := TreeSize;

9 if d = null then
10 BackLabelAux;

11 return;

|| T is contractable

12 after Current for every edge (l, j) do
13 i := i - 1;

|| find e

14 if i > 0 then continue;

15 after TreeForward(l) do
16 fl := MoveValid(j);

17 if fl then
18 after Move(j) do
19 fl := (TreeSize 
= null);

20 if fl then r := Root;

21 if not fl then
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|| if T’ is uncontractable, call recursively

22 after TreeForward(l) do Prev(BackLabel(j));

23 return;

|| T’ is contractable

24 nd := 0;

|| find the first edge of T’ which goes to T and

|| return its index

25 after TreeForward(l), Move(j), TreeForward(r)

for every edge (k, j1) do
26 nd := nd + 1;

27 after TreeForward(l), Move(j),

TreeForward(r), TreeForward(k) do
28 fl := MoveValid(j1);

29 if not fl then continue;

30 for k1 := 0 to d-1 do
31 if (TreeForward(l), Move(j),

TreeForward(r), TreeForward(k), Move(j1)) =

TreeForward(k1) then
32 return nd;

Function BackLabelAux. Input i. Output βcl(cv). To take argument and
return value, BackLabelAux uses the arrays of BackLabel. Assumes 0 ≤ i ≤ δcl(cv),
T is uncontractable. Local variables l (counter for steps of the exploration walk on
T ′ starting from (v, 1)), j (counter for neighbors of the lth vertex of the exploration
walk on T ′ starting from (v, 1)), k (same as l), bl (βcl−1(cv, i)), nbl (output), r

(index of the first occurrence of the root of T ′ in the exploration walk on T ′ starting
from (v, 1)), and d (2(size(T ′)−1)), where T ′ and v are as in the note for BackLabel.

Notes The definition of BackLabelAux follows the definitions given in section
3.2.3 when T is uncontractable. Let v and T ′ be as in the note for BackLabel. If
T ′ is uncontractable, the back-label is inherited from the previous level of recursion,
and so we call BackLabel recursively (lines 3 and 10). Otherwise, at line 12 T ′ is
contractable, the current vertex is v (because of line 5), and bl is the back-label of e
(because of line 1). So we have to find the index of (v, bl) in T ′ ((v, bl) is a remaining
edge of T ′ because T is uncontractable). Line 12 finds the root of T ′, and lines 13
and 14 find the index k of the first occurrence of v in the exploration walk of T ′

starting from its root. Lines 16–20 enumerate the remaining edges of T ′ until we find
(v, bl).

bl is valid by the assumption for the return convention of BackLabel for line 1.
d is valid because of the assignment in line 6. r, l, j, k, and nbl are valid because at
line 12 T ′ is contractable.

Just like for BackLabel, the calls to BackLabel in lines 3 and 10 return values at
some higher level of recursion. The calls to BackLabel in lines 1, 3, and 10 do not
have arguments—by convention this means that the argument to BackLabel comes
from a higher level of recursion.

The case when T is uncontractable is the reason why the argument to BackLabel

is passed through an array instead of a global variable. More precisely, the problem
is when the current vertex is invalid; then the argument i to BackLabel, which is
the label of an edge incident to cv, might be invalid and storing it locally will be
impossible. In this case we still want to be able to use the value of i after calling
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functions which can potentially change the value of a global argument to BackLabel.
The decision is to let the value of the argument stay at the level which produced it,
because it certainly is valid for this level. For this to work, it is important that the
value of the argument stored in the array is not changed while processing the call to
BackLabel. Fortunately, this does not happen, because BackLabel is always called
on the previous level of recursion.

function BackLabelAux

1 bl := Prev(BackLabel);

2 if bl = null then
|| if T’ is uncontractable, call recursively

3 Prev(BackLabel);

4 return;

|| move along e

5 Prev(Neighbor(argBackLabel));

6 d := TreeSize;

7 if d = null then
8 || if T’ is uncontractable, go back and call recursively

9 Prev(Neighbor(bl));

10 Prev(BackLabel);

11 return;

|| T’ is contractable

12 r := Root;

|| find the index of the first occurrence of v in

|| the exploration walk on T’ starting from (r,1)

13 for k := 0 to d - 1 do
14 if TreeForward(r), TreeForward(k) = Current then break;

|| compute the new back-label

15 nbl := 0;

16 after TreeForward(r) for every edge (l, j) do
|| increase the new back-label by one for every edge

|| that happens before e

17 nbl := nbl + 1;

18 if l = k and j = bl then
|| if we are at (v,bl), move back and return

|| the new back-label

19 Prev(Neighbor(bl));

20 return nbl;

Function Move. Input i. Output Let (v, j) = μcl−1(cv, i). Move returns j and
moves the current vertex to v. Assumes cl ≥ 1, 0 ≤ i ≤ δcl−1(cv), i and j valid.
Local variables i (input) and j (output), which are valid by the assumption about
the argument of Move.
function Move

i := argMove;

j := Prev(BackLabel(i));

Prev(Neighbor(i));
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return j;

Function MoveValid. Input i. Output True iff βcl−1(cv, i) is valid. Assumes
cl ≥ 1, 0 ≤ i ≤ δcl−1(cv), i valid. Local variables None.

function MoveValid

return Prev(BackLabel(argMoveValid)) 
= null;

4.4.10. Solving undirected st-connectivity. Procedure MoveToRep. Input
None. Output Moves the current vertex to repRcl

(cv). Assumes None. Local
variables None.

procedure MoveToRep

if level > 0 then
Prev(MoveToRep);

if Contraction and TreeSize 
= null then TreeForward(Root);

Global function Connected. Input s and t. Output True iff s and t are
connected in G.

global function Connected

level := 5 · 2�log log n� − 3;
currvertex := arg1Connected; MoveToRep;

v := currvertex;

currvertex := arg2Connected; MoveToRep;

return v = currvertex;

5. Proofs of Theorem 3.12 and Corollary 3.13. The proofs in this section
are a direct translation into our notation of equivalent statements from [6] and are
given here only for completeness. We use the notation of section 3.3.

Lemma 5.1. Assume that Cl is nice and Pl+1 = 〈Hook, k〉.
(i) If v ∈ Il, then v ∈ Il+r(k), δl+r(k)(v) = δl(v), and Hl+r(k)(v) = Hl(v).
(ii) If v ∈ Il+r(k) − Il, then δl+r(k)(v) ≤ dexp(k + 2).
(iii) Cl+1 is nice. If k > 0, then Cl+2 is nice.

Proof. (i) The state and degree of a vertex change only during a contraction
operation. The same holds for the hooking edges of inactive vertices. Let T be the
hooking tree of v in Cl. Since Cl is nice, deg(T ) > dexp(k+2). For l+1 ≤ i ≤ l+r(k),
we have that Argi ≤ k + 1, so that trees of degree more than dexp(k + 2) are never
contracted. Therefore the status, degree, and hooking edge of v are never changed.

(ii) Since v ∈ Il+r(k) − Il and because a done vertex stays done, we have that
v ∈ Al, and so δl(v) ≤ dexp(k + 2), because Cl is nice. Hooking does not change
degrees. For l+1 ≤ i ≤ l+ r(k), we have that Argi ≤ k+1, so that any active vertex
appearing after a contraction must have degree at most dexp(k + 2). Let i be the
largest l ≤ i < l + r(k) such that v ∈ Ai. Then δi(v) ≤ dexp(k + 2), and its degree
does not change afterwards. Hence δl+r(k)(v) ≤ dexp(k + 2).

(iii) We have that Pl+2 = 〈Contract, k〉 or Pl+2 = 〈Contract, 1〉, if k = 0. Since
a hooking operation changes only the hooking edges of active vertices, Cl+1 is nice.
Furthermore, for a hooking tree T ′ in Cl+1 which contains an inactive vertex, we have
that size(T ′) > dexp(k + 1)

If k > 0, then Pl+3 = 〈Hook, k− 1〉. Let T be a hooking tree in Cl+2 composed of
inactive vertices. Because Pl+2 = 〈Contract, k〉, we have that δl+2(v) ≤ dexp(k + 1),
for v ∈ Al+2, and deg(T ) > dexp(k + 1). There are two possibilities for T—either
it was a hooking tree in Cl+1 composed of active vertices or it contains a hooking
tree T ′ of Cl+1 which contained an inactive vertex. In the first case by Lemma 3.9,
size(T ) > dexp(k). This is also true in the second case because, as mentioned at the
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end of the previous paragraph, size(T ) > dexp(k + 1) > dexp(k). Therefore Cl+2 is
nice.

Lemma 5.2. Assume that Cl is nice and Pl+1 = 〈Hook, k〉.
(i) If T is a hooking tree in Cl+r(k) composed of inactive vertices, then size(T ) >

dexp(k + 1) and deg(T ) > dexp(k + 2).
(ii) If k > 0, then Cl+2+r(k−1) and Cl+2+2r(k−1) are nice.
Proof. Let l0 = l + 2, l1 = l0 + r(k − 1), l2 = l1 + r(k − 1), and l3 = l2 + 1

(= l + r(k)).
(i) Let T be a hooking tree of Cl3 composed of inactive vertices, i.e., VT ⊆ Il3 .

Since Pl3 = 〈Contract, k + 1〉, we have that

(5.1) deg(T ) > dexp(k + 2),

which ensures the degree part of the first item of the lemma. We are left with proving
the size part.

Case 1: VT ∩ Il 
= ∅. By Lemma 5.1(i), the vertices in VT ∩ Il form a hooking
tree T ′ of Cl composed of inactive vertices. Since Cl is nice, size(T ′) > dexp(k + 1),
and hence size(T ) > dexp(k + 1).

Case 2: VT ∩ Il = ∅. We do induction on k. If k = 0, then by Lemma 3.9 and
(5.1), size(T ) > dexp(1).

Assume that k > 0.
From Cl nice and Pl0 = 〈Contract, k〉, it follows that Il ⊆ Il0 . Also by Lemma

5.1(i), Il0 ⊆ Il1 ⊆ Il2 . Finally, Il3 ⊆ Il2 , because Opl3 = Contract. Hence VT ⊆ Il2 .
For l0 + 1 ≤ i ≤ l2, we have that Argi ≤ k. Therefore we can use the same

argument as in the proof of Lemma 5.1(ii) to see that for every v ∈ Il2 − Il0 ,

(5.2) δl2(v) ≤ dexp(k + 1).

Case 1.1: VT ∩ Il0 = ∅. By (5.2), δl2(v) ≤ dexp(k + 1) for every v ∈ VT . Hence
deg(T ) ≤ size(T ) dexp(k+1). Thus, from (5.1), it follows that size(T ) > dexp(k+1).

Case 1.2: VT ∩Il0 
= ∅. From Lemma 5.1(i), it follows that VT ∩Il0 form a hooking
tree T ′ in Cl0 . Let d = deg(T ′)/size(T ′), the average degree of a vertex of T ′.

Case 1.2.1: d ≤ dexp(k + 1). We have that deg(T ′) ≤ dexp(k + 1) size(T ′). Also
for every v ∈ VT − VT ′ ⊆ Il2 − Il0 , by (5.2), δl2(v) ≤ dexp(k + 1). Hence

deg(T ) =
∑

v∈VT ′

δl2(v) +
∑

v∈VT−VT ′

δl2(v) ≤ dexp(k + 1) size(T ),

and so size(T ) > dexp(k + 1), because of (5.1).
Case 1.2.2: d > dexp(k + 1). Since VT ′ ⊆ VT , we have that VT ′ ∩ Il = ∅. Hence

VT ′ ⊆ Al, and so, by Lemma 3.9, size(T ′) > deg(T ′)/size(T ′) = d > dexp(k + 1).
Therefore, by (5.2),

deg(T ) ≤ deg(T ′) + dexp(k + 1)(size(T ) − size(T ′))

< size2(T ′) + size(T ′)(size(T ) − size(T ′)) = size(T ′) size(T ) ≤ size2(T ).

Hence in this last case and using (5.1) again, size(T ) > dexp(k + 1) as well.
(ii) By Lemma 5.1(iii), Cl0 is nice. Hence, by the first item of the lemma (notice

that Pl0+1 = 〈Hook, k − 1〉), for any hooking tree T in Cl1 composed of inactive
vertices, we have that size(T ) > dexp(k) and deg(T ) > dexp(k + 1). Furthermore,
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since Pl1 = 〈Contract, k〉, for any v ∈ Al1 , δl1(v) ≤ dexp(k+1). Therefore Cl1 is nice.
Cl2 is nice for similar reasons.

Lemma 5.3. Assume that Cl is nice and Pl+1 = 〈Hook, k〉. Then for every
v ∈ Al+r(k),

|{u ∈ Al : repl+r(k)(u) = v}| ≥ dexp(k).

Proof. We do induction on k. Let k = 0. Consider v ∈ Al+2. v must be a root of
a hooking tree T in Cl+1 and VT ⊆ Al+1, because Cl is nice and Pl+2 = 〈Contract, 1〉.
Hooking does not change the states of vertices, and so Al = Al+1. By Lemma 3.9, T
has at least two vertices, and therefore v represents at least two vertices from Al.

Assume that k > 0. Let l0 = l + 2, l1 = l0 + r(k − 1), l2 = l1 + r(k − 1), and
l3 = l2 + 1 (= l + r(k)). As can be seen in the proof of Lemma 5.2, we have that
Al2 ⊆ Al1 ⊆ Al0 ⊆ Al and Al2 ⊆ Al3 . Let v ∈ Al3 . We have that v is in either Al2 or
in Il2 .

Assume first that v ∈ Il2 . Since v ∈ Al3 and Pl3 = 〈Contract, k + 1〉, v is a
root of a hooking tree T of Cl2 composed of inactive vertices which contracts to v.
VT ⊆ Al, because if there exists u ∈ VT ∩ Il, then by Lemma 5.1(i), u ∈ Il3 , but we
have that VT ∩ Il3 = ∅. By Lemma 5.2(ii), Cl1 is nice, and therefore by Lemma 5.2(i),
size(T ) > dexp(k). Thus v represents at least dexp(k) vertices from Al.

Assume now that v ∈ Al2 . Let

Uv = {u ∈ Al1 : repl2(u) = v}.

By the inductive hypothesis, |Uv| ≥ dexp(k− 1). Let u ∈ Uv. Again by the inductive
hypothesis, |{w ∈ Al0 : repl1(w) = u}| ≥ dexp(k − 1). Hence

|{w ∈ Al0 : repl2(w) = v}| ≥ dexp(k − 1) dexp(k − 1) = dexp(k).

Since Al0 ⊆ Al, the statement follows in this case as well.
We are ready to prove Theorem 3.12.
Proof of Theorem 3.12. |Ar(k)| ≤ max{|A0|/dexp(k), 1} follows from Lemma 5.3

and the fact that the sets of vertices represented by different vertices from Ar(k) are
disjoint. size(Tv) > dexp(k + 1), for v ∈ Ir(k), follows from Lemma 5.2(i).

We have to prove now that Cl is nice for 1 ≤ l < r(k). We prove by induction on
t that if Cl is nice and Pl+1 = 〈Hook, t〉, then Ci is nice for l + 1 ≤ i < l + r(t), and if
0 < t < k, then Cl+r(t) is also nice.

By Lemma 5.1(iii), Cl+1 is nice. This takes care of t = 0. Assume that t > 0. By
Lemma 5.1(iii) and Lemma 5.2(ii), Cl+2, Cl+2+r(t−1), and Cl+2+2r(t−1) are nice. By
the inductive hypothesis applied twice, Ci is nice for l + 3 ≤ i < l + 2 + r(t− 1) and
l+ 3 + r(t− 1) ≤ i < l+ 2 + 2r(t− 1). Since Pl+r(t) = 〈Contract, t+ 1〉, we have that
δl+r(t)(v) ≤ dexp(t + 2) for v ∈ Al+r(t). By Lemma 5.2(i), for any hooking tree of
Cl+r(t) composed of inactive vertices, size(T ) > dexp(t+1) and deg(T ) > dexp(t+2).
If t < k, then Pl+r(t)+1 is either 〈Contract, t + 2〉 or 〈Hook, t〉, and in both cases
Cl+r(t) is nice.

Finally, let us prove Corollary 3.13.
Proof of Corollary 3.13. Let k = �log log n�. By Theorem 3.12,

|Ar(k)| ≤ max{n/dexp(k), 1} = 1.

On the other hand, again by Theorem 3.12, every hooking tree in Cr(k) composed of
inactive vertices has size more than dexp(k + 2) ≥ n2. Therefore Ir(k) = ∅.
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Suppose that u and v are connected in G, but r1 = repr(k)(u) 
= repr(k)(v) = r2.
As we saw, |Ar(k)| ≤ 1 and Ir(k) = ∅, and so without loss of generality we can assume
that r1 ∈ Dr(k). Let l be the largest such that r1 /∈ Dl. δl+1(r1) > 0, because
r1 
= r2, r1 and r2 are connected in G, and r1 inherits the neighbors of the vertices it
represents. This contradicts the fact that r1 becomes done if it is a root of a hooking
tree and its degree is 0 (it can also become done if it is a nonroot of a hooking tree
which is contracted, but then it would not be a representative).

Acknowledgments. The author is grateful to Prof. Anna Gál for help in the
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and many helpful discussions.
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THE MIXING TIME OF THE THORP SHUFFLE∗

BEN MORRIS†

Abstract. The Thorp shuffle is defined as follows. Cut a deck of cards into two equal piles.
Drop the first card from the left pile or the right pile according to the outcome of a fair coin flip, then
drop from the other pile. Continue this way until both piles are empty. We show that the mixing
time for the Thorp shuffle with 2d cards is polynomial in d.

Key words. mixing time, Markow chain, card shuffling
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1. Introduction.

1.1. The Thorp shuffle. How many shuffles are necessary to mix up a deck of
cards? (see section 1.2 for a precise definition). The mathematics of card shuffling has
been studied extensively over the past several decades and many of the problems have
been solved. Most famously, Bayer and Diaconis [2] (in one of the few mathematical
results to have made the front page of the New York Times) gave very precise bounds
for the Gilbert–Shannon–Reeds (riffle) shuffle model. Their bounds were correct even
up to the constant factors. For many other natural shuffles matching upper and lower
bounds are known. However, despite Bayer and Diaconis’s definitive analysis of the
Gilbert–Shannon–Reeds shuffle, little is known about any variation of this model, and
one problem, in particular, has stood out for its resistance to attack.

In 1973, Thorp [11] introduced the following shuffling procedure. Assume that
the number of cards, n, is even. Cut the deck into two equal piles. Drop the first
card from the left pile or the right pile according to the outcome of a fair coin flip,
then drop from the other pile. Continue this way, with independent coin flips deciding
whether to drop left-right or right-left each time, until both piles are empty.

The Thorp shuffle, despite its simple description, has been hard to analyze. The
problem of determining its mixing time (see [1, 4, 9]) is, according to Diaconis [3], the
“longest-standing open card shuffling problem.” It has long been conjectured that
the mixing time is O(logc n) for some constant c. However, despite much effort the
only known upper bounds are trivial ones of the form O(nc) that have circulated in
the folklore. The main contribution of this paper is to give the first poly log upper
bound for the mixing time.

We shall assume that the number of cards is 2d for a positive integer d. (Thus, our
aim is to prove that the mixing time is polynomial in d.) In this case the Thorp shuffle
has a very appealing alternative description. By writing the position of each card,
from the bottom card (0) to the top card (2d−1), in binary, we can view the cards as
occupying the vertices of the d-dimensional unit hypercube {0, 1}d. The Thorp shuffle
proceeds in two stages. In the first stage, an independent coin is flipped for each edge
e in direction 1 (i.e., each edge in the cube that connects two vertices that differ in

∗Received by the editors July 18, 2005; accepted for publication (in revised form) June 20, 2006;
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only the first coordinate). If the coin lands heads, the cards at the endpoints of e are
interchanged; otherwise the cards remain in place. In the second stage, a “cyclic left
bit shift” is performed for each card, where the card in position (x1, . . . , xd) is moved
to (x2, . . . , xd, x1).

We will actually use a slightly modified definition of the Thorp shuffle. Say that
an edge in the hypercube rings if its endpoints are switched with probability 1

2 . For
j = 1, . . . , d, let Kj be the transition kernel for the process in which every edge e in
direction j rings. This leads us to the following definition.

Definition: Thorp shuffle. The Thorp shuffle is the Markov chain whose transition
kernel at time n is Kj+1 if j ≡ n mod d.

Note that if Xn is the shuffle described in [11], then this modified process can be
written as θnXn, where θ denotes the operation that executes a cyclic right bit shift.
Thus d iterations of our shuffle is equivalent to d iterations of the shuffle described in
[11], so it is enough to prove a poly(d) mixing time bound for this new model.

It is natural to consider the change in the deck after d shuffles have been per-
formed. (This represents one complete “cycle.”) We will call this a round. Using the
language of network computing, a round of the Thorp shuffle is like passing the cards
through d levels of a butterfly network (see, e.g., Knuth’s book [6]), where at each
stage neighboring cards are interchanged with probability 1

2 .
The main result of this paper is that indeed the mixing time is polynomial in

d. Our proof uses evolving sets, a technique for bounding mixing times that was
introduced by the author and Peres in [8]. Another paper that uses some of the same
ideas is [7], in which a variant of evolving sets is used to analyze the exclusion process.
Evolving sets are related to the notion of strong stationary duality due to Diaconis
and Fill [5].

1.2. Statement of main result. For a Markov chain on state space V with
uniform stationary distribution, define the (uniform) mixing time by

τmix = min
{
n :

∣∣∣pn(x, y)|V | − 1
∣∣∣ ≤ 1

4 ∀x, y ∈ V
}
,

where pn(x, y) is the n-step transition probability from x to y. (This is a stricter
definition of mixing time than the usual one involving total variation distance.)

Our main result is the following theorem.
Theorem 1.1. The mixing time for the Thorp shuffle is O(d44).
Our approach will be to start by proving a “local” mixing property (i.e., a property

involving a limited number of cards) and then build up to a global one. In section
2, we show that the Thorp shuffle (more precisely, a “reversibilized” version of the
Thorp shuffle) has the following local property: Let k > 2d−1. There is a constant b
such that if every set of cards S with |S| = k is almost uniformly distributed after
bd5 steps, then for any such set S, any card x ∈ S will be roughly mixed within S
after bd5 steps. In section 3, we use this property to show that any collection of cards,
if viewed as indistinguishable, mixes in O(d5) time. Later, we go on to prove that
the Thorp shuffle satisfies a global mixing property that relates to an l2 norm on the
transition kernel; a precise statement of this property can be found in section 8. Before
we get to the global property, we give some necessary background on evolving sets.
Following [8], our mixing time bounds are achieved using an isoperimetric function
called the root profile, which is connected to evolving sets. In section 4 we give a
brief introduction to evolving sets and show how l2 techniques can be used to give a
bound on the root profile. Next, in section 5 we state the main technical result of this
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paper (proved in section 8), which is the global property; then we use this to obtain
our bound on the root profile. Next, armed with a good bound on the root profile
we prove Theorem 1.1 in section 6. We conclude with proofs of technical lemmas in
sections 7 and 8.

2. First step: A local mixing property. The basic aim of this section is to
show that the following holds for some constant b: if k > 2d−1 and every set of cards
S with |S| = k is almost uniformly distributed after bd5 steps, then for any such set S,
any card x ∈ S will be roughly mixed within S after bd5 steps. We will actually work
with the following reversibilized version of the Thorp shuffle: the shuffle that behaves
like the Thorp shuffle for the first d steps (K1, . . . ,Kd), and then like a “reverse Thorp
shuffle” for the next d steps (Kd, . . . ,K1). We will call this the zigzag shuffle. Every
2d steps of the zigzag shuffle will be called a round. (So a round of the zigzag shuffle
is a round of the Thorp shuffle followed by a round of a time-reversed Thorp shuffle.)

2.1. Chameleon process. We would like to have a technique to analyze, for
a set S of cards, how a particular card x ∈ S gets mixed within S. For this reason
we will consider an auxiliary process called the chameleon process. In the chameleon
process the cards move in the same way as in the zigzag shuffle, but they also have
colors, which can be red, white, black, or pink. Fix b > 2d−1 and let S = {x1, . . . , xb}
be a set of cards. Then the initial colors of the chameleon process are as follows:
Cards x1, . . . , xb−1 are colored white, card xb is colored red, and the remaining cards
are colored black. The cards can change color in two ways. The first way is called
pinkening, which takes place when an edge connecting a red card to a white card
rings; in this case both cards are recolored pink. The second way is called depinking,
which takes place at the end of every 64cd rounds of shuffling (where the constant c
is specified in the next paragraph); in this case all of the pink cards are collectively
recolored red or white, with probability 1

2 each. (A process of this type was first used
in [7] to analyze the exclusion process.) Note that black cards can never change color.

We now specify the constant c that appears above. If α is large enough so that
4α−d ≤ 2−d−14−d for all d ≥ 1 and β = 8224 · 64 · 5, then let c be an integer large
enough so that [4e−c]d�β logα c�d5 ≤ α−d for all d ≥ 1.

Let Xn be the zigzag shuffle. For j = 1, . . . , 2d, we will write Xn(j) for the
position of card j at time n. If Λ = {z1, . . . , zk} is a set of cards, define Xn(Λ) =
{Xn(z1), . . . , Xn(zk)}. Let Wn = Xn(S) be the unordered set of locations of nonblack
cards (i.e., cards that are white, red, or pink in the chameleon process) at time n. For
vertices x in the hypercube, define

ρn(x) = 1(there is a red card at x at time n)+ 1
21(there is a pink card at x at time n).

The following lemma indicates the fundamental relationship between the chameleon
process and the zigzag shuffle.

Lemma 2.1. Consider the chameleon process with b nonblack cards. Then

P
(
Xn(xb) = x

∣∣∣W1,W2, . . .
)

= E
(
ρn(x)

∣∣∣W1,W2, . . .
)
.

Proof. We will use induction on n. The base case n = 0 is trivial because there
is initially only one red ball which is located at the position of card xb. Now assume
that the result holds for n. Let e be the edge incident to x that rings at time n and let
x′ be the neighbor of x across e. Let A1, A2, and A3 be the events corresponding to
the following three possible values of (Wn ∩ {x, x′},Wn+1 ∩ {x, x′}) when x ∈ Wn+1:
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1. ({x, x′}, {x, x′}),
2. ({x′}, {x}),
3. ({x}, {x}).

Let Fn = σ(ρn(x), ρn(x′)). Note that

E
(
ρn+1(x)

∣∣∣ Fn,W1,W2, . . .
)

=
(

1
2ρn(x) + 1

2ρn(x′)
)
1(A1) + ρn(x′)1(A2) + ρn(x)1(A3).(1)

Define μn(·) = P
(
Xn(xb) = ·

∣∣∣W1,W2, . . .
)
. Then

(2) μn+1(x) =
(

1
2μn(x) + 1

2μn(x′)
)
1(A1) + μn(x′)1(A2) + μn(x)1(A3).

But by induction we have

μn(x) = E
(
ρn(x)

∣∣∣W1,W2, . . .
)
, μn(x′) = E

(
ρn(x′)

∣∣∣W1,W2, . . .
)
.

To complete the proof, take the conditional expectation given W1,W2, . . . of both
sides of (1) and combine with (2).

Remark. Note that

(3) E

(∑
x

ρn(x)
∣∣∣W1,W2, . . .

)
=

∑
x

P
(
Xn(b) = x

∣∣∣W1,W2, . . .
)

= 1.

2.2. A useful lemma. Let A and B be disjoint sets of cards. For x ∈ A, say
that x is antisocial in round j of the zigzag shuffle if at no point in round j does an
edge connecting x to a card in B ring. Let Z(A,B, j) denote the number of cards
that are antisocial in round j. We say that A avoids B if Z(A,B, j) > 7

8 |A| for 64cd
consecutive rounds j before time m. If S is a set of cards, say that S circulates if
there do not exist disjoint sets A,B of cards with |A| ≤ 1

2 |S| and A ∪ B = S such
that A avoids B.

Fix a set of cards S = {x1, . . . , xk} and consider the corresponding chameleon
process. Let F = σ(Xn(S) : n ≥ 0). Let Zn =

∑
x ρ128cd2n(x) be the total amount of

“red paint” in the system after 64cdn rounds of the chameleon process. (Recall that a
round is defined as 2d steps.) Define Z�

n = min(Zn, k−Zn). Note that limn→∞ Z�
n = 0

almost surely.
We will need the following lemma.
Lemma 2.2. We have

(4) E
(√

Z�
n

∣∣∣F , S circulates
)
≤ exp

[
− n

8224d2

]

for all n.
Proof. Fix n such that 64cd2n ≤ m, and let An be either the set of cards that

are red or the set of cards that are white at the start of round 64cdn, according to
whether Zn ≤ k/2 or Zn > k/2, respectively. Let P denote the number of cards
pinkened during the next 64cd rounds. Let Bn = S − An. When S circulates, An

doesn’t avoid Bn. We claim that this ensures that P ≥ |An|
8d . Consider a round j such

that Z(An, Bn, j) ≤ 7
8 |An|. Note that after an edge connecting a card x in An to a

card y in Bn rings, at least one of the resulting cards is pink. Let us associate that
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pink card with x. (If both endpoints are pink, then choose one of them arbitrarily.)
Since at least a fraction 1/8 of the cards in An will have a pink card associated to
them in this round, and since any given pink card can be associated to at most 2d
cards in An in this round, the number of pink cards at the end of this round must be

at least |An|
16d . It follows that P ≥ |An|

16d .

Note that Zn+1 is either Zn + 1
2P or Zn − 1

2P , with probability 1
2 each. Thus, if

we write E for the event that S does not circulate, then

E
(√

Z�
n+1

∣∣∣P,Zn,F , Ec
)

= E
(

1
2

√
(Zn + 1

2P )� + 1
2

√
(Zn − 1

2P )�
∣∣∣Zn,F , Ec

)
(5)

≤
√
Z�
n

√
1 + 1

32d +
√

1 − 1
32d

2
(6)

≤
√
Z�
n exp

[
− 1

8224d2

]
,(7)

where the first inequality follows from the concavity of the square root, and the second
inequality follows from the fact that 1

2

√
1 + u + 1

2

√
1 − u ≤ exp(−u2/8) whenever

u ∈ [0, 1] (see [8, Lemma 9]). The lemma now follows from (7) and the fact that
Z0 = 1.

2.3. Proof of a local mixing property. If S is a set of cards and S′ is a
set of locations, then we will write S →m S′ for the event that Xm(S) = S′. For
j ∈ {1, . . . , 2d} define

λ(j) = max
|S|=j

max
|S′|=j

∣∣∣(2d

j

)
P(S→mS′) − 1

∣∣∣.
The following is the principal result of this section.

Lemma 2.3. Let S = {x1, . . . , xk} be a set of cards and suppose that λ(k) ≤ 1
2 .

Then for any set S′ of locations and y ∈ S′, we have∣∣∣P(
Xm(xk) = y

∣∣∣S→mS′
)
− 1

k

∣∣∣ ≤ 4α−d.(8)

Proof. Define Z∞ = limn→∞ Zn. (Note that for any S′ we have E(Z∞ |S→mS′) =
1; see the remark immediately following Lemma 2.1.) Let ρm =

∑
x ρm(x) = Zm/128cd2 .

Lemma 2.1 implies that for all y ∈ S′ we have∣∣∣P(
Xm(xk) = y

∣∣∣S→mS′
)
− 1

k

∣∣∣ =
∣∣∣E(

ρm(y) − 1
kZ∞

∣∣∣S→mS′
)∣∣∣(9)

≤ E
(
|ρm(y) − 1

kZ∞|
∣∣∣S→mS′

)
(10)

≤ P(ρm /∈ {0, k} |S→mS′).(11)

Let E be the event that S does not circulate. Since λ(k) ≤ 1
2 , Lemma 7.1 in Appendix

A gives P(E |S→mS′) ≤ 3α−d. Hence

P
(
ρm /∈ {0, k}

∣∣∣S→mS′
)
≤ P

(
E

∣∣∣S→mS′
)

+ P
(
ρm /∈ {0, k}

∣∣∣S→mS′, Ec
)

(12)

≤ 3α−d + P
(
ρm /∈ {0, k}

∣∣∣S→mS′, Ec
)
.(13)

But

P
(
ρm /∈ {0, k}

∣∣∣S→mS′, Ec
)
≤ E

(√
Z�
m/64cd2

∣∣∣S→mS′, Ec
)

(14)

≤ exp
[
− m

8224 · 64 · cd4

]
≤ α−d,(15)
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where the second inequality follows from Lemma 2.2. Combining (11), (13), and (15)
yields the lemma.

3. Indistinguishable cards mix in poly time. Let Λ be a set of cards. In this
section we show that the uniform mixing time for the Markov chain {Xn(Λ) : n ≥ 0}
is O(d5).

Recall that in the previous section we showed that if k > 2d−1 and every set S
with |S| = k is roughly uniformly distributed after bd5 steps, then for any such set S,
any card x ∈ S will be roughly mixed after bd5 steps. But note that if a set of cards
S is mixed and x ∈ S is mixed within S, then S − {x} must also be mixed. Iterating
this (starting with S being the set of all cards) gives the main result of this section.

Lemma 3.1. There is a positive integer constant b such that if m = bd5, then

(16) max
Λ,Λ′

∣∣∣(2d

|Λ|
)
P(Λ →m Λ′) − 1

∣∣∣ ≤ 1
4 .

Proof. It is enough to consider sets Λ with |Λ| ≥ 2d−1. (Otherwise, consider Λc.)
Let α, β, and c be defined as in section 2, let b = �β logα c�, and let m = bd5. Let
λ(·) be defined as in the previous section. We will show that for all k ≥ 2d−1, we have

(17) λ(k) ≤ k�4−d,

where k� = 2d − k. This yields the lemma because the RHS of (17) is at most 1
4 for

all d ≥ 1.
We will verify (17) by induction on k�. The base case k� = 0 (k = 2d) is trivial.

Suppose it is true for k, where k > 2d−1, and consider k − 1. Fix a set of cards Λ
with |Λ| = k − 1 and let z /∈ Λ. Define Λz = Λ ∪ {z}. Fix a set Λ′ of vertices of the
hypercube with |Λ′| = k − 1. For w /∈ Λ′, let Λ′

w = Λ′ ∪ {w}, and define

xw = P(Λz→mΛ′
w), Δxw = xw −

(
2d

k

)−1
,(18)

yw = P(z→mw |Λz→mΛ′
w), Δyw = yw − 1/k.(19)

Note that
∣∣∣{w : w /∈ Λ′}

∣∣∣ = k� + 1, and k�+1
k

(
2d

k

)−1
=

(
2d

k−1

)−1
. It follows that

∣∣∣P(Λ→mΛ′) −
(

2d

k−1

)−1∣∣∣ =

∣∣∣∣∣
∑
w/∈Λ′

P
(
Λz→mΛ′

w, {z}→m {w}
)
− 1

k

(
2d

k

)−1

∣∣∣∣∣(20)

=

∣∣∣∣∣
∑
w/∈Λ′

xwyw − 1
k

(
2d

k

)−1

∣∣∣∣∣(21)

=

∣∣∣∣∣
∑
w/∈Λ′

Δxw
1
k + Δyw

(
2d

k

)−1
+ ΔxwΔyw

∣∣∣∣∣.(22)

Note that

(23) |Δxw| ≤ k�4−d
(
2d

k

)−1
≤

(
2d

k

)−1
,

where the first inequality is induction and the second inequality holds because k� ≤ 2d.
Induction also implies that λ(k) ≤ 1

2 , hence Lemma 2.3 implies that

(24) |Δyw| ≤ 4α−d ≤ 1
2k4−d
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for all d ≥ 1, where the second inequality follows from the definition of α. Thus, using
(23), (24), and the triangle inequality, (22) becomes

∣∣∣P(Λ→mΛ′) −
(

2d

k−1

)−1∣∣∣ ≤ k� + 1

k

[
k�4−d

(
2d

k

)−1
+ 4−d

(
2d

k

)−1]

=
1

k
(k� + 1)24−d

(
2d

k

)−1

= (k� + 1)4−d
(

2d

k−1

)−1
= (k − 1)�4−d

(
2d

k−1

)−1
.

Since this is true for all Λ with |Λ| = k − 1, the proof is complete.
Let K be the transition kernel for one round of the Thorp shuffle (i.e., d steps),

and let Kt be the transpose of K, defined by Kt(x, y) = K(y, x). Note that Kt is
the time-reversal of K. Let K̂ := KKt be the transition kernel for one round of
the zigzag shuffle. Let {Zn : n ≥ 0} be a Markov chain with transition kernel K̂.
Then Lemma 3.1 implies that for any set of cards B, the uniform mixing time for the
process {Zn(B) : n ≥ 0} is at most bd4. Thus, using standard facts about geomet-
ric convergence and the uniform mixing time, we can conclude that for a universal
constant C we have

(25) max
B′

(
2d

|B|
)
P(ZkCd4(B) = B′) ≤ 1 + e−k

for all k ≥ 1.

Definition: Truncated Thorp shuffle. Fix d� ≤ d. Define the d�-truncated
Thorp shuffle as the Markov chain with transition kernel K� = K1, . . . ,Kd�

. This
is a “partial round” of the Thorp shuffle, with steps d� + 1 through d censored. To
make things irreducible, we define the state space as the set of states reachable from
an (arbitrary) fixed starting state.

Define the d�-truncated zigzag shuffle as the Markov chain with transition kernel
K�K

t
�. Note that we can think of this shuffle as a product of 2d−d� copies of a “d�-

dimensional” zigzag shuffle, where the cards occupy 2d−d� (disconnected) hypercubes
of dimension d�. Combining this observation with (25) yields the following corollary
to Lemma 3.1.

Corollary 3.2. Fix d� ≥ 2, let {Zn : n ≥ 0} be the d�-truncated zigzag shuffle,
and let S denote the state space of {Zn}. There is a universal constant c such that if
l = kcd(d� − 1)4, then

(26) |S|max
B′

P(Zl(B) = B′) ≤ exp(exp(−k)).

Proof. Let c = 25C. Then l ≥ 2kdCd4
�, so (25) implies that

|S|max
B′

P(Zl(B) = B′) ≤ (1 + e−2kd)2
d−d�

≤ exp(2d exp(−2dk))

≤ exp(exp(−k))

for all d ≥ 1.

4. Evolving sets and �2 techniques. In previous sections we have found that
after O(d5) steps (of the zigzag shuffle), subsets of the deck are fairly well mixed. We
would like to show that the Thorp shuffle mixes the deck in the sense of the global
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property that every ordering of cards is roughly equally likely. In order to do this,
we need to find the best global property of random permutations (and the effect of
a Thorp shuffle) to study. In this section we introduce the notion of evolving sets,
and proceed to find that the global property of interest will be an 	2 norm on the
transition kernel.

4.1. Evolving sets. We will now give a brief overview of evolving sets (see [8] for
a more detailed account). Let {p(x, y)} be transition probabilities for an irreducible a
periodic Markov chain on a finite state space V . Assume that the chain has a uniform
stationary distribution (which means that p is doubly stochastic:

∑
x∈V p(x, y) = 1

for all y ∈ V ). For subsets S ⊂ V , define p(S, y) :=
∑

x∈S p(x, y).

Definition: Evolving sets. The evolving set process is the Markov chain {Sn} on
subsets of V with the following transition rule. If the current state Sn is S ⊂ V ,
choose U uniformly from [0, 1] and let the next state Sn+1 be

S̃ = {y : p(S, y) ≥ U} .

Write PS( · ) := P( · |S0 = S) and similarly for ES( · ). Evolving sets have the
following properties (see [8]):

1. The sequence {|Sn|}n≥0 forms a martingale.
2. For all n ≥ 0 and x, y ∈ V we have

pn(x, y) = P{x}(y ∈ Sn) .

3. The sequence of complements {Sc
n}n≥0 is also an evolving set process, with

the same transition probabilities.
As in [8], we will prove our mixing time bound using an isoperimetric quantity

that we denote by ψ, which is defined as follows. For S ⊂ V , define

ψ(S) := 1 − ES

√
|S̃|
|S| .

Define ψ(x) for x ∈ [0, 1/2] by

(27) ψ(x) = inf{ψ(S) : |S| ≤ x|V |},

and for x > 1/2, let ψ(x) := ψ∗ = ψ( 1
2 ). Observe that ψ is nonnegative and (weakly)

decreasing on [0,∞). We will call the function ψ the root profile.

4.2. From �2 bounds to a bound on ψ. In this section, we show how to use
l2 techniques to obtain a bound on the root profile.

For functions f : V → [0, 1], define ||f ||1 := 1
|V |

∑
x∈V f(x) and ||f ||2 :=

( 1
|V |

∑
x∈V f(x)2)1/2. For S ⊂ V , define 1S : V → [0, 1] by

1S(x) =

{
1 if x ∈ S,
0 otherwise.

Lemma 4.1. Let S̃ be the next step in the evolving set process starting from S,

i.e., S̃ = {y : p(S, y) > U}, where U is uniform. Let α =
||p(S, · )||22
||1S ||1 . Then

E

⎛
⎝

√
|S̃|
|S|

⎞
⎠ ≤ [α(2 − α)]

1
4 .
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Proof. Let Λ be an independent copy of S̃, i.e., Λ = {y : p(S, y) > U ′}, for

an independent uniform random variable U ′. Note that either S̃ ⊆ Λ or Λ ⊆ S̃
(depending on which of the uniform variables U,U ′ is larger). Let X = |S̃ ∩ Λ| and

Y = |S̃ ∪ Λ|. Then

[
E

(√
|S̃|

)]2

= E

(√
|S̃||Λ|

)
(28)

= E(
√
XY )(29)

≤
√

E(X)E(Y )(30)

=
√

E(X)(2|S| − E(X)),(31)

where the first inequality is Cauchy Schwarz and the second inequality follows from
the fact that E(X + Y ) = 2E(S̃) = 2|S|. But

E(X) =
∑
y∈V

P(y ∈ S̃ ∩ Λ)(32)

=
∑
y∈V

P(y ∈ S̃)2(33)

=
∑
y∈V

p(S, y)2 = |V | · ||p(S, · )||22,(34)

so dividing the LHS of (28) and the RHS of (31) by |S| = |V | · ||1S ||1 and then taking
a square root yields the lemma.

Remark. If we define Δ := 1 − α, then

[
α(2 − α)

] 1
4

= (1 − Δ2)
1
4 ≤ 1 − Δ2

4
.

5. A bound on the root profile. We will need the following technical result,
which is proved in Appendix B.

Corollary 8.5. Fix S ⊂ V and let x = |S|
(2d)!

= ||1S ||1. Let p( · , · ) be the transition

kernel for one round of the Thorp shuffle. Then there is a universal constant C > 0
such that

||p(S, ·)||22 ≤ x1+C/d14

.

We are now ready to obtain a bound on the root profile of the Thorp shuffle.
Lemma 5.1. Let ψ be the root profile of the Markov chain that each step performs

a round of the Thorp shuffle (K1K2 · · ·Kd). There is a universal constant γ > 0 such
that

(35) ψ(x) ≥ max
(
1 − xγ/2d42

, γd−28
)
.

Proof. Let C be the constant appearing in Corollary 8.5. We will show that there
is a universal constant B > 0 such that

(36) ψ(x) ≥ max
(
1 − xCB/2d42

, Bd−28
)
.

Setting γ = min(BC,B) will then yield the lemma. First, we show that ψ∗ ≥ Bd−28.

Fix S with |S|
(2d)!

= x ≤ 1
2 and let

S̃ = {y : p(S, y) > U},
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where {p(x, y)} are the transition probabilities for one round of the Thorp shuffle.
The remark following Lemma 4.1 implies that

E

√
|S̃|
|S| ≤ 1 − Δ2

4
,

where Δ = 1− ||p(S, · )||22
||1S ||1 , and Corollary 8.5 implies that ||p(S, · )||22 ≤ xC/d14 ||1S ||1 ≤

2−C/d14 ||1S ||1. Thus

Δ ≥ 1 − 2−Cd−14

(37)

= 1 − e−C log 2 d−14

(38)

≥ Ad−14(39)

for a universal constant A > 0, and hence 1− Δ2

4 ≤ 1−Bd−28 for a universal constant
B ∈ (0, 1

4 ). (The fact that we can take B < 1
4 will be used later on.) Since this holds

for all S with |S| ≤ 1
2 (2d)!, we conclude that ψ∗ ≥ Bd−28. To complete the proof of

Lemma 5.1, we must show that (36) holds when the max is achieved by the first term.

Suppose that 1 − xCB/2d42 ≥ Bd−28. Then

(40) x ≤ (1 −Bd−28)2d
42/CB ≤ exp(−2C−1d14).

Recall that Lemma 4.1 gives

(41) E

√
|S̃|
|S| ≤ (α(2 − α))

1
4 ≤ (2α)

1
4 ,

where α =
||p(S, · )||22
||1S ||1 . Thus, (40) implies that

xC/2d14 ≤ e−1 < 1
2 ,

and hence

(42) 2 ≤ x−C/2d14

.

Furthermore, Corollary 8.5 implies that α ≤ xC/d14

. Plugging this and (42) into (41)
gives

(43) E

√
|S̃|
|S| ≤ (x−C/2d14

xC/d14

)
1
4 = xC/8d14 ≤ xCB/2d42

,

since B < 1
4 (and x ≤ 1).

6. Proof of main result. Proof of Theorem 1.1. We shall start by bounding
the mixing time of the Markov chain that does an entire round of the Thorp shuffle
each step. Recall that the root profile ψ : [0,∞) → R is defined by

ψ(x) =

{
inf{ψ(S) : |S| ≤ x|V |} if x ∈ [0, 1

2 ],
ψ∗ if x > 1

2 ,

where ψ∗ = ψ( 1
2 ). Thus ψ is (weakly) decreasing on [0,∞).
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Let h(z) := 1−ψ(1/z2). Since ψ(x) = ψ∗ for all real numbers x ≥ 1
2 , the function

h is well defined even for z ≤ 1. Note that h is nonincreasing. In [8] it is shown (see
section 5 and the part of section 3 entitled “Derivation of Theorem 1 from Lemma
3 and Theorem 4”) that there is a sequence of random variables {Zn : n ≥ 0} that
satisfies Z0 =

√
|V | and

E

(
Zn+1

Zn

∣∣∣Zn

)
≤ h(Zn)(44)

such that

(45) τmix ≤ 2 min{n : E(Zn) ≤ 1
2}.

Lemma 5.1 gave the following bound on the root profile:

(46) ψ(x) ≥ max
(
1 − xγ/2d42

, γd−28
)

for a universal constant γ > 0. Thus h ≤ g, where g is defined by

g(z) = min
(
z−γ/d42

, 1 − γd−28
)
,

and hence E(Zn+1|Zn) ≤ g(Zn)Zn. Let f(z) = zg(z) = min(z1−γ/d42

, z(1 − γd−28)).
Note that f is increasing and, as the minimum of two concave functions, is concave.
We claim that E(Zn) ≤ fn(Z0), where fn is the n-fold iterate of f . We verify this
by induction. The base case n = 0 is immediate. Suppose that the claim holds for n.
Then

E(Zn+1) = E(E(Zn+1|Zn))(47)

≤ E(f(Zn))(48)

≤ f(E(Zn))(49)

≤ f(fn(Z0)) = fn+1(Z0),(50)

where the third line follows from concavity and the last line is the induction hypothesis.
Let

f1 = z1−γ/d42

, f2 = z(1 − γd−28),

so that f = min(f1, f2). Then for all m,n we have

E(Zm+n) ≤ fm+n(
√
Z0) ≤ fm

2 (fn
1 (Z0)).

But fn
1 (z) = z(1−γ/d42)n ≤ zexp(−γn/d42), and Z0 =

√
|V | ≤ (2d)2

d

= 2d2
d

. Thus,
choosing n ≥ γ−1d43 gives

fn
1 (Z0) ≤ 2d2

de−d

,

which is at most 4 for all d ≥ 1. Finally, since

fm
2 (z) = z

(
1 − γd−28

)m

≤ ze−γm/d28

,

we have fm
2 (4) ≤ 4e−γm/d28

, which is at most 1
2 whenever m ≥ γ−1d28 log 8. Putting

this together, we conclude that τmix ≤ 2γ−1(d43 + d28 log 8) = O(d43). Since each
round corresponds to d Thorp shuffles we conclude that the mixing time for the
original model is O(d44).
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7. Appendix A. In this section we prove some technical results needed in sec-
tion 3. We will adopt the notation of that section; for the convenience of the reader,
we now give a brief recap. Let A and B be disjoint sets of cards. For x ∈ A, say
that x is antisocial in round j of the zigzag shuffle if at no point in round j does an
edge connecting x to a card in B ring. Let Z(A,B, j) denote the number of cards
that are antisocial in round j. We say that A avoids B if Z(A,B, j) > 7

8 |A| for 64cd
consecutive rounds j before time m. If S is a set of cards, say that S circulates if
there do not exist disjoint sets A,B of cards with |A| ≤ 1

2 |S| and A ∪ B = S such
that A avoids B.

The main purpose of this section is to prove Lemma 7.1, which was used in the
proof of Lemma 2.3 in section 3. The proof of Lemma 7.1 uses some fairly technical
large deviation results. For the convenience of the reader, we shall prove Lemma 7.1
first, and the large deviation results second.

Lemma 7.1. Fix a set of cards S with |S| ≥ 2d−1. Then for any set S′ of vertices
of the hypercube we have

P
(
S does not circulate

∣∣∣S→mS′
)
≤ α−d 1 + λ(|S|)

1 − λ(|S|) .

Proof. Let E be the event that S does not circulate. We have

P
(
E,S→mS′

)
≤

∑
k≤ 1

2 |S|

∑
A:|A|=k

P
(
A avoids B,S→mS′

)

≤ 2d−1 max
k

[
2dk max

A:|A|=k
P
(
A avoids B,S→mS′

)]
,

where in the summations we write B for S − A, the 2d−1 is an upper bound on the
number of k ≤ 1

2 |S|, and the 2dk is an upper bound on the number of sets A with
|A| = k. Since |A| ≤ 1

2 |S| and A∪B = S, we must have |B| ≥ 1
42d. Hence if |A| = k,

then

P
(
A avoids B,S→mS′

)
≤

∑
B′⊂S′

P
(
A avoids B,B→mB′, A→mS′ −B′

)
(51)

≤
∑

B′⊂S′

P(B→mB′)P
(
A avoids B

∣∣∣B→mB′
)
.(52)

But

P
(
A avoids B

∣∣∣ B→mB′
)

≤
m∑
i=0

i+64cd−1∏
j=i

P
(
Z(A,B, j) > 7k

8

∣∣∣B→mB′
)
≤ m

(
e−k/64

)64cd

,(53)

where the last inequality follows from Corollary 7.3 below. (See Lemma 7.2 and
Corollary 7.3 immediately following the present proof.) Hence

P
(
A avoids B,S→mS′

)
≤

∑
B′⊂S′

P(B→mB′)me−ckd

≤ 2dkme−ckd max
B′

P(B→mB′),
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where the 2dk is an upper bound on the number of subsets B′ ⊂ S′. But for any B′

we have

P(B→mB′) ≤
∑

Ŝ:Ŝ⊃B′

P(S→m Ŝ) ≤ 2dk
(

2d

|S|
)−1

(1 + λ(|S|)).

It follows that

P
(
A avoids B,S→mS′

)
≤ 4dkme−cdk

(
2d

|S|
)−1

(1 + λ(|S|))(54)

= [4e−c]d�β logα c�d5
(

2d

|S|
)−1

(1 + λ(|S|))(55)

≤ α−d
(

2d

|S|
)−1

(1 + λ(|S|)),(56)

where the second inequality follows from the definition of c. Finally, since P(S→mS′) ≥(
2d

|S|
)−1

(1 − λ(|S|)), we get P(A avoids B |S→mS′) ≤ α−d 1+λ(|S|)
1−λ(|S|) .

Lemma 7.1 used a corollary to the following lemma.
Lemma 7.2. Let {Xn : n ≥ 0} be the zigzag shuffle. Let Z = Z(A,B, 1) be the

number of cards that are antisocial in the first round. Define FB = σ(X1(B), . . . , Xd(B)).

Let p = 1 − |B|
2d and let k = |A|. For θ ≥ 0 define Φp(θ) = 1 − p + peθ. Then for all

θ ≥ 0 we have

(57) E
(
eθZ

∣∣∣FB

)
≤ Φp(θ)

k.

Proof. We verify this by induction on d. If d = 1, then the LHS of (57) is 1 if
p < 1, and eθk otherwise, so (57) holds. Now suppose that d > 1. Let A′ be the set
of cards in A not adjacent to B in direction 1, and let k′ = |A′|. Let l be half the
number of cards in A′ adjacent to another card in A′ in direction 1. (Note that l is
an integer.) Let k0 and k1 be the number of cards in A′ that end up with a leading 0
and 1, respectively, after the first step of the round (i.e., after the edges in direction
1 ring). Of those in the first group, let Z0 be the number that are antisocial, with a
similar definition for Z1. Note that given FB , the random variables k0 and k1 are both
distributed like W + l, where W ∼ Binomial(k′ − 2l, 1

2 ), and note that Z = Z0 + Z1.
By induction, we have

E
(
eθZ

∣∣∣FB , X1(A)
)

= E
(
eθZ0

∣∣∣FB , X1(A)
)
E
(
eθZ1

∣∣∣FB , X1(A)
)

≤ Φp0(θ)
k0Φp1(θ)

k1 ,

where p0 is the fraction of locations of the part of the hypercube with a leading 0 not
occupied by a card in B after the first step, with a similar definition for p1. It follows
that E(eθZ | FB , k0, k1) ≤ Φp0(θ)

k0Φp1(θ)
k1 . Hence

E
(
eθZ

∣∣∣FB

)
≤

k′−2l∑
i=0

( 1
2 )k

′−2l

(
k′ − 2l

i

)
Φi

p0
(θ)Φk′−2l−i

p1
(θ)Φl

p0
(θ)Φl

p1
(θ)

=
[

1
2Φp0(θ) + 1

2Φp1(θ)
]k′−2l

Φl
p0

(θ)Φl
p1

(θ)

≤
[

1
2Φp0

(θ) + 1
2Φp1

(θ)
]k′

= Φp(θ)
k′
,
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where the last inequality follows from the AM-GM inequality and the final equality
holds because p = 1

2 (p0 + p1). This yields the lemma because k′ ≤ k.
Lemma 7.2 easily gives the following large deviation inequality, which was used

in the proof of Lemma 7.1.
Corollary 7.3. Suppose that p ≤ 3/4. Then

P
(
Z > 7

8k
∣∣∣FB

)
< e−k/64.

Proof. We have

E(eθ(Z−pk) | FB) = e−pkθE(eθZ | FB)(58)

≤
[
(1 − p)e−pθ + peθ(1−p)

]k
,(59)

by Lemma 7.2. The quantity inside the square brackets is E(eθ(Y−p)), for a Bernoulli(p)
random variable Y . The inequality E(eW ) ≤ evar(W ), valid when E(W ) = 0 and
W ≤ 1 (see, e.g., [10]), implies that the quantity (59) is at most exp(1

4θ
2k) if θ ≤ 1.

Letting θ = 1
4 gives

(60) E
(
exp[ 14 (Z − pk)]

∣∣∣FB

)
≤ ek/64,

and hence

P
(
Z > 7

8k
∣∣∣FB

)
= P

(
exp[ 14 (Z − pk)] > exp

[
7k
32 − pk

4

]
| FB

)
(61)

≤ exp
[
− 7k

32 + pk
4

]
exp

[
k
64

]
,(62)

by Markov’s inequality. Finally, since p ≤ 3/4, the quantity (62) is at most e−k/64.

8. Appendix B. The purpose of this section is to prove Corollary 8.5, which is
used to bound the root profile. If K is the transition kernel for a Markov chain on
the state space V , we will consider K as an operator acting on the space of functions
f : V → R by

(63) Kf(x) =
∑
y∈V

K(x, y)f(y).

We will need the following lemma, which is well known.
Lemma 8.1. Let K be a doubly stochastic transition kernel and define K̂ = KKt.

For any function g : V → [0, 1] and n ≥ 1 we have

||Ktg||22 ≤ 〈g, g〉1−
1
n 〈K̂ng, g〉

1
n .

Proof. Since K̂ is symmetric it is diagonalizable. Thus we can write g =
∑

i αig
i,

where the gi are orthonormal eigenfunctions of K̂ with corresponding eigenvalues λi.
We have

||Ktg||22
〈g, g〉 =

〈K̂g, g〉
〈g, g〉(64)

=

∑
i α

2
iλi∑

i α
2
i

(65)

≤
(∑

i α
2
iλ

n
i∑

i α
2
i

)1/n

=
( 〈K̂ng, g〉

〈g, g〉

)1/n

,(66)
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by Jensen’s inequality. Multiplying both sides by 〈g, g〉 yields the lemma.
We will also need the following lemma, which was proved by Keith Ball.
Lemma 8.2. Let X be a random variable taking values in [0, 1] and suppose that

E(X) = μ ≤ 1
2 . Then for any p > 1 we have

(67)
E(Xp)

μp
− 1 ≤ (μ1−p − 1)E

∣∣∣X − μ

μ

∣∣∣.
Proof. Let l = 1

2E(|X − μ|). For a given value of l, the LHS of (67) is maximized
when X is concentrated on the three values 0, μ, and 1 (because it is a convex function
of X). Let p0, pμ, and p1 be the respective probabilities. Then l = p1(1 − μ) = p0μ,
and hence pμ = 1 − p0 − p1 = 1 − l

μ(1−μ) . It follows that

E(Xp)

μp
− 1 =

p1 + pμμ
p

μp
− 1

= l
[ 1

μp(1 − μ)
− 1

μ(1 − μ)

]

≤ 2l

μ
(μ1−p − 1),

since 1 − μ ≥ 1
2 , and the proof is complete.

Fix d� ≤ d. Recall that the d�-truncated Thorp shuffle is the Markov chain with
transition kernel K� = K1 · · ·Kd� . Let V denote the state space of this chain. We
will need the following technical lemma.

Lemma 8.3. Fix f : V → [0, 1] and suppose that ||f ||1 ≤ 6−cdd6
� . Then

||Kt
�f ||22 ≤ ||f ||1+1/cdd5

�
1 ,

where c is the constant appearing in Corollary 3.2.
Proof. We will prove the lemma by induction on d�. Suppose that d� = 1. Then

the truncated Thorp shuffle makes the distribution uniform over V in one step. Thus,

||Kt
�f ||22 =

∑
x∈V

||f ||21
1

|V |(68)

= ||f ||21(69)

≤ ||f ||p1,(70)

for any p ∈ [1, 2], since ||f ||1 ≤ 1. Suppose now that d� ≥ 2 and assume that the result
holds for d� − 1. Define L� as the set of vertices in the cube whose d th

� coordinate
is 0. Let B denote the collection of subsets b of {1, . . . , 2d} such that X(b) = L� for
some X ∈ V (i.e., there is a configuration X ∈ V such that the set of cards occupying
L� is b). For b ∈ B, define Vb = {X ∈ V : X(b) = L�}. Let r = ||f ||1 and for Λ ⊂ B,
define

VΛ = ∪b∈ΛVb.

Let

H =

{
b ∈ B :

||f1Vb
||1

||f ||1
≥ r−1/d�

|B|

}
.
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Since
∑

b∈B
||f1Vb

||1
||f ||1 = ||f ||1

||f ||1 = 1, Markov’s inequality implies that

(71)
|H|
|B| ≤ r1/d� .

Let A = VH and let f1 = f1A and f2 = f1Ac . Then

(72) ||Kt
�f ||22 = ||Kt

�f1 + Kt
�f2||22 ≤ 2||Kt

�f1||22 + 2||Kt
�f2||22.

We will bound each term on the RHS separately. First, consider ||Kt
�f1||22. Let K̂ be

the transition kernel for the d�-truncated zigzag shuffle, i.e, K̂ = K1 · · ·Kd� · · ·K1.
Let n = cd(d� − 1)4. Using Corollary 3.2 (with k = 1) and combining this with (71)
gives K̂n(x, VH) ≤ exp(exp(−1))r1/d� for all x. Hence

〈K̂nf1,1A〉 = |V |−1
∑
x

f1(x)K̂n(x, VH)(73)

≤ ||f1||1 exp(exp(−1))r1/d� .(74)

Finally, Lemma 8.1 gives

||Kt
�f1||22 ≤ 〈f1, f1〉1−1/n〈K̂nf1, f1〉1/n(75)

≤ 〈f1, f1〉1−1/n〈K̂nf1,1A〉1/n,(76)

where the second inequality holds because f1 ≤ 1A. Putting this all together, we get

||Kt
�f1||22 ≤ 〈f1, f1〉1−1/n

[
||f1||1(exp(exp(−1)))r1/d�

]1/n

(77)

≤ 2

(
〈f1, f1〉
||f1||1

)1−1/n

× ||f1||1 × r1/d�n,(78)

since exp( 1
n exp(−1)) ≤ 2 for all n. Since n = cd(d� − 1)4, and 〈f1,f1〉

||f1||1 ≤ 1, we have

||Kt
�f1||22 ≤ 2r1/cdd�(d�−1)4 ||f ||1.(79)

Next we bound ||Kt
�f2||22. Since Kd� is symmetric it contracts l2. Hence

||Kt
�f2||22 ≤ ||K(d�−1) · · ·K1f2||22(80)

=
∑
b∈B

||K(d�−1) · · ·K1f21Vb
||22.(81)

Note that K1 · · ·K(d�−1) is just the transition kernel for a (d� − 1)-truncated Thorp
shuffle and that the Vb are communicating classes for this process. Thus, we can use
the induction hypothesis to bound each ||K(d�−1) · · ·K1f21Vb

||22, provided that the

corresponding normalized l1 norm
||f21Vb

||1
||1Vb

||1 is sufficiently small. Define rb :=
||f21Vb

||1
||1Vb

||1 .

We claim that for every b ∈ B we have rb ≤ r
d�−1
d� . To see this, note that if b ∈ H,

then ||f21Vb
||1 = 0 and the claim holds trivially, so assume b /∈ H. Then

||f21Vb
||1

||1Vb
||1

= ||f21Vb
||1|B|(82)

≤ ||f1Vb
||1|B|(83)

≤ r
−1
d� ||f ||1 = r

d�−1
d� ,(84)
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where the first equality holds because ||1Vb
||1 = |B|−1, the second inequality holds

because b /∈ H (and by the definition of H), and the last equality holds because
||f ||1 = r. It follows that

(85) rb ≤ r
d�−1
d� ≤ 6−c(d�−1)d�

5 ≤ 6−c(d�−1)6 .

Since rb is the norm of f21Vb
when restricted to the smaller state space accessible via

K1 · · ·Kd�−1, the induction hypothesis gives

||K(d�−1) · · ·K1f21Vb
||22 ≤ r

1/cd(d�−1)5

b ||f21Vb
||1(86)

≤ r1/cdd�(d�−1)4 ||f21Vb
||1,(87)

where the second inequality follows from the first inequality in (85). Combining this
with (81) and using the fact that f2 ≤ f gives

(88) ||Kt
�f2||22 ≤ r1/cdd�(d�−1)4 ||f ||1.

We are now ready to bound ||Ktf ||22. Combining (88), (79), and (72), we get

||Kt
�f ||22 ≤

(
6r1/cdd�(d�−1)4

)
||f ||1.(89)

Since (k − 1)−4 − k−4 ≥ k−5 for integers k ≥ 2, the quantity (89) is at most

6r1/cdd5
�+1/cdd6

� ||f ||1 ≤ r1/cdd5
� ||f ||1,

since r ≤ 6−cdd6
� . This concludes the proof.

Corollary 8.5 is a consequence of the following lemma, which extends Lemma 8.3
by removing the assumption on ||f ||1.

Lemma 8.4. Let C = �215c215 log 2 log 6�. Then for any f : V → [0, 1] we have

||Kt
�f ||22 ≤ ||f ||1+1/Cd2d12

�
1 .

Proof. Again, our proof will be by induction on d�. The base case d� = 1 can be
handled identically as in the proof of Lemma 8.3, so assume that d� ≥ 2 and suppose
that the result holds for d� − 1. Define r = ||f ||1. We may assume that r > 6−cdd6

� ,
since otherwise we can invoke Lemma 8.3.

We can also assume w.l.o.g. that r ≤ 1
2 . Otherwise, let h = 1 − f , and suppose

that the result holds for h, i.e., for q = 1/Cd2d12
� we have

||Kt
�h||22 ≤ ||h||1+q

1 ,

or equivalently,

(90) ||h||1 − ||Kt
�h||22 ≥

[
1 − ||h||q1

]
||h||1.

Note that

||Kt
�h||22 = 〈Kt

�(1 − f),Kt
�(1 − f)〉(91)

= 〈Kt
�1,K

t
�1〉 − 2〈Kt

�1,K
t
�f〉 + 〈Kt

�f,K
t
�f〉(92)

= 1 − 2||f ||1 + ||Kt
�f ||22(93)

= ||h||1 − ||f ||1 + ||Kt
�f ||22,(94)
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where the third equality holds because Kt
� is doubly stochastic and hence Kt

�1 = 1.
Thus

(95) ||h||1 − ||Kth||22 = ||f ||1 − ||Ktf ||22.

Define u : [0, 1] → R by

(96) u(x) = (1 − xq)x =
x(1 − x)

1 + xq + · · · + x1−q
,

so the RHS of (90) is u(||h||1). Since the numerator on the RHS of (96) is symmetric
about 1

2 and the denominator is increasing, we have u(x) ≥ u(1 − x) if x ≤ 1
2 . This,

combined with (95), shows that (90) is still true if we replace the h by f . Thus we
can assume henceforth that r ≤ 1

2 .
Let B and Vb be defined as in the proof of Lemma 8.3. Then

||Kt
�f ||22 ≤ ||K(d�−1) · · ·K1f ||22(97)

=
∑
b∈B

||K(d�−1) · · ·K1f1Vb
||22.(98)

For b ∈ B, define rb =
||f1Vb

||1
||1Vb

||1 = ||f1Vb
||1 |B|. Then induction gives

||K(d�−1) · · ·K1f1Vb
||22 ≤ r

1/Cd2(d�−1)12

b ||f1Vb
||1.

Combining this with (98) gives

||Kt
�f ||22 ≤

∑
b∈B

r
1/Cd2(d�−1)12

b ||f1Vb
||1 = |B|−1

∑
b∈B

r
1+1/Cd2(d�−1)12

b .

Thus, unless

(99) |B|−1
∑
b∈B

r
1+1/Cd2(d�−1)12

b ≥ r1+1/Cd2d12
� ,

the result is immediate. So assume that (99) holds. For b ∈ B, define wb =
||f1Vb

||1
||f ||1 .

Note that
∑

b∈B wb = 1. Let U be chosen uniformly at random from B, and let
p = 1 + 1/Cd2(d� − 1)12. Dividing both sides of (99) by rp gives

E(rpU )

rp
≥ r1/Cd2d12

� −1/Cd2(d�−1)12 .(100)

Using the inequality k−12 − (k − 1)−12 ≤ −k−13, valid for integers k ≥ 2, and sub-
tracting 1 from both sides of (100) gives

(101)
E(rpU )

rp
− 1 ≥ r−1/Cd2d13

� − 1.

Let π be the uniform probability measure on B and let ν be the measure on B defined
by the wb. Define

‖π − ν‖TV = 1
2

∑
b∈B

∣∣∣wb − |B|−1
∣∣∣ = 1

2E
∣∣∣rU − r

r

∣∣∣.
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Note that E(rU ) = |B|−1
∑

b∈B rb = r. Plugging X = rU and μ = r into Lemma 8.2
and combining with (101) gives

2‖π − ν‖TV ≥ r−1/Cd2d13
� − 1

r−1/Cd2(d�−1)12 − 1
(102)

=
exp

(
− log r
Cd2d13

�

)
− 1

exp
(

− log r
Cd2(d�−1)12

)
− 1

.(103)

Since r > 6−cdd6
� , the quantities in the exponents in (103) are in (0, 1

2 ]. (Recall that C

is much larger than c.) Hence, the fact that et−1
t ∈ [1, 2] whenever t ∈ (0, 1

2 ] implies
that the quantity in (103) is at least

(d� − 1)12

2d13
�

≥ d−1
�

213
,

where the inequality holds because d� ≥ 2 and hence d�−1
d�

≥ 1
2 . It follows that

‖π − ν‖TV ≥ 2−14d−1
� . Note that

2‖π − ν‖TV =
∑
b∈B

max(ν(b), π(b)) − min(ν(b), π(b)),(104)

2 =
∑
b∈B

max(ν(b), π(b)) + min(ν(b), π(b)).(105)

Subtracting the first equation from the second and dividing by 2 gives

(106) 1 − ‖π − ν‖TV =
∑
b∈B

min(ν(b), π(b)).

Let K̂ be the transition kernel for the d�-truncated zigzag shuffle. Note that

〈f, K̂nf〉 =
∑
b∈B

〈f1Vb
, (K̂nf)1Vb

〉(107)

≤
∑
b∈B

min
(
||f1Vb

||1, ||(K̂nf)1Vb
||1

)
(108)

= ||f ||1
∑
b∈B

min
(
wb,

||(K̂nf)1Vb
||1

||f ||1

)
,(109)

where the inequality holds because f1Vb
≤ 1 and (K̂nf)1Vb

≤ 1. Let n = 15cdd5
� log 2.

Corollary 3.2 implies that
||(K̂nf)1Vb

||1
||f ||1 ≤ α(d�)|B|−1, where α(k) := exp(2−15k).

Hence,

〈f, K̂nf〉 ≤ ||f ||1 α(d�)
∑
b∈B

min
(
wb,

1
|B|

)
(110)

= ||f ||1 α(d�)(1 − ‖ν − π‖TV )(111)

≤ ||f ||1 α(d�)
[
1 − 2−14d−1

�

]
.(112)
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Hence Lemma 8.1 gives

||Kt
�f ||22 ≤ 〈f, f〉1−1/n

[
||f ||1 α(d�)(1 − 2−14d−1

� )
]1/n

(113)

=
( 〈f, f〉
||f ||1

)1−1/n

× ||f ||1 × α(d�)
1/n × (1 − 2−14d−1

� )1/n(114)

≤ ||f ||1 exp
( 1

n

[
2−15d� − d−1

� 2−14
])

(115)

≤ ||f ||1 exp
(
−1/215cdd6

�15 log 2
)
,(116)

since 〈f,f〉
||f ||1 ≤ 1 and 2−15k ≤ 2−15k−1 for all positive integers k. Finally, since r >

6−cdd6
� = exp(−cdd6

� log 6), we have r1/Cd2d12
� ≥ exp(−1/215cdd6

�15 log 2). (Recall that

C ≥ 215c215 log 2 log 6.) It follows that ||Kt
�f ||22 ≤ r1/Cd2d12

� ||f ||1. This completes the
proof.

To bound the root profile, we used the following corollary.
Corollary 8.5. Fix S ⊂ V and let

x =
|S|

(2d)!
.

Let {p(x, y)} be the transition probabilities for a round of the Thorp shuffle. Then
there is a universal constant C > 0 such that

||p(S, ·)||22 ≤ x1+C/d14

.

Proof. Let f = 1S and d� = d and apply Lemma 8.4. (Note that if K is the
transition kernel for a round of the Thorp shuffle, then p(S, ·) = Ktf .)
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EVERY MONOTONE GRAPH PROPERTY IS TESTABLE∗

NOGA ALON† AND ASAF SHAPIRA‡

Abstract. A graph property is called monotone if it is closed under removal of edges and
vertices. Many monotone graph properties are some of the most well-studied properties in graph
theory, and the abstract family of all monotone graph properties was also extensively studied. Our
main result in this paper is that any monotone graph property can be tested with one-sided error, and
with query complexity depending only on ε. This result unifies several previous results in the area of
property testing and also implies the testability of well-studied graph properties that were previously
not known to be testable. At the heart of the proof is an application of a variant of Szemerédi’s
regularity lemma. The main ideas behind this application may be useful in characterizing all testable
graph properties and in generally studying graph property testing. As a byproduct of our techniques
we also obtain additional results in graph theory and property testing, which are of independent
interest. One of these results is that the query complexity of testing testable graph properties with
one-sided error may be arbitrarily large. Another result, which significantly extends previous results
in extremal graph theory, is that for any monotone graph property P, any graph that is ε-far from
satisfying P contains a subgraph of size depending on ε only, which does not satisfy P. Finally, we
prove the following compactness statement: If a graph G is ε-far from satisfying a (possibly infinite)
set of monotone graph properties P, then it is at least δP (ε)-far from satisfying one of the properties.

Key words. property testing, monotone properties, regularity lemma, graphs

AMS subject classifications. 05D99, 05C85, 68W20, 68W25

DOI. 10.1137/050633445

1. Introduction.

1.1. Definitions and background. All graphs considered here are finite and
undirected and have neither loops nor parallel edges. Let P be a property of graphs,
namely, a family of graphs closed under isomorphism. All graph properties discussed
in this paper are assumed to be decidable; that is, we disregard properties for which
it is not possible to tell whether a given graph satisfies them. A graph G with n
vertices is said to be ε-far from satisfying P if one must add or delete at least εn2

edges in order to turn G into a graph satisfying P. A tester for P is a randomized
algorithm which, given the quantity n and the ability to query whether a desired pair
of vertices of an input graph G with n vertices are adjacent or not, distinguishes with
high probability (say, 2/3) between the case of G satisfying P and the case of G being
ε-far from satisfying P. One of the striking results in the area of property testing is
that many natural graph properties have a tester, whose total number of queries is
bounded only by a function of ε, which is independent of the size of the input graph.
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A property having such a tester is called testable. Note, that if the number of queries
performed by the tester is bounded by a function of ε only, then so is its running
time. A tester is said to have one-sided error if whenever G satisfies P, the algorithm
declares that this is the case with probability 1. Throughout the paper, we assume
that a tester first samples a set of vertices S, queries all the pairs (i, j) ∈ S, and then
accepts or rejects by considering the graph spanned by the set. As observed in [3]
and formally proved in [23], this can be assumed with no loss of generality, as this
assumption at most squares the query complexity (and we will not care about such
factors in this paper).

The general notion of property testing was first formulated by Rubinfeld and
Sudan [33], who were motivated mainly by its connection to the study of program
checking. The study of the notion of testability for combinatorial structures, and
mainly for labeled graphs, was introduced in the seminal paper of Goldreich, Gold-
wasser, and Ron [22], who showed that several natural graph properties are testable.
In the wake of [22], many other graph properties were shown to be testable, while
others were shown to be nontestable. See [18], [32], and [31] for additional results
and references on graph property testing as well as on testing properties of other
combinatorial structures.

1.2. Related work. The most interesting results in property testing are those
that show that large families of problems are testable. The main result of [22] states
that a certain abstract graph partition problem, which includes as a special case k-
colorability, having a large cut and having a large clique, is testable. The authors
of [23] gave a characterization of the partition problems discussed in [22] that are
testable with one-sided error. In [3], a logical characterization of a family of testable
graph properties was obtained. According to this characterization, every first order
graph property of type ∃∀ is testable, while there are first order graph properties of
type ∀∃ that are not testable. These results were extended in [17].

There are also several general testability and nontestability results in other areas
besides testing graph properties. In [4] it is proved that every regular language is
testable. This result was extended to any read-once branching program in [29]. On
the other hand, it was proved in [20] that there are read-twice branching programs
that are not testable. The main result of [6] states that any constraint satisfaction
problem is testable.

With this abundance of general testability results, a natural question is what
makes a combinatorial property testable. As graphs are the most well-studied combi-
natorial structures in the theory of computation, it is natural to consider the problem
of characterizing the testable graph properties as the most important open problem
in the area of property testing. Regretfully, though, finding such a characterization
seems to be a very challenging endeavor, which is still open. Therefore, a natural line
of research is to find large families of testable graph properties.

1.3. The main new result. Our main goal in this paper is to show that all
the graph properties that belong to a large, natural, and well-studied family of graph
properties are testable. In fact, we even show that these properties are testable with
one-sided error. A graph property P is said to be monotone if it is closed under
removal of edges and vertices. In other words, if a graph G does not satisfy P,
then any graph that contains G as a (not necessarily induced) subgraph does not
satisfy P as well. Various monotone graph properties were extensively studied in
graph theory. As examples of monotone properties one can consider the property of
having a homomorphism to a fixed graph H (which includes as a special case the
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property of being k-colorable; see Definition 2.2) and the property of not containing
a (not necessarily induced) copy of some fixed graph H. Another set of well-studied
monotone properties are those defined by having a fractional chromatic number, vector
chromatic number , and Lovász theta function bounded by some constant c, which
need not be an integer (see [25] and [27]). Another monotone property is being
(k,H)-Ramsey : For a (possibly infinite) family of graphs H, a graph is said to be
(k,H)-Ramsey if one can color its edges using k colors, such that no color class
contains a copy of a graph H ∈ H. This property is the main focus of Ramsey theory;
see [24] and its references. As another example, one can consider the property of being
(k,H, f)-multicolorable; for a (possibly infinite) family of graphs H and a function f
from H to the positive integers, a graph is said to be (k,H, f)-multicolorable if one
can color its edges using k colors, such that every copy of a graph H ∈ H receives at
least f(H) colors. See [16], [14], and their references for a discussion of some special
cases. The abstract family of monotone graph properties has also been extensively
studied in graph theory. See [21], [13], [11], and their references. Our main result is
the following.

Theorem 1 (main result). Every monotone graph property is testable with one-
sided error.

We stress that we actually prove a slightly weaker statement than the one given
above, as the monotone property has to satisfy some technical conditions (which can-
not be avoided). However, as the cases where the actual result is weaker than what is
stated in Theorem 1 deal with extremely unnatural properties, and even in these cases
the actual result is roughly the same, we postpone the precise statement to section 5
(see Theorem 6). Another important note is that in [23], Goldreich and Trevisan de-
fine a monotone graph property to be one that is closed under removal of edges, and
not necessarily under removal of vertices. They show that there are such properties
that are not testable even with two-sided error. In fact, their result is stronger as
the property they define belongs to NP and requires query complexity Ω(n2). This
means that Theorem 1 cannot be extended, in a strong sense, to properties that are
only closed under removal of edges.

As we have mentioned above, having a homomorphism to a fixed graph H, k-
colorability, and the property of not containing a copy of a fixed graph H are monotone
properties and are thus testable with one-sided error by Theorem 1. These properties
were known to be testable before, and as Theorem 1 applies to general monotone
properties, the bounds it supplies for these properties are inferior compared to the ones
proved by the ad hoc arguments (see [5], [22], [23], and [7]). In Theorem 4 we prove
that this is unavoidable. The main importance of Theorem 1 thus lies in its generality.
However, as described in the beginning of this subsection, there are additional natural
and well-studied monotone graph properties that prior to this work were not known
to be testable, and we may thus use Theorem 1 to conclude that these properties are
testable with one-sided error. We also believe that Theorem 1 and its proof may be
an important step toward a combinatorial characterization of the graph properties
that are testable with one-sided error. Another important aspect of Theorem 1 is
that it can be used to prove general results on graph property testing. Two examples
are Theorems 4 and 5, which we describe in the next subsection. Another result
appears in a related subsequent paper [8] and is discussed in section 5. We believe
that Theorem 1 will be useful for proving other consequences as well. See section 7
for more details and possible natural lines of research suggested by the results of this
paper.
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1.4. Techniques and additional results. The first technical ingredient in the
proof of Theorem 1 is the proof of an (almost) equivalent formulation of it. For a
(possibly infinite) family of graphs F we say that a graph is F-free if it contains
no member from F as a (not necessarily induced) subgraph. Clearly, being F-free
is a monotone property. It is well known (see, e.g., [2]) that for any finite family
of graphs F , the property of being F-free is testable. This follows from a standard
application of Szemerédi’s regularity lemma. As we discuss in section 2, this lemma
is inadequate for obtaining a similar result for infinite families of graphs. The main
technical step in the proof of Theorem 1 is the following theorem, which is the main
technical contribution of this paper.

Theorem 2. For every (possibly infinite) family of graphs F , there are functions
NF (ε) and QF (ε) with the following properties: If G is a graph on n ≥ NF (ε) vertices
which is ε-far from being F-free, then a random subset of QF (ε) vertices of G spans
a member of F with probability at least 2/3.

Note that Theorem 2 immediately implies that for every family of graphs F ,
the property of being F-free is testable. In order to prove Theorem 2 we apply a
strong version of the regularity lemma, proved by Alon et al. [3]. We believe that our
application of this lemma may be useful for attacking other problems. As a byproduct
of our argument we obtain the following graph theoretic result.

Theorem 3. For every monotone graph property P, there is a function WP(ε)
with the following property: If G is ε-far from satisfying P, then G contains a subgraph
of size at most WP(ε) which does not satisfy P.

The above theorem significantly extends a result of Rödl and Duke [30], conjec-
tured by Erdős, which asserts that the above statement holds for the k-colorability
property. Theorem 3 applies to any monotone property and, in particular, to all the
properties discussed in the beginning of the previous subsection.

As will become evident from the proof of Theorem 1 (which is based on Theo-
rem 2), the upper bounds for testing a monotone property depend on the property
being tested. In other words, what we prove is that for every property P, there is a
function QP(ε) such that P can be tested with query complexity QP(ε). A natural
question one may ask is if the dependency on the specific property being tested can
be removed. We rule out this possibility by proving the following.

Theorem 4. For any function Q : (0, 1) �→ N, there is a monotone graph property
P which has no one-sided error property tester with query complexity bounded by
o(Q(ε)).

Prior to this work, the best lower bound proved for testing a testable graph
property with one-sided error was obtained in [1], where it is shown that for every
nonbipartite graph H, the query complexity of testing whether a graph does not
contain a copy of H is at least (1/ε)Ω(log 1/ε). The fact that for every H this property
is testable with one-sided error follows from [2] and [3] and also as a special case
from Theorem 1. As by Theorem 1 every monotone graph property is testable with
one-sided error, Theorem 4 establishes that the one-sided error query complexity of
testing testable graph properties, even those that are testable with one-sided error,
may be arbitrarily large.

Our next result can be considered a compactness-type result in property testing.
Suppose P1, . . . ,Pk are k graph properties that are closed under removal of edges. It
is clear that if a graph G is ε-far from satisfying these k properties then it is at least
ε/k-far from satisfying at least one of them. However, it is not clear that there is a
fixed δ > 0 such that even if k → ∞, G must be δ-far from satisfying one of these
properties. By using Theorem 2 we can prove that if these properties are monotone
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then such a δ exists. We also show that in general there is no such δ.
Theorem 5. For any (possibly infinite) set of monotone graph properties P =

{P1,P2, . . . }, there is a function δP : (0, 1) �→ (0, 1) with the following property: If a
graph G is ε-far from satisfying all the properties of P, then for some i, the graph G
is δP(ε)-far from satisfying Pi. Furthermore, there are properties P = {P1,P2, . . . },
which are closed under removal of edges, for which no such δP exists.

1.5. Recent results. By applying the techniques of this paper along with sev-
eral additional ideas we have managed to extend Theorem 1 by showing that any
hereditary graph property is testable with one-sided error (a graph property is hered-
itary if it is closed under removal of vertices, and not necessarily under removal of
edges). Besides implying that many additional graph properties are testable, we can
also use this result to obtain a precise characterization of the graph properties, which
can be tested with one-sided error by testers with a certain natural restriction (es-
sentially all the testers that have been designed thus far in the literature satisfy this
restriction). These results, which appear in a subsequent paper [9], demonstrate the
relevance of the techniques developed in this paper to the problem of characterizing
the testable graph properties. Also, in a joint work with Benny Sudakov [10], we
have obtained approximation algorithms for the edit distance of a given graph from
satisfying an arbitrary monotone graph property. We also obtained nearly matching
hardness of approximation results. Some of the results of [10] also apply the main
technique developed in this paper. In a recent paper, Avart, Rödl, and Schacht [12]
extended our main result to the case of 3-uniform hypergraphs, which applies the
main ideas of this paper along with the hypergraph regularity lemma. Finally, Lovász
and Szegedy [28] recently gave an alterative proof of the main result of [9] on testing
hereditary properties using the notion of convergent graph sequences.

1.6. Organization. The rest of the paper is organized as follows. In section 2
we introduce the basic notions of regularity and state the regularity lemmas that we
use and some of their standard consequences. We also (do our best to) explain why
the standard regularity lemma and its applications seem inadequate for proving Theo-
rem 2. In section 3 we give a high level description of the proof of Theorem 2 as well as
the main ideas behind it. The full proof of Theorem 2 appears in section 4. In section 5
we give the precise statement of Theorem 1 and use Theorem 2 in order to prove it. In
section 7, we describe several possible extensions and open problems that this paper
suggests. The proofs of Theorems 3 and 5 appear in section 4 and the proof of Theo-
rem 4 appears in section 6. Throughout the paper, whenever we relate, for example,
to a function f3.1, we mean the function f defined in Lemma/Claim/Theorem 3.1.

2. Regularity lemmas: Definitions, statements, and applications. In
this section we discuss the basic notions of regularity and some of the basic applications
of regular partitions and state the regularity lemmas that we use in the proof of
Theorem 2. For a comprehensive survey on the regularity lemma the reader is referred
to [26]. We start with some basic definitions. For every two nonempty disjoint vertex
sets A and B of a graph G, we define e(A,B) to be the number of edges of G between
A and B. The edge density of the pair is defined by d(A,B) = e(A,B)/|A||B|.

Definition 2.1 (γ-regular pair). A pair (A,B) is γ-regular if for any two
subsets A′ ⊆ A and B′ ⊆ B, satisfying |A′| ≥ γ|A| and |B′| ≥ γ|B|, the inequality
|d(A′, B′) − d(A,B)| ≤ γ holds.

Note that a sufficiently large random bipartite graph, where each edge is chosen
independently with probability d, is very likely to be a γ-regular pair with density
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roughly d for any γ > 0. Thus, in some sense, the smaller γ is, the closer a γ-regular
pair is to looking like a random bipartite graph. For this reason, the reader who
is unfamiliar with the regularity lemma and its applications should try to compare
the statements given in this section to analogous statements about random graphs.
Throughout the paper we will make extensive use of the notion of graph homomor-
phism, which we now formally define.

Definition 2.2 (homomorphism). A homomorphism from a graph F to a graph
K is a mapping ϕ : V (F ) �→ V (K) that maps edges to edges; namely, (v, u) ∈ E(F )
implies (ϕ(v), ϕ(u)) ∈ E(K).

Observe that a graph F has a homomorphism into the complete graph of size k
if and only if F is k-colorable. In what follows, F �→ K denotes the fact that there
is a homomorphism from F to K. Let F be a graph on f vertices and K a graph on
k vertices, and suppose F �→ K. Let G be a graph obtained by taking a copy of K,
replacing every vertex with a sufficiently large independent set, and replacing every
edge with a random bipartite graph of edge density d. It is easy to show that with
high probability, G contains many copies of F . The following lemma shows that in
order to infer that G contains many copies of F , it is enough to replace every edge
with a “regular enough” pair. Intuitively, the larger f and k are, and the sparser
the regular pairs are, the more regular we need each pair to be, because we need the
graph to be “closer” to a random graph. This is formulated in Lemma 2.3 below.
Several versions of this lemma were previously proved in papers using the regularity
lemma. See, e.g., [26]. The reader should think of the mapping ϕ in the statement of
the lemma as defining the homomorphism from F to the (implicit) graph K.

Lemma 2.3. For every real 0 < η < 1, and integers k, f ≥ 1 there exist γ =
γ2.3(η, k, f), δ = δ2.3(η, k, f), and M = M2.3(η, k, f) with the following property. Let
F be any graph on f vertices, and let U1, . . . , Uk be k pairwise disjoint sets of vertices
in a graph G, where |U1| = · · · = |Uk| = m ≥ M . Suppose there is a mapping
ϕ : V (F ) �→ {1, . . . , k} such that the following holds: If (i, j) is an edge of F then
(Uϕ(i), Uϕ(j)) is γ-regular with density at least η. Then, the sets U1, . . . , Uk span at

least δmf copies of F .
Comment 2.4. Note that the functions γ2.3(η, k, f) and δ2.3(η, k, f) may and will

be assumed to be monotone nonincreasing in k and f . Similarly, we will assume that
the function M2.3(η, k, f) is monotone nondecreasing in k and f . Also, for ease of fu-
ture definitions (particularly the one given in (4)) we set γ2.3(η, k, 0) = δ2.3(η, k, 0) =
M2.3(η, k, 0) = 1 for any k ≥ 1 and 0 < η < 1.

A partition A = {Vi | 1 ≤ i ≤ k} of the vertex set of a graph is called an
equipartition if |Vi| and |Vj | differ by no more than 1 for all 1 ≤ i < j ≤ k (so, in
particular, each Vi has one of two possible sizes). When we refer to the size of such an
equipartition, we mean the number of partition classes of the equipartition (k above).
The regularity lemma of Szemerédi can be formulated as follows.

Lemma 2.5 (see [34]). For every m and γ > 0 there exists a number T =
T2.5(m, γ) with the following property: Any graph G on n ≥ T vertices has an equipar-
tition A = {Vi | 1 ≤ i ≤ k} of V (G) with m ≤ k ≤ T , for which all pairs (Vi, Vj), but

at most γ
(
k
2

)
of them, are γ-regular.

The original formulation of the lemma also allows for an exceptional set with up
to γn vertices outside of this equipartition, but one can first apply the original for-
mulation with a somewhat smaller parameter instead of γ and then evenly distribute
the exceptional vertices among the sets of the partition to obtain this formulation.
T2.5(m, γ) may and is assumed to be monotone nondecreasing in m and monotone
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nonincreasing in γ.
A standard application of Lemmas 2.3 and 2.5 shows that for any finite set of

graphs F , the property of not containing a member of F , that is, being F-free, is
testable. We first use Lemma 2.3 by setting f and k to be the size of the largest
graph in F and letting η = ε. Lemma 2.3 gives a γ2.3, which tells us how regular
an equipartition should be (that is, how small should γ be) in order to find many
copies of a member of F in it, assuming the input graph is ε-far from being F-free.
We then apply Lemma 2.5, with γ = γ2.3. The main difficulty with applying this
strategy when F is infinite is that we do not know a priori the size of the member
of F that we will eventually find in the equipartition that Lemma 2.5 returns. After
finding F ∈ F in an equipartition, we may find out that F is too large for Lemma 2.3
to be applied, because Lemma 2.5 was not used with a small enough γ. One may
then try to find a new equipartition based on the size of F . However, that requires
using a smaller γ, and thus the new equipartition may be larger (that is, contain more
partition classes) and thus contain only larger members of F . Hence, even the new γ
is not good enough in order to apply Lemma 2.3. This leads to a circular definition
of constants, which seems unbreakable. Our main tool in the proof of Theorem 2 is
Lemma 2.7 below, proved in [3] for a different reason, which enables us to break this
circular chain of definitions. This lemma can be considered a variant of the standard
regularity lemma, where one can use a function that defines γ as a function of the size
of the equipartition1 rather than having to use a fixed γ as in Lemma 2.5. To state
the lemma we need the following definition.

Definition 2.6 (the function WE,m). Let E(r) : N �→ (0, 1) be an arbitrary
monotone nonincreasing function. Let also m be an arbitrary positive integer. We
define the function WE,m : N �→ (0, 1) inductively as follows: WE,m(1) = T2.5(m, E(0)).
For any integer i > 1 put R = WE,m(i− 1) and define

(1) WE,m(i) = T2.5(R, E(R)/R2).

Lemma 2.7 (see [3]). For every integer m and monotone nonincreasing function
E(r) : N �→ (0, 1) define

S = S2.7(m, E) = WE,m(100/E(0)4).

For any graph G on n ≥ S vertices, there exist an equipartition A = {Vi | 1 ≤ i ≤ k}
of V (G) and an induced subgraph U of G, with an equipartition B = {Ui | 1 ≤ i ≤ k}
of the vertices of U , that satisfy the following:

1. m ≤ k ≤ S.
2. Ui ⊆ Vi for all i ≥ 1, and |Ui| ≥ n/S.
3. In the equipartition B, all pairs are E(k)-regular.
4. All but at most E(0)

(
k
2

)
of the pairs 1 ≤ i < j ≤ k are such that |d(Vi, Vj) −

d(Ui, Uj)| < E(0).
Comment 2.8. For technical reasons (see the proof in [3]), Lemma 2.7 requires

that for any r > 0 the function E(r) will satisfy

(2) E(r) ≤ min{E(0)/4, 1/4r2}.

One of the difficulties in the proof of Theorem 2 is in showing that all the constants
that are used in the course of the proof can be upper bounded by functions depending
on ε only. The following observation will thus be useful.

1This is a simplification of the actual statement; see item (3) in the statement of Lemma 2.7.
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Proposition 2.9. If m is bounded by a function of ε only and E(r) satisfies (2),
then the integer S = S2.7(m, E) can be upper bounded by a function of ε only.2

The dependency of the function T2.5(m, γ) on γ is a tower of exponents of height
polynomial in 1/γ (see the proof in [26]). Thus, even for moderate functions E the
integer S has a huge dependency on ε, which is a tower of towers of exponents of
height polynomial in 1/ε.

3. Overview of the proof of Theorem 2. Though we believe that the proof
of Theorem 2 is not harder than several other proofs applying the regularity lemma,
we could not avoid the usage of a hefty number of constants that may hide the main
ideas of the proof. We thus give in this section a general overview of the proof and
the way we overcome the difficulties described in section 2. The complete proof is
given in section 4.

For an equipartition of a graph G, let the regularity graph of G, denoted R =
R(G), be the following graph: We first use Lemma 2.5 in order to obtain the equipar-
tition satisfying the assertions of the lemma. Let k be the size of the equipartition.
Then, R is a graph on k vertices, where vertices i and j are connected if and only if
(Vi, Vj) is a dense regular pair (with the appropriate parameters). In some sense, the
regularity graph is an approximation of the original graph, up to γn2 modifications.
One of the main (implicit) implications of the regularity lemma is the following: Sup-
pose we consider two graphs to be similar if their regularity graphs are identical. It
thus follows from Lemma 2.5 that for every γ > 0, the number of graphs that are

pairwise nonsimilar is bounded by a function of γ only (2(T2), where T = T2.5(1/γ, γ)).
Namely, up to γn2 modifications, all the graphs can be approximated using a set of
equipartitions of size bounded by a function of γ only. The reader is referred to [15],
where this interpretation of the regularity lemma is also (implicitly) used. This leads
us to the key definitions of the proof of Theorem 2. The reader should think of the
graphs R considered below as the set of regularity graphs discussed above, and the
parameter r as representing the size of R.

Definition 3.1 (the family Fr). For any (possibly infinite) family of graphs F ,
and any integer r, let Fr be the following set of graphs: A graph R belongs to Fr if it
has at most r vertices and there is at least one F ∈ F such that F �→ R.

Practicing definitions, observe that if F is the family of odd cycles, then Fr is
precisely the family of nonbipartite graphs of size at most r. In the proof of Theorem 2,
the set Fr, defined above, will represent a subset of the regularity graphs of size at
most r—namely, those R for which there is at least one F ∈ F such that F �→ R. As
r will be a function of ε only, and thus finite, we can take the maximum over all the
graphs R ∈ Fr of the size of the smallest F ∈ F such that F �→ R. We thus define
the following.

Definition 3.2 (the function ΨF). For any family of graphs F and integer r
for which Fr �= ∅, define

(3) ΨF (r) = max
R∈Fr

min
{F∈F :F �→R}

|V (F )|.

Define ΨF (r) = 0 if Fr = ∅. Therefore, ΨF (r) is monotone nondecreasing in r.
Practicing definitions again, note that if F is the family of odd cycles, then

ΨF (r) = r when r is odd, and ΨF (r) = r − 1 when r is even. The “right” way to

2In our application of Lemma 2.7 the function E will (implicitly) depend on ε. For example, it
will be convenient to set E(0) = ε. However, note that even in this case S2.7(m, E) can be upper
bounded by a function of ε only.
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think of the function ΨF is the following: Let R be a graph of size at most r and
suppose we are guaranteed that there is a graph F ′ ∈ F such that F ′ �→ R (thus
R ∈ Fr). Then by this information only and without having to know the structure
of R itself, the definition of ΨF implies that there is a graph F ∈ F of size at most
ΨF (r), such that F �→ R.

The function ΨF has a critical role in the proof of Theorem 2. The first usage of
this function is that, as by Lemma 2.5 we can upper bound the size of the regularity
graph R, we can also upper bound the size of the smallest graph F ∈ F for which
F �→ R. A second important property of ΨF is discussed in section 5. A natural
question one may ask is whether there is a function Ψ that can upper bound ΨF for
all families F . As it turns out, this is impossible; namely, the dependency on the
specific family F is unavoidable. See the discussion following the proof of Theorem 4
in section 6. As we have mentioned in the previous section, the main difficulty that
prevents one from proving Theorem 2 using Lemma 2.3 is that one does not know
a priori the size of the graph that one may expect to find in the equipartition. This
leads us to define the following function, where 0 < ε < 1 is an arbitrary real.

(4) E ′(r) =

{
ε/8, r = 0,
γ2.3(ε/8, r, ΨF (r)), r ≥ 1.

In simple words, given r, which will represent the size of the equipartition and thus
also the size of the regularity graph which it defines, E ′(r) returns “how regular” this
equipartition should be in order to allow one to find many copies of the largest graph
one may possibly have to work with. Note that we obtain the upper bound on the size
of this largest possible graph by invoking ΨF (r). As for different families of graphs
F , the function ΨF (r) may behave differently; E ′(r) may also behave differently for
different families F , as it is defined in terms of ΨF (r). However, and this is one of
the key points of the proof, as we are fixing the family of graphs F , the function E ′(r)
depends only on r.

Given the above definitions we apply Lemma 2.7 with a slight modification of
E ′(r) in order to obtain an equipartition of G. We then throw away edges that reside
inside the sets Vi and between (Vi, Vj), whose edge density differs significantly from
that of (Ui, Uj). We then argue that we thus throw away less than εn2 edges. As G is
by assumption ε-far from not containing a member of F , the new graph still contains
a copy of F ∈ F . By the definition of the new graph, it thus means that there is
a (natural) homomorphism from F to the regularity graph of G. We then arrive at
the main step of the proof, where we use the key property of Lemma 2.7, item (3),
and the definition of E ′(r) to get that the sets Ui are regular enough to let us use
Lemma 2.3 on them and to infer that they span many copies of F . It thus follows
that a large enough sample of vertices spans a copy of F with high probability. The
complete details appear in section 4.

4. Proofs of Theorems 2, 3, and 5. We start with the proof of Theorem 2.
We assume the reader is familiar with the overview of its proof given in section 3.

Proof of Theorem 2. Fix any family of graphs F . Our goal is to show the
existence of functions NF (ε) and QF (ε) with the following properties: If a graph G
on n ≥ NF (ε) vertices is ε-far from being F-free, then a random subset of QF (ε)
vertices of V (G) spans a member of F with probability at least 2/3. For the rest of
the proof, let E ′(r) : N �→ (0, 1) be as defined in (4). In order to apply Lemma 2.7, we
need to define a function E , based on E ′, which will satisfy the technical condition (2)
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in Comment 2.8. We thus set E(0) = E ′(0) (= ε/8) and define for any r > 0

(5) E(r) = min{E ′(r), E(0)/4, 1/4r2}.

For the rest of the proof set

S(ε) = S2.7(8/ε, E).

We may indeed define S(ε) using E as it satisfies (2). Furthermore, as we define S(ε)
using m = 8/ε we get by Proposition 2.9 that S(ε) is indeed a function of ε only. We
now set

(6) N = NF (ε) = S(ε) ·M2.3(ε/8, S(ε),ΨF (S(ε)))

to be an integer bounded by a function of ε as well. We postpone the definition of
QF (ε) till the end of the proof.

Given a graph G on n vertices, with n ≥ N ≥ S(ε), we can use Lemma 2.7 with
m = 8/ε and E(r) as defined in (5) in order to obtain an equipartition of V (G) into
8/ε ≤ k ≤ S(ε) clusters V1, . . . , Vk (this is possible by item 1 in Lemma 2.7). By
item 2 of Lemma 2.7, for every 1 ≤ i ≤ k we have sets Ui ⊆ Vi each of size at least
n/S(ε). Remove from G the following edges according to the following order:

1. Any edge (u, v) for which both u and v belong to the same cluster Vi. As
each of the clusters contains at most n/k + 1 vertices, the total number of
edges removed is at most k(n/k)2. As k ≥ 8/ε we have k(n/k)2 < ε

8n
2.

2. If for some i < j we have |d(Vi, Vj) − d(Ui, Uj)| > ε
8 = E(0), remove all the

edges connecting vertices that belong to Vi to vertices that belong to Vj . By
item 4 of Lemma 2.7, there are at most ε

8k
2 such pairs i, j. As Vi and Vj

contain at most (n/k+1) vertices, we remove at most ε
8k

2 · (n/k+1)2 ≤ ε
7n

2

edges in this step.
3. If for some i < j we have d(Ui, Uj) < ε

8 , remove all the edges connecting
vertices that belong to Vi to vertices that belong to Vj . As we have already
removed in the previous step all the edges between pairs (Vi, Vj) for which
|d(Vi, Vj) − d(Ui, Uj)| > ε

8 , we may conclude that if d(Ui, Uj) < ε
8 then we

also have d(Vi, Vj) <
ε
8 + E(0) = ε

4 . As Vi and Vj contain at most (n/k + 1)
vertices, we thus remove at most k2 · ε

4 (n/k + 1)2 ≤ ε
3n

2 edges.
Call the graph obtained after removing the above edges G′, and observe that G′ is
obtained from G by removing less than εn2 edges. By item 3 of Lemma 2.7, in G all
the pairs (Ui, Uj) are E(k)-regular. Thus, by the third step of obtaining G′ we get the
following property.

Proposition 4.1. If vi ∈ Vi is connected to vj ∈ Vj in G′, then (Ui, Uj) is an
E(k)-regular pair with density at least ε

8 in G.
Consider a graph R on k vertices r1, . . . , rk, where vertices ri and rj are connected

if and only if (Ui, Uj) is an E(k)-regular pair in G with density at least ε
8 . This is

the regularity graph, which we have mentioned in section 3, of the graph induced
by the sets U1, . . . , Uk. As G is by assumption ε-far from being F-free, and G′ is
obtained from G by removing less than εn2 edges, G′ must contain a copy of a graph
F ′ ∈ F . Let Ri contain all the vertices of F ′ that belong to cluster Vi and note that
by Proposition 4.1, there is a natural homomorphism ϕ : V (F ′) �→ V (R) which maps
all the vertices of Ri ⊆ V (F ′) to ri. As |V (R)| = k and F ′ is a graph in F such that
F ′ �→ R, we conclude that R ∈ Fk (recall Definition 3.1). Therefore, there is a graph
F ∈ F of size at most ΨF (k) such that V (F ) �→ V (R) (recall Definition 3.2). Let
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ϕ : V (F ) �→ V (R) be the homomorphism mapping the vertices of F to the vertices of
R. By definition, we have that whenever (i, j) is an edge of F their image (ϕ(i), ϕ(j))
is an edge of R. Furthermore, by definition of R we know that if (ϕ(i), ϕ(j)) is an
edge of R then (Uϕ(i), Uϕ(j)) is an E(k)-regular pair with density at least ε

8 .
We have thus arrived at the following situation: We have k clusters of vertices

U1, . . . , Uk of the same size. We also have a graph F of size at most ΨF (k), and a
mapping ϕ : V (H) �→ {1, . . . , k} that satisfies the condition; if (i, j) ∈ E(F ) then
(Uϕ(i), Uϕ(j)) is an E(k)-regular pair with density ε/8. This, together with the defini-
tion of E(k), implies that we can use Lemma 2.3 on the graph U spanned by U1, . . . , Uk.
Let f ≤ ΨF (k) denote the size of F . Item 4 in Lemma 2.7 states that each Ui con-
tains at least n/S(ε) vertices. Also, by (6), and by the monotonicity properties of
M2.3 discussed in Comment 2.4, we have for any 1 ≤ i ≤ k

|Ui| ≥ n/S(ε) ≥ M2.3(ε/8, S(ε),ΨF (S(ε))) ≥ M2.3(ε/8, k,ΨF (k)).

Therefore, we may apply Lemma 2.3 on the sets U1, . . . , Uk to conclude that U spans
at least

(7) δ

f∏
i=1

|Ui| ≥ δ(n/S(ε))f ≥ δnf/S(ε)ΨF (k) ≥ δnf/S(ε)ΨF (S(ε))

copies of F , where δ = δ2.3(ε/8, k,ΨF (k)). By Comment 2.4, the function δ2.3(η, k, f)
is monotone nonincreasing in k and f . Also, ΨF (k) is monotone nondecreasing in k.
Hence, as k ≤ S(ε) we have that δ ≥ δ2.3(ε/8, S(ε),ΨF (S(ε))), and, in particular, 1/δ
is upper bounded by a function of ε only. As U is a subgraph of G, we may conclude
that G contains at least as many copies of F as (7). Thus, if we independently
sample 2S(ε)ΨF (S(ε))/δ sets of ΨF (S(ε)) (≥ f) vertices (which is a total of 2ΨF (S(ε))·
S(ε)ΨF (S(ε))/δ vertices) we have probability at least 2/3 of finding a copy of F ∈ F .

We can now give the formal definition of QF (ε). Given a family of graphs F
let ΨF (r) be the function from Definition 3.2. We note that the only place where
QF (ε) depends on F is in the function ΨF (r). Using ΨF (r) define the function
E(r) as in (5). Given ε > 0 define the function WE,8/ε as in Definition 2.6 and put
S(ε) = WE,8/ε(100/(ε/8)4). Finally, we can set

(8) QF (ε) =
2ΨF (S(ε)) · S(ε)ΨF (S(ε))

δ2.3(ε/8, S(ε),ΨF (S(ε)))

to be a function of ε only. This completes the proof of the theorem.
From the definition of E ′(r) in (4) it is clear that if the function ΨF (r) is recursive,

then so is E ′(r) and therefore also E(r) (for this we also need the fact that γ2.3(η, k, f)
is recursive, which follows from the standard proofs of Lemma 2.3; see [26]). In this
case the function WE,m(i) is also recursive (see Definition 2.6), and therefore so is
the function S2.7(8/ε, E). Finally, this means that the integer S(ε), used in the above
proof, can also be computed. Now, given S(ε) and the fact that ΨF (r) is recursive,
one can use (6) and (8) as well as the fact that δ2.3(η, k, f) and M2.3(η, k, f) are
recursive (see the proof in [26]) in order to compute NF (ε) and QF (ε).

We finish this section with the proofs of Theorems 3 and 5.
Proof of Theorem 3. We claim that we can set WP(ε) = max{NF (ε), QF (ε)}

with F = FP as in the proof of Theorem 1, and NF (ε), QF (ε) are the functions
from Theorem 2. Indeed, If G is ε-far from satisfying P, and G has less than NF (ε)
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vertices, we can take G itself to be a subgraph of G not satisfying P. Suppose now
that G has more than NF (ε) vertices. As G is also ε-far from being F-free, we get
from Theorem 2 that G contains a subgraph (in fact, many) of size QF (ε), which is
not F-free and therefore does not satisfy P.

Proof of Theorem 5. For each of the monotone properties Pi, let Fi be the family
of graphs, which do not satisfy Pi, and let F = F1

⋃
F2

⋃
F3

⋃
. . . . Clearly, a graph

G satisfies all the properties of P if and only if it is F-free. Consider a graph G,
which is ε-far from satisfying all the properties of P. In this case G is also ε-far from
being F-free. The proof of Theorem 2 establishes that there is a graph F ∈ F of size
at most f = fF (ε) such that G contains δF (ε)nf copies of F . Note that removing an
edge from G destroys at most

(
n

f−2

)
≤ nf−2 copies of F . Thus, one must remove at

least δF (ε)n2 edges from G in order to make it F -free. Let i be such that F ∈ Fi.
We may now infer that G is δF (ε)-far from satisfying Pi. Finally, note that as F is
determined by P, we can also say that G is δP(ε)-far from satisfying Pi.

To show that in case the properties Pi are just closed under removal of edges
the above does not hold, consider the following: For any integer n, let H1, H2, . . .
be some ordering of the graphs on n vertices, which contain precisely n3/2 edges. A
graph of size n is said to satisfy property Pi if it contains no copy of Hi. Clearly,
any property Pi is closed under removal of edges but not necessarily under removal
of vertices. Observe that any graph with at least n3/2 edges does not satisfy one of
the properties Pi. Therefore, any graph G of size n which contains 2εn2 edges is
ε-far from satisfying all the properties Pi. We claim that any such G is not log n√

n
-far

from satisfying any one of these properties. To this end, it is enough to show that
for any graph Hi, we can remove at most n3/2 log n edges from G and thus make it
Hi-free. To see this, note that as G and Hi are both of size n, G spans at most n!
copies of Hi. As Hi contains n3/2 edges a randomly chosen edge of G is spanned by
Hi with probability at least n3/2/

(
n
2

)
> 1/

√
n. Thus, if we remove from G a set of

n3/2 log n edges, where each edge is randomly and uniformly chosen from the edges of
G (with repetitions), the probability that none of the edges of one of the copies of Hi

in G were removed is at most (1 − 1/
√
n)n

3/2 log n < 1/n!. By the union bound, the
probability that for some copy of Hi in G, none of its edges were removed is strictly
smaller than 1. Thus, there exists a choice of n3/2 log n edges, whose removal from G
makes the graph Hi-free.

5. Proof of Theorem 1. For a monotone graph property P, define F = FP to
be the set of graphs which are minimal with respect to not satisfying property P. In
other words, a graph F belongs to F if it does not satisfy P, but any graph obtained
from F by removing an edge or a vertex satisfies P. Thus, for example, if P is the
property of being 2-colorable, then F is the set of odd cycles. Clearly, a graph satisfies
P if and only if it contains no member of F as a (not necessarily induced) subgraph.

As we have mentioned in section 1, we will prove a slightly different version of
Theorem 1. In order to precisely restate Theorem 1 we need two definitions. Note
that in defining a tester in section 1, we did not mention whether the error parameter
ε is given as part of the input, or whether the tester is designed to distinguish between
graphs that satisfy P from those that are ε-far from satisfying it, when ε is a known
fixed constant. In fact, the literature about property testing is not clear about this
issue as in some papers ε is assumed to be a part of the input while in others it is not.
We define a property to be uniformly testable if there is a tester for it that receives
ε as part of the input. We define a property to be nonuniformly testable if for every
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fixed ε, there is a tester that can distinguish between graphs that satisfy P from those
ε-far from satisfying it (which may not work properly for other values of ε). We are
now ready to restate Theorem 1.

Theorem 6 (Theorem 1 restated). Every monotone graph property P is non-
uniformly testable with one-sided error. Moreover, if the function ΨF is recursive
(where F = FP) then P is also uniformly testable with one-sided error.

We stress that all reasonable graph properties P, in particular, those that were
discussed in section 1, are such that ΨF is recursive (a function is recursive if there
is an algorithm that computes it in finite time). In particular, all the monotone
properties mentioned in section 1 are uniformly testable with one-sided error. We thus
bother to define uniformly and nonuniformly testing as well as discuss ΨF because it
has the following interesting property: Not only is it sufficient to require ΨF to be
recursive in order to infer that P can be tested uniformly with one-sided error, but
this is also necessary. In other words, the recursiveness of ΨF determines whether
P can be tested uniformly.3 This is somewhat surprising as ΨF has little to do with
property testing. Using this necessary condition, it is possible to show that there are
graph properties that can be nonuniformly tested with one-sided error but cannot be
uniformly tested, even with two-sided error. In fact, there are such graph properties,
which are monotone and belong to coNP . The proofs of the necessity of ΨF being
recursive in order to obtain a uniform tester, as well as the existence of a property
that cannot be tested uniformly, are rather involved and significantly deviate from
the main topic of this paper. Hence, we refrain from describing them here. These
results will appear in a subsequent paper [8].

Proof of Theorem 6. Let F = FP be as defined above, and let NF (ε) and QF (ε)
be the functions of Theorem 2. As satisfying P is equivalent to being F-free, we focus
on testing the property of being F-free. We first show that every monotone property
is nonuniformly testable. In this case we may design a tester for every given error
parameter ε (but one that can handle any graph as an input). In this case, for every
fixed ε, the tester knows the values of NF (ε) and QF (ε) in advance (i.e., they are part
of its description). If the size of the input graph is less than NF (ε), the algorithm
queries about all edges of the graph and accepts if and only if the graph is F-free
(obviously, in this case the algorithm always answers correctly). If the size of the
input graph is larger than NF (ε), it samples QF (ε) random vertices and accepts if
and only if the graph spanned by this set of vertices is F-free. Clearly, if G is F-free
the algorithm declares that this is the case with probability 1. On the other hand, if
it is ε-far from being F-free then by Theorem 2 the sample of size QF (ε) will contain
F ∈ F with probability at least 2/3, and thus the algorithm will reject the input with
this probability. In any case, the query complexity, which is max{NF (ε), QF (ε)}, is
bounded by a function of ε only.

We now turn to uniform testers. In this case, we can imitate the proof of the
case where ε is given in advance, which was described above. The only technical
obstacle that may prevent us from carrying out the same testing algorithm is that the
algorithm should be able to compute NF (ε) and QF (ε). As the details of the proof of
Theorem 2 reveal (see the discussion following the proof of Theorem 2 in section 4),
the only step in computing NF (ε) and QF (ε) which is not well defined (i.e., that
depends on F) is the computation of the function ΨF (r) (see Definition 3.2). In other
words, if ΨF is recursive, then so are NF (ε) and QF (ε). We thus get that if ΨF is

3This is in fact a simplification of the actual result that we can show. See [8] for the precise
statement.
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recursive, we can uniformly test the property of being F-free.

6. Proof of Theorem 4. In this section we describe the proof of Theorem 4. We
remind the reader that we denote by F �→ K the fact that there is a homomorphism
from F to K (see Definition 2.2). In what follows, an s-blowup of a graph K is the
graph obtained from K by replacing every vertex vi ∈ V (K) with an independent set
Ii, of size s, and replacing every edge (vi, vj) ∈ E(K) with a complete bipartite graph
whose partition classes are Ii and Ij . It is easy to see that a blowup of K is far from
being K-free (K-free is the property of not containing a copy of K). It is also easy to
see that if F �→ K, then a blowup of K is far from being F -free (see [1, Lemma 3.3]).
However, in this case the farness of the blowup from being F -free is a function of the
size of F . As it turns out, for the proof of Theorem 4 we need a stronger assertion
where the farness is only a function of k. This is given in Lemma 6.1 below, which is
proved in [8].

Lemma 6.1 (see [8]). Let F be a graph on f vertices with at least one edge, let
K be a graph on k vertices, and suppose F �→ K (thus, k ≥ 2). Then, for every
sufficiently large n ≥ n(f), an n/k-blowup of K, is 1

2k2 -far from being F -free.

For the proof of Theorem 4 we also need the following simple observation. Recall
that by the results of [3] and [23] we may assume that a tester first picks a set of
vertices S, and then accepts or rejects according to the graph induced by S. We also
comment on the following subtle point: when defining a testable graph property we
require the query complexity to be upper bounded by a function of ε. This, however,
does not imply that it is independent of n. Therefore, when considering arbitrary
testers we have to consider testers whose query complexity and decisions may depend
on the size of the input, which we denote by n.

Claim 6.2. Let F be a family of graphs, such that no F ∈ F has isolated
vertices and let T be a one-sided error tester for the property of being F-free with
query complexity Q(ε, n). If for some ε0 > 0 and n, after T samples a set of vertices
S of size Q(ε0, n), the graph induced by S is F-free, then T must accept the input.

Proof. Fix any n and ε0 > 0 and suppose that when we execute T on a graph G
of size n with ε = ε0, and the sample of vertices S spans a graph H that is F-free,
the algorithm still rejects the input. Consider a graph G′ of size n, which contains
a graph isomorphic to H on some of its |S| vertices. Other than the edges of the
copy of H, the graph G′ has no other edges. As F contains no graph with isolated
vertices and H is F-free we infer that G′ is F-free. Suppose we execute T on G′ with
ε = ε0. As G and G′ are of the same size n, when given G′ as input the algorithm
samples a set of vertices of size Q(ε0, n) = |V (H)|. As we assume that when given H
the algorithm rejects, we get that there is a nonzero probability that T will reject G′,
contradicting the assumption that it has one-sided error.

As our goal is to prove a lower bound on the query complexity we may and will
assume that Q is monotone nonincreasing (hence, monotone nondecreasing in 1/ε).
For every such function Q we will define a property P = P(Q) needed in order to
prove Theorem 4. These properties can be thought of as sparse bipartiteness as they
will be defined in terms of not containing a certain subset of the set of odd cycles.

Let Q : (0, 1) �→ N be an arbitrary monotone nonincreasing function. For such a
function, let Qi be the following i times iterated version of Q. We put Q1(x) = Q(x)
and for any i ≥ 1 define

(9) Qi+1(x) = 2Q

(
1

2(Qi(x) + 2)2

)
+ 1.
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Define I(Q) = {Qi(1/2) : i ∈ N} and note that I(Q) contains only odd integers. For
a function as above, let C(Q) = {Ci : i ∈ I(Q)}; that is, C(Q) is the set of odd
cycles whose lengths are the integers of the set I(Q). Finally, let P = P(Q) denote
the property of not containing any of the odd cycles of C(Q) as a (not necessarily
induced) subgraph.

Proof of Theorem 4. Given a monotone nonincreasing function Q, let P = P(Q)
be the property defined above. We show that for any positive integer k for which
k − 2 ∈ I(Q), any one-sided error tester that distinguishes between graphs of suffi-
ciently large n that satisfy P from those that are 1

2k2 -far from satisfying it has query
complexity at least Q(1/2k2). As Q is by assumption monotone nonincreasing, I(Q)
contains infinitely many integers. Hence, for infinitely many values of ε, and for all
large enough n, the query complexity of such a one-sided error tester is at least Q(ε).
Note also that the set of these ε’s approaches zero.

Fix any integer k for which k − 2 ∈ I(Q) and assume k − 2 = Qi(1/2). As I(Q)
contains only odd integers, k is also odd. Define � = Qi+1(1/2) and recall that by (9),
we have � = 2Q(1/2k2) + 1. As it is clear that there is a homomorphism from C� to
Ck, we get by Lemma 6.1 that for any n ≥ N(�), an n/k-blowup of Ck is 1

2k2 -far from
being C�-free. Denote such a blowup by G. As by definition C� ∈ C(Q), the graph G
is also 1

2k2 -far from satisfying P. Also, as k − 2 is odd, G contains no copy of Ck−2.
In particular, G contains no member of C(Q) of length less than �. As property P is
determined in terms of not containing a certain set of odd cycles, none of which has
isolated vertices, we get from Claim 6.2 that a one-sided error tester must find a copy
of a graph not satisfying P in order to determine that it does not satisfy P. Therefore,
for any n ≥ N(�) the query complexity of any tester for distinguishing between graphs
of size n satisfying P from graphs of size n that are 1

2k2 -far from satisfying it is at
least �. As � = 2Q(1/2k2) + 1 ≥ Q(1/2k2) the proof is complete.

An immediate consequence of Theorem 4 is that there is no function Q(ε) that
upper bounds the query complexity QF (ε) of testing the property of being F-free for
all families of graphs, F . In other words, the dependence on the specific family of
graph is unavoidable. By the same reasoning, the dependence on P in Theorem 3 is
also unavoidable. As we have commented after the proof of Theorem 2 in section 4, the
only dependence of the function QF (ε) defined in the proof of Theorem 1 (see (8)) on
P is due to the function ΨF from Definition 3.2 (where F = FP is the set of minimal
graphs with respect to not satisfying F). This implies that the function ΨF must
depend on F and thus also on P, as otherwise we could obtain an upper bound on
QF (ε) which would apply to all families of graphs, thus contradicting Theorem 4. We
conjecture that Theorem 4 can be extended to two-sided error testers; see section 7.

As we have commented at the beginning of this section, the proof of Theorem 4
heavily relies on the fact that the farness of the graph considered in Lemma 6.1 from
being F -free is only a function of k. From the proof of Theorem 4 it should indeed
be clear that if this farness had been a function of the size of F , then the length of
each cycle of the family would have depended on its own size, which would result in
a cycle of definitions.

7. Concluding remarks and open problems. Besides proving that a large
family of graph properties are all testable, and that specific properties that were
previously not known to be testable are in fact testable, another important aspect of
Theorem 1 is that it can be used to prove general results on testing graph properties.
Two such results are Theorems 4 and 5. Another result, discussed in section 5, is that
there are graph properties that can be nonuniformly tested but cannot be uniformly
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tested [8]. We believe that Theorem 1 will be useful for proving other results as well.

Our main result gives that the natural family of monotone graph properties are
all testable with one-sided error. This gives rise to several questions. For example,
one can study the relation between testing with one-sided and two-sided error by con-
sidering how large the gap between the query complexity of testing a monotone graph
property with one-sided and two-sided error can be. Specifically, it will be interesting
to investigate whether there is a monotone property for which there is a superpolyno-
mial gap between the two tasks. It will also be interesting to strengthen Theorem 4 by
proving that for any function Q : (0, 1) �→ N, there is a monotone graph property that
cannot be tested with o(Q(ε)) queries, even with two-sided error. Currently, the best
lower bound on the two-sided error query complexity of a monotone graph property
is a (1/ε)Ω(log 1/ε) lower bound for testing the property of not containing a copy of a
graph H for any nonbipartite H [7].

A particularly interesting problem to study regarding the family of monotone
graph properties is to obtain a characterization of the monotone properties, which
are testable with poly(1/ε) queries. For some properties, such as k-colorability, it
is known that poly(1/ε) queries suffice (see [22] and [5]). For others, such as being
H-free for any nonbipartite H, it is known that poly(1/ε) are not sufficient (see [1]
and [7]).

Even a special case of this problem seems hard to resolve. While it is known that
the property of not containing an odd cycle, namely, being bipartite, can be tested
with Õ(1/ε) queries (see [5]), Theorem 4 establishes that testing the property of being
F-free, where F is a subset of the family of odd cycles, may be arbitrarily hard (at
least with one-sided error). It is interesting to check if one can at least characterize
the families of odd cycles F , for which one can test the property of being F-free with
poly(1/ε) queries.

As was mentioned in the introduction, a result of Goldreich and Trevisan [23]
rules out the possibility of extending Theorem 2 to graph properties that are only
closed under removal of edges. It seems interesting to bridge the gap between their
result and the main result of this paper by characterizing the testable graph properties
that are closed under edge removal.

Two graph properties P1 and P2 are defined in [3] to be indistinguishable if for
every ε > 0 and large enough n, any graph on n vertices satisfying one property is
never ε-far from satisfying the other. It is shown in [3] that in this case, P1 is testable if
and only if P2 is testable. It is first proved in [3] that certain colorability properties are
testable with one-sided error. It is then shown that every first order graph property of
type ∃∀ is indistinguishable from some colorability property, thus obtaining that these
properties are also testable. It would be interesting to characterize (combinatorially,
logically, or by other means) the graph properties that are indistinguishable from some
monotone property. By Theorem 1, this will immediately imply that these properties
are testable, possibly with two-sided error.

Fischer and Newman [19] have recently shown that if a graph property P is
testable, then it is also estimable; that is, it is possible to estimate how far a given
graph is from satisfying P, within an error δ > 0 in time depending only on δ.
Combining Theorem 1 and the result of [19] gives that any monotone property is
estimable. We further note that this result (in fact, a stronger one) follows directly
from the main result of [10], which was obtained independently of [19].

The proof of Theorem 5 gives weak lower bounds for the function δP(ε). It may
be interesting to check if this dependency can be linear or polynomial for some natural
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THE ROUND COMPLEXITY OF TWO-PARTY RANDOM
SELECTION∗
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Abstract. We study the round complexity of two-party protocols for generating a random
n-bit string such that the output is guaranteed to have bounded “bias,” even if one of the two
parties deviates from the protocol (possibly using unlimited computational resources). Specifically,
we require that the output’s statistical difference from the uniform distribution on {0, 1}n is bounded
by a constant less than 1. We present a protocol for the above problem that has 2 log∗ n + O(1)
rounds, improving a previous 2n-round protocol of Goldreich, Goldwasser, and Linial (FOCS ’91).
Like the GGL Protocol, our protocol actually provides a stronger guarantee, ensuring that the output
lands in any set T ⊆ {0, 1}n of density μ with probability at most O(

√
μ + δ), where δ may be an

arbitrarily small constant. We then prove a nearly matching lower bound, showing that any protocol
guaranteeing bounded statistical difference requires at least log∗ n−log∗ log∗ n−O(1) rounds. We also
prove several results for the case when the output’s bias is measured by the maximum multiplicative
factor by which a party can increase the probability of a set T ⊆ {0, 1}n.
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1. Introduction. One of the most basic protocol problems in cryptography and
distributed computing is that of random selection, in which several mutually distrust-
ing parties aim to generate an n-bit random string jointly. The goal is to design a
protocol such that even if a party cheats, the outcome will still not be too “biased.”
(There are many different choices for how to measure the “bias” of the output; the one
we use will be specified later.) Random selection protocols can dramatically simplify
the design of protocols for other tasks via the following common methodology: first,
design a protocol in a model where truly random strings are provided by a trusted
third party (generally a much easier task), and then use the random selection proto-
col to eliminate the trusted third party. Specific applications of this paradigm often
require random selection protocols with specific additional properties (such as “sim-
ulatability”), but the basic requirement of bounded “bias” in the face of adversarial
behavior is always present in some form and thus merits study on its own.

Because of their wide applicability, there is a large literature on random selection
protocols, both in the computational setting, where cheating parties are restricted
to polynomial time (starting with Blum’s “coin flipping by telephone” [Blu82]), and
in the information-theoretic setting, where security is provided even against com-
putationally unbounded adversaries. There has also been a significant amount of
recent work on random selection in the quantum setting, where the communication
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consists of quantum bits (qubits) and security is provided against a computationally
unbounded quantum adversary; see [Amb04] and the references therein.

In this paper, we focus on two-party protocols in the (classical) information-
theoretic setting (also known as the “full information model”). In addition to its
stronger security guarantees, the information-theoretic setting has the advantage
that protocols typically do not require complexity-theoretic assumptions (such as
the existence of one-way functions). Various such random selection protocols have
been used to construct perfectly hiding bit-commitment schemes [NOVY98], to con-
vert honest-verifier zero-knowledge proofs into general zero-knowledge proofs [Dam94,
DGW94, GSV98], to construct oblivious transfer protocols in the bounded stor-
age model [CCM98, DHRS04], and to perform general fault-tolerant computation
[GGL98]. There has also been substantial work in the k-party case for k ≥ 3, where
the goal is to tolerate coalitions of a minority of cheating players. This body of work in-
cludes the well-studied “collective coin-flipping” problem [BL89, Sak89, AN93, BN00,
ORV94, RZ01, Fei99] (closely related to the “leader-election” problem) and again the
use of random selection as a tool for general fault-tolerant computation [GGL98].

In most of the lines of work mentioned above (computational and information-
theoretic, two-party and k-party), the round complexity has been a major parameter of
interest. For some forms of random selection and their applications, constant-round
protocols have been found (e.g., [DGW94, GSV98] improving [Dam94], [DHRS04]
improving [CCM98], and [Lin01, KO04] improving [Blu82, Yao86]), but for others the
best known protocols have a nonconstant number of rounds, e.g., [Cle86, NOVY98,
GGL98, RZ01]. Lower bounds on round complexity, however, have proven much more
difficult to obtain. In the computational setting, Cleve [Cle86] proved that for two-
party random selection protocols, the number of rounds must grow linearly as the bias
of the output tends to zero. (See also [CI93].) Ambainis [Amb04] gave a similar kind
of result for two-party quantum protocols for leader election, a.k.a. weak coin flipping.
As far as we know, all other previous round complexity lower bounds impose additional
constraints on the protocol (beyond the basic security guarantee of bounded bias). For
example, in the computational setting, it has been recently shown that five rounds are
necessary and sufficient for random selection protocols satisfying a certain “black-box
simulation” condition [KO04]. In the information-theoretic setting, a long line of work
on the collective coin-flipping problem has culminated in the (log∗ n + O(1))-round
protocol of Russell and Zuckerman [RZ01] (see also Feige [Fei99]), but the only known
lower bound (of Ω(log∗ n) rounds), due to Russell, Saks, and Zuckerman [RSZ02], is
restricted to protocols where each party can communicate only a small number of bits
per round. Without this restriction, it is not even known how to prove that one round
is impossible.

The problem and main results. As mentioned above, previous works on ran-
dom selection have considered a number of different measures of the bias of the output,
typically motivated by particular applications. Here we focus on what we consider
to be the most natural measure—the statistical difference (i.e., total variation dis-
tance) of the output from the uniform distribution. The statistical difference be-
tween two random variables X and Y taking values in a universe U is defined to be
maxS⊆U |Pr [X ∈ S] − Pr [Y ∈ S] |. We call the maximum statistical difference of
the output from uniform when a player is honest (but when the other may deviate
arbitrarily from the protocol) that player’s statistical guarantee. We seek a two-party
protocol that produces an output in {0, 1}n such that both players’ statistical guar-
antees are constant (i.e., bounded away from 1). Equivalently (see Lemma 2.4), we
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want to satisfy the following criterion.
Statistical Criterion: There are fixed constants μ > 0 and ε > 0 such that for every

n and every subset T ⊆ {0, 1}n of density at most μ, the probability that the
output lands in T is at most 1− ε, even if one party deviates arbitrarily from
the specified protocol.

In addition to being a natural choice, this criterion is closely related to others con-
sidered in the literature. In particular, the standard criterion for the “collective coin-
flipping” problem is that output bit B ∈ {0, 1} satisfies max{Pr [B = 0], Pr [B = 1]} <
p, where p is a constant less than 1; this is equivalent to B’s statistical difference from
uniform being bounded away from 1. (Here we see that the problem we consider is
in some sense “dual” to collective coin flipping—we restrict ourselves to two players,
but the output comes from a large set, whereas in collective coin flipping there are
many players, but the output has only two possibilities.)

Of course, the first question is whether or not the Statistical Criterion can be met
at all, regardless of round complexity. Indeed, being able to tolerate computationally
unbounded cheating strategies is a strong requirement. In fact, when n = 1 (i.e.,
the output is a single bit), it turns out that one of the two parties can always force
the outcome to be constant [Sak89]. This implies that the Statistical Criterion is
impossible to meet for μ = 1/2. Surprisingly, the criterion is achievable, however, for
some smaller constant μ > 0. This is implied by the following result of Goldreich,
Goldwasser, and Linial [GGL98].

Theorem 1.1 (see [GGL98]). For every n, there is a two-party protocol producing
output in {0, 1}n such that, as long as one party plays honestly, the probability that
the output lands in any set T ⊆ {0, 1}n of density μ is at most p = O(

√
μ). The

protocol has 2n rounds.
Notice that for sufficiently small μ, the probability p is indeed a constant less

than 1. This implies that the Statistical Criterion is achievable with a linear number
of rounds. Our goal is to determine the minimal round complexity of this problem.

First, we give a protocol achieving the Statistical Criterion with substantially
fewer rounds than the above.

Theorem 1.2. For every constant δ > 0, there is an efficient two-party protocol
producing output in {0, 1}n with 2 log∗ n+O(1) rounds such that, as long as one party
plays honestly, the probability that the output lands in any set T of density μ is at
most p = O(

√
μ + δ).

Our protocol is inspired by the log∗ n-round protocols for leader election [RZ01,
Fei99] and Lautemann’s proof that BPP is contained in the polynomial hierarchy
[Lau83]. Specifically, we exhibit a two-round protocol that reduces the universe of size
N = 2n to a universe of size polylog(N), while approximately preserving the density
of the set T with high probability. Repeating this protocol log∗ n times reduces the
universe size to a constant, after which point we apply the GGL Protocol.

Second, we prove a lower bound that matches the above up to a factor of 2+o(1).
Theorem 1.3. Any two-party protocol producing output in {0, 1}n that satisfies

the Statistical Criterion must have at least log∗ n− log∗ log∗ n−O(1) rounds.
Our proof of this theorem is a technically intricate induction on the game tree

of the protocol. Roughly speaking, we associate with each node z of the game tree
a collection H of very small sets such that if the protocol is started at z and R is a
random subset of the universe of density o(1), then one of the players X can force the
outcome of the protocol to land in R∪S with probability 1−o(1) for any S ∈ H. The
challenge is to keep the size of the sets in the collections H small as we induct up the
game tree (so that they remain of density o(1) when z is the root, which yields the
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desired lower bound). In particular, a node can have an arbitrary number of children,
and so we cannot afford to take unions of sets S occurring across all children. The
key idea that allows us to keep the sets small is the following: We consider two cases:
If we have a collection of sets that contains a large disjoint subcollection, then the
random set R will contain one of the sets with high probability, and so we do not need
to carry the set through the recursion. On the other hand, if the collection of sets has
no large disjoint subcollection, then we show how we can use this fact to construct a
successful strategy for the other player (based on how we inductively construct the
collections H).

We stress that our lower bound does not impose any additional constraint on
the protocol, such as the number of bits sent per round. Thus, we hope that our
techniques can help in establishing unrestricted lower bounds on round complexity
for other problems, in particular for the collective coin-flipping (and leader-election)
problem.

Results on multiplicative guarantees. A different measure of the quality of
random selection protocol is a multiplicative guarantee ρ, whereby we require that even
if one player cheats, the probability that the outcome lands in any set T of density
μ is at most ρ · μ. The goal, naturally, is for ρ to be as small as possible (ideally a
constant independent of n). Previous protocols, e.g., the one in [DGW94], have given
a multiplicative guarantee to one player, while the other has a statistical guarantee
(i.e., a bound on the output’s statistical difference from uniform if the other cheats).
Our observations and results on multiplicative guarantees are the following:

• If both parties have multiplicative guarantees ρA and ρB , then an argument
of [GGL98] implies ρA · ρB ≥ 2n, regardless of the number of rounds. On
the other hand, for any desired ρA, there is a simple two-round protocol with
multiplicative guarantees of ρA and 2n/ρA for the two players.

• If one party has a multiplicative guarantee ρ and the other has a statistical
guarantee ε, then ε ≥ 1/ρ − 1/2n. This explains inverse relationships in
existing protocols of [DGW94] (where ε = 1/poly(n) and ρ = poly(n)) and
[GSV98] (where ε = poly(n) · 2−k and ρ = 2k for any k).1

• There is a protocol with 2 log∗ n + O(1) rounds that provides a constant
statistical guarantee to one player and a 1+ δ multiplicative guarantee to the
other, for an arbitrarily small constant δ. Theorem 1.3 implies that this round
complexity is tight up to a constant factor, because a constant multiplicative
guarantee implies a constant statistical guarantee.

Notation for logarithms. As in other work [RZ01], for the purposes of this paper,

we define log
(k)
b n to be k base-b iterated logarithms of n, with 1 being a minimum

value:

log
(k)
b n =

{
1 : if log

(k−1)
b n < b,

logb

(
log

(k−1)
b n

)
: otherwise,

with log
(0)
b n = n. Moreover, for n ≥ 1, we define log∗b n to be the least natural number

k such that log
(k)
b n = 1. Throughout the paper, we take the base of the logarithms

to be b = 2 unless otherwise specified.

1Actually, the protocol of [GSV98] does not provide a multiplicative guarantee of 2k but rather
ensures that the probability that the output lands in any set T of density μ is at most 2k · μ + o(1).
Our lower bound also applies to this more general type of guarantee.
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2. Defining random selection protocols. Although we introduced the prob-
lem for a universe {0, 1}n, for the rest of the paper we assume we have an arbitrary
universe U . We can formally characterize a random selection protocol as follows.

Definition 2.1. A random selection protocol Π = (A,B, f) over a universe
U consists of a pair of programs A and B and a function f such that we have the
following:

• Both A (Alice) and B (Bob) alternately output strings (“messages”) mi of
arbitrary length that are a function of the conversation thus far and their
sequences of random coin tosses rA and rB, respectively. That is, m1 =
A(rA), m2 = B(rB ,m1), m3 = A(rA,m1m2), etc.

• The conversation between Alice and Bob is the transcript (A,B) = (m1,m2,
. . . ,mr), where r is a parameter defining the number of messages (also called
the number of “rounds” or “turns”) of the protocol.

• The output of the protocol is f((m1,m2, . . . ,mr)), which is some element
of U .

We are interested in the behavior of the protocol when one of these programs is
replaced with an arbitrary “cheating” program A∗ or B∗, which may send its messages
as an arbitrary function of the conversation and input length. If the cheating program
“aborts” or sends an irregular message (too long, ill-formed, etc.), the protocol can
assume it has sent the empty string.

Although the formulation we have provided assumes a protocol operates over a
single fixed universe, in general we will be interested in studying asymptotic behavior
of protocols as the universe size increases. Thus, we define a random selection protocol
ensemble to be a sequence (Π(1),Π(2), . . . ) where each Π(N) is a protocol over U =
{1, . . . , N}. From now on, we blur the distinction between random selection protocols
over a fixed universe and random selection protocol ensembles.

Two additional desirable properties of random selection protocols are the follow-
ing: (a) the output is uniformly distributed in U assuming honest players; (b) in a
protocol ensemble, honest strategies can be computed in time polynomial in the out-
put length, logN . Our protocols will have these properties, but our lower bounds will
apply even to protocols without them.

We now introduce a formalism that will be essential in the proofs in this paper.
Definition 2.2. Given a protocol Π over universe U , define the game tree T as

follows:
• A set of nodes V , each representing a partial transcript of messages, (m1, . . . ,

mi).
• A set of edges E, defined by (u, v) ∈ E if and only if u = (m1, . . . ,mi) and

(abusing notation) v = (u,mi+1), for some message mi+1. That is, u has v
as a child if v is a potential protocol state one message after state u. Note
that this makes T a tree, rooted at the empty transcript.

• For each node z, a distribution Dz over the children zi whereby A or B chooses
the next message (where the children are all nodes zi such that (z, zi) ∈ E).

• For every leaf z = (m1, . . . ,mr), a label equal to f((m1, . . . ,mr)), the output
of the protocol ending at node z.

One can verify that this formalism produces an equivalent specification to Defi-
nition 2.1 of a random selection protocol.

Just as any node of a tree can be viewed as the root of another tree, any node of
a protocol’s game tree induces its own random selection protocol starting from that
state. We simply fix the messages leading to that node and have the players choose
the remaining messages as in the original protocol. This observation is one of the



528 SAURABH SANGHVI AND SALIL VADHAN

main reasons that the abstraction of a random selection protocol as a tree will prove
useful.

Evaluating a random selection protocol. We evaluate random selection pro-
tocols with metrics measuring how “close” the output is to the uniform distribution
on U . The primary metric we use is the following.

Definition 2.3. The statistical difference from uniform of a distribution X over
universe U is defined to be

max
T

∣∣∣ Pr
x←X

[x ∈ T ] − μ(T )
∣∣∣ = max

T

(
Pr

x←X
[x ∈ T ] − μ(T )

)
,

where T ⊆ U and μ(T ) is the density of T in U , |T |/|U|.
It can be verified that this distance is in the interval [0, 1− 1/N ], where N is the

size of the universe U . A statistical difference of 0 implies that X is uniform, and
1 − 1/N implies X is concentrated on a single point. It is equal to one-half of the �1
distance between X and the uniform distribution, where we view each as a vector in
[0, 1]N .

We will want to avoid output distributions X whose statistical difference from
uniform is very close to 1. The following lemma demonstrates that this (undesirable)
property is equivalent to X landing in a small set with high probability.

Lemma 2.4. If X has statistical difference at least 1− ε from uniform, then there
exists a set T such that μ(T ) ≤ ε and Prx←X [x ∈ T ] ≥ 1 − ε. Conversely, if there
exists such a set T , then X has statistical difference at least 1 − 2ε from uniform.

Proof. If X has statistical difference at least 1− ε from uniform, then there exists
a set T such that Pr[x ∈ T ] − μ(T ) ≥ 1 − ε. Since Pr[x ∈ T ] ≤ 1, we can conclude
that μ(T ) ≤ ε, and since μ(T ) ≥ 0, we can conclude that Pr[x ∈ T ] ≥ 1 − ε. The
second statement follows directly from the definition of statistical difference.

Given these metrics, we can define the following.
Definition 2.5. Let Π = (A,B, f) be a random selection protocol. The statisti-

cal guarantee for Alice playing honest strategy A in Π, denoted εA, is the maximum
over all B∗ of the statistical difference between the distribution of f((A,B∗)) and the
uniform distribution over U . The guarantee for Bob is defined analogously.

Intuitively, the guarantee of a protocol for a player bounds the damage that the
opponent can effect on the distribution by deviating from the protocol. Unfortunately,
the terminology here is a bit counterintuitive—the lower the number, the better the
guarantee. We will try to avoid confusion by saying a guarantee is “at best x,” rather
than “at least x.”

Armed with this notion of a guarantee, we can state the following important
equivalence, following directly from Lemma 2.4.

Proposition 2.6. The Statistical Criterion is equivalent to both of the statistical
guarantees of a protocol being bounded away from 1.

Later on, we will prove the following proposition, which lower bounds the ability
of any protocol to provide strong statistical guarantees to both players simultaneously.

Proposition 2.7. In any random selection protocol Π over universe U achieving
statistical guarantees εA and εB, εA + εB ≥ 1 − 1/N , where N = |U|.

In addition to statistical guarantees, we also consider multiplicative guarantees,
which come from bounds on multiplicative difference.

Definition 2.8. The multiplicative ratio of a distribution X is

max
T

Pr
x←X

[x ∈ T ]/μ(T ),
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where T ranges over all nonempty subsets of U . Similarly to Definition 2.5, for a
random selection protocol Π = (A,B, f), we define the multiplicative guarantee ρA
(resp., ρB) for Alice (resp., Bob) by taking the maximum multiplicative ratio over all
cheating strategies B∗ (resp., A∗).

The multiplicative ratio is always a rational in [1, N ], where 1 implies the uniform
distribution, and N implies one element is chosen with probability 1. The multiplica-
tive ratio of a distribution is actually equal to the factor by which a single element’s
probability of being the protocol’s output can be increased from uniform. Formally,
we have the following lemma.

Lemma 2.9. The multiplicative ratio of a distribution X is equal to

max
s∈U

(
N · Pr

x←X
[x = s]

)
.

Later on, we will prove the following result from [GGL98].
Theorem 2.10 (see [GGL98]). For any protocol Π, we have ρA · ρB ≥ N .
When the universe is {0, 1}n (i.e., N = 2n), this theorem implies that one player

can always increase the probability that a single element is chosen by an exponential
factor—namely, 2n/2.

While both measures bound the deviation of a distribution from uniform, mul-
tiplicative ratio tends to focus on the concentration of probability into small sets
(indeed, by Lemma 2.9, sets of size 1), while statistical difference will prove more
useful when considering larger subsets (e.g., a constant fraction of the universe).

This said, we can prove some basic relationships between the two metrics that
will prove useful.

Lemma 2.11. Let X be an arbitrary distribution over universe U , with N = |U|.
Denote by ε the statistical difference of X from uniform and by ρ the multiplicative
difference from uniform. Then

1. ρ ≤ Nε + 1,
2. ε ≤ 1 − 1/ρ.

Part 2 of Lemma 2.11 implies that a distribution with a constant multiplicative
ratio will have a constant statistical difference, though the converse is not necessarily
true. Put another way, a strong multiplicative guarantee is harder to achieve than a
strong statistical guarantee.

Proof of Lemma 2.11. By Lemma 2.9, we have ρ = N · maxs∈U Prx←X [x = s].
But by the definition of statistical difference, we have for any x ∈ U , Prx←X [x = s] ≤
ε + 1/N , by setting T = {s}. Part 1 of the lemma follows.

For part 2, it suffices to show that for all T , Prx←X [x ∈ T ] − μ(T ) ≤ 1 − 1/ρ. If
μ(T ) ≥ 1/ρ, then this certainly holds. Otherwise, Prx←X [x ∈ T ] ≤ |T | · (ρ/N) =
μ(T )ρ, which implies that Prx←X [x ∈ T ] − μ(T ) ≤ Prx←X [x ∈ T ](1 − 1/ρ) ≤
1 − 1/ρ.

3. The Iterated Random Shift Protocol. In this section, we describe the
main protocol of this paper, the Iterated Random Shift Protocol, and prove its main
properties. That is, we show that for any constant δ, Iterated Random Shift is a
(2 log∗ N + O(1))-round protocol where the probability that the output falls in a set
of density μ is at most O(

√
μ + δ). It follows that the protocol satisfies the Statistical

Criterion given above.

3.1. The GGL Protocol. We begin by briefly describing the 2 logN -round
protocol satisfying the Statistical Criterion given by Goldreich, Goldwasser, and Linial
[GGL98], which we will use in the construction of our protocol.
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The GGL Protocol (idealized). Let U be a universe of size N , where N is a power
of 2.

1. Alice randomly divides U into two equal-sized halves and sends this partition
to Bob.

2. Bob randomly selects one of the halves, randomly divides it, and sends the
resulting partition to Alice.

3. This process continues until one element remains: this element is the output
of the protocol.

Actually, to obtain a protocol with computation time polylogarthmic in N , the
authors use pairwise independent partitions of the universe. They first prove that
this protocol achieves that, as long as one party plays honestly, the probability that
the output lands in any set T ⊆ U of density μ is at most p = O(μ1/4).

They go on to improve this result by using a slightly different protocol to achieve
Theorem 1.1 (Theorem 23 in [GGL98]), which improves the bound to p = O(

√
μ).

3.2. The Random Shift Protocol. The Iterated Random Shift Protocol is
inspired by the log∗ n-round protocols for leader election [RZ01, Fei99] and Laute-
mann’s proof that BPP is contained in the polynomial hierarchy [Lau83]. It is built
by iteration of the following two-round protocol, which we will call the Random Shift
Protocol.

The Random Shift Protocol. Given a universe U of size N and m ∈ N,
1. Alice uniformly randomly selects and sends a sequence of elements a1, . . . , am ∈

U ;
2. Bob uniformly randomly selects and sends a sequence of elements b1, . . . , bm ∈

U ;
3. output the sequence (ai + bj)1≤i,j≤m, where + is a group operation over U .

Note that the Random Shift Protocol is not, strictly speaking, a random selection
protocol over U : its output is a sequence of elements from the universe. In using it,
we will typically choose the parameter m so that the number of output elements,
m2, is much smaller than N (e.g., m = polylog(N)) and recursively use our random
selection protocol to select one of the m2 output elements. To show that this approach
yields a protocol with bounded statistical guarantees, we argue that even if one of the
players cheats, any subset T of the universe is unlikely to appear in much more than
a μ(T ) fraction of the outputs of the Random Shift Protocol. This is formalized by
the following lemma.

Lemma 3.1. Let T be an arbitrary subset of U . Let μ(T ) = |T |/N , and let
μ′(T ) denote the density of T in the sequence output by the Random Shift Protocol:
μ′(T ) = #{(i, j) : ai + bj ∈ T}/m2. Then as long as one player plays honestly (i.e.,
chooses elements uniformly at random) and m ≥ (1/2δ2) · log(N/ε), we have

Pr[μ′(T ) ≥ μ(T ) + δ] ≤ ε.

That is, when one player is honest, the sequence (ai + bj)ij will be sufficiently
random so that it is very unlikely that the density of T in the output sequence will
increase substantially.

Proof. Suppose Alice plays honestly and chooses her elements a1, . . . , am uni-
formly at random from U . The lemma certainly holds a fortiori for an honest Alice,
as a cheating Bob can see what elements Alice has selected.

For each element b ∈ U , define the random variables

X
(b)
i =

{
1 if (ai + b) ∈ T,
0 otherwise.
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Then define X(b) = (1/m)
∑m

i=1 X
(b)
i . Notice that E[X

(b)
i ] = μ(T ) and, for each b,

the random variables X
(b)
1 , . . . , X

(b)
m are mutually independent.

By a Chernoff bound, we may conclude the following for any δ:

Pr[X(b) ≥ μ(T ) + δ] ≤ e−2δ2m ≤ 2−2δ2m ≤ ε/N.

Using a union bound, we conclude that

Pr[∃b ∈ U such that X(b) ≥ μ(T ) + δ] ≤ N · ε/N = ε.

But if for all b we have X(b) < μ(T )+ δ, then no matter what elements b1, . . . , bm
Bob chooses, we have

μ′(T ) = (1/m)

m∑
j=1

X(bj) < μ(T ) + δ.

It follows that Pr[μ′(T ) ≥ μ(T ) + δ] ≤ ε as desired.
Remark 3.2. We note that the number of elements sent by Bob need only be

(1/2δ2) · log(1/ε) (i.e., the logN factor can be eliminated), since there is no need to
do a union bound as in the above proof when proving Bob’s guarantee. However, the
symmetry of the protocol as presented above has the advantage that it can actually be
implemented in one round in a model of simultaneous communication (where honest
parties can send messages at the same time, but a cheating party may wait to see
the other party’s message before sending its own message), as is typically used in
many-party protocols (e.g., leader election and collective coin flipping). This reduces
the round complexity of our Iterated Random Shift Protocol below to log∗ N + O(1)
in the simultaneous communication model. It is interesting to know whether our
lower bound of log∗ N − log∗ log∗ N −O(1) rounds (in section 4.2) can be extended to
the simultaneous communication model (without paying the factor of 2 in the trivial
reduction to our nonsimultaneous model), since we would then have bounds in that
model that are tight up to a factor of 1 + o(1).

3.3. The Iterated Random Shift Protocol. We now describe our Iterated
Random Shift Protocol satisfying Theorem 1.2, which consists of recursively applying
the Random Shift Protocol until the universe size is small (say, less than a fixed con-
stant), after which we apply the GGL Protocol from [GGL98] discussed in section 3.1.
Formally, we have the following.

The Iterated Random Shift Protocol. Given a universe U of size N and M ∈ N
being a sufficiently large “cutoff parameter” that is a power of 2, we have the following
three cases:

1. If N > M2, then letting m = max{M, 	log3 N
}, execute the following:
(a) Alice uniformly randomly selects and sends a sequence of elements a1, . . . ,

am ∈ U .
(b) Bob uniformly randomly selects and sends a sequence of elements b1, . . . ,

bm ∈ U .
(c) Recursively execute the protocol on universe U ′ = [m] × [m] to obtain

result (i, j) and output ai + bj .
2. If N = M2, run the GGL Protocol on U and output its result.
3. If N < M2, recursively use the protocol on universe U ′ = U × [M2] to obtain

result (x, y) and output x.
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First, we observe that, assuming M is chosen sufficiently large, the recursion will
always terminate with an application of case 2 (the GGL Protocol): When we run
case 1, we have |U ′| = m2 = max{M2, 	log3 N
} ≤ max{M2, N − 1} for sufficiently
large N , and so eventually the universe size will equal M2, provided M is large enough.
Case 3 will be executed at most once and is present only to avoid running the GGL
Protocol immediately if the universe size is not a power of 2.

Observe that the output of this protocol is uniform if both players are playing
honestly—by symmetry, all elements of the universe are equally likely to be selected.
We note also that, by inspection, the honest players’ strategies and the output of the
protocol can certainly be computed in polynomial time.

We now analyze the round complexity of the Iterated Random Shift Protocol.
Proposition 3.3. For all sufficiently large M and all N , the Iterated Ran-

dom Shift Protocol over a universe U of size N with parameter M takes 2 log∗ N +
O(logM) rounds. Moreover, the strategies of the players are computable in time
poly(logN, logM).

Proof. Each application of the Random Shift Protocol (except for the last) reduces
the universe size from N to 	log3 N
2 < log7 N for sufficiently large N and takes two
rounds. A lemma proven in [RZ01] states that if f(n) ≤ loga n for some constant a,
then f (log∗ n)(n) ≤ b for some constant b depending only on a, where f (k) represents
k repeated applications of f . This implies that if M is sufficiently large and the
initial universe size is N ≥ M2, the Random Shift Protocol is applied at most log∗ N
times. (If N < M2, then we apply the Random Shift Protocol at most log∗(NM2) =
log∗ N + O(logM) times.) By Theorem 1.1, the GGL Protocol on a universe of size
at most M2 takes at most 4 logM rounds.

As for the efficiency of the protocol, note that the players need only generate
in each round a number of random bits that is polylogarithmic in the size of the
universe.

3.4. The statistical guarantees of the Iterated Random Shift Protocol.
Theorem 3.4. If M ≥ 1/δ3, then for any set T ⊆ U , the probability that

the output of the Iterated Random Shift Protocol lands in T is O(
√
μ + δ), where

μ = μ(T ), assuming at least one player plays honestly.
Corollary 3.5. For a sufficiently large constant M , the Iterated Random Shift

Protocol satisfies the Statistical Criterion. Equivalently, there exists a constant ε > 0
such that the Iterated Random Shift Protocol achieves max{εA, εB} ≤ 1 − ε.

Observe that Theorem 3.4 is much stronger than what we need to show Corol-
lary 3.5. Using Theorem 3.4, we know that when one player is honest, for any “small”
set T , the probability that the output falls in T is close to zero. The Statistical
Criterion requires only that this probability is not arbitrarily close to 1.

Proof of Theorem 3.4. The key idea is that in the ith application of the Random
Shift Protocol, we can bound the increase in density of any particular set T by at most
some small δi (with high probability) and these δi’s can be chosen so that

∑
i δi ≤ δ.

The Iterated Random Shift Protocol concludes by applying the GGL Protocol to this
small universe, and then Theorem 1.1 gives us the result.

We first note that the modification of the protocol in case N < M2, selecting
from U × [M2] and taking the first component, does not affect the property claimed
in the theorem (because the density of T × [M2] in U × [M2] equals the density of T
in U). Thus we assume that N ≥ M2, and let N0, N1, . . . , Nk∗ be the universe sizes
in an execution of the Iterated Random Shift Protocol, where k∗ is the first value of
k such that Nk = M2. That is,
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N0 = N,

Nk = m2
k for mk = max{M, 	log3 Nk−1
}.

Note that for sufficiently large M , the sequence of Ni’s is strictly decreasing, and
there exists a finite k∗ such that Nk∗ = M2.

Given a subset T ⊆ U , we track how T evolves through an execution of the
Iterated Random Shift Protocol using the following notation for k = 0, . . . , k∗:

U0 = U , Uk = [mk] × [mk],

T0 = T, Tk = {(i, j) ∈ Uk : (ai + bj) ∈ Tk−1, 1 ≤ i, j ≤ mk} ,
μ(Tk) = |Tk|/|Uk|,

where in the definition of Tk, (ai) and (bj) are the sequences of elements of Uk−1

chosen by Alice and Bob in the kth application of the Random Shift Protocol, and +
is the group operation over Uk−1 used in the protocol.

Intuitively, Uk is the remaining universe (of size Nk) after k iterations, and Tk

represents the portion of the remaining universe such that choosing (i, j) ∈ Tk will
lead to an element of T being the output of the whole protocol. We call μ(Tk) the
“effective density” of T in the kth iteration.

Claim 3.6. There is a finite constant C independent of N and M such that we
have

Pr
[
μ(Tk∗) ≥ μ(T ) + C ·M−1/3

]
≤ C · 2−M1/3

,

provided at least one party plays honestly.
Proof. Recall that in the kth iteration, we are applying the Random Shift Protocol

with parameter m = mk = max{M, 	log3 Nk−1
}. Define εk = 2−m
1/3
k , and δk =

1/m
1/3
k . Notice that mk ≥ (1/2δ2

k) · log(Nk−1/εk).
Using Lemma 3.1 repeatedly in an induction and using a union bound, we have

that for any k,

Pr

[
μ(Tk) ≥ μ(T ) +

k∑
i=1

δi

]
≤

k∑
i=1

εi.

Since the Nk’s are decreasing exponentially fast, we have

k∗∑
i=0

δi = O(δk∗)

= O(1/m
1/3
k∗ )

= O(1/M1/3).

Similarly,

k∗∑
i=1

εi = O(2−m
1/3
k∗ ) = O(2−M1/3

).

This completes the proof.
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Applying Claim 3.6 and using Theorem 1.1, we deduce that the probability that
the output lands in T is at most

O

(√
μ(T ) + C ·M−1/3

)
+ C · 2−M1/3

= O

(√
μ(T ) + M−1/3

)
= O

(√
μ(T ) + δ

)
,

using M ≥ 1/δ3. Theorem 3.4 is proven.

Recalling Proposition 3.3, and taking M to be a sufficiently large constant, we
obtain a protocol with 2 log∗ N + O(1) rounds satisfying the Statistical Criterion,
thereby proving Theorem 1.2. More generally, we obtain a protocol of 2 log∗ N +
O(log(1/δ)) rounds such that the output lands in a sets of density μ with probability
at most O(

√
μ + δ). Note that we can take δ to be a slowly vanishing function of N

and still have O(log∗ N) rounds.

3.5. The multiplicative guarantees of the Iterated Random Shift Proto-
col. In this section, we discuss the multiplicative guarantees provided by the Iterated
Random Shift Protocol. Later, we will see how lower bounds require that one of the
players (in this case, Alice) receives a very poor multiplicative guarantee; however, we
will see that Bob receives a very strong guarantee. In this way, we can say something
about the ability of a protocol to provide a strong multiplicative guarantee to one
player, while providing a strong statistical guarantee to the other. Specifically, we
establish the following theorem.

Theorem 3.7. There exist constants ε < 1 and ρ such that the Iterated Random
Shift Protocol with the cutoff parameter M taken to be a sufficiently large constant
achieves guarantees ρB ≤ ρ and εA ≤ ε.

This is the first protocol achieving constant statistical and multiplicative guar-
antees that we know of, and later we will prove Theorem 1.3, which, together with
Lemma 2.11, implies that it has optimal round complexity (up to a factor of 2+o(1)).
(See Corollary 5.2.)

Given Corollary 3.5, to prove Theorem 3.7, it suffices to show the following.

Proposition 3.8. Let Π be a Iterated Random Shift Protocol defined with con-
stant cutoff parameter M . Then Π provides a constant multiplicative guarantee to
Bob: there exists constant ρ such that, as long as Bob plays honestly, the output
of the Iterated Random Shift Protocol will fall in a set T with probability at most
M2 · μ(T ), for any set T .

Proof of Proposition 3.8. Fix an arbitrary set T ⊆ U . We use the notation from
the proof of Theorem 1.2; in particular, Uk is the remaining universe after k iterations,
and Tk is the set of elements of Uk corresponding to elements of T . The following is
the key lemma.

Lemma 3.9. Assuming Bob plays honestly, E[μ(Tk)] = E[μ(Tk−1)] for all k =
1, . . . , k∗.

Proof. Consider the Random Shift Protocol. Let a1, . . . , am be given. Then if
b1, . . . , bm are chosen uniformly at random, it follows that for each i, j, the element
ai + bj is uniform over U (since + is a group operation), and thus Pr[ai + bj ∈ T ] =
μ(T ). By linearity of expectations, we can conclude that E[#(ai+bj) ∈ T ] = μ(T )·m2

(where m2 is the size of the new universe), and thus E[μ(T ′)] = μ(T ), where μ(T ′) is
the residual density of T in the resulting universe.

Applying this logic within the Iterated Random Shift Protocol, the lemma is
proven (since for given μ(Tk−1), we know E[μ(Tk)] = μ(Tk−1)).
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By induction, we then have that for all k, E[μ(Tk)] = μ(T ). In particular, this is
true for k = k∗. We can then derive

μ(T ) = E[μ(Tk∗)]

≥ (1/M2) · E[|Tk∗ |]
≥ (1/M2) · Pr[|Tk∗ | > 0].

Since if |Tk∗ | = 0, the protocol’s output cannot possibly fall in T , we conclude
that the probability the output falls in T is at most M2 · μ(T ). This proves the
proposition and thus Theorem 3.7.

As an aside, notice that by using Lemma 2.11, Proposition 3.8 allows us to con-
clude one half of Theorem 1.2: the Iterated Random Shift Protocol provides a constant
statistical guarantee to Bob.

We can conclude that the Iterated Random Shift Protocol has the following prop-
erties:

• It has only 2 log∗ N + O(1) rounds.
• It provides both Alice and Bob with constant statistical guarantees (equiva-

lently, it satisfies the Statistical Criterion).
• It provides Bob with a constant multiplicative guarantee.

Notice that in the above proof, we never used the multiplicative guarantee prop-
erties of the GGL Protocol—we simply relied on the initial recursions of Random
Shift to provide the strong guarantee to Bob.

In fact, by changing the protocol used when the universe size becomes of size M2

in the definition of the Iterated Random Shift Protocol, we can improve even further
the multiplicative guarantee given to Bob. The current protocol implies only that
Bob gets some constant multiplicative guarantee. Specifically, consider the following
simple two-round protocol.

The Random Set Protocol. Given universe U of size N and parameter K,

1. Alice selects a subset S of U of size K, uniformly at random, and sends S to
Bob;

2. Bob selects an element x ∈ S, uniformly at random;
3. the output is x.

It is straightforward to prove the following.

Proposition 3.10. For all positive integers N ≥ K, the Random Set Protocol
provides multiplicative guarantees ρA = K and ρB = N/K.

Thus, by using the Random Set Protocol on the universe of size M2 with param-
eter K = M2/(1 + γ) instead of GGL, Bob can achieve a multiplicative guarantee
1+γ, while still keeping Alice’s statistical guarantee constant (when γ is constant—if
the residual density of Bob’s target set T is smaller than 1 − 1/(1 + γ), there is a
nonzero probability that Alice will choose a set S disjoint from T ).

In the next section, we will prove that the Iterated Random Shift Protocol has
optimal round complexity, up to a factor of 2 + o(1), among protocols achieving the
Statistical Criterion.

4. Lower bounds on statistical guarantees.

4.1. Tradeoffs between statistical guarantees. As a warmup to our main
lower bound, in this section we present a tradeoff between the statistical guarantees
εA and εB of Alice and Bob, respectively.
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Proposition 4.1 (Proposition 2.7, restated). In any random selection protocol
Π over universe U achieving statistical guarantees εA and εB, εA + εB ≥ 1 − 1/N ,
where N = |U|.

Corollary 4.2. In any random selection protocol Π, max{εA, εB} ≥ 1/2 −
1/(2N).

Proof. Suppose we have a protocol (A,B, f), where εA + εB < 1 − 1/N . Then
we can partition the universe into two sets, S and U \ S, where |S| > εAN and
|U \ S| > εBN . Now, the argument follows logic similar to the impossibility result of
Saks [Sak89] for collective coin flipping when at least half of the players are dishonest
(where we think of outcomes in S as “heads” and U \ S as “tails”).

Specifically, we view the protocol as a game where Alice wins if the output lands
in S and Bob wins if the output lands in U \S. A well-known result in game theory is
Zermelo’s theorem: it implies that one of the players will have a winning strategy (one
that wins regardless of how the other player plays). The basic reasoning is backwards
induction on the game tree: every leaf node can be labeled a-win or b-win, depending
on whether the output is in S or U \S, respectively, and then we can inductively label
the remaining nodes depending on whether there exists a winning child for the current
player to select. If there is, the current player can choose that child and will thus have
a winning strategy from the current node. If there is not, then the opposing player
can certainly win from the current node, as he or she has a winning strategy from all
the children of the node.

This result implies one of the following:
• There exists strategy A∗ where Pr[f((A∗, B∗)) ∈ S] = 1, for any B∗. Taking

B∗ = B (Bob’s honest strategy), we have Pr[f((A∗, B)) ∈ S] − μ(S) =
1 − μ(S) > εB . This contradicts the guarantee of εB for Bob.

• There exists strategy B∗ where Pr[f((A∗, B∗)) ∈ U \S] = 1, for any A∗. This
similarly contradicts guarantee εA.

The main intuition behind the above proof is that, at every stage, either there
exists a move that is good for the current player or all moves are good for the other
player. In either case, the result is good for one of the two players. All that is needed
is a way to make sure that every node on the bottom level can be defined as “winning”
for someone and that this notion can propagate up the tree. As we will see, this type
of reasoning will figure strongly in the proof of our main lower bound. There, the
primary challenge will be to handle the cases when some nodes do not appear to be
“winning” for either player.

4.2. The main lower bound. In this section, we prove Theorem 1.3, giving a
lower bound on round complexity matching the Iterated Random Shift Protocol up
to a factor of 2 + o(1).

Theorem 4.3 (Theorem 1.3, strengthened). For any ε, μ > 0 and N ∈ N, any
random selection protocol on a universe of size N satisfying the Statistical Criterion
with parameters ε and μ requires at least log∗ N − log∗(max{log∗ N, 1/ε, 1/μ})−O(1)
rounds.

Corollary 4.4. For every constant δ > 0, there exists a constant C such that
if a protocol Π achieves εA, εB ≤ 1 − δ, then Π has at least log∗ N − log∗ log∗ N − C
rounds.

To prove this theorem, we must show that in a protocol with “few” rounds, one of
the two players will be able to find a set of small size that will contain the output with
high probability. We will refer to such a set (into which the cheating player is trying
to make the output fall) as a cheating set. The proof will rely to some degree on the
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probabilistic method: we will show the existence of such a cheating set by choosing it
randomly, at least in part. The distribution on sets we will use is the following.

Definition 4.5. For a universe U and a parameter μ ∈ [0, 1], we define “a
random subset of U of expected density μ” to be a set S ⊆ U obtained by including
each element x ∈ U in S independently with probability μ.

Notice that the expected density of sets S chosen in this way is μ (and with high
probability the density will not deviate significantly from μ).

We now can state the main helper theorem that will allow us to prove Theorem 4.3.
Theorem 4.6. There exists a function h such that for any μ, ε > 0, r ∈ N, and

protocol Π with r rounds, one of the following three cases holds:
1. (a-easy-win) When R is a randomly chosen set of expected density μ, and

Alice plays a strategy maximizing the probability that the output of the protocol
falls in R assuming that Bob plays honestly, she will succeed with probability
1 − ε, on average over all possible R. Formally,

E
R

[
max
A∗

{
Pr
B

[Π(A∗, B) ∈ R]
}]

≥ 1 − ε.

2. (b-easy-win)

E
R

[
max
B∗

{
Pr
A

[Π(A,B∗) ∈ R]
}]

≥ 1 − ε.

3. (difficult-win-win) When R is a randomly chosen set of expected density
μ, both Alice and Bob can force the output into R plus an additional h(r, ε, μ)
elements with high probability. That is, the following two conditions hold:
(a) ∃T , |T | ≤ h(r, ε, μ), such that

E
R

[
max
A∗

{
Pr
B

[Π(A∗, B) ∈ R ∪ T ]
}]

≥ 1 − ε.

(b) ∃S, |S| ≤ h(r, ε, μ), such that

E
R

[
max
B∗

{
Pr
A

[Π(A,B∗) ∈ R ∪ S]
}]

≥ 1 − ε.

Moreover, h does not grow too fast in r. Specifically, there is a constant C such that
h(r, ε, μ) ≤ μN for all r ≤ log∗ N − log∗(max{log∗ N, 1/ε, 1/μ}) − C.

Putting the three conditions together, this theorem says that either one player
can make the output fall into a random set of a certain expected density with high
probability (easy-win), or both players can make the output fall into a set consisting
of a randomly chosen set of a certain expected density and a certain bounded number
of (nonrandom) elements (difficult-win-win).

Proof of Theorem 4.3. Let μ and ε be given and set μ′ = μ/4, ε′ = ε/4. By Theo-
rem 4.6, we know that one of the players can force the output into a set R∪X, where
|X| = h(r, ε′, μ′), with probability 1 − ε′ in expectation over selecting R of expected
density μ′, for any protocol using r rounds. Suppose, without loss of generality, that
the cheating player is Alice, playing with strategy A∗. Then we have

E
R

[
max
A∗

{
Pr
B

[Π(A∗, B) ∈ R ∪X]
}]

≥ 1 − ε′,

where R is a random set of expected density μ′. By a Chernoff bound, we have that

Pr
R

[μ(R) ≥ 2μ′] ≤ e−2(μ′)2N = e−μ2N/8 ≤ ε′,
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where we may assume the last inequality holds because otherwise

log∗ N − log∗(max{log∗ N, 1/ε, 1/μ}) − C ≤ 0

for a constant C and the lower bound to be proven is trivial. But then it follows that

E
R

[
max
A∗

{
Pr
B

[Π(A∗, B) ∈ R ∪X]
}
· I(μ(R) < 2μ′)

]
≥ 1 − 2ε′,

where I(μ(R) < 2μ′) is the indicator random variable for the event μ(R) < 2μ′. By
averaging, we can find a particular set R∗, μ(R∗) < 2μ′, such that

max
A∗

{
Pr
B

[Π(A∗, B) ∈ R∗ ∪X]
}
≥ 1 − 2ε′ > 1 − ε.

Assuming for contradiction that

r ≤ log∗ N − log∗(max{log∗ N, 1/ε′, 1/μ′}) − C

= log∗ N − log∗(max{log∗ N, 1/ε, 1/μ}) −O(1),

we have h(r, ε′, μ′)/N < μ′N , and so |R∗ ∪X| ≤ 3μ′N < μN , violating the Statistical
Criterion.

4.2.1. Proof outline. In this section, we give an overview of the proof of Theo-
rem 4.6. A detailed implementation is contained in section 4.2.2. A pictorial depiction
of the proof for protocols with up to three rounds can be found in [San05].

Proving Theorem 4.6 will require an intricate analysis of the game tree using
backwards induction. Like the proof of Proposition 4.1, we will show how to “label”
the nodes of the game tree, where each label corresponds to a power of a player to
force a particular outcome.

The labels. We will use three labels, corresponding precisely to the three cases of
a protocol in Theorem 4.6. Specifically, the labels for a node on level k of the game
tree will correspond to the following (where the leaves are at level 0):

• a-easy-win: Alice could from that point choose a cheating set of small (say,
constant) density at random and “win”—that is, make the output fall in that
set with high probability.

• b-easy-win: Bob could choose a cheating set at random and win.
• difficult-win-win: Neither player can win easily by choosing a totally ran-

dom set, but both can win by choosing a set partly at random but also in-
cluding a small (e.g., constant or very slowly growing) number of nonrandom
elements (what we call a “helper set”).

A node z labeled as difficult-win-win will have two collections of sets associated
with it: A-Hz and B-Hz. If the node is on level k of the game tree and it is Alice’s
turn to act, then A-Hz consists of sets of size sk−1 and B-Hz consists of sets of size
sk, where s1, . . . , sr will be an ascending sequence of appropriately defined constants
(where r is the number of rounds of the protocol).2 Each set H ∈ A-Hz is a set Alice
can use as a “helper”—after choosing a cheating set at random and then adding the
helper set, Alice can win from the given node with high probability. Similarly every
set in B-Hz can be used by Bob as a “helper.”

2In the actual proof, they will be very slowly growing functions of N , but for this outline one
may think of them as constants.
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Our main challenge is to show that every node can be given a label as above.
Once we do that, Theorem 4.6 and thus Theorem 4.3 would follow readily. As a start,
notice that the leaves of the tree (the base case of our induction) can certainly be
labeled difficult-win-win, simply by setting A-Hz = B-Hz = {{x}}, where x is
the output of the protocol at leaf z.

Piths. Before demonstrating how the internal nodes will be labeled, we define the
following key concept.

Definition 4.7. Given a collection H of nonempty subsets of a universe U , the
s-pith of H is the collection of all sets S ⊆ U , |S| ≤ s, that intersect every H ∈ H
(that is, S ∩H �= ∅). We call each such S in the pith an intersect-set of H.

Three combinatorial facts about piths and collections of disjoint sets will prove
useful.

Fact 4.8. Suppose H consists of nonempty sets of size at most s. Then for any
s′, either H has a disjoint subcollection of size at least s′/s or it has a nonempty
s′-pith.

Proof. Take a maximal disjoint subcollection P of H. If it is not of size at least
s′/s, then the union of all sets in P will be a set of size at most s′ intersecting every
set in H (because P is maximal).

Fact 4.9. Suppose H consists of m disjoint sets of size at most s and m ≥
(1/μ)s · ln(1/ε). Then the probability that a random set R of expected density μ will
encompass a set in H (i.e., there exists Hi ∈ H with Hi ⊆ R) is at least 1 − ε.

Proof. The probability of failure is at most (1 − μs)m ≤ e−μsm. The result
follows.

Putting these two facts together, note that either a set in H is encompassed
by a random set with probability 1 − ε, or H has a nonempty s′-pith, as long as
s′ ≥ (1/μ)s · ln(1/ε) · s. Finally, we have the third fact.

Fact 4.10. Suppose H consists of sets of size at most s, and a set S intersects
every set in the s′-pith of H. Then either S encompasses a set in H or H′ = {H\S :
H ∈ H} has a disjoint subcollection of size at least s′/s.

Proof. Say S does not encompass a set in H. Then every set in H′ is nonempty.
If H′ does not have a disjoint subcollection of size s′/s, then by Fact 4.8 H′ has a
nonempty s′-pith. But if a set T is in the s′-pith of H′, then T\S is in the s′-pith of
H, contradicting the definition of S.

This strange last fact is actually an important key to the whole proof.

Labeling the nodes. We now can describe how we will inductively label a node z
on level k of the game tree, assuming it is Alice’s turn at that node. First, we define
the constants sk to obey sk ≥ (1/μ)sk−1 · ln(1/ε) · sk−1. Next, we assign labels as
follows:

• If all children of z are labeled b-easy-win, then certainly we can give z the
label b-easy-win.

• If there exists a child of z that is labeled a-easy-win, then we can give z the
label a-easy-win (Alice would just choose that child on her turn).

If neither of these cases occur, then we know that all of the children of z are either
labeled difficult-win-win or b-easy-win (with at least one labeled difficult-win-

win). Let X be the union of all the collections A-Hzi , over all children zi labeled
difficult-win-win. X contains the helper sets that we know Alice can use to win
from any such child. There are two cases:

• Suppose X has a large disjoint subcollection (specifically, of size at least
sk/sk−1). Then label z as a-easy-win.
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• Else, label z as difficult-win-win, letting A-Hz equal X and letting B-Hz

equal the sk-pith of X .
The correctness of the first bullet follows quickly from Fact 4.9—with high proba-

bility a random cheating set R chosen by Alice will encompass one of the sets X ∈ X ,
and Alice can then choose the child zi associated with X (i.e., X ∈ A-Hzi) and force
the output into X ∪R = R with high probability.

As for the second bullet, Alice certainly has a difficult win (that is, she can win
with any helper set X ∈ X ) because she can choose the child associated with X.

The crux of the proof is showing that Bob has a difficult win from this point,
using any helper set S from the pith of X . Note first that by Fact 4.8 and the fact
that we did not fall into the first bullet, we know this pith is nonempty.

It suffices to show that no matter what child Alice chooses, Bob can win using
S—that is, force the output into R ∪ S with high probability, where R is a random
set. Certainly, if she chooses a b-easy-win node, Bob can win, even without S.
So suppose she chooses a child node zi labeled difficult-win-win. Inductively, we
know Bob could win from this node zi using any of the helper sets in B-Hzi and that
the pith of B-Hzi is A-Hzi ⊆ X . Since S is in the pith of X , we know in particular
that it intersects every set in A-Hzi .

Applying Fact 4.10, we then have two cases, both of which ensure Bob has some
T ∈ B-Hzi encompassed by his cheating set R ∪ S, allowing him to win:

• S encompasses a set T in B-Hzi .
• T ′ = {T\S : T ∈ B-Hzi} has a large disjoint subcollection (i.e., of size
sk−1/sk−2), in which case the random set will encompass one of these sets
T\S with high probability (by Fact 4.9), and thus T ⊆ R ∪ S.

This completes the induction and the proof sketch. The bulk of the ideas in the
main proof were demonstrated above. What remains to flesh out is proper book-
keeping of parameters, namely the randomly chosen set and the sizes of the helper
sets A-Hz and B-Hz, to derive the precise round complexity bound. Jumping ahead,
notice that the induction will stop at log∗ N rounds because the sizes of these helper
sets grow as tower in the number of rounds—each sk+1 is exponential in sk. Thus, if
there are more than log∗ N rounds, the helper sets could contain all of the elements
of the universe, rendering them useless for violating the Statistical Criterion.

4.2.2. Proof of Theorem 4.6. We proceed by backwards induction on the
game tree of the protocol.

Definition 4.11. Given a protocol Π with r rounds and constants ε and μ, let
h(r, ε, μ) = g(r, r, ε, μ), where

g(0, r, ε, μ) = 1,

g(k, r, ε, μ) = ln(r/ε) · (r/μ)g(k−1,r,ε,μ) · g(k − 1, r, ε, μ).

For readability, we write sk for g(k, r, ε, μ), as r, ε, and μ will remain fixed through-
out the proof. So

s0 = 1,

sk = ln(r/ε) · (r/μ)sk−1 · sk−1.

Now, fix a protocol Π with r rounds, and consider the game tree T it induces (see
Definition 2.2).

We inductively label the nodes of the tree as either a-easy-win, b-easy-win, or
difficult-win-win. For each of the difficult-win-win nodes, we will also associate
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two collections of sets (which are subsets of U), A-Hz and B-Hz, as defined below. The
sets in these collections will correspond to the sets S and T of case 3 of Theorem 4.6.
As we will see, the labels have been chosen to indicate the power of one or both of
the players to manipulate the output effectively from that point in the tree.

Definition 4.12. Fix a protocol Π. Let z be a node on its game tree at level k
(where leaves are at level 0). Assume it is Alice’s turn at this node. (If it is Bob’s
turn, swap “A”/“ a” with “B”/“ b” everywhere in the description below.)

If k = 0 (i.e., z is a leaf of the tree), then label z as difficult-win-win. More-
over, let B-Hz = A-Hz = {{x}}, where x is the output of the protocol ending at
node z.

If k > 0, consider the children z1, . . . , z� of z. Use the following rules to label the
nodes:

1. If there exists 1 ≤ i ≤ � such that zi is in case a-easy-win, then label z as
a-easy-win.

2. If, for all 1 ≤ i ≤ �, zi is in case b-easy-win, then label z as b-easy-win.
3. Otherwise, denote

⋃
zi
A-Hzi = {S : zi is difficult-win-win and S ∈

A-Hzi}. That is,
⋃

zi
A-Hzi is the union of the collections of sets associated

with all children of z that are labeled difficult-win-win. Now, let P denote
the largest disjoint subcollection of

⋃
zi
A-Hzi (break ties arbitrarily), and let

sk, sk−1 be defined as in Definition 4.11.
There are two cases:
(a) |P| ≥ sk/sk−1 ⇒ label z as a-easy-win.
(b) |P| < sk/sk−1 ⇒ label z as difficult-win-win, and define A-Hz to be⋃

zi
A-Hzi , and B-Hz to be the sk-pith of A-Hz (i.e., all sets of size at

most sk intersecting all sets in A-Hz).

Intuitively, this structure defines the power of the players at various stages of
the protocol. The a-easy-win, b-easy-win, and difficult-win-win nodes refer to
cases 1, 2, and 3 of Theorem 4.6, respectively. Moreover, the sets in the collections
B-Hz and A-Hz will correspond to S and T in case 3 of Theorem 4.6.

We will codify this power in Lemma 4.14. Before stating it, it will help to define
the following.

Definition 4.13. Let Π = (A,B, f) be a protocol, and let T be its equivalent
game tree (see Definition 2.2). For any node z = (m1, . . . ,mr−k) on level k of the
tree T , let Πz = (Az, Bz, fz) be a protocol of k rounds, where fz((m

′
1, . . . ,m

′
k)) =

f((m1, . . . ,mr−k,m
′
1, . . . ,m

′
k)), and where Az and Bz denote the strategies of A and

B conditioned on history z (i.e., we choose their coin tosses rA and rB uniformly
from those consistent with the history).

Intuitively, Πz is the protocol induced by starting the protocol at node z (i.e.,
assuming all messages leading to z are fixed in advance).

Lemma 4.14. Fix ε and μ, and suppose the protocol has r turns. Let z be some
node on the tree at level k, at which it is Alice’s turn to play. Throughout, let R be a
random subset of U of expected density kμ/r.

1. If z is in case a-easy-win, then

E
R

[
max
A∗

{
Pr
B

[Πz(A
∗, B) ∈ R]

}]
≥ 1 − kε/r,

where Πz is the protocol induced by beginning at node z, as defined in Defi-
nition 4.13. (We say Alice can “win” from node z.)
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2. If z is in case b-easy-win, then, similarly,

E
R

[
max
B∗

{
Pr
A

[Πz(A,B∗) ∈ R]
}]

≥ 1 − kε/r.

(We say Bob can “win” from node z.)
3. If z is in case difficult-win-win, then

(a) B-Hz and A-Hz are nonempty;
(b) for any T ∈ A-Hz,

E
R

[
max
A∗

{
Pr
B

[Πz(A
∗, B) ∈ R ∪ T ]

}]
≥ 1 − kε/r;

(c) for any S ∈ B-Hz,

E
R

[
max
B∗

{
Pr
A

[Πz(A,B∗) ∈ R ∪ S]
}]

≥ 1 − kε/r.

(We say both Alice and Bob “win” from node z, with “helper sets” T and S,
respectively.)

Moreover, the same (with “Alice”/“A”/“ a” exchanged for “Bob”/“B”/“ b,” re-
spectively) holds for all nodes for which it is Bob’s turn.

Lemma 4.14 more precisely asserts Theorem 4.6 at each level of the game tree.
To use this lemma to prove Theorem 4.6, we simply need to apply it with k = r and
z being the root of the game tree. Certainly, if zr is in case 1 or 2 of Lemma 4.14, it
is in case 1 or 2 of Theorem 4.6, respectively. If zr is in case 3 of Lemma 4.14, then
subcases 3(b) and 3(c) directly prove subcases 3(a) and 3(b), respectively, where the
sets in A-Hz and B-Hz of 3(a) and 3(b) correspond precisely to the sets T and S we
need in those subcases of the theorem. The existence of such sets is guaranteed by
subcase 3(a) of the lemma.

Thus, after proving Lemma 4.14, all that will remain will be to bound the function
h(r, ε, μ) to prove Theorem 4.6, which we will do in Lemma 4.20.

We prove Lemma 4.14 by induction on the levels of the tree.

Base case: k = 0. So z is a leaf node, and the output of Πz is just determin-
istically fixed at, say, x. According to Definition 4.12, A-Hz = B-Hz = {{x}}, and
we are in case difficult-win-win. Since the density of R is chosen to be zero (it is
kμ/r), R = ∅, and so we need to show that

max
B∗

{
Pr
A

[Πz(A,B∗) ∈ {x}]
}

= 1,

and similarly with A and B swapped. This, of course, holds because the output is
fixed at x.

Inductive step. Suppose Lemma 4.14 holds for nodes on all levels up to level
k − 1. We will show that it holds for an arbitrary node z on level k. Assume it is
Alice’s turn at z. There are several possibilities.

Claim 4.15. If z is in case b-easy-win, then

E
R

[
max
B∗

{
Pr
A

[Πz(A,B∗) ∈ R]
}]

≥ 1 − kε/r,

where R is a random subset of expected density kμ/r.
Proof. We will use Definition 4.12 and the inductive hypothesis to show that

every child node zi is “good” for Bob—that is, on average over R, B∗ can make the
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outcome land in R with probability at least 1 − (k − 1)ε/r. Then certainly the same
holds for node z, since Alice cannot help but move to such a node.

Formally, we first notice that it suffices to show

E
R′

[
max
B∗

{
Pr
A

[Πz(A,B∗) ∈ R′]
}]

≥ 1 − (k − 1)ε/r,

where R′ is a random subset of expected density μ′ = (k − 1)μ/r, since a random
set R of expected density kμ/r “contains” such an R′. (Formally, R can be ob-
tained by first picking R′ and then adding each element x /∈ R′ to R with probability
(μ/r)/(1 − (k − 1)μ/r).)

Now, for z to be labeled b-easy-win, we must have used rule 2 of Definition 4.12.
Thus, all of the children of z are in case b-easy-win. By the inductive hypothesis,

(4.1) E
R′

[
max
B∗

{
Pr
A

[Πzi(A,B∗) ∈ R′]
}]

≥ 1 − (k − 1)ε/r

for each child zi of z. Since at node z it is Alice’s turn, we have

E
R′

[
max
B∗

{
Pr
A

[Πz(A,B∗) ∈ R′]
}]

= E
R′, zi←Z

[
max
B∗

{
Pr
A

[Πzi(A,B∗) ∈ R′]
}]

≥ 1 − (k − 1)ε/r,

where Z is the distribution according to which Alice chooses child zi of z when playing
honestly, and the last inequality is by (4.1).

Claim 4.16. If z is in case a-easy-win, then

E
R

[
max
A∗

{
Pr
B

[Πz (A∗, B) ∈ R]
}]

≥ 1 − kε/r,

where R is a random subset of expected density kμ/r.
Proof. By Definition 4.12, z could have been labeled a-easy-win by either rule 1

or rule 3(a).
In rule 1, z has a child zj that is in case a-easy-win. Since it is Alice’s turn at

node z, if she can choose a node zj “good” for her, then node z will be “good” for
her too. Formally, by the inductive hypothesis applied to zj , and again noting that
a random set of expected density kμ/r “contains” a random set of expected density
(k − 1)μ/r, we have that

E
R

[
max
A∗

{
Pr
B

[
Πzj (A

∗, B) ∈ R
]}]

≥ 1 − (k − 1)ε/r.

But maxA∗{PrB [Πz(A
∗, B) ∈ R]} is at least maxA∗{PrB [Πzj (A

∗, B) ∈ R]}, since
node z is Alice’s turn and she can always choose zj . Taking expectations of both
sides, the claim is proven for this case.

The alternative possibility is that z is in a-easy-win because of rule 3(a). So
among the sets

⋃
zi
A-Hzi (for all children zi in difficult-win-win), we can find a

disjoint subcollection P, where |P| ≥ sk/sk−1.
Intuitively, since no a-easy-win nodes are available among the children of z,

Alice cannot simply choose such a branch as above. However, we know that from
the difficult-win-win nodes, Alice can ensure the output lands in S ∪ R for any
S ∈ A-Hzi , with high probability over the choice of a random set R. But this is true
for many possible sets S—not only at a given child but also across all the potential
children that are in case difficult-win-win (i.e., any S ∈

⋃
zi
A-Hzi). Thus, we can
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expect that with sufficiently many disjoint sets in
⋃

zi
A-Hzi , the random set R will

encompass some S ∈
⋃

zi
A-Hzi with high probability. The inductive hypothesis will

then give the desired result.
Formally, since P ⊆

⋃
zi
A-Hzi consists of at least sk/sk−1 = ln(r/ε)(r/μ)sk−1

(disjoint) sets of size at most sk−1, Fact 4.9 tells us that

(4.2) E
R1

[
∃S ∈

⋃
zi

A-Hzi , S ⊆ R1

]
≥ 1 − ε/r,

where R1 is a random subset of expected density μ/r.
For any S ∈

⋃
zi
A-Hzi , we can then assert

(4.3) E
R2

[
max
A∗

{
Pr
B

[Πz(A
∗, B) ∈ R2 ∪ S]

}]
≥ 1 − (k − 1)ε/r,

where R2 is a random subset of expected density (k − 1)μ/r. This comes from ap-
plying the inductive hypothesis to the child zj such that S ∈ A-Hzj and noting that
maxA∗{PrB [Πz(A

∗, B) ∈ R2 ∪ S]} is at least maxA∗{PrB [Πzj (A
∗, B) ∈ R2 ∪ S]}

(because at node z it is Alice’s turn).
Now, since a random subset R of expected density kμ/r “contains” R1∪R2, where

R1 and R2 are independent random subsets of expected densities μ/r and (k−1)μ/r,
respectively,3 we can combine (4.2) and (4.3) to derive

E
R

[
max
A∗

{
Pr
B

[Πz(A
∗, B) ∈ R]

}]
≥ (1 − ε/r) · (1 − (k − 1)ε/r)

≥ 1 − kε/r.

The claim follows.
The final possibility is that z is in case difficult-win-win. Since z is not a leaf,

this can come about only by rule 3(b) from Definition 4.12. That is, no children of
z are in case a-easy-win, and at least some are in difficult-win-win. Moreover,
among

⋃
zi
A-Hzi = A-Hz the largest (maximal) disjoint subcollection P has fewer

than sk/sk−1 elements.
We must prove the following: B-Hz is nonempty, A-Hz is nonempty, Alice can

win from this node with a helper set from A-Hz, and Bob can win from this node
with a helper set from B-Hz (see Lemma 4.14).

Claim 4.17. B-Hz �= ∅ and A-Hz �= ∅.
Proof. We have already established that z has children in case difficult-win-

win (this follows from Definition 4.12 and from our assumption that z ∈ difficult-

win-win). By the inductive hypothesis on such a child zi, A-Hzi , and thus A-Hz

is nonempty. Since the largest disjoint subcollection P of A-Hz has size less than
sk/sk−1 and since all S ∈ P have size at most sk−1, Fact 4.8 tells us that the sk-pith
of A-Hz—namely, B-Hz—is nonempty.

Claim 4.18. For any S ∈ A-Hz, ER[maxA∗{PrB [Πz(A
∗, B) ∈ S∪R]}] ≥ 1−kε/r,

where R is a random subset of expected density kμ/r.
The proof of this claim is identical to the proof of (4.3) in the proof of Claim 4.16,

noting also that a random set R of expected density kμ/r contains a random set R2

of expected density (k − 1)μ/r.

3Formally, R can be obtained by first picking R1 and R2 and adding each element x /∈ R1 ∪ R2

to R1 ∪R2 with probability (μ/r) · ((k − 1)μ/r)/[(1 − μ/r) · (1 − (k − 1)μ)/r].
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The final claim required to prove Lemma 4.14 is the following.
Claim 4.19. For any S ∈ B-Hz, ER[maxB∗{PrA[Πz(A,B∗) ∈ S ∪ R]}] ≥ 1 −

kε/r, where R is a random subset of expected density kμ/r.
This claim is the heart of the entire proof. All we know now is that there is at

least one difficult-win-win node that is a child of the current node z and that
among the corresponding sets in A-Hz, the largest disjoint subcollection P ⊆ A-Hz

contains fewer than sk/sk−1 sets. That P is so small is a limitation on the power of
Alice, who would like there to be enough such disjoint sets in P that she could choose
randomly and encompass a set in P with high probability. The key to this proof is
converting this limitation on Alice into an ability for Bob to cheat.

Proof. Fix a set S ∈ B-Hz, which recall is the sk-pith of A-Hz. Since an honest
Alice will choose a child zi at random, it suffices to prove the following for each
child zi:

(4.4) E
R

[
max
B∗

{
Pr
A

[Πzi(A,B∗) ∈ S ∪R]
}]

≥ 1 − kε/r,

where R is a random subset of expected density kμ/r. So fix an arbitrary child
zi. Looking to Definition 4.12, the only way we could have defined z to be in
case difficult-win-win is if all children zi are in either case b-easy-win or case
difficult-win-win. So zi is in one of these two cases.

If zi is in case b-easy-win, then we are done by the inductive hypothesis. So
suppose zi is in case difficult-win-win. Applying the inductive hypothesis to zi,
we know that B-Hzi is nonempty. Moreover, for any T ∈ B-Hzi ,

(4.5) E
R1

[
max
B∗

{
Pr
A

[Πzi(A,B∗) ∈ T ∪R1]
}]

≥ 1 − (k − 1)ε/r,

where R1 is a random subset of expected density (k − 1)μ/r.
We have that S is in the sk-pith of A-Hz, which means in particular that it

intersects every set in A-Hzi , which in turn is the sk−1-pith of B-Hzi (whose sets are
of size sk−2, when k > 1). By Fact 4.10, either there exists a set T in B-Hzi such
that T ⊆ S (in which case (4.4) follows immediately from (4.5)), or else T = {T\S :
T ∈ B-Hzi} has a disjoint subcollection of size sk−1/sk−2. (When k = 1, B-Hzi

contains only the set T = {x}, where x is the output of the protocol at leaf zi, and we
also have x ∈ S because S intersects every set in A-Hzi = {{x}}. So we have T ⊆ S,
and (4.4) follows immediately from (4.5).)

Informally, there are not many disjoint sets in B-Hzi—if there were, we would
have labeled zi as a case b-easy-win node for Bob. That said, by intersecting every
(small) set that intersected every set in B-Hzi , S captures the lack of disjointness of
B-Hzi in the first place. Once the elements of S are removed from consideration, the
result has a large number of disjoint sets.

Returning to the proof of Claim 4.19, by Fact 4.9 we may conclude the following:

Pr
R2

[∃T ′ ∈ T , T ′ ⊆ R2] ≥ 1 − ε/r,

where R2 is a random subset of expected density μ/r. By the definition of T , this in
turn implies

Pr
R2

[∃T ∈ B-Hzi , T ⊆ S ∪R2] ≥ 1 − ε/r.

Using (4.5) and choosing R through independent choices of R1 and R2 as in the proof
of Claim 4.16, we are done.
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Taking together Claims 4.15, 4.16, 4.17, 4.18, and 4.19, the proof of Lemma 4.14
is complete.

To conclude Theorem 4.6, it remains to prove that the function h defining the
set sizes sk does not grow too fast in the number of rounds. Intuitively, the reason
the lower bound holds only for protocols with fewer than log∗ N − log∗ log∗ N −O(1)
rounds is that these “helper sets” must have much fewer than N elements to be useful,
but this function h grows as a tower—where the height (and base) of the tower grow
with the number of rounds. Our challenge is to lower bound the number of rounds
that keep this tower of size o(N).

Lemma 4.20. Recall the definition h(r, ε, μ) = g(r, r, ε, μ), where we define

g(0, r, ε, μ) = 1,

g(k, r, ε, μ) = ln(r/ε) · (r/μ)g(k−1,r,ε,μ) · g(k − 1, r, ε, μ).

There exists a constant C such that when r < log∗ N−log∗(max{log∗ N, 1/ε, 1/μ})−C,
we have h(r, ε, μ) ≤ μN .

Proof. First, bound r by log∗ N . Again, for shorthand we will write sk for
g(k, r, ε, μ). Thus, we have that

sk = ln(r/ε) · (r/μ)sk−1 · sk−1.

Notice that this is no more than (r ln(r/ε)/μ)sk−1 . (xy ≤ xy if x ≥ 2 and y ≥ 1.)
Letting d = (r ln(r/ε)/μ), we can then bound sk by tk, where tk is defined by t0 = 1
and tk = dtk−1 .

This means that we can set k = log∗d N−1 (recall that by our definition, log∗b N is
always an integer, for any b or N) and still have sk ≤ tk ≤ logN ≤ μN , where we may
assume that the last inequality holds, because otherwise log∗ N − log∗(1/μ) − C < 0
and the lemma is vacuously true. It remains only to relate this to a base 2 logarithm.

Claim 4.21. If d ≥ 4, then log∗d N ≥ log∗ N − log∗(2 log d).

Proof. Recall that log(k) N is k iterated logarithms of N . We claim the following.

Claim 4.22. For k ≤ log∗d N , d ≥ 4, log(k) N ≤ (2 log d) log
(k)
d N .

Proof. The base case k = 0 is clear. Assume, then, that

log(k−1) N ≤ (2 log d) log
(k−1)
d N.

Applying log to both sides, we have that

log(k) N ≤ log(2 log d) + log(log
(k−1)
d N)

≤ log(2 log d) + (log
(k)
d N)(log d)

≤ (2 log d)(log
(k)
d N),

where the last line follows because for d ≥ 4, d ≥ 2 log d and for k ≤ log∗d N ,

log
(k)
d N ≥ 1.

Plugging in k = log∗d N , then we have that log(log∗
d N) N ≤ 2 log d. Applying

log∗(2 log d) logarithms to both sides, we have log(log∗
d N+log∗(2 log d)) N ≤ 1. Since

log∗ N is defined to be the least k such that log(k) N ≤ 1, it follows that log∗ N ≤
log∗d N + log∗(2 log d).
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Thus we have that we can set k to be at least log∗d N − 1 and sk will be no more
than logN . Moreover,

log∗d N − 1 ≥ log∗ N − log∗(2 log d) − 1

= log∗ N − log∗(2 log((r ln(r/ε))/μ)) − 1

≥ log∗ N − log∗(max{log∗ N, 1/ε, 1/μ}) −O(1).

By applying Lemma 4.14 to the root of the tree and using Lemma 4.20, we prove
Theorem 4.6 and thus Theorem 4.3.

5. Multiplicative lower bounds. In this section, we concentrate on lower
bounds regarding multiplicative guarantees—and indeed show that no protocol ex-
ists that provides constant multiplicative guarantees to both players. This is a very
strong limitation on the ability of protocols to limit a cheating player’s power in this
regard.

An initial lower bound. Proposition 4.1 can be adapted to provide a quick lower
bound for multiplicative guarantees.

Proposition 5.1. In any random selection protocol, (ρA−1)/ρA+(ρB−1)/ρB ≥
1−1/N . Moreover, εA+(ρB−1)/ρB ≥ 1−1/N (or equivalently, εA ≥ 1/ρB−1/N).

Proof. The results follow immediately from Proposition 4.1 and from the second
part of Lemma 2.11.

This lower bound for multiplicative guarantees is not very strong—ρ is a number
from 1 to N , but this lower bound is satisfied (for instance) as long as both ρA and ρB
are at least 2. In Theorem 5.3, we will prove that ρAρB ≥ N , which is a substantially
stronger result.

On the other hand, when looking at one player getting a statistical guarantee
and the other player getting a multiplicative guarantee, Proposition 5.1 does provide
some useful information. Specifically, it tells us that (minus a small 1/N term) we can
always expect the statistical guarantee for one player to be worse than the reciprocal
of the multiplicative guarantee to the other player. This explains inverse relationships
in existing protocols of [DGW94] (where ε = 1/poly(n) and ρ = poly(n)) and [GSV98]
(where ε = poly(n) ·2−k and ρ = 2k for any k).4 Notice that these earlier works focus
on the case of nonconstant guarantees (ε → 0 and ρ → ∞). Earlier, we showed
that the Iterated Random Shift Protocol achieves simultaneous constant statistical
and multiplicative guarantees. From Theorem 4.3 and Lemma 2.11, it follows that
our protocol has optimal round complexity up to a factor of 2 + o(1) among those
achieving simultaneous constant statistical and multiplicative guarantees.

Corollary 5.2. For every two constants εA < 1 and ρB, there exists a constant
C such that any protocol Π selecting from a universe of size N and achieving statistical
guarantee εA and multiplicative guarantee ρB will have at least log∗ N−log∗ log∗ N−C
rounds.

A tight lower bound. Despite the inability of the above to give a strong lower
bound for simultaneous multiplicative guarantees, in this section we present a tight
lower bound in this setting, which follows from the work of Goldreich, Goldwasser,
and Linial [GGL98].

Theorem 5.3 (Theorem 2.10, restated; see [GGL98]). For any protocol Π,
ρA · ρB ≥ N .

4Actually, the protocol of [GSV98] does not provide a multiplicative guarantee of 2k but rather
ensures that the probability that the output lands in any set T of density μ is at most 2k · μ + o(1).
Our lower bound also applies to this more general type of guarantee.
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Corollary 5.4. In any protocol Π, max{ρA, ρB} ≥
√
N .

Recalling that the multiplicative guarantee ρA is the greatest factor by which Bob
can improve the probability that a single element is chosen over uniform, we conclude
the following.

In any random selection protocol, at least one of the players can improve the
probability that a single element is chosen by a factor exponential in the length of the
output (which equals logN).

Goldreich, Goldwasser, and Linial [GGL98] showed a more general result than
Theorem 5.3 (for multiparty protocols) using different language and a moderately
involved proof. We include below the simplification of their proof for the two-party
case.

Proof of Theorem 5.3. Fix some element v of the universe. Now, consider the
game tree T of the protocol (see Definition 2.2). At each node z of the tree, denote
the protocol induced by beginning at node z to be Πz. Then define

φz
A = max

A∗
Pr
B

[Πz((A
∗, B)) = v],

φz
B = max

B∗
Pr
A

[Πz((A,B∗)) = v],

pz = Pr
A,B

[Πz((A,B)) = v].

That is, φz
A (resp., φz

B) is the highest probability Alice (resp., Bob) can make the
output to be v, given that the protocol is now at node z and that Bob (resp., Alice) is
playing honestly. pz is the probability that v is chosen starting from z and assuming
both players play honestly.

To prove the theorem, we will show that for every node z on T , φz
A · φz

B ≥ pz.
Applying this fact to the root r of the tree r and noting that we can choose v so that
pr ≥ 1/N , the theorem follows easily.

We will prove φz
A · φz

B ≥ pz by backwards induction on the levels of the tree.
When z is a leaf, the protocol is complete. If v is the output of the protocol at

leaf z, then φz
A = φz

B = pz = 1. Otherwise, φz
A = φz

B = pz = 0.
Now, suppose that the lemma holds for all children of z—denote them z1, . . . , zm.

Thus, we know φzi
Aφzi

B ≥ pzi for all children zi. Suppose also, without loss of generality,
that at node z it is Alice’s turn.

Suppose an honest Alice chooses child node zi with probability λi. Then pz =∑
λipzi , and φz

B =
∑

λiφ
zi
B . When considering φz

A, however, Alice will cheat and
choose the best child available. Thus, φz

A = maxzi φ
zi
A , and so in particular for all i,

φz
A ≥ φzi

A .
Now, just compute

φz
Aφ

z
B = φz

A

∑
λiφ

zi
B ≥

∑
λiφ

zi
Aφzi

B ≥
∑

λipzi = pz.

To understand this result intuitively, suppose that there were only one path down
the tree that led to v being chosen as the output. At each node along that path,
starting from the root, there is a certain probability that an honest player will choose
the (unique) next node in the path. So the probability that v is chosen is the product
of these probabilities when both players play honestly. If Alice (resp., Bob) is cheating,
then the probability that v will be chosen is the product of the probabilities at nodes
where it is Bob’s (resp., Alice’s) turn. In this case, φz

A ·φz
B = pz. More paths yielding

v merely provide more options to the cheating player, and so φz
A · φz

B ≥ pz.
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Note that, unlike Proposition 4.1, this result relies centrally on the assumption
that, when one player is cheating, the other player is playing honestly.

Theorem 5.3 is, in fact, tight. In Proposition 3.10, we noted that the Random
Set Protocol—in which Alice chooses a uniformly random subset of fixed size K and
Bob chooses a random element of this set—achieves multiplicative guarantees of K
and N/K for the two players.

Note that one negative aspect of the Random Set Protocol is that it is not
efficient—sending a description of the random subset requires communication linear
in N (rather than polylog(N)). This is certainly not necessary to achieve ρAρB = N ,
however: other very simple and efficient protocols achieve this tradeoff. Specifically,
instead of using all sets of size K, we can use any subcollection such that every el-
ement of [N ] is contained in the same number of sets. For example, if N = K · L
for an integer L, then we can view the universe as [K] × [L] and use only the sets
of the form Sa = [K] × {a} for each a ∈ [L], and so the communication becomes
logL + logK = logN . The optimality of such a trivial protocol suggests that, ulti-
mately, multiplicative guarantees are not by themselves likely to be sufficient metrics
of study for two-party random selection protocols.
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SHORT PCPS WITH POLYLOG QUERY COMPLEXITY∗

ELI BEN-SASSON† AND MADHU SUDAN‡

Abstract. We give constructions of probabilistically checkable proofs (PCPs) of length n ·
polylogn proving satisfiability of circuits of size n that can be verified by querying polylog n bits
of the proof. We also give analogous constructions of locally testable codes (LTCs) mapping n
information bits to n · polylogn bit long codewords that are testable with polylog n queries. Our
constructions rely on new techniques revolving around properties of codes based on relatively high-
degree polynomials in one variable, i.e., Reed–Solomon codes. In contrast, previous constructions of
short PCPs, beginning with [L. Babai, L. Fortnow, L. Levin, and M. Szegedy, Checking computations
in polylogarithmic time, in Proceedings of the 23rd ACM Symposium on Theory of Computing, ACM,
New York, 1991, pp. 21–31] and until the recent [E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan,
and S. Vadhan, Robust PCPs of proximity, shorter PCPs, and applications to coding, in Proceedings
of the 36th ACM Symposium on Theory of Computing, ACM, New York, 2004, pp. 13–15], relied
extensively on properties of low -degree polynomials in many variables. We show how to convert
the problem of verifying the satisfaction of a circuit by a given assignment to the task of verifying
that a given function is close to being a Reed–Solomon codeword, i.e., a univariate polynomial of
specified degree. This reduction also gives an alternative to using the “sumcheck protocol” [C. Lund,
L. Fortnow, H. Karloff, and N. Nisan, J. ACM, 39 (1992), pp. 859–868]. We then give a new PCP for
the special task of proving that a function is close to being a Reed–Solomon codeword. The resulting
PCPs are not only shorter than previous ones but also arguably simpler. In fact, our constructions
are also more natural in that they yield locally testable codes first, which are then converted to
PCPs. In contrast, most recent constructions go in the opposite direction of getting locally testable
codes from PCPs.

Key words. probabilistically checkable proofs (PCPs), PCPs of proximity, locally testable
codes, Reed–Solomon codes
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1. Introduction. Probabilistically checkable proof (PCP) systems as formu-
lated in [20, 3, 2] are proof systems that allow efficient probabilistic verification based
on querying a few bits of a proof. Formally, a PCP system is given by a PCP-verifier
that probabilistically queries a few bits of a purported proof of a claimed theorem and
accepts valid proofs of true theorems with probability 1, while accepting any claimed
proof of false assertions with low probability, say, at most 1/2. The celebrated PCP
theorem [3, 2] asserts that for any language in NP there exists a PCP-verifier that
reads just a constant number of bits from a proof of polynomial length. Subsequently,
it was shown in [28, 26] that the number of queries can be made as small as three
bits, while rejecting proofs of false assertions with probability arbitrarily close to (but
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larger than) 1/2. Such query-efficient proofs translate to strong inapproximability
results for many combinatorial optimization problems; see [7, 8, 26, 28, 38].

Somewhat surprisingly, PCPs are rarely appreciated for their positive properties,
i.e., as methods of transforming proofs into extremely efficiently verifiable formats. In-
stead their negative implications for combinatorial optimization dominate their study.
In principle, PCPs could form the semantic analogue of error-correcting codes: Error-
correcting codes are used to preserve data for long periods of time; PCPs may be
used to preserve data, with a promise of integrity with respect to any fixed Boolean
property, for long periods of time. However such uses seemed infeasible using current
PCP constructions, which are too long and too complex. This forms the motivation
of our work, which tries to find shorter and simpler PCPs.

A number of works [5, 37, 27, 24, 11, 9] have been focused on optimizing the
length of the PCP. In addition to the inherent motivation mentioned above, the
length of PCPs also plays an important role in their use in cryptography (e.g., in
CS proofs [30, 35] and their applications [6, 13]) and is closely related to the construc-
tion of locally testable codes [24, 11, 9]. Simplifying PCP constructions has long been
a goal within the study of PCPs, though little progress had been achieved in this di-
rection until Dinur’s recent surprising proof of the PCP theorem by gap amplification
[18] continuing the combinatorial approach taken in [19]. Although we also construct
simpler PCPs, our approach by contrast relies on adding algebraic structure instead
of combinatorics.

PCPs. Our main result, Theorem 2.2, is a PCP construction that blows up the
proof length by only a polylogarithmic factor resulting in a PCP of quasilinear length.
(Throughout this paper, a function f : N+ → N+ is said to be quasilinear if f(n) =
n·polylogn.) These short proofs can be verified by querying a polylogarithmic number
of bits of the proof. By way of comparison, the recent results of Ben-Sasson et al. [9]
give proofs of length n · exp(poly log logn) with a query complexity of poly log logn.
Thus, while the query complexity of our PCPs is higher than that of most recent
results, the proof size is smaller.

PCPs of proximity. The results of [9] are actually for a stronger notion of PCPs,
called PCPs of proximity (PCPPs). This notion was simultaneously introduced (under
the name assignment testers) in [19] and a similar notion also appeared earlier in [40].
Informally, a PCPP-verifier’s input includes two oracles, a “claimed theorem” and the
“proof,” and the verifier confirms that the claimed theorem is close in, say, Hamming
distance, to a true theorem. It does so by making few oracle queries into the theorem
and the proof. In contrast, recall that a PCP-verifier had unlimited access to the
“claimed theorem” but verified that it was true exactly as stated. Theorem 2.10 gives
a construction of PCPPs for all languages in NP with shorter proofs of proximity,
though with larger query complexity than that of [9].

Locally testable codes. PCPs typically go hand-in-hand with locally testable codes
(LTCs); for a detailed discussion of LTCs, see [24, 23] and references therein. Briefly,
LTCs are error-correcting codes with relatively large rate and distance. Additionally,
the amount of noise in a received word can be bounded from above by querying only
a sublinear number of positions of the received word. Specifically, these codes have an
associated tester that reads very few symbols of a received word and accepts codewords
with probability 1, while rejecting words that are far from all codewords with constant
probability (say, 1/2). Theorem 2.13 constructs LTCs with parameters similar to those
of our PCPs. Namely, the codes have linear distance while the codeword to message
ratio and the query complexity of the tester are polylogarithmic.
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We highlight the fact that our work first constructs LTCs with polylogarithmic
rate and query complexity, after which PCPs with the same parameters are derived
as a consequence. While the early work of Babai et al. [5] also had this feature,
constructions of smaller LTCs (in particular, those in [24, 11, 9]) reverse this direction,
getting PCPs first and then deriving LTCs as a consequence. Our work thus achieves
one of the goals associated with LTCs, namely, offering benefits and insights into
PCPs via direct construction of LTCs.

Our techniques. Although our construction is algebraic as in prior PCP construc-
tions, our techniques are significantly different and thus interesting in their own right.
All previous algebraic PCPs (i.e., those excluding the combinatorial construction of
[19]) start with a PCP based on the properties of multivariate polynomials over some
finite field. Some key ingredients in such constructions are the following: (1) a low-
degree test, i.e., a method to test if a function given by an oracle is close to being a
low-degree multivariate polynomial, (2) a self-corrector, i.e., a procedure to compute
the value of a multivariate polynomial at a given point, given oracle access to a poly-
nomial that is close to this polynomial, (3) a zero-tester, i.e., an efficient procedure
to verify if a function given by an oracle is close to a multivariate polynomial that is
zero on every point in a prespecified subset of its domain, and (4) a reduction from
verifying satisfiability to zero-testing. Typical solutions to the above problems yield
a query complexity that is polynomial in the number of variables and the degree of
the multivariate polynomial. This query complexity can then be reduced using a set
of techniques referred to as proof composition.

Our solution follows a similar outline (though we do not need a self-corrector)
except that, for the most part, we work only with univariate polynomials. This forms
the essence of our technical advantage, giving PCPs with smaller proof length. The
length of PCPs is well known to grow with the number of variables in the polynomials
used to construct them, and reducing this number was an obvious way to try to
reduce PCP length. However, reducing the number of variables increases the degree
of the associated polynomials, and since solutions to steps (1)–(3) above had query
complexity polynomial in the degree, previous solutions needed to use a large number
of variables to significantly reduce the number of queries. In our case, we propose
analogous questions for univariate polynomials and give query-efficient solutions for
them, leading to short PCPs. We describe our solutions to the steps (1)–(4) in reverse
order.

We start with the reduction from satisfiability to testing zero polynomials, which
is step (4) above. The usual reduction is a transformation from a Boolean formula φ to
a constraint C on pairs of polynomials along with subsets S1 and S2 of the multivariate
domains with the following property: φ is satisfiable iff there exist polynomials P1, P2

that are zero on S1, S2, respectively, and furthermore C(P1, P2) holds. (To enable
“easy verification,” C(P1, P2) needs to be of a special form, but we will not get into
this now.) In general, these reductions are simple, and our version of the reduction is
as well. However in our case, the reductions appear particularly natural since we deal
with a very small number of variables. In section 5 we describe our natural way of
reducing NP-complete problems to problems about testing zeros of polynomials. In
the end we use a somewhat more complex solution due only to our goal of extreme
length efficiency; even in this case the full proof is only a few pages long.

Next we move to the zero-testing problem, which is step (3) above. We reduce
this to two univariate low-degree testing questions, along with a natural consistency
test between the two polynomials. The query complexity is a constant independent of
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the degrees of the polynomials we are working with. Furthermore, it directly reduces
zero-testing to low-degree testing while most previous solutions relied on some form or
other of the self-correcting question. Put together, our solutions for steps (3) and (4)
give a short and simple reduction from verifying NP statements to testing the degree
of a univariate function. Furthermore, these reductions add only a constant number
of queries to the query complexity of the low-degree testing protocol. This highlights
the importance of the low-degree testing problem for univariate polynomials, which
we describe below.

Reed–Solomon codes and proofs of proximity. The problem at the heart of our
PCPs is the following: Given a finite field F, a degree bound d, and oracle access to a
function f : F → F, test if f is close to a polynomial of degree at most d. Specifically,
if f is a degree-d polynomial, then the test must always accept. On the other hand, if
f is δ-far from every degree-d polynomial, i.e., the value of f needs to be changed on
at least δ-fraction of the points in F to get a degree-d polynomial, then the test must
reject with high probability. The objective is to do this while querying the oracle
for f as few times as possible. The functions derived by evaluating polynomials of a
specified degree over a field are known as Reed–Solomon codes, which we sometimes
refer to by the name RS-codes. Our goal is thus to provide an efficient test for
membership in these codes.

It is easy to see that, as such, the problem above allows no very efficient solutions:
A tester that accepts all degree-d polynomials with probability 1 must probe the value
of f in at least d+2 places before it can reject any function. This is too many queries
for our purpose. This is where the notion of PCPPs comes to the rescue. Whereas it
is hard to test if function f described by the oracle represents a degree-d polynomial
with fewer than Ω(d) queries, it is conceivable (and indeed implied by previous works,
for example, by [9]) that one can use an auxiliary proof oracle π to “prove” that f
is close to the evaluations of a degree-d polynomial. More formally, our new task is
thus to design a PCPP-verifier that makes a few queries to a pair of oracles (f, π),
where we allow π to return elements of F as answers, and the following holds: If f is
a degree-d polynomial, there exists a valid proof π so that (f, π) is always accepted
by the tester. If f is δ-far from every degree-d polynomial, then for every π, the pair
(f, π) must be rejected with high probability.

Since the property of being a degree-d polynomial over F can be efficiently ver-
ified (in time |F| · polylog |F|), we can apply the final theorem of Ben-Sasson et
al. [9], which gives length-efficient proofs for any property relative to the time it
takes to verify the property deterministically, to get moderately efficient solutions to
this problem. Unfortunately, such a solution would involve proof oracles of length
|F| · exp(poly log log |F|), which is longer than we can allow. Their solution would also
not satisfy our (subjective) simplicity requirement. However it does confirm that our
goal of making o(d) queries is attainable.

Our main technical result is a PCPP for Reed–Solomon codes. This proof of
proximity has length O(n · polylogn) and query complexity polylogn for RS-codes
over a field F of cardinality n and characteristic 2. We also describe some variations,
such as PCPPs for RS-codes over certain prime fields, but these are not needed for
our final PCP results. Our proof of proximity consists of an encoding of an efficient
FFT-like evaluation of the low-degree polynomial. Our analysis makes crucial (black-
box) use of Polishchuk and Spielman’s [37] analysis of a natural low-degree test for
bivariate polynomials.

We remark that almost all ingredients in the construction of our PCPs, including
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the PCPPs for RS-codes, are simple. The simplicity of the PCP also means that the
“hidden constants” in the construction are relatively small and the building blocks we
use can be implemented with relative ease. In fact, our main building blocks, namely,
the PCP of proximity for Reed–Solomon codes and its verifier described in Theorem
3.2, have been recently implemented successfully in code [12], resulting in PCPPs of
length ≈ 1

4n · log4 n for RS-codes over binary fields of size n.

Recent developments. One of the main problems left open by this work was obtain-
ing quasilinear PCPs and PCPPs with constant query complexity. This was recently
solved by Dinur in [18] by applying her novel proof of the PCP theorem by gap am-
plification to our Theorem 2.2. Dinur provides a general transformation that takes
any PCP of length �(n) where the verifier makes q(n) queries and converts it into a
PCP of length �(n) · q(n)O(1) where the verifier makes O(1) queries. Applying this to
the trivial PCP that makes O(n) queries yields a simple proof of the PCP theorem,
though with long proofs. On the other hand, applying this transformation to our
PCP yields a quasilinear PCP with constant query complexity.

With the exception of [5], the running time of all previously known PCP- and
PCPP-verifiers, including ours, is polynomial in the size of the input. Recently, it
was shown in [10] that the running time of our PCPP-verifier can be reduced to be
polylogarithmic, maintaining the query complexity and proof length of our PCPP
construction in Theorem 2.10.

Organization of this paper. In section 2 we present formal definitions of the no-
tions of PCPs, LTCs, and PCPPs, and we present the formal statements of our main
theorems about these concepts. In section 3 we introduce the main technical notions
used in this paper, namely, Reed–Solomon codes, some computationally important
subclasses of Reed–Solomon codes, and algebraic satisfiability problems. We state
our technical results about these problems and then show how our main theorems
(i.e., the ones stated in section 2) follow from these technical results. In sections 4–7,
we prove our technical results. A more detailed breakdown of these results is given at
the end of section 3.

2. Definitions and main results.

Preliminaries. Unless specified otherwise, our alphabet of choice is Σ = {0, 1}
and all logarithms are taken to base 2. For a function t : N+ → N+, recall that
NTIME(t(n)) is the class of languages L ⊆ Σ∗ decidable in nondeterministic time
t(n) on inputs of length n.

2.1. PCPs. The following is a variant of the standard definition of PCPs [3],
where the running time of the verifier is allowed to grow exponentially with the ran-
domness. This is done following [10] to allow a statement of results about languages
whose nondeterministic decision time is superpolynomial. Recall that an oracle ma-
chine is said to be nonadaptive if its queries do not depend on previous oracle answers.
We stress that all oracle machines considered in this paper, and, in particular, the
following PCP-verifier and the PCPP-verifier of Definition 2.4, are nonadaptive.

Definition 2.1 (PCP). For functions r, q : N+ → N+ an (r(n), q(n))-PCP-
verifier is a probabilistic machine V with oracle access to a probabilistically checkable
proof, or simply, a proof, denoted π. On input x of length n, V runs in time 2O(r(n)),
tosses r(n) coins, makes q(n) nonadaptive queries to the proof, and outputs either
accept or reject. We denote by V π[x;R] the output of V on input x, proof π, and
random coins R.

For constant s ∈ [0, 1], a language L ⊆ Σ∗ is said to belong to the class of
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languages

PCPs[randomness r(n), query q(n)]

if there exists an (r(n), q(n))-PCP-verifier VL such that the following hold:
• Perfect completeness: If x ∈ L then ∃π such that PrR[V π

L [x;R] = accept] =
1.

• Soundness: If x �∈ L then ∀π we have PrR [V π
L [x;R] = accept] ≤ s.

Our first main result is the following. Recall the definition of a proper complexity
function from [36, Definition 7.1], where a function f(n) is proper if it can be computed
in time polylogn.

Theorem 2.2 (quasilinear PCPs). For any proper complexity function t : N+ →
N+,

NTIME(t(n)) ⊆ PCP 1
2
randomness log(t(n) · polylog t(n)), query polylog t(n)].

Remark 2.3. The parameters of Theorem 2.2 have been recently improved. In
particular, [18] reduced the query complexity to O(1) and [10] reduced the verifier’s
running time to polyn+polylog t(n) (as opposed to t(n) ·polylog t(n)). In both cases
all other parameters remain unchanged.

Since without loss of generality the proof is of size at most 2randomness × query
the previous theorem implies that the probabilistically checkable proof for x ∈ L is
quasilinear in the running time of the nondeterministic machine deciding L.

In contrast, the recent results of [9] give proofs of length n · exp(poly log logn)
with a query complexity of poly log logn and slightly longer proofs with constant
query complexity. Thus, while the query complexity of our PCPs is higher than that
of the previous state of the art, their length is shorter.

2.2. Proximity and proofs of proximity. We now formalize the notion of
verifying proofs of theorems where even the theorem is not known but rather is pro-
vided as an oracle to the verifier. The verifier, in such a case, can hope only to certify
that the theorem is “close” to one that is true. To define this notion we first need to
formalize the notion of “closeness,” or proximity.

We will work with a variety of distance measures Δ : ΣN × ΣN → [0, 1], where
a distance measure satisfies the properties (1) Δ(x, x) = 0, (2) Δ(x, y) = Δ(y, x),
and (3) Δ(x, z) ≤ Δ(x, y) + Δ(y, z). The most common/natural one, and the target
of most of our theorems, will be relativized Hamming distance over the alphabet Σ,
denoted HammingΣ(·, ·). Formally, for y = (y1, . . . , yN ), y′ = (y′1, . . . , y

′
N ) ∈ ΣN ,

HammingΣ(y, y′) = |{i : yi �= y′i}|/N.

For our proofs we use other distance measures on strings which may weigh different
coordinates differently. For example, given a set I ⊆ [N ] we may consider the distance
HammingΣ,I(y, y

′) = |{i ∈ I : yi �= y′i}|/|I|. Note that a convex combination of
distance measures is also a distance measure, and this describes many other distance
measures we use later.

Given a distance measure Δ : ΣN × ΣN → [0, 1] and a set S ⊆ ΣN we define the
distance of an element y ∈ ΣN from S to be

Δ(y, S) =

{
mins∈S Δ(y, s), S �= ∅,
1, S = ∅.



SHORT PCPS WITH POLYLOG QUERY COMPLEXITY 557

We are now ready to describe PCPs of proximity (PCPPs)/assignment testers [9,
19]. We follow the general formulation as appearing in [9]. In this formulation, the
input comes in two parts (x, y), where x ∈ Σ∗ is given explicitly to the verifier and
y ∈ Σ∗ is given as oracle. In addition, the verifier is given oracle access to a proof.
The verifier is allowed to read x in its entirety, but its queries to y are counted as
part of its query complexity, i.e., together with the queries to the proof. Throughout
this paper we assume without loss of generality the explicit input of a pair instance
includes a specification of the length of the implicit input. If unspecified we set the
length to be t(|x|). Formally, we assume the explicit input is of the form x = (x′, N),
where N = |y|. The size of the explicit input is the size of x′.

Definition 2.4 (PCPP-verifier). For functions r, q : N+ → N+ an (r(n), q(n))-
PCPP-verifier is a probabilistic machine V with oracle access to an implicit input y
and a proof of proximity, or simply, a proof, denoted π. On explicit input x = (x′, N)
with |x′| = n, and N an integer, verifier V runs in time 2O(r(n)), tosses r(n) coins,
makes at most q(n) nonadaptive queries in total to the two oracles, y of size N and
π, and outputs either accept or reject. We denote by V (y,π)[x;R] the output of the
PCPP-verifier on input x and random coins R.

PCPPs refer to languages consisting of pairs of strings where the elements in
these pairs refer to the two parts of the input in Definition 2.4. Thus, we define
a pair language to be subset of Σ∗ × Σ∗. It is useful for us to measure the com-
plexity of a pair language as a function of its first input. So PAIR-TIME(t(n)) is
the set of languages L such that there exists a machine M that takes time t(|x|)
on input (x, y) such that L = {(x, y) : M(x, y) = accept}. One notable pair
language in PAIR-TIME(n · polylogn) is CktVal, the language of pairs (C,w),
where C is a Boolean circuit with N inputs and w is an assignment satisfying C.
PAIR-NTIME(t(n)) is defined similarly, this time allowing M to be a nondetermin-
istic machine.

For a pair language L and x ∈ Σ∗, x = (x′, N), let

Lx � {y ∈ ΣN : (x, y) ∈ L}.

PCPP-verifiers are intended to accept implicit inputs in Lx and reject implicit inputs
that are far from being in Lx. This gives rise to classes of pair languages defined in
terms of PCPPs.

Definition 2.5 (PCPP). For functions r, q : N+ → N+, soundness parameter
s ∈ [0, 1], family of distance measures Δ = {ΔN : ΣN × ΣN → [0, 1]}N∈N+ , and
proximity parameter δ ∈ [0, 1] we say the pair language L belongs to the class of
languages

PCPPs,δ

⎡
⎣ randomness r(n),

query q(n),
distance Δ

⎤
⎦

if there exists an (r(n), q(n))-PCPP-verifier VL such that the following hold for all
(x, y), |y| = N :

• Perfect completeness: If (x, y) ∈ L then ∃π such that PrR[V
(y,π)
L [x;R] =

accept] = 1.

• Soundness: If ΔN (y, Lx) ≥ δ, then ∀π PrR[V
(y,π)
L [x;R] = accept] ≤ 1 − s.

Remark 2.6. As mentioned earlier, our main results (for example, Theorem 2.10)
target the relative Hamming distance. However, to prove these we shall need to use
PCPPs with different distance measures (see subsection 3.4).
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Our constructions of PCPPs come naturally with a somewhat different soundness
condition than the one required in Definition 2.5. On the one hand, they do not
achieve a soundness error of an absolute constant. On the other hand, they satisfy the
additional property that a PCPP-verifier for Lx rejects every string y with probability
proportional to the distance of y from Lx. We formalize this “strong” soundness
condition below and then state a general transformation from PCPPs with strong
soundness to the weaker version above. (The term “strong” is derived from the
analogous definition of strong locally testable codes [24, Definition 2.1].)

Definition 2.7 (strong PCPP). For r, q,Δ as in Definition 2.5 and soundness
function s : (0, 1] × N+ → (0, 1], we say language L belongs to the class

Strong-PCPPs(δ,n)

⎡
⎣ randomness r(n),

query q(n),
distance Δ

⎤
⎦

if there exists an (r(n), q(n))-PCPP-verifier VL with perfect completeness as in Defi-
nition 2.5 and for all (x, y), |y| = N , the following holds:

• Strong soundness: ∀π PrR[V
(y,π)
L [x;R] = accept] ≤ 1 − s(ΔN (y, Lx), n).

Remark 2.8. Naturally, one expects the soundness function to be nondecreasing.
Formally, we say s : (0, 1]×N+ → [0, 1] is nondecreasing if for all n ∈ N+ the function
s(·, n) : (0, 1] → (0, 1] is nondecreasing. This implies that the farther y is from Lx,
the higher the rejection probability or soundness. Indeed, all soundness functions
considered in this paper are nondecreasing.

Notice that a “weak” PCPP, with soundness parameter s0 and distance param-
eter s0, is also a “strong” PCPP with a threshold soundness function s(δ, n) that
evaluates to 0 on δ′ < δ0 and to s0 on δ′ ≥ δ0. A converse of this is also true. To
see this one needs only to amplify the soundness error from s(δ, n) to some fixed
desired constant s′. The now standard application of randomness efficient sampling
allows such amplification with little additional cost in randomness. Indeed, using the
expander-neighborhood sampler of [25] (see also [22, section C.4]) we get the following
proposition, given here without proof. (For a proof see [9, Lemma 2.11].)

Proposition 2.9 (strong PCPPs imply “weak” ones). Let s : (0, 1]×N+ → (0, 1]
be a nondecreasing soundness function as defined in Remark 2.8. If a pair language
L belongs to

Strong-PCPPs(δ,n)

⎡
⎣ randomness r(n),

query q(n),
distance Δ

⎤
⎦,

then, for every s′, δ ∈ (0, 1), the language L belongs to

PCPPs′,δ

⎡
⎢⎣

randomness r(n) + O( 1
s(δ,n) · log 1

s′ ),

query O
(

q(n)·log 1/s′

s(δ,n)

)
,

distance Δ

⎤
⎥⎦.

Furthermore, the proof queried by the “weak” PCPP-verifier is of the same length as
that queried by the “strong” one.

We are now ready to state our main result for PCPPs.

Theorem 2.10 (quasilinear PCPPs). For any proper complexity function t :
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N+ → N+,

PAIR-NTIME(t(n))

⊆ Strong-PCPPδ/ polylog t(n)

⎡
⎣ randomness log(t(n) · polylog t(n)),

query polylog t(n),
distance HammingΣ

⎤
⎦.

Consequently, as implied by Proposition 2.9, for any s, δ ∈ (0, 1),

PAIR-NTIME(t(n)) ⊆ PCPPs,δ

⎡
⎣ randomness log(t(n) · polylog t(n)),

query polylog t(n),
distance HammingΣ

⎤
⎦.

Furthermore, the length of the proof queried by the PCPP-verifier (in both the strong
and weak cases) is t(n) · polylog t(n).

Remark 2.11. As in the case of Theorem 2.2, the parameters of Theorem 2.10
have been recently improved. In particular, [18] reduced the query complexity to O(1)
and [10] reduced the verifier running time to polyn + polylog t(n). In both cases all
other parameters remain unchanged.

The previous state of the art with respect to PCPPs [9] gave proofs of length n ·
exp(poly log logn) with a query complexity of poly log logn (and slightly longer proofs
with constant query complexity). Once again, our query complexity is somewhat
higher but our proofs are somewhat shorter.

2.3. Locally testable codes. We now move to the third notion addressed by
this paper—that of LTCs.

For field F and integers n, k, d, a linear [n, k, d]F-code is an injective linear map
C : Fk → Fn such that for every pair x �= y ∈ Fk, Hamming

F
(C(x), C(y)) ≥ d/n. We

point out that all codes considered in this paper are linear. The alphabet of C is F,
the blocklength is n, the dimension is k, the rate is k/n, and the distance is d. The
image of C is the linear space Image(C) = {C(a) : a ∈ Fk}. Often a code is identified
with its image.

Loosely speaking, a linear [n, k, d]F-code is said to be locally testable if a tester, i.e.,
a randomized machine with oracle access to the supposed codeword, can distinguish
with high probability between words in the code and words that are far from it,
while making only o(k) random queries into a purported codeword. The following is
essentially Definition 2.1 from [24].

Definition 2.12 (locally testable codes). A randomized polynomial time oracle
machine T is called a (δ, q, γ)-tester for the linear [n, k, d]F code C if it satisfies the
following two conditions:

• For any w ∈ Image(C),

Pr[Tw[R] = accept] = 1,

where Tw[R] denotes the output of the tester on oracle w and random coins
R.

• For any w ∈ Fn such that Hamming
F
(w, Image(C)) ≥ δ,

Pr[Tw[R] = reject] ≥ γ.

A code is said to be (δ, q, γ)-locally testable if it has a (δ, q, γ)-tester.
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Theorem 2.13 (locally testable codes with polylogarithmic rate). Let δ, γ ∈
(0, 1), Σ = F2 be the field of two elements and let n be any power of 2. Then, there
exists a linear [N = n · polylogn,K = n/8, D = N/8]Σ-code that is (δ, polylogn, γ)-
locally testable. Furthermore, encoding, decoding, and testing can be performed in
time polynomial in n.

Remark 2.14. As with Theorems 2.2 and 2.10, the query complexity of Theo-
rem 2.13 has been recently improved in [18] to O(1), leaving all other parameters
unchanged.

We remark that we also give LTCs over a variety of other fields and other choices
of n (see Theorems 3.2 and 3.4 for details). Also if we relax the requirement that the
code be linear, then the theorem above follows immediately from Theorem 2.10 (and
[9, section 4.1]) without any restrictions on the choice of n.

3. Technical ingredients of our constructions. In this section we introduce
the main technical ingredients of our paper and prove the three main theorems (The-
orems 2.2, 2.10, and 2.13) of our paper, assuming these ingredients. Recall that these
theorems promise short PCPs, PCPPs, and LTCs. We stress that while the construc-
tion of PCPs and LTCs follows easily from the PCPP construction, this is not the
approach in our paper.

We start by constructing an LTC, based on one of the most popular codes, namely,
the Reed–Solomon code. We give a PCPP for a language whose elements are essen-
tially Reed–Solomon codewords. Recalling the fact that Reed–Solomon codes are
evaluations of univariate polynomials of bounded degree, this result shows how it is
possible to prove that a function given as an oracle is close to some polynomial of
bounded degree. Subsection 3.1 below describes the actual language based on Reed–
Solomon codes and states the PCPP construction that we obtain for this language.
This immediately leads to a proof of Theorem 2.13.

We then move to the constructions of PCPs and PCPPs for general NTIME

languages. These constructions are obtained by first reducing the NTIME language
under consideration to an algebraic version of SAT that we call an algebraic constraint
satisfaction problem, and then giving PCPs (and PCPPs) for algebraic constraint
satisfaction problems. We define algebraic constraint satisfaction problems and state
their completeness for NTIME in subsection 3.2.

The advantage of algebraic constraint satisfaction problems is that the natural
“classical” proofs of satisfiability for these problems come in the form of two univariate
polynomials of bounded degree, say, f, g, that satisfy some simple constraints. For
example, in the PCP construction, the verifier knows some set H ⊆ F and would like
to verify that g(x) = 0 for every x ∈ H. The PCPPs for Reed–Solomon codes already
show how to prove/verify that the functions f and g are close to some polynomials of
bounded degree. In subsection 3.3 we augment this PCPP so as to test that it vanishes
on the set H, and this leads us to a proof of Theorem 2.2. Finally, in subsection 3.4
we describe the additional ingredients needed to get a PCPP for NTIME and prove
Theorem 2.10 modulo these ingredients.

3.1. PCPPs for Reed–Solomon codes. We start by defining the Reed–Solomon
codes and a pair language based on these codes. We then describe two cases of Reed–
Solomon codes where we can obtain PCPPs for membership in the language. This
yields our main theorem (Theorem 2.13) on LTCs.

Definition 3.1 (Reed–Solomon codes and pair language). The evaluation of a

polynomial P (z) =
∑d

i=0 aiz
i over S ⊆ F, |S| = n is the function p : S → F defined by



SHORT PCPS WITH POLYLOG QUERY COMPLEXITY 561

p(s) = P (s) for all s ∈ S. The formal sum P (z) is called the polynomial corresponding
to (the function) p. The Reed–Solomon code of degree at most d over F, evaluated at
S, is

RS(F, S, d) � {p : S → F | p is an evaluation of a polynomial of degree ≤ d over S}.

The pair language PAIR-RS is defined as follows. The explicit input is a triple
(F, S, d), where F is a description of a finite field,1 S ⊆ F, and d is an integer. The
size of the explicit input is assumed to be |S| + O(1) field elements because in all our
applications both d and F can be described using log |F| bits. The implicit input is
a function p : S → F. The size of the implicit input is |S| field elements. A pair
((F, S, d), p) is in PAIR-RS iff p ∈ RS(F, S, d) and the explicit input is in the format
described above.

Notice that RS(F, S, d) is the image of a linear [n, d+1, n−d]F-code. To see this,
set S = {ξ1, . . . , ξn} and consider the linear map sending (a0, . . . , ad) ∈ Fd+1 to the

codeword (P (ξ1), . . . , P (ξn)) for P (z) =
∑d

i=0 aiz
i.

Next we state our main technical results, namely, quasilinear length proofs of
proximity for Reed–Solomon codes. Our results hold for certain “well-behaved” fields
and evaluation sets, including fields of characteristic 2 (Theorem 3.2) and multiplica-
tive subgroups that are sufficiently smooth (Theorem 3.4). As is customary when
discussing Reed–Solomon codes, our distance measure is the relative Hamming dis-
tance over alphabet F, denoted Hamming

F
, and our alphabet is the underlying field.

In particular, queries are answered by field elements.

3.1.1. Fields of characteristic two.
Theorem 3.2 (PCPPs for RS-codes over fields of characteristic 2). Let PAIR-

ADDITIVE-RS be the restriction of PAIR-RS to pairs ((GF(2�), S, d), p), where
GF(2�) is the Galois field of size n = 2� and characteristic 2 and S ⊆ F is GF(2)-
linear. (Recall that S is GF(2)-linear iff for all α, β ∈ S we have α + β ∈ S.) Then,

PAIR-ADDITIVE-RS ∈ Strong-PCPPδ/ polylog n

⎡
⎣ randomness log(n · polylogn),

query O(1),
distance HammingGF(2�)

⎤
⎦.

Consequently (using Proposition 2.9), for any s, δ ∈ (0, 1),

PAIR-ADDITIVE-RS ∈ PCPPs,δ

⎡
⎣ randomness log(n · polylogn),

query polylogn,
distance HammingGF(2�)

⎤
⎦.

Furthermore, the proof queried by the “weak” PCPP-verifier is of the same length as
that queried by the “strong” one.

Remark 3.3. The proof of Theorem 3.2 can be modified to obtain (strong) PCPPs
with parameters as above for some other fields also. In particular, we can get PCPPs
for F of characteristic ≤ polylogn as long as the evaluation set S is linear over a sub-
field of F of size polylog n. For simplicity, and since this suffices for our applications,
we prove the result only for characteristic 2.

We prove Theorem 3.2 in section 6. Here we note that Theorem 3.2 immediately
leads to a construction of LTCs. In particular, we use it to prove Theorem 2.13 later
in this section. But before doing so, we describe a different collection of fields F and
sets S where we can derive PCPPs for Reed–Solomon codes.

1An explicit description for such a field could be via a prime a and an irreducible polynomial
g(x) over GF(a).
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3.1.2. RS-codes over smooth fields. For this part, and throughout the rest
of this paper, let F∗ denote the multiplicative group of a finite field F. The order of
ω ∈ F∗, denoted ord(ω), is the smallest positive integer n such that ωn = 1. The
multiplicative group generated by ω is 〈ω〉 �

{
ω0, ω1, . . . , ωn−1

}
.

Theorem 3.4 (PCPPs for smooth RS-codes). Let PAIR-SMOOTH-RS be the
restriction of PAIR-RS to pairs ((F, 〈ω〉, d), p), where ord(ω) = n is a power of 2.
Then,

PAIR-SMOOTH-RS ∈ Strong-PCPPδ/ polylog n

⎡
⎣ randomness log(n · polylogn),

query O(1),
distance Hamming

F

⎤
⎦.

Consequently (using Proposition 2.9), for any s, δ ∈ (0, 1),

PAIR-SMOOTH-RS ∈ PCPPs,δ

⎡
⎣ randomness log(n · polylogn),

query polylogn,
distance Hamming

F

⎤
⎦.

Furthermore, the proof queried by the “weak” PCPP-verifier is of the same length as
that queried by the “strong” one.

Remark 3.5. Examination of the proof of Theorem 3.4 shows that it can be ex-
tended to 〈ω〉 of size n that is polylogn-smooth; i.e., all prime factors of n are at most
polylogn. For simplicity, we state and prove our theorem only for the multiplicative
case of a 2-smooth n.

While not immediately evident, prime fields satisfying the requirements of the
previous theorem abound. In section 7 we discuss this and provide an alternative
proof of the quasilinear PCP Theorem 2.2 that relies on such prime fields. Notice the
intersection of PAIR-ADDITIVE-RS and PAIR-SMOOTH-RS is empty. Indeed,
a field with a multiplicative subgroup of size 2k must be of size c · 2k + 1 for integer
c, whereas the size of a field of characteristic 2 is a power of 2. Next we show how to
construct LTCs using the PCPPs for RS-codes over fields of characteristic two.

3.1.3. Proof of quasilinear LTC—Theorem 2.13.
Proof of Theorem 2.13. Given an integer n = 2t we use Theorem 3.2 above applied

to the field F of size n, with S = F and d = n/8. The resulting Reed–Solomon code
has rate Ω(1) and relative distance at least 7/8. We then convert the PCPP for this
code into an LTC over F using a standard conversion. Here we simply sketch this
step. For a formal proof, see [9, Proposition 4.1].

The codewords of the LTC are in one-to-one correspondence with the codewords
of the Reed–Solomon code. The codeword of the LTC corresponding to a polyno-
mial p consists of two parts. The first part is simply the Reed–Solomon encoding
of p repeated sufficiently often so that the first part takes at least, say, half of the
coordinates of the LTC. The second part consists of the PCPP that p is a member
of the language. The LTC-verifier simply simulates the PCPP-verifier using the first
half as the oracle for the implicit input and the second half as the proof oracle, along
with some spot-checks to verify that the first part repeats the same codeword several
times. It is straightforward to see that the rate of this LTC is asymptotically bounded
by the length of the Reed–Solomon codewords divided by the length of their PCPP,
and the query complexity is similar to that of the PCPP-verifier. It is easy to see
that the LTC so obtained has a relative distance of at least 7/16 (i.e., half the relative
distance of the Reed–Solomon code).
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It remains to convert this code into a binary code. This is also straightforward
using the idea of concatenation of codes. We pick a small error-correcting code with
|F| codewords of length � = O(log |F|) and distance, say, at least .4� and represent ele-
ments of F as codewords of this code. This converts the LTC obtained in the previous
paragraph into a binary code with relative distance at least .4 times the distance of
that code, which yields a relative distance of at least 7/40 > 1/8. The verifier of the
LTC above can now be simulated on this binary code with a multiplicative increase
in the query complexity by a factor of O(log |F|).

Thus the PCPP for Reed–Solomon codes immediately leads to short LTCs. Ad-
ditionally as we discuss in the upcoming sections, it also forms the central ingredient
in our PCP and PCPP constructions.

3.2. Algebraic constraint satisfaction problems. To obtain length-efficient
PCPs and PCPPs we reduce L ∈ NTIME(t(n)) to an algebraic constraint satisfaction
problem. We describe this problem by comparing it to a combinatorial analogue,
namely, 3SAT. A 3-CNF formula ψ with n variables and m clauses can be viewed as
a mapping ψ : {0, 1}n → {0, 1}m, sending an assignment to the characteristic vector
of the set of clauses satisfied by it. The “natural” proof of satisfiability of a 3-CNF
formula is a vector a of n bits. The proof proves the satisfiability of ψ if ψ(a) = �1. The
typical advantage of this proof is that verification is a sequence of local steps, i.e., to
verify that the jth coordinate of ψ(a)j = 1, we need only examine three coordinates
of a.

An instance of an algebraic constraint satisfaction φ similarly can be viewed as a
mapping φ : F[x] → F[x] from polynomials to polynomials. A candidate proof for the
algebraic problem is a low-degree (univariate) polynomial A ∈ F[x] over finite field F,
called the proof polynomial. The map φ would map A to a polynomial P of slightly
larger degree. φ would be considered satisfiable if P = φ(A) vanishes on a prespecified
subset H of F. Finally, for “local verifiability,” we will expect that computing P (x0)
requires knowledge of A at very few places, denoted k. But here we place some very
strong restrictions on the local neighborhoods. Whereas in 3SAT, there was no simple
relationship between a clause index j and the variables participating in the clause,
in algebraic constraint satisfaction problems, we expect P (x0) to depend on A on
some set of points of the form {Aff1(x0), . . . ,Affk(x0)}, where Affi(x) = aix + bi
is an affine map. Moreover, we insist that the computation of P (x0) from x0 and
A(Aff1(x0)), . . . , A(Aff1(x0)) itself be algebraically simple. Combining all these
ingredients leads to the following definition.

Definition 3.6 (univariate algebraic constraint satisfaction problem (CSP)). In-
stances of the language ALGEBRAIC-CSP are tuples of the form φ = (F, {Aff1, . . . ,
Affk′}, H,C), where F is a field, Affi(x) � aix+bi is an affine map over F specified
by ai, bi ∈ F, H ⊆ F, and C : Fk′+1 → F is a polynomial of degree at most |H| in its
first variable. The size of φ is |F|.

A polynomial A ∈ F[x] is said to satisfy the instance φ ∈ ALGEBRAIC-CSP iff
deg(A) ≤ |H| − 1 and for all x ∈ H,

(3.1) C(x,A(Aff1(x)), . . . , A(Affk′(x))) = 0.

The instance φ is in ALGEBRAIC-CSP iff there exists a polynomial satisfying it.

For integers k, d, let ALGEBRAIC-CSPk,d be the restriction of ALGEBRAIC-
CSP, to instances as above where k′ ≤ k and the degree of C in all but the first variable
is at most d.
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Our main theorem on PCPs is obtained by reducing NTIME languages to
ALGEBRAIC-CSP, while preserving the length of instances to within polyloga-
rithmic factors.

Theorem 3.7 (ALGEBRAIC-CSP is NTIME-complete). There exist integers
k, d such that for any proper complexity function t : N+ → N+ and L ∈ NTIME(t(n))
the following hold.

1. L is reducible to ALGEBRAIC-CSPk,d in time poly t(n).
2. The reduction maps an instance of L of size n to an instance of ALGEBRAIC-

CSPk,d over field GF(2�) of size 2� ≤ t(n) polylog t(n) and characteristic 2,
where 100(kd + 1)(|H| − 1) < 2� ≤ 200(kd + 1)(|H| − 1).

The proof of this theorem is given in section 5.

Remark 3.8. Inspection of the proof of Theorem 3.7 gives k = 10 and d = 8.
More careful optimization can give k = 9 and d = 1; i.e., C is multilinear in all but
the first variable. Favoring simplicity over constant optimization, we omit this proof.
Additionally, one can obtain the theorem for any F as long as |F| > |H|. However, to
derive Theorems 2.2 and 2.10 we need |F| � |H|.

Very similar algebraic reductions are prevalent in many previous PCPs [5, 3, 2,
37, 39, 11, 9], starting with [5], and our reduction follows that of Polishchuk and
Spielman [37]. However, all previous reductions used multivariate polynomials to
perform degree reduction. Namely, a message (or assignment) of length n is encoded
by an m-variate polynomial of degree ≈ m · n1/m (allowing proximity testing with
n1/m queries). In contrast, our reduction does not reduce the degree at all; in fact
it slightly increases it. The PCPPs for the RS-code described earlier allow us to
tolerate this and verify proximity to high-degree polynomials with very small query
complexity—logarithmic in the degree.

For our PCPP construction we need to modify the reduction above so that it
works appropriately for pair languages. Suppose we wish for a reduction R from a
pair language L to a pair language L′. Note that such a reduction can only work with
the explicit input of pair languages. Furthermore, the reduction should say something
about (the proximity of) the implicit input to an accepting pair. The following defi-
nition of a “systematic reduction” (borrowing a phrase from coding theory) specifies
our needs.

Definition 3.9 (systematic reduction). A systematic reduction from a pair
language L to L′ is given by a pair of functions (R,m), R : Σ∗ → Σ∗, and m :
Σ∗ × Z+ → Z+ satisfying the following properties:

• For every x, the function m′(i) = m(x, i) restricted to the domain {1, . . . , N}
is injective and maps to the range {1, . . . , N ′}, where N denotes the length of
the implicit input associated with x, and N ′ denotes the length of the implicit
input associated with R(x).

• If y ∈ Lx, then there exists a y′ ∈ Σ∗ such that y′ ∈ L′
R(x) and yi = y′m(i) for

every i ∈ {1, . . . , N}.
• If y′ ∈ L′

R(x), then y ∈ Lx, where y is the string given by yi = y′m(i) for

i ∈ {1, . . . , N}.
The running time of the reduction is the maximum of the computation times of R(x)
and m(x, i), measured as a function |x|.

We next state a variant of Theorem 3.7 giving systematic reductions from pair
languages to a language related to ALGEBRAIC-CSP. To this end, we define
PAIR-ALGEBRAIC-CSP to be the pair language whose explicit inputs are in-
stances φ as in Definition 3.6 and whose implicit inputs are mappings y : F → F. A pair
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(φ, y) is in PAIR-ALGEBRAIC-CSP iff the polynomial corresponding to y satisfies
φ. We now state our theorem about the completeness of PAIR-ALGEBRAIC-CSP

for PAIR-NTIME.

Theorem 3.10. There exist integers k, d such that for any proper complexity
function t : N+ → N+ and L ∈ PAIR-NTIME(t(n)) the following hold.

1. L is reducible to PAIR-ALGEBRAIC-CSPk,d by a systematic reduction,
given by the pair (R,m), in time poly t(n).

2. For x ∈ {0, 1}n, the instance R(x) is an instance of ALGEBRAIC-CSPk,d

over field GF(2�) of size 2� ≤ t(n) polylog t(n) and characteristic 2, where
100(kd + 1)(|H| − 1) < 2� ≤ 200(kd + 1)(|H| − 1).

Since Theorem 3.10 is proved by a minor modification of the proof of Theorem
3.7, we prove them together in section 5.

3.3. Vanishing RS-codes and the PCP construction. The completeness
of ALGEBRAIC-CSP for NP, combined with the PCPPs for Reed–Solomon codes,
suggests a natural approach to building PCPs. In order to prove that some input
instance x belongs to some NP language L, the verifier transforms x into an instance
φ of ALGEBRAIC-CSP. To prove that φ is satisfiable, the prover can write a table
of the assignment function A : F → F. Furthermore, the prover can also write a table
of the transformed polynomial P = φ(A). In order to verify that this is a valid proof
of the satisfiability of φ, the verifier need only verify the following three properties:
(1) The degrees of A and P are as specified; (2) A and P satisfy the relationship
P = φ(A); and (3) P vanishes on the set H. The PCPP for Reed–Solomon codes
solves the problem in (1) above. The locality in the definition of ALGEBRAIC-CSP

turns out to lead to a simple solution to step (2) above as well. This leaves us to solve
the problem in step (3). In this section we abstract this problem, calling it the
vanishing RS-code problem, and state our result showing how to verify this. We then
formalize the argument above to get a formal proof of Theorem 2.2.

We remark that the problem in step (3) is a special case of a common problem
in all previous algebraic PCPs [4, 5, 20, 3, 2, 37, 39, 11, 9], where the goal is to test
whether an m-variate function f , given as an oracle, is close to some polynomial p that
vanishes on a set Hm for some prespecified subset H ⊂ F. Our setting specializes this
to the case where the functions are univariate (i.e., m = 1) as opposed to multivariate
in the above mentioned results. This motivates the following pair language.

Definition 3.11 (vanishing RS-codes). A polynomial P (z) over field F is said
to vanish over H ⊆ F iff for all h ∈ H,P (h) = 0. For field F, subsets S,H of F, and
integer d, the H-vanishing RS-code is

VRS(F, S,H, d) � {p ∈ RS(F, S, d) : The polynomial correspoding to p vanishes on H}.

The pair language PAIR-VRS is defined as follows. The explicit input is a
quadruple (F, S,H, d), where F is a description of a finite field, S,H ⊆ F, and d
is an integer. The implicit input is a function p : S → F. The size of both the
implicit and explicit inputs is O(|S|). A pair ((F, S,H, d), p) is in PAIR-VRS iff
p ∈ VRS(F, S,H, d).

Note that in the above definition we do not require H to be a subset of S.
The following lemma reduces testing proximity to the vanishing RS-code to testing
proximity to the standard RS-code.

Lemma 3.12 (PCPPs for PAIR-VRS). Suppose a field F, S ⊆ F, and integer d
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are such that

RS(F, S, d) ∈ Strong-PCPPs(δ)

⎡
⎣ randomness r,

query q,
distance Hamming

F

⎤
⎦.

Then, for any H ⊂ F and s′(δ) = min{δ/2, s(δ/2)},

VRS(F, S,H, d) ∈ Strong-PCPPs′(δ)

⎡
⎣ randomness max{r, log |S|},

query q + 2,
distance Hamming

F

⎤
⎦.

Applying the previous lemma to Theorems 3.2 and 3.4 we immediately get the
following corollary.

Corollary 3.13 (quasilinear PCPPs for vanishing RS-codes). Let PAIR-
ADDITIVE-VRS be the restriction of PAIR-VRS to pairs ((F, S,H, d), p)), where
F, S are as defined in Theorem 3.2. Similarly, let PAIR-SMOOTH-VRS be the
restriction of PAIR-VRS to pairs where F, S are as defined in Theorem 3.4. Let
|S| = n. Then,

PAIR-ADDITIVE-VRS,
PAIR-SMOOTH-VRS

∈ Strong-PCPPδ/ polylog n

⎡
⎣ randomness log(n · polylogn),

query O(1),
distance Hamming

F

⎤
⎦.

Consequently (using Proposition 2.9), for any s, δ ∈ (0, 1),

PAIR-ADDITIVE-VRS,
PAIR-SMOOTH-VRS

∈ PCPPs,δ

⎡
⎣ randomness log(n · polylogn),

query polylogn,
distance Hamming

F

⎤
⎦.

Furthermore, the proof queried by the “weak” PCPP-verifier is of the same length as
that queried by the “strong” one.

Lemma 3.12 generalizes to the case of multivariate polynomials and can replace
the sumcheck-based protocols in previous PCP constructions [5, 3, 2, 37, 27, 24, 11, 9].
We describe this problem and our solution to it in subsection 4.4. We remark that
our solution is both simpler and somewhat more efficient than the previous solutions
(alas we do not need it for any of our own constructions). For our PCP construction
the univariate version above suffices, as we show next.

3.3.1. Proof of quasilinear PCP—Theorem 2.2. We now show how to use
the PCPP for (vanishing) RS-codes to prove Theorem 2.2, which gives short PCPs
for all NTIME languages.

Proof of 2.2. Overview. We need to show that L ∈ NTIME(t(n)) has short
PCPs. We start by reducing an instance ψ, |ψ| = n of L to an instance φ of
ALGEBRAIC-CSPk,d of quasilinear size in n. As our proof, we request an eval-
uation p0 of the polynomial A satisfying φ. Additionally, we request an evaluation p1

of the polynomial from (3.1) appearing in Definition 3.6. To verify that A satisfies φ,
we need only test that (i) p0 is of sufficiently low degree, (ii) p0, p1 are consistent, i.e.,
p1 is the evaluation of the polynomial from (3.1), and (iii) the polynomial correspond-
ing to p1 vanishes on H. We test (i) using Theorem 3.2, (iii) using Corollary 3.13,
and (ii) using an additional consistency test with constant query complexity. Details
follow.

Let φ = {GF(2�), {Aff1, . . . ,Affk}, H,C} be the instance of ALGEBRAIC-
CSPk,d that ψ is reduced to via Theorem 3.7. Let F = GF(2�) and notice that
|F| = Θ(t(n) polylog t(n)).
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Probabilistically checkable proof. The verifier expects oracle access to a proof com-
prised of

• function p0 : F → F and proof of proximity π0 to RS(F,F, |H| − 1) as per
Theorem 3.2 and

• function p1 : F → F and proof of proximity π1 to VRS(F,F, H, (kd+1)(|H|−
1)) as per Corollary 3.13.

Notice that Theorem 3.2 and Corollary 3.13 imply that the size of the proof is quasi-
linear in |F|, which is quasilinear in t(n).

Verifier operation. The verifier tosses log(t(n) · polylog t(n)) coins and runs the
following subtests using the same random coins in all and accepting iff all subtests
accept.

• Invoke the PCPP-verifier for the Reed–Solomon code from the second part
of Theorem 3.2 on explicit input (F,F, |H| − 1), implicit input p0, and proof
π0, using proximity parameter δ = 1/10k and soundness half.

• Invoke the PCPP-verifier for vanishing Reed–Solomon code from the second
part of Corollary 3.13 on explicit input (F,F, H, |H| − 1), implicit input p1,
and proof π1, using proximity parameter 1/100 and soundness half.

• Select random x ∈ F, query p0(x), p0(Aff1(x)), . . . , p0(Affk(x)) and p1(x);
accept iff

p1(x) = C(x, p0(x), p0(Aff1(x)), . . . , p0(Affk(x))).

Basic parameters. Randomness and query complexity are as claimed, by Theorem
3.2 and Corollary 3.13.

Completeness. Suppose ψ ∈ L. Then φ ∈ ALGEBRAIC-CSPk,d by Theorem
3.7. Suppose A satisfies φ as per Definition 3.6. Let p0 be the evaluation of A on F.
Let

(3.2) B(x) � C(x,A(Aff1(x)), . . . , A(Affk(x))).

Notice that deg(B) ≤ degx0
(C) +

∑k
i=1 degxi

(C) · deg(A) ≤ (kd + 1)(|H| − 1). Fur-
thermore, B vanishes on H because A satisfies φ. Let p1 be the evaluation of B on F.
We conclude that p0 ∈ RS(F,F, |H| − 1) and p1 ∈ VRS(F,F, H, (kd + 1)(|H| − 1)),
so by the completeness property of Theorem 3.2 and Corollary 3.13 there exist proofs
π0, π1 causing the first two subtests of the verifier to accept. Finally, for all x ∈ F we
have by construction

p1(x) = B(x) = C(x,A(Aff1(x)), . . . , A(Affk(x)))

= C(x, p0(Aff1(x)), . . . , p0(Aff1(x))).

We conclude that the last subtest also accepts with probability 1, completing the
proof of the completeness statement.

Soundness. Suppose ψ �∈ L. Then φ �∈ ALGEBRAIC-CSP by Theorem 3.7.
There are several cases to consider:

• If p0 is (1/10k)-far from RS(F,F, |H| − 1) then Theorem 3.2 implies the first
subtest rejects with probability 1/2. Similarly, if p1 is not (1/100)-close to
VRS(F,F, H, (kd+1)(|H|−1)) then Corollary 3.13 implies the second subtest
rejects with probability 1/2.

• Otherwise, let A be the unique polynomial of degree ≤ |H| − 1 that is closest
to p0 and let B(x) be as defined in (3.2). Let p2 : F → F be defined by

p2(x) = C(x, p0(Aff1(x)), . . . , p0(Affk(x))).
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A union bound implies p2 is (1/10)-close to the valuation of B on F because
p0 is (1/10k)-close to the valuation of A and Affi(x) is uniformly distributed
on F when x is uniformly distributed on F.
Let B′ be the (unique) polynomial closest to p1. Notice that B �= B′ because
if B = B′, then B vanishes on H, implying A satisfies φ. Summing up, we
have p1 is (1/100)-close to B′ and p2 is (1/10)-close to B, where B �= B′

are polynomials of degree ≤ |F|/100, so they agree on at most 1/100 fraction
of their entries. Thus, the third subtest accepts with probability at most
(1/10) + (1/100) + (1/100) < 1/2. The soundness analysis is complete and
with it we have proved Theorem 2.2.

3.4. Systematic RS-codes and quasilinear PCPPs. We now turn to the
task of building PCPPs for PAIR-NTIME languages. It is relatively straightforward
to convert the PCP-verifier for ALGEBRAIC-CSP constructed in the previous sec-
tion into a PCPP-verifier for PAIR-ALGEBRAIC-CSP. Unfortunately, this is not
sufficient to imply a PCPP-verifier for all PAIR-NTIME languages, despite the sys-
tematic reduction given by Theorem 3.10.2

To get to the underlying issue, consider pair language L in PAIR-NTIME, and
consider the task of proving/verifying if (x, y) ∈ L, where x is explicit and y is given
as an oracle. Using the systematic reduction of Theorem 3.10, a PCPP-verifier could
convert x to an instance φ = R(x) of ALGEBRAIC-CSP. It now demands proof
oracles for a polynomial A satisfying φ, along with other ingredients as in the proof
of Theorem 2.2 that prove that A satisfies φ. The PCPP-verifier can now verify that
A satisfies φ with few queries. It still needs to verify that A is consistent with the
implicit input y. Using the “systematic” nature of the given reduction, it also knows
that y ought to be “contained” in A. More specifically, it knows that there is some
subset H of A such that the evaluation of the polynomial A on the set H should be
equal to the string y. In what follows we abstract this problem as that of building
a PCPP-verifier for “systematic” Reed–Solomon codes. Such a verifier is given two
oracles, one for a function f : H → F (representing the implicit input y above), and
the other for a (supposedly polynomial) function p : S → F, and attempts to verify
that p is a polynomial of the appropriate degree that agrees with the function f . We
formalize the task below and state our main result for this task.

Definition 3.14 (systematic RS-codes). For field F, subsets S,H ⊆ F, |H| ≤
|S|/2, and integer d ≤ |S|/2 let RSsys(F, S,H, d) be the set of pairs of functions
(f : H → F, p : S → F), such that p ∈ RS(F, S, d) and the polynomial corresponding to
p agrees with f on H. The pair language PAIR-RSsys is the set of pairs with explicit
input (F, S,H, d) as above and implicit input (f, p) ∈ RSsys(F, S,H, d). Similarly,
the pair language PAIR-ADDITIVE-RSsys (PAIR-SMOOTH-RSsys, respectively)
is the restriction of PAIR-RSsys to pairs with F, S as in Theorem 3.2 (Theorem 3.4,
respectively).

Notice in Definition 3.14 we do not require H to be a subset of S, nor do we
assume H ∩S = ∅. Furthermore, we allow d to be greater than |H| − 1, in which case
there are several polynomials of degree d that all agree with f on H.

Recall that when building PCPP-verifiers we need to specify our distance measure.
Since typically |H| � |S|, the standard Hamming distance is not a good measure
because under this measure (f, p) is close to RSsys whenever p is low degree, regardless

2Indeed, we do not know of a generic reduction that, when given a pair language L with a
systematic reduction to L′ and a PCPP-verifier for L′, can construct an efficient PCPP-verifier for
L.
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of the amount of agreement between p and f . To amend this we use the following
weighted Hamming distance:

Hamming
1
2

F
((f, p), (f ′, p′)) =

1

2
(Hamming

F
(f, f ′) + Hamming

F
(p, p′)).

The main theorem of this section gives an efficient PCPP for the language of
systematic Reed–Solomon codes. Its proof is deferred to subsection 4.3.

Theorem 3.15 (PCPPs for systematic RS-codes).

PAIR-ADDITIVE-RSsys,
PAIR-SMOOTH-RSsys

∈ Strong-PCPPδ/ polylog n

⎡
⎣ randomness log(n · polylogn),

query polylogn,

distance Hamming
1
2

F

⎤
⎦.

3.4.1. Proof of quasilinear PCPP Theorem 2.10. We now show how to use
Theorems 3.10 and 3.15 to construct efficient PCPP-verifiers for all PAIR-NTIME

languages.
Proof of Theorem 2.10. Let (x, y) be an instance of PAIR-L ∈ NTIME(t(n)) with

|y| = N . The PCPP-verifier starts by reducing x to an instance φ = (F, {Aff1, . . . ,
Affk}, H,C} of ALGEBRAIC-CSP as in Theorem 3.10. Let m : {1, . . . , N} → F
be the efficiently computable injective mapping as per Definition 3.9. Let m([N ]) =
{m(1), . . . ,m(N)} ⊆ F. From here on we view y as a function from m([N ]) to F by
associating {0, 1} with the same elements in F. Verifier expects oracle access to a
proof of proximity comprised of the following:

• A PCP π for x as described in the proof of Theorem 2.2. In particular, the
PCP is comprised of functions p0, p1 : F → F and subproofs π0, π1.

• A proof of proximity for PAIR-ADDITIVE-RSsys(F,F,m([N ]), |H| − 1),
denoted π2.

Verifier operation. The verifier invokes the PCP-verifier described in the proof
of Theorem 2.2 on explicit input x and proof π. Reusing randomness, the verifier
invokes the PCPP-verifier for the pair language PAIR-ADDITIVE-RSsys described
in Theorem 3.15 on explicit input (F,F,m([N ]), |H| − 1), implicit input pair (y, p0),
and proof π2. The verifier accepts iff both subverifiers accept. Notice that Theorems
2.2 and 3.15 imply the randomness and query complexity are as claimed.

Completeness. Suppose (x, y) ∈ PAIR-L and let φ be the instance of
ALGEBRAIC-CSP that x is reduced to as per Theorem 3.7. By Theorem 3.10, y
agrees with p0 on m([N ]) and p0 is an evaluation of a polynomial satisfying φ. Com-
pleteness now follows from Theorems 2.2 and 3.15.

Soundness. Suppose y is δ-far from Lx in distance measure Hamming
1
2

F
. There

are several cases to consider. First, if x �∈ L in which case Lx is empty and δ = 1,
then Theorem 2.2 implies the first subtest of our verifier rejects with probability
δ/ polylogn. From here on we assume x ∈ L. If p0 is not (1/100)-close to an evaluation
of a polynomial of degree ≤ |H| − 1 that satisfies φ, then the soundness part of the
proof of Theorem 2.2 implies the first subtest of our verifier rejects with probability
≥ 1/(100 ·polylogn) ≥ δ/ polylogn. Finally, suppose p0 is (1/100)-close to evaluation
of a polynomial A satisfying φ and let y′ : m([N ]) → F be the evaluation of A on
m([N ]). Theorem 3.10 implies y′ satisfies x, so by assumption y is δ-far from y′.
Thus, the pair of functions (y, p0) is (δ/2)-far from RSsys(F,F,m([N ]), |H| − 1), so
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Theorem 3.15 implies that the second subtest rejects (y, p0) with probability at least
δ/ polylogn, completing the proof of Theorem 2.10.

3.5. Organization of the rest of the paper. We have thus far proved our
main theorems (Theorems 2.2, 2.10, and 2.13) assuming the NTIME-completeness
result for ALGEBRAIC-CSP (Theorems 3.7 and 3.10) and PCPPs for RS-codes
(Theorem 3.2), for vanishing Reed–Solomon codes (Lemma 3.12), and for systematic
Reed–Solomon codes (Theorem 3.15). In the following sections we give proofs for
these claims. We remark that the sections may be read in any order. The order in
which they are sequenced here merely reflects our opinion of the complexity of the
proofs.

In section 4 we assume a PCPP for Reed–Solomon codes and give PCPPs for
vanishing and systematic Reed–Solomon codes. We also show how to verify vanishing
properties of multivariate polynomials in this section (see Lemma 4.7 in subsection
4.4), a result that may be of independent interest. In section 5 we prove the NTIME

completeness of ALGEBRAIC-CSP and PAIR-ALGEBRAIC-CSP. In section 6
we give the PCPP for RS-codes over fields of characteristic two, which is our central
technical result. Finally, in section 7, we give an analogous PCPP for RS-codes over
smooth fields.

4. PCPPs for vanishing and systematic Reed–Solomon codes. In this
section, we show how one can test various properties of polynomials given by an
oracle, once we have the ability to test that an oracle is close to a polynomial.

The first such property is to verify that a univariate function f is close to some
polynomial P that vanishes on a prespecified set H. This property was used crucially
in building a PCP for NP languages in subsection 3.3.

The PCPP for vanishing RS-codes immediately leads to a PCPP to verify if two
given oracles f1 and f2 are close to polynomials that agree on the prespecified set
of inputs. (This task reduces to verifying whether f1 − f2 represents a vanishing
RS-code.) We refer to this property as “agreeing” Reed–Solomon codes.

We then use the PCPP for agreeing Reed–Solomon codes to get a PCPP for
systematic RS-codes. Recall that here, our goal was to take two oracles for functions
f : H → F and p : S → F and verify that p is close to a polynomial P that agrees
with f on H. This PCPP was crucial to our PCPP Theorem 2.10.

Finally, we show how to extend our PCPP for vanishing RS-codes to a PCPP
for vanishing multivariate polynomial codes even though we do not use this result
anywhere in the paper. (However, it was extensively used in previous PCP construc-
tions.)

We note that all the constructions are quite simple and differ from previous such
“tests” in a crucial way. Whereas previous tests of properties as above attempt to
use the fact that the oracle being tested is close to a polynomial, they do not seem
to explicitly use the fact that a low-degree test is available and can be used to test
other functions that may be provided by the prover. Our constructions exploit this
additional feature to simplify many known tests.

4.1. PCPPs for vanishing Reed–Solomon—Proof of Lemma 3.12. Recall
the notion of a vanishing RS-code from Definition 3.11.
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Lemma 4.1 (Lemma 3.12, restated). Suppose a field F, S ⊆ F, and an integer d
are such that

RS(F, S, d) ∈ Strong-PCPPs(δ)

⎡
⎣ randomness r,

query q,
distance Hamming

F

⎤
⎦.

Then, for any H ⊂ F and s′(δ) = min{δ/2, s(δ/2)},

VRS(F, S,H, d) ∈ Strong-PCPPs′(δ)

⎡
⎣ randomness max{r, log |S|},

query q + 2,
distance Hamming

F

⎤
⎦.

The key observation in our proof is that a degree-d polynomial P (z) vanishes
on H iff the polynomial gH(z) �

∏
h∈H(z − h) divides P (z), i.e., iff there exists a

polynomial P̃ ,deg(P̃ ) ≤ d− |H| such that P (z) = gH(z) · P̃ (z).

Proof. The PCPP-verifier for VRS(F, S,H, d) has oracle access to implicit input
p : S → F and a proof combined of two parts: (i) a function p̃ : S → F (a supposed
evaluation of P̃ on S) and (ii) a proof of proximity π̃ to RS(F, S, d − |H|). Notice
that the proof length is |S| + |π̃|. The verifier operates as follows.

• Toss max{r, log |S|} random coins. Let R denote the random outcome.
• Invoke an assumed RS-verifier using randomness R on explicit input (F, S, d−
|H|), implicit input p̃, and proof π̃. Reject if the verifier rejects. Otherwise,

• pick random α ∈ S (using randomness R); read p(α) and p̃(α); accept iff
p(α) = gH(α) · p̃(α).

Notice that gH(α) can be computed in time poly(|H| · log |F|) by the verifier because
H is given as an explicit input. Thus, the running time is as claimed, and so are the
randomness and query complexity, by construction. Completeness follows by taking p̃
to be the evaluation of P̃ (z) � P (z)/gH(z) and taking π̃ to be p̃’s proof of proximity
to RS(F, S, d− |H|).

As to the soundness, assume p is δ-far from VRS(F, S,H, d). If p̃ is δ/2-far from
RS(F, S, d − |H|), then by assumption the RS-verifier rejects p̃ with probability at
least s(δ/2) and we are done. Otherwise, p̃ is δ/2-close to some polynomial Q of
degree ≤ d−|H|. Let q : S → F be the evaluation of Q on S. Notice that the function
p̃ · gH is δ/2-close to q · gH and the latter function is, by construction, a codeword of
VRS(F, S,H, d). By assumption, p is δ/2-far from p̃ · gH ; hence the last subtest of
the verifier rejects with probability at least δ/2. This completes our proof.

4.2. Agreeing Reed–Solomon codes. We now show how to extend the PCPP
of the previous section to test if two polynomials agree on a given set. Two polynomials
P1(z), P2(z) are said to agree on H ⊆ F if P1(z) = P2(z) for all z ∈ H. Below we
formalize the problem of testing agreement.

Definition 4.2 (agreeing RS-codes). For field F, subsets S,H ⊆ F, and in-
tegers |S|/2 ≥ d1 ≥ d2 let RSagr(F, S,H, d1, d2) be the set of pairs of functions
p1, p2 : S → F, such that p1 ∈ RS(F, S, d1), p2 ∈ RS(F, S, d2), and the polyno-
mial corresponding to p1 agrees with the polynomial corresponding to p2 on H. The
pair language PAIR-RSagr is the set of pairs with explicit input (F, S,H, d1, d2) as
above and implicit input (p1, p2) ∈ RSagr(F, S,H, d1, d2). Similarly, the pair language
PAIR-ADDITIVE-RSagr (PAIR-SMOOTH-RSagr, respectively) is the restriction
of PAIR-RSagr to pairs with F, S as in Theorem 3.2 (Theorem 3.4, respectively).
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Lemma 4.3. Assume a field F, S ⊆ F, and integers d2 ≤ d1 ≤ |S|/2 satisfy

RS(F, S, d1),
RS(F, S, d2),
VRS(F, S, d1)

∈ Strong-PCPPs(δ,|S|)

⎡
⎣ randomness r,

query q,
distance Hamming

F

⎤
⎦,

where s is monotone nondecreasing in δ. Then for any H ⊂ F,

RSagr(F, S,H, d1, d2) ∈ Strong-PCPPs(δ/8,|S|)

⎡
⎣ randomness r,

query q + 2,
distance Hamming

F

⎤
⎦.

Proof. The main idea is that P1(z) agrees with P2(z) on H iff P1(z) − P2(z)
vanishes on H, so we apply the PCPP from Lemma 3.12 to this difference. Details
follow.

The verifier for RSagr(F, S,H, d1, d2) has oracle access to implicit inputs p1, p2 :
S → F and proof of proximity comprised of

• proof of proximity π1 to RS(F, S, d1),
• proof of proximity π2 to RS(F, S, d2), and
• proof of proximity π3 to VRS(F, S, d1).

The verifier’s operation is to invoke the following three subtests using the same ran-
domness across all tests and accepting iff all of them accept:

• Invoke verifier for RS(F, S, d1) on implicit input p1 and proof π1.
• Invoke verifier for RS(F, S, d2) on implicit input p2 and proof π2.
• Invoke verifier for RSH(F, S, d1) on implicit input p1 − p2 and proof π3.

Querying p1 − p2 on α ∈ S is performed by querying p1(α), p2(α) and taking
their difference.

All properties can be checked as in the proof of Lemma 3.12. For an illustra-
tion, consider the soundness. Suppose the pair of functions (p1, p2) is δ-far from
RSagr(F, S,H, d1, d2). If either one of p1, p2 is δ/8-far from RS(F, S, d1),RS(F, S, d2),
respectively, then (the first/second subtest of) the verifier rejects with probability
s(δ/8, |S|). Otherwise, q = (p1 − p2) is δ/4-close to a polynomial of degree d1 that by
assumption does not vanish on H. Since d1 ≤ |S|/2 and δ ≤ 1 we conclude q is 1/4-
far from VRS(F, S,H, d1) in which case the third subtest of the verifier rejects with
probability ≥ s(1/4, |S|) ≥ s(δ/8, |S|). The last inequality follows from monotonicity
of s.

The previous lemma combined with Lemma 3.12 and Theorems 3.2 and 3.4 im-
mediately implies the following.

Corollary 4.4 (PCPPs for agreeing RS-codes).

PAIR-ADDITIVE-RSagr,
PAIR-SMOOTH-RSagr

∈ Strong-PCPPδ/ polylog n

⎡
⎣ randomness log(n · polylogn),

query O(1),
distance Hamming

F

⎤
⎦.

4.3. PCPP for systematic Reed–Solomon codes: Proof of Theorem 3.15.
Recall the definition of the systematic RS-code (Definition 3.14) and the related no-
tation presented in subsection 3.4. We now prove Theorem 3.15, restated below.
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Theorem 4.5 (Theorem 3.15, restated).

PAIR-ADDITIVE-RSsys,
PAIR-SMOOTH-RSsys

∈ Strong-PCPPδ/ polylog n

⎡
⎣ randomness log(n · polylogn),

query polylogn,

distance Hamming
1
2

F

⎤
⎦.

To prove the theorem we apply induction to the following lemma, the proof of
which appears below. Roughly, the lemma says that if we have PCPPs for systematic
and agreeing RS-codes of size n/2, then we can construct systematic codes of size
n. Intuitively, the proof is as follows. To verify that a message is indeed encoded
by a codeword, we split the message into two parts of equal length. We ask for the
encoding of each of these submessages and verify agreement of the subencodings with
the encoding of the large message. This part uses PCPPs for agreeing codes described
in the previous section. Then we pick one of the submessages at random and verify
that it is consistent with its supposed subencoding and for this part we use induction.
Details follow.

Lemma 4.6. If H,S ⊆ F, and d ≤ |S|/2 satisfy the following conditions:
1. there exist S0, S1 ⊆ S, |S0|, |S1| = |S|/2, and a partition H0 ∪H1 = H, |H0|,

|H1| = |H|/2 and these sets are computable in time t0,
2. we have

RS(F, S, d) ∈ Strong-PCPPs1(δ,|S|)

⎡
⎣ randomness r1,

query q1,
distance Hamming

F

⎤
⎦,

3. for i = 0, 1 we have

RSagr(F, S,Hi, d, |Hi|−1) ∈ Strong-PCPPs2(δ,|S|)

⎡
⎣ randomness r2,

query q2,
distance Hamming

F

⎤
⎦,

4. for i = 0, 1 we have

RSsys(F, Si, Hi, |Hi| − 1) ∈ Strong-PCPPs3(δ,|Si|)

⎡
⎣ randomness r3,

query q3,

distance Hamming
1
2

F

⎤
⎦,

and s3 is subadditive, i.e., s3(δ0, |S0|) + s3(δ1, |S1|) ≥ s3(δ0 + δ1, |Si|),
then for any 0 < α < 1/16,

RSsys(F, S,H, d) ∈ Strong-PCPPs(δ,|S|)

⎡
⎣ randomness r,

query q,

distance Hamming
1
2

F

⎤
⎦,

where

s(δ, |S|) = min

{
s1(αδ, |S|), s2(αδ, |S|)/2,

1

2
s3((2 − α)δ, |S|/2)

}
,

r = max{r1, r2, r3} + 1,

q = q1 + q2 + q3.
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Proof of Theorem 3.15. Consider first the case of PAIR-ADDITIVE-RSsys. We
need to prove there exists a constant c ≥ 1 that will be specified later such that for
any F of characteristic 2, linear space S ⊆ F, |S| = n, set H ⊂ F, |H| = 2� ≤ |S|/2,
and d ≤ |S|/2 we have

RSsys(F, S,H, d) ∈ Strong-PCPPδ/(log n)c

⎡
⎣ randomness log(n · polylogn),

query polylogn,
distance Hamming

F

⎤
⎦.

Our proof is by induction on n, using Lemma 4.6. The base case of constant n
follows because a verifier can query all entries in the implicit input and reject any pair
of functions (f, p) that is not in RSsys(F, S,H, d).

As to the inductive step, partition H into two equal sets H0, H1 arbitrarily. Let
S0 = S1 be a (k − 1)-dimensional space. Part 1 of Lemma 4.6 holds by construction.
Parts 2 and 3 follow from Theorem 3.2 and Corollary 4.4, respectively, with

s1(δ, n), s2(δ, n) ≥ δ/(log n)c
′
, q1, q2 = polylogn, r1, r2 = log(n · polylogn),

where c′ is a constant. Part 4 holds by induction with

s3(δ, n/2) = δ/((log n) − 1)c, q3 = poly((logn) − 1), r3 ≤ log(n · polylogn).

Notice that s3 is subadditive. Apply Lemma 4.6 with α = 1/ log n. Randomness and
query complexities follow immediately and the verifier’s running time is polynomial.
As to soundness, notice that 1

2s3((2 − α)δ, n/2) ≥ (1 − 1/ log n)δ/(log n − 1)c ≥
δ/ logc n. Thus, by selecting c > c′ + 1 we conclude that

s(δ, n) ≥ min{δ/ logc
′+1 n, δ/ logc n} ≥ δ/ logc n.

This completes the proof.
Regarding PAIR-SMOOTH-RSsys, change S = 〈ω〉 and S0 = S1 = 〈ω2〉, and

use Theorem 3.4. The rest of the proof is identical.
Proof of Lemma 4.6. To prove that p is an evaluation of a polynomial P that

agrees with f on H, we request that the prover provide evaluations of the polynomials
that agree with P on the two partitions of H. We test agreement of p with these two
polynomials, denoted p0, p1, and then split f to two corresponding parts and recurse.
Details follow. We describe the proof of proximity, followed by the verifier’s operation,
and conclude with completeness and soundness analysis.

Proof of proximity. The proof for the implicit input pair f : H → F, p : S → F is
defined recursively. In the base case (|S| = O(1)) the proof is empty. Otherwise, it is
comprised of

• one proof of proximity π to RS(F, S, d),
• two functions p0, p1 : S → F,
• two proofs of proximity π0, π1 to RSagr(F, S,H0, d, |H0| − 1) and RSagr(F, S,
H1, d, |H1| − 1), respectively, and

• two proofs of proximity π′
0, π

′
1 to RSsys(F, S0, H0, |H0|−1) and to RSsys(F, S1,

H1, |H1| − 1), respectively, defined recursively.
Verifier operation. Let fi : Hi → F be the restriction of the function f to domain

Hi and let p′i be the restriction of the function pi to domain Si for i = 0, 1. The
verifier tosses r = max{r1, r2, r3}+ 1 coins, sets i ∈ {0, 1} according to the first coin,
and performs the following subtests reusing the remaining r− 1 coins across different
tests:
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• Invoke verifier for RS(F, S, d) on input p and proof π.
• Invoke verifier for RSagr(F, S,Hi, d, |Hi| − 1) on input pair (p, pi) and proof
πi.

• Invoke verifier for RSsys(F, Si, Hi, |Hi| − 1) on input pair (fi, p
′
i) and proof

π′
i.

• Accept iff all aforementioned tests accept.

Basic properties. The randomness is r, by construction. The query complexity is
the sum of queries made by the various subtests, as claimed.

Completeness. Assume (f, p) ∈ RSsys(F, S,H, d). Since p is of degree ≤ d there
exists a proof π accepted by the first subtest of the verifier with probability one. Let
pi be the polynomial of degree |Hi|−1 that agrees with fi (on Hi). By construction p
agrees with pi on Hi. Thus, there exist proofs πi accepted by the second subtest of the
verifier with probability 1. Finally, notice that (fi, p

′
i) ∈ RSsys(F, Si, Hi, |Hi| − 1), so

there exist subproofs π′
i causing the third test of the verifier to accept with probability

one.

Soundness. Assume the distance of (f, p) from RSagr(F, S,H, d) is exactly δ.
There are several cases to consider. (i) If p is αδ-far from RS(F, S, d), then the
first test of the verifier rejects with probability s1(αδ, |S|). (ii) If for some i ∈ {0, 1}
the distance of (p, pi) from RSagr(F, S,Hi, d, |Hi|−1) is greater than αδ, then the sec-
ond test of the verifier rejects with probability s2(αδ, |S|)/2. The factor half decrease
in rejection probability is due to the random selection of i. (iii) Otherwise, because
(i) does not hold and d ≤ |S|/2 and α < 1/16, we conclude that p is αδ-close to a
unique polynomial P , so f is ((2−α)δ)-far from the evaluation of P on H. Similarly,
because (ii) does not hold, we conclude that each of p0, p1 is 1/8-close to the unique
polynomial agreeing with P on Hi.

For i = 0, 1, let δi be the distance of (fi, p
′
i) from RSsys(F, Si, Hi, |Hi| − 1) using

measure Hamming
1
2

F
. Notice that δ0 + δ1 ≥ (2 − α)δ because pi is 1/8-close to the

evaluation of P on H, so p′i is 1/4-close to the evaluation of P on Hi, while f is
((2 − α)δ)-far from it. By induction, the rejection probability of the third subtest in
this case is at least

1

2
(s3(δ0, |S|/2) + s3(δ1, |S|/2)) ≥ 1

2
s3(δ0 + δ1, |S|/2) ≥ 1

2
s3((2 − α)δ, |S|/2).

Summing up, our rejection probability is at least as claimed and this completes our
proof.

4.4. PCPPs for multivariate polynomials and vanishing Reed–Muller
codes. Finally, we give a generalization of Lemma 3.12 to the case of multivariate
polynomials. This generalization would suffice to replace the sumcheck-based proto-
cols in previous PCP constructions [5, 3, 2, 37, 27, 24, 11, 9].

In the multivariate problem we are given sets S,H ⊂ F and oracle access to
a multivariate function f : Sm → F. We are asked to verify that f is close to a
polynomial of degree ≤ d in each variable that evaluates to zero on Hm. Once again,
we do not need to assume H ⊂ S. Recall that evaluations of low-degree multivariate
polynomials form the well-known Reed–Muller code. We denote by RM(F, S, d,m)
the set of functions p : Sm → Fm that are evaluations of m-variate polynomials of
maximal individual degree d. We denote by VRM(F, S,H, d,m) its subcode consisting
of all evaluations of polynomials that vanish on Hm. Our main lemma of this section
is the following.
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Lemma 4.7 (multivariate zero testing). Suppose field F, set S ⊆ F, and integers
d,m satisfy

RM(F, S, d,m) ∈ Strong-PCPPs(δ)

⎡
⎣ randomness r,

query q,
distance Hamming

F

⎤
⎦.

Then, for any H ⊂ F and s′(δ) = min{s(δ), 1 − ((m + 1)δ + ( d
|S| )

m)},

VRM(F, S,H, d,m) ∈ Strong-PCPPs′(δ)

⎡
⎣ randomness r + m log |S|,

query (m + 1)(q + 1),
distance Hamming

F

⎤
⎦.

Notice that the query complexity of previous solutions to this problem depended
polynomially on the size of H. Our solution has query complexity that is independent
of H and is based on a straightforward characterization of VRM that resembles Alon’s
combinatorial Nullstellensatz [1]). Before proving the lemma we first recall some
(relatively well-known) results on testing proximity to Reed–Muller codes.

Testing proximity to multivariate polynomials. It is easy to extend the PCPP for
the RS-code into one for the Reed–Muller code (based on multivariate polynomials),
given the extensive literature on testing multivariate polynomials using axis parallel
lines [4, 5, 20, 3, 37, 21].

For a set S ⊆ F and an m-variate function f : Sm → F, let δdm(f) be the fractional
distance of f from RM(F, S, d,m). Let δdm,i(f) denote the fractional distance of f from
a polynomial of degree d in the ith variable, and an unbounded degree in all other
variables. Finally, let E[δdm,i(f)] be the expectation of δdm,i over random i ∈ [m]. The
following lemma is a rephrasing of [3, Lemma 5.2.1]. Notice that Lemma 6.13 is a
special case of it with tighter parameters.

Lemma 4.8 (see [3]). There exists a universal constant c such that for every
S ⊂ F such that |S| ≥ poly(m, d),

δdm(f) ≤ c ·m · E[δdm,i(f)].

This lemma and Theorem 3.2 imply short PCPPs for Reed–Muller codes.
Lemma 4.9 (RM PCP of proximity). Let S ⊂ F and d,m be integers such that

|S| ≥ poly(m, d) for the polynomial of Lemma 4.8 and suppose

RS(F, S, d) ∈ Strong-PCPPs(δ)

⎡
⎣ randomness r,

query q,
distance Hamming

F

⎤
⎦.

Then

RM(F, S, d,m) ∈ Strong-PCPPs(δ)/m

⎡
⎣ randomness r + log(m · |S|m−1),

query q,
distance Hamming

F

⎤
⎦.

Proof. The proof for a purported RM-codeword is the collection of proofs of
proximity for each axis parallel line (to the RS-code). A line parallel to the ith axis is
{(b1, . . . , bi−1, xi, bi+1, . . . , bm) : xi ∈ S}, where b1, . . . , bm ∈ S. The verifier selects a
random axis parallel line and invokes the RS-verifier of Definition 6.7 on the line and
its proof. The proof follows from Lemma 4.8.
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Remark 4.10. A more query-efficient test can be constructed when S = F. Instead
of axis parallel lines, we use an ε-biased set of directions as in [11]. This results in
proofs of similar length and query complexity and slightly larger randomness, but the
soundness is as large as Ω(s(δ)) and independent of m.

Testing proximity to vanishing multivariate polynomials. We now move to the
proof of Lemma 4.7. The catch in immediately extending the univariate verifier of
Lemma 3.12 to even the bivariate case is that the “factoring” concept does not extend
immediately. Specifically, if we are given that a bivariate polynomial Q(x, y) has a
zero at (α, β) this does not imply that Q(x, y) has some nice factors. However, one
can abstract a nice property about Q from this zero. Specifically, we can say that
there exist polynomials A(x, y), B(x, y) (of the right degree) such that Q(x, y) =
A(x, y) · (x− α) + B(x, y) · (y − β). Thus to prove that Q(α, β) = 0, we may ask the
prover to give an evaluation of Q(x, y), A(x, y), and B(x, y). We can then test that
Q, A, and B are of low degree and that they satisfy the identity above. Extending
this idea to m-variate polynomials that are zero on an entire generalized rectangle
is straightforward. The technical lemma giving the identity is included below. The
lemma is also a key ingredient in Alon’s combinatorial Nullstellensatz [1]. We include
a proof for completeness.

Lemma 4.11. Let Q(x1, . . . , xm) be a polynomial over FQ of degree d in each of

m variables. Let H ⊆ FQ and let gH(z)
def
=
∏

β∈H(z − β). Then Q evaluates to 0 on
Hm iff there exist m-variate polynomials A1, . . . , Am of individual degree at most d
such that Q(�x) =

∑m
i=1 Ai(�x) · gH(xi).

Remark 4.12. The lemma above is intentionally sloppy with degree bounds.
While tighter degree bounds on Ai’s can be obtained, this will not be needed for our
PCPs.

Proof. One direction is immediate. If Q(�x) =
∑m

i=1 Ai(�x) · gH(xi) then Q(�α) = 0
for every �α ∈ Hm. The other direction is proved in three steps. First, we show that for
any polynomial P (x1, . . . , xm) of degree dj in xj , and any i ∈ {1, . . . ,m}, there exist
polynomials B(x1, . . . , xm) and C(x1, . . . , xm) of degree at most dj in xj , with the
degree of C in xi being at most min{dj , |H|−1}, such that P (�x) = B(�x)·gH(xi)+C(�x).
Second, we show that there exist polynomials A1, . . . , Am and R with the Ai’s having
degree at most d in each variable and R having degree at most |H|−1 in each variable
such that Q(�x) =

∑m
i=1 Ai(�x) · gH(xi) + R(�x), where Q is the polynomial from the

lemma statement. In the final step, we show that R(�x) = 0, concluding the proof.

Step 1. Recall that any polynomial f(xi) can be written as q(xi) · gH(xi) +
r(xi), where r has degree less than |H|. Applying this fact to the monomials xD

i for
nonnegative D we find that there exist polynomials qD(xi) and rD(xi), with degree
of qD being at most D and degree of rD being less than |H|, such that xD

i = qD(xi) ·
gH(xi) + rD(xi). Now consider any polynomial P (x1, . . . , xm) of degree di in xi.

Suppose P (�x) =
∑di

D=0 Pi(�x
′) · xD, where �x′ = (x1, . . . , xi−1, xi+1, . . . , xm). Writing

the monomials xD
i in terms of the qD’s and rD’s, we get

P (�x) =

(
di∑

D=0

Pi(�x
′)qD(xi)

)
· gH(xi) +

(
di∑

D=0

Pi(�x
′)rD(xi)

)
.

Letting B(�x) =
∑di

D=0 Pi(�x
′)qD(xi) and C(�x) = (

∑di

D=0 Pi(�x
′)rD(xi)) yields the poly-

nomials as claimed. In particular, the degrees of B and C in any variable are no more
than that of P , and the degree of C in xi is smaller than |H|.
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Step 2. We now claim that there exist polynomials A1, . . . , Am and R0, . . . , Rm

such that for every j ∈ {0, . . . ,m}, Q(�x) =
∑j

i=0 Ai(�x)·gH(xi)+Rj(�x), with Ai’s being
of degree at most d in each variable and Rj being of degree less than |H| in x1, . . . , xj

and of degree at most d in the remaining variables. The proof is straightforward by
induction on j, with the induction step using Step 1 on the polynomial P () = Rj() and
the variable xj+1. The final polynomials A1, . . . , Am and R = Rm are the polynomials
as required to yield the subclaim of this step.

Step 3. Finally, we note that for every �α ∈ Hm, we have R(�α) = Q(�α) −∑m
i=1 Ai(�α) · gH(αi) = 0−

∑m
i=1 0 = 0. But R is a polynomial of degree less than |H|

in each variable and is zero on the entire box Hm. This can happen only if R ≡ 0.
Thus we get that Q(�x) =

∑m
i=1 Ai(�x) · gH(xi), with the Ai’s being of degree at most

d in each variable, as required in the completeness condition.

Proof of Lemma 4.7. As a proof of the proximity of q ∈ FSm

to the code
VRM(F, S, d,m) our verifier expects (i) the evaluations of A1, . . . , Am from Lemma
4.11 on Sm, denoted a1, . . . , am, and (ii) for each of q, a1, . . . , am, a proof of proximity
of Ai to RM(F, S, d,m). Proof length is as claimed. The verifier operates as follows.
First, it tests proximity of each of q, a1, . . . , am to RM(F, S, d,m). Then, a random
〈α1, . . . , αm〉 ∈ Sm is selected and the verifier accepts iff q(�α) =

∑m
i=1 gH(αi) · ai(�α).

The query complexity is as claimed. Completeness follows from Lemma 4.11. As to
the soundness, if any of q, a1, . . . , am is δ-far from RM(F, S, d,m), the verifier rejects
with probability s(δ). Otherwise, q is δ close to a polynomial Q that does not vanish
on Hm. If A1, . . . , Am are the polynomials closest to a1, . . . , am, respectively, then
by Lemma 4.11 we get Q(�x) �=

∑
i Ai(�x) · gH(xi) and Q has degree at most d in

each variable. Thus, the two polynomials agree on ≤ dm points, so the acceptance
probability of the verifier is ≤ (m + 1)δ + ( d

|S| )
m as claimed.

5. Quasilinear reductions of NTIME(n) to ALGEBRAIC-CSP. In this
section we show the completeness of ALGEBRAIC-CSP for NTIME classes, thereby
proving Theorem 3.7 (restated below). We also show how to modify this proof to get a
proof of Theorem 3.10, which shows the completeness of PAIR-ALGEBRAIC-CSP

for PAIR-NTIME classes under systematic reductions.

Theorem 5.1 (Theorem 3.7, restated). There exist integers k, d such that for
any proper complexity function t : N+ → N+ and L ∈ NTIME(t(n)) the following
hold:

1. L is reducible to ALGEBRAIC-CSPk,d in time poly t(n).
2. An instance of L of size n is reduced to an instance of ALGEBRAIC-CSPk,d

over field GF(2�) of size 2� ≤ t(n) polylog t(n) and characteristic 2, where
100(kd + 1)(|H| − 1) < 2� ≤ 200(kd + 1)(|H| − 1).

5.1. Warmup—quadratic size reduction. To illustrate the ideas used in the
proof of Theorem 3.7, we start with a simpler proof of a weaker version of it, where the
size blowup is quadratic rather than quasilinear. Our starting point is the following
NP-complete language essentially from Cook’s theorem [14]. (See also [36, proof of
Theorem 8.2]).

Definition 5.2 (domino tiling). A domino tiling instance over alphabet Σ is
a tuple of constraints ψ = {Ĉij : i, j ∈ {0, . . . , n − 2}}, where each constraint is a

mapping Ĉij : Σ3 → {accept, reject}. An instance is satisfiable iff there exists a

mapping Â : {0, n2 − 1} → Σ such that for all i, j ∈ {0, . . . , n− 2}

Ĉi,j(Â(in + j), Â(in + j + 1), Â((i + 1)n + j) = accept.
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The language Domino-TilingΣ is the set of all satisfiable instances over alphabet Σ.
Theorem 5.3 (Domino-Tiling is NTIME-complete [14]). There exists a finite

size alphabet Σ such that if L ∈ NTIME(t(n)) for a proper complexity function t :
N+ → N+, then L is reducible to Domino-TilingΣ under quadratic size reductions.

Our warmup version of Theorem 3.7 is the following.
Theorem 5.4. For every finite alphabet Σ, the language Domino-TilingΣ is

reducible under linear sized reductions to ALGEBRAIC-CSP4,|Σ| .
Notice that although the reduction from Domino-Tiling to ALGEBRAIC-CSP

is linear, the reduction from a language L ∈ NTIME(t(n)) to Domino-Tiling incurs
a quadratic size blowup.

Proof. We reduce an instance ψ of Domino-TilingΣ to an instance φ = (F, {Aff1,
. . . ,Aff4}, H,C) as in Definition 3.6. We will make crucial use of the fact that the
constraint Ĉij depends on assignment entries whose indices are linear functions of i
and j.

Fix F to be any finite field satisfying 100n2 < |F| ≤ 200n2. Let ω be a generator
of F∗. Associate Σ with arbitrary elements of F. View an assignment to ψ as a
mapping Â : {win+j : i, j ∈ {0, . . . , n − 1}} → Σ where the domain and range of
this mapping are subsets of F. The arithmetized instance φ will be satisfied only by
polynomials A that are a low-degree extension of an assignment Â that satisfies ψ.
Thus, the constraint polynomial C will ensure that (i) A takes only values in Σ on
I = {win+j : i, j ∈ {0, . . . , n − 1}} and (ii) the evaluation of A on I produces an
assignment Â that satisfies ψ. Details follow.

Define

Aff1(x) = x; Aff2(x) = x · ωn; Aff3(x) = x · ω,Aff4(x) = x · ω−n2

,

H = I ∪ ωn2 · I = {{win+j : i ∈ {0, . . . , 2n− 1}, j ∈ {0, . . . , n− 1}}.

Notice that |I| = n2 and |H| = 2n2. We now define the constraint polynomial C.
Notice that Ĉi,j can be interpreted as a function from Σ3 ⊂ F3 to {0, 1} ⊂ F

and we associate 0 with accept and 1 with reject. Arithmetize this constraint by
a trivariate polynomial Ci,j : F3 → F of degree at most |Σ| − 1 in each variable,
satisfying

(5.1) Ci,j(σ1, σ2, σ3) = Ĉi,j(σ1, σ2, σ3) ∀σ1, σ2, σ3 ∈ Σ.

For ωin+j ∈ H, let Pi,j(x) be the unique polynomial of degree |H| − 1 that evaluates
to 1 on ωin+j and to 0 on every other element in H. Finally, let PΣ(x) =

∏
σ∈Σ(x−σ)

be the unique monic nonzero polynomial of degree |Σ| whose set of roots is precisely
Σ. The constraint polynomial is

(5.2) C(x, y1, . . . , y4) =

n−2∑
i,j=0

Pi,j(x) · Ci,j(y1, y2, y3) +

2n−1∑
i=n

n−1∑
j=0

Pi,j(x) · PΣ(y4).

The polynomial Pi,j is often used to “bundle” together many constraints and ver-
ify that all of them are satisfied, forming the algebraic analogue of an AND gate. The
second summand on the right-hand side of (5.2) corresponds to the set of constraints
(i) mentioned above, and the first summand corresponds to (ii).

Notice that C has degree |H|−1 in its first variable and degree |Σ| in the remaining
variables. We conclude that φ is a legal instance of ALGEBRAIC-CSP4,|Σ|.
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Completeness. Suppose ψ ∈ Domino-TilingΣ and let Â be a proof for ψ. Let A
be the low-degree extension of Â; i.e., A is a polynomial of degree ≤ n2 − 1 satisfying
A(ωin+j) = Â(in + j) for all i, j ∈ {0, . . . , n− 1}. We now prove for all x ∈ H

C(x,A(x), A(ωnx), A(ωx), A(ω−n2

x)) = 0.

If x = ωin+j ∈ H then by definition of Pi,j at most one summand of (5.2) can be
nonzero. There are two cases to consider:

• i ≤ n−2: The summand to consider is Pi,j(ω
in+j)·Ĉi,j(Â(ωin+j), Â(ωin+j+1),

Â(ω(i+1)n+j)). This summand vanishes because Â satisfies Ĉi,j .

• i ≥ n: The summand to consider is Pi,j(ω
in+j)·PΣ(Â(ωin+j)), which vanishes

because Â evaluates to Σ on I.
We conclude that φ ∈ ALGEBRAIC-CSP4,|Σ|.

Soundness. Suppose φ ∈ ALGEBRAIC-CSP4,|Σ| and let A witness this. Let

Â : {0, . . . , n2 − 1} be defined by Â(in + j) = A(ωin+j). We claim Â satisfies ψ.
First, notice that the range of A on inputs from I is Σ. If this is not the case and
A(ωin+j) �∈ Σ, then PΣ(A(ωin+j)) �= 0, so (5.2) does not vanish on x = ωn2+in+j ∈ H.

Since A evaluates to Σ on I and for σ1, σ2, σ3 ∈ Σ (5.1) implies Ci,j(σ1, σ2, σ3) = 0

iff Ĉ(σ1, σ2, σ3) = accept, we conclude that Â satisfies ψ so ψ ∈ Domino-TilingΣ.
This completes our proof.

5.2. Quasilinear size reduction. In this section we prove Theorem 3.7 and
show that ALGEBRAIC-CSP is NTIME(t(n))-complete under quasilinear size re-
ductions. Our proof is similar to that of Polishchuk and Spielman [37]; however, our
ending point is a problem over univariate polynomials.

Overview. The reason we chose Domino-Tiling as our starting point in the
previous section was because this language was NP-complete and additionally had
“nice” structure, in the sense that each constraint (Ĉi,j) depended on assignment
entries whose indices are linear functions of the constraint index. The problem with
Domino-Tiling is that the reduction from an arbitrary language in NTIME(t(n)) to
it results in instances of size t2(n). Thus, we are looking for an NP-complete language
that has a similar “nice” structure, yet whose blowup factor, when reducing from a
language in NTIME(t(n)), is only quasilinear.

One such language is de Bruijn Coloring, first presented by Polishchuk and
Spielman [37], based on a construction of [5]. First we will describe this language and
state its completeness. Then we will arithmetize it and reduce it to ALGEBRAIC-
CSP. The crucial observation in the arithmetization, given in Proposition 5.11, is
that the de Bruijn graph can be embedded in an “affine” graph over a finite field (see
Definition 5.9).

de Bruijn Coloring. Let σ : {0, 1}k → {0, 1}k be the cyclic permutation op-
erator; i.e., for w ∈ {0, 1}k, w = (w1, . . . , wk) let σ(w) = (wk, w1, . . . , wk−1). Let u⊕v
denote the bitwise xor of u, v ∈ {0, 1}k and let ei ∈ {0, 1}k be the sequence that is
zero on all but the ith coordinate, where it is one.

Definition 5.5 (wrapped de Bruijn graph [39]). The k-dimensional wrapped
de Bruijn graph is the following directed graph Bk = (V,E). Let m be the smallest
power of 2 satisfying m > 5k. The vertex set is

V = {(w, i) : w ∈ {0, 1}k, i ∈ {0, . . . ,m− 1}}.

Each vertex v = (w, i) : w ∈ {0, 1}k, i ∈ {0, . . . ,m− 1}, has two neighbors:

N0(v) = (σ(w), (i + 1 mod m)), N1(v) = ((σ(w)) ⊕ e1, (i + 1 mod m)).
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Remark 5.6. The definition in [39, section 4.3.2] is slightly different from the
above; namely, it fixes m = 5k + 1. However, Theorem 5.8 holds for any m > 5n, as
inspection of [39, section 4.3] reveals.

Definition 5.7 (de Bruijn Coloring). Let Σ̂ = {0, 1}4. The language de

Bruijn Coloring has as its space of instances tuples of the form ψ = {Bk, Ĉ}, where
Bk = (V,E) is a k-dimensional wrapped de Bruijn graph, and Ĉ = {Ĉv : v ∈ V } is a
set of constraints, where Ĉv : Σ̂3 → {accept, reject}.

An instance is in the language de Bruijn Coloring iff there exists an assign-
ment Â : V → Σ̂ such that for all v ∈ V we have Ĉv(Â(v), Â(N0(v)), Â(N1(v))) =
accept.

Theorem 5.8. de Bruijn Coloring is NP-complete. Moreover, for any proper
complexity function t : N+ → N+, a language L ∈ NTIME(t(n)) is reducible in
time poly t(n) to an instance ψ = {Bk, Ĉ} of de Bruijn Coloring, where k =
�log(t(n) ·O(log2 t(n)))�.

Proof. L ∈ NTIME(t(n)) is reducible in time poly t(n) to an instance of CktSAT

of size O(t(n) log t(n)) [29, 15]. This instance is reducible in time poly t(n) to an
instance of de Bruijn Coloring of size t(n) polylog t(n) [37]. (See [39, section 4.3]
for details.)

To arithmetize an instance of de Bruijn Coloring we embed Bk in an affine
graph as defined below. Recall an injective graph homomorphism of G to H is an
injective mapping f : V (G) → V (H) such that if (u, v) ∈ E(G) then (f(u), f(v)) ∈
E(H). Further recall an affine map Aff : F → F is of the form Aff(z) = az + b for
a, b ∈ F.

Definition 5.9 (affine graph). Let A be a set of affine maps over a field F. The
affine graph G(F,A) over F, generated by A, is the directed graph over vertex set F,
where each vertex v ∈ F is connected to Aff(v) for all Aff ∈ A. Notice that the
outdegree of this graph is at most |A|.

We will use the following elementary properties of primitive polynomials (see [32,
section 3.1]).

Proposition 5.10. Let S(x) be a primitive polynomial of degree s over GF(2).
Then, denoting ξi = xi(mod S(x)), we have that ξ1, . . . , ξ2s = ξ0 are distinct polyno-
mials over GF(2) of degree less than s.

We now define a graph homomorphism injecting Bk to an affine graph of outdegree
eight over GF(2�) for any � > k+log 5k+2. Briefly, a vertex (w, i) ∈ Bk will be mapped
to a polynomial p(w,i) ∈ GF(2�). We will show that the polynomials corresponding
to (w, i+ 1) and (w⊕ ei, i+ 1) can be obtained by applying two out of eight possible
affine shifts to p(w,i). In what follows, addition and multiplication are in GF(2�) and
we identify {0, 1} with GF(2).

Proposition 5.11. Let m be the smallest power of 2 satisfying m > 5k. Let
GF(2�) = GF(2)[x]/q(x), where q(x) is an irreducible polynomial of degree �. Let
S(x) be a primitive polynomial of degree s = logm (note that s is an integer), and let
ξi be as defined in Proposition 5.10. For ((w1, . . . , wk), i), wj ∈ {0, 1}, i ∈ [m], let

(5.3) g(w) = xs ·
k∑

j=1

wjx
j ; h(i) = ξi ; f(w, i) = g(w) + h(i).

Then, the mapping f : V (Bk) → GF(2�) is an injective homomorphism of Bk
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into the affine graph G(GF(2�),A), where
(5.4)

A =
{

Affb(α) � x · α + b1S(x) + b2x
s+1 + b3x

s+k+1 : b = (b1, b2, b3) ∈ {0, 1}3
}
.

Proof. Our mapping is injective. Note that deg(h(i)) < s for all i ∈ [m], whereas
the minimal degree of a nonzero term of g(w) is s + 1. Thus, f(w, i) = f(w′, i′) iff
g(w) = g(w′) and h(i) = h(i′). The former happens by definition iff w = w′ and the
latter happens iff i = i′ because Proposition 5.10 implies ξi �= ξi′ for all i �= i′ ∈ [m].

To prove f is a homomorphism, we need to show that if ((w, i), (w′, (i+1 mod m)))
is an edge of Bk,m then f(w′, (i + 1 mod m)) = Affb(f(w, i)) for some b ∈ {0, 1}3.
There are eight cases to consider. Recall w′ is either σ(w) or (σ(w)) ⊕ e1. Note that
� > k+s+1 so for all w ∈ {0, 1}k we have that x ·g(w) mod (q(x)) is equal to x ·g(w)
as polynomials over GF(2). By definition of g we get

g(σ(w)) =

{
x · g(w), wk = 0,
x · g(w) + xs+k+1 + xs+1, wk = 1.

Similarly,

g((σ(w)) ⊕ e1) =

{
x · g(w) + xs+1, wk = 0,
x · g(w) + xs+k+1, wk = 1.

Finally, by definition of h we get

h(i + 1 mod m) =

{
x · h(i), deg(h(i)) < s− 1,
x · h(i) + S(x), deg(h(i)) = s− 1.

Our claim follows from the definition of Affb and the previous equations.
Proof of Theorem 3.7. We prove Theorem 3.7 for k = 10 and d = |Σ̂| = 16,

where Σ̂ is from Definition 5.7. By Theorem 5.8 it suffices to show a polynomial time
reduction sending an instance ψ = {Bk, Ĉ} of de Bruijn Coloring to an instance
of ALGEBRAIC-CSP over a field of size 2k · poly k. We reduce in time poly 2� to
an instance over GF(2�) for any � > k + (log 5k) + 2 and the reduced instance is of
the form

φ = {GF(2�), {Aff
′,Aff

′′} ∪ A, H,C(x, y0, y1, z000, . . . , z111)},

where Aff
′(x) = x, Aff

′′(x) = ζ − x (for ζ to be defined later), and A is as in (5.4).
Embed Σ̂ in GF(2�) arbitrarily and associate accept with 0 and reject with

1. As in the proof of Theorem 5.4, we view the constraint Ĉv as a mapping from
Σ̂ ⊂ GF(2�) to {0, 1}. Recall that Proposition 5.11 showed V (Bk) can be embed-
ded in G(GF(2�),A) via the embedding f from (5.3). Notice that the outdegree
of G(GF(2�),A) is greater than the outdegree of Bk; thus when arithmetizing Ĉv

we must take into account which of the eight neighbors of f(v) in G(GF(2�),A)
are maps of the neighbors of v in Bk. Let b0(v), b1(v) ∈ {0, 1}3 denote the two
relevant neighbors of f(v) in G(GF(2�),A) satisfying f(N0(v)) = Affb0(v)(f(v))
and f(N1(v)) = Affb1(v)(f(v)). Let Cv(y, zb0 , zb1) be the trivariate polynomial of

degree at most |Σ̂| − 1 in each variable, agreeing with Ĉv on inputs in Σ̂3. Let
I = {f(v) : v ∈ V }. Let ζ ∈ GF(2�) satisfy (ζ+I)∩I = ∅, where ζ+I = {ζ+ξ : ξ ∈ I}
and set H = I ∪ (ζ + I). Such ζ exists because viewing elements of GF(2�) as poly-
nomials over GF(2) modulo an irreducible polynomial of degree �, all elements in I
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have degree at most k + s. Now, let Ph(x) be the polynomial of degree |H| − 1, that
is, 1 when x = h and 0 for all x = h′ ∈ H,h′ �= h. Finally, let PΣ̂(y) be the nonzero

polynomial of degree |Σ̂| whose roots are precisely the elements of Σ̂. We are ready
to define the constraint polynomial of φ:

C(x, y0, y1, z000, . . . , z111) =
∑
v∈I

Pv(x) · Cv(y0, zb0(v), zb1(v))(5.5)

+
∑

h∈H\I
Ph(x) · PΣ̂(y1).

The second summand on the right-hand side checks that all vertices receive colors
in Σ̂ and the first summand checks that all coloring constraints are satisfied. The
polynomials Pv, Ph are used to “bundle” all constraints into one polynomial.

Note that degx(C) ≤ |H|−1 and the degree in the remaining variables is at most
|Σ̂|. Thus, φ is a legal instance of ALGEBRAIC-CSPk,d.

Completeness. Suppose ψ ∈ de Bruijn Coloring and let Â : V → Σ̂ witness
this. Let A be the polynomial of degree ≤ |V | − 1 satisfying A(f(v)) = Â(v) for all
v ∈ V . We claim A satisfies φ. We need to show for all x ∈ H

C (x,A(x), A(ζ − x), A(Aff000(x)), . . . , A(Aff111(x))) = 0.

As in the proof of Theorem 5.4, when x ∈ H, at most one summand of (5.5) may be
nonzero, by definition of Pv. We split the proof into cases.

• x ∈ I: Let v = x. The summand to consider is Pv(v)·Cv(A(v), A(Affb0(v)(v)),

A(Affb1(v)(v))), which vanishes because Ĉ(Â(v), Â(N0(v)), Â(N1(v)) =
accept, f(N0(v)) = Affb0(v)(f(v)), and f(N1(v)) = Affb1(v)(f(v)).

• x ∈ H \I: The summand to consider is Pv(x) ·PΣ̂(A(ζ−x)). By construction
of H and selection of ζ we have ζ −x ∈ I. By construction A takes on values
in Σ̂ on ζ − x, so the summand vanishes.

Soundness. Suppose φ ∈ ALGEBRAIC-CSPk,d and let A witness this. Let

Â : I → GF(2�) be the evaluation of A on I. First we claim that the range of Â is
Σ̂. Indeed, assume A(x) �∈ Σ̂ for x ∈ I. Let x′ = ζ + x and notice that x′ ∈ H \ I.
Then the second summand of (5.5) does not vanish on x′. Since all other summands
vanish by construction of Pv, we reach a contradiction. We conclude that Â is a legal
assignment to ψ.

Next, we claim that Â satisfies ψ. Consider the constraint Ĉv. Equation (5.5)
holds for v and Pv′(v) = 0 for all v′ �= v, v′ ∈ H, implying Cv(A(v), A(Affb0(v)(v)),
A(Affb1(v)(v))) = 0. Recall from the previous paragraph that A(v), A(Affb0(v)(v)),

A(Affb1(v)(v)) ∈ Σ̂. By construction of Cv we conclude that Ĉv(Â(v), Â(N0(v)),

Â(N1(v))) = accept. This completes our proof.

5.3. Systematic reduction to PAIR-ALGEBRAIC-CSP. We now show
how to modify the reduction of the previous section to apply it to pair languages and
get a systematic reduction, thus proving Theorem 3.10.

Proof. Consider the sequence of reductions applied to an instance x of L and
resulting in an instance φ of ALGEBRAIC-CSP. First, we reduce x to an instance
C of CktSAT along the lines of [29, 15]. Inspection reveals that this reduction is
systematic. Indeed, the implicit input y is embedded into the inputs of C, and C
accepts only inputs y ∈ Lx.
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In the next step we reduce C to an instance ψ of de Bruijn Coloring. Once
again, inspection of this reduction shows it is systematic [39, section 4.3]. In particular,
this latter reduction embeds all nodes of C including its inputs in the first layer of
the wrapped de Bruijn graph and each input node is mapped to a unique vertex. By
construction, a coloring of the resulting de Bruijn graph is legal only if the colors of
the vertices corresponding to inputs form an assignment satisfying C. Similarly, any
assignment satisfying C can be extended to a coloring satisfying the constraints of ψ.

Finally, consider the reduction from de Bruijn Coloring to ALGEBRAIC-
CSP. Notice that each vertex of the de Bruijn graph is mapped to a distinct ele-
ment of F (Proposition 5.11). Additionally, by construction we map the colors of the
de Bruijn coloring problem to distinct elements of F. By construction, φ is satisfied
by A iff A is the low-degree extension of a coloring that satisfies ψ. We have seen
that all steps of our reduction are systematic; hence so is their concatenation. This
completes our proof.

6. PCPPs for Reed–Solomon codes over fields of characteristic 2. In
this section we give a PCPP-verifier for RS-codes when the field is of characteristic 2
and the set of evaluation points is a linear subspace of the field over GF(2), thereby
proving Theorem 3.2 (restated below).

An overview of the proof appears in subsection 6.1. This is followed by a formal
description of the proof of proximity and verifier in subsection 6.2 and the analysis
of its basic properties in subsection 6.3. The analysis of the soundness follows in
subsection 6.4. We conclude with a formal proof of Theorem 3.2 in subsection 6.5.

Theorem 6.1 (Theorem 3.2, restated). Let PAIR-ADDITIVE-RS be the re-
striction of the language PAIR-RS to pairs ((GF(2�), L, d), p), where GF(2�) is the
Galois field of size n = 2� (and characteristic 2) and L ⊆ F is GF(2)-linear. Then,

PAIR-ADDITIVE-RS ∈ Strong-PCPPδ/ polylog n

⎡
⎣randomness log(n · polylogn),

query O(1),
distance HammingGF(2�)

⎤
⎦.

Remark 6.2. For simplicity, we first prove the theorem for the special case of
degree d = |L|/8 − 1. Then we show in Proposition 6.14 that this implies that the
theorem holds for all degrees.

6.1. Sketch of proof of Theorem 3.2. At a high level, we attempt a reduction
from the task of testing a univariate polynomial to the task of testing a bivariate
polynomial of significantly smaller degree. We then invoke an analysis of a “bivariate
low-degree test” by Polishchuk and Spielman [37], which reduces the task of testing
bivariate polynomials back to the task of testing univariate polynomials, of much
smaller degree than the original. Recursing on this idea leads to the full test. We
note that crucial to our obtaining short PCPPs is the evaluation of the bivariate
polynomial on a carefully selected, algebraically structured, subset of points. This set
is very different from the sets typically used in previous PCP constructions, e.g., in
[5, 2, 17], which are product sets usually consisting of the whole field.

We start by considering the polynomial P (z) of degree < n/8 evaluated on the
linear space L ⊂ GF(2�) of cardinality n and address the task of “testing” it. Our
starting point is that for any polynomial q(z) of degree ≈

√
n, we can define a bivariate

polynomial Q(x, y) of degree ≈
√
n in each variable that “captures” all the information

of P . Specifically, we can reconstruct P from Q using the identity P (z) = Q(z, q(z)).
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Proposition 6.3. Given any pair of polynomials P (z), q(z), there exists a unique
bivariate polynomial Q(x, y) with degx(Q) < deg(q) and degy(Q) = �deg(P )/deg(q)�,
such that P (z) = Q(z, q(z)).

Proof. We use division over the ring of bivariate polynomials F[z, y] (see [16]
for more details). Fix the lexicographic ordering on terms where z > y; i.e., terms
are ordered first by their degree in z and then by their degree in y. Divide P (z) by
(y − q(z)), obtaining

(6.1) P (z) = Q′(z, y) · (y − q(z)) + Q(z, y).

By the basic properties of division in this ring Q is uniquely defined, and degy(Q) =
�deg(P )/deg(q)� and degz(Q) < deg(q). To complete the proof set y = q(z) and
notice that the first summand on the right-hand side of (6.1) vanishes.

The presentation of P of degree ≈ n as a bivariate polynomial Q of individual
degree ≈

√
n is useful, because testing of bivariate polynomials reduces to testing of

univariate polynomials of roughly the same degree using well-known “low-degree tests”
and their analysis. This leads us to the hope that Q might provide a good “proof”
that P is of low degree. More to the point, to prove that a table of evaluations of P
corresponds to the evaluations of a polynomial of low degree, the prover can provide
a table of evaluations of a bivariate polynomial Q, prove that Q has degree

√
n in

each variable, and then prove that Q is consistent with the table of evaluations of P .
To completely describe the above approach, all we need to do is describe which

set of points we will specify Q on so as to achieve both tasks: (i) verifying that Q has
low degree, and (ii) that it is consistent with P . However, this leads to conflicting
goals. To test that Q has low degree, using a bivariate verifier, we need to know its
values on some subset X × Y , where X,Y ⊆ GF(2�). To make this efficient, we need
to make |X|, |Y | ≈

√
n. On the other hand, to test its consistency with P , the natural

approach is to ask for its values on the set

T = {(z, q(z))|z ∈ L}.

Unfortunately the set T , which depends on the selection of q(z), is far from being
of the form X × Y . For starters, the projection of T onto its first coordinate has
cardinality n while we would like this projection to be of cardinality O(

√
n).

Our solution is to ask the prover to provide the evaluation on both sets of points.
This leads to a problem of checking consistency between the two sets and to do so we
pick q(z) in a way that will ensure T is compatible with X×Y . In particular, we choose
q(z) to be a special linearized polynomial as defined in [32, Chapter 3, section 4]. A
polynomial q(z) over GF(2�) is said to be linearized if q(x+y) = q(x)+ q(y) for every
x, y ∈ GF(2�). A linearized polynomial defines a linear map over GF(2�) and we abuse
notation and use q to denote this map. For S ⊂ GF(2�), let q(S) = {q(s) : s ∈ S}.
The linearized polynomial we use and its useful properties are listed below.

Proposition 6.4. For L a linear subspace of GF(2�) that is a direct sum of the
linear spaces L0, L1, let

q(z) = qL0(z) �
∏

α∈L0

(z − α).

• The polynomial q(z) is linearized.
• The kernel of (the linear map defined by) q is L0.
• q(L) = q(L1) and q(L1) is a linear space of dimension dim(L1).
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q(L1)

y

x

L0, L0 + β1, . . . , L0 + β7

T

Fig. 1. Here F = GF(26) is the field with 64 elements and q is a linearized polynomial of degree
8. We plot the set of points T ⊂ F×F defined by T = {(z, q(z)) : z ∈ F}. Notice T can be partitioned
into eight product sets, each set being a product of an affine shift of L0 and some β ∈ L1.

• q is a one-to-one map from L1 to q(L1); i.e., for β �= β′ we get q(β) �= q(β′).
• q is an |L0| to one map on L, where, for β ∈ L1, the affine space L0 + β �
{α + β : α ∈ L0} is mapped to q(β).

Proof. The first part is proved by induction on the dimension of L. The base case
(dimension zero) is easy, as qL0

(z) = z is clearly linearized. For the inductive step,
let L0 = span(L̂, α), where dim(L̂) = k − 1 and α ∈ GF(2�). Let q̂(z) = qL̂(z) be the

linearized polynomial whose set of roots is L̂. Clearly, qL0
(z) = q̂(z) · q̂(α+z) because

addition and subtraction are the same in fields of characteristic 2. So

qL0(x + y) = q̂(x + y) · q̂(α + x + y) = q̂2(x) + q̂2(y) + q̂(α)(q̂(x) + q̂(y))

= q̂(x) · q̂(α + x) + q̂(y) · q̂(α + y) = qL0(x) + qL0(y).

We conclude that qL0 is a linearized polynomial. The second part follows because
deg(q) = |L0| and the elements of L0 are all roots of q.

The last three parts follow via basic linear algebra from our previous assertions
that q defines a linear map with kernel L0.

With Proposition 6.4 in hand, we return to the task of providing a proof of
proximity for the evaluation of a polynomial on the set of points L. Write L as the
direct sum of L0, L1, with dim(L0) = �dim(L)/2� and dim(L1) = �dim(L)/2� (so
|L0|, |L1| ≈

√
|L|), and take q(z) = qL0

(z) as described above. The last part of
Proposition 6.4 implies that q partitions T into the disjoint union of |L1| lines, where
each line is a product of a set of size ≈

√
|L| with a singleton set (see Figure 1):

T =
⋃

β∈L1

{{L0 + β} × {q(β)}} .

This suggests requesting the evaluation of Q on the set of points (L0×q(L1))∪T ,
the cardinality of which is ≤ 2n. With such an evaluation in hand we can use the
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subset L0 × q(L1) to perform a bivariate low-degree test, by testing proximity to the
RS-code of degree ≈

√
n of a random row/column of this product set. The consistency

of Q’s evaluation on the product set L0×q(L1) and on the set T can also be addressed,
by reading Q(x, q(β)) for all points x ∈ L0 ∪ (L0 + β) for β ∈ L1. This consistency is
precisely what is needed to connect the evaluation of P on the set L, that is isomorphic
to T , to the evaluation of the bivariate Q on the product set L0 × q(L1). We have
reduced our original problem of size n to O(

√
n) identical problems of size O(

√
n).

x

y
T

S

, L
7

q(L1)

L00, L
1
= L00 (L00 + 1), . . .

Fig. 2. The proof of proximity for P is the evaluation of Q on the set of points denoted S.
Notice it has a large subset that is the product set L′

0 × q(L1), allowing for bivariate low degree
testing. Additionally, S ∪ T can be partitioned into eight rows and each row is a linear space.

Our description so far leads to a proof of proximity of size O(n) that can be
tested by making O(

√
n) queries. However, the robustness of our tests can be used

to decrease the query complexity further, at the price of increasing the proof length.
Informally, robustness means the following. If a function f : (L0×q(L1))∪T → GF(2�)
is δ-far from being a low-degree bivariate polynomial, then the expected distance of a
random row/column of f from a low-degree univariate polynomial is Ω(δ). To apply
recursion, notice that all of our tests verify proximity to Reed–Solomon codewords
evaluated on linear subspaces of GF(2�). To see this notice that L0 and q(L1) are
linear spaces, and so is L0∪ (L0 +β) = span(L0, β). Using recursion we conclude that
to test proximity to the RS-code of size n it suffices to test proximity to RS-codes of
size ≈

√
n, which can be done by testing proximity to the RS-code of size ≈ n1/4, etc.

Applying this recursion a log logn number of times reduces the degree to a constant
and gives us our proofs of length n · polylogn.

From intuition to proof. Our rigorous analysis follows the intuition above, with
one technical difference regarding the degree of the bivariate polynomial Q. To use
the bivariate low-degree test on Q, we need its evaluation on a product set of points
X × Y , where |X| � degx(Q) and |Y | � degy(Q). In our case Proposition 6.3 gives
us only |X| > degx(Q). As to y, we get |Y | > 8 degy(Q), which is sufficient. So
we need to enlarge X. This is done by taking a linear space L′

0 ⊃ L0 of dimension
dim(L0) + 2 and asking for the evaluation of Q on (L′

0 × q(L1)) ∪ T . This causes a
new problem, because L′

0∪ (L0 +β) is not a linear space, as dim(L′
0) > dim(L0). This
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problem is fixed by asking for the evaluation of Q on the linear space L′
0 ∪ (L′

0 + β).
The resulting set of points is described in Figure 2.

6.2. The RS proof of proximity and its associated verifier. First we define
the structure of the proof of proximity for RS(GF(2�), L, d) and then describe the
verifier’s operation. As explained in the previous section, the proof for a purported
low-degree polynomial p : L → GF(2�) is an evaluation of a low-degree bivariate
polynomial related to p on a carefully chosen subset of GF(2�)×GF(2�), concatenated
with a sequence of subproofs for RS-codes of smaller size. To formally define the proof
of proximity we use the following notation throughout this section.

Given basis (b1, . . . , bk) for L, let

L0 � span(b1, . . . , b�k/2�); L′
0 � span(b1, . . . , b�k/2�+2);(6.2)

L1 � span(b�k/2�+1, . . . , bk).

Fix q(x) � qL0(x). Notice that L′
0 ∩L1 = span(b�k/2�+1, b�k/2�+2), and, in particular,

this intersection is nonempty. For β ∈ L1 let

Lβ �
{

span(L′
0, b�k/2�+3), β ∈ L′

0,
span(L′

0, β) otherwise.
(6.3)

A partial bivariate function f over GF(2�) is a function with a partial domain
f : S → GF(2�), where S ⊂ GF(2�) × GF(2�). The β-row of S is the set Rβ =
{α : (α, β) ∈ S} (this set might be empty). The restriction of f to the β-row is
the univariate function f |↔β : Rβ → GF(2�) that agrees with f on its inputs, i.e.,
f |↔β (α) = f(α, β). Similarly, the α-column of S is Cα = {β : (α, β) ∈ S}, and the

restriction of f to it is f |	α : Cα → GF(2�) defined by f |	α(β) = f(α, β).
Definition 6.5 (Reed–Solomon proof of proximity). The proof of proximity for

a purported codeword of the Reed–Solomon code RS(GF(2�), L, n/8 − 1) is defined
by induction on k = dim(L). If k ≤ 6 then it is empty. Otherwise, the proof is
a pair π = {f,Π}, where f is a partial bivariate function over partial domain S ⊂
GF(2�)×GF(2�) defined next and Π is a sequence of proofs of proximity for RS-codes
over (smaller) linear spaces.

Partial domain. Let

(6.4) T �
⋃

β∈L1

{{L0 + β} × {q(β)}} ; S �

⎛
⎝ ⋃

β∈L1

{Lβ × {q(β)}}

⎞
⎠ \ T.

Auxiliary proofs. For each β ∈ L1, the sequence of proofs Π has a unique subproof
for an RS-codeword over Lβ of degree |Lβ |/8 − 1, denoted π↔

β . For each α ∈ L′
0,

the sequence Π includes a unique subproof for an RS-codeword over q(L1) of degree

|q(L1)|/8 − 1, denoted π
	
α. Formally,

Π � {π↔
β : β ∈ L1} ∪ {π	

α : α ∈ L′
0}.

The next proposition shows that S∪T can be decomposed into rows and columns
that are linear spaces (of size ≈

√
|L|). This gives some explanation of our peculiar

choice of the set S as described in the previous section and shown in Figure 2.
Proposition 6.6. The set S ∪ T is the disjoint union of q(β)-rows for β ∈ L1.

The q(β)-row of S∪T is the linear space Lβ. Similarly, for every α ∈ L′
0, the α-column

of S ∪ T is the linear space q(L1).
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Proof. By construction of S, to prove the claim about the rows of S∪T it suffices
to show that the q(β)-row of T is a subset of Lβ . By the last part of Proposition 6.4
this row is

{γ ∈ L : q(γ) = q(β)} = q(−1)(q(β)) ∩ L = L0 + β ⊂ Lβ .

The inclusion above follows by definition from (6.3). This completes the proof of the
claim about the rows.

Now consider the α-column of S ∪ T for α ∈ L′
0. By (6.3) we have L′

0 ⊂ Lβ for
every β ∈ L1 and Lβ × {q(β)} ⊂ S, so (α, q(β)) ∈ S implying q(L1) is a subset of
the α-column. However, by the first part of our proposition, the only nonempty rows
of S ∪ T are the q(β)-rows. So we conclude that the α-column of S ∪ T is precisely
q(L1).

Definition 6.7 (RS-verifier). The verifier for proximity to RS(GF(2�), L, d =

|L|/8− 1) is denoted VRS
(p,π)(GF(2�), L, d). It receives as explicit inputs the descrip-

tion of the field GF(2�), a basis (b1, . . . , bk) for L, and the degree parameter d =
|L|/8− 1. The implicit input of the verifier is the purported codeword p : L → GF(2�)
and its purported proof is π = {f,Π} as described in Definition 6.5. The verifier
operates as follows.

Base case (|L| ≤ 64). The verifier reads p in entirety and accepts iff p ∈
RS(GF(2�), L, |L|/8 − 1).

Recursion (|L| > 64). Let p̂ : T → GF(2�) be the partial bivariate function
corresponding to p,

(6.5) p̂(γ, q(γ)) = p(γ) for γ ∈ L.

Notice that p̂ is well defined because the mapping γ �→ (γ, q(γ)) is a bijection from L
to T . Let

(6.6) f̂ : S ∪ T → GF(2�)

be the function that agrees with f on S and with p̂ on T . Notice that f̂ is well
defined because S ∩ T = ∅. The verifier sets L0 = span(b1, . . . , b�k/2�), computes the
coefficients of the polynomial q(x) = qL0(x), and performs one of the following two
tests with probability half each.
Row test. Pick β ∈ L1 at random. Let Lβ be as in (6.3). Invoke

VRS
(f̂ |↔q(β),π

↔
β )(GF(2�), Lβ , |Lβ |/8 − 1).

Column test. Pick α ∈ L′
0 at random. Let L1 be as in (6.2). Compute a basis for

q(L1) and invoke

VRS
(f̂ |�α,π�

α)(GF(2�), q(L1), |q(L1)|/8 − 1).

Remark 6.8. The “inner” verifiers, i.e., the row and column tests, restrict their
attention to special subsets of p and π. To simplify our analysis, we assume these
special subsets are copied to an “inner oracle” before invocation of an inner test. This
assumption can be made without loss of generality because the verifier is nonadaptive;
i.e., its operation does not depend on the implicit input given to it. Furthermore, the
indices of the queries needed at the bottom of the recursion can be computed efficiently
given the random coins used through the recursion as can be verified by inspection of
the proof of Proposition 6.9.
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The following subsections analyze the performance of VRS. Specifically, the next
subsection analyzes the simple properties including the running time, query complex-
ity, randomness/size complexity, and the completeness. The soundness analysis is
addressed in subsection 6.4.

6.3. Basic properties.
Proposition 6.9. VRS

(p,π)(GF(2�), L, |L|/8 − 1) makes at most 64 queries into
p and π. It tosses at most k + O(log k) random coins (recall that k = dim(L)) and

runs in time poly �. The size of the proof π accessed by VRS
(p,π)(GF(2�), L, |L|/8−1)

is 2k · poly k = |L| · polylog |L|.
Proof. The query complexity is easy to verify. In the base case, the verifier reads

64 field elements. In the inductive case the verifier invokes VRS which by induction
makes 64 queries.

Regarding randomness complexity, in the base case the verifier tosses zero coins.
In the inductive case, the verifier tosses one coin to determine which test to perform—
row or column. It then tosses k/2 + O(1) coins to determine the inner call and then
(k/2 + O(1)) + O(log(k/2 + O(1))) coins in the recursive call. Adding up, we get a
total of k+O(log k) coins. The size of the proof can be similarly analyzed or bounded
by 2randomness to get the same bound.

We now analyze the running time, which is the sum of two processes.
The preprocessing time. This is the time required by the outer verifier VRS

(p,π)[GF(2�),
L, |L|/8−1] to prepare the explicit input for invoking an inner verifier on a row/column.
Notice that q(x) can be computed and evaluated in polynomial time in |L0| and � and
so can the bases for L0, L

′
0, Lβ , L1, and q(L1). Thus, the preprocessing time is poly-

nomial.
The index translation time. Suppose the outer verifier conducts an inner row test

of the form

VRS
(f̂ |↔q(β),π

↔
β )[GF(2�), q(Lβ), |Lβ |/8 − 1].

The case of a column test is analogous. A query to f̂ |↔q(β) by the inner verifier is
indexed by an element α ∈ Lβ . However, this query needs to be translated to a query

to f̂ , which is a pair (α, β) ∈ S∪T . This translation is easily seen to be efficient given

α and β. Furthermore, translating a query to f̂ into a query to f : S → F or p : T → F
is also easy. If β = q(α) we query p(α) because (α, β) ∈ T , and otherwise we query
f(α, β). This translation involves evaluating q(α), which can be done efficiently as
argued above.

We conclude that for each level of the recursion, the running time of the pre-
processing and index translation is at most polynomial in |L| and �. Since there are
O(log �) levels of recursion, we conclude that the running time is as stated, completing
our proof.

Next we move to the completeness part of the proof.
Proposition 6.10 (perfect completeness). If p is the evaluation of a polynomial

P of degree < |L|/8, then there exists a proof that causes the RS-verifier to accept
with probability one.

This part is straightforward given the intuition developed in the proof sketch of
Theorem 3.2. If p is indeed low-degree, then there exists a proper low-degree bivariate
polynomial Q that is consistent with it on all rows. Looking at Figure 2 we argue
that S is a union of linear spaces and the restriction of Q to each row is low-degree
and consistent with p. The formal proof follows.
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Proof. To prove the proposition inductively, it suffices to construct f : S →
GF(2�) so that the function f̂ : S ∪ T → GF(2�) is such that for every β ∈ L1, the

q(β)-row of f̂ is a codeword of RS(GF(2�), Lβ , |Lβ |/8− 1), and for every α ∈ L′
0, the

α-column of f̂ is a codeword of RS(GF(2�), L1, |L1|/8 − 1).
Using Proposition 6.3 we get P (x) = Q(x, q(x)) for q(x) = qL0(x), where

(6.7) degx(Q) < |L0| and degy(Q) = �deg(P )/deg(q)� < (|L|/8)/|L0| = |L1|/8.

Set f(α, β′) = Q(α, β′) for every (α, β′) ∈ S. If (α, β′) ∈ T we have β′ = q(α), so

p̂(α, β′) = p̂(α, q(α)) = p(α) = P (α) = Q(α, q(α)) = Q(α, β′).

Thus, f̂ is the evaluation of Q on S ∪ T . Consider the q(β)-row of f̂ for β ∈ L1. By
Proposition 6.6 the q(β)-row of S ∪ T is Lβ . By (6.3) we have |Lβ | = 8 · |L0| because
dim(Lβ) = dim(L0) + 3. By (6.7) we have deg(Q(x, q(β)) ≤ degx(Q) < |L0|. We

conclude that the q(β)-row of f̂ is indeed a member of RS(GF(2�), Lβ , |Lβ |/8 − 1).

Similarly, by Proposition 6.6 the α-column of f̂ is q(L1). By Proposition 6.4

dim(q(L1)) = dim(L1), so |q(L1)| = |L1|. By construction the α-column of f̂ is
the evaluation of Q(α, y) on q(L1). Equation (6.7) completes our proof, because
deg(Q(α, y)) ≤ degy(Q) < |L1|/8.

6.4. Soundness. Our analysis of the soundness is by induction. Assume VRS

accepts implicit input p and proof π = {f,Π} with high probability. Let p̂, f̂ be
the partial bivariate functions as defined in (6.5) and (6.6), respectively. We argue

by induction that for most α ∈ L′
0 and β ∈ L1, the α-column and q(β)-row of f̂

are close to polynomials of degree roughly
√
|L|. The analysis of Polishchuk and

Spielman implies that f̂ restricted to the product set L′
0 × q(L1) is very close to some

low-degree bivariate polynomial. Then we claim that p̂ is close to an evaluation of
the same polynomial on the set of points T . This implies p is close to a degree-|L|/8
univariate polynomial, completing the analysis. Formally, we have the following.

Lemma 6.11 (soundness). There exists constant c ≥ 1 such that for every integer
k and ε, if

Pr[VRS
(p,π)(GF(2�), span(b1, . . . , bk), 2

k/8 − 1) = reject] ≤ ε,

then p is
(
clog k · ε

)
-close to RS(GF(2�), span(b1, . . . , bk), 2

k/8 − 1).
To prove the lemma, we need a version of the analysis of Polishchuk and Spielman

of the bivariate test. The following lemma is directly implied by the main theorem in
[37]. We defer its proof to section 6.6 below.

Definition 6.12. For set S ⊆ F × F, partial bivariate function f : S → F, and
nonnegative integers d1, d2, define δ(d1,d2)(f) to be the fractional distance of f from a
polynomial of degree d1 in its first variable and d2 in its second variable. Formally,

δ(d1,d2)(f) � min
{Q:S→F| degx(Q)≤d1,degy(Q)≤d2}

{δ(f,Q)}.

Let δ(d,∗)(f) and δ(∗,d)(f) denote the fractional distances when the degree in one of
the variables is unrestricted.

Lemma 6.13 (bivariate test on product set [37]). There exists a universal
constant c0 ≥ 1 such that the following holds. For every A,B ⊆ F and integers
d1 ≤ |A|/4, d2 ≤ |B|/8 and function f : A×B → F, it is the case that

δ(d1,d2)(f) ≤ c0 ·
(
δ(d1,∗)(f) + δ(∗,d2)(f)

)
.
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Proof of Lemma 6.11. The proof is by induction on k. Let L = span(b1, . . . , bk)
and let L0, L

′
0, L1, q be as defined in the beginning of subsection 6.2. We use the

following constants, where ĉ is a parameter to be minimized and c0 is the universal
constant from Lemma 6.13:

c1 � ĉlog(7/6)/2; c2 �
c1
3c0

; c3 �
3c1

16(3c0 + 2)
.

We fix c to be the minimal ĉ such that c3 ≥ 2 and 1
c3

+ 16
c1

≤ 1. Notice that c1, c2, c3 are
strictly increasing functions of ĉ, so c is well defined (we do not attempt to minimize
it).

The base case k ≤ 6 is immediate. For the inductive case we assume that the
lemma is true by induction for smaller dimension k′ and, in particular, for the recursive
calls of the RS-verifier, and we now prove it for dimension k ≥ 7.

Let π = (f,Π) be as in Definition 6.5 and assume that (p, π) is rejected by
the verifier with probability at most ε. We assume without loss of generality that
ε ≤ c− log k, for otherwise there is nothing to prove. We show below that p is within
distance clog k ·ε of some RS-codeword. In what follows let p̂, f̂ be the partial bivariate
functions defined in (6.5) and (6.6), respectively.

Step 1. Restricting the bivariate function f̂ to a product set L′
0 × q(L1). Denote

by ε(α) the probability that the inner verifier rejects f̂ |	α (and its proof), and similarly

let ε(β) be the probability verifier rejects f̂ |↔q(β). Let εcol be the expectation of ε(α)

over random α ∈ L′
0 and let εrow be the similar expectation of ε(β) over random

β ∈ L1. By definition of the verifier, we have ε = 1
2 (εrow + εcol). Since these quantities

are nonnegative we get εrow, εcol ≤ 2ε.
Let d1 = |L0| − 1 and recall that |Lβ | = 8|L0| for every β ∈ L1. This follows

from (6.2) and (6.3). First we bound δ(d1,∗)(f̂). This quantity is the expectation

over random β ∈ L1 of the fractional distance of f̂ |↔q(β) from a degree-d1 univariate

polynomial. Let δ(d1)(f̂ |↔q(β)) denote this distance. We get

δ(d1,∗)(f̂) = Eβ∈L1

[
δ(d1)(f̂ |↔q(β))

]
≤ Eβ∈L1

[
ε(β) · clog(dim(Lβ))

]

≤ εrow · clog(�k/2�+3) ≤ 2ε · clog 6k
7 =

ε

c1
· clog k.(6.8)

The first inequality follows by induction, the second follows because dim(Lβ) =
�k/2�+ 3 for every β ∈ L1, the third holds for k ≥ 7, and the last equality is true for
our setting of c1.

Let f ′ be the restriction of f̂ to L′
0 × q(L1); i.e., f ′ : L′

0 × q(L1) → GF(2�) is the

function that agrees with f̂ on its domain. Since |L′
0| = |Lβ |/2 we get from (6.8)

(6.9) δ(d1,∗)(f ′) ≤ 2ε

c1
· clog k.

Let d2 = |L1|/8 − 1. By analogy to (6.8), we get by induction

(6.10) δ(∗,d2)(f ′) ≤ εcol · clog(�k/2�+1) ≤ ε

c1
· clog k.

The conditions of Lemma 6.13 hold with respect to f ′ and A = L′
0, B = q(L1),

because d1 ≤ |L′
0|/4 and d2 ≤ |q(L1)|/8. Thus, from (6.9), (6.10), Lemma 6.13, and
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our setting of c2, we conclude that f ′ is “close” to an evaluation of a low degree
bivariate polynomial:

(6.11) δ(d1,d2)(f ′) ≤ ε

c2
· clog k.

Step 2. Extending the analysis to the bivariate function p̂. Let Q be the degree-
(d1, d2) polynomial closest to f ′. We wish to bound the probability over random
(α, β̃) ∈ T that p̂(α, β̃) �= Q(α, β̃). Let β̃ = q(β) and notice that β̃ ∈ q(L1). This

follows from Proposition 6.4. Call β̃ good if the polynomial closest to f̂ |↔
β̃

is Q(x, β̃),

and otherwise it is bad. We bound the probability as follows:

Pr
(α,β̃)∈T

[
p̂(α, β̃) �= Q(α, β̃)

]
≤ Pr

β̃∈q(L1)

[
β̃ is bad

]
(6.12)

+ Pr
(α,β̃)∈T

[
p̂(α, β̃) �= Q(α, β̃)|β̃ is good

]
.

• First summand of (6.12). We start by bounding the probability of bad β̃. Let

f̂ |↔
β̃

′
be the restriction of f̂ |↔

β̃
to domain L′

0 and let Qβ̃(x) be the degree-d1

polynomial closest to f̂ |↔
β̃

. If β̃ is bad, i.e., Qβ̃(x) �= Q(x, β̃), then f̂ |↔
β̃

′
is

either (3/8)-far from Q(x, β̃) or (3/8)-far from Qβ̃(x). This is because Qβ̃(x)

and Q(x, β̃) can agree on at most |L′
0|/4 locations in L′

0. Thus, by (6.9) and
(6.11), we get

(6.13) Pr
β̃∈q(L1)

[
β̃ is bad

]
≤ 2 · 8

3
· max

{
1

c2
,

2

c1

}
· ε · clog k ≤ ε

c3
· clog k.

The last inequality follows by bounding the maximum of two nonnegative
numbers by their sum and holds for our setting of c1, c2, c3.

• Second summand of (6.12). Let Tgood = {(α, β̃) ∈ T : β̃ is good}. Since p̂ is

a function on a subdomain of f̂ we can bound the second summand in (6.12)
as follows:

Pr
(α,β̃)∈T

[
p̂(α, β̃) �= Q(α, β̃)|β̃ is good

]
≤ Pr

(α,β̃)∈S

[
f̂(α, β̃) �= Q(α, β̃)

]
(6.14)

· |S|
|Tgood|

.

We already showed in (6.8) that PrS [f̂ �= Q] is relatively small, so we need
only to argue that |Tgood| is large relative to |S|. By Proposition 6.4 the

β̃-row of T is an affine shift of L0 by β̃. From the proof of the first part of
Proposition 6.6 we conclude that the β̃-row of T is 1/8 fraction subset of the
β̃-row of S, so (6.13) implies

(6.15) |Tgood|/|S| =
1

8
· (1 − Pr[β̃ is bad]) ≥ 1/16.

The last inequality follows from (6.13) by our assumption that ε · clog k ≤ 1
and because we set c3 ≥ 2.

Summing up from (6.13), (6.14), and (6.15) we get

(6.16) Pr
(α,β̃)∈T

[
p̂(α, β̃) �= Q(α, β̃)

]
≤
(

1

c3
+

16

c1

)
ε · clog k ≤ ε · clog k.

The last inequality holds because we set c1 and c3 such that 1
c3

+ 16
c1

≤ 1.
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Step 3. From bivariate p̂ to univariate p. Let P (x) = Q(x, q(x)). Notice that
deg(P ) ≤ |L|/8 − 1. This follows from the degree of Q and deg(q) = |L0| = |L′

0|/4.
Using (6.16) and the definition T = {(γ, q(γ)) : γ ∈ L} we conclude that for all but a
(ε · clog k)-fraction of L we have

p(γ) = p̂(γ, q(γ)) = Q(γ, q(γ)) = P (γ).

The fractional distance of p from a degree-|L|/8 − 1 polynomial is as claimed, com-
pleting our proof.

6.5. Proof of Theorem 3.2. In this subsection we complete the formal proof
of Theorem 3.2. First consider the case of degree precisely |L|/8 − 1, dealt with in
the preceding sections. In particular, the proof of proximity and its associated verifier
are described in subsection 6.2. The query complexity, randomness, and proof length
are argued in Proposition 6.9. Perfect completeness is asserted by Proposition 6.10.
Soundness is analyzed in Lemma 6.11. This completes the proof of the special case.
The following proposition, Proposition 6.14, generalizes the degree and completes the
full proof of Theorem 3.2.

In what follows we say a soundness function s : [0, 1] × N+ → [0, 1] is monotone
if it increases with δ; i.e., for all n we have δ ≥ δ′ ⇒ s(δ, n) ≥ s(δ′, n).

Proposition 6.14. Let L be either of the pair-languages PAIR-ADDITIVE-RS

and PAIR-SMOOTH-RS, and let L 1
8

be the restriction of L to explicit pairs of the

form (F, S, |S|/8 − 1). Suppose

L 1
8
∈ Strong-PCPPs(δ,n)

⎡
⎣ randomness r(n),

query q(n),
distance Hamming

F

⎤
⎦,

where s(δ, n) is monotone and r(n) ≥ log n. Then for s′(δ, n) = min{δ/2, s(δ/64, n)},

L ∈ Strong-PCPPs′(δ,n)

⎡
⎣ randomness r(n),

query O(q(n)),
distance Hamming

F

⎤
⎦.

Proof. Let (x, p) be an instance to L with explicit input x = (F, S, d′). Denote

d = |S|
8 − 1 and let V 1

8
denote the verifier for L 1

8
. We start with the case of d′ < d.

On explicit input (F, S, d′ < d) the verifier expects a (concatenation of) two subproofs
for RS(F, S, d), denoted π1, π2. The verifier operates as follows:

• Toss r(n) coins. Let R denote the random string.
• Invoke V 1

8
using randomness R on explicit input (F, S, d), implicit input p,

and proof π1.
• Fix Q(z) � zd−d′

and set p′(z) = p(z) ·Q(z). Invoke V 1
8

using randomness R
on explicit input (F, S, d), implicit input p′, and proof π2.

Notice that querying p′(α) can be simulated by querying p(α) and multiplying the
answer by Q(α). Additionally evaluating Q(α) can be done in time polylog |F|. So
the running time, query complexity, and randomness are essentially inherited from
V 1

8
. Completeness follows by observing that deg(p) ≤ d′ implies deg(p′) ≤ d. As to

soundness, there are two cases to consider. If p is δ/4-far from RS(F, S, d) then by
assumption, the first subtest rejects with probability at least s(δ/4, n) ≥ s(δ/64, n)
(the previous inequality follows from monotonicity). Otherwise, p is within relative
distance δ/4 ≤ 1/4 of an evaluation of a polynomial P with d′ < deg(P ) ≤ d. In this
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case, p′ is 1/4-close to the evaluation of P ′(z) = Q(z) · P (z), where d < deg(P ′) <
|S|/4. Thus, P ′ is 3/4-far from RS(F, S, d), so the distance of p′ from the same code
is at least 1/2 > δ/4. We conclude that the second subtest rejects with probability
s(δ/4, n) ≥ s(δ/64, n).

Next assume d′ > d and notice without loss of generality that d′ ≤ 8(d+1) because
otherwise every implicit input is a codeword. The key observation is that a polynomial
P (z) is of degree d′ iff it can be written as a sum P (z) =

∑7
i=0 z

i(d+1) · Pi(z), where
deg(Pi) = di ≤ d can be uniquely and efficiently computed given d and d′. Let
L(≤d) be the restriction of L to instances of degree ≤ d and let V(≤d) denote the
verifier for L(≤d). The proof for explicit input (F, S, d′) consists of eight functions
p0, . . . p7 : S → F and eight proofs of proximity to L(≤d) denoted π0, . . . , π7. On
explicit input (F, S, d′) and implicit input p, the verifier operates as follows:

• Toss r(n) coins. Let R denote the random string.
• For i = 0, . . . , 7, invoke V(≤d) using randomness R on explicit input (F, S, di),

implicit input pi, and proof πi.
• Using R, select uniformly at random γ ∈ S. Accept iff p(γ) =

∑7
i=0 γ

i(d+1)pi(γ).
Proof length, randomness, completeness, running time, and query complexity follow
from construction. As to soundness, assume that p is δ-far from RS(F, S, d′). There

are two cases to consider. If p(z) disagrees with
∑7

i=0 z
i(d+1)pi(z) on a δ/2-fraction

of z ∈ S, then the second subtest rejects with probability ≥ δ/2. Otherwise, p(z)

is δ/2-close to
∑7

i=0 z
i(d+1)pi(z). In this case at least one pi must be δ/16-far from

RS(F, S, di). So the first part of this proof (for the case d′ < d) implies the rejection
probability is at least s( δ

4·16 , n). This completes our proof.

6.6. Proof of Lemma 6.13. The lemma is an immediate corollary of the bi-
variate testing theorem of Polishchuk and Spielman [37, Theorem 9]. We use here the
general version of it appearing in Spielman’s thesis.

Theorem 6.15 (see [39, Theorem 4.2.19]). Let F be a field, S, T ⊆ F. Let R(x, y)
be a polynomial over F of degree (d, |T | − 1) and let C(x, y) be a polynomial over F of
degree (|S| − 1, e). If

Pr
(x,y)∈S×T

[R(x, y) �= C(x, y)] < γ2 and 2

(
d

|S| +
e

|T | + γ

)
< 1,

then there exists a polynomial Q(x, y) of degree (d, e) such that

Pr
(x,y)∈S×T

[R(x, y) �= Q(x, y) or C(x, y) �= Q(x, y)] < 2γ2.

To prove Lemma 6.13 we show the contrapositive form for c0 = 128, making
no attempt to optimize constants. We may assume without loss of generality that
δ(d,∗), δ(∗,e) < 1/c0; otherwise the claim is trivial. Correct each row of f to its closest
RS-codeword (breaking ties arbitrarily), obtaining a bivariate polynomial R(x, y) of
degree (d, |T | − 1). By definition, Δ(R(x, y), f) = δ(d,∗)(f). Similarly, correct the
columns of f to obtain the polynomial C(x, y) of degree (|S| − 1, e) that is within
fractional distance δ(∗,e)(f) of f . We get

Pr
(x,y)∈S×T

[R �= C] ≤ δ(d,∗)(f) + δ(∗,e)(f) = γ2 < 1/64.

Since γ ≤ 1/8, d ≤ |S|/4, and e ≤ |T |/8, both conditions of Theorem 6.15 hold,
allowing us to conclude that R(x, y) is (2γ2)-close to RM(F, S×T, (d, e)). The triangle
inequality completes the proof:

δ(d,e)(f) ≤ Δ(f,R) + Δ(R,RM(F, S × T, (d, e))) ≤ 3δ(d,∗)(f) + 2δ(∗,e)(f).
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7. PCPPs for Reed–Solomon codes over smooth fields. In this section
we give a PCPP-verifier for Reed–Solomon codes over smooth fields, when the set
S over which the polynomials are evaluated are multiplicative subfields of the field,
thereby proving Theorem 3.4 (restated below). We also show it suffices for obtaining
quasilinear PCPs (Theorem 2.2). Our presentation mirrors that of the additive case
presented in section 6.

Theorem 7.1 (Theorem 3.4, restated). Let PAIR-SMOOTH-RS be the re-
striction of PAIR-RS to pairs ((F, 〈ω〉, d), p), where ord(ω) = n is a power of 2.
Then,

PAIR-SMOOTH-RS ∈ Strong-PCPPδ/ polylog n

⎡
⎣ randomness log(n · polylogn),

query O(1),
distance Hamming

F

⎤
⎦.

7.1. Proof overview. This section should be read as a continuation of subsec-
tion 6.1. The crucial property used in our constructions in section 6 was that the
linearized polynomial q(z) “nicely partitions” the linear space L. Specifically, q(z)
defines a linear map on L, its image is a linear space of size ≈

√
|L|, and for every

value in its image, the set of preimages of that value form an affine space of size
≈
√
|L|.
In the smooth case, F contains a multiplicative subgroup S = 〈ω〉 of size n.

Assume that
√
n is an integer and consider a polynomial P (z) evaluated over S.

Using Proposition 6.3 with the polynomial q(z) � z
√
n we get P (z) = Q(z, z

√
n).

Notice that q(z) “nicely partitions” 〈ω〉. Specifically, q(〈w〉) = 〈ω
√
n〉 is of size

√
n

(recall q(S) � {q(s) : s ∈ S}), and for every value in the image of q, the set of its
preimages is a multiplicative coset of 〈ω

√
n〉.

Thus, to prove proximity of P (z) to RS(F, S, d) we may ask for an evaluation
of Q(x, y) on the set of points (X × Y ) ∪ Z, where Z = {(z, q(z)) : z ∈ 〈ω〉} and
X = Y = 〈ω

√
n〉. In the additive case we used the fact, implied by Proposition 6.6,

that the union of a linear space (L′
0) and an affine shift of it (L′

0 + β) form a linear
space of slightly larger dimension. In the smooth case, it is not true in general that
〈ω

√
n〉 and a coset of it form a small multiplicative group. In fact, the smallest group

containing both can be as large as 〈ω〉. To overcome this problem, we define the
shifted Reed–Solomon code (SRS-code), which is formed of evaluations of polynomials
over a multiplicative group 〈ω〉 and a coset of it of the form κ〈ω〉 � {κz : z ∈ 〈w〉}.

The crucial observation is that q(z) “nicely partitions” each of 〈ω〉 and κ〈ω〉
into

√
n cosets of 〈ω

√
n〉 (see Figure 3). Indeed, the image of q(〈ω〉) = 〈ω

√
n〉 and

q(κ〈ω〉) = κ
√
n〈ω

√
n〉. Similarly, for an element in q(〈ω〉) of the form ωj

√
n, j ∈ [

√
n],

we get q(−1)(ωj
√
n) = ωj〈ω

√
n〉 and for an element in q(κ〈ω〉) of the form κ

√
nωj

√
n

we get q(−1)(κ
√
nωj

√
n) = κωj〈ω

√
n〉. Thus, we will ask our prover to provide an

evaluation of the bivariate polynomial Q on the points (see Figure 4)

{(z, q(z)) : z ∈ 〈ω〉 ∪ κ〈ω〉}
⋃(

〈ω
√
n〉 × (〈ω

√
n〉 ∪ κ

√
n〈ω

√
n〉)
)
.

By our previous discussion we notice that the restriction of Q to certain rows and
columns forms a word of an SRS-code of length ≈

√
n.

This allows us to measure proximity to the SRS-code of length n by measuring
proximity to SRS-codes of size ≈

√
n. As in the additive case of section 6 we use

the bivariate testing lemma, Lemma 6.13, to apply recursion and obtain quasilinear



SHORT PCPS WITH POLYLOG QUERY COMPLEXITY 597

xx

y

ω0,ω1 ω5 ω10 ω15 ω20 ω24
ω0

ω5

ω10

ω15

ω20

κ, κω1 κω5 κω10 κω15 κω20 κω24

κ5

κ5ω5

κ5ω10

κ5ω15

κ5ω20

Z

Zκ

Fig. 3. In this case, F = Z101. Let σ generate F
∗, let ω = σ4 be an element of order n = 25,

and let κ = σ2 and q(z) = z5. The elements on each axis are ordered by increasing powers of σ
and the figure shows the subsets of points Z,Zκ ⊂ F

∗ × F
∗, where Z = {(z, q(z)) : z ∈ 〈ω〉} and

Zκ = {(κz, q(κz)) : z ∈ 〈ω〉}.

sized proofs that can be tested with polylogarithmic query complexity. We need
some technical modifications, arising from difficulties similar to the additive case. In
particular, the degree of Q in its first variable is too large for applying Lemma 6.13, so
we reduce this degree by breaking Q into a sum of several polynomials of sufficiently
small degree. Additionally, we will not assume that

√
n is an integer; rather we

use the fact that n = 2k and work with the multiplicative subgroups generated by
n0 = 2k/2�, n1 = 2�k/w� that are of size ≈

√
n.

7.2. The shifted Reed–Solomon code. We prove Theorem 3.4 by proving a
stronger statement about testing proximity to shifted RS-codes, defined next.

Definition 7.2 (shifted Reed–Solomon code). For F a finite field, ω, κ ∈
F∗, ord(ω) = n, and integer d, the degree-d shifted Reed–Solomon (SRS)-code over
〈ω〉 with shift κ is

SRS(F, d, ω, κ) � RS(F, 〈ω〉 ∪ κ〈ω〉, d).

Let PAIR-SMOOTH-SRS be the pair language whose explicit inputs are triples (F, S =
〈ω〉 ∪ κ〈ω〉, d), where ord(ω) is a power of 2 and whose implicit inputs are functions
p : S → F. The size of (explicit and implicit) inputs is ord(ω). A pair ((F, S, d), p) is
in PAIR-SRS if p ∈ SRS(F, ω, κ, d).

Notice that SRS(F, ω, 1, d) = RS(F, 〈ω〉, d). Thus, Theorem 3.4 follows from the
following theorem, the proof of which occupies the rest of the section.

Theorem 7.3 (SRS PCP of proximity).

PAIR-SMOOTH-SRS ∈ Strong-PCPPδ/ polylog n

⎡
⎣ randomness log(n · polylogn),

query O(log |F|),
distance Hamming

F

⎤
⎦.
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Fig. 4. The proof of proximity for the smooth RS-code is the evaluation of Q on the set of
points Z ∪Zκ ∪ (X × Y )∪ (X × Yκ). Notice that the restriction of this set to every row and column
gives a pair—a multiplicative group of order

√
n and a coset of it.

As in the additive case, our proof will focus on the special case of degree d =
n/8 − 1, and Proposition 6.14 generalizes this to an arbitrary degree.

7.3. The SRS proof of proximity and its associated verifier.
Notation. Recall ord(ω) = n = 2k for integer k. Let n0 = 2k/2� and n1 = 2�k/2�.

Note that n = n0 · n1 and
√

n/2 ≤ n1 ≤ n0 ≤
√

2n. For r ≤ ord(α), let 〈α〉r �
{α0, α1, . . . , αr−1}. When dealing with a purported codeword of SRS(F, ω, κ, d) we
treat it as a pair of functions, p : 〈ω〉 → F and pκ : κ〈ω〉 → F.

Definition 7.4 (SRS proof of proximity). The proof of proximity for a purported
codeword of the code SRS(F, ω, κ, n/8 − 1) is defined by induction on n = ord(ω). If
n ≤ 16 then it is empty. Otherwise, it is of the form

π = ({f (�), f (�)
κ , g(�), g(�)

κ , {π(1,β,�), π(2,β,�)}β∈〈ω〉n1
, {π(3,α̃,�)}α̃∈〈ωn1 〉}�∈{0,...,7}),

where
• f (�), f

(�)
κ : 〈ωn1〉 × 〈ω〉n1 → F,

• g(�), g
(�)
κ : 〈ωn1〉 × 〈ωn0〉 → F, and

• π(1,·,�), π(2,·,�), π(3,·,�) are proofs for SRS-codewords (over F) of sizes n0, n0, n1,
respectively.

We are now ready to describe the proximity tester.
Definition 7.5 (SRS-verifier). The verifier for proximity to SRS(F, ω, κ, d =

ord(ω)/8− 1) is denoted V
〈(p,pκ),π〉
SRS (F, ω, κ, d). It receives as explicit input the param-

eters F, ω, κ as defined in the statement of Theorem 7.3. The implicit input is a pair
of functions p : 〈ω〉 → F, pκ : κ〈ω〉 → F. The proof π is as described in Definition 7.4.
The verifier operates as follows.
Base case (n ≤ 16). The verifier reads p and pκ in entirety and accepts iff (p, pκ) ∈

SRS(F, ω, κ, 1).
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Recursion (n ≥ 32). The verifier computes n0 = 2k/2�, n1 = 2�k/2� and performs one
of the following four tests with probability 1/4 each.
Outer. Pick α̃ ∈ 〈ωn1〉, β ∈ 〈ω〉n1 uniformly at random; query p(α̃ · β),

pκ(α̃ · β) and f (�)(α̃, β), f
(�)
κ (α̃, β) for every � ∈ {0, . . . , 7}; accept iff

p(α̃ · β) =
∑7

�=0(α̃ · β)�n0/8 · f (�)(α̃, β) and pκ(κα̃ · β) =
∑7

�=0(κα̃ ·
β)�n0/8 · f (�)

κ (α̃, β).
Inner. Pick � ∈ {0, . . . , 7}, β ∈ 〈ω〉n1

at random and invoke

V
〈(g(�)|↔βn0 ,f

(�)|↔β ),π(1,β,�)〉
SRS (F, ωn1 , β, n0/8 − 1).

Innerκ. Pick � ∈ {0, . . . , 7}, β ∈ 〈ω〉n1 at random and invoke

V
〈(g(�)

κ |↔βn0 ,f
(�)
κ |↔β ),π(2,β,�)〉

SRS (F, ωn1 , κβ, n0/8 − 1).

Innerc. Pick � ∈ {0, . . . , 7}, α̃ ∈ 〈ωn1〉 at random and invoke

V
〈(g(�)|�α̃,g(�)

κ |�α̃),π(3,α,�)〉
SRS (F, ωn0 , κn0 , n1/8 − 1).

The remaining subsections analyze the performance of this verifier, thus yielding
Theorem 3.4. Specifically, the next subsection analyzes the simple properties including
the query complexity, the randomness/size complexity, and the completeness. The
hard part, the soundness analysis, is addressed in subsection 7.5.

7.4. Basic properties.

Proposition 7.6. V
〈(p,pκ),π〉
SRS (F, ω, κ, n/8 − 1) makes at most 32 queries into

p, pκ, π. It tosses at most log2 n+O(log log n) random coins and runs in time polyn.
The size of the proof π is O(n · polylogn).

Proof. The proof is straightforward from the definition. The query complexity is
easy to verify. In the base case, the verifier reads 32 field elements. In the inductive
case, if the verifier chooses to execute the Outer step, then it makes 18 < 32 queries;

else it makes a recursive query to V
〈〉
SRS which makes 32 queries by induction.

The randomness complexity is similar. In the base case the verifier tosses 0 coins.
In the inductive case, the verifier tosses O(1) coins to determine which step to perform.
If it chooses the outer test, it picks α̃ and β at random with logn + O(1) coins. If
it chooses one of the inner tests, it tosses log

√
n + O(1) coins to determine the inner

call, and then log
√
n + O(log log

√
n) coins in the recursive call. Adding up, we get

a total of logn + O(log log n) coins in all. Notice that all computations are simple
and can be performed in time polyn. Finally, the size of the proof is bounded by
2randomness.

Next we move to the completeness part of the proof. This part is straightforward
given the intuition developed in subsection 7.1. We first generalize Proposition 6.3
and express a univariate polynomial as a sum of bivariate polynomials of low degree.
We then use this to describe a proof π that is accepted with probability 1 when
accompanying an SRS-codeword.

Proposition 7.7. Given positive integers d1, d2, L, and d such that d1 ·d2 ·L ≥ d,
the following holds: For every univariate polynomial P (x) of degree less than d there
exists a sequence of L bivariate polynomial Q(0)(y, z), . . . , Q(L−1)(y, z), of degree less
than d1 in y and d2 in z, such that

P (x) =

L−1∑
�=0

x�·d1Q(�)(x, xL·d1).
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Furthermore, such a sequence is unique if d1 · d2 · L = d.
Proof. Let the ai’s be the coefficients of P ; i.e., P (x) =

∑d−1
i=0 aix

i. Now let

Q(�)(y, z) =

d1−1∑
i=0

d2−1∑
j=0

ai+�·d1+j·d1·Ly
izj ,

where ai is defined to be 0 if i ≥ d. It can be verified by inspection that we have

P (x) =

L−1∑
�=0

x�·d1Q(�)(x, xL·d1).

Uniqueness follows from a counting argument: the set of sequences of polynomials
Q(0), . . . , Q(L−1) forms a vector space of dimension L · d1 · d2 = d, the dimension of
the space of polynomials of degree less than d.

Proposition 7.8 (completeness). If (p, pκ) equal the SRS encoding of some
polynomial P of degree less than n/8, then there exists a proof that causes the SRS
proximity tester to accept with probability one.

Proof. The proof is by induction on n. Let Q(0), . . . , Q(7) be the polynomials as
given by Proposition 7.7 applied to P with integers d1 = n0/8, d2 = n1/8, L = 8, and
d = n/8. Note that we have d1 ·d2 ·L = d, since n0 ·n1 = n. For every � ∈ {0, . . . , 7}, we

let f (�)(α̃, β) = Q(�)(α̃β, βn0), f
(�)
κ (α̃, β) = Q(�)(κα̃β, κn0βn0), g(�)(α̃, β̃) = Q(�)(α̃, β̃),

and g
(�)
κ (α̃, β̃) = Q(�)(α̃, κn0 β̃) for every α̃ ∈ 〈ωn1〉, β ∈ 〈ω〉n1

, and β̃ ∈ 〈ωn0〉.
Note that the above choice of table f (�), f

(�)
κ , g(�), g

(�)
κ is such that the Outer

test accepts with probability one. Specifically, we have

p(α̃ · β) = P (α̃ · β)

=
∑

�∈{0,...,7}
(α̃ · β)�n0/8Q(�)(α̃β, α̃n0βn0)

=
∑

�∈{0,...,7}
(α̃ · β)�n0/8Q(�)(α̃β, βn0)

=
∑

�∈{0,...,7}
(α̃ · β)�n0/8f (�)(α̃, β).

Similarly we get pκ(κα̃ · β) =
∑7

�=0(κα̃ · β)�n0/8 · f (�)
κ (α̃, β).

Now we describe how to set up the rest of the subproofs π(·,·,·) such that the inner
tests accept. For this part, note that the recursive calls to the SRS proximity verifiers
access implicit input pairs that satisfy the completeness condition on smaller inputs.
Consider, for example, the invocation

V
〈(g(�)|↔βn0 ,f

(�)|↔β ),π(1,β,�)〉
SRS (F, ωn1 , β, n0/8 − 1)

by Inner for some � ∈ {0, . . . , 7} and β ∈ 〈ω〉n1 . We may relate these implicit inputs
to the polynomial Q(�) as follows: We have g(�)|↔βn0 (α̃) = g(�)(α̃, βn0) = Q(�)(α̃, βn0),

f (�)|↔β (α̃) = f (�)(α̃, β) = Q(α̃ · β, βn0). Thus, if we let P ′(α̃) = Q(�)(α̃, βn0) and ω′ =

ωn1 , then the pair f (�)|↔β , g(�)|↔βn0 is a codeword of the SRS-code SRS(F, ω′, β, n0/8−1)
corresponding to the encoding of P ′, and thus (by induction) there exists a proof
π(1,β,�) that causes the recursive verifier to accept with probability one. Similar rea-
soning shows that the verifier also accepts with probability one when invoking Innerκ
or Innerc.
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7.5. Soundness. We now argue the soundness of the SRS-verifier as follows.

By induction, for most α̃ and β, the functions g(�)|	α̃, g(�)|↔βn0 , g
(�)
κ |	α̃, and g

(�)
κ |↔βn0

are close to polynomials of degree roughly
√
n. The bivariate testing lemma, Lemma

6.13, implies that g(�) and g
(�)
κ are very close to some low-degree bivariate polyno-

mials Q(�) and Q
(�)
κ . Furthermore, we will show Q(�) ≡ Q

(�)
κ . Next, we claim the

function f (�)(z, zn0) is close to the function Q(�)(z, zn0) and similarly f
(�)
κ is close to

Q(�)(κz, (κz)n0). Finally, we claim that p(z) is close to
∑7

�=0 z
�n0/8 ·Q(�)(z, zn0), i.e.,

p is close to a low-degree univariate polynomial. Similarly pκ is close to the same low-
degree polynomial, where the consistency of p and pκ follows from the equivalence of
Q and Qκ.

Lemma 7.9 (soundness). There exists a constant c such that for every ε the
following holds. If

Pr
[
V

〈(p,pκ),π〉
SRS (F, ω, κ, ord(ω)/8 − 1) = reject

]
≤ ε,

then (p, pκ) is (clog log ord(ω) · ε)-close to SRS(F, ω, κ, ord(ω)/8 − 1).

Proof. Let c0 be as in Lemma 6.13. Let c1 = 128 · c0, c2 = (320 + 2c1), and
c3 = 8c2 + 4. We prove the lemma for c = c23, which is a (large) constant. Note that
the conditions imply c > 1 and c > (2 · (256 + 4c1))

2 as will be used later.

We assume the lemma is true by induction for smaller n and in particular for
the recursive calls to the various Inner tests, and we now prove it for n. Assume
clog log n · ε ≤ 1 or else the claim is vacuously true. We use below the fact that

clog log n0 ≤ clog log
√

2n ≤ clog log n− 1
2 for every c ≥ 1 and n ≥ 16.

Denote by εO(α̃, β) the probability that the Outer verifier rejects (p, pκ, π) on
random choice α̃ and β. Let εO denote the expectation of εO(α̃, β) over the choice
of α̃ and β. Similarly let εI(�, β), εκ(�, β), and εc(�, α̃) denote the probability that
Inner, Innerκ, and Innerc reject on random choice �, β, and α̃. Let εI(�), εκ(�),
and εc(�) denote the expectations of these quantities over β and α̃, and let εI , εκ, and
εc denote the expectations over β, α̃, and �. By definition of the tester, we have ε =
1
4 ·(εO + εI + εκ + εc). Since these quantities are nonnegative, we get εO, εI , εκ, εc ≤ 4ε.
Similarly, we have εO(�), εI(�), εκ(�), εc(�) ≤ 32ε for every � ∈ {0, . . . , 7}.

For � ∈ {0, . . . , 7}, denote by Q(�)(x, y) the polynomial of degree at most n0/8
in x and n1/8 in y that is closest to g(�) (on the domain 〈ωn1〉 × 〈ωn0〉), where

ties are broken arbitrarily. Similarly let Q
(�)
κ be the closest polynomial to g

(�)
κ . Let

P (z) =
∑7

�=0 z
�n0/8 ·Q(�)(z, zn0) and let Pκ(z) =

∑7
�=0 z

�n0/8 ·Q(�)
κ (κz, zn0). We show

below that (p, pκ) is close to the evaluation of P on 〈ω〉 ∪ κ〈ω〉. (Among other facts,
we also show that Pκ(z) ≡ P (κ · z).)

Step 1. The functions Q(�) (and Q
(�)
κ ). By the inductive hypothesis applied to

Inner(�, β), we have that (g(�)|↔βn0 , f
(�)|↔β ) is (clog log n0 · εI(�, β))-close to the SRS

encoding of some degree n0/8 polynomial. Thus g(�)|↔βn0 is at most (2 · clog log n0 ·
εI(�, β))-close to the RS encoding of some degree-n0/8 polynomial. Averaging over
β, we get that g(�) is (2 · clog log n0 · εI(�))-close to some bivariate polynomial of degree
n0/8 in x and arbitrary degree in y. A similar argument based on the Innerc tests
yields that g(�) is (2 · clog log n1 · εc(�))-close to some bivariate polynomial of degree
n1/8 in y and arbitrary degree in x. Now applying Lemma 6.13, we get that g(�) is
close to some polynomial of degree n0/8 in x and n1/8 in y. More specifically, we
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have

δ(n0/8,n1/8)(g(�)) ≤ c0 ·
(
δ(n0/8,∗)(g(�)) + δ(∗,n1/8)(g(�))

)

≤ c0 ·
(
2 · clog log n0 · εI(�) + 2 · clog log n1 · εc(�)

)
≤ 64 · c0

(
clog log n0 + clog log n1

)
· ε

≤ 128 · c0 · clog log n0 · ε.

Letting c1
def
=128 · c0, we have that δ(g(�), Q(�)) ≤ c1 · clog log n0 · ε. A similar argument

shows that δ(g
(�)
κ , Q

(�)
κ ) ≤ c1 · clog log n0 · ε.

Step 2. The functions f (�) and f
(�)
κ . Next we move to the functions f (�) (for any

� ∈ {0, . . . , 7}) and show that for most α̃, β f (�)(α̃, β) = Q(�)(α̃ ·β, βn0) (and similarly

for most α̃, β, f
(�)
κ (α̃, β) = Q

(�)
κ (κ · α̃ · β, βn0).

We first describe the argument informally. Consider a β such that g(�)|↔βn0 and

f (�)|↔β pass the Inner test with high probability and the SRS-codeword correspond

to the encoding of Q(·, βn0). For such β, we have f (�)|↔β (α̃, β) = Q(α̃ · β, βn0) for
most α̃. It remains to make this argument quantitative, and we do so below.

Define a β to be good if the fractional distance between (g(�)|↔βn0 , f
(�)|↔β ) and

the SRS(F, n0/8, ω
n1 , β) encoding of Q(�)(·, βn0) is at most 1/8. Let δ(β) denote

the relative distance of f (�)|↔β to the projection of the SRS-codeword nearest to

(g(�)|↔βn0 , f
(�)|↔β ) onto the second half of the coordinates. Note that

Pr
α̃,β

[f (�)(α̃, β) �= Q(�)(α̃ · β, βn0)]

≤ Eβ [δ(β)|β is good] · Pr
β

[β is good] + Pr
β

[β is not good]

≤ Eβ [δ(β)] + Pr
β

[β is not good].

Note that the first term above is easily estimated as in Step 1. We get Eβ [δ(β)] ≤
(2 · clog log n0 · εI(�)) ≤ 64 · clog log n0 · ε.

Next we describe two sets that cover the case where β is not good. Let S1 be
the set of all β such that the distance of (g(�)|↔βn0 , f

(�)|↔β ) from every SRS-codeword

is more than 1
8 . For every β ∈ S1 note that the εI(�, β) ≥ 1

8clog log n0
. Thus, the

probability that β ∈ S1 is at most 8 · clog log n0 · εI(�) ≤ 256 · clog log n0 · ε. Next, let
S2 be the set of β for which (g(�)|↔βn0 , f

(�)|↔β ) is 1
8 -close to an SRS-codeword, but

the SRS-codeword is not the encoding of Q(�)(·, βn0). For every β ∈ S2, we have
that Q(�)(α̃, βn0) and g(�)(α̃, βn0) disagree for at least 5

8 fraction of the α̃’s (since

Q(�)(·, βn0) and the other SRS-codeword can agree on at most n0/8 values of the α̃’s).
Since the distance between g(�) and Q(�) is at most c1 · clog log n0 · ε, we get that the
probability that β ∈ S2 is at most 8

5 · c1 · clog log n0 · ε ≤ 2c1 · clog log n0 · ε. Finally, we
note that if β is not good, then β ∈ S1 ∪ S2. Thus we get

Pr
β

[β is not good] ≤ (256 + 2c1) · clog log n0 · ε.

Putting the above together, and recalling c2 = (320+2c1), we get Prα̃,β [f (�)(α̃, β) �=
Q(�)(α̃ · β, βn0)] ≤ c2 · clog log n0 · ε. Similarly we also get Prα̃,β [f

(�)
κ (α̃, β) �= Q

(�)
κ (κ · α̃ ·

β, βn0)] ≤ c2 · clog log n0 · ε.
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Step 3. The functions p and pκ. Next we move to the functions p and show that
p(z) usually equals P (z) =

∑7
�=0 z

�·n0/8Q(�)(z, zn0) for z ∈ 〈ω〉. Note that 〈ω〉 is in
one-to-one correspondence with {α̃ · β}, where α̃ ∈ 〈ωn1〉 and β ∈ 〈ω〉n1 , and so we
are interested in estimating the probability that

p(α̃ · β) �=
7∑

�=0

(α̃β)�·n0/8Q(�)(α̃β, βn0).

We consider the following events: For � ∈ {0, . . . , 7}, let E� be the event that

f (�)(α̃, β) �= Q(�)(α̃β, βn0). Further, let E′ be the event that p(α̃·β) �=
∑7

�=0(α̃β)�·n0/8

·f (�)(α̃β, βn0). For any �, we have that E� happens with probability at most c2 ·
clog log n0 · ε. Further, E′ happens with probability at most εO ≤ 4ε ≤ 4 · clog log n0 · ε,
using c ≥ 1. Furthermore, if none of the events E′, {E�}� occurs, then we do have

p(α̃ · β) =
∑7

�=0(α̃β)�·n0/8Q(�)(α̃β, βn0). Thus, recalling c3 = 8c2 + 4, we get that
δ(p, P ) ≤ c3 · clog log n0 · ε. Similarly, we get δ(pκ, Pκ) ≤ c3 · clog log n0 · ε. Combining,
we get that δ((p, pκ), (P, Pκ)) ≤ c3 · clog log n0 · ε. By the definition of c = c23 and the

condition clog log n0 ≤ clog log n− 1
2 , we get that the final proximity above is at most

clog log n · ε, as desired.
All that remains to be shown is that P and Pκ are consistent, i.e., that Pκ(z) =

P (κ · z).
Step 4. Consistency of the κ shifts. We prove this part by showing that for every

�, Q and Qκ are consistent, i.e., Q
(�)
κ (x, y) = Q(�)(x, κn0y). This suffices, since we will

then have

Pκ(z) =
∑
�

z�n0/8Q(�)
κ (κz, zn0) =

∑
�

z�n0/8Q(�)(κz, κn0zn0) = P (κz).

Fix � ∈ {0, . . . , 7}. Define α̃ ∈ 〈ωn1〉 to be good if (g(�)|	α̃, g
(�)
κ |	α̃) is 1/8 close to

some SRS-codeword and g(�)|	α̃ is 1/4 close to the evaluations of Q(�)(α̃, ·), and g
(�)
κ |	α̃

is 1/4 close to the evaluations of Q
(�)
κ (α̃, ·). It is straightforward to see that if α̃ is

good, then Q
(�)
κ (α̃, y) = Q(�)(α̃, κn0y). Furthermore, if the fraction of good α̃’s is

more than 1/8, then we will have Q
(�)
κ (x, y) = Q(�)(x, κn0y) as desired. So it suffices

to bound the probability of α̃ being not good (to be less than 7/8).
The three conditions above can be analyzed in a manner similar to the analysis of

the probability of β not being good in Step 2. Specifically, we have the following: The

probability that (g(�)|	α̃, g
(�)
κ |	α̃) is not 1/8 close to some SRS-codeword is at most 8 ·

clog log n1 ·εc(�) ≤ 256·clog log n0 ·ε. The probability that g(�)|	α̃ is 1/8 close to some SRS-
codeword and not 1/4 close to the evaluations of Q(�)(α̃, ·) is at most 2 ·c1 ·clog log n0 ·ε.
Finally, the probability that g

(�)
κ |	α̃ is 1/8 close to some SRS-codeword and not 1/4

close to the evaluations of Q
(�)
κ (α̃, ·) is at most 2 ·c1 ·clog log n0 ·ε. Combining the above

we get that the probability that α̃ is not good is at most (256+4 · c1) · clog log n0 · ε. In

turn the final quantity is at most (256+4 ·c1) ·clog log n− 1
2 · ε ≤ 1

2c
log log n · ε ≤ 1

2 < 7
8 as

desired. The first inequality follows from the fact that we have c > (2 · (256+4 · c1))2.
This concludes the proof that Q and Qκ and hence P and Pκ are consistent. Combined
with Step 3, this concludes the soundness analysis.

7.6. Proof of Theorem 3.4.
Proof of smooth SRS PCPP Theorem 7.3 (for special case of d = n/8 − 1). The

verifier is formally defined in subsection 7.3. Its query complexity, randomness, and
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proof length are given by Proposition 7.6. Its completeness is asserted by Proposition
7.8. Its soundness is analyzed in Lemma 7.9.

Proof of Theorem 3.2. The statement for d = n/8 − 1 follows from Theorem 7.3
by setting κ = 1. The generalization to arbitrary degree d follows from Proposition
6.14.

7.7. Proving Theorem 2.2 using smooth RS-codes. In this section we
briefly outline the modifications needed to prove Theorem 2.2 using PCPPs for smooth
RS-codes (Theorem 3.4). Our motivation is to present a proof of Theorem 2.2 in as
general a setting as possible and in particular show that we do not require the un-
derlying field to be of characteristic 2. Our exposition follows that of subsection
3.3.1.

Our first challenge is to show the existence and abundance of fields with a multi-
plicative subgroup of order that is a power of 2. A second problem is that we cannot
embed de Bruijn graphs in an affine graph of constant degree (Proposition 5.11), be-
cause our fields are not of characteristic 2. To solve this problem we embed the de
Bruijn graph in an affine graph of logarithmic degree. Thus, we end with a weaker
version of Theorem 3.7 and we need to prove quasilinear PCPs for this weaker version,
using Theorem 3.4. We now elaborate on each of these three issues.

Prime fields with 2-smooth subgroups. Theorem 3.4 holds only for Reed–Solomon
codes RS(F, 〈ω〉, d), where ord(ω) is a power of 2. The following (special case of a)
theorem due to Linnik [33] shows that there is a polynomial time computable sequence
{Fn}n∈N such that n ≤ |Fn| ≤ nO(1) and F∗

n has an element ω the order of which is a
power of 2.

Theorem 7.10 (Linnik’s theorem [33]). There exists a constant 1 < L < 6 such
that for any sufficiently large d, there exists a prime of size ≤ dL such that d|(p−1).

Remark 7.11. The general statement of Linnik’s theorem says that there exists
a universal constant L such that for every pair of integers 0 < a < n, there exists a
prime p < nL such that n|(p− a). The case stated above is derived from the general
statement by setting a = 1.

Suppose we wish to find a field Fn of size nO(1) that has an element ω of order
Θ(n) that is a power of 2. Let d be a power of 2 such that n < d ≤ O(n). Let Fn be the
prime field Zp for p as in Linnik’s theorem, Theorem 7.10. We have |F∗

n| = p−1 = k ·d.
Let σ be a generator of F∗ and set ω = σk. Then ord(ω) = Θ(n) is a power of 2.
Notice that p and ω can be found in polynomial time (in n) by an exhaustive search.
Finally, each element of Fn is represented by O(log n) bits.

Algebraic constraint satisfaction problems for PAIR-SMOOTH-RS. We now
sketch a proof of a weaker version of Theorem 3.7. The weakness of this version
refers to the fact that the number of affine functions is not constant but polyloga-
rithmic. However, we will be able to prove this theorem without relying on fields of
characteristic 2. Rather, we need our field only to be sufficiently large.

Theorem 7.12 (ALGEBRAIC-CSP is NP-complete (weak version)). There
exists an integer d such that for any proper complexity function t : N+ → N+ and
L ∈ NTIME(t(n)), the following hold.

1. L is reducible to ALGEBRAIC-CSP in time poly t(n).
2. Given any field F of size Ω(t(n) polylog t(n)), an instance of L of size n is

reduced to an instance of ALGEBRAIC-CSPpolylog n,d over F.
Proof. The reduction underlying Theorem 3.7 and described in subsection 5.2

relied on the existence of a homomorphism of the wrapped de Bruijn graph Bk (see
Definition 5.5) into an affine graph (as per Definition 5.9) of constant degree over a
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field of characteristic 2. This homomorphism, in turn, relies on the additive structure
of the field (see the proof of Proposition 5.11).

As in the proof of Theorem 5.4, we will assume only that the underlying field is
sufficiently large. We use the existence of an efficiently computable homomorphism of
Bk into the hypercube of dimension k+O(log k) (for details see [31]). Next we notice
the hypercube of dimension k′ can be embedded into an affine graph over any finite
field F, |F| > 2k

′
. Indeed, fix ω ∈ F∗ with ord(ω) ≥ 2k

′
. Consider the affine graph G

over vertex set 〈ω〉 and edge set generated by {ω(−1)b·2�}�∈[k′],b∈{0,1}. To see that the

hypercube can be embedded into G, let ī ∈ {0, . . . , 2k′ − 1} denote the integer with
binary representation i ∈ {0, 1}k′

. Associate with i the element ωī ∈ 〈ω〉. We claim
that the elements associated with i and i + e� (in the hypercube) are adjacent in G.
Indeed, let b denote the �th bit of i and notice that i is associated with ωī whereas

i + e� is associated with ωī+(−1)b2�

= ω(−1)b·2� · ωī, so the corresponding vertices are
adjacent in G.

From here on we follow the proof of Theorem 3.7, using the above defined affine
graph G of degree polylogn instead of the constant degree graph used there. All other
details are identical. Thus, our reduction results in an instance of ALGEBRAIC-
CSPpolylog n,O(1).

Quasilinear PCPs via PCPPs for smooth RS-codes. We now provide efficient
PCPs for the instances of ALGEBRAIC-CSP given by Theorem 7.12 and thus pro-
vide an alternative proof of Theorem 2.2.

Proof of quasilinear PCP Theorem 2.2. Let ψ be an instance of L ∈ NTIME(t(n))
of size n. Using Theorem 7.12 we reduce ψ to an instance φ = {F, {Aff1, . . . ,Affk},
H,C} of ALGEBRAIC-CSPk,d of size n′ = n · polylogn, where k = polylogn, d =
O(1) and F is the smallest prime field containing an element ω with 100kdn′ <
ord(ω) ≤ 200kdn′, where ord(ω) is a power of 2. Linnik’s theorem, Theorem 7.10,
implies that F and ω exist and can be found in polynomial time (by an exhaustive
search).

From here on our proof is essentially identical to the proof presented in subsec-
tion 3.3.1 and we use the notation given there. Notice that since k = polylogn,
the first subtest invokes an RS-verifier with proximity parameter 1/polylogn. How-
ever, Proposition 2.9 implies that the query complexity increases only by a factor of
polylogn. All other details are exactly as in subsection 3.3.1, and this completes the
alternative proof of Theorem 2.2.
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LOWER-STRETCH SPANNING TREES∗
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Abstract. We show that every weighted connected graph G contains as a subgraph a spanning
tree into which the edges of G can be embedded with average stretch O

(
log2 n log logn

)
. Moreover,

we show that this tree can be constructed in time O
(
m logn + n log2 n

)
in general, and in time

O(m logn) if the input graph is unweighted. The main ingredient in our construction is a novel
graph decomposition technique. Our new algorithm can be immediately used to improve the running
time of the recent solver for symmetric diagonally dominant linear systems of Spielman and Teng

from m2(O(
√

log n log log n)) to m logO(1) n, and to O
(
n log2 n log logn

)
when the system is planar.

Our result can also be used to improve several earlier approximation algorithms that use low-stretch
spanning trees.

Key words. low-distortion embeddings, probabilistic tree metrics, low-stretch spanning trees
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1. Introduction. Let G = (V,E, �) be a weighted connected graph, where � :
E → R>0 assigns a positive length to each edge. Given a spanning tree T of V , we
define the distance in T between a pair of vertices u, v ∈ V , denoted distT (u, v), to
be the sum of the lengths of the edges on the unique path in T between u and v. We
can then define the stretch1 of an edge (u, v) ∈ E to be

stretchT (u, v) =
distT (u, v)

�(u, v)
,

and the average stretch over all edges of E to be

ave-stretchT (E) =
1

|E|
∑

(u,v)∈E

stretchT (u, v).

Alon et al. [1] proved that every weighted connected graph G = (V,E, �) of n
vertices and m edges contains a spanning tree T such that

ave-stretchT (E) = exp
(
O(
√

log n log log n)
)
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1Our definition of the stretch differs slightly from that used in [1]: distT (u, v)/distG(u, v), where
distG(u, v) is the length of the shortest path between u and v. See section 1.1 for a discussion of the
difference.
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and that there exists a collection τ = {T1, . . . , Th} of spanning trees of G and a
probability distribution Π over τ such that for every edge e ∈ E,

ET←Π [stretchT (e)] = exp
(
O(
√

log n log log n)
)
.

The class of graphs considered in this context includes multigraphs that may
contain self-loops and multiple edges between pairs of vertices. Considering multi-
graphs is essential for several applications (including some in [1]). Specifically, in
some applications it is required to minimize various weighted averages of the stretches,
where different edges may have different contributions to the average stretch, rather
than a simple average as defined above. By allowing edge multiplicities, one can
control the coefficients of these weighted averages, and thus our result is sufficiently
general for such applications.

The result of [1] triggered the study of low-distortion embeddings into probabilistic
tree metrics. Most notable in this context is the work of Bartal [3, 4] which shows that
if the requirement that the trees T be subgraphs of G is abandoned, then the upper
bound of [1] can be improved by finding a tree whose distances approximate those in
the original graph with average distortion O(log n · log log n). On the negative side,
a lower bound of Ω(logn) is known for both scenarios [1, 3]. The gap left by Bartal
was recently closed by Fakcharoenphol, Rao, and Talwar [11], who have shown a tight
upper bound of O(log n).

However, some applications of graph-metric approximation require trees that are
subgraphs. Until now, no progress had been made on reducing the gap between the
upper and lower bounds proved in [1] on the average stretch of subgraph spanning
trees. The bound achieved in [1] for general weighted graphs had been the best bound
known for unweighted graphs (where every edge admits a unit length), and even for
unweighted planar graphs.

In this paper,2 we significantly narrow this gap by improving the upper bound of
[1] from exp(O(

√
log n log log n)) to O(log2 n log log n). Specifically, we give an algo-

rithm that for every weighted connected graph G = (V,E, �) constructs a spanning
tree T ⊆ E that satisfies ave-stretchT (E) = O(log2 n log log n). The running time
of our algorithm is O(m log n + n log2 n) for weighted graphs and O(m log n) for un-
weighted graphs. Note that the input graph need not be simple and its number of
edges m can be much larger than

(
n
2

)
. However, as proved in [1], it is enough to

consider graphs with at most n(n + 1) edges.
We begin by presenting a simpler algorithm that guarantees a weaker bound,

ave-stretchT (E) = O(log3 n). As a consequence of the result in [1] that the existence
of a spanning tree with average stretch f(n) for every weighted graph implies the
existence of a distribution of spanning trees in which every edge has expected stretch
f(n), our result implies that for every weighted connected graph G = (V,E, �) there
exists a probability distribution Π over a set τ = {T1, . . . , Th} of spanning trees (T ⊆ E
for every T ∈ τ) such that for every e ∈ E, ET←Π [stretchT (e)] = O(log2 n log log n).
Furthermore, our algorithm itself can be adapted to produce a probability distribution
Π that guarantees a slightly weaker bound of O(log3 n) in time O(m · log2 n).

In a subsequent paper, Emek and Peleg [9] proved that every series-parallel un-
weighted graph admits a spanning tree of average stretch O(log n). This bound is
tight as it matches the lower bound established in [13].

2In a previous version of this paper, we proved the weaker bound on average stretch of
O((logn log logn)2). The improvement in this paper comes from rearranging the arithmetic in our
analysis. Bartal [5] has obtained a similar improvement by other means.
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1.1. Applications. For some of the applications listed below it is essential
to define the stretch of an edge (u, v) ∈ E as in [1], namely, stretchT (u, v) =
distT (u, v)/distG(u, v). The algorithms presented in this paper can be adapted to
handle this alternative definition of stretch, but this requires the computation of
distG(u, v) for every edge (u, v) ∈ E. The additional computation can be performed
in a preprocessing stage independently of the algorithms themselves, but the time re-
quired for this preprocessing stage may dominate the running time of the algorithms.

1.1.1. Solving linear systems. Boman and Hendrickson [6] were the first to
realize that low-stretch spanning trees could be used to solve symmetric diagonally
dominant linear systems. They applied the spanning trees of [1] to design solvers that
run in time

m3/22O(
√

logn log log n) log(1/ε),

where ε is the precision of the solution. Spielman and Teng [18] improved their results
to

m2O(
√

logn log log n) log(1/ε).

Unfortunately, the trees produced by the algorithms of Bartal [3, 4] and
Fakcharoenphol, Rao, and Talwar [11] cannot be used to improve these linear solvers,
and it is currently not known whether it is possible to solve linear systems efficiently
using trees that are not subgraphs. By applying the low-stretch spanning trees devel-
oped in this paper, we can reduce the time for solving these linear systems to

m logO(1) n log(1/ε),

and to O(n log2 n log log n log(1/ε)) when the systems are planar. Applying a re-
duction that was recently introduced by Boman, Hendrickson, and Vavasis [7], one
obtains an O(n log2 n log log n log(1/ε)) time algorithm for solving the linear systems
that arise when applying the finite element method to solve two-dimensional elliptic
partial differential equations.

1.1.2. Alon–Karp–Peleg–West game. Alon et al. [1] constructed low-stretch
spanning trees to upper-bound the value of a zero-sum two-player game that arose in
their analysis of an algorithm for the k-server problem: at each turn, the tree player
chooses a spanning tree T , and the edge player chooses an edge e ∈ E, simultaneously.
The payoff to the edge player is 0 if e ∈ T and stretchT (e)+1 otherwise. They showed
that if every n-vertex weighted connected graph G has a spanning tree T of average
stretch f(n), then the value of this game is at most f(n)+1. Our new result lowers the
bound on the value of this game from exp

(
O(

√
log n log log n)

)
to O

(
log2 n log log n

)
.

1.1.3. MCT approximation. Our result can be used to dramatically improve
the upper bound on the approximability of the minimum communication cost spanning
tree (henceforth, MCT ) problem. This problem was introduced in [14] and is listed as
[ND7] in [12] and [8]. An instance of this problem is a weighted graph G = (V,E, �)
and a matrix {r(u, v) | u, v ∈ V } of nonnegative requirements. The goal is to construct
a spanning tree T that minimizes cost(T ) =

∑
u,v∈V r(u, v) · distT (u, v).

Peleg and Reshef [16] developed a 2O(
√

log n·log log n) approximation algorithm for
the MCT problem on metrics using the result of [1]. A similar approximation ratio can
be achieved for arbitrary graphs. Therefore our result can be used to produce an effi-
cient O(log2 n log log n) approximation algorithm for the MCT problem on arbitrary
graphs.
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Fig. 1. Star-decomposition.

1.2. Our techniques. We build our low-stretch spanning trees by recursively
applying a new graph decomposition that we call a star-decomposition. A star-
decomposition of a graph is a partition of the vertices into sets that are connected into
a star: a central set is connected to each other set by a single edge (see Figure 1). We
show how to find star-decompositions that do not cut too many short edges and such
that the radius of the graph induced by the star-decomposition is not much larger
than the radius of the original graph.

Our algorithm for finding a low-cost star-decomposition applies a generalization
of the ball-growing technique of Awerbuch [2] to grow cones, where the cone at a
vertex x induced by a set of vertices S is the set of vertices whose shortest path to S
goes through x.

1.3. The structure of the paper. In section 2, we define our notation. In
section 3, we introduce the star-decomposition of a weighted connected graph. We
then show how to use this decomposition to construct a subgraph spanning tree
with average stretch O(log3 n). In section 4, we present our star-decomposition al-
gorithm. In section 5, we refine our construction and improve the average stretch to
O
(
log2 n log log n

)
. Finally, we conclude the paper in section 6 and list some open

questions.

2. Preliminaries. Throughout the paper, we assume that the input graph is a
weighted connected multigraph G = (V,E, �), where � is a length function from E
to the positive reals. Unless stated otherwise, we let n and m denote the number of
vertices and the number of edges in the graph, respectively. The cost of an edge e ∈ E
is defined as the reciprocal of its length,3 denoted by cost (e) = 1/�(e). The cost of a
set F ⊆ E of edges, denoted cost (F ), is the sum of the costs of the edges in F .

Let u, v be two vertices in V . We define the distance between u and v, denoted
dist(u, v), to be the length of a shortest path between u and v in G. We write
distG(u, v) to emphasize that the distance is in the graph G. For a vertex subset S ⊆
V , we define the distance between u and S as distG(u, S) = min{distG(u, x) | x ∈ S}.

For a set of vertices S ⊆ V , G(S) is the subgraph induced on G by vertices in S.
We write distS(u, v) instead of distG(S)(u, v) when G is understood. E(S) is the set
of edges with both endpoints in S. The boundary of S, denoted ∂ (S), is the set of
edges with exactly one endpoint in S. If T is a set of vertices and S ∩ T = ∅, then
E(S, T ) is the set of edges with one endpoint in S and the other in T .

3In order to adapt our algorithms to the stretch definition of [1], we can simply define the cost
of an edge as the reciprocal of the distance between its endpoints.
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A multiway partition of V is a collection of pairwise-disjoint sets {V1, . . . , Vk}
such that

⋃
i Vi = V . The boundary of a multiway partition, denoted ∂ (V1, . . . , Vk),

is the set of edges with endpoints in different sets in the partition.
The volume of a set F of edges, denoted vol (F ), is the size of the set |F |. The

volume of a set S of vertices, denoted vol (S), is the number of edges with at least
one endpoint in S.

Let v be a vertex in V . The radius of G with respect to v, denoted radG (v),
is the smallest r such that every vertex of G is within distance (at most) r from v.
Given a vertex subset S ⊆ V , we may write radS (v) instead of radG(S) (v) when G
is understood. The ball of radius r around v, denoted B(r, v), is the set of vertices
at distance at most r from v. The ball shell of radius r around v, denoted BS(r, v),
is the set of vertices right outside B(r, v); that is, BS(r, v) consists of every vertex
u ∈ V −B(r, v) with a neighbor w ∈ B(r, v) such that dist(v, u) = dist(v, w)+�(u,w).

3. Spanning trees of O(log3n) stretch. We present our first algorithm that
generates a spanning tree with average stretch O(log3 n). We first state the properties
of the graph decomposition algorithm at the heart of our construction. We then
present the construction and analysis of the low-stretch spanning trees. We defer the
description of the graph decomposition algorithm and its analysis to section 4.

3.1. Low-cost star-decomposition. Our graph decomposition algorithm pro-
duces star-decompositions of graphs, which we now define.

Definition 3.1 (star-decomposition). A multiway partition {V0, . . . , Vk} is a
star-decomposition of a weighted connected graph G = (V,E, �) with center x0 ∈ V
(see Figure 1) if x0 ∈ V0 and

1. for all 0 ≤ i ≤ k, the subgraph induced on Vi is connected; and
2. for all i ≥ 1, Vi contains an anchor vertex xi that is connected to a vertex

yi ∈ V0 by an edge (xi, yi) ∈ E. We call the edge (xi, yi) the bridge between
V0 and Vi.

Let r = radG (x0), and ri = radVi (xi) for each 0 ≤ i ≤ k. For δ, ε ≤ 1/2, a star-
decomposition {V0, . . . , Vk} is a (δ, ε)-star-decomposition if

a. r0 ≤ (1 − δ)r;
b. dist(x0, xi) ≥ δr for each i ≥ 1; and
c. dist(x0, xi) + ri ≤ (1 + ε)r for each i ≥ 1.

The cost of the star-decomposition is cost (∂ (V0, . . . , Vk)).
Note that if {V0, . . . , Vk} is a (δ, ε)–star-decomposition of G, then the graph con-

sisting of the union of the induced subgraphs on V0, . . . , Vk and the bridge edges
(yi, xi) has radius at most (1 + ε) times the radius of the original graph.

In section 4, we present an algorithm StarDecomp that satisfies the following cost
guarantee. Let x = (x1, . . . , xk) and y = (y1, . . . , yk).

Lemma 3.2 (low-cost star-decomposition). Let G = (V,E, �) be a connected
weighted graph and let x0 be a vertex in V . Then for every positive ε ≤ 1/2,

({V0, . . . , Vk} ,x ,y) = StarDecomp(G, x0, 1/3, ε),

in time O(m + n log n), returns a (1/3, ε)–star-decomposition of G with center x0

satisfying

cost (∂ (V0, . . . , Vk)) ≤
6m log2(m + 1)

ε · radG (x0)
.

On unweighted graphs, the running time is O(m).
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3.2. A divide-and-conquer algorithm. The basic idea of our algorithm is
to use low-cost star-decompositions in a divide-and-conquer (recursive) algorithm to
construct a spanning tree. Let G = (V,E, �) be the graph input to the current
recursive invocation of the algorithm. Recall that we write n = |V | and m = |E|.
Let n̂ and m̂ denote the number of vertices and number of edges, respectively, in the
original graph, input to the first recursive invocation.

Before invoking our algorithm we apply a linear-time transformation from [1] that
may decrease the number of edges in the given multigraph (recall that a multigraph
of n̂ vertices may have an arbitrary number of edges). Given a weighted connected
simple graph G = (V,E, �) and a mapping m : E → Z>0, let Gm = (V,Em, �m) be
the multigraph obtained from G by making m(e) copies of each edge e ∈ E.

Lemma 3.3 (established in [1]). Let G = (V,E, �) be a weighted connected
simple graph. Then for every mapping m : E → Z>0, there exists a mapping
m′ : E → Z>0 such that |Em′ | =

∑
e∈E m′(e) ≤ |V | (|V |+1) and ave-stretch T (Em) ≤

2 ave-stretch T (Em′) for every spanning tree T of G. Moreover, the mapping m′ can
be computed in time linear in the size of G.

Consequently, in what follows we assume that m̂ ≤ n̂(n̂ + 1).
We begin by showing how to construct low-stretch spanning trees for unweighted

graphs, that is, when all edges have length 1. In particular, we use the fact that in
this case the cost of a set of edges equals the number of edges in the set.

Fix α = (log4/3(n̂ + 32))−1.
T = UnweightedLowStretchTree(G = (V,E), x0).

1. If |V | ≤ 2, then return G. (If G contains multiple edges, return a single
copy.)

2. ({V0, . . . , Vk} ,x ,y) = StarDecomp(G, x0, 1/3, α).
3. For 0 ≤ i ≤ k, set Ti = UnweightedLowStretchTree(G(Vi), xi).
4. Set T =

⋃
i Ti ∪

⋃
i(yi, xi).

Theorem 3.4 (unweighted). Let G = (V,E) be an unweighted connected graph
and let x0 be a vertex in V . Then

T = UnweightedLowStretchTree(G, x0),

in time O(m̂ log n̂), returns a spanning tree of G satisfying

(1) radT (x0) ≤ e · radG (x0)

and

(2) ave-stretchT (E) ≤ O(log3 m̂).

Proof. For our analysis, we define a sequence of graphs that converges to T . For
a graph G, we let

({V0, . . . , Vk} ,x ,y) = StarDecomp(G, x0, 1/3, α)

and recursively define

R0(G) = G and Rt(G) =
⋃
i

(yi, xi) ∪
⋃
i

Rt−1(G(Vi)).

The graph Rt(G) is what one would obtain if we forced UnweightedLowStretchTree

to return its input graph after t levels of recursion.
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Let ρ = radG (x0). Definition 3.1 implies ri ≤ (1 − δ + ε)r for every 1 ≤ i ≤ k.
By substituting δ = 1/3, ε = α, and r = ρ, and because for all n̂ ≥ 0, α = (log4/3(n̂+

32))−1 ≤ 1/12, we have ri ≤ 3ρ/4 for every 1 ≤ i ≤ k. As r0 ≤ 2ρ/3, the depth
of the recursion in UnweightedLowStretchTree is at most log4/3 n̂, and we have
Rlog4/3 n̂(G) = T . One can prove by induction that for every t ≥ 0,

radRt(G) (x0) ≤ (1 + α)tradG (x0) .

Claim (1) now follows as (1 + α)log4/3 n̂ ≤ e. To prove claim (2), we note that

∑
(u,v)∈∂(V0,...,Vk)

stretchT (u, v) ≤
∑

(u,v)∈∂(V0,...,Vk)

(distT (x0, u) + distT (x0, v))(3)

≤
∑

(u,v)∈∂(V0,...,Vk)

2e · radG (x0), by (1),

≤ 2e · radG (x0)

(
6 m̂ log2(m̂ + 1)

α · radG (x0)

)
, by Lemma 3.2,

≤ 12e m̂ (log2(m̂ + 1))
(
log4/3(n̂ + 32)

)
.(4)

Applying this inequality to all graphs at all log4/3 n̂ levels of the recursion, we obtain

∑
(u,v)∈E

stretchT (u, v) ≤ 12e m̂ (log2(m̂ + 1))
(
log4/3 n̂

)(
log4/3(n̂ + 32)

)

= O(m̂ log3 m̂).

(To justify the last inequality we remark that each edge ends up in ∂ (V0, . . . , Vk) on
one of the levels of recursion, or it survives all the way down to a component of size
two. In the latter case its contribution to the stretch is 1.)

The bound on the running time is obtained by Lemma 3.2 and because the depth
of the recursion is O(log n̂).

We now extend our algorithm and proof to general weighted connected graphs.
We begin by pointing out a subtle difference between general and unweighted graphs.
In our analysis of UnweightedLowStretchTree, we used the facts that each edge
length is 1 and radG (x0) ≤ n to show that the depth of recursion is at most log4/3 n.
In general weighted graphs, the ratio of radG (x0) to the length of the shortest edge
can be arbitrarily large. Thus, the recursion can be very deep. To compensate, we will
contract all edges that are significantly shorter than the radius of their component.
In this way, we will guarantee that each edge is active only in a logarithmic number
of iterations.

Let e = (u, v) be an edge in G = (V,E, �). The contraction of e results in a new
graph by identifying u and v as a new vertex whose neighbors are the union of the
neighbors of u and v. All self-loops created by the contraction are discarded. We refer
to u and v as the preimage of the new vertex.

We now state and analyze our algorithm for general weighted graphs.
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Fix β = (2�log4/3(2n̂ + 32)�)−1.
T = LowStretchTree(G = (V,E, �), x0).

1. If |V | ≤ 2, then return G. (If G contains multiple edges, return the
shortest copy.)

2. Set ρ = radG (x0).

3. Let G̃ = (Ṽ , Ẽ) be the graph obtained by contracting all edges in G of
length less than βρ/n̂.

4.
({

Ṽ0, . . . , Ṽk

}
, x̃ , ỹ

)
= StarDecomp(G̃, x0, 1/3, β).

5. For each i, let Vi be the preimage under the contraction of step 3 of
vertices in Ṽi, and let (yi, xi) ∈ V0 × Vi be the edge of shortest length for
which xi is a preimage of x̃i and yi is a preimage of ỹi.

6. For 0 ≤ i ≤ k, set Ti = LowStretchTree(G(Vi), xi).
7. Set T =

⋃
i Ti ∪

⋃
i(yi, xi).

In what follows, we refer to the graph G̃, obtained by contracting some of the
edges of the graph G, as the edge-contracted graph.

Theorem 3.5 (low-stretch spanning tree). Let G = (V,E, �) be a weighted
connected graph and let x0 be a vertex in V . Then

T = LowStretchTree(G, x0),

in time O(m̂ log n̂ + n̂ log2 n̂), returns a spanning tree of G satisfying

(5) radT (x0) ≤ 2e · radG (x0)

and

(6) ave-stretchT (E) = O(log3 m̂).

Proof. We first establish notation similar to that used in the proof of Theorem 3.4.
Our first step is to define a procedure, SD, that captures the action of the algorithm
in steps 2–4. We then define R0(G) = G and

Rt(G) =
⋃
i

(yi, xi) ∪
⋃
i

Rt−1(G(Vi)),

where

({V0, . . . , Vk} , x1, . . . , xk, y1, . . . , yk) = SD(G, x0, 1/3, β).

We now prove claim (5). Let ρ = radG (x0). Let s = �log4/3 (2n̂)� and let
ρs = radRs(G) (x0). Each contracted edge is of length at most βρ/n̂, and every path
in the graph G(Vi) contains at most n contracted edges; hence the insertion of the
contracted edges into G(Vi) increases its radius by an additive term of at most βρ.
Thus, we may prove by induction that

radRs(G) (x0) ≤ (1 + 2β)s · radG (x0) .

As (1 + 2β)s ≤ e, we may conclude that ρs is at most e · radG (x0).
To determine how much larger the radius of T can be, we first note that Defini-

tion 3.1 implies ri ≤ (1− δ + ε)r for every 1 ≤ i ≤ k. By substituting δ = 1/3, ε = β,
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and r = ρ, we have ri ≤ (2/3 + β)ρ. When the contracted edges are inserted into
G(Vi), the radius ri may increase by an additive term of at most βρ; hence in each
application of StarDecomp (actually, in each application of SD), ri ≤ (2/3 + 2β)ρ.
Since β = (2�log4/3(2n̂ + 32)�)−1 ≤ 1/24 for all n̂ ≥ 0, it follows that ri ≤ 3ρ/4 for
every 1 ≤ i ≤ k. As r0 ≤ 2ρ/3, each component of G that remains after s levels of
the recursion has radius at most ρ(3/4)s ≤ ρ/2n̂. We may also assume by induction
that for the graph induced on each of these components, LowStretchTree outputs a
tree of radius at most 2e(ρ/2n̂) = eρ/n̂. As there are at most n̂ of these components,
we know that the tree returned by the algorithm has radius at most

e · radG (x0) + n̂× e

n̂
radG (x0) = 2e · radG (x0) .

We now turn to the claim in (6), the bound on the stretch. In this part, we let
Et ⊆ E denote the set of edges that are present at recursion depth t. That is, their
endpoints appear in the same graph, and they are not identified by the contraction
of short edges in step 2. We now observe that no edge can be present at more than
�log4/3 ((2 n̂/β) + 1)� recursion depths. To see this, consider an edge (u, v) and let t
be the first recursion level for which the edge is in Et. Let ρt be the radius of the
component in which the edge lies at that time. As u and v are not identified under
contraction, they are at distance at least βρt/n̂ from each other. (This argument can
be easily verified, although the condition for edge contraction depends on the length of
the edge rather than on the distance between its endpoints.) If u and v are still in the
same graph on recursion level t+ �log4/3 ((2 n̂/β) + 1)�, then the radius of this graph
is at most ρt/((2 n̂/β)+1); thus its diameter is strictly less than βρt/n̂, contradicting
the lower bound on the distance between u and v.

Following the proof of the upper bound on
∑

(u,v)∈∂(V0,...,Vk) stretchT (u, v) in

inequalities (3)–(4) in the proof of Theorem 3.4, we can show that the total contribu-
tion to the stretch at depth t is at most

O(vol (Et) log2 m̂).

Thus, the sum of the stretches over all recursion depths is

∑
t

O
(
vol (Et) log2 m̂

)
= O

(
m̂ log3 m̂

)
.

We now analyze the running time of the algorithm. On each recursion level,
the dominant cost is that of performing the StarDecomp operations on each edge-
contracted graph. Let Vt denote the set of vertices in all edge-contracted graphs
on recursion level t. Then the total cost of the StarDecomp operations on recursion
level t is at most O(|Et| + |Vt| log |Vt|). We will prove in Lemma 3.6 that

∑
t |Vt| =

O(n̂ log n̂), and as
∑

t |Et| = O(m̂ log m̂), it follows that the total running time is
O(m̂ log n̂ + n̂ log2 n̂).

The following lemma shows that even though the number of recursion levels can
be very large, the overall number of vertices in edge-contracted graphs appearing on
different recursion levels is at most O(n̂ log n̂). This lemma is used only for the analysis
of the running time of our algorithm; a reader interested only in the existential bound
can skip it.

Lemma 3.6. Let Vt be the set of vertices appearing in edge-contracted graphs on
recursion level t. Then

∑
t |Vt| = O(n̂ log n̂).
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Proof. Consider an edge-contracted graph G̃ = (Ṽ , Ẽ) on recursion level t and

let x be a vertex in Ṽ . The vertex x was formed as a result of a number of edge
contractions (maybe 0). Accordingly, x can be viewed as a super-vertex. Let χ(x)
denote the set of original vertices that were identified together to form the super-vertex
x ∈ Ṽ .

We claim that for every super-vertex x ∈ Vt+1, there exists a super-vertex y ∈
Vt such that χ(x) ⊆ χ(y). To prove it, note that every graph on recursion level
t + 1 corresponds to a single component of a star-decomposition on recursion level
t. Moreover, an edge that was contracted on recursion level t + 1 must have been
contracted on recursion level t as well. Therefore we can consider a directed forest F
in which every node at depth t corresponds to some super-vertex in Vt and an edge
leads from a node y at depth t to a node x at depth t + 1, if χ(x) ⊆ χ(y). Note that
the roots of F correspond to super-vertices on recursion level 0 and the leaves of F
correspond to the original vertices of the graph G.

In the proof of Theorem 3.5, we showed that every edge is present on O(log n̂)
recursion levels. Following a similar line of arguments, one can show that every super-
vertex is present on O(log n̂) (before it is decomposed into smaller super-vertices, each
containing a subset of its vertices). Since there are n̂ vertices in the original graph G,
there are n̂ leaves in F . Therefore the overall number of nodes in the directed forest
F is O(n̂ log n̂), and the bound on

∑
t |Vt| holds.

4. Star-decomposition. Our star-decomposition algorithm exploits two algo-
rithms for growing sets. The first, BallCut, is the standard ball-growing technique
introduced by Awerbuch [2], and was the basis of the algorithm of [1]. The second,
ConeCut, is a generalization of ball-growing to cones. So that we can analyze this
second algorithm, we abstract the analyses from the works of [15, 10]. Instead of
nested balls, we consider concentric systems, which we now define.

Definition 4.1 (concentric system). A concentric system in a weighted graph
G = (V,E, �) is a family of vertex sets L = {Lr ⊆ V : r ∈ R≥0} such that

1. L0 = ∅;
2. Lr ⊆ Lr′ for all r < r′; and
3. if a vertex u ∈ Lr and (u, v) is an edge in E, then v ∈ Lr+�(u,v).

For example, for any vertex x ∈ V , the set of balls {B(r, x)} is a concentric system.
The radius of a concentric system L is radius (L) = inf{r : Lr = V }. For each vertex
v ∈ V , we define the norm of v with respect to L as ‖v‖L = inf{r : v ∈ Lr}.

Lemma 4.2 (concentric system cutting). Let G = (V,E, �) be a connected
weighted graph and let L = {Lr} be a concentric system. For every two reals 0 ≤
λ < λ′, there exists a real r ∈ [λ, λ′) such that

cost (∂ (Lr)) ≤ vol (Lr) + τ

λ′ − λ
max

[
1, log2

(
m + τ

vol (E(Lλ)) + τ

)]
,

where m = |E| and

τ =

{
1 if vol (E(Lλ)) = 0,

0 otherwise.

Proof. Note that rescaling terms does not affect the statement of the lemma. For
example, if all the lengths are doubled, then the costs are halved. Moreover, we may
assume that λ′ ≤ radius (L), since otherwise, choosing r = radius (L) implies that
∂ (Lr) = ∅, and the claim holds trivially.
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Let ri = ‖vi‖L, and assume that the vertices are ordered so that r1 ≤ r2 ≤
· · · ≤ rn. We may now assume without loss of generality that each edge in the graph
has minimal length. That is, an edge from vertex i to vertex j has length |ri − rj |.
The reason we may make this assumption is that it only increases the costs of edges,
making our lemma strictly more difficult to prove. (Recall that the cost of an edge is
the reciprocal of its length.)

Let Bi = Lri . Our proof will make critical use of a quantity μi, which is defined
to be

μi = τ + vol (E(Bi)) +
∑

(vj ,vk)∈E:j≤i<k

ri − rj
rk − rj

.

That is, μi sums the edges inside Bi, proportionally counting edges that are split by
the boundary of the ball. The two properties of μi that we exploit are

(7) μi+1 = μi + cost (∂ (Bi)) (ri+1 − ri)

and

(8) τ + vol (E(Bi)) ≤ μi ≤ τ + vol (Bi) .

Inequality (8) is trivial, and equality (7) follows from the definition by a straight-
forward calculation, as

μi = τ + vol (E(Bi+1)) − vol ({(vj , vi+1) ∈ E | j ≤ i}) +
∑

(vj ,vk)∈E:j≤i<k

ri − rj
rk − rj

and

cost (∂ (Bi)) (ri+1 − ri) =
∑

(vj ,vk)∈E:j≤i<k

ri+1 − ri
rk − rj

.

Choose a and b so that ra−1 ≤ λ < ra and rb < λ′ ≤ rb+1. Let ν = λ′ − λ. We
first consider the trivial case in which b < a. (That is, b = a−1.) In that case, there is
no vertex with norm between λ and λ′. Thus every edge crossing L(λ+λ′)/2 has length
at least ν, and therefore cost at most 1/ν. Therefore, by setting r = (λ + λ′)/2, we
obtain

cost (∂ (Lr)) ≤ vol (∂ (Lr))
1

ν
≤ vol (Lr)

1

ν
,

establishing the lemma in this case.
We now define

η = log2

(
m + τ

vol (E(Ba−1)) + τ

)
.

Note that Ba−1 = Lλ, by the choice of a. A similarly trivial case is when [a, b] is
nonempty and, in addition, there exists an i ∈ [a− 1, b] such that

ri+1 − ri ≥
ν

η
.
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In this case, every edge in ∂ (Bi) has cost at most η/ν. By choosing r to be max{ri, λ},
we satisfy

cost (∂ (Lr)) ≤ vol (∂ (Lr))
η

ν
≤ vol (Lr)

η

ν
;

hence, the lemma is established in this case.
In the remaining case that the set [a, b] is nonempty and for all i ∈ [a− 1, b],

(9) ri+1 − ri <
ν

η
,

we will prove that there exists an i ∈ [a− 1, b] such that

cost (∂ (Bi)) ≤
μiη

ν
.

Choosing r = max{ri, λ} and applying (8), we will prove the lemma.
Assume by way of contradiction that

cost (∂ (Bi)) > μiη/ν

for all i ∈ [a− 1, b]. It follows, by (7), that

μi+1 > μi + μi(ri+1 − ri)η/ν

for all i ∈ [a− 1, b], which implies

μb+1 > μa−1

b∏
i=a−1

(1 + (ri+1 − ri)η/ν)

≥ μa−1

b∏
i=a−1

2((ri+1−ri)η/ν)

= μa−1 · 2(rb+1−ra−1)η/ν

≥ μa−1 · ((m + τ)/(vol (E(Ba−1)) + τ))

≥ m + τ,

where the second inequality holds by (9) since 1+x ≥ 2x for every 0 ≤ x ≤ 1 and the
last inequality holds by (8). Thus we derive a contradiction.

An analysis of the following standard ball-growing algorithm follows immediately
by applying Lemma 4.2 to the concentric system {B(r, x)}.

r = BallCut(G, x, ρ, δ).
1. Set r = δρ.

2. While cost (∂ (B(r, x))) > vol(B(r,x))+1
(1−2 δ)ρ log2(m + 1),

(a) Find a vertex v /∈ B(r, x) that minimizes dist(x, v) and set r =
dist(x, v).

Corollary 4.3 (weighted ball cutting). Let G = (V,E, �) be a connected
weighted graph, and let x0 ∈ V , ρ = radG (x0), r0 = BallCut(G, x0, ρ, 1/3), and
V0 = B(r0, x0). Then ρ/3 ≤ r0 < 2 ρ/3 and

cost (∂ (V0)) ≤
3 (vol (V0) + 1) log2(|E| + 1)

ρ
.
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S

0

b1

a1
a2

b2
b3

a

Fig. 2. The vertex b3 is in CS(l, a0) if �(b1, a1) + �(b2, a2) ≤ l.

We now examine the concentric system that enables us to construct V1, . . . , Vk in
Lemma 3.2.

Definition 4.4 (ideals and cones). For any weighted graph G = (V,E, �) and
S ⊆ V , the set of forward edges induced by S is

F (S) = {(u → v) : (u, v) ∈ E,dist(u, S) + �(u, v) = dist(v, S)}.

For a vertex v ∈ V , the ideal of v induced by S, denoted IS(v), is the set of vertices
reachable from v by directed edges in F (S), including v itself.

For a vertex v ∈ V , the cone of width l around v induced by S, denoted CS(l, v),
is the set of vertices in V that can be reached from v by a path, the sum of the lengths
of whose edges e that do not belong to F (S) is at most l. Clearly, CS(0, v) = IS(v)
for all v ∈ V .

That is, IS(v) is the set of vertices that have shortest paths to S that intersect v.
Also, u ∈ CS(l, v) if there exist a0, . . . , ak−1 and b1, . . . , bk such that a0 = v, bk = u,
bi+1 ∈ IS(ai), (bi, ai) ∈ E, and

k−1∑
i=1

�(bi, ai) ≤ l.

Refer to Figure 2 for an illustration of a cone.
We now establish that these cones form concentric systems.
Proposition 4.5 (cones are concentric). Let G = (V,E, �) be a weighted graph

and let S ⊆ V . Then for all v ∈ V , {CS(l, v)}l is a concentric system in G.
Proof. Clearly, CS(l, v) ⊆ CS(l′, v) if l < l′. Suppose that u ∈ CS(l, v) and

(u,w) ∈ E. If (u → w) ∈ F (S), then w ∈ CS(l, v) as well. Otherwise, the path
witnessing that u ∈ CS(l, v) followed by the edge (u,w) to w is a witness that w ∈
CS(l + �(u,w), v).

r = ConeCut(G, v, λ, λ′, S).
1. Set r = λ.
2. If vol (E(CS(λ, v))) = 0, then set μ = (vol (CS(r, v)) + 1) log2(m + 1).
3. Otherwise, set μ = vol (CS(r, v)) log2(m/vol (E(CS(λ, v)))).
4. While cost (∂ (CS(r, v))) > μ/(λ′ − λ),

(a) Find a vertex w ∈ CS(r, v) minimizing dist(w,CS(r, v)) and set
r = r + dist(w,CS(r, v)).
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Corollary 4.6 (cone cutting). Let G = (V,E, �) be a connected weighted
graph, let v be a vertex in V , and let S ⊆ V . Then for any two reals 0 ≤ λ < λ′,
ConeCut(G, v, λ, λ′, S) returns a real r ∈ [λ, λ′) such that

cost (∂ (CS(r, v))) ≤ vol (CS(r, v)) + τ

λ′ − λ
max

[
1, log2

m + τ

vol (E(CS(λ, v))) + τ

]
,

where m = |E|, and

τ =

{
1 if vol (E(CS(λ, v))) = 0,
0 otherwise.

We will use two other properties of the cones CS(l, v): that we can bound their
radius (Proposition 4.7) and that their removal does not increase the radius of the
resulting graph (Proposition 4.8). It is not too difficult to show that for every S ⊆ V
and every x ∈ S,

radCS(l,x) (x) ≤ max {dist(v, S) + 2l | v ∈ V }.

To see this, observe that the l = 0 case is easy, and that for larger l, the extra distance
traveled along forward edges is at most the distance traveled along nonforward edges.

However, we require a slightly more complicated inequality. Recall that for a
vertex v and a real r, the ball shell BS(r, v) consists of every vertex u ∈ V −B(r, v)
with a neighbor w ∈ B(r, v) such that dist(v, u) = dist(v, w) + �(u,w).

Proposition 4.7 (radius of cones). Let G = (V,E, �) be a connected weighted
graph, let x0 ∈ V , and let ρ = radG (x0). Let r0 < ρ and let V0 = B(r0, x0),
V ′ = V−V0, and S = BS(r0, x0). Let x be any vertex in S and let ψ = ρ−distG(x0, x).
Then the cones CS(l, x) in the graph G(V ′) satisfy

radCS(l,x) (x) ≤ ψ + 2l.

Proof. Let u be a vertex in CS(l, x), and let a0, . . . , ak−1 and b1, . . . , bk be vertices
in V ′ such that a0 = x, bk = u, bi+1 ∈ IS(ai), (bi, ai) ∈ E, and

k−1∑
i=1

�(bi, ai) ≤ l.

These vertices provide a path connecting x to u inside CS(l, x) of length at most

k−1∑
i=0

distG(V ′)(ai, bi+1) +

k−1∑
i=1

�(bi, ai).

As the second term is at most l, we just need to bound the first term by ψ + l. To
do this consider the distance of each of these vertices from x0 in the graph G. Since
bi+1 ∈ IS(ai), and since S is a ball shell around x0, it follows that

distG(x0, bi+1) = distG(x0, ai) + distG(V ′)(ai, bi+1).

By the triangle inequality, we have

distG(x0, ai) ≥ distG(x0, bi) − �(bi, ai).
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Together, these imply

ρ ≥ distG(x0, bk) ≥ distG(x0, a0) −
k−1∑
i=1

�(bi, ai) +

k−1∑
i=0

distG(V ′)(ai, bi+1).

The proposition follows since ψ = ρ−distG(x0, a0) and since
∑k−1

i=1 �(bi, ai) ≤ l.
Proposition 4.8 (deleting cones). Consider a connected weighted graph G =

(V,E, �), a vertex subset S ⊆ V , a vertex x ∈ S, and a real l ≥ 0, and let V ′ =
V − CS(l, x), S′ = S − CS(l, x), and ψ = maxv∈V dist(v, S). Then

max
v∈V ′

distV ′(v, S′) ≤ ψ.

Proof. Consider any v ∈ V ′, and let P be a shortest path between S and v.
Note that all the edges of P are forward edges, and thus if P intersects CS(l, x), then
v ∈ CS(l, x). So, the shortest path from v to S in V must lie entirely in V ′.

The basic idea of StarDecomp is to first use BallCut to construct V0 and then
repeatedly apply ConeCut to construct V1, . . . , Vk.

({V0, . . . , Vk,x ,y}) = StarDecomp(G = (V,E, �), x0, δ, ε).
1. Set ρ = radG (x0); set r0 = BallCut(G, x0, ρ, δ) and V0 = B(r0, x0).
2. Let S = BS(r0, x0).
3. Set G′ = (V ′, E′, �′) = G(V −V0), the weighted graph induced by V −V0.
4. Set ({V1, . . . , Vk,x}) = ConeDecomp(G′, S, ερ/2).
5. For each i ∈ [1 : k], set yi to be a vertex in V0 such that (xi, yi) ∈ E and

yi is on a shortest path from x0 to xi. Set y = (y1, . . . , yk).
({V1, . . . , Vk,x}) = ConeDecomp(G,S,Δ).

1. Set G0 = G, S0 = S, and k = 0.
2. While Sk is not empty,

(a) Set k = k + 1.
(b) Let xk be an arbitrary vertex in Sk−1 and set rk =

ConeCut(Gk−1, xk, 0,Δ, Sk−1).
(c) Set Vk = CSk−1

(rk, xk). Set Gk = G(V −∪k
i=1Vk) and Sk = Sk−1 −

Vk.
3. Set x = (x1, . . . , xk).

Proof of Lemma 3.2. Let ρ = radG (x0). By setting δ = 1/3, Corollary 4.3
guarantees ρ/3 ≤ r0 < (2/3)ρ; thus distG(x0, v) > ρ/3 for every v ∈ V − V0, and
in particular, distG(x0, xi) > ρ/3 for every 1 ≤ i ≤ k. Applying Δ = ερ/2 and
Propositions 4.7 and 4.8, we can bound for every i

dist(x0, xi) + ri ≤ ρ + 2Δ = ρ + ερ.

Thus StarDecomp(G, x0, 1/3, ε) returns a (1/3, ε)–star-decomposition with center x0.
To bound the cost of the star-decomposition that the algorithm produces, we use

Corollaries 4.3 and 4.6 to show

cost (∂ (V0)) ≤
3 (1 + vol (V0)) log2(m + 1)

ρ
and

cost
(
E
(
Vj , V − ∪j

i=0Vi

))
≤ 2 (1 + vol (Vj)) log2(m + 1)

ερ
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for every 1 ≤ j ≤ k. Thus,

cost (∂ (V0, . . . , Vk)) ≤
k∑

j=0

cost
(
E
(
Vj , V − ∪j

i=0Vi

))

≤ 2 log2(m + 1)

ερ

k∑
j=0

(vol (Vj) + 1)

≤ 6m log2(m + 1)

ερ
.

To implement StarDecomp in O(m + n log n) time, we use a Fibonacci heap to
implement steps (2) of BallCut and ConeCut. If the graph is unweighted, this can be
replaced by a breadth-first search that requires O(m) time.

5. Improving the stretch. In this section, we improve the average stretch of
the spanning tree to O

(
log2 n log log n

)
by introducing a procedure ImpConeDecomp

which refines ConeDecomp. This new cone decomposition trades off the volume of the
cone against the cost of edges on its boundary (similar to Seymour [17]). Our refined
star-decomposition algorithm ImpStarDecomp is identical to algorithm StarDecomp,
except that it calls

({V1, . . . , Vk,x}) = ImpConeDecomp(G′, S, ερ/2, t, m̂)

at step 4, where t is a positive integer parameter whose role will be described soon.

({V1, . . . , Vk,x}) = ImpConeDecomp(G,S,Δ, t, m̂).
1. Set G0 = G, S0 = S, and j = 0.
2. While Sj is not empty,

(a) Set j = j + 1 and p = t− 1.
(b) Set xj to be a vertex of Sj−1.
(c) While p > 0,

(i) rj = ConeCut(Gj−1, xj ,
(t−p−1)Δ

t , (t−p)Δ
t , Sj−1).

(ii) If vol
(
E(CSj−1

(rj , xj))
)

≤ m

2logp/t m̂
, then exit the loop; else

p = p− 1.
(d) Set Vj = CSj−1(rj , xj), set Gj = G(V − ∪j

i=1Vi), and set Sj =
Sj−1 − Vj .

3. Set x = (x1, . . . , xk).

Lemma 5.1 (improved low-cost star-decomposition). Let G, x0, and ε be as in
Lemma 3.2, let t be a positive integer control parameter, and let ρ = radG (x0). Then

({V0, . . . , Vk},x ,y) = ImpStarDecomp(G, x0, 1/3, ε, t, m̂),

in time O(m+n log n), returns a (1/3, ε)–star-decomposition of G with center x0 that
satisfies

cost (∂ (V0)) ≤
6 vol (V0) log2(m̂ + 1)

ρ
,

and for every index j ∈ {1, 2, . . . , k} there exists p = p(j) ∈ {0, 1, . . . , t− 1} such that

(10) cost
(
E
(
Vj , V − ∪j

i=0Vi

))
≤ t · 4 vol (Vj) log(p+1)/t(m̂ + 1)

ερ
,
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and unless p = 0,

(11) vol (E(Vj)) ≤
m

2logp/t m̂
.

Proof. In what follows, we call p(j) the index-mapping of the vertex set Vj . We
begin our proof by observing that 0 ≤ rj < ερ/2 for every 1 ≤ j ≤ k. We can
then show that {V0, . . . , Vk} is a (1/3, ε)–star-decomposition as we did in the proof of
Lemma 3.2.

We now bound the cost of the decomposition. Clearly, the bound on cost (∂ (V0))
remains unchanged from that proved in Lemma 3.2 (because the algorithm that com-
putes V0 did not change), but here we upper-bound vol (V0) + 1 by 2 · vol (V0). Fix
an index j ∈ {1, 2, . . . , k}, and let p = p(j) be the final value of variable p in the loop
above (that is, the value of p when the execution left the loop while constructing Vj).
Observe that p ∈ {0, 1, . . . , t − 1}, and that unless the loop is aborted due to p = 0,
we have vol (E(Vj)) ≤ m

2logp/t m̂
and inequality (11) holds.

For inequality (10), we split the discussion into two cases. First, consider the
case p = t − 1. In this case, the inequality cost

(
E
(
Vj , V − ∪j

i=0Vi

))
≤ (vol (Vj) +

1) log(m̂+1)(t/Δ) follows directly from Corollary 4.6, and inequality (10) holds (recall
that Δ = ερ/2 ).

Second, consider the case p < t − 1 and let r′j be the value of the variable rj
set by the previous invocation of Algorithm ConeCut (which did not satisfy the test
in line 2(c)(ii)). In this case, observe that at the beginning of the last iteration,
vol
(
E(CSj−1(r

′
j , xj))

)
> m

2log(p+1)/t m̂
(as otherwise the loop would have been aborted

in the previous iteration). By Corollary 4.6,

cost
(
E
(
Vj , V − ∪j

i=0Vi

))

≤vol (Vj)

Δ/t
× max

⎧⎨
⎩1, log2

⎛
⎝ m

vol
(
E
(
CSj−1

(
(t−p−1)Δ

t , xj

)))
⎞
⎠
⎫⎬
⎭ ,

where Vj = CSj−1(rj , xj). Since

(t− p− 2)Δ

t
≤ r′j <

(t− p− 1)Δ

t
,

it follows that

vol

(
E

(
CSj−1

(
(t− p− 1)Δ

t
, xj

)))
≥ vol

(
E(CSj−1(r

′
j , xj))

)
>

m

2log(p+1)/t m̂
.

Therefore

log(p+1)/t m̂ ≥ max

⎧⎨
⎩1, log2

⎛
⎝ m

vol
(
E
(
CSj−1

(
(t−p−1)Δ

t , xj

)))
⎞
⎠
⎫⎬
⎭ ,

and

cost
(
E
(
Vj , V − ∪j

i=0Vi

))
≤ vol (Vj) log(p+1)/t m̂

Δ/t
= t · 2 vol (Vj) log(p+1)/t m̂

ερ
.

The assertion follows.



LOWER-STRETCH SPANNING TREES 625

Our improved algorithm ImpLowStretchTree(G, x0, t, m̂) is identical to the algo-

rithm LowStretchTree except that in step 3 it calls ImpStarDecomp(G̃, x0, 1/3, β, t,
m̂), and in step 5 it calls ImpLowStretchTree(G(Vi), xi, t, m̂). We set t = log log m̂
throughout the execution of the algorithm.

Theorem 5.2 (lower-stretch spanning tree). Let G = (V,E, �) be a connected
weighted graph and let x0 be a vertex in V . Then

T = ImpLowStretchTree(G, x0, t, m̂),

in time O(m̂ log n̂ + n̂ log2 n̂), returns a spanning tree of G satisfying

radT (x0) ≤ 2e · radG (x)

and

ave-stretchT (E) = O
(
log2 n̂ log log n̂

)
.

Proof. The bound on the radius of the tree remains unchanged from that proved
in Theorem 3.5.

We begin by defining a system of notation for the recursive process, assign-
ing to each graph G = (V,E) input to some recursive invocation of Algorithm
ImpLowStretchTree a sequence σ(G) of nonnegative integers. This is done as follows.
If G is the original graph input to the first invocation of the recursive algorithm, then
σ(G) is empty. Assuming that the halt condition of the recursion is not satisfied for G,

the algorithm continues, and some of the edges in E are contracted. Let G̃ = (Ṽ , Ẽ)

be the resulting graph. (Recall that we refer to G̃ as the edge-contracted graph.) Let

{Ṽ0, Ṽ1, . . . , Ṽk} be the star-decomposition of G̃. Let Vj ⊆ V be the preimage under

edge contraction of Ṽj ⊆ Ṽ for every 0 ≤ j ≤ k. The graph G(Vj) is assigned the
sequence σ(G(Vj)) = σ(G) · j. Note that |σ(G)| = h implies that the graph G is
input to the recursive algorithm on recursion level h. We warn the reader that the
edge-contracted graph obtained from a graph assigned the sequence σ may have fewer
edges than the edge-contracted graph obtained from the graph assigned the sequence
σ · j, because the latter may contain edges that were contracted out in the former.

We say that the edge e is present at recursion level h if there exists a graph G
with |σ(G)| = h such that e is not contracted out in G̃. An edge e appears at the
first level h at which it is present, and it disappears at the level at which it is present
and its endpoints are separated by the star-decomposition or, if this never happens,
then at the level of the leaf component of the recursion tree in which e appears. If an
edge appears at recursion level h, then a path connecting its endpoints was contracted
on every recursion level smaller than h, and no such path will be contracted on any
recursion level greater than h. Moreover, an edge is never present at a level after it
disappears. We define h(e) and h′(e) to be the recursion levels at which the edge e
appears and disappears, respectively.

For every edge e and every recursion level i at which it is present, we let U(e, i)

denote the set of vertices Ṽ of the edge-contracted graph containing its endpoints.
If h(e) ≤ i < h′(e), then we let W (e, i) denote the set of vertices Ṽj output by
ImpStarDecomposition that contains the endpoints of e.

Recall that p(j) denotes the index-mapping of the vertex set Vj in the star-
decomposition. For each index i ∈ {0, 1, . . . , t − 1}, let Ii = {j ∈ {1, 2, . . . , k} |
p(j) = i}. For a vertex subset U ⊆ V , let AS(U) denote the average stretch that



626 M. ELKIN, Y. EMEK, D. A. SPIELMAN, AND S.-H. TENG

the algorithm guarantees for the edges of E(U). Let TS(U) = AS(U) · |E(U)|. (TS
stands for the “total stretch.”) Then by Lemma 5.1, the following recursive formula
applies:

TS(V ) ≤

⎛
⎝ k∑

j=0

TS(Ṽj)

⎞
⎠

+ 4e×

⎛
⎝6 log(m̂ + 1) · vol

(
Ṽ0

)
+ 4

t

β

t−1∑
p=0

log(p+1)/t(m̂ + 1)
∑
j∈Ip

vol
(
Ṽj

)⎞⎠

+
∑

e∈E−Ẽ

stretchT (e)

= 4e×

⎛
⎝6 log(m̂ + 1) · vol

(
Ṽ0

)
+ 4

t

β

t−1∑
p=0

log(p+1)/t(m̂ + 1)
∑
j∈Ip

vol
(
Ṽj

)⎞⎠(12)

+
k∑

j=0

TS(Vj),

where we recall β = ε = (2�log4/3(2n + 32)�)−1.
For every edge e and for every h(e) ≤ i < h′(e), let πi(e) denote the index-

mapping of the component W (e, i) in the invocation of Algorithm ImpConeDecomp on
recursion level i. For every index p ∈ {0, . . . , t−1}, define the variable lp(e) as follows:

lp(e) = |{h(e) ≤ i < h′(e) | πi(e) = p}| .

For a fixed edge e and an index p ∈ {0, 1, . . . , t − 1}, every h(e) ≤ i < h′(e)

such that πi(e) = p contributes O(t/β) · log(p+1)/t(m̂ + 1) to the right-hand term in

(12) (that is, this is the contribution when an edge e is counted in a vol
(
Ṽj

)
term).

Summing p over {0, 1, . . . , t− 1}, we obtain

t−1∑
p=0

O(t/β)lp(e) log(p+1)/t(m̂ + 1).

Soon, we will prove that

(13)
∑
e

t−1∑
p=0

lp(e) logp/t(m̂ + 1) ≤ O(m̂ log2 m̂),

which implies that the sum of the contributions of all edges e in levels h(e) ≤ i < h′(e)
to the right-hand term in (12) is

O

(
t

β
· m̂ log1+1/t m̂

)
= O

(
t · m̂ log2+1/t m̂

)
.

As vol (Vj) counts the internal edges of Vj as well as its boundary edges, we
must also account for the contribution of each edge e at level h′(e). At this level,
it will be counted twice—once in each component containing one of its endpoints.
Thus, at this stage, it contributes a factor of at most O((t/β) · log m̂) to the sum
TS(V ). Therefore all edges e ∈ E at level h′(e) contribute an additional factor of
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O(t · m̂ log2 m̂). Summing over all the edges, we find that all the contributions to the
right-hand term in (12) sum to at most

O
(
t · m̂ log2+1/t m̂

)
.

Also, every h(e) ≤ i < h′(e) such that the edge e belongs to the central component

Ṽ0 of the star decomposition contributes O(log m̂) to the left-hand term in (12). Since
there are at most O(log m̂) such i’s, it follows that the contribution of the left-hand
term in (12) to TS(V ) sums up to an additive term of O(log2 m̂) for every single edge,
and (m̂ log2 m̂) for all edges.

It follows that TS(V ) = O(t · m̂ log2+1/t m̂). This is optimized by setting t =
log log m̂, obtaining the desired upper bound of O(log2 n̂ · log log n̂) on the average
stretch AS(V ) guaranteed by Algorithm ImpLowStretchTree.

We now return to the proof of (13). We first note that l0(e) is at most O(log m̂) for
every edge e. We then observe that for each index p > 0 and each h(e) ≤ i < h′(e) such

that πi(e) = p, vol (E(U(e, i))) /vol (E(W (e, i))) is at least 2logp/t m̂ (by Lemma 5.1,
(11)).

For h(e) ≤ i < h′(e), let gi(e) = vol (E(U(e, i + 1))) /vol (E(W (e, i))) (note that
the vertex sets W (e, i) and U(e, i + 1) correspond to the same component under
different edge contraction. We then have

∏
1≤p≤t−1

(
2logp/t m̂

)lp(e)

≤ m̂
∏

h(e)≤i<h′(e)

gi(e);

hence
∑t−1

p=1 lp(e) logp/t m̂ ≤ log m̂ +
∑

h(e)≤i<h′(e) log gi(e). We will next prove that

(14)
∑
e

∑
h(e)≤i<h′(e)

log gi(e) ≤ m̂ log m̂,

which implies (13).
Let Ei denote the set of edges present at recursion level i. For every edge e ∈ Ei

such that i < h′(e), we have

∑
e′∈E(W (e,i))

gi(e
′) = gi(e)vol (E(W (e, i))) = vol (E(U(e, i + 1))) ,

and so ∑
e∈Ei

h(e)≤i<h′(e)

gi(e) = vol (Ei+1) .

As each edge is present in at most O(log m̂) recursion depths,
∑

i vol (Ei) ≤ m̂ log m̂,
which proves (14).

6. Conclusion. At the beginning of the paper, we pointed out that the definition
of stretch used in this paper differs slightly from that used by Alon et al. [1]. If one
is willing to accept a longer running time, then this problem is easily remedied, as
shown in section 1.1. If one is willing to accept a bound of O(log3 n) on the stretch,
then one can extend our analysis to show that the natural randomized variant of
LowStretchTree, in which one chooses the radii of the balls and cones at random,
works.
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A natural open question is whether one can improve the stretch bound from
O
(
log2 n log log n

)
to O(log n). Algorithmically, it is also desirable to improve the

running time of the algorithm to O(m log n). If we can successfully achieve both
improvements, then we can use the Spielman–Teng solver to solve planar diagonally
dominant linear systems in O(n log n log(1/ε)) time.

As the average stretch4 of any spanning tree in a weighted connected graph
is at least 1, our low-stretch tree algorithm also provides an O

(
log2 n log log n

)
-

approximation to the optimization problem of finding the spanning tree with the
lowest average stretch. It remains open whether (a) our algorithm has a better ap-
proximation ratio and (b) one can in polynomial time find a spanning tree with better
approximation ratio, e.g., O(log n) or even O(1).
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ship on this paper.
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Abstract. We develop the algorithmic theory of vertex separators and its relation to the embed-
dings of certain metric spaces. Unlike in the edge case, we show that embeddings into L1 (and even
Euclidean embeddings) are insufficient but that the additional structure provided by many embed-
ding theorems does suffice for our purposes. We obtain an O(

√
logn) approximation for minimum

ratio vertex cuts in general graphs, based on a new semidefinite relaxation of the problem, and a tight
analysis of the integrality gap which is shown to be Θ(

√
logn). We also prove an optimal O(log k)-

approximate max-flow/min-vertex-cut theorem for arbitrary vertex-capacitated multicommodity flow
instances on k terminals. For uniform instances on any excluded-minor family of graphs, we improve
this to O(1), and this yields a constant-factor approximation for minimum ratio vertex cuts in such
graphs. Previously, this was known only for planar graphs, and for general excluded-minor families
the best known ratio was O(logn). These results have a number of applications. We exhibit an
O(

√
logn) pseudoapproximation for finding balanced vertex separators in general graphs. In fact,

we achieve an approximation ratio of O(
√

log opt), where opt is the size of an optimal separator,
improving over the previous best bound of O(log opt). Likewise, we obtain improved approximation
ratios for treewidth: in any graph of treewidth k, we show how to find a tree decomposition of width
at most O(k

√
log k), whereas previous algorithms yielded O(k log k). For graphs excluding a fixed

graph as a minor (which includes, e.g., bounded genus graphs), we give a constant-factor approxima-
tion for the treewidth. This in turn can be used to obtain polynomial-time approximation schemes
for several problems in such graphs.

Key words. graph separators, sparsest cut, embeddings, multicommodity flows
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1. Introduction. Given a graph G = (V,E), one is often interested in finding a
small “separator” whose removal from the graph leaves two sets of vertices of roughly
equal size (say, of size at most 2|V |/3) with no edges connecting these two sets.
The separator itself may be a set of edges, in which case it is called a balanced edge
separator, or a set of vertices, in which case it is called a balanced vertex separator.
In the present work, we focus on vertex separators.

Balanced separators of small size are important in several contexts. They are
often the bottlenecks in communication networks (when the graph represents such a
network) and can be used in order to provide lower bounds on communication tasks
(see, e.g., [37, 35, 9]). Perhaps more importantly, finding balanced separators of small
size is a major primitive for many graph algorithms and, in particular, for those that
are based on the divide and conquer paradigm [39, 9, 36].
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Certain families of graphs always have small vertex separators. For example,
trees always have a vertex separator containing a single vertex. The well-known
planar separator theorem of Lipton and Tarjan [39] shows that every n-vertex planar
graph has a balanced vertex separator of size O(

√
n) and, moreover, that such a

separator can be found in polynomial time. This was later extended to show that
more general families of graphs (any family of graphs that excludes some minor) have
small separators [25, 2]. However, there are families of graphs (for example, expander
graphs) in which the smallest separator is of size Ω(n).

Finding the smallest separator is an NP-hard problem (see, e.g., [15]). In the
current paper, we study approximation algorithms that find vertex separators whose
sizes are not much larger than the optimal separator of the input graph. These
algorithms can be useful in detecting small separators in graphs that happen to have
small separators, as well as in demonstrating that an input graph does not have any
small vertex separator (and hence, for example, does not have serious bottlenecks for
routing).

Much of the previous work on approximating vertex separators piggy-backed on
work for approximating edge separators. For graphs of bounded degree, the sizes of
the minimum edge and vertex separators are the same up to a constant multiplica-
tive factor, leading to a corresponding similarity in terms of approximation ratios.
However, for general graphs (with no bound on the degree), the situation is different.
For example, every edge separator for the star graph has Ω(n) edges, whereas the
minimum vertex separator has just one vertex. One can show that approximating
vertex separators is at least as hard as approximating edge separators (see [15]). As
to the reverse direction, it is known only that approximating vertex separators is at
least as easy as approximating edge separators in directed graphs (a notion that will
not be discussed in this paper).

The previous best approximation ratio for vertex separators is based on the work
of Leighton and Rao [36]. They presented an algorithm based on linear programming
that approximates the minimum edge separator within a ratio of O(log n). They ob-
served that their algorithm can be extended to work on directed graphs and hence
gives an approximation ratio of O(log n) also for vertex separators, using the algo-
rithm for (directed) edge separators as a black box. More recently, Arora, Rao, and
Vazirani [7] presented an algorithm based on semidefinite programming that approx-
imates the minimum edge separator within a ratio of O(

√
log n). Their remarkable

techniques, which are a principal component in our algorithm for vertex separators,
are discussed more in the following section.

In the present work, we formulate new linear and semidefinite program (SDP)
relaxations for the vertex separator problem and then develop rounding algorithms
for these programs. The rounding algorithms are based on techniques that were
developed in the context of edge separators, but we exploit new properties of these
techniques and adapt and enhance them to the case of vertex separators. Using this
approach, we improve the best approximation ratio for vertex separators to O(

√
log n).

In fact, we obtain an O(
√

log opt) approximation, where opt is the size of an optimal
separator. (An O(log opt) approximation can be derived from the techniques of [36].)
In addition, we derive and extend some previously known results in a unified way,
such as a constant factor approximation for vertex separators in planar graphs (a
result originally proved in [5]), which we extend to any family of graphs excluding a
fixed minor.

Before delving into more details, let us mention two aspects in which edge and
vertex separators differ. One is the notion of a minimum ratio cut, which is an
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important notion used in our analysis. For edge cuts, all “natural” definitions of such
a notion are essentially equivalent. For vertex separators, this is not the case. One
consequence of this is that our algorithms provide a good approximation for vertex
expansion in bounded degree graphs but not in general graphs. This issue will be
discussed in section 2. Another aspect where there is a distinction between edge
and vertex separators is that of the role of embeddings into L1 (a term that will be
discussed later). For edge separators, if the linear program or SDP relaxations happen
to provide such an embedding (i.e., if the solution is an L1 metric), then they in fact
yield an optimal edge separator. For vertex separators, embeddings into L1 seem to
be insufficient, and we give a number of examples that demonstrate this deficiency.
Our rounding techniques for the vertex separator case are based on embeddings with
small average distortion into a line, a concept that was first systematically studied by
Rabinovich [41].

As mentioned above, finding small vertex separators is a basic primitive that is
used in many graph algorithms. Consequently, our improved approximation algo-
rithm for minimum vertex separators can be plugged into many of these algorithms,
improving either the quality of the solution that they produce or their running time.
Rather than attempting to provide in this paper a survey of all potential applications,
we shall present one major application, that of improving the approximation ratio for
treewidth, and discuss some of its consequences.

1.1. Some related work. An important concept that we shall use is the ratio
of a vertex separator (A,B, S). Given a weight function π : V → R+ on vertices and
a set S ⊆ V which separates G into two disconnected pieces A and B, we can define
the sparsity of the separator by

π(S)

min{π(A), π(B)} + π(S)
.

Indeed, most of our effort will focus on finding separators (A,B, S) for which the
sparsity is close to minimal among all vertex separators in G.

In the case of edge separators, there are intimate connections between approxi-
mation algorithms for minimum ratio cuts and the theory of metric embeddings. In
particular, Linial, London, and Rabinovich [38] and Aumann and Rabani [8] show
that one can use L1 embeddings to round the solution to a linear relaxation of the
problem. For the case of vertex cuts, we will show that L1 embeddings (and even
Euclidean embeddings) are insufficient but that the additional structure provided by
many embedding theorems does suffice. This structure corresponds to the fact that
many embeddings are of Fréchet type; i.e., their basic component takes a metric space
X and a subset A ⊆ X and maps every point x ∈ X to its distance to A. This
includes, for instance, the classical theorem of Bourgain [14].

The seminal work of Leighton and Rao [36] showed that, in both the edge and
vertex cases, one can achieve an O(log n) approximation algorithm for minimum ratio
cuts, based on a linear relaxation of the problem. Their solution also yields the first
approximate max-flow/min-cut theorems in a model with uniform demands. The
papers [38, 8] extend their techniques for the edge case to nonuniform demands. Their
main tool is Bourgain’s theorem [14], which states that every n-point metric space
embeds into L1 with O(log n) distortion.

Recently, Arora, Rao, and Vazirani [7] exhibited an O(
√

log n) approximation for
finding minimum ratio edge cuts, based on a known semidefinite relaxation of the
problem, and a fundamentally new technique for exploiting the global structure of
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the solution. This approach, combined with the embedding technique of Krauthgamer
et al. [32], has been extended further to obtain approximation algorithms for mini-
mum ratio edge cuts with nonuniform demands. In particular, using [7, 32] and the
quantitative improvements of Lee [34], Chawla, Gupta, and Räcke [17] exhibit an
O(log n)3/4 approximation. More recently, Arora, Lee, and Naor [6] have improved
this bound almost to that of the uniform case, yielding an approximation ratio of
O(

√
log n log log n).

On the other hand, progress on the vertex case has been significantly slower. In
the sections that follow, we attempt to close this gap by providing new techniques for
finding approximately optimal vertex separators.

Since the initial (conference) publication of this manuscript, we have learned of
two other papers which contain some independently discovered, overlapping results.
All three papers first appeared in STOC 2005. In particular, the work of Agarwal
et. al. [1] gives an O(

√
log n)-approximation for a directed version of the Sparsest

Cut problem which implies a similar result for vertex cuts by a well-known reduction
(see, e.g., [36]). Their algorithm is also based on rounding an SDP (though they use
a different relaxation). Second, the paper of Chekuri, Khanna, and Shepherd [18]
shows that the max-multicommodity-flow/min-vertex-cut gap for product demands
in planar graphs is bounded by a universal constant. As discussed later, we prove this
theorem not only for planar graphs but also for any excluded-minor family of graphs.

1.2. Results and techniques. In section 2, we introduce a new semidefinite
relaxation for the problem of finding minimum ratio vertex cuts in a general graph.
In preparation for applying the techniques of [7], the relaxation includes so-called
triangle inequality constraints on the variables. The program contains strictly more
than one variable per vertex of the graph, but the SDP is constructed carefully to lead
to a single metric of negative type1 on the vertices that contains all the information
necessary to perform the rounding.

In section 3, we exhibit a general technique for rounding the solution to opti-
mization problems involving “fractional” vertex cuts. These are based on the ability
to find line embeddings with small average distortion, as defined by Rabinovich [41]
(though we extend his definition to allow for arbitrary weights in the average). In [41],
it is proved that one can obtain line embeddings with constant average distortion for
metrics supported on planar graphs. This is observed only as an interesting structural
fact, without additional algorithmic consequences over the known average distortion
embeddings into all of L1 [42, 31]. For the vertex case, we will see that this additional
structure is crucial.

Using the seminal results of [7], which can be viewed as a line embedding (see
section A.2), we then show that the solution of the semidefinite relaxation can be
rounded to a vertex separator whose ratio is within O(

√
log n) of the optimal sep-

arator. For the SDP used in [7] for approximating minimum ratio edge cuts, only
a constant lower bound is known for the integrality gap. Recent work of Khot and
Vishnoi [30] shows that in the nonuniform demand case, the integrality gap must tend
to infinity with the size of the instance. In contrast, we show that our analysis is tight
by exhibiting an Ω(

√
log n) integrality gap for the SDP in section 5. Interestingly, this

gap is achieved by an L1 metric. This shows that L1 metrics are not as intimately
connected to vertex cuts as they are to edge cuts and that the use of the structural

1A metric space (X, d) is said to be of negative type if d(x, y) = ||f(x) − f(y)||2 for some map
f : X → L2.
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theorems discussed in the previous paragraph is crucial to obtaining an improved
bound.

We exhibit an O(log k)-approximate max-flow/min-vertex-cut theorem for general
instances with k commodities. The best previous bound of O(log3 k) is due to [22]
(they actually show this bound for directed instances with symmetric demands, but
this implies the vertex case). The result is proved in section 4. A well-known reduction
shows that this theorem implies the edge version of [38, 8] as a special case. Again,
our rounding makes use of the general tools developed in section 3 based on average-
distortion line embeddings. In sections 4.2 and 4.4, we show that any approach based
on low-distortion L1 embeddings and Euclidean embeddings, respectively, must fail
since the integrality gap can be very large even for spaces admitting such embeddings.
Using the improved line embeddings for metrics on graphs which exclude a fixed
minor [41] (based on [31] and [42]), we also achieve a constant-factor approximation
for finding minimum ratio vertex cuts in these families. This answers an open problem
asked in [19].

By improving the approximation ratios for balanced vertex separators in general
graphs and graphs excluding a fixed minor, we improve the approximation factors for
a number of problems relating to graph-theoretic decompositions such as treewidth,
branchwidth, and pathwidth. For instance, we show that in any graph of treewidth k,
we can find a tree decomposition of width at most O(k

√
log k). This improves upon

the O(log n)-approximation of Bodlaender et al. [11] and the O(log k)-approximation
algorithm of Amir [4]. A result of Seymour and Thomas [44] shows that a decompo-
sition of width 1.5k can be found efficiently in planar graphs. We offer a significant
generalization by giving an algorithm that finds a decomposition of width O(k) when-
ever the input graph excludes a fixed minor. See section 6.3 and Theorem 6.4 and
Corollary 6.5 for a discussion of these problems, along with salient definitions, and a
list of the problems to which our techniques apply.

Improving the approximation factor for treewidth in general graphs and graphs
excluding a fixed minor to O(

√
log n) and O(1), respectively, answers an open problem

of [19] and leads to an improvement in the running time of approximation schemes and
subexponential fixed parameter algorithms for several NP-hard problems on graphs
excluding a fixed minor. For instance, we obtain the first polynomial-time approxima-
tion schemes (PTASs) for problems like minimum feedback vertex set and connected
dominating set in such graphs (see Theorem 6.6 for more details). Finally, our tech-
niques yield an O(g)-approximation algorithm for the vertex separator problem in
graphs of genus at most g. It is known that such graphs have balanced separators of
size O(

√
gn) [25] and that these separators can be found efficiently [28] (earlier, [3] gave

a more general algorithm which, in particular, finds separators of size O(
√

g3/2n)).

Our approximation algorithms thus find separators of size O(
√
g3n), but when the

graph at hand has a smaller separator, our algorithms perform much better than the
worst-case bounds of [25, 3, 28].

2. A vector program for minimum ratio vertex cuts. Let G = (V,E) be a
graph with nonnegative vertex weights π : V → [1,∞). For a subset U ⊆ V , we write
π(U) =

∑
u∈U π(u). A vertex separator partitions the graph into three parts, S (the

set of vertices in the separator), A, and B (the two parts that are separated). We
use the convention that π(A) ≥ π(B). We are interested in finding separators that
minimize the ratio of the “cost” of the separator to its “benefit.” Here, the cost of a
separator is simply π(S). As to the benefit of a separator, it turns out that there is
more than one natural way in which one can define it. The distinction between the
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various definitions is relatively unimportant whenever π(S) ≤ π(B), but it becomes
significant when π(S) > π(B). We elaborate on this below.

In analogy to the case of edge separators, one may wish to take the benefit to be
π(B). Then we would like to find a separator that minimizes the ratio π(S)/π(B).
However, there is evidence that no polynomial-time algorithm can achieve an ap-
proximation ratio of O(|V |δ) for this problem (for some δ > 0). See section A.1 for
details.

For the use of separators in divide and conquer algorithms, the benefit is in the
reduction in size of the parts that remain. This reduction is π(B) + π(S) rather than
just π(B), and the quality of a separator is defined to be

π(S)

π(B) + π(S)
.

This definition is used in the introduction to our paper and in some other earlier work
(e.g., [5]).

As a matter of convenience, we use a slightly different definition. We shall define
the sparsity of a separator to be

απ(A,B, S) =
π(S)

π(A ∪ S) · π(B ∪ S)
.

Under our convention that π(A) ≥ π(B), we have that π(V )/2 ≤ π(A∪S) ≤ π(V ),
and the two definitions differ by a factor of Θ(π(V )).

We define απ(G) to be the minimum over all vertex separators (A,B, S)
of απ(A,B, S). The problem of computing απ(G) is NP-hard (see [15]). Our goal is
to give algorithms for finding separators (A,B, S) for which απ(A,B, S) ≤
O(

√
log k)απ(G), where k = |supp(π)| is the number of vertices with nonzero weight

in G.
Let us pause for a moment to discuss an aspect of approximation algorithms for

απ(G) that is often overlooked. The optimal solution minimizing απ(A,B, S) is in-
deed a nontrivial separator in the sense that both A and B are nonempty (unless
the underlying graph G is a clique). However, when π(S) is large relative to π(B)
in the optimal separator, sets S′, B′ that only approximately minimize απ(A′, B′, S′)
might correspond to trivial separators in the sense that B′ is empty. Hence approx-
imation algorithms for απ(G) might return trivial separators rather than nontrivial
ones. Whenever this happens, we assume as a convention that the algorithm instead
returns a minimum weight vertex cut in G. These cuts are nontrivial and can be
found in polynomial time (see section 3 for example), and the corresponding value
of απ(A,B, S) is not larger than that for any trivial separator. (In fact, for trivial
separators απ(A,B, S) = 1/π(V ), whereas for every nontrivial separator, whether
optimal or not, one always has απ(A,B, S) ≤ 1/π(V ).)

Before we move on to the main algorithm, let us define

α̃π(A,B, S) = π(S)/[π(A) · π(B ∪ S)].

Note that απ(A,B, S) and α̃π(A,B, S) are equivalent up to a factor of 2 whenever
π(A) ≥ π(S). Hence in this case it will suffice to find a separator (A,B, S) with
απ(A,B, S) ≤ O(

√
log k) α̃π(G). Allowing ourselves to compare απ(A,B, S) to α̃π(G)

rather than απ(G) eases the formulation of the semidefinite relaxations that follow.
When π(S) > π(A), α̃ no longer provides a good approximation to α. However,
in this case π(S) > π(B), and returning a minimum weight vertex cut provides a
constant-factor approximation to απ(G).
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2.1. The quadratic program. We present a quadratic program for the problem
of finding minimum ratio vertex cuts. All constraints in this program involve only
terms that are quadratic (products of two variables). Our goal is for the value of
the quadratic program to be equal to α̃π(G). Let G = (V,E) be a vertex-weighted
graph, and let (A∗, B∗, S∗) be an optimal separator according to α̃π(·), i.e., such that
α̃π(G) = α̃π(A∗, B∗, S∗).

With every vertex i ∈ V , we associate three indicator 0/1 variables, xi, yi, and
si. It is our intention that for every vertex exactly one indicator variable will have
the value 1 and that the other two will have value 0. Specifically, xi = 1 if i ∈ A∗,
yi = 1 if i ∈ B∗, and si = 1 if i ∈ S∗. To enforce this, we formulate the following two
sets of constraints.

Exclusion constraints. These force at least two of the indicator variables to be 0:

xi · yi = 0, xi · si = 0, yi · si = 0 for every i ∈ V.

Choice constraints. These force the nonzero indicator variable to have value 1:

x2
i + y2

i + s2
i = 1 for all i ∈ V.

The combination of exclusion and choice constraints implies the following inte-
grality constraints, which we formulate here for completeness, even though they are
not explicitly included as part of the quadratic program: x2

i ∈ {0, 1}, y2
i ∈ {0, 1},

s2
i ∈ {0, 1} for all i ∈ V .

Edge constraints. This set of 2 |E| constraints expresses the fact that there are
no edges connecting A and B:

xi · yj = 0 and xj · yi = 0 for all (i, j) ∈ E.

Now we wish to express the fact that we are minimizing α̃π(A,B, S) over all
vertex separators (A,B, S). To simplify our presentation, it will be convenient to
assume that we know the value K = π(A∗) · π(B∗ ∪ S∗). We can make such an
assumption because the value of K can be guessed (since eventually we will need only
to know K within a factor of 2, say, there are only O(log π(V )) different values to try).
Alternatively, the assumption can be dropped at the expense of a more complicated
relaxation.

Spreading constraint. The following constraint expresses our guess for the value
of K:

1
2

∑
i,j∈V

π(i)π(j)(xi − xj)
2 ≥ K.

Notice that (xi − xj)
2 = 1 if and only if {xi, xj} = {0, 1}.

The objective function. Finally, we write the objective we are trying to minimize:

minimize
1

K

∑
i∈V

π(i)s2
i .

The above quadratic program computes exactly the value of α̃π(G) and hence is
NP-hard to solve.
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2.2. The vector relaxation. We relax the quadratic program of section 2.1 to
a “vector” program that can be solved up to arbitrary precision in polynomial time.
The relaxation involves two aspects.

Interpretation of variables. All variables are allowed to be arbitrary vectors
in Rd, rather than in R. The dimension d is not constrained and might be as large as
the number of variables (i.e., 3n).

Interpretation of products. The original quadratic program involved products
over pairs of variables. Every such product is interpreted as an inner product between
the respective vector variables. The exclusion constraints merely force vectors to be
orthogonal (rather than forcing one of them to be 0), and the integrality constraints
are no longer implied by the exclusion and choice constraints. The choice constraints
imply (among other things) that no vector has norm greater than 1, and the edge
constraints imply that whenever (i, j) ∈ E, the corresponding vectors xi and yj are
orthogonal.

2.3. Adding valid constraints. We now strengthen the vector program by
adding more valid constraints. This should be done in a way that will not violate
feasibility (in cases where the original quadratic program was feasible) and, moreover,
that preserves polynomial-time solvability (up to arbitrary precision) of the resulting
vector program. It is known that this last condition is satisfied if we add only con-
straints that are linear over inner products of pairs of vectors, and this is indeed what
we shall do. The reader is encouraged to check that every constraint that we add is
indeed satisfied by feasible 0/1 solutions to the original quadratic program.

The 1-vector. We add the additional variable v to the vector program. It is our
intention that variables whose value is 1 in the quadratic program will have value
equal to that of v in the vector program. Hence v is a unit vector, and we add the
constraint v2 = 1.

Sphere constraints. For every vector variable z we add the constraint z2 = v · z.
Geometrically, this forces all vectors to lie on the surface of a sphere of radius 1

2
centered at v

2 because the constraint is equivalent to (z − v
2 )2 = 1

4 .

Triangle constraints. For every three variables z1, z2, z3 we add the constraint

(z1 − z2)
2 + (z2 − z3)

2 ≥ (z1 − z3)
2.

This implies that every three variables (which are points on the sphere S( v2 ,
1
2 )) form

a triangle whose angles are all at most π/2. We remark that we shall eventually use
only those triangle constraints in which all three variables are x variables.

Removing the si vectors. In the upcoming sections we shall describe and
analyze a rounding procedure for our vector program. It turns out that our rounding
procedure does not use the vectors si—only the values s2

i = 1 − x2
i − y2

i . Hence we
can modify the choice constraints to

x2
i + y2

i ≤ 1

and remove all explicit mention of the si vectors, without affecting our analysis for
the rounding procedure. The full vector program follows.
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minimize 1
K

∑
i∈V π(i)(1 − x2

i − y2
i )

subject to xi, yi, v ∈ R2n, i ∈ V,
x2
i + y2

i ≤ 1, i ∈ V,
xi · yi = 0, i ∈ V,
xi · yj = xj · yi = 0, (i, j) ∈ E,
v2 = 1,
v · xi = x2

i , v · yi = y2
i , i ∈ V,

1
2

∑
i,j∈V π(i)π(j)(xi − xj)

2 ≥ K,

(xi − xj)
2 ≤ (xi − xh)2 + (xh − xj)

2, h, i, j ∈ V.

In the following section, we will show how to use this SDP to obtain a solution which
is within an O(

√
log k) factor of the best vertex separator. In section 5, we show

that this analysis is tight, even for a family of stronger (i.e. more constrained) vector
programs.

3. Algorithmic framework for rounding. In this section, we develop a gen-
eral algorithmic framework for rounding solutions to optimization problems on vertex
cuts.

3.1. Capacities and demands. In the vector program of section 2, vertices
have weights π. These weights served two purposes. One was as a measure of cost
for the separator (we are charged π(S) in the numerator of απ). The other was
as a measure of benefit of the separator (we get credit of π(A ∪ S)π(B ∪ S) in the
denominator). Here, we shall not insist on having one weight function serving both
purposes. Instead, we allow the cost to be measured with respect to one weight
function (say, π1), and the benefit to be measured with respect to another weight
function (say, π2). It is customary to call these functions capacity and demand. Let
us provide more details.

Vertices are assumed to have nonnegative capacities {cv}v∈V ⊆ N. For simplicity
of presentation, we are assuming here that capacities are integer, but all results of
this paper can also be extended to the case of arbitrary nonnegative capacities. For
a subset S ⊆ V , we define cap(S) =

∑
v∈S cv.

In its most general form, we have a demand function ω : V × V → R+ which is
symmetric, i.e. ω(u, v) = ω(v, u). In interesting special cases, this demand function is
induced by weights π2 : V → R+ via the relation ω(u, v) = π2(u)π2(v) for all u, v ∈ V .

Given a capacity function and a demand function, we define the sparsity of
(A,B, S) by

αcap,ω(A,B, S) =
cap(S)∑

u∈A∪S

∑
v∈B∪S ω(u, v)

.

We define the sparsity of G by αcap,ω(G) = min{αcap,ω(A,B, S)} where the minimum
is taken over all vertex separators. Note that απ(A,B, S) = αcap,ω(A,B, S) when
cv = π(v) and ω(u, v) = π(u)π(v) for all u, v ∈ V .

3.2. Line embeddings and distortion. A key feature of the vector program is
that its solution is a set of vectors in high dimensional Euclidean space R2n. Moreover,
the triangle constraints imply that for the xi vectors, the square of their Euclidean
distance also forms a metric. Technically, such a metric is said to be of negative type.
Our rounding framework is based on properties of metric spaces.
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Let (X, d) be a metric space. A map f : X → R is called 1-Lipschitz if, for all
x, y ∈ X,

|f(x) − f(y)| ≤ d(x, y).

Given a 1-Lipschitz map f and a demand function ω : X × X → R+, we define its
average distortion under ω by

avdω(f) =

∑
x,y∈X ω(x, y) · d(x, y)∑

x,y∈X ω(x, y) · |f(x) − f(y)| .

We say that a weight function ω is a product weight if it can be written as
ω(x, y) = π(x)π(y) for all x, y ∈ X, for some π : X → R+. We now state three
theorems which give line embeddings of small average distortion in various settings.
The proofs of these theorems are sketched in section A.2.

Theorem 3.1 (Bourgain [14]). If (X, d) is an n-point metric space, then for
every weight function ω : X × X → R+, there exists an efficiently computable 1-
Lipschitz map f : X → R with avdω(f) = O(log n).

Theorem 3.2 (Rabinovich [41]). If (X, d) is any metric space supported on a
graph which excludes a Kr-minor, then for every product weight ω0 : X ×X → R+,
there exists an efficiently computable 1-Lipschitz map f : X → R with avdω0

(f) =
O(r2).

Theorem 3.3 (Arora, Rao, and Vazirani [7]). If (X, d) is an n-point metric
of negative type, then for every product weight ω0 : X × X → R+, there exists an
efficiently computable 1-Lipschitz map f : X → R with avdω0(f) = O(

√
log n).

We also recall the following classical result.
Lemma 3.4. Let (Y, d) be any metric space and X ⊆ Y . Given a 1-Lipschitz

map f : X → R, there exists a 1-Lipschitz extension f̃ : Y → R, i.e., such that
f̃(x) = f(x) for all x ∈ X.

Proof. One defines

f̃(y) = sup
x∈X

[f(x) − d(x, y)]

for all y ∈ Y .

3.3. Menger’s theorem. The following classical theorem is an important in-
gredient in our rounding framework.

Theorem 3.5 (Menger’s theorem). A graph G = (V,E) contains at least k
vertex-disjoint paths between two nonadjacent vertices u, v ∈ V if and only if every
vertex cut that separates u from v has size at least k.

It is well known that a smallest vertex cut separating u from v can be found
in polynomial time (in the size of G) by deriving Menger’s theorem from the max-
flow/min-cut theorem (see, e.g., [45]).

Suppose that, in addition to a graph G = (V,E), we have a set of nonnegative
vertex capacities {cv}v∈V ⊆ N. (For simplicity, we are assuming here that capacities
are integers.) For a subset S ⊆ V , we define cap(S) =

∑
v∈S cv. We have the following

immediate corollary.
Corollary 3.6. Let G = (V,E) be a graph with vertex capacities. Then for any

two nonadjacent vertices u, v ∈ V , the following two statements are equivalent:
1. Every vertex cut S ⊆ V that separates u from v has cap(S) ≥ k.
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2. There exist u-v paths p1, p2, . . . , pk ⊆ V such that for every w ∈ V ,

#{1 ≤ i ≤ k : w ∈ pi} ≤ cw.

Furthermore, a vertex cut S of minimal capacity can be found in polynomial time.
Proof. The proof is by a simple reduction. From G = (V,E) and the capaci-

ties {cv}v∈V , we create a new uncapacitated instance G′ = (V ′, E′) and then apply
Menger’s theorem to G′.

To arrive at G′, we replace every vertex v ∈ V with a collection of representatives
v1, v2, . . . , vcv (if cv = 0, then this corresponds to deleting v from the graph). Now
for every edge (u, v) ∈ E, we add edges {(ui, vj) : 1 ≤ i ≤ cu, 1 ≤ j ≤ cv}. It is
not hard to see that every minimal vertex cut takes either all representatives of a
vertex or none, giving a one-to-one correspondence between minimal vertex cuts in
G and G′.

Furthermore, given such a capacitated instance G = (V,E), {cv}v∈V , along with
u, v ∈ V , it is possible to find, in polynomial time, a vertex cut S ⊆ V of minimal
capacity which separates u from v.

3.4. Line embeddings and vertex separators. Having presented the tools
that we shall be using (line embeddings, Menger’s theorem), we present here an
algorithmic framework based on an arbitrary line embedding f : V → R for finding a
vertex cut. Different instantiations of this algorithm may use different line embeddings
f . The analysis of this algorithm will use, among other things, Menger’s theorem.
It will also involve a certain cost function cost : V → R+ that is left unspecified
in this section. However, in later sections (e.g., section 3.5) the cost of a vertex
will be instantiated to be the contribution of the vertex to the objective function
of a relaxation of the minimum vertex separator problem (e.g., π(i)(1 − x2

i − y2
i ) in

the vector program). The key technical property of the algorithm is summarized in
Lemma 3.7, and it relates the cost (which is the value of the relaxation) to the sparsity
of the cut found by the algorithm. Hence Lemma 3.7 can be used in order to analyze
the approximation ratio of algorithms that use this algorithmic framework.

Let G = (V,E) be a graph with vertex capacities {cv}v∈V and a demand function
ω : V × V → R+. Furthermore, suppose that we have a map f : V → R. We give the
following algorithm, which computes a vertex cut (A,B, S) in G.

Algorithm FindCut(G, f)

1. Sort the vertices v ∈ V according to the value of f(v): {y1, y2, . . . , yn}.
2. For each 1 ≤ i ≤ n,
3. Create the augmented graph Gi = (V ∪ {s, t}, Ei) with

Ei = E ∪ {(s, yj), (yk, t) : 1 ≤ j ≤ i, i < k ≤ n}.
4. Find the minimum capacity s-t separator Si in Gi.
5. Let Ai ∪ {s} be the component of G[V ∪ {s, t} \ Si] containing s, and let

Bi = V \ (Ai ∪ Si).
6. Output the vertex separator (Ai, Bi, Si) for which αcap,ω(Ai, Bi, Si) is minimal.

The analysis. Suppose that we have a cost function cost : V → R+. We say
that the map f : V → R is edge-compatible with the cost function cost if, for any
(u, v) ∈ E, we have

(1) |f(u) − f(v)| ≤ cost(u) + cost(v)

2
.

We now move on to the main lemma of this section.
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Lemma 3.7 (charging lemma). Let G = (V,E) be any capacitated graph with
demand function ω : V × V → R+. Suppose additionally that we have a cost function
cost : V → R+ and an edge-compatible map f : V → R. If α0 is the sparsity of the
minimum ratio vertex cut output by FindCut(G, f), then

∑
v∈V

cv · cost(v) ≥ α0

∑
u,v∈V

ω(u, v)|f(u) − f(v)|.

Proof. Recall that we have sorted the vertices v according to the value of f(v):
{y1, y2, . . . , yn}. Let Ci = {y1, . . . , yi} and εi = f(yi+1) − f(yi). First we have the
following lemma which relates the size of the separators found to the average distance
under f , according to ω.

Lemma 3.8.

n−1∑
i=1

εi cap(Si) ≥ α0

∑
u,v∈V

ω(u, v)|f(u) − f(v)|.

Proof. Using the fact that α0 is the minimum sparsity of all cuts found by
FindCut(G, f),

cap(Si) ≥ α0

∑
u∈Ai∪Si

∑
v∈Bi∪Si

ω(u, v)

≥ α0

∑
u∈Ci

∑
v∈V \Ci

ω(u, v).

Note that the second inequality follows from the fact in FindCut(G, f) that since Ci

contains Ai and V \Ci contains Bi, Ai ∪ Si contains Ci and Bi ∪ Si contains V \Ci.
Multiplying both sides of the previous inequality by εi and summing over i ∈

{1, 2, . . . , n− 1} prove the lemma.
Now we come to the heart of the charging argument which relates the cost function

to the capacity of the cuts occurring in the algorithm.
Lemma 3.9 (charging against balls).

∑
v∈V

cv · cost(v) ≥
n−1∑
i=1

εi cap(Si).

Proof. We first present an interpretation of the quantity
∑n−1

i=1 εi cap(Si). Con-
sider a nonnegative function g defined on the line segment [f(y1), f(yn)] whose value
at point z is defined as g(z) = cap(Si), where i is the unique value such that z is in

the half open interval [f(yi), f(yi+1)). Then
∑n−1

i=1 εi cap(Si) is precisely
∫

R
g.

Now, for every v, we present an interpretation of cv · cost(v). Consider a nonneg-
ative function gv whose value is cv on the interval [f(v) − 1

2cost(v), f(v) + 1
2cost(v)]

and 0 elsewhere. Then cv · cost(v) is precisely
∫

R
gv. We shall refer to the support of

gv as the ball of v (as it is a ball centered at f(v) of radius 1
2cost(v)).

Lemma 3.9 can now be rephrased as
∫

R

g(z) dz ≤
∑
v

∫
R

gv(z) dz.

We shall prove this inequality pointwise.
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Consider an arbitrary point z, belonging to an arbitrary interval [f(yi), f(yi+1)).
Since Si is a minimum capacity s-t separator, applying Menger’s theorem yields a
family of s-t paths p1, . . . , pm (where m = cap(Si)) which use no vertex v ∈ V more
than cv times. We view each of these paths as contributing 1 to the value of g(z), and
hence fully accounting for the value g(z) = cap(Si). We now consider the contribution
of these paths to the functions gv.

Consider an arbitrary such path pj . Since it crosses from Ci to V \ Ci, there
must exist two consecutive vertices along the path (say, u and v) such that u ∈ Ci

and v ∈ V \ Ci. The fact that f is edge-compatible with cost implies that the
union of the balls of u and v covers the interval [f(u), f(v)] that includes the interval
[f(yi), f(yi+1)). Hence z is in at least one of these two balls (say, the ball of v), and
then we have pj contribute one unit to gv(z). Note that the total contribution of the
m disjoint paths to gv(z) can be at most cv, because v can occur in at most cv of
these paths.

In summary, based on the disjoint paths, we provided a charging mechanism that
accounts for all of g(z), and charges at least as much to

∑
v gv(z) without exceeding

the respective values cv. This completes the proof of Lemma 3.9.
Combining Lemmas 3.8 and 3.9 finishes the proof of Lemma 3.7.

3.5. Analysis of the vector program. We now continue our analysis of the
vector program from section 2.3. Recall that π(i)(1 − x2

i − y2
i ) is the contribution of

vertex i to the objective function. For every i ∈ V , define cost(i) = 4(1 − x2
i − y2

i ).
We will consider the metric space (V, d) given by d(i, j) = (xi − xj)

2 (note that this
is a metric space precisely because every valid solution to the SDP must satisfy the
triangle inequality constraints). The following key proposition allows us to apply the
techniques of sections 3.4 and 3.2 to the solution of the vector program.

Proposition 3.10. For every edge (i, j) ∈ E, (xi − xj)
2 ≤ cost(i)+cost(j)

2 .
Proof. Since (i, j) ∈ E, we have xi · yj = xj · yi = 0, and recall that xi · yi =

xj · yj = 0. It follows that

(xi − xj)
2 ≤ 2[(xi + yi − v)2 + (xj + yi − v)2] ≤ 2[(1 − x2

i − y2
i ) + (1 − x2

j − y2
i )].

Note that the first inequality above follows from the fact that (xi−xj)
2 = ((xi + yi−

v)− (xj +yi−v))2 and the inequality (x−y)2 ≤ 2(x2 +y2). Substitute x = xi +yi−v
and y = xj +yi−v. Then the second inequality follows from the constraints vxi = x2

i

and vyi = y2
i .

Putting yj instead of yi in the above equation gives (xi−xj)
2 ≤ 2[(1−x2

i − y2
j )+

(1 − x2
j − y2

j )]. Summing these two inequalities yields

(2) 2(xi − xj)
2 ≤ 4[(1 − x2

i − y2
i ) + (1 − x2

j − y2
j )] = cost(i) + cost(j).

Now, let U = supp(π) = {i ∈ V : π(i) 
= 0}, and put k = |U |. Finally, let
f : (U, d) → R be any 1-Lipschitz map, and let f̃ : V → R be the 1-Lipschitz
extension guaranteed by Lemma 3.4.

Then for any edge (u, v) ∈ E, we have

|f̃(u) − f̃(v)| ≤ d(u, v) = (xu − xv)
2 ≤ cost(u) + cost(v)

2
,

where the final inequality is from Proposition 3.10. We conclude that f̃ is path-
compatible with cost.
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Defining a product demand by ω(i, j) = π(i)π(j) for every i, j ∈ V and capacities
ci = π(i), we now apply FindCut(G, f̃). If the best separator found has sparsity α0,
then by Lemma 3.7,

1

K

∑
i∈V

π(i)(1 − x2
i − y2

i ) =
1

4K

∑
i∈V

ci · cost(i) ≥ α0

4K

∑
i,j∈V

ω(i, j) · |f̃(i) − f̃(j)|

=
α0

4K

∑
i,j∈U

ω(i, j) · |f(i) − f(j)|

≥ α0

2
·
∑

i,j∈U ω(i, j) · |f(i) − f(j)|∑
i,j∈U ω(i, j) · d(i, j)

=
α0

2 · avdω(f)
.

It follows that α̃π(G) ≥ α0/(2 · avdω(f)). Since the metric (V, d) is of negative
type and ω(·, ·) is a product weight, we can achieve avdω(f) = O(

√
log k) using The-

orem 3.3. Using this f , it follows that FindCut(G, f̃) returns a separator (A,B, S)
such that απ(A,B, S) ≤ O(

√
log k) α̃π(G), completing the analysis.

Theorem 3.11. Given a graph G = (V,E) and vertex weights π : V → R+, there
exists a polynomial-time algorithm which computes a vertex separator (A,B, S) for
which

απ(A,B, S) ≤ O(
√

log k)απ(G),

where k = |supp(π)|.
In the next section, we extend this theorem to more general weights. This is

necessary for some of the applications in section 6.3.

3.6. More general weights. An important generalization of the minimum ratio
vertex cut introduced in section 2 is when a pair of weight functions π1, π2 : V → R+

is given and one wants to find the vertex separator (A,B, S) which minimizes

απ1,π2
(A,B, S) =

π1(S)

π2(A ∪ S) · π2(B ∪ S)
,

where, as a convention, π2(B) ≤ π2(A). We let απ1,π2
(G) denote the minimum value

of απ1,π2(A,B, S) in graph G. Under a common interpretation, π1 denotes vertex
capacities, π2 induces a demand (one needs to route π2(u)π2(v) units of flow between
vertices u and v), and then the value of απ1,π2(G) serves as an upper bound on the
fraction of demand that can be routed subject to the capacity constraints on the
vertices.

In analogy to the discussion in section 2, call a separator trivial if π2(B) = 0 (and,
in particular, when B is empty). Unlike the case in section 2, when π1 differs from π2

it may happen that απ1,π2(G) is obtained by a trivial separator. Hence in the current
section, algorithms that minimize (or approximately minimize) απ1,π2

(A,B, S) are
allowed to return a trivial separator.

We now explain how our approximation algorithm can be extended to give an
O(

√
log k) approximation for απ1,π2(G), where here k = |supp(π2)|.
Let

α̃π1,π2(A,B, S) = π1(S)/[π2(A) · π2(B ∪ S)],
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where π2(A) ≥ π2(B). Also define απ1,π2
(G) and α̃π1,π2

(G) as before. By changing the
vector program so that K is defined in terms of π2 and the objective is to minimize
1
K

∑
i∈V π1(i)(1 − x2

i − y2
i ), it becomes a relaxation for α̃π1,π2(G). The rounding

analysis goes through unchanged to yield a separator (A,B, S) with

απ1,π2
(A,B, S) ≤ O(

√
log k) α̃π1,π2

(G).

One difficulty still remains. It may happen that for the optimal separator (A∗, B∗,
S∗), π2(S

∗) ≥ π2(A
∗), and then the values απ1,π2(A

∗, B∗, S∗) and α̃π1,π2(A
∗, B∗, S∗),

are not within a factor of 2 of each other. In this case we show how to output
a (possibly trivial) separator that approximates απ1,π2(G) within constant factors.
Observe that in this case

π1(S
∗)

π2(S∗)2
≤ 4απ1,π2

(G).

Hence it suffices to find an approximation for a different problem, that of finding a
subset S ⊆ V which minimizes the ratio π1(S)/π2(S)2. This problem can be solved
in polynomial time; see section A.3.

Theorem 3.12. Given a graph G = (V,E) and vertex weights π1, π2 : V → R+,
there exists a polynomial-time algorithm which computes a vertex separator (A,B, S)
for which

απ1,π2(A,B, S) ≤ O(
√

log k)απ1,π2
(G),

where k = |supp(π2)|.

4. Approximate max-flow/min-vertex-cut theorems. Let G = (V,E) be
a graph with capacities {cv}v∈V on vertices and a demand function ω : V ×V → R+.
For every pair of distinct vertices u, v ∈ V , let Puv be the set of all simple u-v paths
in G. For s, t ∈ V , an s-t flow in G is a mapping F : Pst → R+ where for p ∈ Pst,
F (p) represents the amount of flow sent from s to t along path p.

For any simple path p in G, let p0 and p1 denote the initial and final nodes of
p, respectively. By convention, we will assert that for such a flow F and for every
p ∈ Pst, the flow path p uses up 1

2F (p) of the capacity of p0 and p1 and uses up F (p)
of the capacity of all other nodes in p. Intuitively, one can think of the loss in capacity
for flowing through a vertex to be charged half for entering the vertex and half for
exiting; hence the initial and final vertices of a flow path are only charged half. This
is made formal in the linear program (LP) that follows. We remark that this choice
(as opposed to incurring a full loss of capacity in the initial and final nodes) is only
for simplicity in the dual linear program; it is easily seen that all the results in this
section hold for the other setting, with a possible loss of a factor of 2. To simplify
notation, we also define, for any p ∈ Puv and w ∈ p, the number κp(w) to be 1 if w
is an intermediate vertex of p and 1

2 if w is the initial or final vertex of p.

The maximum concurrent vertex flow of the instance (G, {cv}v∈V , ω) is the max-
imum constant ε ∈ [0, 1] such that one can simultaneously route an ε fraction of each
u-v demand ω(u, v) without violating the capacity constraints. For each p ∈ Puv, let
puv denote the amount of the u-v commodity that is sent from u to v along p. We
now write an LP that computes the maximum concurrent vertex flow:
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maximize ε

subject to
∑

p∈Puv

puv ≥ ε · ω(u, v), u, v ∈ V,

∑
u,v∈V

∑
p∈Puv :w∈p

κp(w)puv ≤ cw, w ∈ V,

puv ≥ 0, u, v ∈ V, p ∈ Puv.

We now write the dual of this LP with variables {sv}v∈V and {	uv}u,v∈V :

minimize
∑
v∈V

cvsv

subject to
∑
w∈p

κp(w)sw ≥ 	uv, p ∈ Puv, for all u, v ∈ V,

∑
u,v∈V

ω(u, v)	uv ≥ 1,

	uv ≥ 0, sv ≥ 0, u, v ∈ V.

Finally, define

dist(u, v) = min
p∈Puv

∑
w∈p

κp(w)sw.

By setting 	uv = dist(u, v), we see that the above dual LP is equivalent to the following:

minimize
∑
v∈V

cvsv

subject to
∑
u,v

ω(u, v) · dist(u, v) ≥ 1.

Remark 4.1. We remark that the distance function dist(u, v) is a metric which
can be alternatively defined as follows: For any u, v ∈ V , dist(u, v) is precisely the
(edge-weighted) shortest-path distance in G between u and v where the weight of the
edge (u, v) ∈ E is 1

2 (su + sv).

4.1. Rounding to vertex separators. Any vertex separator (A,B, S) yields
an upper bound on the maximum concurrent flow in G via the following expression:

(3)
cap(S)∑

u∈A,v∈B ω(u, v) +
∑

u,v∈S ω(u, v) + 1
2

∑
u∈S

∑
v∈A∪B ω(u, v)

.

The numerator is the capacity of the separator. Every unit of demand served between
u ∈ A and v ∈ B must consume at least one unit of capacity from S. Likewise, every
unit of demand served between u ∈ S and v ∈ S must consume at least one unit of
capacity from S. Finally, every unit of demand served between u ∈ S and v ∈ A ∪B
must consume at least half a unit of capacity from S. Hence the denominator is
a lower bound on the amount of S’s capacity burned by every unit of concurrent
flow. We observe that the quantity (3) is bounded between αcap,ω(A,B, S) and 2 ·
αcap,ω(A,B, S).
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We will write α = αcap,ω if the capacity and demands are clear from context. For
a graph G, we will write α(G) for the minimum of α(A,B, S), where this minimum is
taken over all vertex separators in G. We wish to study how tight the upper bound
of 2 · α(G) is. In order to do so, we take the dual of the maximum concurrent-flow
LP from the previous section and round it to a vertex separator. The increase in
cost incurred by the rounding provides an upper bound on the worst possible ratio
between α(G) and the maximum concurrent flow.

We note that the dual LP is a relaxation of the value 2 · α(G), since every vertex
separator (A,B, S) gives a feasible solution, where sv = 1/λ if v ∈ S and sv = 0
otherwise. In this case dist(u, v) ≥ 1/(2λ) if u ∈ A ∪ S and v ∈ B ∪ S or vice-versa,
so that setting λ =

∑
u∈A∪S,v∈B∪S ω(u, v) yields a feasible solution.

4.2. The rounding. Before presenting our approach for rounding the LP, let us
recall a typical rounding approach for the case of edge-capacitated flows. In the edge
context [38, 8], one observes that the dual LP is essentially integral when dist(·, ·) forms
an L1 metric. To round in the case when dist(·, ·) does not form an L1 metric, one uses
Bourgain’s theorem [14] to embed (V, dist) into L1 (with O(log n) distortion, which
translates to a similar loss in the approximation ratio), and then rounds the resulting
L1 metric (where rounding the L1 metric does not incur a loss in the approximation
ratio). This approach is not as effective in the case of vertex separators, because
rounding an L1 metric does incur a loss in the approximation ratio (as the example
below shows), and hence there is not much point in embedding (V, dist) into L1 and
paying the distortion factor.

The discrete cube. Let G = (V,E) be the d-dimensional discrete hypercube
{0, 1}d. We set cv = 1 for every v ∈ V , and ω(u, v) = 1 for every pair u, v ∈ V . It is
well known that α(G) = Θ(1/(2d

√
d)) [27]. On the other hand, consider the fractional

separator (i.e., dual solution) given by sv = 10· 4−d

d . Note that dist(u, v) is proportional
to the shortest-path metric on the standard cube, and hence

∑
u,v dist(u, v) ≥ 1,

yielding a feasible solution which is a factor Θ(
√
d) away from α(G). It follows that

even when (V, dist) is an L1 metric, the integrality gap of the dual LP might be as
large as Ω(

√
log n).

Rounding with line embeddings. The rounding is done as follows. Let
{sv}v∈V be an optimal solution to the dual LP, and let dist(·, ·) be the corresponding
metric on V . Suppose that the demand function ω : V × V → R+ is supported on a
set S, i.e., ω(u, v) > 0 only if u, v ∈ S, and that |S| = k. Let f : (S, dist) → R be the
map guaranteed by Theorem 3.1 with avdω(f) = O(log k), and let f̃ : (V, dist) → R
be the 1-Lipschitz extension from Lemma 3.4.

For v ∈ V , define cost(v) = sv. Then since f̃ is 1-Lipschitz, for any edge (u, v) ∈
E, we have

|f̃(u) − f̃(v)| ≤ dist(u, v) =
su + sv

2
=

cost(u) + cost(v)

2
;

hence f̃ is path-compatible with cost.
We now apply FindCut(G, f̃). If the best separator found has sparsity α0, then

by Lemma 3.7,∑
v

cvsv =
∑
v

cv · cost(v) ≥ α0

∑
u,v∈V

ω(u, v) |f̃(u) − f̃(v)|

= α0

∑
u,v∈S

ω(u, v) |f(u) − f(v)|
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≥ Ω

(
α0

log k

) ∑
u,v∈V

ω(u, v) dist(u, v) ≥ Ω

(
α0

log k

)
.

Theorem 4.1. For an arbitrary vertex-capacitated flow instance, where the de-
mand is supported on a set of size k, there is an O(log k)-approximate max-flow/min-
vertex-cut theorem. In particular, this holds if there are only k commodities.

4.3. Excluded minor families. Recall that by Remark 4.1, we can view the
metric dist arising from the LP dual as an edge-weighted metric on the graph G. A
consequence of this is that if the graph G excludes some fixed graph H as a minor,
then the metric dist is an H-excluded metric.

It follows that applying Theorem 3.2 yields a better result when G excludes
a minor and the demand function ω(u, v) is uniform on a subset of the vertices.
This special case will be needed later when we discuss treewidth and follows from
the following theorem (because product demands include as a special case demand
functions that are uniform on a subset of the vertices).

Theorem 4.2. When G is an H-minor-free graph, there is an O(|V (H)|2)-
approximate max-flow/min-vertex-cut theorem with product demands. Additionally,
there exists an O(|V (H)|2) approximation algorithm for finding minimum quotient
vertex cuts in G.

4.4. More integrality gaps for uniform demands.

Expanders. Our analysis for the integrality gap of the dual LP is tight. Just
as in the edge case, constant-degree expander graphs provide the bad example. If
G = (V,E) is such a graph, with uniform vertex capacities and uniform demands,
then α(G) = 1/Θ(n), while the dual LP has a solution of value 1/Ω(n log n) (by
setting sv = 1/Ω(n2 log n) for every v ∈ V ).

Euclidean metrics. Even if the vertex-weighted distance function returned by
the LP is equivalent to a Euclidean metric, up to a universal constant, there may

still be an integrality gap of Ω(
√

logn
log log n ). We sketch the argument here. The idea

is to take a fine enough “mesh” on a high-dimensional sphere so that the shortest-
path distance along the mesh approximates the Euclidean distance. Using standard
isoperimetric considerations on high-dimensional spheres, we are able to determine
the structure of the near-optimal vertex separators. Here we will only sketch the
proof; one may refer to [40] for a more detailed argument along these lines.

Let Sd be the d-dimensional sphere, let ε = 1/Θ(d), and let V be an ε-net on
the sphere Sd. (An ε-net in a metric space X is a subset N ⊆ X such that x, y ∈
N =⇒ d(x, y) ≥ ε, and X ⊆

⋃
x∈N B(x, ε).) Standard arguments show that n =

|V | ≤ O(d)d. Define a graph G with vertex set V and an edge between u, v ∈ V
whenever ‖u− v‖2 ≤ 10 ε. We claim the following facts without proof (see [40] for a
similar argument).

Claim 4.3. The following three assertions hold true:

1. α(G) = 1/Θ(n
√
d).

2. Setting sv = 1/Θ(n2d) in the dual LP yields a feasible solution with value
1/Θ(nd).

3. The (vertex-weighted) shortest path metric on G with weights given by {sv}v∈V

is equivalent (up to a universal constant) to a Euclidean metric (V, d). (Namely,
the metric given by d(u, v) = ‖u− v‖2/n

2, recalling that V ⊆ Sd.)

It follows that the integrality gap is at least Θ(
√
d) = Θ(

√
log n

log log n ).
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5. An integrality gap for the vector program. Consider the hypercube
graph. Namely, the n vertices of the graph (where n is a power of 2) can be viewed as
all vectors in {±1}logn, and edges connect two vertices that differ in exactly one coor-
dinate. Every vertex separator (A,B, S) has α(A,B, S) ≥ 1/O(n

√
log n). This follows

from standard vertex isoperimetry on the cube [27]. We show a solution to the vector
program with value of O(n/ log n), proving an integrality ratio of Ω(

√
log n) for the

vector program, and implying that our rounding technique achieves the best possible
approximation ratio (relative to the vector program), up to constant multiplicative
factors.

In the solution to the vector program, we describe for every vertex i the associated
vectors xi and yi. The vectors si will not be described explicitly, but are implicit,
using the relation si = v−xi−yi. Note that the exclusion constraints si ·xi = si ·yi = 0
are implied by the exclusion constraints xi · yi = 0 and the sphere constraints. Each
vector will be described as a vector in 1 + n log n+ 2(n− 1) dimensions (even though
n dimensions certainly suffice). Our redundant representation in terms of the number
of dimensions helps clarify the structure of the solution.

To describe the vector solution, we introduce two parameters, a and b. Their
exact value will be determined later and will turn out to be a = 1/2−Θ(1/ log n) and
b = Θ(1/

√
n log n). We partition the coordinates into three groups of coordinates:

G1. Group 1 contains one coordinate. This coordinate corresponds to the direc-
tion of vector v (which has value 1 in this coordinate and 0 elsewhere). All
xi and yi vectors have value a on this coordinate.

G2. Group 2 contains n identical blocks of logn coordinates. The coordinates
within a block exactly correspond to the structure of the hypercube. Within
a block, each xi is a vector in {±b}log n derived by scaling the hypercube label
of vertex i (which is a vector in {±1}log n) by a factor of b. Vector yi is the
negation of vector xi on the coordinates of Group 2.

G3. Group 3 contains two identical blocks of n− 1 coordinates. The coordinates
within a block arrange all the xi vectors as vertices of a simplex. This is done
in the following way. Let Hn be the n by n Hadamard matrix with entries ±1,
obtained by taking the (logn)-fold tensor product [16] of the 2 by 2 matrix
H2 that has rows (1, 1) and (1,−1). The inner product of any two rows of
Hn is 0, the first column is all 1, and the sum of entries in any other column
is 0. Remove the first column to obtain the matrix H ′

n. Within a block, let
vector xi be the ith row of H ′

n, scaled by a factor of b. Hence within a block,
xixi = b2(n− 1), and xixj = −b2 for i 
= j. Vector yi is identical to xi on the
coordinates of Group 3.

We now show that the triangle constraints are satisfied by our vector solution.
Recall (see section 2) that there is some flexibility in the choice of which triangle
constraints to include in the vector program (and likewise for many other constraints
that are valid for 0/1 solutions but are not used in our analysis). We shall address
here a subset of the triangle constraints that is larger than that actually used in the
analysis of our rounding algorithm.

There are five sets of vectors from which we can take the three vectors that
participate in a triangle constraint: X (the xi vectors), Y (the yi vectors), S (the
si vectors), v, and 0. In our analysis we used only triangle constraints over vectors
from X. Here we show that all the triangle constraints that involve only vectors from
X

⋃
Y are satisfied. All vectors in X

⋃
Y have the identical value a in their first

coordinate, and in every other coordinate they take only values from ±b. Hence every
quadratic constraint that holds for all ±1 vectors (including, but not limited to, the
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triangle constraints) is satisfied on every coordinate separately, which implies that it
is satisfied for all xi and yi vectors.

We let K =
∑

i,j∈V (xi − xj)
2 = Θ(n3b2 log n). The value of the parameters a

and b is governed by the following three constraints:
1. The exclusion constraints imply that

a2 − nb2 log n + 2b2(n− 1) = 0.

2. The edge constraints (and the fact that edges connect vertices of Hamming
distance 1) imply that

a2 − nb2(log n− 2) − 2b2 = 0.

3. The sphere constraints imply that

a = a2 + nb2 log n + 2b2(n− 1).

Hence we have a system of three equalities in two unknowns (a and b). This
system is consistent, because the first two equalities are in fact identical (due to our
careful choice of number of blocks in each group). They both give

a2 + (−n log n + 2n− 2)b2 = 0.

By setting b = a/
√
n log n− 2n + 2 the first two equalities are satisfied. The third

equality now reads a = a2(2 + ε) for some ε = Θ(1/ log n). This equality is satisfied
by taking a roughly equal to 1/2 − ε/4, which is 1/2 − Θ(1/ log n).

It follows that in the vector solution all s2
i = 1 − x2

i − y2
i is O(1/ log n) for every

i ∈ V . Hence our vector solution has value

1

K

∑
i∈V

s2
i =

1

Θ(n log n)
.

Finally, we note that rather than having only one coordinate in Group 1, we can
have (a/b)2 = n log n − 2n + 2 coordinates, and give the x and y vectors values b in
these coordinates. Then all x and y vectors become vertices of a 2n log n-dimensional
hypercube (of side length b). We see that even in this special case, the integrality gap
remains Ω(

√
log n).

6. Balanced separators and applications.

6.1. Reduction from minimum ratio cuts to balanced separators. In this
section, we sketch a pseudoapproximation for finding balanced vertex separators in a
graph G = (V,E). Let W ⊆ V be an arbitrary subset of V . For δ ∈ (0, 1), we say
that a subset X ⊆ V is a δ-vertex separator (with respect to W ) if every connected
component C of G[V \ X] has |C ∩W | ≤ δ|W |. Our goal in this section is to show
that we can find a 3

4 -vertex separator X ⊆ V whose size is within an O(β) factor
of the optimal 2

3 -vertex separator of G, whenever we can find approximate minimum
ratio cuts in G within factor β. This technique is standard (see [36]).

The algorithm. Let m = |W |, and for any subset U ⊆ V , define |U |
W

= |U∩W |.
Let π1(v) = 1 for every v ∈ V , and π2(v) = 1 if v ∈ W and π2(v) = 0 otherwise. These
are the weights for the numerator and denominator, respectively; i.e., we assume that
we have a β-approximation for απ1,π2(·). We maintain a vertex separator S ⊆ V .
Initially, S = ∅. As long as there exists some connected component U ⊆ V in G[V \S]
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with |U |
W

≥ 3
4 |W |, we use our β-approximation to find a minimum ratio vertex cut

S′ in G[U ] which is within β of optimal. We then set S ← S ∪ S′ and continue.
The analysis. Let S be the final vertex separator. By construction, it is a

3
4 -vertex separator since every connected component U of G[V \S] has |U |

W
< 3

4 |W |.
Let T ⊆ V be an optimal 2

3 -vertex separator.
Claim 6.1. |S| ≤ O(β)|T |.
Proof. The fact that T is a 2

3 -vertex separator with respect to W implies that
the vertices in V \ T can be partitioned into two disjoint sets AT , BT ⊆ V such that
|AT ∪ T |

W
, |BT ∪ T |

W
≥ 1

3 |W |, with no edges between AT and BT . Suppose we are
at a step where |U |

W
≥ 3

4 |W |. Let (A′, B′, S′) be the vertex separator in G[U ] that
we find by running our minimum quotient cut algorithm with ratio β, and suppose
that |A′|

W
≥ |B′|

W
. We know that

|S′|
|A′ ∪ S′|

W
· |B′ ∪ S′|

W

≤ β
|T |

|(AT ∪ T ) ∩ U |
W

· |(BT ∪ T ) ∩ U |
W

≤ 18β|T |
m2

,

where the final inequality follows because |U |
W

≥ 3m
4 . It follows that

|S′| ≤ 18β|T |(|B′|
W

+ |S′|
W

)

m
.

To see that |S| ≤ O(β)|T |, it suffices to see that when we sum |B′|
W

+ |S′|
W

over all
iterations, the value is at most O(m). But since we throw away the vertices of B′∪S′

in every iteration (and recurse only on A′), the sum is clearly at most m.

6.2. Getting an O(
√

log opt) approximation for vertex separators. In
this section, we sketch a proof of how one can obtain an O(

√
log opt) pseudoapproxi-

mation for finding balanced vertex separators. In other words, given a graph G with
a 2

3 -vertex separator of size m, we find a 3
4 -vertex separator whose size is at most

(m
√

logm). The method is based on the following enhancement of Theorem 3.3.
Theorem 6.2. Let C > 0 be a universal constant. Let (X, d) be an n-point

metric space of negative type, and let ω0 : X ×X → R+ be any product weight. If∑
x,y ω0(x, y) d(x, y)∑

x,y ω0(x, y)
= 1,

and there exists an ε-net N ⊆ X with |N | ≤ m and ε ≤ 1/(C
√

logm), then there
exists an efficiently computable map f : X → R with avdω0

(f) = O(
√

logm).
Proof. Assume that ω0(x, y) = π(x)π(y) for all x, y ∈ X. As in the proof

of Theorem 3.3 (see section A.2), if there exists some point x0 ∈ X for which
π(B(x0,

1
4n2 )) ≥ 1

2π(X), then we achieve a map f : X → R with avdω0(f) = O(1). If
no such x0 exists, then it must be the case (see the proof of [7, Lemma 14]) that there
exists a set S ⊆ X × X of pairs for which

∑
(x,y)∈S π(x)π(y) ≥ Ω(1)

∑
x,y ω0(x, y),

and d(x, y) ≥ 1
100 for (x, y) ∈ S.

We construct a new weight function π∗ : N → R+ on N as follows. Since N is
an ε-net, we have X ⊆

⋃
y∈N B(y, ε). For every point x ∈ X, put x into a set Sy for

some net point y ∈ N with d(x, y) ≤ ε (so that {Sy}y∈N is a partition of X). Define
π∗(y) =

∑
x∈Sy

π(x) for every y ∈ N .
We now consider the quantity

d̄N =

∑
x,y∈N π∗(x)π∗(y) d(x, y)∑

x,y∈N π∗(x)π∗(y)
=

∑
x,y∈N

∑
u∈Sx,v∈Sy

π(u)π(v) d(x, y)∑
x,y ω0(x, y)

.
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We claim that d̄N = Ω(1). But this follows since

∑
x,y∈N

∑
u∈Sx,v∈Sy

π(u)π(v) d(x, y) ≥
∑

x,y∈N

∑
u∈Sx,v∈Sy,(u,v)∈S

π(u)π(v) d(x, y)

≥
∑

x,y∈N

∑
u∈Sx,v∈Sy,(u,v)∈S

π(u)π(v) (d(u, v) − 2ε)

≥ 1

2

∑
(u,v)∈S

π(u)π(v) d(u, v) = Ω(1)
∑
x,y

ω0(x, y).

As discussed in section A.2, the techniques of [7] now show that there exist two
subsets L,R ⊆ N for which d(L,R) ≥ 1/O(

√
logm) and π∗(L), π∗(R) ≥ 1

10π
∗(X).

Construct sets

L′ = {x ∈ X : x ∈ Sy for some y ∈ L} and R′ = {x ∈ X : x ∈ Sy for some y ∈ R}.

Note that π(L′) = π∗(L) and π(R′) = π∗(R); hence π(L′), π(R′) ≥ 1
10π(X). Finally,

for any points xL ∈ L′, xR ∈ R′, let yL, yR be such that xL ∈ SyL
and xR ∈ SyR

, and
notice that

d(xL, xR) ≥ d(yL, yR) − d(xL, yL) − d(xR, yR) ≥ 1
O(

√
logm)

− 2ε ≥ 1
O(

√
logm)

,

where the last inequality holds for C > 0 chosen sufficiently large (and hence ε
chosen sufficiently small). Now one simply takes the map f(x) = d(x, L′), which
has avdω0

(f) = O(
√

logm).
Next, we make an observation about solutions to the SDP of section 2.3.
Lemma 6.3. If {xi, yi} is a solution to the SDP with W =

∑
i∈V (1 − x2

i − y2
i ),

then in the metric space ({x1, . . . , xn}, d) where d(i, j) = (xi − xj)
2, there exists an

ε-net N ⊆ {x1, . . . , xn} with |N | ≤ O(W/ε).
Proof. For each i ∈ V , define w(i) = 1−x2

i−y2
i . For a subset S ⊆ V , define w(S) =∑

x∈S w(x). Let G = (V,E) be the original graph, and let dG(i, j) = minp∈Pij w(p),
where we recall that Pij is the set of all simple i-j paths. We claim first that d(i, j) ≤
4 dG(i, j). Indeed, let i = i1, i2, . . . , ik = j be a minimum weight path in G; then

d(i, j) = (xi − xj)
2 ≤

k−1∑
h=1

(xih − xih+1
)2(4)

≤ 2

k−1∑
h=1

(
(1 − x2

ih
− y2

ih
) + (1 − x2

ih+1
− y2

ih+1
)
)

(5)

= 2

k−1∑
h=1

(w(ih) + w(ih+1))

≤ 4 dG(i, j),

where (4) follows from the squared triangle inequalities, and (5) follows from line (2)
in Proposition 3.10.

Thus it will suffice to find an ε/4-net N in the metric dG, and the rest of the proof
refers to this metric on X = {x1, . . . , xn}. Choose a maximal set Y ⊆ {x1, . . . , xn}
among all points x ∈ X for which w(BdG

(x, ε/8)) ≥ ε/16, subject to the constraint
that x, y ∈ Y =⇒ d(x, y) > ε/8. By construction, the balls BdG

(x, ε/8) are disjoint
for x ∈ Y ; hence |Y | ≤ 16W/ε, recalling that W = w(X).
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So we are done once we prove that Y is an ε/4-net in (X, dG). For the sake of
contradiction, suppose there is a point x ∈ X with dG(x, Y ) > ε/4. Let y ∈ Y be
such that dG(x, y) = dG(x, Y ), and consider any shortest-path x = y1, . . . , yk = y
in G. Letting P = {y1, . . . , yk}, we know that w(P ) = dG(x, y) > ε/4. If we set
P ′ = {u ∈ P : dG(y, u) > ε/8}, then w(P ′) > w(P )−ε/8 ≥ ε/8, and for every u ∈ P ′,
we have dG(u, Y ) > ε/8. So if there exists any point u ∈ P ′ with w(u) ≥ ε/16, then
we could add u to Y , contradicting its maximality. Thus we may assume that for
every u ∈ P ′, we have w(u) < ε/16. But now let z ∈ P ′ be the point of P ′ which is
closest to y. Then dG(z, x) = w(P ′) > ε/8; hence we know that

w(BdG
(z, ε/8)) ≥ w(BdG

(z, ε/8) ∩ P ′) ≥ ε/16,

because the first point along P ′ not included in BdG
(z, ε/8) (which must exist) must

be further than ε/8 away from z but also have weight at most ε/16. We again conclude
that Y is not maximal, completing the proof.

Combining Theorem 6.2 and Lemma 6.3, along with the analysis of section 3,
yields an O(

√
logm)-approximation to vertex sparsest cut where m is the number

of vertices in an optimal 2
3 -vertex separator. Now applying the transformation of

section 6.1 yields the desired O(
√

log opt) pseudoapproximation for finding balanced
vertex separators.

6.3. Applications. The notion of treewidth was introduced by Robertson and
Seymour [43] and plays an important role in their fundamental work on graph minors.
In addition, it has numerous practical applications (see, e.g., [10]). A large amount
of effort has been put into determining treewidth, which is NP-complete even when
the input graph is severely restricted (see the discussion in [21] for a brief history).

From the approximation viewpoint, Bodlaender et al. [11] gave an O(log n)-
approximation algorithm for treewidth on general graphs. Amir [4] improved the
approximation factor to O(log opt), where opt is the actual treewidth of the graph.
Constant-factor approximations for treewidth were obtained on asteroidal triple–free
(AT-free) graphs [13, 12] and on planar graphs [44]. The approximation for planar
graphs is a consequence of the polynomial-time algorithm given by [44] for comput-
ing the parameter branchwidth, whose value approximates treewidth within a factor
of 1.5. Recently, [5] obtained a new approximation algorithm for treewidth in planar
graphs with a constant factor slightly worse than 1.5, and the authors of [21] derived
a polynomial-time algorithm for approximating treewidth within a factor of 1.5 for
single-crossing minor-free graphs and generalizations of planar graphs. A well-known
open problem is whether treewidth can be approximated within a constant factor.

Using our new approximation algorithms for vertex separators, we improve the
approximation ratio for treewidth, both in general graphs and in some special families
of graphs. Our improvements and some of their implications will be presented after
we formally define the notion of treewidth.

Treewidth. The notion of treewidth involves a representation of a graph as a
tree, called a tree decomposition. More precisely, a tree decomposition of a graph
G = (V,E) is a pair (T, χ) in which T = (I, F ) is a tree and χ = {χi | i ∈ I} is a
family of subsets of V (G) such that (1)

⋃
i∈I χi = V ; (2) for each edge e = {u, v} ∈ E,

there exists an i ∈ I such that both u and v belong to χi; and (3) for all v ∈ V , the
set of nodes {i ∈ I | v ∈ χi} forms a connected subtree of T . To distinguish between
vertices of the original graph G and vertices of T in the tree decomposition, we call
vertices of T nodes and their corresponding χi’s bags. The maximum size of a bag in
χ minus one is called the width of the tree decomposition. The treewidth of a graph G,
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which we denote by tw(G), is the minimum width over all possible tree decompositions
of G. A tree decomposition is called a path decomposition if T = (I, F ) is a path. The
pathwidth of a graph G is the minimum width over all possible path decompositions
of G.

Now we are ready to state our approximation result for treewidth.
Theorem 6.4. There exist polynomial time algorithms that find a tree decom-

position of width at most O(
√

log tw(G) tw(G)) for a general graph G and at most
O(|V (H)|2 tw(G)) for an H-minor-free graph G.

Proof. The proof follows by plugging our improved approximation ratios for
balanced vertex separators into the known approximation algorithms for treewidth.
Specifically, the algorithm of [11] finds a tree decomposition by recursively using a
balanced vertex separator algorithm. The vertex separator algorithm is applied to
subgraphs of the original graph, in a product demand setting. It turns out that the
approximation ratio obtained for treewidth is at most a constant factor worse than
that of the underlying vertex separator algorithm. Using our bounds from section 6.2
one obtains the first part of Theorem 6.4, and using Theorem 4.2 one obtains the
second part of Theorem 6.4.

Improving the approximation factor of treewidth improves the approximation
factor for several other problems. We refer the reader to [11] for a discussion of these
implications and the relevant definitions.

Corollary 6.5. There exist O(
√

log opt) (resp., O(|V (H)|2)) approximation
algorithms for branchwidth, minimum front size, and minimum size of a clique in a
chordal supergraph of a general (resp., H-minor-free) graph G. Additionally, there are
O(

√
log opt log n) (resp., O(|V (H)|2 log n)) approximation algorithms for pathwidth,

minimum height elimination order tree, and search number in a general (resp., H-
minor-free) graph G.

We also note that Theorem 3.12 with general weights π1, π2 is useful for cer-
tain hypergraph partitioning problems [36]. Improving the approximation factor for
treewidth has a direct improvement on the running time of approximation schemes
and subexponential fixed parameter algorithms for several NP-hard problems on graph
families which exclude a fixed minor. In such algorithms finding the tree decompo-
sition of almost minimum width, on which we can run dynamic programming, plays
a very important role. More precisely, Demaine and Hajiaghayi [20, 19] introduced
the concept of (contraction/minor) bidimensional parameters for planar graphs and
more generally for excluded-minor families. Examples of bidimensional parameters
include number of vertices, diameter, and the size of various structures, e.g., feed-
back vertex set, vertex cover, minimum maximal matching, face cover, a series of
vertex-removal parameters, dominating set, edge dominating set, r-dominating set,
connected dominating set, connected edge dominating set, connected r-dominating
set, and unweighted Traveling Salesman tour (a walk in the graph visiting all ver-
tices).

They show how one can obtain PTASs for almost all bidimensional parameters
on planar graphs, single-crossing minor-free graphs, and bounded genus graphs. In
fact, as they mentioned, their approach can be extended to work on apex-minor-free
graphs for contraction-bidimensional parameters and on H-minor-free graphs, where
H is a fixed graph for minor-bidimensional parameters (see [20, 19] for appropriate
definitions). However, currently they obtain quasi-polynomial-time approximation
schemes for these general settings. The only barrier to obtaining PTASs for these
general settings is obtaining a constant-factor polynomial-time approximation algo-
rithm for treewidth of an H-minor-free graph for a fixed H (this is posed as an open
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problem in [20]). Using Theorem 6.4, we overcome this barrier and obtain PTASs
for contraction-bidimensional parameters in apex-minor-free graphs and for minor-
bidimensional parameters in H-minor-free graphs for a fixed H. As an immediate
consequence, we obtain the following theorem (see [20, 19] for the exact definitions of
the problems mentioned below).

Theorem 6.6. There are PTASs for feedback vertex set, vertex cover, minimum
maximal matching, and a series of vertex-removal problems in H-minor-free graphs
for a fixed H. Also, there are PTASs for dominating set, edge dominating set, r-
dominating set, connected dominating set, connected edge dominating set, connected
r-dominating set, and clique-transversal set in apex-minor-free graphs.

Among the problems mentioned above, PTASs for vertex cover and dominating
set (but not its other variants) using a different approach were known before (see,
e.g., [26]).

Appendix.

A.1. A note about approximating vertex expansion. In the case of edge
cuts, the value of the sparsest cut (under uniform weights) corresponds to edge ex-
pansion of the graph G. Thus it is perhaps more natural to consider finding the
vertex separator (A,B, S) which minimizes the ratio |S|/|B|, where, by convention,
|B| ≤ |A|.

We now show that having the |S| term in the denominator, i.e., |S|/(|B| + |S|),
is crucial to obtaining polylogarithmic approximation ratios. We present here an
argument (essentially due to Shimon Kogan) that demonstrates this fact.

Consider the problem of a balanced bipartite independent set (BBIS). The input
is a bipartite graph G(U

⋃
V,E) with |U | = |V | = n, and the goal is to find the

maximum value of t and sets A ⊂ U , B ⊂ V with |A| = |B| = t with no edges between
A and B. It is known that when t is small compared to n, approximating this problem
(the value of t) within a ratio of nδ for some δ > 0 will have some major algorithmic
consequences [23, 24], including subexponential algorithms for all NP problems [29].
Now modify G by making U into a clique and V into a clique, obtaining a graph G′.
The set S of vertices not in the maximum BBIS provides a vertex separator (A,B, S)
for G′. The ratio |S|/|B| for this separator is the minimum possible up to constant
factors. (For every separator (A′, B′, S′), side U cannot contain vertices both from A
and from B. Hence |S′| = Ω(n) unless both A′ and B′ are of size nearly n. When
t is known to be small, this implies that |S′| = Θ(n) for all separators. Hence the
ratio |S′|/|B′| of any separator in G′ is governed by |B′| rather than by |S|. The
value of |B′| is maximized by taking the separator (A,B, S).) This implies that for
the minimum balanced vertex separator the quantity |S|/|B| cannot be approximated
within a ratio of nδ (unless NP has subexponential algorithms).

Remark. For a set B of vertices, let N(B) denote the set of vertices not in B that
are neighbors of vertices in B. Then the expansion of B is |N(B)|/|B|. The expansion
of a graph is the minimum over all sets B up to a certain size of the ratio |N(B)|/|B|.
The restriction on the size of B is necessary so as to avoid B being the whole graph,
giving expansion 0. For bounded degree graph, one typically requires |B| ≤ n/2. For
graphs of unbounded degree, such a requirement is insufficient, as it always bounds
the expansion by 1 (taking B to be half the graph), whereas one would like to allow
for much higher expansions. A possible restriction on B in this case is to require it to
be the smaller side of an (A,B, S)-vertex separator. Under this definition of vertex
expansion, the above argument shows that vertex expansion cannot be approximated
within a factor of nδ unless NP has subexponential algorithms.
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A.2. Line embedding theorems. We now sketch how the following three the-
orems follow from their respective sources. We begin with Bourgain’s theorem.

Theorem A.1 (Bourgain [14]). If (X, d) is an n-point metric space, then for
every weight function ω : X × X → R+, there exists an efficiently computable map
f : X → R with avdw(f) = O(log n).

In [14], it is shown that every n-point metric (X, d) space embeds into a Hilbert
space with distortion O(log n), but Bourgain actually shows something stronger. He
proves that there exists a probability space (Ω, μ) on random subsets Aτ ⊆ X, τ ∈ Ω,
satisfying the following property: For every x, y ∈ X,

EΩ [|d(x,Aτ ) − d(y,Aτ )|] ≥
d(x, y)

O(log n)
.

To show how this implies the theorem, note that by linearity of expectation

EΩ

⎡
⎣ ∑
x,y∈X

ω(x, y) · |d(x,Aτ ) − d(y,Aτ )|

⎤
⎦ ≥ 1

O(log n)

∑
x,y∈X

ω(x, y) · d(x, y).

Hence there must exist some subset Aτ ⊆ X for which the map f : X → R given
by f(x) = d(x,Aτ ) has avdω(f) = O(log n). An efficient randomized algorithm for
sampling Aτ is given in [38].

Theorem A.2 (Rabinovich [41]). If (X, d) is any metric space supported on a
graph which excludes a Kr-minor, then for every product weight ω0 : X ×X → R+,
there exists an efficiently computable map f : X → R with avdω0

(f) = O(r2).

In [41], Rabinovich proves precisely this fact, although only for the uniform weight
function ω0(x, y) = 1 for all x, y ∈ X. It is easy to see that we can assume arbitrary
product form for ω0 without loss of generality. Suppose that we have vertex weights
π : V → R+. We can replace X by the pseudometric where each copy of x ∈ X occurs
π(x) times. Then applying the analysis of [41] immediately yields the desired result.

Theorem A.3 (Arora, Rao, and Vazirani [7]). If (X, d) is an n-point metric
of negative type, then for every product weight ω0 : X × X → R+, there exists an
efficiently computable map f : X → R with avdω0(f) = O(

√
log n).

Assume that ω0(x, y) = π(x)π(y) for all x, y ∈ X. We will “mentally” replace
every copy of x by π(x) copies, but we will ensure that this increase in the number
of points does not affect the quality of our map f . Also, suppose that (by scaling)
( 1∑

x,y ω0(x,y) )
∑

x,y∈X ω0(x, y) · d(x, y) = 1.

Suppose there exists some point x0 ∈ X for which π(B(x0,
1
4 )) ≥ 1

2π(X). In this
case, the map f(x) = d

(
x,B(x0,

1
4 )
)

has avdω0(f) = O(1) (see, e.g., [7, Lemma 14]).

Otherwise, the techniques of [7] show that there exist two subsets L,R ⊆ X for
which d(L,R) ≥ 1/O(

√
log n) and π(L), π(R) ≥ 1

10π(X). The fact that the number of
copies of a point x ∈ X does not affect the analysis is somewhat technical and relies
on the fact that an “(ε, δ)-cover” has size which is lower-bounded by the number
of distinct points that it contains. In this latter case, one simply takes the map
f(x) = d(x, L), which has avdω0(f) = O(

√
log n). A simpler algorithm for computing

the map f (which consists of choosing a few random hyperplanes) is given in [34].

A.3. Approximating the “densest subgraph.” To orient the reader arriving
at this section from section 3.6, let us remark that π and ω below can correspond to
π1 and a product distribution π2 × π2 in section 3.6.
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Given a set V = {v1, . . . , vn} with a positive rational weight function π on V and
a nonnegative rational weight function ω on V × V , we need to find a set S ⊆ V of
maximum density, where the density of a set is defined as

(6) Δ(S) ≡
∑

i,j∈S ω(i, j)

π(S)
.

This is a weighted version of the densest subgraph problem and can be solved in
polynomial time (see, for example, Chapter 4 in [33]). For completeness, we sketch
the algorithm.

Construct a bipartite graph with sides U and W , where U has n vertices labeled
{u1, . . . un}, and W has n2 vertices labeled wij for 1 ≤ i, j ≤ n. For every i, connect
vertex ui to the vertices wij and wji (for all j). All these edges have infinite capacity.
Add two special vertices, s and t, to the graph. For every i, connect vertex ui to s
by an edge of capacity kπ(i), where k is a parameter whose value will be optimized
later. For every 1 ≤ i, j ≤ n, connect vertex wi,j to t by an edge of capacity ω(i, j).
Now compute the minimum capacity (s, t)-cut in the resulting capacitated graph (a
problem that can be solved in polynomial time by using flow techniques).

We now analyze the above algorithm. Observe first that the minimum (s, t)-cut
contains only edges that are connected to either t or s, as other edges have infinite
capacity. Furthermore, observe that if the parameter k is sufficiently large, then the
minimum (s, t)-cut contains exactly those edges connected to t. (Here we used our
assumption that π(i) > 0 for all i, but we remark that this assumption can be made
without loss of generality, because all vi with π(i) = 0 can be placed in S.) How low
should k be so that the cut also cuts edges connected to s? This may happen only
when k ≤ Δ (and will necessarily happen when k < Δ), where Δ = minS Δ(S). The
reason is the following. Cutting a set S ⊂ U from s costs kπ(S). This needs to be
offset by a gain on the t side, resulting from the fact that edges between t and vertices
of W labeled by S×S no longer need to be cut. This gives a saving of

∑
i,j∈S ω(i, j).

The saving equals the cost precisely when k = Δ.

Using the above analysis, it follows that by performing a search over the parameter
k, one can find the value of Δ and the densest set S achieving this value.
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TREE-WALKING AUTOMATA DO NOT RECOGNIZE ALL
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Abstract. Tree-walking automata are a natural sequential model for recognizing tree languages.
It is well known that every tree language recognized by a tree-walking automaton is regular. We
show that the converse does not hold.
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1. Introduction. A tree-walking automaton is a natural type of finite automa-
ton for trees. At every moment in a run, a tree-walking automaton is located in one
node of the tree. In one step, the automaton moves to a neighboring node and changes
its state according to the transition relation. The step depends on the current state
of the automaton and some local information: the label of the current node, whether
or not it is the root, a leaf, a left child, or a right child. The tree is accepted if one
of the accepting states is reached. For instance, a tree-walking automaton can check
whether all nodes of the tree have the same label by doing a depth-first search.

Even though tree-walking automata were introduced in the early 1970s by Aho
and Ullman [1], not much is known about this model.

This situation is different from the “usual” tree automata—branching tree au-
tomata—which are well-understood objects. In particular, top-down, bottom-up, and
two-way nondeterministic branching tree automata recognize the same class of tree
languages. The tree languages of this class are called regular, the name being so
chosen because the class enjoys many nice properties of regular word languages. A
comprehensive introduction to the standard theory of tree automata can be found
in [4].

As tree-walking automata are a particular case of two-way branching automata,
tree-walking automata recognize regular tree languages. Closure under union and
intersection is also simple. Until recently, however, other fundamental questions per-
taining to tree-walking automata remained unanswered:

1. Is every regular tree language recognized by a tree-walking automaton?
2. Can tree-walking automata be determinized?
3. Are tree-walking automata closed under complementation?

Much research has been dedicated to tree-walking automata. There are nondefin-
ability results for weakened models of tree-walking automata [9, 11, 2], as well as
definability results for strengthened models of tree-walking automata [9, 5, 7]. A
line of research is dedicated to logical characterizations of tree-walking automata [11]
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and their pebble extensions [6]. There has also been some research on tree-walking
automata with an output tape—which define tree-to-word transductions [1]—and on
expressiveness issues concerning this model [8].

Question 2 has been answered negatively in [3]. Question 3 is still open, the
only known result being closure under complementation of deterministic tree-walking
automata [10]. The contribution of this paper is to give a negative answer to the first
question.

2. Preliminaries and the separating tree language. In this section we de-
fine the basic concepts and state our main result.

2.1. Basic definitions. The trees in this paper are finite, binary trees labeled
by a given finite alphabet Σ. A Σ-tree is a partial mapping t : {0, 1}∗ → Σ of finite,
nonempty, and prefix-closed domain dom(t). Elements of this domain are called nodes
of the tree; the label of a node u is the value t(u). Additionally we assume that if v0 is
a node of the tree, then so is v1, and vice versa. Nodes are partially ordered by the
prefix relation; when a node x is the prefix of a node y, we say that x is above y, or
y is below x. The least node ε is called the root, and maximal nodes are called leaves.
The nodes are also ordered lexicographically; we say that x is to the left (resp., right)
of y if x and y are incomparable by the prefix relation, and x is lexicographically
before y (resp., after y). Given a node u, the subtree of t rooted in u—we simply say
the subtree of u when the tree t is clear from the context—is the Σ-tree t′ of domain
{v : uv ∈ dom(t)} defined for all nodes v of t′ by t′(v) = t(uv). The depth of a node u
is |u| + 1, where |u| is the length of u as a word. The depth of a tree is the maximal
depth of its nodes. A balanced tree is one where all leaves are at the same depth.

A set of trees over a given alphabet is called a tree language. A regular tree
language is a tree language recognized by a bottom-up branching tree automaton.
We assume the reader to be familiar with branching automata; see [4] for further
reading. We denote by REG the class of regular tree languages.

We now define (nondeterministic) tree-walking automata. The type of a node
says whether the node is a leaf and whether it is the root. There are four possible
types; we denote the set of types by Types.

Definition 1. A tree-walking automaton is a tuple A = (Q,Σ, I, F, δ), where
Q is a finite set of states; I, F ⊆ Q are, respectively, the sets of initial and accepting
states; and δ is the transition relation of the form

δ ⊆ (Q× Types × Σ × {ε, 0, 1})2.

A configuration is a pair of a state and a node. The automaton can go in one
step from a configuration (q1, v1) to a configuration (q2, v2) if δ contains a transition

(q1, t1, a1, d1, q2, t2, a2, d2)

such that the type and label of vi are ti, ai and there is a node u such that vi = u · di
for i = 1, 2. A run is a nonempty sequence of configurations c1, . . . , cn in which every
two consecutive configurations are consistent with the transition relation. We say
that such a run is from c1 to cn; if both configurations c1 and cn are located at the
same node u, then the run is called a loop in u. A run is accepting if it starts and ends
in the root of the tree, the first state is initial, and the last state is accepting. The
automaton accepts a Σ-tree if it has an accepting run in that tree. The set of Σ-trees
accepted is called the tree language recognized by the automaton. We use TWA to
denote the class of tree languages recognized by some tree-walking automaton.
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The reader may be surprised by our definition of tree-walking automata. In other
texts, the transition relation is of the form

δ ⊆ Q× {root, left child, right child} × {leaf, nonleaf} × Σ ×Q× {↑, 0, 1, ε}.

In this definition—which can easily be shown to be equivalent to the one we use—the
second coordinate extends Types by saying whether a node is a left or right child,
while the {↑, 0, 1, ε} causes the automaton to move to the parent, left child, or right
child of the current node (or not move at all). The point of using our slightly more
verbose definition is that it allows us to easily define “reversed” automata, which visit
the tree in a chronologically (or spatially) opposite manner. We will comment on
these reversed automata in the next section.

We would like to point out here that testing whether a node is a left or right child
is an essential feature of a tree-walking automaton. Indeed, Kamimura and Slutzki
show in [9] that tree-walking automata that do not have access to this information
cannot even test whether all nodes in a tree have the same label.

Symmetry principles. As pointed out before, our definition of tree-walking
automata—in particular in their nondeterministic form—easily adapts itself to sym-
metry arguments, which are very convenient in the proofs. There are two symmetries:
time symmetry and space symmetry. Their formal definition is in terms of transfor-
mations of a tree-walking automaton; namely, each automaton has a time-reversed
and a space-reversed variant. The time-reversed automaton of A, denoted A−T , is
obtained from A by replacing each transition

(q1, t1, a1, d1, q2, t2, a2, d2) ∈ δ

with the transition

(q2, t2, a2, d2, q1, t1, a1, d1).

On the other hand, the space-reversed automaton of A, denoted A−S , is obtained by
replacing each transition

(q1, t1, a1, d1, q2, t2, a2, d2) ∈ δ

with the transition

(q1, t1, a1, s(d1), q2, t2, a2, s(d2)),

where s(ε) = ε, s(0) = 1, and s(1) = 0. One can easily see that

(A−S)−T = (A−T )−S .

We extend the space symmetry s : {ε, 0, 1} → {ε, 0, 1} mapping to nodes (s :
{0, 1}∗ → {0, 1}∗) and trees in the natural manner. The following obvious fact en-
capsulates the properties of the reversed automata.

Fact 2.1. Let (q1, v1), . . . , (qn, vn) be a run of A in a tree t.
• (qn, vn), . . . , (q1, v1) is a run of A−T in t.
• (q1, s(v1)), . . . , (qn, s(vn)) is a run of A−S in s(t).

We say that an automaton is isomorphic to another if there exists a one-to-one
mapping i from the states of the first onto the states of the second such that there
exists a transition

(q1, t1, a1, d1, q2, t2, a2, d2)
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in the first automaton if and only if there exists a transition

(i(q1), t1, a1, d1, i(q2), t2, a2, d2)

in the second automaton. In particular, the isomorphism notion does not involve the
initial or the accepting states of the automata.

We say an automaton is self-symmetric if it is isomorphic to its time-reversed
and also to its space-reversed automaton. By adding (unreachable) states to an au-
tomaton, any tree-walking automaton can be made self-symmetric. In what follows,
self-symmetric automata will be very convenient in reducing the number of cases to
be analyzed. Assume, for instance, that we have proved a statement of the form “for
every two states p, q, any run from p in the root to q in a leaf can be transformed
into one without loops.” If the automaton for which we proved this statement was
self-symmetric, we would also get the following statement for free: “for every two
states p, q, any run from q in a leaf to p in the root can be transformed into one
without loops.” This is because the time-reversal of a run from the root to a leaf is a
run from a leaf to the root, and being loop-free is invariant under time-reversals.

2.2. The separating language. As mentioned in the introduction, it is well
known that all tree languages recognized by tree-walking automata are regular:

(2.1) TWA ⊆ REG.

Whether this inclusion is strict has long been an open question. Engelfriet, Hooge-
boom, and Van Best conjectured that this is indeed the case [7]. The aim of this paper
is to establish this conjecture.

In this section we describe a tree language L that is regular, but not accepted by
any tree-walking automaton, and therefore witnesses the strictness of the inclusion
(2.1).

We consider trees with two possible labels: a and b. Moreover, a is allowed
only in the leaves. We sometimes refer to the symbol b as the blank symbol. Trees
containing only the blank symbol are called blank trees. In a blank tree, only the set
of nodes is important.

Let t be a nonblank tree with a occurring only in the leaves. We will now define
the branching structure bs(t) of t, which is a blank tree (since only the nodes of bs(t),
and not their labels, are relevant). We say a node u is a branching node of t either if
it is an a-labeled leaf of t or if both left and right successors of u have a-labeled leaves
in their subtrees. We define the branching structure of t as the (unique) blank tree
bs(t) such that there is a bijection between the branching nodes of t and the nodes of
bs(t) that preserves the prefix relation and the lexicographic ordering of nodes. The
following drawing illustrates this definition with an example:

a
a a a

Let K be the set of blank trees where all leaves are at even depth. The separating
tree language L mentioned at the beginning of this section is bs−1(K), i.e., the set
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of trees whose branching structures have all leaves at even depth. We now state the
main result of this paper as follows.

Theorem 2. The tree language L is regular, but is not recognized by any tree-
walking automaton.

Showing that L is regular is not difficult: it is recognized by a bottom-up de-
terministic automaton with three states recognizing, respectively, the set of blank
trees, the set of trees whose branching structure has only branches of even length,
and the set of trees whose branching structure has only branches of odd length. For
completeness, a fourth “error” state can be added.

Fact 2.2 below shows that a stronger result holds.
Fact 2.2. The tree language L is definable in first-order logic with the prefix

relation and the left and right successor relations.
Proof. First note that there is a first-order logic formula with one free variable,

which is true in exactly the branching nodes of a tree. Therefore, the nodes of the
branching structure bs(t) can be interpreted as the branching nodes of t. (Note
that for a node interpreted by v, its left successor is interpreted as “first branching
node lexicographically after or at the left successor of v,” and similarly for the right
successor.) It follows that if K is a property of branching structures defined by a first-
order formula ϕ, then bs−1(K) is also defined by a first-order formula. The first-order
formula for bs−1(K) is obtained from ϕ by restricting quantification to branching
nodes and replacing the left/right successors by their abovementioned interpretations
(the prefix relation is not changed).

Therefore, the statement of the fact will follow if we establish that the language K
is definable in first-order logic. This latter result is Lemma 5.1.8 in [12]. For com-
pleteness, we provide a proof for it below.

The main idea is that first-order logic can express whether a leaf in (01)∗(ε + 0)
is at even depth or not. We will refer to such a leaf as the middle leaf of the tree.
A first-order formula can detect the middle leaf by checking that each node above it
is either the leaf itself, the father of the leaf, the right child of a left child, the left
child of a right child, the left child of the root, or the root itself. The middle parity
of a tree is defined to be the parity of the depth of the middle leaf; it is definable in
first-order logic since the middle leaf is at even depth if and only if it is a left child.
The middle parity of a node is defined to be the middle parity of the subtree rooted
at this node.

Let M be the set of trees whose middle parity is even, and for which all children
of any internal node have the same middle parity. We claim that K = M . According
to the previous remarks, this implies that K is definable in first-order logic.

The inclusion K ⊆ M is obvious. For the other direction, let t be a tree outside K.
If all leaves in t have the same depth parity, then the middle parity is odd and t /∈ M .
Otherwise, consider a node in t of maximal depth whose subtree has leaves of both
even and odd depth. But then by maximality, the middle parities of this node’s
children must be different and t /∈ M .

The hard part in the proof of Theorem 2 remains: we need to show that the tree
language L is not recognized by any tree-walking automaton. The remainder of this
paper is devoted to proving this result.

In the next section, we define patterns; these are the same as those used in [3].
A pattern is a particular type of tree with distinguished nodes, called ports. As
in [3], we consider three particular patterns (the basic patterns) that confuse a tree-
walking automaton. Then, in section 4, to every blank tree t we associate a tree made
out of basic patterns (its pattern expansion) whose branching structure—where ports
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are considered as a-leaves—is t and is confusing for the automaton. We then study
throughout sections 5 and 6 the possible runs of the automaton in expansions and
their images in the original tree t. This study results in a precise understanding of
the behavior of the automaton in expansions: it can perform only a fixed number of
simple behaviors—such as left-to-right depth-first search, a move back to the root, or
nondeterministic search of a leaf—and can only (nondeterministically) switch between
these behaviors a bounded number of times. In section 7, we use this knowledge about
the tree-walking automaton for proving that it cannot recognize L. In particular, we
show that a simple local transformation, called the rotation, applied to a sufficiently
big tree cannot be detected by the automaton while it transforms a tree in the language
into one which is not in the language.

A more detailed overview of the proof is found in section 4.2, after the concepts
of pattern and pattern expansion have been introduced.

We fix for the remainder of the paper a tree-walking automaton

A = (Q, {a,b}, I, F, δ).

Eventually, we will show that A cannot recognize the tree language L. As noted in
the section on symmetry, we assume without loss of generality that the automaton A
is self-symmetric. We also assume without loss of generality that the automaton has
at least two states.

3. Patterns. In this section we define patterns, develop a pumping argument
for them, and then study its consequences for the automaton.

Patterns are fragments of trees with holes (called ports) in them. There are two
types of ports: leaf ports, which are in the leaves, and the root, which is also called a
port. Patterns can be assembled by gluing the root port of one pattern to a leaf port of
another pattern. A tree-walking automaton naturally induces an equivalence relation
on such patterns: two patterns (with the same number of ports) are equivalent if in
any context the automaton cannot detect the difference when one pattern is replaced
by another. This equivalence relation (technically, a slightly finer one, which speaks
of states of the automaton) is the key notion in the study of patterns.

3.1. Patterns and pattern equivalence. A pattern is an {a,b, ∗}-tree where
the labels a and ∗ are found only in the leaves. For technical reasons we require that a
pattern have at least two nodes and that all ∗-labeled leaves be left children. A blank
pattern is any pattern with no a-labeled leaf. The ith ∗-labeled leaf (numbered from
left to right, starting from 0) is called the ith port. We number the ports from 0 to
be consistent with the usual tree terminology, where a left successor is denoted by 0
and a right successor by 1. Port ε stands for the root. The number of leaf ports is
called the arity of the pattern. In particular, patterns of arity 0 are {a,b}-trees. See
Figure 3.1 for an illustration. Given an n-ary pattern Δ and n patterns Δ0, . . . ,Δn−1,
the composition Δ[Δ0, . . . ,Δn−1] is the pattern obtained from Δ by simultaneously
substituting each pattern Δi for the ith port. We also allow some Δi’s to be ∗. In
this case, nothing is changed for the corresponding ports. We write Δ[Δi/i] in the
particular case where all Δj ’s but Δi are ∗; i.e., a single substitution is performed at
port i. Given a set P of patterns, we denote by C(P ) the least set of patterns which
contains P and is closed under composition.

A run in a pattern is defined just as a run in a tree, except that the ports (both
root and leaf) are treated as being nonleaf left children with the blank label. The
latter assumption is for technical reasons; it will allow us to compose runs in larger
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0 1 n-1

Fig. 3.1. A pattern of arity n.

( p,i  )

( q,ε )

Fig. 3.2. A pattern Δ with (p, i, q, ε) in δΔ.

Fig. 3.3. The patterns Δ0, Δ1, and Δ2.

patterns from runs in smaller ones. Moreover, we require that a run in a pattern visit
ports at most twice: a port may occur only in the first and last configurations. In the
following definition, illustrated by Figure 3.2, we show how to describe a transition
relation corresponding to a pattern for the automaton.

Definition 3. The automaton’s transition relation over an n-ary pattern Δ,

δΔ ⊆ (Q× {ε, 0, . . . , n− 1})2,

contains (p, i, q, j) if in Δ there is a run from state p in port i to state q in port j.
From the point of view of the automaton, the relation δΔ sums up all important

properties of a pattern, and we consider two patterns equivalent if they induce the
same δ relation; i.e., patterns Δ and Δ′ are equivalent if δΔ = δΔ′ . This equivalence
relation is a congruence with respect to composition of patterns, thanks to the tech-
nical assumptions. The essence of this equivalence is that if one replaces a subpattern
by an equivalent one, the automaton is unable to see the difference. Here, we only
consider contexts that are consistent with our technical assumptions: the root of the
pattern corresponds to a left child, and the nodes plugged into the leaf ports are not
leaves and have the blank label.

The following lemma was shown in [3, Lemma 9].
Lemma 3.1. There are blank patterns Δ0,Δ1,Δ2—of respective arities 0, 1,

and 2—such that any pattern in C({Δ0,Δ1,Δ2}) of arity i = 0, 1, 2 is equivalent
to Δi.

These patterns will be used a lot in the constructions below. To keep the drawings
uncluttered, we omit specifying the names Δ0, Δ1, and Δ2, as this information can
be reconstructed from the number of leaves; see Figure 3.3.
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Note that the lemma may fail for i = 3 when nondeterministic automata are
involved; see [3]. The patterns Δ0, Δ1, and Δ2 are the key to our proof. In a
sense, their construction encapsulates all of the pumping arguments that we will do
with respect to the automaton A. For instance, the pattern Δ1 is equivalent to a
composition of any number of copies of Δ1 patterns. In particular, if the automaton
can go from the leaf port of Δ1 to the root port, then there must be a state that is
used twice along the way. We write CA to denote the set C({Δ0,Δ1,Δ2}); from now
on almost all patterns considered will be taken from CA.

3.2. Inner loops. Although simply defined, the relation δΔ is rather cumber-
some to work with. The automaton may do some redundant moves, such as going
one step down and then one step up, without any apparent purpose (a phenomenon
called oscillation in [3]). It is convenient to eliminate this obfuscating phenomenon.
This is the purpose of the inner loop relation introduced in the next definition.

First, however, we state Fact 3.2, which is a consequence of Lemma 3.1. In this
statement and elsewhere, by the expression plugging the Δ1 pattern into some/any
port of a pattern Δ, we refer to one of the patterns Δ1[Δ],Δ[Δ1/1], . . . ,Δ[Δ1/n],
where n is the arity of the pattern Δ. Similarly, the pattern obtained by plugging Δ1

into all ports of a pattern Δ represents the pattern Δ1[Δ[Δ1, . . . ,Δ1]].

Fact 3.2. Plugging the Δ1 pattern into some port of a pattern in CA yields an
equivalent pattern.

Proof. The proof is by induction on the structure of the pattern, using Lemma 3.1
as the basis of the induction.

Consider now a composition of two patterns Δ[Δ′/i] and the junction of these
patterns, i.e., the node v that corresponds to port i in Δ. By Fact 3.2, we may well
assume that v is on the junction of two Δ1 patterns: one plugged into the leaf port i
of Δ and one plugged into the root port of Δ′. In particular, any loop that can be
done on the junction of two Δ1 patterns can be replicated in Δ[Δ′/i]. Hence the
importance of such loops; we call them “inner loops” in the following definition (see
also Figure 3.4 for an illustration).

Definition 4. The inner loop relation over states is the least transitive and re-
flexive relation →ε over states such that p →ε q holds whenever (p, ε, q, ε) or (p, 0, q, 0)
belongs to δΔ1 .

Fig. 3.4. An inner loop.

The following lemma formalizes the comments preceding the introduction of the
inner loop relation. It shows how →ε describes all possible loops on interfaces between
patterns from CA.

Lemma 3.3. Let Δ,Δ′ ∈ CA be patterns of nonzero arity, and let v be the junction
node corresponding to the leaf port i of Δ and the root of Δ′. There is an inner loop
p →ε q if and only if there is a run from (p, v) to (q, v) in Δ[Δ′/i].
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Before proceeding with the proof, we would like to comment on the relevance of
this lemma. Recall that by our definition of runs in patterns, the loop from (p, v) to
(q, v) is not allowed to visit any of the ports. Therefore, the relation →ε tells us what
possible loops can be done on the interface of two patterns without visiting any ports.
In particular, the possible types of such loops do not depend on the two patterns Δ
and Δ′, as long as they are from CA.

Another important consequence of this lemma is that it gives us a sort of normal
form of runs through patterns in CA. Any loop on a junction between patterns can
be replaced by the →ε relation; therefore a run through a pattern in CA can be seen
as going directly from the source to the target, with all the loops being represented
by the →ε relation.

Proof. Assume that p →ε q. By definition of →ε, there is a run from (p, w) to
(q, w) in Δ1[Δ1], where w is at the junction of the two Δ1 patterns. But this run can
be reused within Δ[Δ′/i], since by Fact 3.2 we may assume without loss of generality
that both Δ and Δ′ have Δ1 plugged into all their ports.

Reciprocally, assume that there is a run from (p, v) to (q, v) in the pattern Δ[Δ′/i].
This run can be reused in the same pattern where a Δ0 has been substituted for all
ports except for some leaf port—say port 0—of Δ′. By Lemma 3.1, this new pattern
is equivalent to the composition of two Δ1 patterns. It then follows by definition that
p →ε q holds.

Definition 5. For a pattern Δ, the relation γΔ is the set of tuples (p, i, q, j)
such that p →ε p

′ and q′ →ε q for some p′, q′ satisfying (p′, i, q′, j) ∈ δΔ.
Observe that a consequence of the definition above is that if p →ε q, then (p, i, q, i)

belongs to γΔ for all ports i of Δ.
The γ relation has nicer closure properties than δ; hence from now on we will be

using it—and not the δ relation—to describe runs in patterns. For instance, γ satisfies
the following “swallowing” property:

(p, ε, q, 0), (q, ε, r, 0), (r, 0, s, ε) ∈ γΔ1 implies (p, ε, s, 0) ∈ γΔ1 .

This is because (q, ε, r, 0), (r, 0, s, ε) ∈ γΔ1 implies q →ε s. Another useful property of
the γ relation—resulting from the equivalence of Δ1 and Δ1[Δ1]—is as follows:

(p, ε, q, 0) ∈ γΔ1 iff (p, ε, r, 0), (r, ε, q, 0) ∈ γΔ1 for some r.

Note that the left-to-right implication fails for the δ relation, since the state r may
require some loops on the junction between the Δ1 patterns before the run reaches
(q, 0).

Obviously, if two patterns are equivalent, then they have the same γ relations.
Let us remark also that a form of the converse also holds: if two patterns in CA have
the same γ relations, then they are equivalent. However, this fact is of no use in the
remainder of the proof, and we need not establish it.

4. Pattern expansions and the proof strategy. In this section we introduce
pattern expansions and then give an overview of our proof strategy.

4.1. Pattern expansions. The pattern pre-expansion of a blank tree t is the
pattern obtained by replacing every inner node of t with the pattern Δ2 and replacing
every leaf with a port ∗. Thus, the pattern pre-expansion has as many leaf ports as
t has leaves.

The pattern expansion Δt of t is the pattern obtained by plugging Δ1 into all
ports of the pattern pre-expansion (see Figure 4.1). Note that the expansion and
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Fig. 4.1. A blank tree t and its pattern expansion Δt.

the pre-expansion are equivalent as patterns. With every node v of t we associate a
node [v] in the pattern Δt in the natural way (see Figure 4.1); this node does not
depend on t. A junction node in a pattern expansion is any node of the form [v];
it is called a junction leaf when v is a leaf of t. Note that a junction leaf is not a
leaf in the pattern Δt, since it has Δ1 as its subtree. The Δ1 patterns plugged into
the pattern expansion are used so that every junction node is on the interface of two
patterns of nonzero arity in CA. In particular, junction nodes are a suitable place for
using Lemma 3.3.

We denote by Δa a fixed pattern of arity 0 equal to Δ1[Δ
′
a], where Δ′

a is some
zero arity pattern containing exactly one a-labeled leaf. The particular form of Δ′

a

is not important, but we can fix it to be a two-leaf tree with a in the left leaf and
b in the other nodes. The only two important points concerning Δa are first, that
it contains a single leaf labeled by a, and second, that Δa is equivalent to Δ1[Δa].
This last point is obtained by remarking that Δa equals Δ1[Δ

′
a] which is equivalent

to Δ1[Δ1[Δ
′
a]], because Δ1[Δ1] is equivalent to Δ1 and equivalence is a congruence

with respect to composition.
Given a blank tree t, the tree Δa

t is obtained by plugging Δa into all leaf ports
of Δt; i.e., Δa

t = Δt[Δa, . . . ,Δa]. Clearly the branching structure of Δa
t is t. If the

tree-walking automaton were to accept the tree language L, it would have to accept
every tree Δa

t for t ∈ K and reject every tree Δa
t for t /∈ K. We will eventually

show that this is impossible, due to the way tree-walking automata get lost in pattern
expansions.

In order to avoid confusion we remark here that Δa
t is treated as a tree and not

a pattern of zero arity. Therefore, a run over Δa
t is allowed to visit the root several

times, as opposed to runs over patterns of zero arity.
A junction configuration is defined to be a configuration of the form (q, [v]) for

some node v ∈ {0, 1}∗. We will write such a configuration as [q, v]. If v is a node of a
blank tree t, then [q, v] can be interpreted as a configuration in either the pattern Δt

or the tree Δa
t . In either case, [q, v] is a configuration whose node is a junction node.

Moreover, if v is a leaf of t (i.e., [v] is a junction leaf), the junction configuration is also
called a leaf configuration (this, of course, is relative to the tree t). We use square
brackets for junction configurations; these describe configurations in the branching
structure t. On the other hand, normal configurations are written with round brackets;
these describe configurations in the pattern expansion Δt or in the tree Δa

t .
The following two lemmas show that the →ε relation and the γΔ2 relation describe

the way our fixed tree-walking automaton can move in a pattern expansion, from a
junction node to itself or to a neighboring junction node, respectively.

Lemma 4.1. Let t be a blank tree and v a node of t. The following statements



668 MIKO�LAJ BOJAŃCZYK AND THOMAS COLCOMBET

are equivalent for any states p and q:
1. In the pattern expansion Δt there is a run from [p, v] to [q, v].
2. p →ε q.
3. In the pattern expansion Δt there is a run from [p, v] to [q, v] that does not

visit any other junction node [w], w �= v.
Proof. From 1 to 2. By cutting the pattern expansion Δt at the junction node [v],

we can decompse Δt as Δ[Δ′/i] for two patterns Δ and Δ′ in CA of nonzero arity, and
i the number of [v] as a leaf port of Δ. Applying Lemma 3.3 to this decomposition,
we get p →ε q.

From 2 to 3. Let Δ and Δ′ be either Δ1 or Δ2, and let i be a leaf port of Δ. Let
v′ be the port i of Δ. By using p →ε q and applying Lemma 3.3 to Δ[Δ′/i], we obtain
that there is a run from (v′, p) to (v′, q) which does not visit the ports of Δ[Δ′/i]. By
definition of the pattern expansion Δt, the junction node [v] appears either as port 0
of a Δ1 pattern or as port 0 or 1 of a Δ2 pattern. Similarly it is also the root port of
a Δ1 or a Δ2 pattern. Hence [v] can be identified with node v′ in a pattern Δ[Δ′/i]
above. We can transfer the run we had witnessed on Δ[Δ′/i] to Δt, obtaining a run
from [p, v] to [q, v] that does not visit any other junction node [w], w �= v.

From 3 to 1. The proof is straightforward.
Lemma 4.2. Let t be a blank tree and v · a, v · b nodes of t, with v ∈ {0, 1}∗ and

a, b ∈ {ε, 0, 1}. The following statements are equivalent for any states p and q:
1. In the pattern expansion Δt there is a run from [p, v · a] to [q, v · b].
2. (p, a, q, b) ∈ γΔ2 .
3. In the pattern expansion Δt there is a run from [p, v · a] to [q, v · b] that does

not visit any other junction node [w], w /∈ {v · a, v · b}.
Proof. From 1 to 2. Assume there is a run in Δt from configuration [p, v · a]

to configuration [q, v · b]. Let us first treat the case a = b. In this case p →ε q by
Lemma 4.1. Hence (p, a, q, b) ∈ γΔ2 (recall the observation following Definition 5).
Now let a �= b, and set c ∈ {ε, 0, 1} to be different from a and b. Let p′ be the
last state assumed by the run while visiting the junction node [v · a], and let q′ be
the first state assumed at the junction node [v · b] after crossing [v · a] for the last
time. If the corresponding subrun from [p′, v · a] to [q′, v · b] does not visit [v · c], then
(p′, a, q′, b) belongs to δΔ2 . Otherwise it visits [v · c], and we let p′′ and q′′ be the
first and last state, respectively, assumed by that subrun at [v · c]. Then p′′ →ε q′′,
by Lemma 4.1. Also, by construction, (p′, a, p′′, c) and (q′′, c, q′, b) are in δΔ2 . This
shows (by plugging Δ1 into port c of Δ2) that (p′, a, q′, b) belongs to δΔ2 . Moreover,
by Lemma 4.1, we have p →ε p′ and q′ →ε q. By definition of γΔ2 , (p, a, q, b) ∈ γΔ2

follows.
From 2 to 3. Since (p, a, q, b) ∈ γΔ2 , there exist two states p′ and q′ such that

p →ε p
′, (p′, a, q′, b) ∈ δΔ2

, and q′ →ε q.

By Lemma 4.1, these three properties provide a run in the pattern expansion Δt that
successively passes through the configurations

[p, v · a], [p′, v · a], [q′, v · b], [q, v · b]

without visiting any junction node other than [v · a] and [v · b].
From 3 to 1. The proof is straightforward.
The above lemma shows that runs of the automaton between neighboring junction

nodes in pattern expansions can be assumed to have a very particular form. Take,
for instance, a blank tree t and two nodes v and w, with v above w. If there is a run
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in Δt that goes from [v] to [w], then, by Lemma 4.2, there is a run that does this
by going directly from v to w using the shortest path. This means performing only
a series of “steps” of the form (p, ε, q, 0), (p, ε, q, 1) ∈ γΔ2 . A similar characterization
holds when v and w are incomparable: the automaton first goes directly from [v] in
the up direction, then does one of the steps (p, 0, q, 1), (p, 1, q, 0) ∈ γΔ2 (a “go to the
sibling” move), and then goes directly downward to [w]. This principle is formalized
in Lemma 6.1.

4.2. The proof strategy. We are now ready to give an overview of the proof
strategy. Recall that our aim is to find trees s ∈ L and s′ /∈ L such that any accepting
run in s can be transferred to s′. In fact, the trees s, s′ will be, respectively, of the
form Δa

t and Δa
t′ for some blank trees t ∈ K and t′ /∈ K. Therefore, we need to

develop a good understanding of runs within trees of the form Δa
t .

The remainder of this paper is divided into three sections, which correspond to
ever larger parts of a run over a tree of the form Δa

t . Such a run can be analyzed on
three scales.

The greatest scale is analyzed in section 7. Fix a tree Δa
t . In this greatest scale, we

will be most interested in runs that connect leaf configurations to one another, without
passing through the root of the tree. (This is because, without loss of generality, we
may assume the root is visited at most |Q| times.) Consider such a run that goes
from one leaf configuration [p, v] to another leaf configuration [q, w]. Within such a
run, we can isolate all the intermediate leaf configurations:

[p, v] = [r1, u1], . . . , [rn, un] = [q, w].

Since no leaf configurations are visited in the meantime, a run from [ri, ui] to [ri+1, ui+1]
corresponds to either (a) a loop in the root of the pattern Δ1[Δa], or (b) a run from
one junction leaf to another in the pattern Δt. Case (a) can be treated as a sort of
ε-transition for leaf configurations. The interesting case is (b).

In section 6, we treat the runs of type (b), which correspond to the intermediate
scale. These runs are in Δa

t , but since no a-labeled leaf is visited during those runs,
they are also runs in the pattern expansion Δt. We first show that whether or not
there is a run of type (b) from [ri, ui] to [ri+1, ui+1] does not depend on the tree t but
only on the nodes ui and ui+1. This allows us to consider the notation [p, v] → [q, w],
meaning that there is a run from [p, v] to [q, w] in some (equivalently, every) pattern
expansion Δt for which v, w are nodes of t. A type of run that realizes [p, v] → [q, w] is
called a move; a classification of the possible types of move is the subject of section 6.

As preparation, in section 5, we consider the smallest scale: the pattern Δ2. By
Lemma 4.2, any move within a pattern expansion can be decomposed into a certain
number of traversals of the pattern Δ2. Hence the need for an investigation of the
relation γΔ2

.
Before proceeding, we describe in general terms the results of these investigations

in sections 5, 6, and 7.
The main result of section 5 is Proposition 5.10, which gives a characterization

of the possible ways the automaton can go from the leaf port to the root port of Δ1.
Generally speaking, this characterization says that the automaton either gets com-
pletely lost or must do some sort of depth-first search. Even though stated in terms
of the Δ1 pattern, these results can also be applied to the Δ2 pattern. Indeed, by
Lemma 3.1, any run from a leaf port to the root port in Δ2 can also be transfered
to Δ1, by simply plugging the unused leaf port with Δ0.

The main result of section 6 is Proposition 6.10. This proposition roughly says
that there are only eleven types of interesting moves between junction leaves in a
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pattern expansion. The interesting moves—called elementary moves—are moves such
as: “go to the next junction leaf to the left” or “go to any junction leaf to the left.”
Proposition 6.10 states that if a move is not elementary, then it contains a “shift,” a
phenomenon of inherent confusion for the automaton.

Finally, in section 7, we show that tree-walking automata cannot detect a properly
placed rotation, which concludes the proof. Given a blank tree T and a node x, the
rotation of T with the pivot x is the tree T ′ defined as follows: we move the subtrees
of x · 00, x · 01, and x · 1 to the new positions x · 0, x · 10, and x · 11 (see Figure 7.1).
Clearly doing a rotation in a tree with all leaves at even depth creates a leaf at
odd depth. We will show, however, that given a very large balanced blank tree T ,
one can find a pivot x such that Δa

T ′ cannot be distinguished from Δa
T by our fixed

tree-walking automaton A.

5. The pattern Δ2. In this section we investigate the γ relations of the patterns
Δ0, Δ1, and Δ2. The main result, Proposition 5.10, uncovers by a case distinction
the possible ways the tree-walking automaton can cross the pattern Δ1. This is
important for our analysis of pattern expansions, since by Lemma 4.2 every path
through a pattern expansion corresponds to a sequence of traversals of Δ2 patterns.

p � q if (p, ε, q, ε) ∈ γΔ0 p ↖ q if (p, 1, q, ε) ∈ γΔ2

p ↗ q if (p, 0, q, ε) ∈ γΔ2

p �a q if (p, ε, q, ε) ∈ γΔa p ↘ q if (p, ε, q, 1) ∈ γΔ2

p ↙ q if (p, ε, q, 0) ∈ γΔ2

p ↑ q if (p, 0, q, ε) ∈ γΔ1 p � q if (p, 1, q, 0) ∈ γΔ2

p ↓ q if (p, ε, q, 0) ∈ γΔ1
p � q if (p, 0, q, 1) ∈ γΔ2

p q if p ↖ q and not p ↗ q

p q if p ↗ q and not p ↖ q p q if p ↑ r ↗ r ↖ r ↑ q for some r

p q if p ↙ q and not p ↘ q p q if p ↓ r ↘ r ↙ r ↓ q for some r

p q if p ↘ q and not p ↙ q

Fig. 5.1. Graphical notation for γΔ0
, γΔa , γΔ1

, γΔ2
.

From now on, instead of the γΔ0 , γΔa , γΔ1 , and γΔ2
relations, we will be using

the more graphical notation depicted in Figure 5.1. Note that the p � q notation
may be somewhat misleading: we start with state p in port 1 and end in state q in
port 0. The left state is chronologically before the right one, although the movement
is in the left direction.

Due to the equivalences in Lemma 3.1, the relations γΔ1 , γΔ2
satisfy properties

such as the following, which we call swallowing rules:

(p, 0, q, 1) ∈ γΔ2 , (q, ε, r, 0) ∈ γΔ1
imply (p, 0, r, 1) ∈ γΔ2

.

Using our graphical notation, this can be rewritten into the first property among the
following ones:

(5.1)

p � q ↓ r implies p � r,
p ↑ q � r implies p � r,
p � q ↓ r implies p � r,
p ↑ q � r implies p � r.
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We will now illustrate how time symmetry can be used to show the second implication;
the third and fourth are then obtained using space symmetry.

Let then p, q, and r be such that p ↑ q � r holds. As the reader may recall, our
tree-walking automaton is self-symmetric; i.e., there is an isomorphism i : Q → Q,
which maps the automaton onto its time-reversed variant. Let i(p), i(q), and i(r) be
the time-reversed counterparts of p, q, and r. By Fact 2.1, every run from p to q can
be reversed to obtain a run from i(q) to i(p); likewise for q and r. If we reverse a run
witnessing p ↑ q, we obtain a run witnessing i(q) ↓ i(p). In the same way, there is a
run witnessing i(r) � i(q). In particular, we have

i(r) � i(q) ↓ i(p).

Now we can apply the already shown first implication in (5.1), to obtain i(r) � i(p).
Since the isomorphism i is its own inverse, we obtain the desired p � r.

In a similar way, using space symmetry, we can derive the last two statements
of (5.1) from the first two. Later on, we will be using this type of reasoning a lot,
omitting the details of the argumentation.

The following lemma shows that the � and �a notation is not misleading in
suggesting a loop.

Lemma 5.1. The relations � and �a are transitive.
Proof. We do the proof only for �. We first claim that p � q holds if and only if

either p →ε q holds, or p ↓ p′ �∗ q′ ↑ q holds for some states p′, q′ (where �∗ is the
transitive closure of �).

The left-to-right implication of the claim is shown as follows. If p � q holds, then
there exist p′′, q′′ such that

p →ε p
′′, (p′′, ε, q′′, ε) ∈ δΔ0 , and q′′ →ε q.

Let us analyze the run corresponding to (p′′, ε, q′′, ε) ∈ δΔ0 in the pattern Δ1[Δ0]
(which is equivalent to Δ0), the junction node being v. If this run does not visit v,
then we have p′′ →ε q′′, and consequently p →ε q. Otherwise, there exist states p′

and q′ such that (p′′, ε, p′, 0) and (q′, 0, q′′, ε) belong to δΔ1 , and there is a path from
configuration (p′, v) to configuration (q′, v) in the pattern Δ1[Δ0]. From this path we
deduce p′ �∗ q′. Hence p ↓ p′ �∗ q′ ↑ q.

The right-to-left implication of the claim is shown as follows. If p →ε q, we
obviously have p � q. Otherwise, assume that there exist states p′, q′ such that
p ↓ p′ �∗ q′ ↑ q holds. Then there are states p′′, p′′′, q′′′, q′′ such that

p →ε p
′′, (p′′, ε, p′′′, 0) ∈ δΔ1 , p′′′ →ε p

′,

q′ →ε q
′′′, (q′′′, 0, q′′, ε) ∈ δΔ1 , and q′′ →ε q.

From p′′′ →ε p′ �∗ q′ →ε q′′′ we obtain p′′′ �∗ q′′′. Together with (p′′, ε, p′′′, 0) ∈ δΔ1

and (q′′′, 0, q′′, ε) ∈ δΔ1 we obtain a run from state p′′ in the root to q′′ in the root in
Δ1[Δ1[Δ0]] (which is equivalent to Δ0). Hence (p′′, ε, q′′, ε) belongs to δΔ0 . Together
with p →ε p

′′ and q′′ →ε q we obtain p � q. This concludes the proof of the claim.
Let us now show the transitivity of �. Assume p � q � r. If either p →ε q or

q →ε r holds, then we have p � r by definition of �. Otherwise, according to the
claim above, there exist states p′, q′, q′′, r′ such that

p ↓ p′ �∗ q′ ↑ q ↓ q′′ �∗ r′ ↑ r.
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Since q′ ↑ q ↓ q′′ implies q′ →ε q
′′, we obtain p′ �∗ r′ by transitivity of �∗. Using the

other direction of the claim, we get p � r.
For �a, the proof is identical. The only property required from the pattern Δa

is that it is equivalent to Δ1[Δa] (and hence to Δ1[Δ1[Δa]]); this fact was observed
above while defining the pattern Δa.

5.1. Depth-first search. In this section we define the key concept of depth-
first search (DFS). The main result, Lemma 5.5, states that p p can only be realized
using a DFS (similarly for , , and ).

qqqq

qq

Fig. 5.2. A right-to-left DFS.

Definition 6. A state pair (q, q̄) is a right-to-left DFS (see Figure 5.2) if

q ↘ q, q � q̄, q̄ � q, and q̄ ↗ q̄.

The pair is a left-to-right DFS if

q ↙ q, q � q̄, q̄ � q, and q̄ ↖ q̄.

Throughout the paper, we will try to keep the convention that if two states q̄
and q appear simultaneously, then q̄ is a state that is going up in the tree and q is a
state that is going down in the tree.

We now illustrate the way a left-to-right DFS allows A to walk through a pattern
expansion. Consider a pattern expansion Δt and a left-to-right DFS (q, q̄). Using
q ↙ q repeatedly, the automaton can go from q in [ε] to q in the leftmost junction
leaf (all this reasoning is done using Lemma 4.2). If v and w are successive leaves
of t, then the automaton can go from [q̄, v] to [q, w]. This is done by using a sequence
of steps q̄ ↖ q̄, then doing a step of the form q̄ � q, and then doing a sequence of
q ↙ q steps. Finally, using q̄ ↖ q̄, the automaton can go from q̄ in the rightmost
junction leaf to q̄ in [ε]. Moreover, if we plug Δ0 into every leaf port of Δt, then q � q̄
together with the above observations can be used to obtain a left-to-right DFS of all
the junction nodes in the pattern Δt[Δ0, . . . ,Δ0].

In Lemma 5.4, we will also show the converse: without doing a DFS, the au-
tomaton cannot systematically visit all junction nodes in a pattern of the form
Δt[Δ0, . . . ,Δ0]. First, however, we provide some preparatory results. In the following
lemma, we say that a run omits a node if it never crosses it.

Lemma 5.2. Let t be a blank tree, with nodes v, w. Let ρ be a run in Δt[Δ0, . . . ,Δ0]
from configuration [p, v] to configuration [q, w] for some states p, q. Then the following
hold:

1. If v = w, then p � q.
2. Assume v = w, and let u be a node strictly below v. If ρ omits [u], then

p →ε q.
3. Assume v is strictly above w, and let u be a node strictly below w. If

ρ omits [u], then p ↓ q.
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4. Assume v is strictly above w, let u be a node strictly below w, and let u′ be
a node to the right of w and strictly below v. If ρ omits [u] and [u′], then
p ↙ q.

5. Assume v is to the left of w, and let u, u′ be nodes strictly below v, w, respec-
tively. If ρ omits [u] and [u′], then p � q.

Proof. We would like to clarify that Δt[Δ0, . . . ,Δ0] is treated here as a pattern
of arity zero and not a tree. Therefore, by definition of runs in patterns, ρ never
visits the root port. Below, we successively treat the five cases. Each explanation is
followed by a drawing illustrating the situation.

1. By transitivity of � (Lemma 5.1), it suffices to consider runs ρ where v is
visited only in the first and last configurations. If the run never goes below [v],
then, by putting a port in the node [v], the run can be replicated in a pattern
equivalent to Δ1, yielding (p, 0, q, 0) ∈ δΔ1 and hence p →ε q. Otherwise, the
run visits only nodes below [v] and is therefore a root-to-root run in a pattern
equivalent to Δ0.

[v ]

2. Again, by transitivity of the →ε relation, it suffices to consider the case
where v is visited only in the first and last configurations. There are two
cases. Either the run never goes below [v] and we can reuse the argument of
item 1, or the run visits only nodes below [v] but not the node [u]. Therefore,
if we put a port into node [u], ρ becomes a root-to-root loop in a pattern
equivalent to Δ1, witnessing (p, ε, q, ε) ∈ δΔ1 ; consequently p →ε q.

[v ]

[u ]

3. First we show that, without loss of generality, we may assume that ρ visits
[v], [w] only in the first and last configurations. Indeed, if we take the longest
prefix of ρ that is a loop in [v], this prefix satisfies the assumptions of item 2,
and can therefore be replaced by an inner loop →ε. The same can then be
done for the suffix, removing additional visits to [w]. Once ρ is assumed to
visit [v] and [w] only once, it is easily seen to witness (p, ε, q, 0) ∈ δΔ1 and
hence p ↓ q: if we put the root port in [v] and a leaf port in [w], we get a
pattern equivalent to Δ1.

[w ]

[v ]

[u ]
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4. As in the previous point, we may assume that ρ visits [v], [w] only in the first
and last configurations (we use the assumption of the node [u] being omitted
and below both [v] and [w]). If we put one leaf port (the left port) in [w],
one leaf port (the right port) in [u′], and the root port in node [v], we get
a pattern equivalent to Δ2. Then the run ρ witnesses (p, ε, q, 0) ∈ δΔ2 , and
hence p ↙ q.

[w ]

[v ]

[u ]
[u ] 

´

5. Again, we assume that ρ visits [v], [w] only in the first and last configurations
(this time, we need to use both [u] and [u′]). We put the left port in node [v]
and the right port in node [w] (the root port stays unchanged).

[w ][v ]

[u ] [u  ]́

We now need a simple combinatorial result concerning labeling of trees.
Lemma 5.3. Let Σ be an alphabet, and consider a balanced Σ-tree t of depth at

least |Σ|+ 1. There exist three nodes w,w0, w1 with the same label such that w0 is to
the left of w1 and w is above both w0 and w1.

Proof. Induction on |Σ|. The base case of |Σ| = 1 is obvious. Otherwise let a be
the root label of t. If both the subtrees of nodes 0 and 1 contain a’s, we are done.
Otherwise one of these is a Σ \ {a}-tree, and the induction hypothesis can be applied
to it.

The following lemma is the first important characterization of runs on patterns.
It says that there are only two types of root-to-root runs over the pattern Δ0: either
a run that does not visit anything and only does an inner loop →ε, or a systematic
DFS traversal.

Lemma 5.4. Let q, q̄ be such that q � q̄. Then either q →ε q̄ or there is a
(left-to-right or right-to-left) DFS (r, r̄) such that q ↓ r and r̄ ↑ q̄.

Proof. Let t be the blank balanced tree of depth |Q|2 + 2. Let Γ be the pattern
obtained from Δt by substituting Δ0 for all leaf ports; i.e., Γ = Δt[Δ0, . . . ,Δ0].
By definition of expansions, the pattern Γ can be rewritten as Δ1[Γ

′] in which, by
Lemma 3.1, the pattern Γ′ is equivalent to Δ0.

By q � q̄, there exists a run in Γ from [q, ε] to [q̄, ε]. First we show that we can
furthermore enforce the following property (*) of ρ: every subrun starting and ending
at the same junction node [v] for v a nonleaf node of t visits only junction nodes
below [v]. This is proved by induction on the number of junction nodes in the run.
Indeed, take a minimal loop in some junction node [v] that visits junction nodes not
below [v]. By minimality, the loop never visits nodes strictly below [v]. Hence, by
Lemma 5.2 (item 2) and Lemma 4.1, this loop can be replaced by another, with the
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same initial and final configurations, which does not visit any junction node other
than [v].

Then let ρ be a run from [q, ε] to [q̄, ε] that satisfies property (*).
If ρ does not visit some junction node, then by Lemma 5.2, q →ε q̄ holds.
Otherwise, given a node v of t, let first(v) be the state in which the junction

node [v] is visited for the first time in the run ρ. Similarly we define last(v). By
Lemma 5.3, there are three nonleaf nodes w,w0, w1 of t with the same values of first
and last , and such that w is above both w0 and w1, and w0 is to the left of w1 (see
Figure 5.3).

[w ]

[w  ]₀
[w  ]₁

Fig. 5.3. The nodes [w], [w0], and [w1].

First consider the case where [w0] is visited before [w1]. Let r be first(w) and
r̄ be last(w). By Lemma 5.2, r � r̄. From property (*) we derive that the run
cannot visit [w0], then [w1], and then again [w0]. Hence we can apply Lemma 5.2 to
configurations [r̄, w0] and [r, w1] and obtain r̄ � r. Also, from the definition of first
and last and Lemma 5.2, we obtain r ↙ r and r̄ ↖ r̄. Overall (r, r̄) is a left-to-right
DFS. Furthermore, by Lemma 5.2 (item 2 or 3), either q →ε r or q ↓ r. In the first
case, in combination with r ↓ r, we also obtain q ↓ r. We similarly have r̄ ↑ q̄.

If [w1] is visited before [w0], a similar argument gives a right-to-left DFS.
We now proceed to another one of our DFS characterizations: the relation can

be realized only by doing a DFS.
Lemma 5.5. If q̄ q̄, then (q, q̄) is a left-to-right DFS for some state q.
Proof. Unraveling the definition of q̄ q̄, we have that q̄ ↖ q̄ holds, but q̄ ↗ q̄

does not. Let t be the blank balanced binary tree of depth 3 (i.e., with four leaves).
Let Γ be the pattern Δt[Δ0,Δ0,Δ0,Δ0]. Since q̄ ↖ q̄ implies q̄ ↑ q̄, and the pattern

Δ2[∗,Δ2[Δ1[Δ0],Δ1[Δ0]]]

is equivalent to Δ1, there is a run in this pattern from [q̄, 0] to [q̄, ε]:

[1 ][0 ]

This run has to visit the junction node [1] since otherwise Lemma 5.2 would give
q̄ ↗ q̄, a contradiction. Let p be the first state assumed by this run at the junction
node [1], and let p̄ be the last.

By Lemma 5.2, we have q̄ � p, p � p̄, and p̄ ↖ q̄. We cannot have p →ε p̄, since
we would otherwise get q̄ ↗ q̄. By Lemma 5.4, we obtain states r, r̄ such that (r, r̄)
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is a DFS and p ↓ r, r̄ ↑ p̄. By swallowing, we obtain q̄ � r, r̄ ↖ q̄ (and we can forget
about states p and p̄).

Two cases have to be considered depending on the orientation of the DFS (r, r̄).
• Assume first that (r, r̄) is a left-to-right DFS. We have r ↓ r and r̄ ↑ q̄. Thus,

r � q̄ follows from r ↓ r � r̄ ↑ q̄. We obtain that (r, q̄) is a left-to-right DFS
as well.

• Otherwise, (r, r̄) is a right-to-left DFS. By r ↘ r � r̄ ↖ q̄, we get r →ε q̄.
But then q̄ � r →ε q̄ ↖ q̄ gives q̄ ↗ q̄, a contradiction.

5.2. Subtree omission. This section is devoted to showing the following propo-
sition.

Proposition 5.6. For all p and q, p ↑ q if and only if p ↖ q or p ↗ q.
The right-to-left implication is obvious; the remainder of this section is devoted

to showing the left-to-right implication. The intuitive idea is illustrated in the picture
below: whenever there is a run as on the left, there is also an equivalent run as in the
middle or on the right.

We first show the following intermediate result.
Lemma 5.7. If q̄ ↑ q̄, then
• q̄ ↗ q̄ or q̄ ↖ q̄, or
• there is a right-to-left DFS (r, r̄) such that q̄ � r and r̄ ↑ q̄.

Proof. As in the proof of Lemma 5.5, we obtain that q̄ ↗ q̄ holds or there are two
states r, r̄ such that (r, r̄) is a DFS and both q̄ � r and r̄ ↑ q̄ hold. The first case as
well as the second when the DFS is right-to-left are conclusions of the lemma.

In the remaining case, (r, r̄) is a left-to-right DFS. But then by q̄ � r � r̄ ↖ r̄
we obtain q̄ ↑ r̄. Combining this with r̄ ↖ r̄ ↑ q̄, we obtain the desired q̄ ↖ q̄.

A variant symmetric to the one above can be obtained, where (r, r̄) is a left-to-
right DFS and q̄ � r and r̄ ↑ q̄ hold.

Lemma 5.8. If p ↑ q, then p ↑ r ↑ r ↑ q for some state r.
Proof. This results from a pumping argument. Since Δ1[Δ1] is equivalent to Δ1,

we can expand the Δ1 pattern into the composition of n times itself for any n. This
means that there are states r1, . . . , rn such that p = r1 ↑ · · · ↑ rn = q.

If n is large enough, some state r is repeated, and the result follows by transitivity
of ↑.

We will now prove Proposition 5.6. Since we have the implication

p ↑ r ↖ r ↑ q implies p ↖ q

and its symmetric counterpart for ↗, Lemma 5.8 allows us to restrict our attention
to the case where p = q. That is, we need to show that p ↑ p implies p ↖ p or p ↗ p.

If in either Lemma 5.7 or its symmetric variant the first case holds, we are done.
Otherwise there are states q, q̄, r, and r̄ such that

p � q, q ↘ q, q � q̄, q̄ � q, q̄ ↗ q̄, q̄ ↑ p,

p � r, r ↙ r, r � r̄, r̄ � r, r̄ ↖ r̄, r̄ ↑ p.
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By p � r � r̄ � r we get p →ε r. Together with q̄ ↑ p and r ↓ r, this gives q̄ →ε r.
Together with q � q̄ and r � r̄, this yields q � r̄ by Lemma 5.1. Then p � q � r̄ ↖ r̄
shows p ↑ r̄. Finally, we combine this with r̄ ↖ r̄ ↑ p and obtain p ↖ p.

5.3. A characterization of moves over Δ1. In this section, we present a
classification of the possible ways the automaton can go in Δ1 from the leaf port
to the root port. This is the main result of section 5. Before we proceed with
Proposition 5.10, we show a certain “denseness” property of the relations , ,
and .

Lemma 5.9. For any states p, q and R = , , ,

p R q implies p R r R r R q for some state r.

Proof. The case of follows straight from the definition. We do only ; the other
case is done symmetrically. If p q, then p ↗ q, and thus also p ↑ q. By Lemma 5.8,
there must be some state r such that p ↑ r ↑ r ↑ q. By Proposition 5.6, we must
have at least one of r ↗ r, r ↖ r. But we cannot have r ↖ r, since this would yield
p ↖ q and contradict p q; hence r r. For similar reasons p r and r q must also
hold.

Note that the converse implication may fail. This is because p q requires p ↖ q
to fail, while there may be some other state s satisfying p ↑ s ↖ s ↑ q.

Proposition 5.10. If p ↑ q, then
1. p q, or
2. p q, or
3. p q, or
4. for some states r1, r2

(a) p ↑ r1 r1 ↑ q and p ↑ r2 r2 ↑ q, or
(b) p ↑ r1 r1 ↗ r2 r2 ↑ q, or
(c) p ↑ r1 r1 ↖ r2 r2 ↑ q.

Proof. If neither case 2 nor 3 holds, then by Proposition 5.6 we must have both
p ↗ q and p ↖ q. Let R↑(p, q) be the set of states r such that p ↑ r ↑ r ↑ q holds; this
set is nonempty by Lemma 5.8. Let R↗(p, q) ⊆ R↑(p, q) be the set of those states r in
R↑(p, q) such that r ↗ r. Similarly we define R↖(p, q). Note that by Proposition 5.6,

R↑(p, q) = R↗(p, q) ∪R↖(p, q).

Now a case analysis proves the lemma:
• If R↗(p, q) ∩R↖(p, q) is nonempty, then item 1 holds.
• R↗(p, q) is empty. By p ↗ q, in the pattern Δ1[Δ2[Δ1, ∗]], there is a run

from state p′ in port 0 to state q′ in port ε that does not visit port 1, where
p →ε p′ and q′ →ε q. This run uses two states q1, q2 at the intermediate
junction nodes [ε] and [0]. These states satisfy p ↑ q1 ↗ q2 ↑ q:

[ε]

[0 ]
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The set R↗(p, q1) is empty, since it is included in R↗(p, q). Furthermore,
since p ↑ q1 holds, the set R↑(p, q1) must be nonempty, and consequently
R↖(p, q1) is nonempty by Proposition 5.6. Therefore we can choose r1 in
R↖(p, q1) which is not in R↗(p, q1). This means

p ↑ r1 r1 ↑ q1.

Similarly, there is some state r2 such that

q2 ↑ r2 r2 ↑ q.

Since q1 ↗ q2, we have r1 ↗ r2, and therefore item (b) holds.
• R↖(p, q) is empty. By reasoning as above, we have item (c).
• Finally, if R↗(p, q) ∩R↖(p, q) is empty, yet both R↗(p, q) and R↖(p, q) are

nonempty, then clearly item (a) holds.
The point of characterizing ↑ and ↓ is that these are the most basic types of

moves the automaton can make in a pattern expansion. Indeed, by Lemma 4.2, in
order to move from one junction node to another, the automaton needs to traverse
the Δ2 pattern. Since the pattern Δ2 can be seen as having Δ1 plugged into each of
its ports, each such traversal must employ one of the moves ↑ or ↓. But then we can
use Proposition 5.10 in order to uncover other possible moves of the automaton.

When put together, Proposition 5.10 and Lemmas 5.9 and 5.5 give us some idea
of how a tree-walking automaton can move upward within a pattern expansion: it
may get completely lost (by allowing a move from a node to any node above it, case 1
in Proposition 5.10), allow a DFS in some fixed direction and nothing else (cases 2
and 3), or, finally, do some DFSs coupled with moves in opposing directions (case 4).

6. Moves. In the previous section, we analyzed the way an automaton can move
through single instances of the basic patterns Δ0, Δ1, and Δ2. In this section, we
consider runs through larger objects built as compositions of Δ1 and Δ2 patterns,
i.e., pattern expansions. We are especially interested in the way the tree-walking
automaton can go from one junction leaf of such an expansion to another. Recall
Lemma 4.1, which states that any loop in a junction node can be replaced by the
→ε relation and hence swallowed by the γ relations. This means that any run between
two junction nodes in a pattern expansion can be assumed to be a nonlooping sequence
of steps consistent with the γ relation. In a tree, a nonlooping path is the shortest
possible path.

Note that all patterns considered in this section and the previous ones use only
the blank symbol. The a label will be introduced only in the final section, section 7.
From this perspective, the sections leading up to section 7 can be seen as an analysis
of runs that never see the a label.

6.1. Pattern paths and moves. Before proceeding with a classification of
possible moves, we introduce a more convenient syntax for describing runs between
junction nodes within a pattern expansion. Essentially, by Lemma 4.2, such a run
can be decomposed as a sequence of moves taken from γΔ2

. Moreover, by closure
properties of γΔ2 , the runs can be assumed to have a certain normal form.

A pattern path (path for short) is a word over the alphabet {ε, 0, 1} × {ε, 0, 1}.
A pattern path can be used to go from one junction node to another in a pattern
expansion in the following manner. An empty pattern path can stay in the same
junction node, while the pattern path π · (a, b) can go from [v] to [u · b] if its prefix π
can go from [v] to [u · a]. We write v →π w when π can go from [v] to [w].
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The →π relation can also be annotated with states of the automaton. Given
states p, q, and a pattern path π = (a1, b1) · · · (an, bn), we write p →π q if there are
states p = r1, . . . , rn+1 = q such that for all i = 1, . . . , n the tuple (ri, ai, ri+1, bi)
belongs to γΔ2 . In the special case of π = ε, we require p →ε q. Given two states p, q
and two nodes v, w, we write [p, v] →π [q, w] if both p →π q and v →π w hold.

A pattern path is called normalized if it is the shortest path between two junction
nodes. For having more understandable normalized paths, we use the following abbre-
viations: ↙ = (ε, 0), ↘ = (ε, 1), ↗ = (0, ε), ↖ = (1, ε), � = (0, 1), and � = (1, 0).
Let us define the following languages:

Up = (↗ + ↖)+, Down = (↙ + ↘)+,

Left = (Up + ε) � (Down + ε), Right = (Up + ε) � (Down + ε),

Side = ε + Left + Right.

The sets Up, Down, Left, Right, Side are called, respectively, the sets of upward,
downward, left, right, and sideways paths. A pattern path is normalized if and only
if it belongs to Up + Down + Side. Given nodes of a tree v and w, π(v, w) denotes
the unique normalized path such that v →π(v,w) w. As expected, for nodes v and w,
π(v, w) ∈ Up if and only if w is strictly above v; π(v, w) ∈ Down if and only if w is
strictly below v; π(v, w) ∈ Left if and only if w is to the left of v; and π(v, w) ∈ Right
if and only if w is to the right of v. A set of normalized pattern paths is called a
move, and we write vMw if π(v, w) ∈ M .

We will now show some results about the possible paths that the automaton can
use when going from one node to another; these were mentioned after Lemma 4.2.
We begin with the following lemma, which shows how paths correspond to runs of
the automaton, at least as far as junction nodes are concerned.

Lemma 6.1. The following are equivalent for nodes v, w in a blank tree t.
1. There is a run in Δt from [p, v] to [q, w].
2. [p, v] →π(v,w) [q, w] holds.
3. There is a run in Δt from [p, v] to [q, w] which visits only junction nodes [u]

such that v →π u for some prefix π of π(v, w).
Proof. This is a generalization of Lemma 4.2, and the same proof works: any loop

appearing in a run can be contracted using the →ε relation.
Since the normalized path connecting v and w does not depend on the tree t but

only on the nodes v, w, we obtain the following corollary.
Corollary 6.2. Let v, w be nodes of a blank tree t. Whether or not there is a

run from [p, v] to [q, w] in Δt depends only on π(v, w) and not on t.
The above corollary justifies the notation [p, v] → [q, w], where no particular path

or tree is mentioned; it is equivalent to p →π(v,w) q. We will use this notation often
in what follows.

Definition 7. For states p and q, we define U(p, q) to be the set of upward
paths π such that p →π q. Similarly, we define D(p, q), L(p, q), R(p, q), and S(p, q)
for downward, left, right, and sideways paths, respectively.

In particular, a direct consequence of this definition is that for two distinct nodes
v and w and states p and q, [p, v] → [q, w] if and only if

π(v, w) ∈ U(p, q) ∪D(p, q) ∪ S(p, q).

The following lemma will be used several times; it transfers some properties of γΔ2

to equalities on the sets U,D,L,R. Its meaning is natural, but the statement as well
as the proof are slightly clouded by the case of the normalized path ε.
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Lemma 6.3. The move R(p, q) is the union of (U(p, p′) + ε) � (D(q′, q) + ε) for
states p′, q′ satisfying p ↑ p′ � q′ ↓ q. A similar statement holds for L.

Proof. We do only the case of R. We begin with the right-to-left inclusion. Let
p′, q′ be states such that p ↑ p′ � q′ ↓ q, and let

π ∈ (U(p, p′) + ε) � (D(q′, q) + ε).

We can write π as π1 � π2 with π1 ∈ U(p, p′) + ε and π2 ∈ D(q′, q) + ε).
The first case is when both π1, π2 are empty and therefore π is �. By assumption,

we have p ↑ p′ � q′ ↓ q and hence p � q, by swallowing. Consequently p →π q and
π ∈ R(p, q). If neither of π1, π2 is empty, then π1 ∈ U(p, p′) and π2 ∈ D(q′, q), which
gives the desired result. The remaining cases where only one of π1 or π2 is empty are
treated by combining the two first cases.

We now treat the left-to-right inclusion. Let π be in R(p, q). By definition of
Right, π can be written as π1 � π2 with π1 ∈ Up + ε and π2 ∈ Down + ε. As above,
we first consider the case when π1, π2 are both empty. In this case, we have p � q.
But then, by looking at the path from port 0 to port 1 in the pattern Δ2[Δ1,Δ1]
which is equivalent to Δ2, we can find states p′, q′ such that p ↑ p′ � q′ ↓ q, which
completes the proof.

Assume now that both π1, π2 are nonempty. Let p′, q′ be the states such that
p →π1 p′ � q′ →π2

q. We need to show that p ↑ p′ and q′ ↓ q. But this follows from
transitivity of ↓, ↑ and the inclusions ↙,↘ ⊆ ↓ and ↖,↗ ⊆ ↑. The remaining cases
where only one of π1 or π2 is empty are treated by combining the two first cases.

Furthermore, there exists a strong link between the set of upward moves (and by
time symmetry, downward moves) and the behaviors of the automaton exhibited in
the previous section; this is the subject of the next lemma.

Lemma 6.4. If p q, then U(p, q) = Up. The analogous results hold for , ,
, , and , the corresponding moves being, respectively, Down, ↖+, ↗+, ↙+,

and ↘+.
Proof. We treat the case . If p q, then by Lemma 5.9, there is a state r such

that p r r q. This shows ↖+ ⊆ U(p, q). The opposite inclusion must also hold,
since otherwise we would get p ↗ q.

The next lemma gives other required facts about U(p, q) and S(p, q).
Lemma 6.5. If p ↑ q, then ↖+ ⊆ U(p, q) or ↗+ ⊆ U(p, q). If p ↗ q, then

↖∗↗ ⊆ U(p, q) or ↗+ ⊆ U(p, q). If p p′ � q, then ε ∈ S(p, q).
Proof. First statement: for some r, p ↑ r ↖ r ↑ q or p ↑ r ↗ r ↑ q by Lemma 5.8

and Proposition 5.6. Second statement: for some p′, p ↑ p′ ↗ q must hold; then use
the first statement. Third statement: by Lemmas 5.9 and 5.5, there exist r, r̄ such
that p ↑ r̄ � r ↓ r � r̄ ↑ p′. Hence (by swallowing) p � r ↓ r � r̄ ↑ p′ � q, and so
p →ε q, i.e., ε ∈ S(p, q).

As hinted by Proposition 5.10 and Lemmas 6.3, 6.4, and 6.5, there are not so
many ways that a sideways move can be done. The following eleven moves will play
a special role below.

Definition 8. An elementary move is any one of the eleven moves in Figure 6.1.

6.2. Move offsets. This section is devoted to moves that depend only on the
number of junction leaves between the source and destination, i.e., moves that do not
really depend on the structure of the tree.

We number the leaves of a tree t from left to right, starting from 0. Formally,
given a blank tree t and a leaf v of t, we denote by #t(v) the number of leaves in
the tree t that are lexicographically before v. For v and w leaves of t, we denote
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Stay = ε

= ↖∗�↙∗ = ↗∗�↘∗

= (↗ + ↖)∗�↙∗ = (↗ + ↖)∗�↘∗

= ↖∗�(↙ + ↘)∗ = ↗∗�(↙ + ↘)∗

= ε + (↗ + ↖)∗�↘∗ = ε + (↗ + ↖)∗�↙∗

= ε + ↗∗�(↙ + ↘)∗ = ε + ↖∗�(↙ + ↘)∗

Fig. 6.1. Elementary moves.

by #t(v, w) the offset from v to w within t, i.e., the difference #t(w) − #t(v). This
number is positive when v is to the left of w. If v or w is not a leaf of t, then #t(v, w)
is not defined.

Definition 9. A move offset of two states p, q is an integer i such that for every
tree t and leaves v and w of t, #t(v, w) = i implies [p, v] → [q, w]. We write moff(p, q)
for the set of move offsets of p, q. We say that p, q admit a shift if moff(p, q) contains
two successive integers from {−2,−1, 0, 1, 2}.

The next lemma shows how move offsets can be described in terms of paths.

Lemma 6.6. For every pair of states p, q,

0 ∈ moff(p, q) iff ε ∈ S(p, q),

1 ∈ moff(p, q) iff ↖∗�↙∗ ⊆ S(p, q),

2 ∈ moff(p, q) iff ↖∗↗↖∗�↙∗ + ↖∗�↙∗↘↙∗ ⊆ S(p, q),

−1 ∈ moff(p, q) iff ↗∗�↘∗ ⊆ S(p, q),

−2 ∈ moff(p, q) iff ↗∗↖↗∗�↘∗ + ↗∗�↘∗↙↘∗ ⊆ S(p, q).

Proof. The case of 0 follows straight from the definition: if #t(v, w) = 0, then
v = w and therefore π(v, w) = ε (and vice versa). The remaining cases follow by listing
the paths that can connect nodes separated by 1, 2,−1,−2 leaves, respectively.

In particular, directly from the definition of elementary moves, we deduce the
following corollary.

Corollary 6.7. Every elementary move has an offset among −1, 0, 1.

A typical example of a move offset of 1 is the DFS.

Lemma 6.8. If (p, p̄) is a left-to-right DFS, then 1 is a move offset of p̄, p. If
(p, p̄) is a right-to-left DFS, then −1 is a move offset of p̄, p.

Proof. If (p, p̄) is a left-to-right DFS, then p̄ ↖ p̄ � p ↙ p holds. Thus the
move S(p̄, p) contains ↖∗�↙∗, and the move offset 1 follows by Lemma 6.6. The
right-to-left case is the same.

The following lemma gathers a number of sufficient conditions for move offsets.

Lemma 6.9. For all states p̄, r̄, and q the following hold:

1. If p̄ p̄ � q, then 0 is a move offset of p̄, q.
2. If p̄ p̄ � q, then 1 is a move offset of p̄, q.
3. If p̄ p̄ ↗ r̄ r̄ � q, then both 1 and 2 are move offsets of p̄, q.
4. If p̄ p̄ ↖ r̄ r̄ � q, then both −1 and 0 are move offsets of p̄, q.
5. If p̄ p̄ � q q, then both −1 and 0 are move offsets of p̄, q.

Proof.

1. The proof is immediate by Lemmas 6.5 and 6.6.



682 MIKO�LAJ BOJAŃCZYK AND THOMAS COLCOMBET

2. By Lemma 5.5, there is a state p such that (p, p̄) is a left-to-right DFS. By
Lemma 6.8, p̄, p has offset 1. From p ↙ p � p̄ � q, we have p ↓ q. Using
Lemma 6.6, it follows by swallowing that p̄, q also has offset 1.

3. The move offset 1 follows from the previous case, since p̄ p̄ � q. By
Lemma 6.6, the move offset 2 will follow once we show that S(p̄, q) contains
both

↖∗↗↖∗�↙∗ and ↖∗�↙∗↘↙∗.

By Lemma 5.5, there are states p, r such that (p, p̄) and (r, r̄) are left-to-right
DFSs. By r ↙ r � r̄ � q, we obtain r ↓ q. Then by

p̄ ↖ p̄ ↗ r̄ ↖ r̄ � r ↙ r ↓ q

we obtain that S(p̄, q) contains ↖∗↗↖∗�↙∗.
It remains to show that S(p̄, q) contains ↖∗�↙∗↘↙∗. This will follow once
we prove p ↘ r, by

p̄ ↖ p̄ � p ↙ p ↘ r ↙ r ↓ q.

It thus remains to show p ↘ r. By p ↙ p � p̄ ↗ r̄, we get p →ε r̄. Finally, if
we consider the path in Δ2[Δ1, ∗] witnessed by p ↙ p →ε r̄ � r, we get the
desired p ↘ r.

4. By item 1, there is a move offset of 0.
By Lemma 5.5, there are states p, r such that both (p, p̄) and (r, r̄) are right-to-
left DFSs. Using the space-symmetric variant of the proof of p ↘ r in item 3,
we obtain p ↙ r. Now, by p ↙ r � r̄ � q, we have p ↓ q. Consequently
p̄ p̄ � p ↓ q, and, applying the space-symmetric version of item 2, we obtain
an offset of −1 for p̄, p.

5. The offset 0 follows from item 1. By Lemma 5.5, there are states p, q̄ such
that both (p, p̄) and (q, q̄) are right-to-left DFSs.
Let us show that p̄ ↑ q̄. For this, we trace the run

p̄ � p ↘ p � p̄ � p � p̄ � q � q̄ � q � q̄ ↗ q̄ ↗ q̄

that goes from state p̄ in port 0 to state q̄ in port ε of the following pattern,
which is equivalent to Δ1:

Now by p̄ ↑ q̄ ↗ q̄ � q ↘ q, we obtain that ↗∗�↘∗ ⊆ S(p̄, q). By
Lemma 6.6, we obtain offset −1.

6.3. Classification of moves. In this section we state and prove Proposi-
tion 6.10, which says that if S(p, q) is nonempty, then either it is a union of some
of the eleven elementary moves, or there is a shift. This separation of cases is at the
core of the argumentation of section 7.

Proposition 6.10. If S(p, q) is nonempty, then p, q have a move offset in
{−1, 0, 1}. Furthermore, either p, q admit a shift or S(p, q) is a union of elemen-
tary moves.
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Proof. By Lemma 6.3, the move S(p, q) is a finite union of sets of the form {ε},
which is an elementary move, or

(U(p, p′) + ε) � (D(q′, q) + ε), where p′, q′ satisfy p ↑ p′ � q′ ↓ q, or

(U(p, p′) + ε) � (D(q′, q) + ε), where p′, q′ satisfy p ↑ p′ � q′ ↓ q.

Letting M ⊆ S(p, q) be a move of one of those forms, we prove that either S(p, q)
contains a shift or there is an elementary move E such that M ⊆ E ⊆ S(p, q). If this
holds for all such moves M , we directly obtain the statement of the proposition, using
Corollary 6.7 for the offset of elementary moves.

By symmetry, we consider only the case M = (U(p, p′) + ε) � (D(q′, q) + ε). We
now apply Proposition 5.10 to p ↑ p′. This proposition distinguishes six cases, namely,
, , , (a), (b), and (c). Similarly, we can do the time-reversed reasoning for q′ ↓ q

and also consider six cases.
If we have (b) or (c) for p ↑ p′, then by items 3 and 4 of Lemma 6.9, respectively,

we get a shift. In the case of (a), we get a shift by using items 1 and 2. By the
time-space-reverse variant of Lemma 6.9, the same happens if (a), (b), or (c) holds
for q′ ↓ q.

Only the other cases remain. There are nine possibilities:
• If p p′ and q′ q, we get M = by Lemma 6.4. Similarly, if p p′ and

q′ q, we get M = , and when p p′ and q′ q, we have M = .
• If p p′ and q′ q, we have M ⊆ by Lemma 6.4. Furthermore, using

Lemmas 6.4 and 6.5, we get ⊆ S(p, q). Similarly, if p p′ and q′ q, we
obtain M ⊆ ⊆ S(p, q).

• If p p′ and q′ q, then p, q admit a shift. Indeed, 1 is a move offset of p, q: by
Lemma 5.9, p ↑ p′′ p′′ ↑ p′, and item 2 of Lemma 6.9 gives offset 1. Offset 0
is obtained by the time-space-reverse variant of Lemma 6.5 (i.e., if p̄ � q′ q,
then ε ∈ S(p, q)). The results are similar for p p′ and q′ q.

• If p p′ and q′ q, then p, q admit a shift by item 5 of Lemma 6.9.
• If p p′ and q′ q, then p, q clearly admit a shift; 1 and 2 are move offsets.

6.4. Right-skipping moves. The result of this section concerns right-skipping
moves. A move is called right-skipping if it contains an element of

Right \ .

A right-skipping move can go to the right in a pattern while omitting (skipping) the
junction leaf immediately to the right:

?

We say that states p, q are right-skipping if the move R(p, q) is right-skipping. A
left-skipping move is defined in the same fashion.

Lemma 6.11. Let p, q be states with a maximal move offset k. Let u, v be leaves
of a tree t, with #t(u, v) > k. If [p, u] → [q, v], then p, q are right-skipping.

Proof. Note that if the offset k can be arbitrarily large, i.e., there is no maximal
offset k, then p, q are right-skipping straight from the definition, thanks to any move
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offset larger than 1. By the first clause of Proposition 6.10, k ≥ −1, and so #t(u, v)
is at least 0. Furthermore, it cannot be 0, since otherwise we would have p →ε q and
therefore 0 ∈ moff(p, q); this would give k ≥ 0, a contradiction with #t(u, v) > k.

If #t(u, v) is at least 2, then p, q are right-skipping by definition; the remaining
case is 1. The path π(u, v) witnesses p � q and, consequently, the existence of p′, q′

such that p ↑ p′ � q′ ↓ q. By Proposition 5.6, either p ↖ p′ or p ↗ p′ must hold.
If p ↗ p′, then ↗� ∈ R(p, q) is a witness for p, q being right-skipping. Otherwise,
p p′ � q. By Lemma 5.9 and item 2 of Lemma 6.9, p, q has offset 1, which gives
k ≥ 1; a contradiction with #t(u, v) > k.

7. The rotation. We have now gathered enough information about runs of the
automaton that never see the label a. In this section we consider runs that do see a,
and conclude the proof of Theorem 2. We will show that the tree-walking automaton A
cannot detect a well-placed rotation in a large balanced tree.

x x

00 01

1 00

01 1

Fig. 7.1. Rotating at node x.

We proceed as follows. We start with a blank balanced binary tree T of large
even depth. Clearly all leaves of T are at even depth, and therefore A must accept
the tree Δa

T . We then choose a pivot node x in T and perform a rotation at that
node. Rotation is the operation depicted in Figure 7.1; it moves the subtrees rooted
in x00, x01, and x1 to the new positions x0, x10, and x11. One can easily see that the
resulting tree T ′ has some leaves at odd depth, and hence A should not accept Δa

T ′ .
We will, however, show that, for a carefully chosen pivot, A does accept this tree,
thereby completing the proof of Theorem 2.

Proposition 7.1. The tree Δa
T ′ is accepted by A.

First we describe how to properly choose the height of the tree T and the pivot
in it. The remainder of the paper is then devoted to showing Proposition 7.1.

7.1. The pivot. The goal of this section is to construct a tree T , an accepting
run of A over Δa

T , and a node x of T (the pivot), such that the properties of Defi-
nition 10 are satisfied. Essentially, these properties say that the tree is balanced and
large and the path leading to the pivot contains a zigzag. Furthermore, some unde-
sirable parts of the accepting run do not use nodes below the pivot. These properties
will be used in the remainder of the paper in order to prove that doing a rotation in
the pivot x on the tree T gives a tree T ′ such that Δa

T ′ is accepted by A. We begin
by defining the “undesirable” parts of the run. After that, we state Definition 10 and
then show that the tree and pivot can indeed be found, in Lemma 7.3.

Let t be a blank tree. Recall the definitions of junction and leaf configurations
from section 4.2. By distinguishing all the configurations whose node is either a
junction leaf or the root of Δa

t , every accepting run in Δa
t can be decomposed into a

sequence of the following form:
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(7.1) (q1, v1), . . . , (qn, vn),

where each vi (i = 1, . . . , n) is either the root ε or [ui] for some leaf ui of t, and in
between two such configurations, no junction leaf or the root is visited. In this case
the run linking (qi, vi) to (qi+1, vi+1) is either

(a) a run visiting at least once the root of Δa
t (and no a-labeled leaf of Δa

t );
(b) a loop inside the Δ1[Δa] subtree rooted in vi, which is equivalent to Δa (hence

qi �a qi+1); or
(c) a run from a junction leaf to another junction leaf in the pattern Δt (hence by

Lemma 6.1, [qi, ui] → [qi+1, ui+1] holds, where vi = [ui] and vi+1 = [ui+1]).
Such a sequence is called a rooted leaf run in Δa

t . An unrooted leaf run is one
that never uses a step of the form (a). By shortcutting each part of the run starting
and ending in the root with the same state, we can safely assume that every rooted
leaf run uses at most 2|Q| steps of the form (a); hence the greater part of a rooted
leaf run is unrooted. Since an unrooted leaf run uses only leaf configurations, it can
be written as [q1, u1], . . . , [qn, un].

For junction configurations [p, v] and [q, w], we write [p, v] ⇒t [q, w] if in the
tree Δa

t there is a run from [p, v] to [q, w] that does not visit the root. Note that
when v, w are leaves, this means that there is an unrooted leaf run in Δa

t from [p, v]
to [q, w]. As opposed to the relation [p, v] → [q, w], this run may depend on the tree t
and not only on the nodes v and w.

We say that one state q is leaf reachable from another state p if they can be
connected by an unrooted leaf run in some tree; i.e., [p, v] ⇒t [q, w] for some tree t
and leaves v, w. Equivalently, q is leaf reachable from p if there exist p = p1, . . . , pn = q
such that for every i = 1, . . . , n− 1 either S(pi, pi+1) is nonempty (which corresponds
to case (c)) or pi �a pi+1 holds (corresponding to case (b); recall the definition of �a

from Figure 5.1). (The right-to-left part of this equivalence is a consequence of the
existence of a move offset in {−1, 0, 1} shown in Proposition 6.10 and is not a priori
obvious). A component of the automaton is a maximal set of pairwise leaf reachable
states; in other words, it is a strongly connected component of the directed graph
with Q as nodes and an edge from p to q if and only if S(p, q) is nonempty or p �a q.

Let us consider a rooted leaf run ρ as in (7.1), which witnesses the acceptance
of Δa

t by A. The main point in choosing the pivot is to restrict our attention to
fragments of ρ that are unrooted leaf runs and only use states from one component.
We say the run changes components below a node y of t if it contains two successive leaf
configurations (qi, vi), (qi+1, vi+1) such that qi and qi+1 are in different components
and at least one of vi, vi+1 is below [y]. The run is rooted below y if there is some i
such that vi = ε and either vi−1 or vi+1 exists and is below [y].

Definition 10. We define the following properties for a node x in a blank
balanced tree t with respect to a rooted leaf run of A in Δa

t :
1. the subtrees rooted in x and the children of x are log2(|Q|)-fractal (see below);
2. the subtree of x has depth larger than 4 + |Q| + 2 log2(|Q|);
3. the node x is below the node 01010101;
4. the run does not change components below x;
5. the run is not rooted below x.

Note that since the tree t is balanced, the number of leaves below a node v depends
only on its depth. Then let v be a node of t, whose depth |v| + 1 is at most |x| + 2.
From condition 2, it follows that the number of leaves in the subtree of v exceeds
all the following thresholds (the constants D,E defined below will be used in the
subsequent proofs):
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(7.2) |Q|, D = |Q|(|Q| + 1), E = 3D + |Q|.

We will refer to the above property later in the paper.
We will now proceed to show that such a run and a node (called the pivot) can

be found (Lemma 7.3) as long as t is a sufficiently large balanced tree of even depth.
Before we do so, however, we need to define what a fractal tree is.

Within a tree t, we distinguish five characteristic types of nodes: (1) the root,
(2) the leftmost leaf, (3) the rightmost leaf, (4) the remaining leaves, and—for the
sake of completeness—(5) the remaining nodes. We say a tree t′ simulates a tree t
if for every two junction configurations in t that satisfy [p, v] ⇒t [q, w] one can find
two configurations satisfying [p, v′] ⇒t′ [q, w′] such that v and v′ have the same
characteristic type, as well as w and w′. Given a natural number m, a tree is called
m-fractal if it contains a proper subtree that simulates it and has depth larger than m.

Lemma 7.2. For every natural number m, all balanced binary trees of sufficiently
large depth are m-fractal.

Proof. For a tree t and states p, q, we can calculate the characteristic types of
nodes v, w satisfying [p, v] ⇒t [q, w]. This information is sufficient to see whether one
tree simulates another. Moreover, it can be calculated by a deterministic bottom-
up finite tree automaton. In the case of a balanced binary tree, this information is
a (regular) property of its depth and is thus ultimately periodic. This means that
there exist constants N and k such that every balanced blank tree of depth n ≥ N
is simulated by the balanced blank tree of depth n− k. Hence every balanced tree of
depth at least max{m + k,N} is m-fractal.

Lemma 7.3. There exist a blank balanced binary tree T , an accepting run ρ of A
in Δa

T , and a pivot x such that x satisfies properties 1–5 of Definition 10 with respect
to ρ.

Proof. Let N be more than the minimum depth of balanced tree obtained from
Lemma 7.2 for m = log2(|Q|) and also larger than the depth stated in condition 2
of Definition 10. Let K be more than log2(4|Q|) + 1. Finally, let T be a balanced
blank tree of even depth larger than N + K + 8. The tree Δa

T is accepted by A by
hypothesis on A.

Consider now an accepting run and its representation as in (7.1),

(q1, v1), . . . , (qn, vn),

where only the root and junction leaf configurations are displayed. We assume that
in this run, the root of Δa

T is seen at most |Q| times. If this is not the case, some
state appears twice in the root, and hence a configuration is seen twice in the run;
one can then shortcut the corresponding part of the run.

Let Vroot be all those junction leaves vi such that at least one of vi−1, vi+1 is the
root ε. One can easily see that the run is rooted below a node y if and only if [y] is
above some node in Vroot. Likewise, let Vcc be all those junction leaves vi such that
the state qi is in a component other than either qi−1 or qi+1 (or both). Again, the
run changes component below a node y if and only if [y] is above some node in Vcc.
Combining the above, a node x satisfies properties 4 and 5 from Definition 10 if and
only if x is not above some node in one of Vroot, Vcc. By assumption on the run
not visiting the root more than |Q| times, the sets Vroot, Vcc have together at most
4|Q| nodes.

Let us count the number of nodes at depth K + 8 in T that are below 01010101.
There are 2K−1 such nodes, i.e., more than 4|Q| by construction of K. In particular,



TWA DO NOT RECOGNIZE ALL REGULAR LANGUAGES 687

there is a node x at depth K + 8 that satisfies conditions 3, 4, and 5. Furthermore,
since the whole tree has depth at least N + K + 8, the subtree of x has depth at
least N , and therefore x satisfies conditions 1 and 2.

Detection of the rotation. Throughout the remainder of the paper, the tree T ,
the run ρ, and the pivot x are fixed according to Lemma 7.3. Let T ′ be the tree
obtained from T by doing a rotation in the pivot x; this tree clearly contains leaves
at odd depth. Our objective is to show that Δa

T ′ is accepted by A. For this, we have
to show that the run can in some sense be replicated after the rotation. We will use
properties 4 and 5 from Definition 10 to show that only unrooted leaf runs that do
not change components need be considered.

We say that a component Γ ⊆ Q of the automaton A cannot detect the rotation
if for every two leaf configurations [p, v], [q, w] with p, q in Γ and v, w not below the
pivot

(7.3) [p, v] ⇒T [q, w] implies [p, v] ⇒T ′ [q, w].

Observe that it makes sense to speak about the configurations [p, v] and [q, w] in the
tree T ′ since the leaves v and w are not below the pivot and hence are not affected
by the rotation.

Consequence for Proposition 7.1. Let us show that, under the assumption that
no component can detect the rotation, we have Proposition 7.1.

Consider the run ρ and its representation as in (7.1):

(q1, v1), . . . , (qn, vn).

Recall how we classified each of the runs linking (qi, vi) to (qi+1, vi+1), for i =
1, . . . , n − 1, according to their form, (a), (b), or (c). Also define ui to be the node
of T such that vi = [ui], when possible, for i = 1, . . . , n.

We claim the following: for i < j in {1, . . . , n} such that both vi and vj are not
below [x], there is a run of the automaton A from (qi, vi) to (qj , vj) in Δa

T ′ . Since
neither v1 = ε nor vn = ε is below [x], our claim yields a run in Δa

T ′ that goes from
(q1, ε) to (qn, ε). Since the original run from (q1, ε) to (qn, ε) in Δa

T was accepting, we
know that q1 is initial and qn is final, and therefore the tree Δa

T ′ is accepted by the
automaton.

The proof of the claim is by induction on j− i. The induction step is obvious and
follows by concatenating runs. The nontrivial case is the base case of the induction,
when for every k with i < k < j the node vk is below [x]. We now prove the claim for
this case.

Consider first the case when i + 1 = j. We now look at the form of the subrun
that goes from (qi, vi) to (qi+1, vi+1). If this subrun is of the form (b), it can be
directly replicated on Δa

T ′ without change. If the subrun from (qi, vi) to (qi+1, vi+1)
is of the form (c), then we use Corollary 6.2, which shows that a similar run can
be used in Δa

T ′ from configuration (qi, vi) to (qi+1, vi+1). The last remaining case
is when the subrun from (qi, vi) to (qi+1, vi+1) is of the form (a), and in particular
either vi = ε, or vj = ε, or both hold. If vi = ε, but vj �= ε, we decompose the run
from (qi, ε) to (qj , vj) into a run from (qi, ε) to [q′, ε], which does not visit more than
once the nodes ε and [ε], followed by a run from [q′, ε] to [qj , uj ], which does not visit
ε or a junction leaf other than [uj ]. This second piece of run can be reused in Δa

T ′

according to Corollary 6.2. Hence there is a run in Δa
T ′ from (qi, vi) to (qj , vj). The

case vi �= ε and vj = ε is obtained by time symmetry. Finally, when vi = vj = ε,
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either the run does not visit [ε] and can be directly reused in Δa
T ′ , or it visits [ε]. In

this latter case, let q′ be the first and q′′ be the last state assumed by the run when
visiting [ε]. The piece of run between [q′, ε] and [q′′, ε] does not visit any junction
leaf, and consequently by Lemma 4.1, there is a similar run which does not visit any
junction node other than [ε]. This run can be reused in Δa

T ′ to obtain a run from
(qi, vi) to (qj , vj).

Otherwise, we have i + 1 < j. For all k with i < k < j, the node vk is below [x],
which together with condition 5 of Definition 10 gives that no subruns of form (a)
happen between (qi, vi) and (qj , vj). Consequently, all the nodes vk are junction
leaves, and the run from (qi, vi) to (qj , vj) is an unrooted leaf run:

[qi, ui] ⇒T [qj , uj ].

Furthermore, by condition 4 of Definition 10, the states qi and qj belong to the same
component Γ of the automaton. Also, by hypothesis on i and j, neither ui nor uj is
below x. It follows that we can apply our assumption that no component can detect
the rotation, and get a run corresponding to

[qi, ui] ⇒T ′ [qj , uj ].

This completes the proof of the claim and, consequently, of Proposition 7.1. What
remains to be done is to establish that no component of the automaton can detect
the rotation. The remainder of this paper is dedicated to establishing this.

Using Proposition 6.10, we divide all components into two categories: components
with a shift, i.e., containing two states that admit a shift, and components without
a shift. Proposition 7.1 is then proved in sections 7.2 and 7.3 for each of the two
categories.

7.2. Components with a shift cannot detect the rotation. In this section
we fix a component Γ with a shift and prove that it cannot detect the rotation. In
order to do this, we extend the definition of move offsets to run offsets, where more
than one move can be used. The idea is that the shift in the component can be
exploited to allow the automaton to move around the tree in an almost arbitrary
fashion, independently of the structure of T .

A run offset between state p and state q is defined similarly to a move offset.
Definition 11. Given a natural number m ≥ 0 called the safety margin, an

m-run offset of states p, q is an integer i such that [p, v] ⇒t [q, w] holds for every two
leaves v, w of a tree t where #t(v, w) = i and v, w both have at least m leaves to their
left and right. We write roffm(p, q) for the set of m-run offsets of p, q.

We remark here, slightly ahead of time, that a consequence of x being below
01010101 is that all nodes below the pivot, and even some nodes not below the pivot,
have at least m leaves to their left and right for fairly large values of m. This means
that those nodes are suitable for using run offsets.

The differences between move offsets and run offsets are that (1) we replace →
with ⇒t (which depends on t and can read the label a) and (2) the leaves v, w
must have a “safety margin” of at least m leaves to their left and to their right; see
Figure 7.2.

We now list some basic properties of roff, which hold for any given states p, q, r.
First, moff(p, q) is included in roff0(p, q). Furthermore, if p �a q holds, then 0 belongs
to roff0(p, q). Also, if both i, j ≤ 0 or both i, j ≥ 0, then

i ∈ roffm(p, q), j ∈ roffm(q, r) ⇒ i + j ∈ roffm(p, r).
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mm

v w

Fig. 7.2. An m-run offset.

Finally, if ij ≤ 0 (i.e., if i, j are of opposite sign), then

i ∈ roffm(p, q), j ∈ roffm(q, r) ⇒ i + j ∈ roffm+min(|i|,|j|)(p, r).

In particular, if j ∈ {−1, 0, 1}, then i + j ∈ roffm+1(p, r).
A consequence of these properties, together with Proposition 6.10, is given in the

following lemma.
Lemma 7.4. For every component Γ and states p, q in Γ, roff |Q|−2(p, q) is non-

empty and contains a value k with |k| < |Q|.
Proof. For p = q, we naturally have 0 ∈ roff0(p, q), and hence 0 ∈ roff |Q|−2(p, q).

Now assume p �= q. Since p and q are in the same component, there exists a sequence
of states p = r1, . . . , rn = q such that for all i = 1, . . . , n − 1 either ri �a ri+1 holds
or the move S(ri, ri+1) is nonempty. Without loss of generality, we assume that no
state is seen twice in this sequence, and therefore 2 ≤ n ≤ |Q|.

By induction on i = 2, . . . , n, we will show that roffi−2(r1, ri) contains a value k
with |k| < i. For i = n ≤ |Q|, the statement of the lemma follows. For i = 2, using
the properties described above, if r1 �a r2, then 0 ∈ roff0(r1, r2), and if S(r1, r2) is
nonempty, then moff(r1, r2) contains an offset j ∈ {−1, 0, 1} by Proposition 6.10, and
hence j ∈ roff0(r1, r2). For i > 2, by the induction hypothesis, the set roffi−3(r1, ri−1)
contains a value k with |k| < i − 1. If ri−1 �a ri holds, then roffi−3(r1, ri) also
contains k, and therefore so does roffi−2(r1, ri). On the other hand, if S(ri−1, ri) is
nonempty, then moff(ri−1, ri) contains an offset j ∈ {−1, 0, 1} by Proposition 6.10.
In particular, the offset j belongs to roff0(ri−1, ri). Using the properties described
above, we obtain that k + j belongs to roffi−2(r1, ri). This concludes the induction
step, since |k + j| < i.

For a safety margin m and a natural number d called the threshold, a pair of states
p, q is called an (m, d)-right-teleport if roffm(p, q) contains all integers not smaller
than d. An (m, d)-left-teleport is when roffm(p, q) contains all the integers not larger
than −d. An m-full-teleport corresponds to roffm(p, q) containing all integers. Ob-
serve that if p, q is an (m, d)-right-teleport and q, r is an (m, d)-left-teleport, then p, r
is an (m + d)-full-teleport.

Recall the constant D = |Q|(|Q| + 1) defined after Definition 10.
Lemma 7.5. If a component Γ contains a shift, either all pairs of states in Γ are

(2|Q|, D)-right-teleports or all are (2|Q|, D)-left-teleports.
Proof. Let q1, q2 be states in the component Γ that admit a shift, i.e., have two

consecutive move offsets i, i + 1 ∈ {−2,−1, 0, 1, 2}. By adding i, i + 1 to the offset
obtained by applying Lemma 7.4 to the pair q2, q1, we infer that q1, q1 admits two
consecutive |Q|-run offsets k and k + 1 with |k|, |k + 1| ≤ |Q| + 1.

Without loss of generality, let us assume that 0 ≤ k ≤ |Q|. Let

m ≥ |Q|(|Q| − 1) ≥ k(k − 1).
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We will show that m belongs to roff |Q|(q1, q1). For k = 0, we have k + 1 = 1 ∈
roff |Q|(q1, q1) and hence, using this run offset m times, m ∈ roff |Q|(q1, q1). For k ≥ 1,
the number m can be written as αk + β with β ∈ {0, . . . , k − 1}. In particular,

m = (α− β)k + β(k + 1).

Let us remark that since m ≥ k(k − 1), we have that α ≥ k − 1 and consequently
α − β ≥ 0. Hence by using α − β times the run offset k, and β times the run offset
k + 1, one obtains

m ∈ roff |Q|(q1, q1).

This proves that q1, q1 is a (|Q|, |Q|(|Q| − 1))-right-teleport.
Once one pair of states q1, q1 is a right-teleport, the same can be shown for all

other state pairs in the component Γ. Indeed, we will show that any two states p, q in Γ
are a (2|Q|, |Q|(|Q|+ 1))-right-teleport, which completes the proof of the lemma. We
need to show that the automaton can go from [p, v] to [q, w]. First, using Lemma 7.4,
the automaton can go from [p, v] to a configuration of the form [q1, u1], where u1 is
a leaf separated from v by at most |Q| leaves (note that u1 may be to the left or to
the right of v). In the same way, there is a leaf u2, separated from w by at most
|Q| leaves, such that the automaton can go from [q1, u2] to [q, w]. If the leaves v, w
have safety margins of 2|Q|, then the leaves u1, u2 have safety margins of at least |Q|.
Furthermore, if w is at least

|Q|(|Q| − 1) + 2|Q| = |Q|(|Q| + 1) = D

leaves to the right of v, then u2 is at least |Q|(|Q| − 1) leaves to the right of u1.
Therefore the (|Q|, |Q|(|Q|−1))-right-teleport q1, q1 can be used to go from [q1, u1] to
[q1, u2]. This completes the proof that p, q is a (2|Q|, D)-right-teleport.

The left-teleport is obtained in the case when k is negative.
For the remainder of this section (section 7.2), we assume that the second case in

the above lemma holds, i.e., that all pairs of states are (2|Q|, D)-left-teleports. The
case of right-teleports is symmetric. We now proceed to show that the component Γ
cannot detect the rotation, i.e., that the implication (7.3) holds for any two leaves
v, w not below the pivot and any two states p, q of the component Γ.

Consider all the leaf configurations of the unrooted leaf run from [p, v] to [q, w]:

(7.4) [p, v] = [r0, u0] ⇒T [r1, u1] ⇒T · · · ⇒T [rn, un] ⇒T [rn+1, un+1] = [q, w].

Without loss of generality we can assume that all the leaves u1, . . . , un are below the
pivot; the other parts of the run can be easily replicated in T ′ (as explained at the end
of section 7.1). Note that since Γ is a component, all the states r0, . . . , rn+1 belong
to Γ.

We will do a case analysis. We say the leaf run from [p, v] to [q, w] satisfies
property (*) if for some 0 ≤ i < j ≤ n+1 the leaf uj is at least |Q| leaves to the right
of ui, i.e., #T (ui, uj) ≥ |Q|. We do the proof first for leaf runs that do not satisfy
this property and then for those that do.

7.2.1. Leaf runs not satisfying (*). Recall that we assume that Γ is a compo-
nent such that every pair of states in it is a left-teleport. We make a case distinction
depending on the relative position of v and w with respect to the pivot.
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If v is to the left of the pivot and w is to its right, then all the leaves below the
pivot separate v from w. By (7.2), there are more than |Q| of these leaves, which
contradicts our assumption on property (*) failing.

Consider now the case when v is to the right of the pivot and w is to the left.
If v has more than 2|Q| leaves to its right and w has more than 2|Q| leaves to its
left, we can use the (2|Q|, D)-left-teleport and go from [p, v] to [q, w] independently
of the rotation, since there are at least D leaves below the pivot x, thanks to (7.2).
Let us assume now that v has less than 2|Q| leaves to its right and w has less than
2|Q| leaves to its left. By (7.2), node 11 has more than 2|Q| leaves in its subtree. In
particular, if there are less than 2|Q| leaves to the right of v, then v must be below 11.
Since u1 is below the pivot x, hence below 01, the path going from [p, v] to [r1, u1] is
of the form π ↖�↘ π′ ∈ S(p, r1). It follows that π � π′ also belongs to S(p, r1), by
swallowing. Hence, the automaton can go from [p, v] to [r1, v

′] for some v′ below 10.
In the same way, if w has less than 2|Q| leaves to its left, one shows that there exists a
leaf w′ below 001 such that the automaton can go in one move from [rn, w

′] to [q, w].
We are in the situation where v′ has more than 2|Q| leaves to its right, w′ has more
than 2|Q| leaves to its left, and there are more than D leaves between w′ and v′.
Now we can use the (2|Q|, D)-left-teleport to go from [r1, v

′] to [rn, w
′]. Furthermore,

since v′, w′ are not below the pivot and the teleport is used to jump over the leaves
below the pivot, the resulting run cannot detect the rotation. The other cases are a
combination of the two previous ones.

x x

Fig. 7.3. The bijection f .

Next we consider the case for which both v and w are to the right of the pivot.
Since condition (*) is not satisfied, all leaves u1, . . . , un are at most |Q| leaves away
from w. In particular all these leaves are below x1 since the subtree rooted in x1
contains at least |Q| leaves by (7.2). Let f be the unique bijection between the leaves
of T and the leaves of T ′ that preserves the leaf numbering (i.e., #T (v) = #T ′(f(v));
see Figure 7.3). Note that f is the identity function on leaves not below the pivot; in
particular f(v) = v and f(w) = w. We claim that the unrooted leaf run from [p, v] to
[q, w] can be replicated in the tree T ′ as follows:

[p, v] ⇒T ′ [r1, f(u1)] ⇒T ′ · · · ⇒T ′ [rn, f(un)] ⇒T ′ [q, w].

Since all leaves u1, . . . , un are located below x1, the path connecting f(ui) to f(ui+1)
is identical to the one connecting ui to ui+1 for i = 1, . . . , n − 1. It follows that the
run from [r1, f(u1)] to [rn, f(un)] is valid in T ′. Only the first and last steps remain
to be considered. We do only the first one, the other being time-symmetric. Consider
the first step in the leaf run, when the automaton goes from [p, v] to [r1, u1]. Since
v is to the right of the pivot and u1 is below the pivot, the path from v to u1 is of the
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form

π � π1π2 with π ∈ {↖,↗}∗ and π1, π2 ∈ {↙,↘}∗.

Here π1 is chosen so that π � π1 leads from v to the pivot, while π2 leads from the
pivot to u1. Since u1 is at a distance at most |Q| from v, it is separated by at most
|Q| leaves from the rightmost leaf below the pivot. Therefore, the only left turns ↙
in π2 happen in its last log2(|Q|) letters. It follows from condition 2 of Definition 10
that π2 has a prefix ↘k with k ≥ |Q|. Hence some state r has to be used twice in the
prefix. Since ↘ is transitive, we deduce that

π � π1 ↘ π2

also belongs to the move S(p, r1). But this path is the one linking v to f(u1) in T ′,
proving that [p, v] ⇒T ′ [r1, f(u1)].

The last remaining case is when both v and w are to the left of the pivot. This
time we show that from a run of the form π � π1 ↙ π2 one can deduce a run of the
form π � π1π2, which can be used after the rotation. This case is, in fact, simpler
since Definition 10 need not be invoked, but rather swallowing is used.

7.2.2. Leaf runs satisfying (*). In this case we will show that the component Γ
contains a right-skipping move (or a right-teleport). After combining this with the
left-teleports from our assumption, we will show that any two leaf configurations with
states from Γ and nodes below the pivot can be reached one from the other, which
implies that Γ cannot detect the rotation. For this, we will use the assumption that
the pivot is below 01010101.

Recall the constant E = 3D + |Q| defined after Definition 10.
Lemma 7.6. Either all pairs of states in Γ are E-full-teleports, or some states

r, r′ in Γ are right-skipping.
Proof. Recall that we are analyzing a run as in (7.4). For i = 0, . . . , n, let ki be

the offset #T (ui, ui+1). If some ki exceeds 1, the corresponding move R(ri, ri+1) is
by definition right-skipping and we are done. Furthermore, if some ki exceeds the
maximal move offset of ri, ri+1 (if that exists), then the corresponding move is right-
skipping by Lemma 6.11. We assume that neither case happens.

Since (*) is satisfied, there are i < j such that #T (ui, uj) ≥ |Q|. We will inspect
the run from ui to uj and find in it a state used twice, the first configuration involved
being to the left of the second one. Since ki, . . . , kj−1 ≤ 1, we can assume that
#T (ui, uj) is exactly |Q|. Furthermore, if we choose i, j so that j − i is minimal, all
the leaves ui+1, . . . , uj−1 are to the right of ui and to the left of uj . Since, without
loss of generality, we can assume that no leaf is visited more than |Q| times, and using
the fact that the automaton has at least two states, we obtain j − i < |Q|2.

Claim. Let k = 1, . . . , |Q|. If g < h in {i, . . . , j} are such that the sequence
rg, . . . , rh contains at most k distinct states, and, furthermore, #T (ug, uh) ≥ k, then
there are g′ < h′ in {g, . . . , h} such that rg′ = rh′ and #T (ug′ , uh′) ≥ 1.

Proof. The proof is by induction on k. For k = 1 the statement is obvious.
Consider now k > 1. We take a longest suffix um, . . . , uh of ug, . . . , uh where the leaf ug

is not visited anymore (in particular, all leaves um, . . . , uh are to the right of ug). By
assumption on all moves going at most one position to the right, the leaf um must
be the leaf immediately to the right of ug, and therefore #T (um, uh) ≥ k − 1. If the
states rm, . . . , rh do not contain the state rg, then we apply the induction hypothesis.
Otherwise, the position among m, . . . , h where state rg is used gives us the desired g′

and h′, since all nodes um, . . . , uh are to the right of ug.
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Using this claim with g = i and h = j, together with j − i < |Q|2, we find two
indices i′ < j′ such that ri′ = rj′ = r, j′ − i′ < |Q|2, and #T (ui′ , uj′) ≥ 1. We will
use this to show that there is also a right-teleport in the component. When combined
with the left-teleport from our assumption on Γ, we will get a full-teleport.

By assumption on the values kl, each pair rl, rl+1 has some move offset ml ≥ kl.
(Here we use the convention that there is a move offset ml = 0 ≥ kl when the run from
[rl, ul] to [rl+1, ul+1] is of type (b), i.e., when rl �a rl+1 holds.) By Proposition 6.10
each nonempty move has a move offset in {−1, 0, 1}, and we have ml ≥ −1. Further-
more, if ml > 1, then rl, rl+1 would be right-skipping; hence we have −1 ≤ ml ≤ 1.
Therefore,

1 ≤ #T (ui′ , uj′) = ki′ + · · · + kj′−1 ≤ mi′ + · · · + mj′−1 < |Q|2.

(The last inequality is due to j′ − i′ < |Q|2 and ml ≤ 1.) However, since the sum

m = mi′ + · · · + mj′−1

is composed only of move offsets, it must belong to roff |Q|2(r, r) and therefore also to
roffD(r, r), since

D = |Q|(|Q| + 1) > |Q|2.

We will now show that roff3D(r, r) contains all integers, and therefore r, r is a 3D-
full-teleport. Indeed, let v and w be two leaves in a tree t, both with safety margin
at least 3D. We will show that the automaton can go from [r, v] to [r, w]. Using
m ∈ roffD(r, r) (recall that m ≥ 1), starting from [r, v], we successively move to the
right by steps of m leaves. We stop as soon we have reached a configuration [r, u]
with u located at least D leaves to the right of w, possibly stopping immediately.
Observe that if u �= v (i.e., u is to the right of v), then the leaf u is numbered at
most #T (w) + D + m − 1, and thus u has at least 3D − (D + m − 1) leaves to its
right. Since m < D, this value is larger than D. Hence, such a leaf u can indeed
be reached using m ∈ roffD(r, r). Since both u and v have safety margin at least
D > 2|Q|, we can therefore use the (2|Q|, D)-left-teleport—that all state pairs in Γ
have by assumption—to go from [r, u] to [r, w].

Once one state pair r, r has been shown to be a full-teleport, the same can be
argued for the other state pairs in Γ. This is done in the same way as in the last part
of the proof of Lemma 7.5. As in that lemma, the safety margin must be increased
by |Q|; hence the value E = 3D + |Q| in the statement of this lemma.

Lemma 7.7. For v, w leaves below the pivot in T ′, and p, q in Γ, [p, v] ⇒T ′ [q, w].
Before we proceed with the proof, we show how this implies that Γ cannot detect

the rotation. Indeed, consider the leaf run

[p, v] ⇒T [r1, u1] ⇒T · · · ⇒T [rn, un] ⇒T [q, w]

that goes from [p, v] to [q, w]. As mentioned before, we assume that all u1, . . . , un are
below the pivot, and hence only the first and last moves cross the pivot. Thanks to
the yet unproved Lemma 7.7, it suffices to connect [p, v] with some leaf configuration
in T ′ below the pivot and also connect some leaf configuration in T ′ below the pivot
with [q, w]. We will therefore show that there are leaves u′

1 and u′
n in T ′ below the

pivot such that

[p, v] ⇒T ′ [r1, u
′
1] and [rn, u

′
n] ⇒T ′ [q, w].
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First consider the path from v to u1 in T . This path first goes to the pivot, arriving
there in some state s, and then moves down to the configuration [r1, u1]. This implies
s ↓ r1. Hence, by the time-symmetric variant of Lemma 6.5, one of the sets ↙+ or ↘+

is included in D(s, r1). In the first case we pick u′
1 to be the leftmost leaf below the

pivot in T ′, while in the second case we take the rightmost one. The symmetric
reasoning also works for u′

n.

Only the proof of Lemma 7.7 remains. Let v, w be leaves below the pivot, and let
p, q belong to Γ. We need to show that [p, v] ⇒T ′ [q, w] holds.

By Lemma 7.6, either all pairs of states r, r′ in Γ are E-full-teleports, or there
exists a pair of states r, r′ in Γ that is right-skipping. In the first case, there are more
than E leaves to the left and to the right of the pivot by (7.2) and hence to the left
and to the right of both v and w. The E-full-teleport p, q is usable, and the statement
of the lemma follows.

We now treat the case when some state pair r, r′ in Γ is right-skipping. By as-
sumption, all state pairs in the component Γ are (2|Q|, D)-left-teleports. Our strategy
is to combine the left-teleports with the right-skipping move r, r′. First, we use the
left-teleport to go from [p, v] to [r, u], with u being a specially chosen leaf to the left
of the pivot. We then use the right-skipping move and the properties of u in order to
move to [r′, u′], with u′ being a specially chosen leaf to the right of the pivot. Finally,
we use the left-teleport to reach the configuration [q, w]. This process is illustrated in
Figure 7.4.

x

( p,v  )( r,u  ) ( q,w  ) ( r ,u  )´ ´

Fig. 7.4. The leaf run witnessing [p, v] ⇒T ′ [q, w].

We need to find leaves u and u′ such that the above strategy works. This is the
goal of the claim below. The first property in the statement allows us to perform the
right-skip, while the last three allow us to use the left-teleport.

Claim. There exist leaves u, u′ in T ′ such that

• the path between u and u′ belongs to S(r, r′) (r, r′ taken from Lemma 7.6);
• there are at least D leaves between u and any node below the pivot;
• there are at least D leaves between any node below the pivot and u′; and
• there are at least 2|Q| leaves to the left and right of both u, u′.

Proof. The states r, r′ are right-skipping by assumption. Hence, by definition of
a right-skipping move and Lemma 6.3, one can find states s, s′ with

r ↑ s � s′ ↓ r′

such that either U(r, s) \ ↖+ or D(s′, r′) \ ↙+ is nonempty. First consider the case
when U(r, s) \↖+ is nonempty. This means that r ↗ s holds. Hence, by Lemma 6.5,
U(r, s) contains either ↖∗↗ or ↗+, and D(s′, r′) contains either ↙+ or ↘+. By
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x
u

01

011

u’

Fig. 7.5. The move from u to u′.

time-symmetry, in the case when D(s′, r′) \↙+ is nonempty, D(s′, r′) contains either
↘+ or ↘↙∗, and U(r, s) contains either ↖+ or ↗+.

Altogether, we obtain that R(r, r′) contains at least one of the following five moves
(using swallowing, we have simplified ↖∗↗ into ↖∗, and ↘↙∗ into ↙∗):

↗∗�↙∗, ↖∗�↘∗, ↗∗�↘∗, ↖∗↗�↙∗, or ↖∗�↘↙∗.

We treat each of these cases separately. For ↗∗�↙∗, take u to be the leftmost
leaf below 01 and u′ to be the leftmost leaf below 011 (see Figure 7.5). Clearly the
path from u to u′ belongs to ↗∗�↙∗; hence the first property of the statement holds.
By changing the leaves u and u′, we obtain similarly the other cases: for ↖∗�↘∗,
take u to be the rightmost leaf below 0100 and u′ to be the rightmost leaf below 010;
for ↗∗�↘∗, take u to be the leftmost leaf below 01 and u′ to be the rightmost leaf
below 010; for the case ↖∗↗�↙∗, take u to be the rightmost leaf below 0100 and
u′ to be the leftmost leaf below 011; for ↖∗�↘↙∗, take u to be the rightmost leaf
below 0100 and u′ to be the leftmost leaf below 01011. In each case, the path from u
to u′ belongs to S(r, r′), and therefore the first item of the statement is satisfied.

For the second item of the statement, note that in all five cases above, the leaf u
is located below 0100. Using condition 3 of Definition 10, we also know that the pivot
is below the node 01010101. Hence, all the leaves below 010100 are to the right of u
and to the left of the pivot. Furthermore, by (7.2), there are more than D such leaves.
The third item is similar: in all five cases, u′ is below 011 or 01011. Hence, the leaves
below 0101011 are to the right of the pivot and to the left of u′. And there are more
than D of them.

The fourth point is obtained by the same kind of arguments. The leaves below 00
are all to the left of u, and the leaves below 1 are all to the right of u′. And in each
case there are more than 2|Q| of them. This completes the proof of the claim.

This completes the proof that no component with a shift can detect the rotation.

7.3. Components without a shift cannot detect the rotation. In this
section we consider a component Γ without shifts. This is the second and last case to
be considered in the proof of Proposition 7.1. According to Proposition 6.10, every
nonempty move S(p, q) with p, q in Γ is a union of the elementary moves

Stay, , , , , , , , , , and

(see Figure 6.1). Our strategy is as follows. First, we distinguish some elementary
moves, called “adjacency moves.” Then we show that all other moves can be simulated
using adjacency moves. Finally, we show that a component where all moves are
adjacency moves cannot detect the rotation.
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Two paths in Right are called right adjacency similar if one can be obtained from
the other by replacing one fragment in by another. More formally, two paths are
right adjacency similar if they can be decomposed as

y ↖k�↙l z and y ↖m�↙n z, where k, l,m, n ∈ N, y ∈ Up + ε, z ∈ Down + ε.

Left adjacency similarity is defined in the same way by replacing ↖, �, and ↙ by
↗, �, and ↘, respectively. Two paths are adjacency similar if they are either left
or right adjacency similar.

Definition 12. An adjacency move is an elementary move closed under adja-
cency similarity.

The following simple fact is given without further proof.
Fact 7.8. Stay, , , , , , and are adjacency moves.
Adjacency moves are going to be used in conjunction with fractality (see condi-

tion 1 of Definition 10). The following lemma presents a typical example of such an
argument (fractality is not explicitly mentioned, but the lemma refers to characteristic
types and by consequence can be used with fractality).

v w

z΄
z

y

w΄

Fig. 7.6. The nodes y, v, z, z′, w, and w′.

Lemma 7.9. Fix a blank tree t, a node y, and two nodes z, z′ on the leftmost
branch below y1. Furthermore, let w be a leaf in the subtree of z and let w′ be a
leaf in the subtree of z′, both with the same characteristic types within the subtrees of
z and z′, respectively (see Figure 7.6). Then, for any given leaf v below y0 and any
adjacency move M ,

if vMw, then vMw′.

Proof. Assume vMw. Since M is an adjacency move and hence also an elementary
move, it is of the form U � D with π(y1, w) ∈ D. It is sufficient to prove that
π(y1, w′) ∈ D also holds. Since M is an adjacency move, D is of the form either
↙∗ or (↙ + ↘)∗. If D is ↙∗, this means that w is the leftmost leaf below y1 and
consequently also the leftmost leaf below z. Since w′ has the same characteristic
type (w.r.t. z′) as w (w.r.t. z), this means that w′ is the leftmost leaf below z′.
By consequence w = w′, and we have π(y1, w′) ∈ D. Otherwise D is of the form
(↙ + ↘)∗. Since w′ is below y1, this implies π(y1, w′) ∈ D.

We will now eliminate the moves , , , and , which are not adjacency
moves. This is done by simulating them by a sequence of adjacency moves. The
following lemma treats the case of , which is simulated by . The other cases
are symmetric.
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Lemma 7.10. Let t be a tree and let u, v be two leaves of t. If u v and v is not
the rightmost leaf of t, then there exists a leaf w such that u w v. If there exists
a leaf w such that u w v, then u v.

Proof. We prove here only the first implication; both implications can be seen in
the following picture:

v u

 y

 z

w

Let w be the next leaf in t after v. Since v is not the rightmost leaf, w exists. By the
choice of w, we have w v. Let us show u w.

Let y be the deepest node above both u and v. Since u v holds, v is the rightmost
leaf below y. Let z be the deepest node above both y and w. Since w is the next leaf
after v—which is the rightmost leaf below y—the leaf w is the leftmost one below z1.
But then we can use to go from u to w (the appropriate path doing a � from z0
to z1).

In the remainder of the proof, we use only the fact that for each p, q ∈ Γ the move
S(p, q) is a union of elementary moves. We then use Lemma 7.10 in the following
manner. We enrich the automaton by allowing (after a nondeterministic choice) each
move to be possibly replaced by the sequence of followed by , likewise for the
other moves , , and , by using time-, space-, and time-space-symmetric vari-
ants of this operation. (Note that this transformation requires the use of extra states.)
According to the second implication of Lemma 7.10, the resulting automaton is equiv-
alent to A. Furthermore, any unrooted leaf run of the original automaton that uses
only states from Γ can be transformed—using the first implication of Lemma 7.10—
into an unrooted leaf run of the modified automaton where all moves happening below
the pivot (i.e., the source and target leaves of the move are below the pivot) are ad-
jacency moves. For this reason, from now on, we assume that all moves happening
below the pivot are adjacency moves.

We proceed to show that Γ cannot detect the rotation. We have to show that

[p, v] ⇒T [q, w] implies [p, v] ⇒T ′ [q, w]

for any states p, q ∈ Γ and nodes v, w not below the pivot. As before (in section 7.2),
since T and T ′ are equal over nodes not below the pivot, it suffices to establish the
lemma for unrooted leaf runs where all positions but the initial and final ones are
below the pivot. In other words, the first move of the unrooted leaf run is used to
enter the subtree of the pivot, the last move is used to exit it, and in between all
moves are below the pivot. In this run all moves but the initial and final ones are
used between leaf configurations below the pivot. Hence, according to the comment
above, we can assume that all the moves used in this unrooted leaf run are adjacency
moves, except possibly the first and last ones.

Recall from section 7.2.1 the bijection f that assigns to every leaf in T a leaf in T ′

and preserves the numbering. Let V1, V2, and V3 be the sets of leaves of T below
x00, x01, and x1, respectively. Let W1, W2, and W3 be the sets of leaves of T ′ below
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V V V W W W1 12 23 3

x x

Fig. 7.7. The trees T and T ′.

x0, x10, and x11, respectively (see Figure 7.7 for an illustration). By definition of
rotation, f(Vi) = Wi for i = 1, 2, 3. We say that two leaves v ∈ Vi and w ∈ Vj are
neighbors if |i−j| ≤ 1. If v, w are neighbors, then the path linking v to w and the path
linking f(v) to f(w) are adjacency similar. In particular, whenever the automaton
can go from v to w in one adjacency move, then it also can do this from f(v) to f(w).
Therefore, a leaf run that does only moves between neighbor nodes is mapped by f
onto a valid leaf run in the tree T ′.

This remark is the key to our proof. The idea is that we will transform the run
from [p, v] to [q, w] into one where all moves below the pivot are between neighbor
leaves. Let the leaf run corresponding to [p, v] ⇒T [q, w] be

[p, v] = [r0, u0], [r1, u1], . . . , [rn, un], [rn+1, un+1] = [q, w].

We will transform it into the following leaf run in T ′:

[p, v] = [r0, u0], [r1, f(u1)], . . . , [rn, f(un)], [rn+1, un+1] = [q, w].

For this construction to work, i.e., for this sequence to be a valid leaf run over T ′,
it is sufficient to verify that the step from [r0, u0] to [r1, u1] can be transformed into
a step from [r0, u0] to [r1, f(u1)] (similarly for the last step) and, furthermore, that
the following property (*) holds: for every 1 ≤ i < n, the leaves ui and ui+1 are
neighbors. We first establish the first property; then we will show that every run can
be transformed into one where (*) holds. (Property (*) may not hold for the original
run.)

First step of the leaf run. The move from [r0, u0] to [r1, u1] is an elementary move,
though perhaps not an adjacency move. Hence, there are three ways of entering the
subtree of the pivot: by going to the leftmost leaf below the pivot (using one of ,

, ), to the rightmost one (using one of , , ), or anywhere (using one of
, , , ). In each of those cases, using the same argument as in Lemma 7.9,

it can easily be shown that the same move goes from [r0, u0] to [r1, f(u1)]. The proof
for the last step of the leaf run is the same.

Proof of (*). According to the remark above, there are three ways to enter the
subtree of the pivot. By time symmetry, there are also three ways to exit this subtree.
This results in nine possibilities.

Case leftmost-leftmost. Consider first the case where the automaton enters in the
leftmost node of V1 and leaves by the same node. This means that u1 = un is the
leftmost leaf below x.

Since the subtree of the pivot is fractal (condition 1 of Definition 10), it contains
a proper subtree that simulates it. Since all subtrees of T are complete binary trees,
we may as well assume that there is a node u on the leftmost branch below x0 whose
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x x

u

Fig. 7.8. Moving the leaf run to V1.

subtree simulates the subtree of x. Since the leftmost node is one of the characteristic
types (from the definition of fractality), the leaf run that went from the leftmost node
below the pivot back to this leftmost node can be assumed to visit only nodes below u
(see Figure 7.8). Such a leaf run satisfies property (*), since it never leaves V1 ∪ V2.

All other cases are solved using the same argument, except for two: when the
automaton enters in the leftmost leaf below the pivot and leaves in the rightmost one,
and when the automaton enters in the rightmost leaf below the pivot and leaves in
the leftmost one. The first of these is treated in the next item, and the other follows
by time symmetry.

Case leftmost-rightmost. This time u1 is the leftmost leaf of V1 and un the right-
most leaf of V3. We are going to construct a similar leaf run satisfying (*).

As an intermediate step, we first construct a similar leaf run satisfying the different
property (#): once a position in V3 is encountered during the run, no position in V1

is visited anymore. Let us prove that we can transform the unrooted leaf run into
one that satisfies (#). Let 1 < i ≤ j < n be positions in the run that witness a
violation of (#): the leaves ui−1 and uj+1 belong to V3, the leaves ui, . . . , uj belong
to V1 ∪ V2, and at least one of ui, . . . , uj belongs to V1. We will replace this violating
subrun with one that does not visit V1. By iterating this operation, we get a run
where property (#) is satisfied.

By condition 1 of Definition 10, we can find on the rightmost branch below x01
a node u such that the subtree of u simulates the subtree of x0. Hence, one can
find leaves u′

i, u
′
j below u such that the characteristic type of ui (resp., uj) in the

subtree of x0 is the same as the characteristic type of u′
i (resp., u′

j) in the subtree
of u, and there is a run from [ri, u

′
i] to [rj , u

′
j ] that uses only leaves below u. By

choice of u, all these leaves are in V2. Therefore, in order to remove the violation
of (#) witnessed by i and j, it remains for us to connect [ri−1, ui−1] with [ri, u

′
i] and

[rj , u
′
j ] with [rj+1, uj+1]. This is a direct application of Lemma 7.9 (and its time- and

space-reverse variants); note that [ri−1, ui−1] → [ri, ui] and hence ui−1Mui for some
adjacency move M ⊆ S(ri−1, ri).

Thanks to the above argument, we may assume that the leaf run satisfies prop-
erty (#). If it already has property (*), then the problem is over. Otherwise, there
is some moment in the leaf run where two consecutive leaf configurations are not
neighboring. Since after visiting V3 we never come back to V1, this can happen at
most once, where the source configuration [ri, ui] is in V1 and the target configuration
[ri+1, ui+1] is in V3. Moreover, the only way to go from a position in V1 to a position
in V3 via an adjacency move is by using . In particular, ui+1 is the leftmost leaf
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in V3. However, if we want to use the move from [ri, ui] and satisfy property (*),
the only place we can go to is the leftmost leaf of V2.

In order to complete the proof, we will construct a new leaf run that satisfies
property (*) and goes from state ri+1 in the leftmost leaf of V2 to state ri in some
leaf u of V2. Then we can reuse the move ri ri+1 to go from u to ui+1, since does
not care about the position of the leaf u within V1 ∪ V2.

The leaf run that goes from ri+1 in the leftmost leaf of V2—call this leaf v—to
ri in some leaf u of V2 is constructed in two stages. In the first stage, we show that
there is some leaf u′ in V2 such that the configuration [rn, u

′] can be reached from
[ri+1, v]. Furthermore, the leaf u′ has at least |Q| leaves to the left and to the right
that belong to V2. In the second stage, we use this latter assumption to go from [rn, u

′]
to state ri without leaving V2. This is done simply by using Lemma 7.4 (observe that
this lemma does not use any assumption on the component). The node where we
arrive is going to be u.

Therefore, in order to complete the proof of Proposition 7.1—and therefore also
the proof of Theorem 2—it remains to find some leaf u′ in V2 such that the configu-
ration [rn, u

′] can be reached from [ri+1, v] and such that u′ has |Q| leaves to the left
and right inside V2. This process is illustrated in Figure 7.9.

rnri+1

x x

y

ri+1 rn

x

y’

ri+1 rn

Fig. 7.9. Transforming the run from ri+1 to rn.

Recall our assumption that the nodes ui+1, . . . , un are all in V2∪V3. By condition 1
of Definition 10, there is a node y on the leftmost branch below x10 whose subtree
simulates the subtree of x1 and has more than |Q| leaves. Using the same proof as for
property (#), we can transform the unrooted leaf run from [ri+1, ui+1] to [rn, un] into
an unrooted leaf run from [ri+1, ui+1] to [rn, u

′
n], where only leaves from V2 or below y

are used, and where u′
n is the rightmost leaf below y. (This run is illustrated in the

middle picture of Figure 7.9.) Let y′ be the node on the leftmost branch below x01
such that the subtree of y′ is the same as the subtree of y. By using the properties
of adjacency moves, one can shift—by |V2| leaves to the left—the run that goes from
[ri+1, ui+1] to [rn, u

′
n] into a run that goes from [ri+1, v] to [rn, u

′], where u′ is the
rightmost leaf below y′, which concludes the proof of Proposition 7.1. Note that in V2,
there are more than |Q| leaves to the left and to the right of u′, by construction of y.
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Abstract. We present a new constant-round protocol for nonmalleable zero-knowledge. Using
this protocol as a subroutine, we obtain a new constant-round protocol for nonmalleable commit-
ments. Our constructions rely on the existence of (standard) collision-resistant hash functions. Pre-
vious constructions either relied on the existence of trapdoor permutations and hash functions that
are collision resistant against subexponential-sized circuits or required a superconstant number of
rounds. Additional results are the first construction of a nonmalleable commitment scheme that is
statistically hiding (with respect to opening) and the first nonmalleable commitments that satisfy
a strict polynomial-time simulation requirement. Our approach differs from the approaches taken
in previous works in that we view nonmalleable zero-knowledge as a building block rather than an
end goal. This gives rise to a modular construction of nonmalleable commitments and results in a
somewhat simpler analysis.

Key words. cryptography, zero-knowledge, nonmalleability, man-in-the-middle, round-complexity,
nonblack-box simulation
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1. Introduction. Consider the execution of two-party protocols in the presence
of an adversary that has full control of the communication channel between the parties.
The adversary has the power to omit, insert, or modify messages at its choice. It also
has full control over the scheduling of the messages. The honest parties are not
necessarily aware of the existence of the adversary and are not allowed to use any
kind of trusted setup (such as a common reference string).

The above kind of attack is often referred to as a man-in-the-middle attack. It
models a natural scenario whose investigation is well motivated. Protocols that retain
their security properties in the face of a man in the middle are said to be nonmal-
leable [14]. Due to the hostile environment in which they operate, the design and
analysis of nonmalleable protocols is a notoriously difficult task. The task becomes
even more challenging if the honest parties are not allowed to use any kind of trusted
setup. Indeed, only a handful of such protocols have been constructed so far.

The rigorous treatment of two-party protocols in the man-in-the-middle setting
has been initiated in the seminal paper by Dolev, Dwork, and Naor [14]. The paper
contains definitions of security for the tasks of nonmalleable commitment and non-
malleable zero-knowledge. It also presents protocols that meet these definitions. The
protocols rely on the existence of one-way functions, and require O(log n) rounds of
interaction, where n ∈ N is a security parameter.
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A more recent result by Barak presents constant-round protocols for nonmalleable
commitment and nonmalleable zero-knowledge [2]. This is achieved by constructing
a coin-tossing protocol that is secure against a man in the middle and then using
the outcome of this protocol to instantiate known constructions for nonmalleable
commitment and zero-knowledge in the common reference string model. The proof
of security makes use of nonblack-box techniques and is highly complex. It relies on
the existence of trapdoor permutations and hash functions that are collision resistant
against subexponential-sized circuits.

In this paper we continue the line of research initiated by the above papers. We
will be interested in constructions of new constant-round protocols for nonmalleable
commitment and nonmalleable zero-knowledge and will not rely on any kind of set-up
assumption.

1.1. Nonmalleable protocols. In accordance with the above discussion, con-
sider a man-in-the-middle adversary A that is simultaneously participating in two
executions of a two-party protocol. These executions are called the left and the right
interaction. Besides controlling the messages that it sends in the left and right inter-
actions, A has control over the scheduling of the messages. In particular, it may delay
the transmission of a message in one interaction until it receives a message (or even
multiple messages) in the other interaction.

P A V

x∈L
=====⇒ x̃∈L

=====⇒

C A R

Com(v)
=====⇒ Com(ṽ)

=====⇒

(a) (b)

Fig. 1. The man-in-the-middle adversary. (a) Interactive proofs. (b) Commitments.

The adversary is trying to take advantage of its participation in the left interaction
in order to violate the security of the protocol executed in the right interaction, where
the exact interpretation of the term “violate the security” depends on the specific
task at hand.

A two-party protocol is said to be nonmalleable if the left interaction does not
“help” the adversary in violating the security of the right interaction. Following the
simulation paradigm [24, 25, 21, 22], this is formalized by defining appropriate “real”
and “idealized” executions.

In the real execution, called the man-in-the-middle execution, the adversary par-
ticipates in both the left and the right interactions. In the idealized execution, called
the stand-alone execution, the adversary is participating only in a single interac-
tion. Security is defined by requiring that the adversary cannot succeed better in the
man-in-the-middle execution than he could have in the stand-alone execution. In the
specific instances of zero-knowledge and string commitment, the definition of security
takes the following forms.

Nonmalleable zero-knowledge [14]. Let 〈P, V 〉 be an interactive proof system. In
the left interaction the adversary A is verifying the validity of a statement x by in-
teracting with an honest prover P . In the right interaction A proves the validity of a
statement x̃ �= x to the honest verifier V (see Figure 1(a)). The objective of the ad-
versary is to convince the verifier in the right interaction that x̃ ∈ L. Nonmalleability
of 〈P, V 〉 is defined by requiring that, for any man-in-the-middle adversary A, there
exists a stand-alone prover S that manages to convince the verifier with essentially
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the same probability as A. The interactive proof 〈P, V 〉 is said to be nonmalleable
zero-knowledge if it is nonmalleable and (stand-alone) zero-knowledge.

Nonmalleable commitments [14]. Let 〈C,R〉 be a commitment scheme. In the
left interaction the adversary A is receiving a commitment to a value v from the
committer C. In the right interaction A is sending a commitment to a value ṽ to
the receiver R (see Figure 1(b)). The objective of the adversary is to succeed in
committing in the right interaction to a value ṽ �= v that satisfies R(v, ṽ) = 1 for some
poly-time computable relation R. Nonmalleability of 〈C,R〉 is defined by requiring
that, for any man-in-the-middle adversary A, there exists a stand-alone committer S
that manages to commit to the related ṽ with essentially the same probability as A.

Schemes that satisfy the above definition are said to be nonmalleable with respect
to commitment. In a different variant, called nonmalleable commitment with respect
to opening [17], the adversary is considered to have succeeded only if it manages to
decommit to a related value ṽ.

1.2. Our contributions. Our main result is the construction of a new constant-
round protocol for nonmalleable ZK. The proof of security relies on the existence of
(ordinary) collision resistant hash functions and does not rely on any set-up assump-
tion.

Theorem 1 (nonmalleable ZK). Suppose that there exists a family of collision-
resistant hash functions. Then there exists a constant-round nonmalleable ZK argu-
ment for every L ∈ NP.

Theorem 1 is established using the notion of simulation extractability. A protocol
is said to be simulation extractable if, for any man-in-the-middle adversary A, there
exists a simulator-extractor that can simulate the views of both the left and the right
interactions for A while outputting a witness for the statement proved by A in the
right interaction. Any protocol that is simulation extractable is also nonmalleable
ZK. The main reason for using simulation extractability (which is more technical in
flavor than nonmalleability) is that it is easier to work with.

Using our new simulation-extractable protocols as a subroutine, we construct
constant-round protocols for nonmalleable string commitment. One of our construc-
tions achieves statistically binding commitments that are nonmalleable with respect
to commitment, and the other achieves statistically hiding commitments that are
nonmalleable with respect to opening.

Theorem 2 (statistically binding nonmalleable commitment). Suppose that there
exists a family of collision-resistant hash functions. Then there exists a constant-
round statistically binding commitment scheme that is nonmalleable with respect to
commitment.

Theorem 3 (statistically hiding nonmalleable commitment). Suppose that there
exists a family of collision-resistant hash functions. Then there exists a constant-round
statistically hiding commitment scheme that is nonmalleable with respect to opening.

Underlying cryptographic assumptions. The main quantitative improvement of
our construction over the constant-round protocols in [2] is in the underlying cryp-
tographic assumption. Our constructions rely on the existence of ordinary collision-
resistant hash functions. The protocols in [2] relied on the existence of both trapdoor
permutations and hash functions that are collision resistant against subexponential-
sized circuits. The constructions in [14] assumed only the existence of one-way func-
tions but had a superconstant number of rounds.

Statistically hiding nonmalleable commitments. Theorem 3 gives the first con-
struction of a nonmalleable commitment scheme that is statistically hiding and that



NEW NONMALLEABLE CRYPTOGRAPHIC PROTOCOLS 705

does not rely on set-up assumptions. We mention that the existence of collision-
resistant hash functions is the weakest assumption currently known to imply constant-
round statistically hiding commitment schemes (even those that are not of the non-
malleable kind) [33, 10].

Strict vs. liberal nonmalleability. The notion of nonmalleability that has been
considered so far in all works allows the stand-alone adversary S to run in expected
polynomial time. A stronger (“tighter”) notion of security, called strict nonmal-
leability [14], requires S to run in strict polynomial time. In the context of strict
nonmalleability, we have the following result.

Theorem 4 (strict nonmalleability). Suppose that there exists a family of collision-
resistant hash functions. Then there exists a constant-round statistically binding com-
mitment scheme that is strictly nonmalleable with respect to commitment.

1.3. Techniques and new ideas. Our protocols rely on nonblack-box tech-
niques used by Barak to obtain the constant-round public-coin ZK argument for
NP [1] (in a setting where no man in the middle is considered). They are closely
related to previous works by Pass [35] and Pass and Rosen [36] that appeared in the
context of bounded-concurrent two-party and multiparty computation; in particular
our protocols rely and further explore the technique from [35] of using message lengths
to obtain nonmalleability. Our techniques are different from the ones used by Barak
in the context of nonmalleable coin tossing [2].

The approach we follow in this work is fundamentally different from the approach
used in [14]. Instead of viewing nonmalleable commitments as a tool for constructing
nonmalleable ZK protocols, we reverse the roles and use nonmalleable ZK protocols
in order to construct nonmalleable commitments. Our approach is also different from
the one taken by [2], where a coin-tossing protocol is used to instantiate constructions
that rely on the existence of a common reference string.

Our approach gives rise to a modular and natural construction of nonmalleable
commitments. This construction emphasizes the role of nonmalleable ZK as a build-
ing block for other nonmalleable cryptographic primitives. In proving the security of
our protocols, we introduce the notion of simulation extractability, which is a conve-
nient form of nonmalleability (in particular, it enables a more modular construction
of proofs). A generalization of simulation extractability, called one-many simula-
tion extractability, has already been found to be useful in constructing commitment
schemes that retain their nonmalleability properties even if executed concurrently an
unbounded (polynomial) number of times [37].

In principle, our definitions of nonmalleability are compatible with the ones ap-
pearing in [14]. However, the presentation is more detailed and somewhat different
(see section 3). Our definitional approach, as well as our construction of nonmalleable
ZK, highlights a distinction between the notions of nonmalleable interactive proofs
and nonmalleable ZK. This distinction was not present in the definitions given in [14].

1.4. Related work. Assuming the existence of a common random string, Di
Crescenzo, Ishai, and Ostrovsky [13], and Di Crescenzo et al. [12] construct non-
malleable commitment schemes. Sahai [38] and De Santis et al. [11] construct a
noninteractive nonmalleable ZK protocol under the same assumption. Fischlin and
Fischlin [17] and Damg̊ard and Groth [9] construct nonmalleable commitments as-
suming the existence of a common reference string. We note that the nonmalleable
commitments constructed in [13] and [17] satisfy nonmalleability only with respect to
opening [17]. Canetti and Fischlin [7] construct a universally composable commitment
assuming a common random string. Universal composability implies nonmalleability.
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However, it is impossible to construct universally composable commitments without
making set-up assumptions [7].

Goldreich and Lindell [20] and Nguyen and Vadhan [34] consider the task of
session-key generation in a setting where the honest parties share a password that
is taken from a relatively small dictionary. Their protocols are designed having a
man-in-the-middle adversary in mind and require only the usage of a “mild” set-up
assumption (namely the existence of a “short” password).

1.5. Future and subsequent work. Our constructions (and even moreso the
previous ones) are quite complex. A natural question is whether they can be simplified.
A somewhat related question is whether nonblack-box techniques are necessary for
achieving constant-round nonmalleable ZK or commitments. Our constructions rely
on the existence of collision-resistant hash functions, whereas the nonconstant-round
construction in [14] relies on the existence of one-way functions. We wonder whether
the collision resistance assumption can be relaxed.

Another interesting question (which has already been addressed in subsequent
work—see below) is whether it is possible to achieve nonmalleability under concur-
rent executions. The techniques used in this paper do not seem to extend to the
(unbounded) concurrent case, and new ideas seem to be required. Advances in that
direction might shed light on the issue of concurrent composition of general secure
protocols.

In subsequent work [37], we show that (a close variant of) the commitments
presented here will retain their nonmalleability even if executed concurrently an un-
bounded (polynomial) number of times. We note that besides using an almost identi-
cal protocol, the proof of this new result heavily relies on a generalization of simulation
extractability (called “one-many” simulation extractability). This notion has proved
itself very useful in the context of nonmalleability, and we believe that it will find
more applications in scenarios where a man-in-the-middle adversary is involved. We
additionally mention that the presentation of some of the results in this version of the
paper incorporate simplification developed by us in [37].

2. Preliminaries.

2.1. Basic notation. We let N denote the set of all integers. For any integer
m ∈ N , denote by [m] the set {1, 2, . . . ,m}. For any x ∈ {0, 1}∗, we let |x| denote the
size of x (i.e., the number of bits used in order to write it). For two machines M,A, we
let MA(x) denote the output of machine M on input x and given oracle access to A.
The term negligible is used for denoting functions that are (asymptotically) smaller
than one over any polynomial. More precisely, a function ν(·) from nonnegative
integers to reals is called negligible if, for every constant c > 0 and all sufficiently
large n, it holds that ν(n) < n−c.

2.2. Witness relations. We recall the definition of a witness relation for an
NP language [18].

Definition 2.1 (witness relation). A witness relation for a language L ∈ NP
is a binary relation RL that is polynomially bounded and polynomial-time recognizable
and characterizes L by

L = {x : ∃y so that (x, y) ∈ RL}.

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL (also denoted
RL(x, y) = 1). We will also let RL(x) denote the set of witnesses for the membership
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x ∈ L, i.e.,

RL(x) = {y : (x, y) ∈ L}.

In the following, we assume a fixed witness relation RL(x, y) for each language L ∈
NP.

2.3. Probabilistic notation. Denote by x
r← X the process of uniformly choos-

ing an element x in a set X. If B(·) is an event depending on the choice of x
r← X,

then Prx←X [B(x)] (alternatively, Prx[B(x)]) denotes the probability that B(x) holds
when x is chosen with probability 1/|X|. Namely,

Prx←X [B(x)] =
∑
x

1

|X| · χ(B(x)),

where χ is an indicator function so that χ(B) = 1 if event B holds and equals zero
otherwise. We denote by Un the uniform distribution over the set {0, 1}n.

2.4. Computational indistinguishability and statistical closeness. The
following definition of (computational) indistinguishability originates in the seminal
paper of Goldwasser and Micali [24].

Let X be a countable set of strings. A probability ensemble indexed by X is a
sequence of random variables indexed by X. Namely, any A = {Ax}x∈X is a random
variable indexed by X.

Definition 2.2 ((computational) indistinguishability). Let X and Y be count-
able sets. Two ensembles {Ax,y}x∈X,y∈Y and {Bx,y}x∈X,y∈Y are said to be computa-
tionally indistinguishable over X if, for every probabilistic “distinguishing” machine
D whose running time is polynomial in its first input, there exists a negligible function
ν(·) so that for every x ∈ X, y ∈ Y

|Pr [D(x, y,Ax,y) = 1] − Pr [D(x, y,Bx,y) = 1]| < ν(|x|);

{Ax,y}x∈X,y∈Y and {Bx,y}x∈X,y∈Y are said to be statistically close over X if the above
condition holds for all (possibly unbounded) machines D.

2.5. Interactive proofs, zero-knowledge, and witness indistinguishabil-
ity. We use the standard definitions of interactive proofs (and interactive Turing
machines) [25, 18] and arguments [6]. Given a pair of interactive Turing machines, P
and V , we denote by 〈P, V 〉(x) the random variable representing the (local) output
of V when interacting with machine P on common input x, when the random input
to each machine is uniformly and independently chosen.

Definition 2.3 (interactive proof system). A pair of interactive machines 〈P, V 〉
is called an interactive proof system for a language L if machine V is polynomial time
and the following two conditions hold with respect to some negligible function ν(·):

• Completeness: For every x ∈ L,

Pr [〈P, V 〉(x) = 1] ≥ 1 − ν(|x|).

• Soundness: For every x �∈ L, and every interactive machine B,

Pr [〈B, V 〉(x) = 1] ≤ ν(|x|).

In case that the soundness condition is required to hold only with respect to a compu-
tationally bounded prover, the pair 〈P, V 〉 is called an interactive argument system.
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Zero-knowledge. An interactive proof is said to be zero-knowledge (ZK) if it yields
nothing beyond the validity of the assertion being proved. This is formalized by re-
quiring that the view of every probabilistic polynomial-time adversary V ∗ interacting
with the honest prover P can be simulated by a probabilistic polynomial-time machine
S (a.k.a. the simulator). The idea behind this definition is that whatever V ∗ might
have learned from interacting with P , he could have actually learned by himself (by
running the simulator S).

The notion of ZK was introduced by Goldwasser, Micali, and Rackoff [25]. To
make ZK robust in the context of protocol composition, Goldreich and Oren [23]
suggested augmenting the definition so that the above requirement also holds with
respect to all z ∈ {0, 1}∗, where both V ∗ and S are allowed to obtain z as auxiliary
input. The verifier’s view of an interaction consists of the common input x, followed
by its random tape and the sequence of prover messages the verifier receives during
the interaction. We denote by viewP

V ∗(x, z) a random variable describing V ∗(z)’s view
of the interaction with P on common input x.

Definition 2.4 (zero-knowledge). Let 〈P, V 〉 be an interactive proof system. We
say that 〈P, V 〉 is zero-knowledge if, for every probabilistic polynomial-time interactive
machine V ∗, there exists a probabilistic polynomial-time algorithm S such that the
ensembles {viewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗ are computationally
indistinguishable over L.

A stronger variant of zero-knowledge is one in which the output of the simulator
is statistically close to the verifier’s view of real interactions. We focus on argument
systems, in which the soundness property is guaranteed to hold only with respect to
polynomial-time provers.

Definition 2.5 (statistical zero-knowledge). Let 〈P, V 〉 be an interactive argu-
ment system. We say that 〈P, V 〉 is statistical zero-knowledge if, for every probabilis-
tic polynomial-time V ∗, there exists a probabilistic polynomial-time S such that the
ensembles {viewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗ are statistically close
over L.

In case that the ensembles {viewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗

are identically distributed, the protocol 〈P, V 〉 is said to be perfect zero-knowledge.

Witness indistinguishability. An interactive proof is said to be witness indistin-
guishable (WI) if the verifier’s view is “computationally independent” (resp., “statis-
tically independent”) of the witness used by the prover for proving the statement (the
notion of statistical WI will be used in section 4.2). In this context, we focus our
attention on languages L ∈ NP with a corresponding witness relation RL. Namely,
we consider interactions in which on common input x the prover is given a witness in
RL(x). By saying that the view is computationally (resp., statistically) independent
of the witness, we mean that, for any two possible NP witnesses that could be used by
the prover to prove the statement x ∈ L, the corresponding views are computationally
(resp., statistically) indistinguishable.

Let V ∗ be a probabilistic polynomial-time adversary interacting with the prover,
and let viewP

V ∗(x,w, z) denote V ∗’s view of an interaction in which the witness used
by the prover is w (where the common input is x and V ∗’s auxiliary input is z).

Definition 2.6 (witness indistinguishability). Let 〈P, V 〉 be an interactive proof
system for a language L ∈ NP. We say that 〈P, V 〉 is witness indistinguishable for RL

if, for every probabilistic polynomial-time interactive machine V ∗ and for every two
sequences {w1

x}x∈L and {w2
x}x∈L such that w1

x, w
2
x ∈ RL(x) for every x ∈ L, the proba-

bility ensembles {viewP

V ∗(x,w1
x)}x∈L,z∈{0,1}∗ and {viewP

V ∗(x,w2
x)}x∈L,z∈{0,1}∗ are com-
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putationally indistinguishable over L.

When the ensembles {viewP

V ∗(x,w1
x)}x∈L,z∈{0,1}∗ and {viewP

V ∗(x,w2
x)}x∈L,z∈{0,1}∗

are statistically close over L, the proof system 〈P, V 〉 is said to be statistically witness
indistinguishable. If the ensembles are identically distributed, the proof system is said
to be witness independent.

2.6. Proofs of knowledge. Informally an interactive proof is a proof of knowl-
edge if the prover convinces the verifier not only of the validity of a statement but
also that it possesses a witness for the statement. This notion is formalized by the
introduction of an machine E, called a knowledge extractor. As the name suggests,
the extractor E is supposed to extract a witness from any malicious prover P ∗ that
succeeds in convincing an honest verifier. More formally, we have the following defi-
nition.

Definition 2.7. Let (P, V ) be an interactive proof system for the language L
with witness relation RL. We say that (P, V ) is a proof of knowledge if there exist a
polynomial q and a probabilistic oracle machine E such that, for every probabilistic
polynomial-time interactive machine P ∗, there exists some negligible function μ(·)
such that, for every x ∈ L and every y, r ∈ {0, 1}∗ such that Pr[〈P ∗

x,y,r, V (x)〉 = 1] > 0,
where P ∗

x,y,r denotes the machine P ∗ with common input fixed to x, auxiliary input
fixed to y, and random tape fixed to r, the following hold:

1. The expected number of steps taken by EP∗
x,y,r is bounded by

q(|x|)
Pr[〈P ∗

x,y,r, V (x)〉 = 1]
,

where EP∗
x,y,r denotes the machine E with oracle access to P ∗

x,y,r.
2. Furthermore,

Pr[〈P ∗
x,y,r, V (x)〉 = 1 ∧ EP∗

x,y,r /∈ RL(x)] ≤ μ(|x|).

The machine E is called a (knowledge) extractor.

We remark that as our definition considers only computationally bounded provers,
we get only a “computationally convincing” notion of a proof of knowledge (a.k.a
argument of knowledge) [6]. In addition, our definition is slightly different from the
definition of [4] in that we require that the expected running time of the extractor
is always bounded by poly(|x|)/p, where p denotes the success probability of P ∗,
whereas [4] allows for some additional slackness in the running time. On the other
hand, whereas [4] requires the extractor to always output a valid witness, we instead
allow the extractor to fail with some negligible probability. We will rely on the
following theorem.

Theorem 2.8 (see [5, 6]). Assume the existence of claw-free permutations. Then
there exists a constant-round public-coin witness independent argument of knowledge
for NP.

Indeed, standard techniques can be used to show that the parallelized version of
the protocol of [5], using perfectly hiding commitments, is an argument of knowledge
(as defined above). As usual, the knowledge extractor E proceeds by feeding new
“challenges” to the prover P ∗ until it gets two accepting transcripts. If the two
accepting challenges contain the same challenge, or if the prover manages to open
up a commitment in two different ways, the extractor outputs fail; otherwise it can
extract a witness.
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2.7. Universal arguments. Universal arguments (introduced in [3] and closely
related to the notion of CS-proofs [30]) are used in order to provide “efficient” proofs
to statements of the form y = (M,x, t), where y is considered to be a true statement
if M is a nondeterministic machine that accepts x within t steps. The corresponding
language and witness relation are denoted LU and RU , respectively, where the pair
((M,x, t), w) is in RU if M (viewed here as a two-input deterministic machine) ac-
cepts the pair (x,w) within t steps. Notice that every language in NP is linear time
reducible to LU . Thus, a proof system for LU allows us to handle all NP-statements.
In fact, a proof system for LU enables us to handle languages that are presumably
“beyond” NP, as the language LU is NE-complete (hence the name universal argu-
ments).1

Definition 2.9 (universal argument). A pair of interactive Turing machines
(P, V ) is called a universal argument system if it satisfies the following properties:

• Efficient verification: There exists a polynomial p such that, for any y =
(M,x, t), the total time spent by the (probabilistic) verifier strategy V, on
common input y, is at most p(|y|). In particular, all messages exchanged in
the protocol have length smaller than p(|y|).

• Completeness by a relatively efficient prover: For every ((M,x, t), w) in RU ,

Pr[(P (w), V )(M,x, t) = 1] = 1.

Furthermore, there exists a polynomial q such that the total time spent by
P (w), on common input (M,x, t), is at most q(TM (x,w)) ≤ q(t), where
TM (x,w) denotes the running time of M on input (x,w).

• Computational soundness: For every polynomial size circuit family {P ∗
n}n∈N ,

and every triplet (M,x, t) ∈ {0, 1}n \ LU ,

Pr[(P ∗
n , V )(M,x, t) = 1] < ν(n),

where ν(·) is a negligible function.
• Weak proof of knowledge: For every positive polynomial p there exist a posi-

tive polynomial p′ and a probabilistic polynomial-time oracle machine E such
that the following holds: for every polynomial-sized circuit family {P ∗

n}n∈N ,
and every sufficiently long y = (M,x, t) ∈ {0, 1}∗, if Pr[(P ∗

n , V )(y) = 1] >
1/p(|y|), then

Pr[∃w = w1, . . . wt ∈ RU (y) so that ∀i ∈ [t], E
P∗

n
r (y, i) = wi] >

1

p′(|y|) ,

where RU (y)
def
= {w : (y, w) ∈ RU} and E

P∗
n

r (·, ·) denotes the function defined
by fixing the random tape of E to equal r and providing the resulting Er with
oracle access to P ∗

n .

2.8. Commitment schemes. Commitment schemes are used to enable a party,
known as the sender, to commit itself to a value while keeping it secret from the re-
ceiver (this property is called hiding). Furthermore, the commitment is binding, and
thus in a later stage, when the commitment is opened, it is guaranteed that the “open-
ing” can yield only a single value determined in the committing phase. Commitment
schemes come in two different flavors, statistically binding and statistically hiding. We
sketch the properties of each one of these flavors. Full definitions can be found in [18].

1Furthermore, every language in NEXP is polynomial-time (but not linear-time) reducible to
LU .
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Statistically binding: In statistically binding commitments, the binding property
holds against unbounded adversaries, while the hiding property holds only
against computationally bounded (nonuniform) adversaries. The statistical-
binding property asserts that, with overwhelming probability over the coin
tosses of the receiver, the transcript of the interaction fully determines the
value committed to by the sender. The computational-hiding property guar-
antees that the commitments to any two different values are computationally
indistinguishable.

Statistically hiding: In statistically hiding commitments, the hiding property holds
against unbounded adversaries, while the binding property holds only against
computationally bounded (nonuniform) adversaries. Loosely speaking, the
statistical-hiding property asserts that commitments to any two different val-
ues are statistically close (i.e., have negligible statistical distance). In case the
statistical distance is 0, the commitments are said to be perfectly hiding. The
computational-binding property guarantees that no polynomial-time machine
is able to open a given commitment in two different ways.

Noninteractive statistically binding commitment schemes can be constructed us-
ing any 1-1 one-way function (see section 4.4.1 of [18]). Allowing some minimal
interaction (in which the receiver first sends a single random initialization message),
statistically binding commitment schemes can be obtained from any one-way func-
tion [31, 26]. We will think of such commitments as a family of noninteractive com-
mitments, where the description of members in the family will be the initialization
message. Perfectly hiding commitment schemes can be constructed from any one-way
permutation [32]. However, constant-round schemes are known to exist only under
stronger assumptions, specifically, assuming the existence of a collection of certified
claw-free functions [19].

3. Nonmalleable protocols. The notion of nonmalleability was introduced by
Dolev, Dwork, and Naor [14]. In this paper we focus on nonmalleability of zero-
knowledge proofs and of string commitment. The definitions are stated in terms
of interactive proofs, though what we actually construct are nonmalleable argument
systems. The adaptation of the definitions to the case of arguments can be obtained
by simply replacing the word “proof” with “argument,” whenever it appears.

In principle, our definitions are compatible with the ones appearing in [14]. How-
ever, the presentation is more detailed and somewhat different (see section 3.4 for a
discussion on the differences between our definition and previous ones).

3.1. Nonmalleable interactive proofs. Let 〈P, V 〉 be an interactive proof.
Consider a scenario where a man-in-the-middle adversary A is simultaneously par-
ticipating in two interactions. These interactions are called the left and the right
interaction. In the left interaction the adversary A is verifying the validity of a state-
ment x by interacting with an honest prover P . In the right interaction A proves the
validity of a statement x̃ to the honest verifier V . The statement x̃ is chosen by A,
possibly depending on the messages it receives in the left interaction.

Besides controlling the messages sent by the verifier in the left interaction and by
the prover in the right interaction, A has control over the scheduling of the messages.
In particular, it may delay the transmission of a message in one interaction until it
receives a message (or even multiple messages) in the other interaction. Figure 2
describes two representative scheduling strategies.

The interactive proof 〈P, V 〉 is said to be nonmalleable if, whenever x �= x̃, the
left interaction does not “help” the adversary in convincing the verifier in the right
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P x A x̃ V

−−−−→ −−−−→←−−−−−−−−→←−−−−−−−−→

P x A x̃ V

−−−−→ −−−−→←−−−−←−−−−−−−−→ −−−−→

Fig. 2. Two scheduling strategies.

interaction.2 Following the simulation paradigm [24, 25, 21], this is formalized by
defining appropriate “real” and “idealized” executions. In the real execution, called
the man-in-the-middle execution, the adversary participates in both the left and the
right interactions with common inputs x and x̃, respectively. In the idealized execu-
tion, called the stand-alone execution, the adversary is playing the role of the prover
in a single interaction with common input x̃. Security is defined by requiring that the
adversary cannot succeed better in the man-in-the middle execution than he could
have done in the stand-alone execution. More formally, we consider the following two
executions.

Man-in-the-middle execution. The man-in-the-middle execution consists of the
scenario described above. The input of P is an instance-witness pair (x,w), and the
input of V is an instance x̃. A receives x and an auxiliary input z. Let mimA

V (x,w, z)
be a random variable describing the output of V in the above experiment when the
random tapes of P,A, and V are uniformly and independently chosen. In case that
x = x̃, the view mimA

V (x,w, z) is defined to be ⊥.
Stand-alone execution. In the stand-alone execution only one interaction takes

place. The stand-alone adversary S interacts directly with the honest verifier V . As
in the man-in-the-middle execution, V receives as input an instance x̃. S receives
instances x, x̃ and auxiliary input z. Let staS

V (x, x̃, z) be a random variable describing
the output of V in the above experiment when the random tapes of S and V are
uniformly and independently chosen.

Definition 3.1 (nonmalleable interactive proof). An interactive proof 〈P, V 〉
for a language L is said to be nonmalleable if, for every probabilistic polynomial-
time man-in-the-middle adversary A, there exist a probabilistic expected polynomial-
time stand-alone prover S and a negligible function ν : N → N such that, for every
(x,w) ∈ L×RL(x), every x̃ ∈ {0, 1}|x| so that x̃ �= x, and every z ∈ {0, 1}∗,

Pr
[
mimA

V (x, x̃, w, z) = 1
]

< Pr
[
staS

V (x, x̃, z) = 1
]

+ ν(|x|).

Nonmalleability with respect to tags. Definition 3.1 rules out the possibility that
the statement proved on the right interaction is identical to the one on the left. Indeed,
if the same protocol is executed on the left and on the right, this kind of attack cannot
be prevented, as the man-in-the-middle adversary can always copy messages between
the two executions (cf. the chess-master problem [14]). Still, in many situations
it might be important to be protected against an attacker that attempts to prove
even the same statement. In order to deal with this problem, one could instead
consider a “tag-based” variant of nonmalleability (see [28] for a definition of tag-based
nonmalleability in the context of encryption).

2Notice that requiring that x �= x̃ is necessary, since otherwise the adversary can succeed in
convincing the verifier in the right interaction by simply forwarding messages back and forth between
the interactions.
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We consider a family of interactive proofs, where each member of the family is
labeled with a tag string tag ∈ {0, 1}m, and t = t(n) is a parameter that potentially
depends on the length of the common input (security parameter) n ∈ N . As before,
we consider a MIM adversary A that is simultaneously participating in a left and a
right interaction. In the left interaction, A is verifying the validity of a statement x by
interacting with a prover Ptag while using a protocol that is labeled with a string tag.
In the right interaction A proves the validity of a statement x̃ to the honest verifier V ˜tag

while using a protocol that is labeled with a string ˜tag. Let mimA

V (tag, ˜tag, x, x̃, w, z)
be a random variable describing the output of V in the man-in-the-middle experiment.
The stand-alone execution is defined as before with the only difference being that, in
addition to their original inputs, the parties also obtain the corresponding tags. Let
staS

V (tag, ˜tag, x, x̃, z) be a random variable describing the output of V in the stand-
alone experiment.

The definition of nonmalleability with respect to tags is essentially identical to
Definition 3.1. The only differences in the definition is that, instead of requiring
nonmalleability (which compares the success probability of mimA

V (tag, ˜tag, x, x̃, w, z)
and staS

V (tag, ˜tag, x, x̃, z)) whenever x �= x̃, we will require nonmalleability whenever
tag �= ˜tag. For convenience, we repeat the definition.

Definition 3.2 (tag-based nonmalleable interactive proofs). A family of in-
teractive proofs 〈Ptag, Vtag〉 for a language L is said to be nonmalleable with respect
to tags of length m if, for every probabilistic polynomial-time man-in-the-middle ad-
versary A, there exist a probabilistic expected polynomial-time stand-alone prover S
and a negligible function ν : N → N such that, for every (x,w) ∈ L×RL(x), every
x̃∈{0, 1}|x|, every tag, ˜tag∈{0, 1}m so that tag �= ˜tag, and every z ∈ {0, 1}∗,

Pr
[
mimA

V (tag, ˜tag, x, x̃, w, z) = 1
]

< Pr
[
staS

V (tag, ˜tag, x, x̃, z) = 1
]

+ ν(|x|).

Tags vs. statements. A nonmalleable interactive proof can be turned into a tag-
based one by simply concatenating the tag to the statement being proved. On the
other hand, an interactive proof that is nonmalleable with respect to tags of length
t(n) = n can be turned into a nonmalleable interactive proof by using the statement
x ∈ {0, 1}n as the tag.

The problem of constructing a tag-based nonmalleable interactive proof is already
nontrivial for tags of length, say t(n) = O(log n) (and even for t(n) = O(1)), but is
still potentially easier than for tags of length n. This opens up the possibility of
reducing the construction of interactive proofs that are nonmalleable with respect to
long tags into interactive proofs that are nonmalleable with respect to shorter tags.
Even though we do not know whether such a reduction is possible in general, our work
follows this path and demonstrates that in specific cases such a reduction is indeed
possible.

Nonmalleability with respect to other protocols. Our definitions of nonmalleability
refer to protocols that are nonmalleable with respect to themselves, since the defini-
tions consider a setting where the same protocol is executed in the left and the right
interaction. In principle, one could consider two different protocols that are executed
on the left and on the right which are nonmalleable with respect to each other. Such
definitions are not considered in this work.

3.2. Nonmalleable zero-knowledge. Nonmalleable ZK proofs are nonmal-
leable interactive proofs that additionally satisfy the ZK property (as stated in Defi-
nition 2.4).
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Definition 3.3 (nonmalleable zero-knowledge). A family {〈Ptag, Vtag〉}tag∈{0,1}∗

of interactive proofs is said to be nonmalleable zero-knowledge if it is both nonmalleable
and zero-knowledge.

3.3. Nonmalleable commitments. Informally, a commitment scheme is non-
malleable if a man-in-the-middle adversary that receives a commitment to a value v
will not be able to “successfully” commit to a related value ṽ. The literature discusses
two different interpretations of the term “success.”

Nonmalleability with respect to commitment [14]. The adversary is said to succeed if
it manages to commit to a related value, even without being able to later de-
commit to this value. This notion makes sense only in the case of statistically
binding commitments.

Nonmalleability with respect to opening [13]. The adversary is said to succeed only
if it is able to both commit and decommit to a related value. This notion
makes sense both in the case of statistically binding and statistically hiding
commitments.

As in the case of nonmalleable zero-knowledge, we formalize the definition by
comparing a man-in-the-middle and a stand-alone execution. Let n ∈ N be a security
parameter. Let 〈C,R〉 be a commitment scheme, and let R ⊆ {0, 1}n × {0, 1}n be
a polynomial-time computable irreflexive relation (i.e., R(v, v) = 0). As before, we
consider man-in-the-middle adversaries that are simultaneously participating in a left
and a right interaction in which a commitment scheme is taking place. The adversary
is said to succeed in mauling a left commitment to a value v if he is able to come up
with a right commitment to a value ṽ such that R(v, ṽ) = 1. Since we cannot rule out
copying, we will be interested only in relations where copying is not considered success,
and we therefore require that the relation R is irreflexive. The man-in-the-middle and
the stand-alone executions are defined as follows.

The man-in-the-middle execution. In the man-in-the-middle execution, the man-
in-the-middle adversary A is simultaneously participating in a left and a right inter-
action. In the left interaction the man-in-the-middle adversary A interacts with C
receiving a commitment to a value v. In the right interaction A interacts with R
attempting to commit to a related value ṽ. Prior to the interaction, the value v is
given to C as local input. A receives an auxiliary input z, which in particular might
contain a priori information about v.3 The success of A is defined using the following
two Boolean random variables:

• mimA
com(R, v, z) = 1 if and only if A produces a valid commitment to ṽ such

that R(v, ṽ) = 1.
• mimA

open(R, v, z) = 1 if and only if A decommits to a value ṽ such that
R(v, ṽ) = 1.

The stand-alone execution. In the stand-alone execution only one interaction
takes place. The stand-alone adversary S interacts directly with R. As in the man-
in-the-middle execution, the value v is chosen prior to the interaction and S receives
some a priori information about v as part of its an auxiliary input z. S first executes
the commitment phase with R. Once the commitment phase has been completed,
S receives the value v and attempts to decommit to a value ṽ. The success of S is
defined using the following two Boolean random variables:

3The original definition by Dolev, Dwork, and Naor [14] accounted for such a priori information
by providing the adversary with the value hist(v), where the function hist(·) is a polynomial-time
computable function.
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• staScom(R, v, z) = 1 if and only if S produces a valid commitment to ṽ such
that R(v, ṽ) = 1.

• staSopen(R, v, z) = 1 if and only if A decommits to a value ṽ such that R(v, ṽ) =
1.

Definition 3.4 (nonmalleable commitment). A commitment scheme 〈C,R〉 is
said to be nonmalleable with respect to commitment if, for every probabilistic polynomial-
time man-in-the-middle adversary A, there exist a probabilistic expected polynomial-
time stand-alone adversary S and a negligible function ν : N → N such that, for every
irreflexive polynomial-time computable relation R⊆{0, 1}n×{0, 1}n, every v∈{0, 1}n,
and every z∈{0, 1}∗, it holds that

Pr
[
mimA

com(R, v, z) = 1
]

< Pr
[
staScom(R, v, z) = 1

]
+ ν(n).

Nonmalleability with respect to opening is defined in the same way while replacing
the random variables mimA

com(R, v, z) and staScom(R, v, z) with mimA
open(R, v, z) and

staSopen(R, v, z).
Content-based vs. tag-based commitments. Similar to the definition of interactive

proofs nonmalleable with respect to statements, the above definitions require only that
the adversary should not be able to commit to a value that is related, but different,
from the value it receives a commitment from. Technically, the above fact can be
seen from the definitions by noting that the relation R, which defines the success of
the adversary, is required to be irreflexive. This means that the adversary is said to
fail if it is able only to produce a commitment to the same value.4 Indeed, if the
same protocol is executed in the left and the right interaction, the adversary can
always copy messages and succeed in committing to the same value on the right as it
receives a commitment from, on the left. To cope with this problem, the definition can
be extended to incorporate tags, in analogy with the definition of interactive proofs
nonmalleable with respect to tags. The extension is straightforward and therefore
omitted.

We note that any commitment scheme that satisfies Definition 3.4 can easily be
transformed into a scheme which is tag-based nonmalleable by prepending the tag
to the value before committing. Conversely, in analogy with nonmalleable interac-
tive proof, commitment schemes that are nonmalleable with respect to tags of length
t(n) = poly(n) can be transformed into commitment schemes nonmalleable with re-
spect to content in a standard way (see, e.g., [14, 28]).

3.4. Comparison with previous definitions. Our definitions of nonmalleabil-
ity essentially follow the original definitions by Dolev, Dwork, and Naor [14]. However,
whereas the definitions by Dolev, Dwork, and Naor quantify the experiments over all
distributions D of inputs for the left and the right interaction (or just left interaction
in the case of commitments), we instead quantify over all possible input values x, x̃ (or
in the case of commitments over all possible input values v for the left interaction).
Our definitions can thus be seen as nonuniform versions of the definitions of [14].

Our definition of nonmalleability with respect to opening is, however, different
from the definition of [13] in the following ways: (1) The definition of [13] does not
take into account possible a priori information that the adversary might have about

4Potentially, one could consider a slightly stronger definition, which also rules out the case when
the adversary is able to construct a different commitment to the same value. Nevertheless, here
we adhere to the standard definition of nonmalleable commitments which allows the adversary to
produce a different commitment to the same value.
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the commitment, while ours (following [14]) does. (2) In our definition of the stand-
alone execution the stand-alone adversary receives the value v after having completed
the commitment phase and is thereafter supposed to decommit to a value related to
v. The definition of [13] does not provide the simulator with this information.

In our view, the “a priori information” requirement is essential in many situations,
and we therefore present a definition that satisfies it. (Consider, for example, a setting
where the value v committed to is determined by a different protocol, which “leaks”
some information about v.) In order to be able to satisfy this stronger requirement
we relax the definition of [13] by allowing the stand-alone adversary to receive the
value v before decommitting.

3.5. Simulation extractability. A central tool in our constructions of nonmal-
leable interactive proofs and commitments is the notion of simulation extractability.
Loosely speaking, an interactive protocol is said to be simulation extractable if, for any
man-in-the-middle adversary A, there exists a probabilistic polynomial-time machine
(called the simulator-extractor) that can simulate both the left and the right interac-
tion for A, while outputting a witness for the statement proved by the adversary in
the right interaction.

Simulation extractability can be thought of as a technical (and stronger) variant of
nonmalleability. The main reason for introducing this notion is that it enables a more
modular analysis (and in particular is easier to work with). At the end of this section,
we argue that any protocol that is simulation extractable is also a nonmalleable zero-
knowledge proof of knowledge. In section 6 we show how to use simulation-extractable
protocols in order to obtain nonmalleable commitments.

Let A be a man-in-the middle adversary that is simultaneously participating in
a left interaction of 〈Ptag, Vtag〉 while acting as verifier and a right interaction of
〈P ˜tag

, V ˜tag
〉 while acting as prover.

Let viewA(x, z,tag) denote the joint view of A(x, z) and the honest verifier V ˜tag

when A is verifying a left proof of the statement x, using identity tag, and proving on
the right a statement x̃ using identity ˜tag. (The view consists of the messages sent
and received by A in both the left and the right interaction and the random coins of
A, and V ˜tag

.)5 Both x̃ and ˜tag are chosen by A. Given a function t = t(n) we use
the notation {·}z,x,tag as shorthand for {·}z∈{0,1}∗,x∈L,tag∈{0,1}t(|x|) .

Definition 3.5 (simulation-extractable protocol). A family {〈Ptag, Vtag〉}tag∈{0,1}∗

of interactive proofs is said to be simulation extractable with tags of length t= t(n) if,
for any man-in-the-middle adversary A, there exists a probabilistic expected poly-time
machine S such that the following hold:

1. The probability ensembles {S1(x, z,tag)}x,z,tag and {viewA(x, z,tag)}x,z,tag

are statistically close over L, where S1(x, z,tag) denotes the first output of
S(x, z,tag).

2. Let x ∈ L, z ∈ {0, 1}∗,tag ∈ {0, 1}t(|x|), and let (view , w) denote the output of
S(x, z,tag) (on input some random tape). Let x̃ be the right-execution state-
ment appearing in view, and let ˜tag denote the right-execution tag. Then, if
the right execution in view is accepting AND tag �= ˜tag, then RL(x̃, w) = 1.

We note that the above definition refers to protocols that are simulation ex-
tractable with respect to themselves. A stronger variant (which is not considered in

5Since the messages sent by A are fully determined given the code of A and the messages it
receives, including them as part of the view is somewhat redundant. The reason we have chosen to
do so is for convenience of presentation.
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the current work) would have required simulation extractability even in the presence
of protocols that do not belong to the family.

We next argue that in order to construct nonmalleable zero-knowledge protocols,
it will be sufficient to come up with a protocol that is simulation extractable. To do
so, we prove that any protocol that is simulation extractable (and has an efficient
prover strategy) is also nonmalleable zero-knowledge (i.e., it satisfies Definitions 3.1
and 3.3).

Proposition 3.6. Let {〈Ptag, Vtag〉}tag∈{0,1}∗ be a family of simulation-extractable
protocols with tags of length t = t(n) (with respect to the language L and the witness
relation RL) with an efficient prover strategy. Then {〈Ptag, Vtag〉}tag∈{0,1}∗ is also a
nonmalleable zero-knowledge (with tags of length t).

Proof. Let {〈Ptag, Vtag〉}tag∈{0,1}∗ be a family of simulation-extractable protocols
with tags of length t with respect to the language L and the witness relation RL. We
argue that {〈Ptag, Vtag〉}tag∈{0,1}∗ is both a nonmalleable interactive proof and stand-
alone zero-knowledge.

Nonmalleability. Assume for contradiction that there exist a probabilistic poly-
time man-in-the-middle adversary A and a polynomial p(n) such that, for infinitely
many n, there exist x, x̃ ∈ {0, 1}n, w, z ∈ {0, 1}∗, and tag, ˜tag∈{0, 1}t(n) such that
(x,w) ∈ L×RL(x), tag �= ˜tag, and

Pr
[
mimA

V (tag, ˜tag, x, x̃, w, z) = 1
]

≥ Pr
[
staS

V (tag, ˜tag, x, x̃, z) = 1
]

+
1

p(n)
.(3.1)

By Definition 3.5, there exists a probabilistic polynomial-time machine S for A
that satisfies the definition’s conditions. We show how to use S in order to construct a
stand-alone prover S for 〈Ptag, Vtag〉. On input tag, ˜tag, x, x̃, z, the machine S runs
the simulator-extractor S on input x, z,tag and obtains the view view and witness w̃.
In the event that the view contains an accepting right execution of the statement x̃
using tag tag, S executes the honest prover strategy Ptag on input x and the witness
w.

It follows directly from the simulation property of S that the probability that
view contains an accepting right-execution proof of x̃ using tag ˜tag is negligibly close
to

pA = Pr
[
mimA

V (tag, ˜tag, x, x̃, w, z) = 1
]
.

Since S always outputs a witness when the right execution is accepting and the tag
of the right execution is different from the tag of the left execution, we conclude that
the success probability of S is also negligibly close to pA (since tag �= ˜tag). This
contradicts (3.1).

Zero-knowledge. Consider any probabilistic poly-time verifier V ∗. Construct the
man-in-the-middle adversary A that internally incorporates V and relays its left ex-
ecution unmodified to V ∗. In the right execution, A simply outputs ⊥. By the
simulation-extractability property of 〈Ptag, Vtag〉, there exists a simulator-extractor
S for A. We describe a simulator S for V ∗.

On input x, z,tag, S runs S on input x, z,tag to obtain (view,w). Given the
view view, S outputs the view of V ∗ in view (which is a subset of view). It follows
directly from the simulation property of S, and from the fact that S outputs an
(efficiently computable) subset of view, that the output of S is indistinguishable from
the view of V ∗ in an honest interaction with a prover.
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4. A simulation-extractable protocol. We now turn to describing our con-
struction of simulation-extractable protocols. At a high level, the construction pro-
ceeds in two steps:

1. For any n ∈ N , construct a family {〈Ptag, Vtag〉}tag∈[2n] of simulation-extractable
arguments with tags of length t(n) = logn + 1.

2. For any n ∈ N , use the family {〈Ptag, Vtag〉}tag∈[2n] to construct a fam-
ily {〈Ptag, Vtag〉}tag∈{0,1}n of simulation-extractable arguments with tags of
length t(n) = 2n.

The construction of the family {〈Ptag, Vtag〉}tag∈[2n] relies on Barak’s nonblack-box
techniques for obtaining the constant-round public-coin ZK argument for NP [1], and
they are very similar in structure to the ZK protocols used by Pass in [35]. We start
by reviewing the ideas underlying Barak’s protocol. We then proceed to presenting
our protocols.

4.1. Barak’s nonblack-box protocol. Barak’s protocol is designed to allow
the simulator access to “trapdoor” information that is not available to the prover in
actual interactions. Given this “trapdoor” information, the simulator will be able to
produce convincing interactions even without possessing a witness for the statement
being proved. The high-level idea is to enable the usage of the verifier’s code as a
“fake” witness in the proof. In the case of the honest verifier V (which merely sends
over random bits), the code consists of the verifier’s random tape. In the case of
a malicious verifier V ∗, the code may also consist of a program that generates the
verifier’s messages (based on previously received messages).

Since the actual prover does not have a priori access to V ’s code in real interac-
tions, this will not harm the soundness of the protocol. The simulator, on the other
hand, will be always able to generate transcripts in which the verifier accepts since,
by definition, it obtains V ∗’s code as input.

Let n ∈ N , and let T : N → N be a “nice” function that satisfies T (n) = nω(1). To
make the above ideas work, Barak’s protocol relies on a “special” NTIME(T (n)) rela-
tion. It also makes use of a witness-indistinguishable universal argument (WIUARG)
[16, 15, 27, 30, 3]. We start by describing a variant of Barak’s relation, which we de-
note by Rsim . Usage of this variant will facilitate the presentation of our ideas in
later stages.

Let {Hn}n be a family of hash functions where a function h ∈ Hn maps {0, 1}∗
to {0, 1}n (cf. [29, 8]), and let Com be a statistically binding commitment scheme
for strings of length n, where, for any α ∈ {0, 1}n, the length of Com(α) is upper
bounded by 2n. The relation Rsim is described in Figure 3.

Instance: A triplet 〈h, c, r〉 ∈ Hn × {0, 1}n × {0, 1}poly(n).

Witness: A program Π ∈ {0, 1}∗, a string y∈{0, 1}∗, and a string s ∈ {0, 1}poly(n).

Relation: Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1 if and only if the following hold:

1. |y| ≤ |r| − n.
2. c = Com(h(Π); s).
3. Π(y) = r within T (n) steps.

Fig. 3. Rsim : a variant of Barak’s relation.

Remark 4.1 (simplifying assumptions). The relation presented in Figure 3 is
slightly oversimplified and will make Barak’s protocol work only when {Hn}n is
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collision resistant against “slightly” superpolynomial-sized circuits [1]. To make it
work assuming collision resistance against polynomial-sized circuits, one should use a
“good” error-correcting code ECC (i.e., with constant distance and with polynomial-
time encoding and decoding) and replace the condition c = Com(h(Π); s) with c =
Com(h(ECC(Π)); s) [3]. We also assume that Com is a one-message commitment
scheme. Such schemes can be constructed based on any 1-1 one-way function. At the
cost of a small complication, the one-message scheme could have been replaced by the
two-message commitment scheme of [31], which can be based on “ordinary” one-way
functions [26].

Let L be any language in NP, let n ∈ N , and let x ∈ {0, 1}n be the common input
for the protocol. The idea is to have the prover claim (in a witness-indistinguishable
fashion) that either x ∈ L, or that 〈h, c, r〉 belongs to the language Lsim that cor-
responds to Rsim , where 〈h, c, r〉 is a triplet that is jointly generated by the prover
and the verifier. As will turn out from the analysis, no polynomial-time prover will
be able to make 〈h, c, r〉 belong to Lsim . The simulator, on the other hand, will use
the verifier’s program in order to make sure that 〈h, c, r〉 is indeed in Lsim (while also
possessing a witness for this fact).

A subtle point to be taken into consideration is that the verifier’s running time
(program size) is not a priori bounded by any specific polynomial (this is because the
adversary verifier might run in arbitrary polynomial time). This imposes a choice
of T (n) = nω(1) in Rsim and implies that the corresponding language does not lie
in NP (but rather in NTIME(nω(1))). Such languages are beyond the scope of
the “traditional” witness-indistinguishable proof systems (which were originally de-
signed to handle “only” NP languages) and will thus require the usage of a witness-
indistinguishable universal argument. Barak’s protocol is described in Figure 4.

Common Input: An instance x ∈ {0, 1}n.

Security parameter: 1n.

Stage 1:

V → P : Send h
r← Hn.

P → V : Send c = Com(0n).

V → P : Send r
r← {0, 1}3n.

Stage 2 (Body of the proof):

P ⇔ V : A WI UARG 〈PUA, VUA〉 proving the OR of the following statements:
1. ∃ w ∈ {0, 1}poly(|x|) so that RL(x,w) = 1.
2. ∃ 〈Π, y, s〉 so that Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1.

Fig. 4. Barak’s ZK argument for NP: 〈PB , VB〉.

Soundness. The idea behind the soundness of 〈PB , VB〉 is that any program Π
(be it efficient or not) has only one output for any given input. This means that Π,

when fed with an input y, has probability 2−3n to “hit” a string r
r← {0, 1}3n. Since

the prover sends c before actually receiving r, and since Rsim imposes |y| ≤ |r| − n =
n, then it is not able to “arrange” that both c = Com(h(Π)) and Π(y) = r with
probability significantly greater than 22n ·2−3n = 2−n (as |c| ≤ 2n). The only way for
a prover to make the honest verifier accept in the WIUARG is thus to use a witness
w for RL. This guarantees that, whenever the verifier is convinced, it is indeed the
case that x ∈ L.
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Zero-knowledge. Let V ∗ be the program of a potentially malicious verifier. The
ZK property of 〈PB , VB〉 follows by letting the simulator set Π = V ∗ and y = c. Since
|c| ≤ 2n ≤ |r| − n, and since, by definition, V ∗(c) always equals r, the simulator can
set c = Com(h(V ∗); s) in Stage 1 and use the triplet 〈V ∗, c, s〉 as a witness for Rsim in
the WIUARG. This enables the simulator to produce convincing interactions, even
without knowing a valid witness for x ∈ L. The ZK property then follows (with some
work) from the hiding property of Com and the WI property of 〈PUA, VUA〉.

4.2. A “special-purpose” universal argument. Before we proceed with the
construction of our new protocol, we will need to present a universal argument that is
specially tailored for our purposes. The main distinguishing features of this universal
argument, which we call the special-purpose argument, are the following: (1) it is
statistically witness indistinguishable; and (2) it will enable us to prove that our
protocols satisfy the proof of knowledge property of Definition 2.7.6

Let Com be a statistically hiding commitment scheme for strings of length n.
Let Rsim be a variant of the relation Rsim (from Figure 3) in which the statistically
binding commitment Com is replaced with the commitment Com, let 〈PsWI , VsWI 〉
be a statistical witness-indistinguishable argument of knowledge and let 〈PUA, VUA〉
be a four-message, public-coin universal argument where the length of the messages is
upper bounded by n.7 The special-purpose UARG, which we denote by 〈PsUA, VsUA〉,
handles statements of the form (x, 〈h, c1, c2, r1, r2〉), where the triplets 〈h, c1, r1〉 and
〈h, c2, r2〉 correspond to instances for Rsim . The protocol 〈PsUA, VsUA〉 is described
in Figure 5.

Parameters: Security parameter 1n.

Common Input: x ∈ {0, 1}n, 〈h, c1, c2, r1, r2〉, where, for i ∈ {1, 2}, 〈h, ci, ri〉 is an instance
for Rsim .

Stage 1 (Encrypted UARG):

V → P : Send α
r← {0, 1}n.

P → V : Send β̂ = Com(0n).

V → P : Send γ
r← {0, 1}n.

P → V : Send δ̂ = Com(0n).

Stage 2 (Body of the proof):

P ↔ V : A statistical WIAOK 〈PsWI , VsWI 〉 proving the OR of the following state-
ments:

1. ∃ w ∈ {0, 1}poly(|x|) so that RL(x,w) = 1.
2. ∃ 〈β, δ, s1, s2〉 so that the following hold:

• β̂ = Com(β; s1).

• δ̂ = Com(δ; s2).
• (α, β, γ, δ) is an accepting transcript for 〈PUA, VUA〉 proving the following

statement:
– ∃ 〈i,Π, y, s〉 so that Rsim (〈h, ci, ri〉, 〈Π, y, s〉)=1.

Fig. 5. A special-purpose universal argument 〈PsUA, VsUA〉.

6The “weak” proof of knowledge property of a universal argument (as defined in [3]) is not
sufficient for our purposes. Specifically, while in a weak proof of knowledge it is required that the
extractor succeeds with probability that is polynomially related to the success probability of the
prover, in our proof of security we will make use of an extractor that succeeds with probability
negligibly close to the success probability of the prover.

7Both statistical witness-indistinguishable arguments of knowledge and four-message, public-
coin, universal arguments can be constructed assuming a family Hn of standard collision-resistant
hash functions (cf. [18] and [27, 30, 3]).
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4.3. A family of 2n protocols. We next present {〈Ptag, Vtag〉}tag∈[2n], a family
of protocols with tags of length t(n) = log n + 1.8 The protocols are based on
〈PB , VB〉, and are a variant of the ZK protocols introduced by Pass [35]. There
are two key differences between 〈Ptag, Vtag〉 and 〈PB , VB〉: in the 〈Ptag, Vtag〉 protocol
(1) the prover (simulator) is given two opportunities to guess the verifier’s “next
message,” and (2) the lengths of the verifier’s “next messages” depend on the tag of
the protocol. We mention that the idea of using a multiple slot version of 〈PB , VB〉
already appeared in [36, 35], and the message-length technique appeared in [35].
However, our protocols {〈Ptag, Vtag〉}tag∈[2n] differ from the protocol of [35] in two
aspects: our protocols are required to satisfy (1) a statistical secrecy property and
(2) a proof of knowledge property. Towards this end, we replace the statistically
binding commitments, Com, used in the presentation of 〈PB , VB〉 with statistically
hiding commitments and replace the use of a WIUARG with the use of a “special-
purpose” UARG. Let Com be a statistically hiding commitment scheme for strings
of length n, where, for any α ∈ {0, 1}n, the length of Com(α) is upper bounded by
2n. Let Rsim be the statistical variant of the relation Rsim , and let 〈PsUA, VsUA〉 be
the special-purpose universal argument (both Rsim and 〈PsUA, VsUA〉 are described
in section 4.2). Protocol 〈Ptag, Vtag〉 is described in Figure 6.

Common Input: An instance x ∈ {0, 1}n.

Parameters: Security parameter 1n, length parameter �(n).

Tag String: tag ∈ [2n].

Stage 0 (Setup):

V → P : Send h
r← Hn.

Stage 1 (Slot 1):

P → V : Send c1 = Com(0n).

V → P : Send r1
r← {0, 1}tag·�(n).

Stage 1 (Slot 2):

P → V : Send c2 = Com(0n).

V → P : Send r2
r← {0, 1}(2n+1−tag)·�(n).

Stage 2 (Body of the proof):

P ⇔ V : A special-purpose UARG 〈PsUA, VsUA〉 proving the OR of the following
statements:

1. ∃ w ∈ {0, 1}poly(|x|) so that RL(x,w) = 1.
2. ∃ 〈Π, y, s〉 so that RSim(〈h, c1, r1〉, 〈Π, y, s〉)=1.
3. ∃ 〈Π, y, s〉 so that RSim(〈h, c2, r2〉, 〈Π, y, s〉)=1.

Fig. 6. Protocol 〈Ptag, Vtag〉.

Note that the only difference between two protocols 〈Ptag, Vtag〉 and 〈P ˜tag, V ˜tag〉 is
the length of the verifier’s “next messages”: in fact, the length of those messages in
〈Ptag, Vtag〉 is a parameter that depends on tag (as well as on the length parameter
�(n)). This property will be crucial for the analysis of these protocols in the man-in-
the-middle setting.

Using similar arguments to the ones used for 〈PB , VB〉, it can be shown that

8A closer look at the construction will reveal that it will in fact work for any t(n) = O(logn).
The choice of t(n) = logn+ 1 is simply made for the sake of concreteness (as in our constructions it
is the case that tag ∈ [2n]).
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〈Ptag, Vtag〉 is computationally sound. The main difference to be taken into consider-
ation is the existence of multiple slots in Stage 1 (see Lemma A.1 for a proof of an
even stronger statement).

The ZK property of 〈Ptag, Vtag〉 is proved exactly as in the case of 〈PB , VB〉 by
letting the simulator pick either i = 1 or i = 2 and using 〈V ∗, ci, si〉 as the witness
for 〈h, ci, ri〉 ∈ Lsim (where Lsim is the language that corresponds to Rsim). Since
for every tag ∈ [m], |ri| − |ci| ≥ �(n) − 2n, we have that, as long as �(n) ≥ 3n, the
protocol 〈Ptag, Vtag〉 is indeed ZK.

We wish to highlight some useful properties of 〈Ptag, Vtag〉. These properties will
turn out to be relevant when dealing with a man in the middle.
Freedom in the choice of slot: The simulator described above has the freedom to

choose which i ∈ {1, 2} it will use in order to satisfy the relation Rsim . In
particular, for the simulation to succeed, it is sufficient that 〈h, ci, ri〉 ∈ Lsim

for some i ∈ {1, 2}.
Using a longer y in the simulation: The stand-alone analysis of 〈Ptag, Vtag〉 requires

only �(n) ≥ 3n. Allowing larger values of �(n) opens the possibility of using
a longer y in the simulation. This will turn out to be useful if the verifier is
allowed to receive “outside” messages that do not belong to the protocol (as
occurs in the man-in-the-middle setting).

Statistical secrecy: The output of the simulator described above is statistically close
to real interactions (whereas the security guaranteed in 〈PB , PB〉 is only com-
putational). A related property will turn out to be crucial for the use of
〈Ptag, Vtag〉 as a subroutine in higher-level applications (such as nonmalleable
commitments).

Proof of knowledge: 〈Ptag, Vtag〉 is a proof of knowledge. That is, for any prover P ∗

and for any x ∈ {0, 1}n, if P ∗ convinces the honest verifier V that x ∈ L
with nonnegligible probability, then one can extract a witness w that satisfies
RL(x,w) = 1 in (expected) polynomial time.

4.4. A family of 2n protocols. The protocol family {〈Ptag, Vtag〉}tag∈[2n] is
replied upon to show how to construct a family {〈Ptag, Vtag〉}tag∈{0,1}n with tags of
length t(n) = n. The protocols are constant round and involve n parallel executions
of 〈Ptag, Vtag〉, with appropriately chosen tags. This new family of protocols is denoted
{〈Ptag, Vtag〉}tag∈{0,1}n and is described in Figure 7.

Common Input: An instance x ∈ {0, 1}n.

Parameters: Security parameter 1n, length parameter �(n).

Tag String: tag ∈ {0, 1}n. Let tag = tag1, . . . ,tagn.

The protocol:

P ↔ V : For all i ∈ {1, . . . , n} (in parallel) do the following:
1. Set tagi = (i,tagi).
2. Run 〈Ptagi , Vtagi〉 with common input x and length parameter �(n).

V : Accept if and only if all runs are accepting.

Fig. 7. Protocol 〈Ptag, Vtag〉.

Notice that 〈Ptag, Vtag〉 has a constant number of rounds (since each 〈Ptagi
, Vtagi

〉
is constant round). Also notice that, for i ∈ [n], the length of tagi = (i,tagi) is

|i| + |tagi| = log n + 1 = log(2n).
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Viewing (i,tagi) as elements in [2n] we infer that the length of verifier messages in
〈Ptagi

, Vtagi
〉 is upper bounded by 2n�(n). Hence, as long as �(n) = poly(n), the length

of verifier messages in 〈Ptag, Vtag〉 is 2n2�(n) = poly(n).

We now turn to showing that, for any tag ∈ 2n, the protocol 〈Ptag, Vtag〉 is an
interactive argument. In fact, what we show is a stronger statement. Namely, the pro-
tocols 〈Ptag, Vtag〉 are proofs (actually arguments) of knowledge (as in Definition 2.7).
For simplicity of exposition, we will show how to prove the above assuming a family of
hash functions that is collision resistant against T (n) = nω(1)-sized circuits. As men-
tioned in Remark 4.1, by slightly modifying Rsim , one can prove the same statement
under the more standard assumption of collision resistance against polynomial-sized
circuits.

Proposition 4.2 (argument of knowledge). Let 〈PsWI , VsWI 〉 and 〈PUA, VUA〉 be
the protocols used in the construction of 〈PsUA, VsUA〉. Suppose that {Hn}n is collision
resistant for T (n)-sized circuits, that Com is statistically hiding, that 〈PsWI , VsWI 〉
is a statistical witness-indistinguishable argument of knowledge, and that 〈PUA, VUA〉
is a universal argument. Then, for any tag ∈ {0, 1}n, 〈Ptag, Vtag〉 is an interactive
argument of knowledge.

Similar arguments to the ones used to prove Proposition 4.2 have already appeared
in the works of Barak [1] and Barak and Goldreich [3]. While our proof builds on
these arguments, it is somewhat more involved. For the sake of completeness, the full
proof appears in the appendix.

5. Proving simulation extractability. Our central technical lemma states
that the family of protocols {〈Ptag, Vtag〉}tag∈{0,1}n is simulation extractable. As
shown in Proposition 3.6 this implies that these protocols are also nonmalleable zero-
knowledge.

Lemma 5.1 (simulation extractability). Suppose that Com are statistically hid-
ing, that {Hn}n is a family of collision-resistant hash functions, that 〈PUA, VUA〉 is a
special-purpose WIUARG, and that �(n) ≥ 2n2 + 2n. Then {〈Ptag, Vtag〉}tag∈{0,1}n

is simulation extractable.

The proof of Lemma 5.1 is fairly complex. To keep things manageable, we first give
an overview of the proof, describing the key ideas used for establishing the simulation
extractability of the family {〈Ptag, Vtag〉}tag∈[2n]. This is followed by a full proof for
the case of {〈Ptag, Vtag〉}tag∈{0,1}n .

5.1. Proof overview. Consider a man-in-the-middle adversary A that is playing
the role of the verifier of 〈Ptag, Vtag〉 in the left interaction while simultaneously playing
the role of the prover of 〈P ˜tag, V ˜tag〉 in the right interaction. Recall that in order to
prove simulation extractability we have to show that, for any such A, there exists
a combined simulator-extractor S = (SIM,EXT) that is able to simulate both the
left and the right interactions for A while simultaneously extracting a witness to the
statement x̃ proved in the right interaction.

Towards this goal, we will construct a simulator S that is able to “internally”
generate Ptag messages for the left interaction of A, even if the messages in the right
interaction are forwarded to A from an “external” verifier V ˜tag. The simulator S is
almost identical to the simulator of [35] and exploits the difference in message lengths
between the protocols 〈Ptag, Vtag〉 and 〈P ˜tag, V ˜tag〉. As the analysis will demonstrate,
the left view produced by the simulator S is statistically indistinguishable from A’s
actual interactions with an honest left prover Ptag. Furthermore, we show the follow-
ing:
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1. It will be possible to construct a procedure SIM that faithfully simulates A’s
view in a man-in-the-middle execution. To do so, we will honestly play the
role of V ˜tag in the right interaction and use S to simulate A’s left interaction
with Ptag (pretending that the messages from the right interaction came from
an external V ˜tag).

2. It will be possible to construct a procedure EXT that extracts witnesses for
the statements x̃ proved in the right interactions of the views generated by
the above SIM. To do so, we will use S to transform A into a stand-alone
prover P ∗

˜tag
for the statement x̃. This will be done by having P ∗

˜tag
internally

emulate A’s execution while forwarding A’s messages to an external honest
verifier V ˜tag and using S to simulate A’s left interaction with Ptag. We can
then invoke the knowledge extractor that is guaranteed by the (stand-alone)
proof of knowledge property of 〈P ˜tag, V ˜tag〉 and obtain a witness for x̃ ∈ L.

It is important to have both SIM and EXT use the same simulator program S (with
same random coins) in their respective executions. Otherwise, we are not guaranteed
that the statement x̃ appearing in the output of SIM is the same one EXT extracts a
witness from.9

The execution of S (with one specific scheduling of messages) is depicted in Fig-
ure 8. In order to differentiate between the left and right interactions, messages m
in the right interaction are labeled as m̃. Stage 2 messages in the left and right
interactions are denoted u and ũ, respectively.

S V ˜tag

Ptag A V ˜tag

h̃←−−−−−−−−−−−−−h←−−−−
c1−−−−→ c̃1−−−−−−−−−−−−−→

r̃1←−−−−−−−−−−−−−r1←−−−−
c2−−−−→ c̃2−−−−−−−−−−−−−→

r̃2←−−−−−−−−−−−−−r2←−−−−
u⇐==⇒ ũ⇐===========⇒

Fig. 8. The simulator S.

The main hurdle in implementing S is in making the simulation of the left inter-
action work. The problem is that the actual code of the verifier whose view we are
simulating is only partially available to S. This is because the messages sent by A in
the left interaction also depend on the messages A receives in the right interaction.
These messages are sent by an “external” V ˜tag, and V ˜tag’s code (randomness) is not
available to S.

Technically speaking, the problem is implied by the fact that the values of the ri’s
do not necessarily depend only on the corresponding ci but rather may also depend
on the “external” right messages r̃i. Thus, setting Π = A and y = ci in the simulation

9The statement x̃ will remain unchanged because x̃ occurs prior to any message in the right
interaction (and hence does not depend on the external messages received by P ∗

˜tag
).
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(as done in section 4.3) will not be sufficient, since in some cases it is simply not true
that ri = A(ci).

Intuitively, the most difficult case to handle is the one in which r̃1 is contained
in Slot 1 of 〈Ptag, Vtag〉 and r̃2 is contained in Slot 2 of 〈Ptag, Vtag〉 (as in Figure 8).
In this case ri = A(ci, r̃i), and so ri = A(ci) does not hold for either i ∈ {1, 2}. As
a consequence, the simulator will not be able to produce views of convincing Stage 2
interactions with A. In order to overcome the difficulty, we will use the fact that, for
a given instance 〈h, ci, ri〉, the string ci is short enough to be “augmented” by r̃i while
still satisfying the relation Rsim .

Specifically, as long as |ci| + |r̃i|≤ |ri|− n, the relation Rsim can be satisfied by
setting y=(ci, r̃i). This guarantees that indeed Π(y) = ri. The crux of the argument
lies in the following fact.

Fact 5.2. If tag �= ˜tag, then there exists i ∈ {1, 2} so that |r̃i| ≤ |ri| − �(n).
By setting y = (ci, r̃i) for the appropriate i, the simulator is thus always able to

satisfy Rsim for some i ∈ {1, 2}. This is because the “auxiliary” string y used in order
to enable the prediction of ri is short enough to pass the inspection at condition 1 (see
Figure 3) of Rsim (i.e., |y| = |ci| + |r̃i| ≤ |ri| − n).10 Once Rsim can be satisfied, the
simulator is able to produce views of convincing interactions that are computationally
indistinguishable from real left interactions.11

The extension of the above analysis to the case of 〈Ptag, Vtag〉 has to take several
new factors into consideration. First, each execution of 〈Ptag, Vtag〉 consists of n
parallel executions of 〈Ptag, Vtag〉 (and not only one). This imposes the constraint
�(n) ≥ 2n2 + 2n and requires a careful specification of the way in which the left
simulation procedure handles the verifier challenges in 〈Ptag, Vtag〉. Second, and more
importantly, the simulation procedure will not be able to handle a case in which
〈P ˜tag

, Vtag〉 messages of the right interaction are forwarded from an external verifier
V ˜tag

(because these messages are too long for the simulation to work).
While this does not seem to pose a problem for the SIM procedure, it suddenly

becomes unclear how to construct a stand-alone prover P ∗
˜tag

for the EXT procedure
(since this involves forwarding messages from V ˜tag

). The way around this difficulty
will be to construct a stand-alone prover P ∗

˜tag
for a single subprotocol 〈P ˜tag, V ˜tag〉

instead. This will guarantee that the only messages that end up being forwarded
are sent by an external verifier V ˜tag, whose messages are short enough to make the
simulation work. Once such a P ∗

˜tag
is constructed it is possible to use the knowledge

extractor for 〈P ˜tag, V ˜tag〉 in order to obtain a witness for x̃.

5.2. Many-to-one simulation extractabiity. We now proceed with the proof
of Lemma 5.1. To establish the simulation extractability of 〈Ptag, Vtag〉, we first con-
sider what happens when a man-in-the-middle adversary is simultaneously involved
in the verification of many different (parallel) executions of 〈Ptag, Vtag〉 on the left
while proving a single interaction 〈P ˜tag, V ˜tag〉 on the right. As it turns out, as long
as the number of left executions is bounded in advance, we can actually guarantee
simulation extractability even in this scenario.

10This follows from the fact that �(n) ≥ 3n and |ci| = 2n.
11In the above discussion we have been implicitly assuming that h̃, ũ are not contained in the

two slots of 〈Ptag, Vtag〉 (where h̃ denotes the hash function in the right interaction and ũ denotes

the sequence of messages sent in the right WIUARG). The case in which h̃, ũ are contained in the
slots can be handled by setting �(n) ≥ 4n and by assuming that both |h̃| and the total length of the
messages sent by the verifier in the WIUARG are at most n. We mention that the latter assumption
is reasonable and is indeed satisfied by known protocols (e.g., the WIUARG of [3]).
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For any tag = (tag1, . . . , tagn) ∈ [2n]n we consider a left interaction in which the
protocols 〈Ptag1

, Vtag1
〉, . . . , 〈Ptagn

, Vtagn
〉 are executed in parallel with common input

x ∈ {0, 1}n and a right interaction in which 〈P ˜tag, V ˜tag〉 is executed with common input
x̃ ∈ {0, 1}n. The strings ˜tag and x̃ are chosen adaptively by the man-in-the-middle
adversary A. The witness used by the prover in the left interaction is denoted by w,
and the auxiliary input used by A is denoted by z.

Proposition 5.3. Let A be a MIM adversary as above, and suppose that �(n)≥
2n2+ 2n. Then there exists a probabilistic expected polynomial time S such that the
following conditions hold:

1. The probability ensembles {S1(x, z,tag)}x,z,tag and {viewA(x, z,tag)}x,z,tag

are statistically close over L, where S1(x, z,tag) denotes the first output of
S(x, z,tag).

2. Let x ∈ L, z ∈ {0, 1}∗,tag ∈ {0, 1}t(|x|), and let (view , w) denote the output
of S(x, z,tag) (on input some random tape). Let x̃ be the right-execution
statement appearing in view, and let ˜tag denote the right-execution tag. Then,
if the right execution in view is accepting AND tagj �= ˜tag for all j ∈ [n],
then RL(x̃, w) = 1.

Proof. As discussed in section 5.1, we construct a “many-to-one” simulator S that
internally generates a left view of 〈Ptag, Vtag〉 = (〈Ptag1

, Vtag1
〉, . . . , 〈Ptagn

, Vtagn
〉) for

A while forwarding messages from the right interaction to an external honest verifier
V ˜tag. This simulator is essentially identical to the simulator of [35].12 We then show
how to use S to construct the procedures (SIM,EXT).

5.2.1. The many-to-one simulator. The many-to-one simulator S invokes
A as a subroutine. It attempts to generate views of the left and right interactions
that are indistinguishable from A’s view in real interactions. Messages in the right
interaction are forwarded by S to an “external” honest verifier V ˜tag for 〈P ˜tag, V ˜tag〉,
whose replies are then fed back to A. Messages in the left interaction are handled by n
“subsimulators” S1, . . . , Sn, where each Sj is responsible for generating the messages
of the subprotocol 〈Ptagj

, Vtagj
〉. The execution of the simulator is depicted in Figure 9

(for simplicity, we ignore the messages h1, . . . , hn, u1, . . . , un and h̃, ũ).

S V ˜tag

Ptag A V ˜tag
S1 Sj Sn

c11→ · · · cj1→ · · · cn1→ c̃1−−−−−−−−−−−−−−−→
r̃1←−−−−−−−−−−−−−−−r1

1← · · · rj1← · · · rn1←
c12→ · · · cj2→ · · · cn2→ c̃2−−−−−−−−−−−−−−−→

r̃2←−−−−−−−−−−−−−−−r1
2← · · · rj2← · · · rn2←

Fig. 9. The “many-to-one” simulator S.

The specific actions of a subsimulator Sj depend on the scheduling of Stage 1
messages as decided by A. The scheduling of left and right messages is divided into

12In fact, the simulator presented here is somewhat simplified in that we consider only n parallel
executions of 〈Ptag, Vtag〉, whereas [35] also shows a simulator for n concurrent executions of the
protocols.
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P A V
c11→· · · c

n
1→

r1
1←· · · r

n
1←

c12→· · · c
n
2→ c̃1−−−−→

r̃1←−−−−
c̃2−−−−→
r̃2←−−−−r1

2←· · · r
n
2←

P A V
c11→· · · c

n
1→ c̃1−−−−→

r̃1←−−−−
c̃2−−−−→
r̃2←−−−−r1

1←· · · r
n
1←

c12→· · · c
n
2→

r1
2←· · · r

n
2←

(a) (b)

P A V
c11→· · · c

n
1→ c̃1−−−−→

r̃1←−−−−
r1
1←· · · r

n
1←

c12→· · · c
n
2→ c̃2−−−−→

r̃2←−−−−r1
2←· · · r

n
2←

(c)

Fig. 10. Three “representative” schedulings.

three separate cases which are depicted in Figure 10. In all three cases we make the
simplifying assumption that h̃ is scheduled in the right interaction before h1 . . . , hn

are scheduled in the left interaction. We also assume that the 〈PsUA, VsUA〉 messages
ũ in the right interaction are scheduled after the 〈PsUA, VsUA〉 messages u1, . . . , un in
the left interaction. We later argue how these assumptions can be removed.

Let Aj be a program that acts exactly like A, but for any i ∈ {1, 2} instead of

outputting r1
i , . . . , r

n
i it outputs only rji . Given a string α ∈ {0, 1}∗, let A(α, ·) denote

the program obtained by “hardwiring” α into it (i.e., A(α, ·) evaluated on β equals
A(α, β)). We now describe Sj ’s actions in each of the three cases.

None of r̃1, r̃2 is contained in Slot 1 of 〈Ptag, Vtag〉: Assume for simplicity that
c̃1, r̃1, c̃2, r̃2 are all contained in Slot 2 of 〈Ptag, Vtag〉 (Figure 10(a)). The
simulator Sj sets c1 = Com(h(Π1); s1) and c2 = Com(0n; s2), where Π1 =

Aj(x, ·). It then sets the triplet 〈Π1, (c
1
1, . . . , c

n
1 ), s1〉 as witness for 〈hj , cj1, r

j
1〉 ∈

Lsim .
None of r̃1, r̃2 is contained in Slot 2 of 〈Ptag, Vtag〉: Assume for simplicity that

c̃1, r̃1, c̃2, r̃2 are all contained in Slot 1 of 〈Ptag, Vtag〉 (Figure 10(b)). The
simulator Sj sets c1 = Com(0n; s1) and c2 = Com(h(Π2); s2), where Π2 =
Aj(x, c

1
1, . . . , c

n
1 , r̃1, r̃2, ·). It then sets the triplet 〈Π2, (c

1
2, . . . , c

n
2 ), s2〉 as wit-

ness for 〈hj , cj2, r
j
2〉 ∈ Lsim .

r̃1 is contained in Slot 1 and r̃2 is contained in Slot 2 of 〈Ptag, Vtag〉: In this
case c̃1, r̃1 are both contained in Slot 1 of 〈Ptag, Vtag〉, and c̃2, r̃2 are both
contained in Slot 2 of 〈Ptag, Vtag〉 (Figure 10(c)). The simulator Sj sets
c1 = Com(h(Π1); s1) and c2 = Com(h(Π2); s2), where Π1 = Aj(x, ·) and
Π2 = Aj(x, c

1
1, . . . , c

n
1 , r̃1, ·). Then the following hold:

• If tagj > ˜tag, the simulator sets 〈Π1, (c
1
1, . . . , c

n
1 , r̃1), s1〉 as witness for
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〈hj , cj1, r
j
1〉 ∈ Lsim .

• If tagj < ˜tag, the simulator sets 〈Π2, (c
1
2, . . . , c

n
2 , r̃2), s2〉 as witness for

〈hj , cj2, r
j
2〉 ∈ Lsim .

In all cases, combining the messages together results in a Stage 1 transcript τ j1 =

〈hj , cj1, r
j
1, c

j
2, r

j
2〉. By definition of 〈Ptagj

, Vtagj
〉, the transcript τ j1 induces a Stage 2

special-purpose WIUARG with common input (x, 〈hj , cj1, r
j
1〉, 〈hj , cj2, r

j
2〉). The sub-

simulator Sj now follows the prescribed prover strategy PsUA and produces a Stage 2

transcript τ j2 for 〈Ptagj
, Vtagj

〉.
Remark 5.4 (handling h̃ and ũ). To handle the case in which either h̃ or ũ is

contained in one of the slots, we set �(n) ≥ 2n2+2n and let the simulator append either
h̃ or ũ to the auxiliary string y (whenever necessary). This will guarantee that the
program committed to by the simulator indeed outputs the corresponding “challenge”
rji , when fed with y as input. The crucial point is that, even after appending h̃ or ũ to

y, it will still be the case that |y| ≤ |rji | − n. This just follows from the fact that the

total length of h̃ and the messages ũ sent in 〈PsUA, VsUA〉 are upper bounded by, say,
n and that the gap between |rji | and the “original” |y| (i.e., before appending h̃ or ũ to
it) is guaranteed to be at least n (this follows from the requirement �(n) ≥ 2n2 +2n).

Output of S. To generate its output, which consists of a verifier view of a 〈Ptag, Vtag〉
interaction, S combines all the views generated by the Sj ’s. Specifically, letting

σj
1 = (cj1, c

j
2) be the verifier’s view of τ j1 , and σj

2 be the verifier’s view of τ j2 , the
output of S consists of (σ1, σ2) = ((σ1

1 , . . . , σ
n
1 ), (σ1

2 , . . . , σ
n
2 )).

5.2.2. The simulator-extractor. Using S, we construct the simulator-extractor
S = (SIM,EXT). We start with the machine SIM. In the right interaction SIM’s goal is
to generate messages by a verifier V ˜tag. This part of the simulation is quite straightfor-
ward and is performed by simply playing the role of an honest verifier in the execution
of the protocol (with the exception of cases in which tagj = ˜tag for some j ∈ [n]—see
below for details). In the left interaction, on the other hand, SIM is supposed to act
as a prover Ptag, and this is where S is invoked.

The machine SIM. On input (x, z,tag), and given a man-in-the-middle adversary
A, SIM starts by constructing a man-in-the-middle adversary A′ that acts as follows:
Internal messages: Pick random M ′ = (h̃, r̃1, r̃2, ũ) verifier messages for the right

interaction.
Right interaction: The statement x̃ proved is the same as the one chosen by A.

If there exists j ∈ [n] so that tagj = ˜tag, use the messages in M ′ in order
to internally emulate a right interaction for A (while ignoring external V ˜tag

messages M). Otherwise, forward A’s messages in the right interaction to an
external V ˜tag and send back his answers M to A.

Left interaction: As induced by the scheduling of messages by A, forward the mes-
sages sent by A in the left interaction to an external prover Ptag, and send
back his answers to A.

Figure 11(a) describes the behavior of A′ in case tagj �= ˜tag for all j ∈ [n], whereas
Figure 11(b) describes its behavior otherwise. The purpose of constructing such an
A′ is to enable us to argue that for all “practical purposes” the man-in-the-middle
adversary never uses a ˜tag that satisfies tagj = ˜tag for some j ∈ [n] (as in such cases
A′ ignores all messages M in the right interaction anyway).

Given the new adversary A′, the machine SIM picks random V ˜tag messages M and
invokes the simulator S with random coins s̄. The simulator’s goal is to generate a
view of a left interaction for an A′ that receives messages M in the right interaction.
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(a) (b)

Fig. 11. The adversary A′.

Let (σ1, σ2) be the view generated by S for the left 〈Ptag, Vtag〉 interaction, and
let ˜tag be the tag sent by A in the right interaction when (σ1σ2) is its view of the left
interaction. If there exists j ∈ [n] so that tagj = ˜tag, then SIM outputs M ′ as the
right view of A. Otherwise, it outputs M . SIM always outputs (σ1, σ2) as a left view
for A.

The machine EXT. The machine EXT starts by sampling a random execution of
SIM using random coins s̄,M ′,M . Let x̃ be the right-hand side common input that
results from feeding the output of SIM to A. Our goal is to extract a witness to the
statement x̃. At a high level, EXT acts in the following way:

1. If the right session was not accepting or tagj = ˜tag for some j ∈ [n], EXT
will assume that no witness exists for the statement x̃ and will refrain from
extraction.

2. Otherwise, EXT constructs a stand-alone prover P ∗
˜tag

for the right interaction

〈P ˜tagi
, V ˜tagi

〉, from which it will later attempt to extract the witness (see
Figure 12).
In principle, the prover P ∗

˜tag
will follow SIM’s actions using the same random

coins s̄ used for initially sampling the execution of SIM. However, P ∗
˜tag

’s
execution will differ from SIM’s execution in that it will not use the messages
M in the right interaction of A but rather will forward messages receives from
an external verifier V ˜tag.

P ∗
˜tag

V ˜tag

P A V
tag,x
−−→

˜tag,x̃
−−−−−−−−−−−−→

←−− ←−−−−−−−−−−−−−−→ −−−−−−−−−−−−→←−− ←−−−−−−−−−−−−−−→ −−−−−−−−−−−−→

Fig. 12. The prover P ∗
˜tag

.

3. Once P ∗
˜tag

is constructed, EXT can apply the knowledge extractor, guaranteed

by the proof of knowledge property of 〈P ˜tag, V ˜tag〉, and extract a witness w to
the statement x̃. In the unlikely event that the extraction failed, EXT outputs
fail. Otherwise, it outputs w.

Remark 5.5. It is important to have a prover P ∗
˜tag

for the entire protocol 〈P ˜tagi
, V ˜tagi

〉
(and not just for 〈PsUA, VsUA〉). This is required in order to argue that the witness ex-
tracted is a witness for x̃ and not a witness to 〈h̃, c̃1, r̃1〉 ∈ Lsim or to 〈h̃, c̃2, r̃2〉 ∈ Lsim

(which could indeed be the case if we fixed the messages 〈h̃, c̃1, r̃1, c̃2, r̃2〉 in advance).

Output of simulator-extractor S. The combined simulator-extractor S runs EXT
and outputs fail whenever EXT does so. Otherwise, it outputs the view output by
SIM (in the execution by EXT) followed by the output of EXT.
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5.2.3. Correctness of simulation extraction. We start by showing that the
view of A in the simulation by SIM is statistically close to its view in an actual
interaction with Ptag and V ˜tag.

Lemma 5.6. The probability ensembles {S1(x, z,tag)}x∈L,z∈{0,1}∗,tag∈{0,1}m and
{viewA(x, z,tag)}x∈L,z∈{0,1}∗,tag∈{0,1}m are statistically close over L, where S1(x, z,tag)
denotes the first output of S(x, z,tag).

Proof. Recall that S proceeds by first computing a joint view 〈(σ1, σ2),M〉 (by
running SIM) and then outputting this view only if EXT does not output fail. Be-
low we show that the output of SIM is statistically close to the view of A in real
interactions. This concludes that, since EXT outputs fail only in the event that the
extraction fails, and since by the proof of knowledge property of 〈P ˜tag, V ˜tag〉 the ex-
traction fails only with negligible probability, the first output of S is also statistically
close to the view of A.

Let the random variable {SIM(x, z,tag)} denote the view 〈(σ1, σ2),M〉 output
by {SIM(x, z,tag)} in the execution by S.

Claim 5.7. The probability ensembles {SIM(x, z,tag)}x∈L,z∈{0,1}∗,tag∈{0,1}m

and {viewA(x, z,tag)}x∈L,z∈{0,1}∗,tag∈{0,1}m are statistically close over L.
Proof. Recall that the output of SIM consists of the tuple 〈(σ1, σ2),M〉, where

(σ1, σ2) is the left view generated by the simulator S and M = (h̃, r̃1, r̃2, ũ) are
uniformly chosen messages that are fed to A during the simulation. In other words,

{SIM(x, z,tag)}x,z,tag = {(S(x, z,tag), U|M |)}x,z,tag.

Let x ∈ L,tag ∈ [2n]n and z ∈ {0, 1}∗. To prove the claim, we will thus compare
the distribution (S(x, z,tag), U|M |) with real executions of the man-in-the-middle
adversary A(x, z,tag).

We start by observing that, whenever M is chosen randomly, a distinguisher
between real and simulated views of the left interaction of A yields a distinguisher
between S(x, z,tag) and viewA(x, z,tag). This follows from the following two facts
(both facts are true regardless of whether tagj = ˜tag for some j ∈ [n]):

1. The messages M (resp., M ′) appearing in its output are identically distributed
to messages in a real right interaction of A with V ˜tag (by construction of SIM).

2. The simulation of the left interaction in SIM is done with respect to an A
whose right-hand side view consists of the messages M (resp., M ′).

In particular, to distinguish whether a tuple (σ1, σ2),M was drawn according
to S(x, z,tag) or according to viewA(x, z,tag), one could simply take M , hard-
wire it into A, and invoke the distinguisher for the resulting stand-alone verifier for
〈Ptag, Vtag〉 (which we denote by V ∗

tag). Thus, all we need to prove is the indistin-
guishability of real and simulated views of an arbitrary stand-alone verifier V ∗

tag
(while

ignoring the messages M). We now proceed with the proof of the claim.
Consider a random variable (σ1, σ2) that is distributed according to the output of

S(x, z,tag) and a random variable (π1, π2) that is distributed according to the verifier
view of 〈Ptag, Vtag〉 in {viewA(x, z,tag)}z,x,tag (where π1, π2 are A’s respective views
of Stages 1 and 2). We will show that both (σ1, σ2) and (π1, π2) are statistically close
to the hybrid distribution (σ1, π2). This distribution is obtained by considering a
hybrid simulator that generates σ1 exactly as S does but uses the witness w for x ∈ L
in order to produce π2.

Subclaim 5.8. The distribution (π1, π2) is statistically close to (σ1, π2).
Proof. The claim follows from the (parallel) statistical-hiding property of Com.

Specifically, suppose that there exists a (possibly unbounded) D that distinguishes
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between the two distributions with probability ε. Consider a distinguisher D′ that has
the witness w for x ∈ L and h = V ∗

tag
(x) hardwired and acts as follows. Whenever D′

gets an input (c̄1, c̄2), it starts by generating r̄1 = V ∗
tag

(x, c̄1) and r̄2 = V ∗
tag

(x, c̄1, c̄2).
It then emulates a Stage 2 interaction between V ∗

tag
(x, c̄1, c̄2) and the honest provers

PsUA, where (x, 〈h, cj1, r
j
1〉, 〈h, c

j
2, r

j
2〉) is the common input for the jth interaction, and

PsUA is using w as a witness for x ∈ L. Let π2 denote the resulting verifier view. D′

outputs whatever D outputs on input (c̄1, c̄2, π2).

Notice that if (cj1, c
j
2) = (Com(0n),Com(0n)) for all j ∈ [n], then the input fed to

D is distributed according to (π1, π2), whereas if (cj1, c
j
2) = (Com(h(Πj

1)),Com(h(Πj
2))),

then the input fed to D is distributed according to (σ1, π2). Thus, D′ has advantage
ε in distinguishing between two tuples of n committed values. Hence, if ε is nonneg-
ligible, we reach contradiction to the statistical-hiding property of Com.

Subclaim 5.9. The distribution (σ1, σ2) is statistically close to (σ1, π2).

Proof. The claim follows from the (parallel) statistical witness-indistinguishability
property of 〈PsWI , VsWI 〉 and the (parallel) statistical-hiding property of Com (both
used in 〈PsUA, VsUA〉). Let σ2 = (σ2,1, σ2,2), where σ2,1 corresponds to a simulated
view of Stage 1 of 〈PsUA, VsUA〉 and σ2,2 corresponds to a simulated view of Stage 2 of
〈PsUA, VsUA〉. Similarly, let π2 = (π2,1, π2,2) correspond to the real views of Stages 1
and 2 of 〈PsUA, VsUA〉. We will show that both (σ1, σ2) and (σ1, π2) are statistically
close to the hybrid distribution (σ1, (σ2,1, π2,2)).

Suppose that there exists a (possibly unbounded) algorithm D that distinguishes
between (σ1, σ2) and (σ1, (σ2,1, π2,2)) with probability ε. Then there must exist a
Stage 1 view (c̄1, c̄2) = (c11, . . . , c

n
1 , c

1
2, . . . , c

n
2 ) for 〈Ptag, Vtag〉 and a Stage 1 view

(β̄, δ̄) = (β̂1, . . . , βn, δ̂1, . . . , δ̂n) for the subprotocol 〈PsUA, VsUA〉 so that D has advan-
tage ε in distinguishing between 〈(σ1, σ2)〉 and 〈(σ1, π2)〉 conditioned on (σ1, σ2,1) =
((c̄1, c̄2), (β̄, δ̄)).

Consider a Stage 2 execution of 〈PsUA, VsUA〉 with V ∗
sWI = V ∗

tag
(x, c̄1, c̄2, β̄, δ̄, ·)

as verifier. Then a distinguisher D(c̄1, c̄2, β̄, δ̄, ·) (i.e., D with (c̄1, c̄2, β̄, δ̄) hardwired
as part of its input) has advantage ε in distinguishing between an interaction of V ∗

sWI

with n honest PsWI provers that use accepting 〈PUA, VUA〉 transcripts (α, β, γ, δ) and
an interaction of V ∗

sUA with honest PsUA provers that use w as witness.13 Thus, if ε
is nonnegligible, we reach contradiction to the (parallel) statistical witness indistin-
guishability of 〈PsWI , VsWI 〉.

Now suppose that there exists a (possibly unbounded) algorithm D that distin-
guishes between (σ1, π2) and (σ1, (σ2,1, π2,2)) with probability ε. Consider a distin-
guisher D′ that has the witness w for x ∈ L and (h, c̄1, c̄2) hardwired and acts as
follows. Whenever D′ gets an input (β̄, δ̄), it starts by generating ᾱ = V ∗

tag
(x, c̄1, c̄2)

and γ̄ = V ∗
tag

(x, c̄1, c̄2, β̄). It then emulates a Stage 2 interaction between the VsWI ver-
ifiers V ∗

tag
(x, c̄1, c̄2, β̄, δ̄) and the honest provers PsWI , where (x, 〈h, cj1, r

j
1〉, 〈h, c

j
2, r

j
2〉,

〈α, β̄, γ, δ̄〉) is the common input for the jth interaction, and PsWI is using w as a
witness for x ∈ L. Let π2,2 denote the resulting verifier view. D′ outputs whatever D
outputs on input (c̄1, c̄2, β̄, δ̄, π2,2).

Notice that if (β̂j , δ̂j) = (Com(0n),Com(0n)) for all j ∈ [n], then the input

fed to D is distributed according to (σ1, (π2,1, π2,2)) = (σ1, π2), whereas if (β̂j , δ̂j) =
Com(βj),Com(δj)〉, for some βj , δj for which (αj , βj , γj , δj) is an accepting
〈PUA, VUA〉, then the input fed to D is distributed according to (σ1, (σ2,1, π2,2)).

13In accordance with the specification of 〈PsUA, VsUA〉, the transcripts (α, β, γ, δ) are generated

using programs Πj
i as witnesses, where Πj

i is the program chosen by the simulator Sj .
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Thus, D′ has advantage ε in distinguishing between two tuples of n committed values.
Hence, if ε is nonnegligible, we reach contradiction to the statistical-hiding property
of Com.

Combining Subclaims 5.9 and 5.8 we conclude that {SIM(x, z,tag)}x,z,tag and
{viewA(x, z,tag)}x,z,tag are statistically close.

This completes the proof of Lemma 5.6.

Lemma 5.10. Let x ∈ L, z ∈ {0, 1}∗,tag ∈ {0, 1}m, and let (view , w) denote
the output of S(x, z,tag) (on input some random tape). Let x̃ be the right-execution
statement appearing in view, and let ˜tag denote the right-execution tag. Then, if the
right execution in view is accepting AND tagj �= ˜tag for all j ∈ [n], then RL(x̃, w) = 1.

Proof. We start by noting that, since S outputs fail whenever the extraction by
EXT fails, the claim trivially holds in the event that the extraction by EXT fails.

Observe that the right-hand side input-tag pair (x̃, ˜tag) used in EXT is exactly
the same as the one generated by SIM. This follows from the following two reasons:
(1) Both EXT and SIM use the same random coins s̄ in the simulation. (2) The
input-tag pair x̃, ˜tag is determined before any external message is received in the
right interaction. In particular, the pair (x̃, ˜tag) is independent of the messages M
(which is the only potential difference between the executions of SIM and EXT).

Since whenever the properties described in the hypothesis hold EXT performs
extraction, and since the extraction by EXT proceeds until a witness is extracted
(or until the extraction fails, in which case we are already done), we infer that S
always outputs a witness to the statement x̃ proved in the right interaction in the
view output.

We conclude the proof by bounding the running time of the combined simulator-
extractor S.

Lemma 5.11. S runs in expected polynomial time.

Proof. We start by proving that the running time of SIM is polynomial. Recall
that the SIM procedure invokes the simulator S with the adversary A′. Thus, we need
to show that S runs in polynomial time. To this end, it will be sufficient to show that
every individual subsimulator Sj runs in polynomial time. We first do so assuming
that tagj �= ˜tag. We then argue that, by construction of the adversary A′, this will
be sufficient to guarantee polynomial running time even in cases where tagj = ˜tag.

Claim 5.12. Suppose that tagj �= ˜tag. Then Sj completes the simulation in
polynomial time.

Proof. We start by arguing that, in each of the three cases specified in the simu-
lation, the witness used by the simulator indeed satisfies the relation Rsim . A close
inspection of the simulator’s actions in the first two cases reveals that the simulator
indeed commits to a program Πi that on input y = (c1i , . . . , c

n
i ) outputs the corre-

sponding ri. Namely, the following hold:

• Π1(y) = Aj(x, c
1
1, . . . , c

n
1 ) = rj1.

• Π2(y) = Aj(x, c
1
1, . . . , c

n
1 , r̃1, r̃2, c

1
2, . . . , c

n
2 ) = rj2.

Since in both cases |y| = n|cij | = 2n2 ≤ �(n) − n ≤ |rji | − n it follows that Rsim

is satisfied. As for the third case, observe that, for both i ∈ {1, 2}, if Sj sets y =
(c1i , . . . , c

n
i , r̃i), then the following holds:

• Πi(y) = Aj(c
1
i , . . . , c

n
i , r̃i) = rji .

Since tagj �= ˜tag we can use Fact 5.2 and infer that there exists i ∈ {1, 2} so that

|r̃i| ≤ |rji | − �(n). This means that for every j ∈ [n] the simulator Sj will choose the
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i ∈ {1, 2} for which

|y| = |c1i | + · · · + |cni | + |r̃ii|
= 2n2 + |r̃ii|
≤ 2n2 + |rji | − �(n)(5.1)

≤ |rji | − n,(5.2)

where (5.1) follows from |r̃i| ≤ |rji | − �(n) and (5.2) follows from the fact that �(n) ≥
2n2 + n. Thus, Rsim can always be satisfied by Sj .

Since the programs Πi are of size poly(n) and satisfy Πi(y) = rji in poly(n) time

(because Aj does), the verification time of Rsim on the instance 〈h, cji , r
j
i 〉 is polyno-

mial in n. By the perfect completeness and relative prover efficiency of 〈PsUA, VsUA〉,
it then follows that the simulator is always able to make a verifier accept in polynomial
time.

Remark 5.13 (handling the case tagj = ˜tag). When invoked by SIM, the simulator
S will output an accepting left view even if A chooses ˜tag so that tagj = ˜tag for some
j ∈ [n].14 This is because in such a case the A′ whose view S needs to simulate ignores
all right-hand side messages and feeds the messages M ′ to A internally. In particular,
no external messages will be contained in either Slot 1 or Slot 2 of 〈Ptag, Vtag〉. A
look at the proof of Claim 5.12 reveals that in such cases the simulator can indeed
always produce an accepting conversation (regardless of whether tagj= ˜tag or not).

It now remains to bound the expected running time of EXT. Recall that EXT
uses the view sampled by SIM and proceeds to extracting a witness only if the right
interaction is accepting and tagj �= ˜tag for all j ∈ [n]. Using Claim 5.12, we know that
the simulation internally invoked by the stand-alone prover P ∗

˜tag
will always terminate

in polynomial time (since tagj �= ˜tag for all j ∈ [n] and A is a poly-time machine).
We now argue that the extraction of the witness from P ∗

˜tag
conducted by EXT will

terminate in expected polynomial time.
Let p denote the probability that A produces an accepting proof in the right

execution in the simulation by SIM. Let p′ denote the probability that A produces an
accepting proof in the right execution in the internal execution of P ∗

˜tag
(constructed

in EXT). By the POK property of 〈Ptag, Vtag〉 it holds that the expected running time
of the knowledge extractor is bounded by

poly(n)

p′
.

Since the probability of invoking the extraction procedure is p, the expected number
of steps used to extract a witness is

p
poly(n)

p′
.

Now in both SIM and EXT the left view is generated by S, and the right view is
uniformly chosen. This in particular means that p = p′. It follows that the expected

14Note that this is not necessarily true in general. For example, when tagj = ˜tag for some j ∈ [n],
and the messages that A sees are forwarded from an external source (e.g., when S is used by EXT
in order to construct the stand alone prover P ∗

˜tag
), we cannot guarantee anything about the running

time of S. Indeed, the definition of simulation extractability does not require EXT to output a
witness when tagj = ˜tag for some j ∈ [n].



734 RAFAEL PASS AND ALON ROSEN

number of steps used to extract a witness is

p
poly(n)

p
= poly(n).

This completes the proof of Lemma 5.11.
This completes the proof of “many-to-one” simulation extractability (Proposi-

tion 5.3).

5.3. “Full-fledged” simulation extractability. Let tag ∈ {0, 1}m, let x ∈
{0, 1}n, and let A be the corresponding MIM adversary. We consider a left interaction
in which 〈Ptag, Vtag〉 is executed with common input x ∈ {0, 1}n and a right inter-
action in which 〈P ˜tag

, V ˜tag
〉 is executed with common input x̃ ∈ {0, 1}n. The strings

˜tag and x̃ are chosen adaptively by the man-in-the-middle adversary A. The witness
used by the prover in the left interaction is denoted by w, and the auxiliary input
used by the adversary is denoted by z.

Proposition 5.14. Let A be a MIM adversary as above, and suppose that �(n)≥
2n2+ 2n. Then there exists a probabilistic expected polynomial-time machine S such
that the following conditions hold:

1. The probability ensembles {S1(x, z,tag)}x,z,tag and {viewA(x, z,tag)}x,z,tag

are statistically close over L, where S1(x, z,tag) denotes the first output of
S(x, z,tag).

2. Let x ∈ L, z ∈ {0, 1}∗,tag ∈ {0, 1}t(|x|), and let (view , w) denote the output of
S(x, z,tag) (on input some random tape). Let x̃ be the right-execution state-
ment appearing in view, and let ˜tag denote the right-execution tag. Then, if
the right execution in view is accepting AND tag �= ˜tag, then RL(x̃, w) = 1.

Proof. The construction of the simulator-extractor S proceeds in two phases
and makes use of the many-to-one simulator-extractor guaranteed by Proposition 5.3.
In the first phase, the adversary A is used in order to construct a many-to-one ad-
versary A′ with the protocol 〈Ptag, Vtag〉 on its left and with one of the subpro-
tocols 〈P ˜tagi

, V ˜tag〉 on its right. In the second phase, the many-to-one simulation-
extractability property of 〈Ptag, Vtag〉 is used in order to generate a view for A along
with a witness for the statement x̃ appearing in the simulation.

The many-to-one adversary. On input (x, z,tag), and given a man-in-the-middle
adversary A, the many-to-one adversary A′ acts as follows:
Internal messages: For all j ∈ [n], pick random messages (h̃j , r̃j1, r̃

j
2, ũ

j) for the right
interaction.

Right interaction: The statement x̃ proved is the same as the one chosen by A. If
there exists i ∈ [n] so that tagj �= ˜tagi for all j ∈ [n], forward A’s messages
in the ith right interaction to an external V ˜tagi

and send back his answers to

A. Use the messages {(h̃j , r̃j1, r̃
j
2, ũ

j)}j �=i to internally emulate all other right
interactions {〈P ˜tagj

, V ˜tagj
〉}j �=i.

Otherwise (i.e., if for all i ∈ [n] there exists j ∈ [n] such that tagj = ˜tagi),
pick an arbitrary i ∈ [n], forward A’s messages in the ith right interac-
tion to an external V ˜tagi

, and send back his answers to A. Use the mes-

sages {(h̃j , r̃j1, r̃
j
2, ũ

j)}j �=i to internally emulate all other right interactions
{〈P ˜tagj

, V ˜tagj
〉}j �=i.

Left interaction: As induced by the scheduling of messages by A, forward the mes-
sages sent by A in the left interaction to an external prover Ptag and send
back his answers to A.
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Fig. 13. The “many-to-one” MIM adversary A′.

The many-to-one adversary A′ is depicted in Figure 13. Messages from circled sub-
protocols are the ones that get forwarded externally.

The simulator-extractor. By Proposition 5.3 there exists a simulator S ′ that pro-
duces a view that is statistically close to the real view of A′ and outputs a witness,
provided that the right interaction is accepting and ˜tag is different from all the left-side
tags tag1, . . . , tagn.

The simulator-extractor S(x, z,tag) for A invokes S ′(x, z,tag). If S ′ outputs
fail, so does S. Otherwise, let view′, w′ denote the output of S ′. S now outputs
view,w′, where view is the view view′ (output by S ′) augmented with the right-hand
side messages {(h̃j , r̃j1, r̃

j
2, ũ

j)}j �=i that were used in the internal emulation of A′.

Claim 5.15. S runs in expected polynomial time.

Proof. Notice that whenever A is polynomial time, then so is A′. By Lemma 5.11,
this implies that S ′ runs in expected polynomial time, and hence so does S.

Claim 5.16. The probability ensembles {S1(x, z,tag)}x∈L,z∈{0,1}∗,tag∈{0,1}m and
{viewA(x, z,tag)}x∈L,z∈{0,1}∗,tag∈{0,1}m are statistically close over L, where S1(x, z,tag)
denotes the first output of S(x, z,tag).

Proof. Given a distinguisher D between ensembles {S1(x, z,tag)}x,z,tag and
{viewA(x, z,tag)}z,x,tag, we construct a distinguisher D′ between {S ′

1(x, z,tag)}x,z,tag

and {viewA′(x, z,tag)}x,z,tag. This will be in contradiction to Lemma 5.6. The dis-

tinguisher D′ has the messages {(h̃j , r̃j1, r̃
j
2, ũ

j)}j �=i hardwired.15 Given a joint view
〈(σ′

1, σ
′
2),M

′〉 of a left 〈P ˜tag
, V ˜tag

〉 interaction and a 〈P ˜tagi
, V ˜tagi

〉 right interaction,

D′ augments the view with the right interaction messages {(h̃j , r̃j1, r̃
j
2, ũ

j)}j �=i. The
distinguisher D′ feeds the augmented view to D and outputs whatever D outputs.

Notice that if 〈(σ′
1, σ

′
2),M

′〉 is drawn according to {S ′
1(x, z,tag)}x,z,tag, then the

augmented view is distributed according to {SIM(x, z,tag)}x,z,tag. On the other
hand, if 〈(σ′

1, σ
′
2),M

′〉 is drawn according to {viewA′(x, z,tag)}z,x,tag, then the aug-
mented view is distributed according to {viewA(x, z,tag)}z,x,tag. Thus D′ has ex-
actly the same advantage as D.

Claim 5.17. Let x ∈ L, z ∈ {0, 1}∗,tag ∈ {0, 1}m, and let (view , w) denote
the output of S(x, z,tag) (on input some random tape). Let x̃ be the right-execution
statement appearing in view, and let ˜tag denote the right-execution tag. Then, if the
right execution in view is accepting AND tag �= ˜tag, then RL(x̃, w) = 1.

15One could think of D as a family of distinguishers that is indexed by {(h̃j , r̃j1, r̃
j
2, ũ

j)}j �=i and
from which a member is drawn at random.
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Proof. Recall that the right interaction in the view output of S is accepting if
and only if the right interaction in the view output of S is accepting. In addition, the
statement proved in the right interaction output by S is identical to the one proved
in the right interaction of S ′.

Observe that if tag �= ˜tag, there must exist i ∈ [n] for which (i, ˜tagi) �= (j,tagj)
for all j ∈ [n] (just take the i for which ˜tagi �= tagi). Recall that by construction
of the protocol 〈P ˜tag

, V ˜tag
〉, for every i ∈ [n], the value tagi is defined as (i,tagi).

Thus, whenever tag �= ˜tag there exists a ˜tagi = (i, ˜tagi) that is different from
tagj = (j,tagj) for all j ∈ [n]. In particular, the tag used by A′ in the right interaction
will satisfy tagj �= ˜tagi for all j ∈ [n]. By Lemma 5.10, we then have that if the right
interaction in view output by S is accepting (and hence also in S ′), then S ′ will
output a witness for x̃. The proof is complete, since S outputs whatever witness S ′

outputs.
This completes the proof of Proposition 5.14.

6. Nonmalleable commitments. In this section we present two simple con-
structions of nonmalleable commitments. The approach we follow is different from
the approach used in [14]. Instead of viewing nonmalleable commitments as a tool for
constructing nonmalleable zero-knowledge protocols, we reverse the roles and use a
nonmalleable zero-knowledge protocol (in particular any simulation-extractable pro-
tocol will do) in order to construct a nonmalleable commitment scheme. Our approach
is also different from the approach taken by [2].

6.1. A statistically binding scheme (NM with respect to commitment).
We start by presenting a construction of a statistically binding scheme which is non-
malleable with respect to commitment. Our construction relies on the following two
building blocks:

• a family of (possibly malleable) noninteractive statistically binding commit-
ment schemes,

• a simulation-extractable zero-knowledge argument.
The construction is conceptually very simple: The committer commits to a string
using the statistically binding commitment scheme and then proves knowledge of the
string committed to using a simulation-extractable argument.

We remark that the general idea behind this protocol is not new. The idea of
enhancing a commitment scheme with a proof of knowledge protocol was already
explored in [14]. However, as pointed out in [14], this approach cannot work with
any proof of knowledge protocol, as this proof of knowledge protocol itself might be
malleable. (As mentioned above, Dolev, Dwork, and Naor therefore rely on a quite
different approach to construct nonmalleable commitments [14].) What we show here
is that this approach in fact works if the proof of knowledge protocol is simulation
extractable.

Let {Comr}r∈{0,1}∗ be a family of noninteractive statistically binding commit-
ment schemes (e.g., Naor’s commitment [31]), and let 〈Ptag, Vtag〉 be a simulation-
extractable protocol. Consider the protocol in Figure 14.16

We start by sketching why the scheme is nonmalleable. Note that the commit
phase of the scheme consists only of a message specifying an NP statement (i.e., the
“statement” c = Comr(v; s)) and an accompanying “proof” of this statement. Thus,

16It is interesting to note that the protocol 〈C,R〉 is statistically binding even though the protocol
〈Ptag, Vtag〉 is “only” computationally sound. At first sight, this is somewhat counterintuitive since
the statistical-binding property is typically associated with all-powerful committers.
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Protocol 〈C,R〉
Security Parameter: 1n.

String to be committed to: v ∈ {0, 1}n.

Commit Phase:
R → C: Pick uniformly r ∈ {0, 1}n.
C → R: Pick s ∈ {0, 1}n and send c = Comr(v; s).
C ↔ R: Let tag = (r, c). Prove using 〈Ptag, Vtag〉 that there exist v, s ∈ {0, 1}n

so that c = Comr(v; s). Formally, prove the following statement (r, c) with
respect to the witness relation:

RL = {(r, c), (v, s)|c = Comr(v; s)}.

R: Verify that 〈Ptag, Vtag〉 is accepting.

Reveal Phase:
C → R: Send v, s.
R: Verify that c = Comr(v; s).

Fig. 14. A statistically binding nonmalleable string commitment protocol 〈C,R〉.

intuitively, an adversary that is able to successfully maul a commitment must be able
to maul both the commitment Com and also the accompanying proof 〈Ptag, Vtag〉.
The former might be easy, as Com might be malleable. However, as 〈Ptag, Vtag〉 is
simulation extractable (and thus nonmalleable), the latter will be impossible.

At first sight, it seems like it would be sufficient to simply assume that 〈Ptag, Vtag〉
is nonmalleable to conclude nonmalleability of 〈C,R〉. Note, however, that the defini-
tion of a nonmalleable proof considers only a setting where the statement proven by
the man-in-the-middle adversary is fixed ahead of the interaction. In our scenario, we
instead also require security with respect to an adaptively chosen statement (as the
statement proven is related to the commitment chosen by the adversary). This gap
is addressed in the definition of simulation extractability; here the man-in-the-middle
adversary is also allowed to adaptively choose the statements it will attempt to prove.

Interestingly, to formalize the above argument, we will be required to rely on
the statistical indistinguishability property of the definition of simulation extractabil-
ity. Intuitively, the reason for this is the following. For any given man-in-the-middle
adversary we are required to construct a stand-alone adversary that succeeds in com-
mitting to “indistinguishable” values. In proving that this stand-alone adversary suc-
ceeds in this task, we will rely on the simulator-extractor for the man-in-the-middle
adversary; however, to do this, we need to make sure that the simulator-extractor
indeed will commit to indistinguishable values. Note that it is not sufficient that
the simulator-extractor simply proves a statement that is indistinguishable from the
statement proved by the man-in-the-middle adversary, as the value committed to is
not efficiently computable from the statement. However, the value committed to is
computable (although not efficiently) from the statement. Thus, by relying on the
statistical indistinguishability property of the simulator-extractor, we can also make
sure that the value committed by the simulator-extractor is indistinguishable from
that committed to by the man-in-the-middle adversary.17

Theorem 6.1 (nmC with respect to commitment). Suppose that {Comr}r∈{0,1}∗

is a family of noninteractive statistically binding commitment schemes and that
〈Ptag, Vtag〉 is simulation extractable. Then 〈C,R〉 is a statistically binding nonmal-

17Note that in the case of nonmalleability with respect to opening, this complication does not
arise.
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leable commitment scheme with respect to commitment.
Proof. We need to prove that the scheme satisfies the following three proper-

ties: statistical binding, computational hiding, and nonmalleability with respect to
commitment.

Statistical binding. The binding property of the scheme follows directly from the
binding property of the underlying commitment scheme Com: to break the binding
property of nmCtag requires first breaking the binding of Com. More formally, given
any adversary A that breaks the binding property of nmCtag, we construct an ad-
versary A′, which on input a message r feeds r to A and then internally honestly
emulates all the verification messages in the proof part of nmCtag. It follows directly
that the success probability of A′ is the same as that of A.

Computational hiding. The hiding property follows from the hiding property of
Com combined with the ZK property of 〈Ptag, Vtag〉. More formally, recall that the
notion of simulation extractability implies ZK (see Proposition 3.6) and that ZK
implies strong witness indistinguishability18 [18]. Since the scheme Com produces
indistinguishable commitments, it thus follows directly by the definition of strong
witness indistinguishability that the protocol 〈C,R〉 also produces indistinguishable
commitments.

Nonmalleability. Consider a man-in-the middle adversary A. We assume without
loss of generality that A is deterministic (this is without loss of generality since A
can obtain its “best” random tape as auxiliary input). We show the existence of
a probabilistic polynomial-time stand-alone adversary S and a negligible function
ν : N → N such that, for every irreflexive polynomial-time computable relation
R⊆{0, 1}n×{0, 1}n, every v∈{0, 1}n, and every z∈{0, 1}∗, it holds that

Pr
[
mimA

com(R, v, z) = 1
]

< Pr
[
staScom(R, v, z) = 1

]
. + ν(n).(6.1)

Description of the stand-alone adversary. The stand-alone adversary S uses A
as a black box and emulates the left and right interactions for A as follows: the left
interaction is emulated internally, while the right interaction is forwarded externally.
More precisely, S proceeds as follows on input z. S incorporates A(z) and internally
emulates the left interactions for A by simply honestly committing to the string 0n;
i.e., to emulate the left interaction, S executes the algorithm C on input 0n. Messages
from the right interactions are instead forwarded externally. Note that S is thus a
stand-alone adversary that expects to act as a committer for the scheme 〈C,R〉.

Analysis of the stand-alone adversary. We proceed to showing that (6.1) holds.
Suppose, for contradiction, that this is not the case. That is, there exist an irreflexive
polynomial-time relation R and a polynomial p(n) such that, for infinitely many n,
there exist strings v ∈ {0, 1}n, z ∈ {0, 1}∗ such that

Pr
[
mimA

com(R, v, z) = 1
]
− Pr

[
staScom(R, v, z) = 1

]
≥ 1

p(n)
.

Fix generic n, v, z for which the above holds. We show how this contradicts the
simulation-extractability property of 〈Ptag, Vtag〉. On a high level, our proof consists
of the following steps:

18Intuitively, the notion of strong witness indistinguishability requires that proofs of indistinguish-
able statements are indistinguishable. This is, in fact, exactly the property we need in order to prove
that the commitment scheme is computationally hiding.
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1. We first note that, since the commit phase of 〈C,R〉 “essentially” consists only
of a statement (r, c) (i.e., the commitment) and a proof of the “validity” of
(r, c), A can be interpreted as a simulation-extractability man-in-the-middle
adversary A′ for 〈Ptag, Vtag〉.

2. It follows from the simulation-extractability property of 〈Ptag, Vtag〉 that
there exists a combined simulator-extractor S for A′ that outputs a view
that is statistically close to that of A′ while at the same time outputting a
witness to all accepting right proofs which use a different right tag ˜tag than
the tag tag of the left interaction, i.e., if ˜tag �= tag.

3. Since the view output by the simulator-extractor S is statistically close to the
view of A′ in the real interaction, it also follows that the value committed
to in that view is statistically close to value committed to by A′. (Note that
computational indistinguishability would not have been enough to argue the
indistinguishability of these values, since they are not efficiently computable
from the view.)

4. It also follows that the simulator-extractor S will also output the witness to
each accepting right execution such that ˜tag �= tag. We conclude that S
additionally outputs the value committed to in the right execution (except
possibly when the value committed to in the right interaction is the same as
that committed to in the left).

5. We finally note that if R (which is irreflexive) “distinguishes” between the
value committed to by A and by S, then R also “distinguishes” the second
output of S (which consists of the committed values) when run on input a
commitment (using Com) to v and the second output of S when run on input
a commitment to 0. But, this contradicts the hiding property of Com.

We proceed to a formal proof. One particular complication that arises with the
above proof sketch is that in the construction of 〈C,R〉 we are relying on a family
of commitment schemes {Comr}r∈{0,1}∗ and not a single noninteractive commitment
scheme. Thus, strictly speaking, A is not a man-in-the-middle adversary for the
interactive proof 〈Ptag, Vtag〉. However, the only difference is that A additionally
expects to receive a message r̃ on the right and also to send a message r on the left.
To get around this problem we rely on the nonuniform computational hiding property
of 〈C,R〉.

Note that, since in both experiments mim and sta the right execution is identi-
cally generated, there must exist some fixed message r̃ such that, conditioned on the
event that the first message sent in the right execution is r̃, it holds that the success
probability in mimA

com(R, v, z) is 1
p(n) higher than in staScom(R, v, z). In fact, by the

statistical-binding property of Com, it follows that there must exist some message r̃
such that Comr̃ is perfectly binding, and, additionally, conditioned on the event that
the first message sent in the right execution is r̃, it holds that the success probability
in mimA

com(R, v, z) is 1
2p(n) higher than in staScom(R, v, z).

Given this message r̃, we must now consider two cases:

1. A (which by assumption is deterministic) sends its first message r in the left
interaction directly after receiving r̃ (see Figure 15).

2. Or A first send its first message c̃ in the right interaction.

We first show that, in the second case, A can be used to break the nonuniform
hiding property of 〈C,R〉. Intuitively, this follows from the fact that the value com-
mitted to by A on the right is “essentially” determined by the message c̃ sent by A
before it has received a single message on the left; it is not “fully” determined by c̃,
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Fig. 15. An interleaved scheduling of commitments.

as A can decide whether it fails in the interactive proof and thus potentially change
the value determined by c̃ to ⊥. However, in this case, A can be used to violate the
hiding property of 〈C,R〉 (as the probability of failing the proof must depend on the
value it receives a commitment to).

More formally, let vc̃ denote the value committed to in c̃ (using Com). It then
holds that the value committed to by A in its right interaction (of 〈C,R〉) will be vc̃ if
A succeeds in the proof following the message c̃ and ⊥ otherwise. By our assumption
that the success probability in mimA

com(R, v, z) is 1
2p(n) higher than in staScom(R, v, z),

conditioned on the event that the first message sent in the right execution is r̃, it thus
holds that A “aborts” the proof in the left interaction with different probability in
experiments mimA

com(R, v, z) and staScom(R, v, z), conditioned on the first message in
the right interaction being r̃. However, since the only difference in those experiments
is that A receives a commitment to v in mim and a commitment to 0n in sta, we con-
clude that A contradicts the (nonuniform) computational-hiding property of Com.
Formally, we construct a nonuniform distinguisher D for the commitment scheme
〈C,R〉: D incorporates A, z, r, v, and vc̃, emulates the right execution for A by hon-
estly running the verification procedure of 〈Ptag, Vtag〉, and forwards messages in the
left execution externally. D finally outputs R(v, vc̃) if the proof was accepting and 0
otherwise. The claim follows from the fact that D perfectly emulates mimA

com(R, v, z)
when receiving a commitment to v and perfectly emulates staScom(R, v, z) when re-
ceiving a commitment to 0n.

We proceed to considering the first (and harder) case depicted in Figure 15, i.e.,
when A sends its first left message r directly after receiving the message r̃. In this
case, we instead directly use A to contradict the hiding property of Com. Towards
this goal, we proceed in three steps:

1. We first define a simulation-extractability adversary A′.
2. We next show that A′ can be used to violate the nonmalleability property of

〈C,R〉.
3. In the final step, we show how to use the simulator-extractor S for A′ to

violate the hiding property of Com.

Step 1: Defining a simulation-extractability adversary A′. We define a simulation-
extractability adversary A′ for 〈Ptag, Vtag〉. On input x,tag, z′ = (z, r̃), A′ internally
incorporates A(z) and emulates the left and right interactions for A as follows.

1. A′ starts by feeding A the message r̃ as part of its right execution. All
remaining messages in the right execution are forwarded externally.

2. All messages in A’s left interaction are forwarded externally as part of A′’s
left interaction, except for the first message r.

Step 2: Show that A′ violates nonmalleability of 〈C,R〉. Towards the goal of
showing that A violates nonmalleability of 〈C,R〉, we define the hybrid experiment
hyb1(v

′) (relying on the definition of v, z, r, r̃):
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1. Let s be a uniform random string, and let c = Comr(v
′; s).

2. Let x = (r, c),tag = (r, c), z′ = (z, r̃). Emulate an execution for A′(x,tag, z′)
by honestly providing a proof of x (using tag tag and the witness (v′, s)) as
part of its left interaction and honestly verifying the right interaction.

3. Given the view of A′ in the above emulation, reconstruct the view view of
A in the emulation by A′. If the commitment produced by A in the right
execution in view is valid, let ṽ denote the value committed to; recall that,
by our assumption on r̃, this value is uniquely defined (although it is not
efficiently computable). If, on the other hand, the commitment produced by
A is invalid, let ṽ = ⊥.

4. Finally, if ṽ = ⊥, output 0. Otherwise output R(v, ṽ).

Note that hyb1(v) is not efficiently samplable, since the third step is not efficient.
However, except for that step, every other operation in hyb1 is efficient. (This will be
useful to us at a later stage.)

We have the following claim.

Claim 6.2.

Pr
[
hyb1(v) = 1

]
− Pr

[
hyb1(0

n) = 1
]
≥ 1

2p(n)
.

Proof. Note that, by the construction of A′ and hyb1, the following hold directly:

1. The view of A in hyb1(v) is identically distributed to the view of A in
mimA

com(R, v, z), conditioned on the event that the first message in the right
execution is r̃.

2. The view of A in hyb1(0
n) is identically distributed to the view of A in

staAcom(R, v, z), conditioned on the event that the first message in the right
execution is r̃.

Since the output of the experiments hyb,mim, sta is determined by applying the same
fixed function (involving R and v) to the view of A in those experiments, the claim
follows.

Step 3: Show that the simulator for A′ violates the hiding property of Com. We
next use the simulator-extractor S′ for A′ to construct an efficiently computable ex-
periment that is statistically close to hyb1.

Towards this goal, we first consider the following experiment hyb2, which still is
not efficient. hyb2(v

′) proceeds just as hyb1(v
′) except that, instead of emulating the

left and right interactions for A′, hyb2 runs the combined simulator extractor S for
A′ to generate the view of A′.

Claim 6.3. There exists a negligible function ν′(n) such that, for any string
v′ ∈ {0, 1}n,

|Pr
[
hyb1(v

′) = 1
]
− Pr

[
hyb2(v

′) = 1
]
| ≤ ν′(n).

Proof. It follows directly from the statistical indistinguishability property of S
that the view of A generated in hyb1 is statistically close to the view of A generated in
hyb2. The claim is concluded by (again) observing that the success of both hyb1 and
hyb2 is defined by applying the same (deterministic) function to the view of A.

Remark 6.4. Note that the proof of Claim 6.3 inherently relies on the statistical
indistinguishability property of S. Indeed, if the simulation had only been computa-
tionally indistinguishable, we would not have been able to argue indistinguishability
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of the outputs of hyb1 and hyb2. This follows from the fact that the success in exper-
iments hyb1 and hyb2 (which depends on the actual committed values in the view of
A) is not efficiently computable from the view alone.

We next define the final experiment hyb3(v
′) that proceeds just as hyb2(v

′) with
the following modification:

• Instead of letting ṽ be set to the actual value committed to in the view view
of A, ṽ is computed as follows. Recall that the combined-simulator extractor
S outputs both a view and a witness to each accepting right interaction. If
the right execution in view is accepting19 and if ˜tag �= tag, where ˜tag is the
tag used in the right interaction in view, simply set ṽ to be consistent with
the witness output by S (i.e., if S outputs the witness (v′, s′), let ṽ = v′).
Otherwise (i.e., if ˜tag = tag, or if the right execution was rejecting), let
ṽ = ⊥.

Note that, in contrast to hyb2, hyb3 is efficiently computable. Furthermore, the fol-
lowing claim holds.

Claim 6.5. For any string v′ ∈ {0, 1}n,

Pr
[
hyb2(v

′) = 1
]

= Pr
[
hyb3(v

′) = 1
]
.

Proof. Recall that the view of A in hyb2 and hyb3 is identical; the only difference
in the experiments is how the final output is computed. It holds by the definition of
the simulator-extractor S that S always outputs the witness to the statement proved
by A′ if the right interaction is accepting and if ˜tag �= tag. Thus, whenever view
contains an accepting right-execution proof such that ˜tag �= tag, it follows by our
assumption that Comr̃ is perfectly binding and that the output of hyb2 and hyb3 is
identical. Furthermore, in case the right-execution proof is rejecting, it holds that
ṽ = ⊥ in both hyb2 and hyb3, which again means the output in both experiments
is identical. Finally, consider the case when the right execution is accepting but
˜tag = tag. By definition, it holds that hyb3 outputs 0. Now recall that tag = (r, c)

and ˜tag = (r̃, c̃); in other words, if ˜tag = tag, it means that A fully copied the
initial commitment using Comr. Since R is irreflexive and Comr̃ is perfectly binding,
it follows that also hyb2 outputs 0. We conclude that the outputs of hyb2 and hyb3

are identically distributed.
By combining the above claims we obtain that there exists some polynomial p′(n)

such that

Pr
[
hyb3(v) = 1

]
− Pr

[
hyb3(0

n) = 1
]
≥ 1

p′(n)
.

However, since hyb3 is efficiently samplable, we conclude that this contradicts the
(nonuniform) hiding property of Comr.

More formally, define an additional hybrid experiment hyb4(c
′) that proceeds as

follows on input a commitment c′ using Comr: hyb4 performs the same operations as
hyb3, except that, instead of generating the commitment c, it simply sets c = c′. It
follows directly from the construction of hyb4 that hyb4(c

′) is identically distributed
to hyb3(0

n) when c′ is a (random) commitment to 0n (using Comr) and is identi-
cally distributed to hyb3(v) when c′ is a commitment to v. We conclude that hyb4

distinguishes commitments (using Comr) to 0n and v.

19Note that, since view is a joint view of A and the honest receiver R in the right execution, one
can efficiently determine whether R indeed accepted the commitment.
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Remark 6.6 (black-box vs. nonblack-box simulation). Note that the stand-alone
committer S constructed in the above proof uses only black-box access to the adver-
sary A, even if the simulation-extractability property of 〈Ptag, Vtag〉 has been proven
using a nonblack-box simulation. Thus, in essence, the simulation of our nonmalleable
commitment is always black box. However, the analysis showing the correctness of
the simulator relies on nonblack-box techniques, whenever the simulator-extractor for
〈Ptag, Vtag〉 is proven using nonblack-box techniques.

Since families of noninteractive statistically binding commitment schemes can
be based on collision-resistant hash functions (in fact one-way functions are enough
[31, 26]) we get the following corollary.

Corollary 6.7 (statistical-binding nonmalleable commitment). Suppose that
there exists a family of collision-resistant hash functions. Then there exists a constant-
round statistically binding commitment scheme that is nonmalleable with respect to
commitment.

6.2. A statistically hiding scheme (NM with respect to opening). We
proceed to the construction of a statistically hiding commitment scheme 〈C,R〉 which
is nonmalleable with respect to opening. Our construction relies on a quite straight-
forward combination of a (family) of noninteractive statistically hiding commitments
and a simulation-extractable argument.20 Let {Comr}r∈{0,1}∗ be a family of nonin-
teractive statistically hiding commitment schemes (e.g., [10]), and let 〈Ptag, Vtag〉 be
simulation-extractable protocol. The protocol is depicted in Figure 16.

Protocol 〈C,R〉
Security Parameter: 1n.

String to be committed to: v ∈ {0, 1}n.
Commit Phase:

R → C: Pick uniformly r ∈ {0, 1}n.
C → R: Pick s ∈ {0, 1}n and send c = Comr(v; s).

Reveal Phase:
C → R: Send v.
C ↔ R: Let tag = (r, c, v). Prove using 〈Ptag, Vtag〉 that there exists s ∈ {0, 1}n

so that c = Comr(v; s). Formally, prove the following statement (r, c, v) with
respect to the witness relation:

RL = {(r, c, v), s|c = Comr(v; s)}.

R: Verify that 〈Ptag, Vtag〉 is accepting.

Fig. 16. A statistically hiding nonmalleable string commitment protocol 〈C,R〉.

Theorem 6.8 (nmC with respect to opening). Suppose that {Comr}r∈{0,1}∗ is
a family of noninteractive commitment schemes and that 〈Ptag, Vtag〉 is a simulation-
extractable argument with an efficient prover strategy. Then 〈C,R〉 is a nonmalleable
commitment scheme with respect to opening. If, furthermore, {Comr}r∈{0,1}∗ is sta-
tistically hiding, then 〈C,R〉 is so as well.

Proof. We need to prove that the scheme satisfies the following three proper-
ties: computational binding, (statistical) hiding, and nonmalleability with respect to
opening.

20Note that, whereas our construction of statistically binding commitments required that the
simulation-extractable argument provides a simulation that is statistically close, here we are content
with a computationally indistinguishable simulation.
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We start by proving the hiding and nonmalleability properties and then return
to the proof of the binding property.

(Statistical) hiding. The hiding property follows directly from the hiding property
of Com. Note that if Com is statistically hiding, then 〈C,R〉 is also statistically
hiding.

Nonmalleability. We show that for every probabilistic polynomial-time man-in-
the-middle adversary A, there exist a probabilistic expected polynomial-time stand-
alone adversary S and a negligible function ν : N → N such that, for every irreflexive
polynomial-time computable relation R⊆{0, 1}n×{0, 1}n, every v∈{0, 1}n, and every
z∈{0, 1}∗, it holds that

Pr
[
mimA

open(R, v, z) = 1
]

< Pr
[
staSopen(R, v, z) = 1

]
+ ν(n).

We remark that the stand-alone adversary S constructed here will be conceptually
quite different from the one constructed in the proof of Theorem 6.1.

Description of the stand-alone adversary. We proceed to describing the stand-
alone adversary S. On a high level, S internally incorporates A and emulates the
commit phase of the left execution for adversary A by honestly committing to 0n

while externally forwarding messages in the right execution. Once A has completed
the commit phase, S interprets the residual adversary (after the completed commit
phase) as a man-in-the middle adversary A′ for 〈Ptag, Vtag〉. It then executes the
simulator-extractor S for A′ to obtain a witness to the statement proved in the right
execution by A′ (and thus A). Using this witness S can then complete the decommit
phase of the external execution. (Here we rely on the fact that 〈Ptag, Vtag〉 has an
efficient prover strategy.)

More formally, the stand-alone adversary S proceeds as follows on input z:
1. S internally incorporates A(z).
2. During the commit phase S proceeds as follows:

(a) S internally emulates the left interaction for A by honestly committing
to 0n.

(b) Messages from the right execution are forwarded externally.
3. Once the commit phase has finished S receives the value v. Let (r, c), (r̃, c̃)

denote the left- and right-execution transcripts of A (recall that the left ex-
ecution has been internally emulated, while the right execution has been
externally forwarded).

4. Construct a man-in-the-middle adversary A′ for 〈Ptag, Vtag〉. Informally, A′

will simply consist of the residual machine resulting after the above-executed
commit phase. More formally, A′(x,tag, z′) proceeds as follows:
(a) Parse z′ as (r̃, c̃, z).
(b) Parse x as (r, c, v).
(c) Internally emulate the commit phase (r, c), (r̃, c̃) for A(z) (i.e., feed A

the message r̃ as part of its right execution and c as part of its left
execution).

(d) Once the commit phase has finished, feed v to A.
(e) Externally forward all the remaining messages during the reveal phase.

5. Let S denote the simulator-extractor for A′.
6. Let x = (r, c, v), tag = (r, c, v), and z′ = (r̃, c̃, z).
7. Run S on input (x,tag, z′) to obtain the view view and the witness w̃.
8. Finally, if the statement proved in the right execution of view is x̃ = (r̃, c̃, ṽ)

(where ṽ is an arbitrary string), the right-execution proof is accepting and
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uses a tag ˜tag such that ˜tag �= tag, and w̃ contains a valid witness for x̃, run
the honest prover strategy Ptag on input x̃ and the witness w̃. (Otherwise,
simply abort.)

Analysis of the stand-alone adversary. Towards the goal of showing (6.2), we
define a hybrid stand-alone adversary Ŝ that also receives v as auxiliary input. Ŝ
proceeds exactly as S, but, instead of feeding A a commitment to 0n in the commit
phase, Ŝ instead feeds A a commitment to v.

Since both the experiment staopen and the experiment Ŝ are efficiently com-
putable, the following claim follows directly from the hiding property of Com.

Claim 6.9. There exists some negligible function ν′ such that

∣∣∣Pr
[
staSopen(R, v, z) = 1

]
− Pr

[
staŜopen(R, v, z) = 1

]∣∣∣ ≤ ν′(k).

We proceed to showing the following claim, which together with Claim 6.9 concludes
(6.2).

Claim 6.10. There exists some negligible function ν′′ such that

∣∣∣Pr
[
mimA

open(R, v, z) = 1
]
−
[
staŜopen(R, v, z) = 1

]∣∣∣ ≤ ν′′(k).

Proof. Towards the goal of showing this claim we introduce an additional hybrid

experiment hyb(R, v, z) which proceeds as follows: Emulate staS̃open(R, v, z), but, in-
stead of defining ṽ as the value (successfully) decommitted to by S, define ṽ as the
value (successfully) decommitted to in the view view output by simulator-extractor
S (in the execution by Ŝ). We start by noting that it follows directly from the in-
distinguishability property of the simulator-extractor S that the following quantity is
negligible:21

∣∣∣Pr
[
mimA

open(R, v, z) = 1
]
− Pr

[
hyb(R, v, z) = 1

]∣∣∣.
To conclude the claim, we show that

Pr
[
hyb(R, v, z) = 1

]
=

[
staŜopen(R, v, z) = 1

]
.

Note that the only difference between experiments hyb(R, v, z) and staŜopen(R, v, z) is

that, in hyb, the value ṽ is taken from the view output by S, whereas in staŜopen it is

defined as the value successfully decommitted to by Ŝ. Also recall that Ŝ “attempts”
to decommit to the value ṽ successfully decommitted to in the output by S; Ŝ is
successful in this task whenever S also is able to extract a witness to the right-
execution proof. Note that by the simulation-extractability property of 〈Ptag, Vtag〉
it follows that S always outputs a valid witness if the right execution in view is
accepting, as long as the tag ˜tag of the right execution is different from tag. Thus,
in case ˜tag �= tag, we conclude by the perfect completeness of 〈Ptag, Vtag〉 that
the output of experiments sta and hyb is defined in exactly the same way. In case
˜tag = tag, sta will output 0 (as Ŝ will not even attempt to decommit). However, in

this case, it holds that ṽ = v (since tag = (r, c, v) and ˜tag = (r̃, c̃, ṽ)); this means
that hyb will also output 0 (since R is irreflexive). The claim follows.

21We remark that here it is sufficient that the simulator-extractor outputs a view that is merely
computationally indistinguishable from the view in a “real” execution.
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We now return to the binding property.

Computational binding. The binding properties of the scheme intuitively follow
from the binding property of the underlying commitment scheme Com and the “proof
of knowledge” property implicitly guaranteed by the simulation-extractability prop-
erty of 〈Ptag, Vtag〉. A formal proof proceeds along the lines of the proof of nonmal-
leability (but is simpler.) More precisely, assume for contradiction that there exists
some adversary A that is able to violate the binding property of 〈C,R〉. We show
how to construct a machine Â that violates the binding property of Com. Â starts
by running A, letting it complete the commit phase by externally forwarding its mes-
sages. Once A has completed the commit phase, Â interprets the residual adversary
(after the completed commit phase) as a man-in-the middle adversary A′ (that ignores
all left-execution messages) for 〈Ptag, Vtag〉; a formal description of this adversary is
essentially identical to the one described in the proof of nonmalleability. Â then ex-
ecutes the simulator-extractor S for A′ to obtain a witness to the statement proved
in the right execution by A′ (and thus A). Using this witness Â can then complete
the decommit phase of the external execution of Com. It follows directly by the
indistinguishability property of the simulator-extractor S that Â violates the bind-
ing property of Com with essentially the same probability as A violates the binding
property of 〈C,R〉.

This completes the proof of Theorem 6.8.

Remark 6.11 (black-box vs. nonblack-box simulation). Note that the stand-alone
adversary S constructed in the proof of Theorem 6.8 is very different from the stand-
alone adversary constructed in the proof of Theorem 6.1. In particular S constructed
above in fact runs the simulator-extractor S (whereas in the proof of Theorem 6.1
the simulator extractor is simply used in the analysis). As a consequence (in contrast
to the simulator constructed in 6.1), the stand-alone adversary S constructed above
makes use of the man-in-the middle adversary in a nonblack-box way if relying on a
simulation-extractable argument with a nonblack-box simulator.

Since families of noninteractive statistically hiding commitments can be based on
collision-resistant hash functions [33, 10] we obtain the following corollary.

Corollary 6.12 (statistically hiding nonmalleable commitment). Suppose that
there exists a family of collision-resistant hash functions. Then there exists a constant-
round statistically hiding commitment scheme which is nonmalleable with respect to
opening.

Appendix. Missing proofs.

Proposition 4.2 (argument of knowledge). Let 〈PsWI , VsWI 〉 and 〈PUA, VUA〉 be
the protocols used in the construction of 〈PsUA, VsUA〉. Suppose that {Hn}n is colli-
sion resistant for T (n)-sized circuits, that Com is statistically hiding, that 〈PsWI , VsWI 〉
is a statistical witness indistinguishable argument of knowledge, and that 〈PUA, VUA〉
is a universal argument. Then, for any tag ∈ {0, 1}n, 〈Ptag, Vtag〉 is an interactive
argument of knowledge.

Completeness of 〈Ptag, Vtag〉 follows from the completeness property of 〈PsUA, VsUA〉.
Specifically, an honest prover P , who possesses a witness w for x ∈ L, can always
make the verifier accept by using w as the witness in the n parallel executions of
〈PsUA, VsUA〉. To demonstrate the argument of knowledge property of 〈Ptag, Vtag〉,
it will be sufficient to prove that 〈Ptag, Vtag〉 is an argument of knowledge. This is
because the prescribed verifier in 〈Ptag, Vtag〉 will accept the proof only if all runs of
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〈Ptagi
, Vtagi

〉 are accepting. 22

Lemma A.1. Suppose that {Hn}n is collision resistant for T (n)-sized circuits,
that Com is statistically hiding, that 〈PsWI , VsWI 〉 is a statistical witness-indistinguishable
argument of knowledge, and that 〈PUA, VUA〉 is a universal argument. Then, for any
tag ∈ [2n], 〈Ptag, Vtag〉 is an argument of knowledge.

Proof. We show the existence of an extractor machine E for protocol 〈Ptag, Vtag〉.
Description of the extractor machine. E proceeds as follows given oracle access

to a malicious prover P ∗. E, using black-box access to P ∗, internally emulates the
role of the honest verifier Vtag for P ∗ until P ∗ provides an accepting proof (i.e., if
P ∗ fails, E restarts P ∗ and attempts a new emulation of Vtag). Let σs denote the
messages received by P ∗, in the successful emulation by E, up until protocol 〈PWI, VWI〉
is reached; let P ∗

WI denote the residual prover P ∗(σs).
The extractor E next applies the witness extractor EWI for 〈PWI, VWI〉 on P ∗

WI.

If E
P∗

WI

WI outputs a witness w, such that RL(x,w) = 1, E outputs the same witness
w; otherwise it outputs fail. (The reason E constructs P ∗

WI as above is to ensure
that P ∗

WI convinces VWI with nonzero probability; otherwise EWI is not guaranteed to
extract a witness.)

Analysis of the extractor. Let P ∗ be a nonuniform PPT that convinces the honest
verifier Vtag of the validity of a statement x ∈ {0, 1}n with probability ε(n). We assume
without loss of generality that P ∗ is deterministic. We need to show the following
two properties:

1. The probability that P ∗ succeeds in convincing Vtag, but E does not output
a valid witness to x, is negligible.

2. The expected number of steps taken by E is bounded by poly(n)
ε(n) .

We start by noting that since E perfectly emulates the role of the honest verifier

Vtag, E requires in expectation poly(n)
ε(n) steps before invoking the extractor EWI. Addi-

tionally, by the proof-of-knowledge property of 〈PWI, VWI〉 it follows that the expected

running time of EWI is poly(n)
ε(n) . To see this, let the random variable T denote the

running time of EWI in the execution by E, and let T (σ) denote the running time of
EWI given that E chooses the prefix σ. We abuse of notation and let σ denote the
event that P ∗ receives the prefix σ in an interaction with Vtag; also let accept denote
the event that P ∗ produces a convincing proof. We have

E[T ] =
∑
σ

E[T (σ)] Pr(σ|accept) =
∑
σ

poly(n)

Pr[accept|σ]
Pr(σ|accept)

= poly(n)
∑
σ

Pr[σ]

Pr[accept]
=

poly(n)

Pr[accept]
=

poly(n)

ε(n)
,

where the second equality follows from the definition of a proof of knowledge. We

conclude by the linearity of expectations that the expected running time of E is poly(n)
ε(n)

and thus the second of the above properties holds.
We turn to show that also the first property holds. Assume that there exists some

polynomial p(n) such that, for infinitely many n, ε(n) ≥ 1
p(n) but EP∗

fails to output

a valid witness with probability 1
p(n) . Note that EP∗

can fail for two reasons:

22One could turn any cheating prover for 〈Ptag, Vtag〉 into a cheating prover for 〈Ptagi , Vtagi 〉 by
internally emulating the role of the verifier Vtagj for j �= i and forwarding the messages from Ptagi to
an external Vtagi .
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1. Either the extraction by EWI fails, or
2. EWI outputs 〈β, δ, s1, s2〉 so that

• β̂ = Com(β; s1),

• δ̂ = Com(δ; s2),
• (α, β, γ, δ) is an accepting transcript for 〈PUA, VUA〉.

If the second event occurs, we say that EWI outputs a false witness. Consider an
alternative extractor E′ which proceeds just as E except that if in the first emulation
of Vtag, P

∗ fails in producing a convincing proof, E′ directly aborts. Note that the only
difference between E and E′ is that E continues sampling executions until P ∗ produces
a convincing proof, whereas E′ samples only once. Since by our assumption, ε(n) ≥

1
p(n) , it follows that there exists some polynomial p′(n) such that in the execution

by E′, EWI either fails or outputs a false witness with probability 1
p′(n) . It directly

follows from the proof-of-knowledge property of 〈PWI, VWI〉 that EWI fails only with
negligible probability. We show below that EWI outputs a false witness also with
negligible probability; this is a contradiction.

Proposition A.2. In the execution of E′P∗
, EWI outputs a false witness with

negligible probability.

Proof. Towards proving the proposition we start by showing the following lemma.

Lemma A.3. Let P ∗
sUA be a nonuniform polynomial-time machine such that

E
P∗

sUA(α,γ)
WI outputs a false witness to the statement x̄ = (x, 〈h, c1, c2, r1, r2〉) with prob-

ability ε(n) = 1
poly(n) given uniformly chosen verifier messages α, γ. Then there ex-

ists a strict polynomial-time machine extract such that, with probability poly(ε(n)),
extract(P ∗

sUA, x̄) outputs

• an index i ∈ {1, 2},
• strings y, s, z such that z = h(Π), ri = Π(y, s), and ci = Com(z; s),
• a polynomial-time machine M such that M(j) outputs the jth bit of Π (M is

called the “implicit” representation of Π).

Proof. The proof of the lemma proceeds in the following two steps.

1. Using an argument by Barak and Goldreich [3], we use P ∗
sUA and EWI to con-

struct a prover P ∗
UA for the UARG 〈PUA, VUA〉 that succeeds with probability

poly(ε(n)).
2. Due to the weak proof of knowledge property of UARG we then obtain an

index i ∈ {1, 2}, strings y, s, a hash z = h(Π) so that ri = Π(y, s) and
ci = C(z; s). We furthermore obtain an “implicit” representation of the
program Π.

Step 1. Constructing P ∗
UA. P ∗

UA proceeds as follows.

• P ∗
UA starts by receiving a message α from the honest verifier VUA.

• P ∗
UA incorporates P ∗

sUA and internally forwards the message α to P ∗
sUA, result-

ing in a residual prover P ∗
sUA(α).

• P ∗
UA then internally emulates the role of the honest verifier for P ∗

sUA until
protocol 〈PWI, VWI〉 is reached (i.e., P ∗

UA uniformly choses a random message γ̄
that it forwards to P ∗

sUA, resulting in a residual prover P ∗
sUA(α, γ̄)). Thereafter,

P ∗
UA honestly emulates the verifier VWI for P ∗

sUA(α, γ̄)). If P ∗
sUA(α, γ̄) succeeds

in providing an accepting proof, P ∗
UA invokes the knowledge extractor EWI on

the prover P ∗
sUA(α, γ̄).

• In the event that P ∗
sUA(α, γ̄) does not produce an accepting proof, or if EWI

does not output an accepting tuple 〈β, δ, s1, s2〉, P ∗
UA halts. Otherwise, it

externally forwards the message β to VUA and receives as response γ.
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• P ∗
UA now rewinds P ∗

sUA until the point where it awaits the message γ and
internally forwards γ to P ∗

sUA, resulting in a residual prover P ∗
sUA(α, γ). As

before P ∗
UA first honestly verifies the WI proof that P ∗

UA(α, γ) gives and in the
case this proof is accepting applies the extractor EWI to P ∗

sUA(α, γ).
• If EWI outputs an accepting tuple 〈β′, δ′, s′1, s

′
2〉, such that β′ = β, P ∗

UA for-
wards δ to VUA, and otherwise it halts.

Since 〈α, β′, γ, δ′〉 is an accepting transcript of 〈PUA, VUA〉, it follows that unless P ∗
UA

halts the execution, it succeeds in convincing the verifier VUA.

We show that P ∗
UA finishes the execution with probability poly(ε(n)). Using the

same argument as Barak and Goldreich [3] (of counting “good” verifier messages, i.e.,
messages that will let the prover succeed with “high” probability; see Claim 4.2.1 in
[3]), it can be shown that, with probability poly(ε(n)), P ∗

UA reaches the case where the
extractor outputs 〈β′, δ′, s′1, s

′
2〉. Thus it remains only to show that conditioned on

this event, β′ �= β occurs with polynomial probability. In fact, the event that β′ = β
can occur only with negligible probability, or else we would contradict the binding
property of Com (since β̂ = Com(β, s1) = Com(β′, s′1)). We thus conclude that
P ∗

UA succeeds in convincing VUA with probability poly(ε(n)).

Furthermore, since the extractor EWI is applied only when P ∗
UA provides an ac-

cepting proof, it follows from the definition of a proof of knowledge that the expected
running time of P ∗

UA is a polynomial, say g(n). Finally, if we truncate the execution
of P ∗

UA after 2g(n) steps, we get by the Markov inequality that (the truncated) P ∗
UA

still convinces produces convincing proofs with probability poly(ε).

Step 2. Extracting the “false” witness. By the weak proof of knowledge property

of 〈PUA, VUA〉 there exists a strict PPT machine EUA such that E
P∗

UA

UA outputs an
“implicit” representation of a “witness” to the statement x̄ = (x, 〈h, c1, c2, r1, r2〉)
proved by P ∗

UA. Since the values i, y, s, z have fixed polynomial length, they can all be
extracted in polynomial time. Note, however, that since there is not a (polynomial)
bound on the length of the program Π, we can extract only an implicit representation
of Π. The concludes the proof of the lemma.

Armed with Lemma A.3, we now turn to show that EWI outputs a false witness
with negligible probability in the execution of E′P∗

. Suppose for contradiction that
there exists a polynomial p(n) such that, for infinitely many n’s, EWI outputs a false
witness, with probability at least ε(n) = 1

p(n) . We construct a T (n)O(1)-sized circuit

family, {Cn}n, that finds collisions for {Hn}n with probability poly(ε(n)).

More specifically, the following hold:

• On input h
r← Hn, the circuit Cn incorporates P ∗ and internally emulates

the honest verifier V for P ∗ until the protocol 〈PsUA, VsUA〉 is reached (i.e.,
Cn internally sends randomly chosen messages h, r1, r2 to P ∗, resulting in a
residual prover P ∗(h, r1, r2)).

• Cn then invokes the knowledge extractor extract, guaranteed by Lemma A.3,
on P ∗(h, r1, r2), extracting values i, y, s, z and an implicit representation of
Π, given by a machine M .

• If extract fails, Cn outputs fail; otherwise it rewinds P ∗ until the point where
it expects to receive the message ri and then continues the emulation of the
honest verifier from this point (using new random coins).

• Once again, when P ∗ reaches 〈PsUA, VsUA〉, Cn invokes extract on the residual
prover, extracting values i′, y′, s′, z′ and an implicit representation of Π′, given
by a machine M ′.

• If the extraction fails or if i′ �= i, Cn outputs fail.
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It remains to analyze the success probability of Cn. We start by noting that
y = y′ occurs only with negligible probability. This follows from the computational
binding property of Com. Since the probability that EWI outputs a false witness is
ε(n) it must hold that for a fraction ε(n)/2 of the verifier messages before protocol
〈PsUA, VsUA〉, EWI outputs a false witness with probability ε(n)/2 when given oracle
access to P ∗ having been fed messages in this set of “good” messages. Due to the
correctness of extract it holds that when Cn selects verifier messages from this “good”
set, the probability that extraction succeeds (in outputting a false witness) on P ∗ is

ε′ = poly(ε).

Thus, given that Cn picks random verifier messages, it holds that the probability that
extract succeeds is at least

ε′′ =
ε

2
ε′ = poly(ε).

Thus, there exists an index σ ∈ {1, 2} such that the extraction outputs the index
i = σ with probability ε′′′ = ε′′/2. Again, for a fraction ε′′′/2 of verifier messages
before slot σ (when σ = 1, there is only one message, namely h, while when σ = 2,
the messages are h, r1), the residual prover (P ∗(h) when σ = 1, or P ∗(h, r1) when
σ = 2) succeeds in convincing the verifier with probability ε′′′/2. We conclude that
with probability

ε′′′/2 · (ε′′′/2)2 = poly(ε)

Cn obtains an implicit representation of programs Π,Π′ such that ∃y, y′ ∈ {0, 1}(|ri|−n)

for which Π(y) = ri, Π′(y′) = r′i, and h(Π) = h(Π′). Using a simple counting argu-
ment it follows that with probability (1 − 2−n) (over the choices of ri, r

′
i), Π �= Π′.23

Thus, by fully extracting the programs (from the implicit representation) Cn finds a
collision with probability

poly(ε) · (1 − 2−n) = poly(ε).

Note that the time required for extracting these programs is upper bounded by
T (n)O(1). Thus, any poly-time prover P ∗ that can make V accept x �∈ L with nonneg-

ligible probability can be used in order to obtain collisions for h
r← Hn in time T (n)O(1)

(note that here we additionally rely on the fact that extract is a strict polynomial-
time machine), in contradiction to the collision resistance of {Hn}n against T (n)-sized
circuits.24 This concludes the proof of the proposition.

This completes the proof of Lemma A.3.
Basing the construction on “standard” collision-resistant hash functions. Although

the above analysis (for the proof of knowledge property of 〈Ptag, Vtag〉) relies on the
assumption that {Hk}k is a family of hash functions that is collision resistant against
T (k)-sized circuits, we note that, by using the method of Barak and Goldreich [3], this
assumption can be weakened to the (more) standard assumption of collision resistance
against polynomial-sized circuits. The main idea in their approach is to replace the
arbitrary hashing in Slots 1 and 2 with the following two-step hashing procedure:

23Fix Π,Π′, y, ri. Then, with probability 2−n over the choice of r′i, there exist a y′ ∈ {0, 1}(|r′i|−n)

so that Π′(y′) = r′i.
24We mention that by slightly modifying the protocol, following the approach by Barak and

Goldreich [3], one can instead obtain a polynomial-sized circuit Cn finding a collisions for Hk. More
details follow after the proof.
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• Apply a “good”25 error-correcting code ECC to the input string.
• Use tree hashing [29, 8] to the encoded string.

This method has the advantage that, in order to find a collision for the hash function
in the “proof of knowledge” proof, the full description of programs Π,Π′ is not needed.
Instead it is sufficient to look at a randomly chosen position in the description (which
can be computed in polynomial time from the implicit representation of Π,Π′). The
analysis here relies on the fact that two different codewords differ in random position
i with a (positive) constant probability.
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Abstract. We initiate the study of quantifying nonlocality of a bipartite measurement by the
minimum amount of classical communication required to simulate the measurement. We derive gen-
eral upper bounds in terms of some tensor norms of the measurement operator. As applications, we
show that (a) if the amount of communication is a constant, then quantum and classical communi-
cation protocols with an unlimited amount of shared entanglement or shared randomness compute
the same class of functions; and (b) it requires only a constant amount of communication to classi-
cally generate an approximation of the output distribution resulting from local measurements on an
entangled quantum state, as long as the number of measurement outcomes is a constant.
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1. Introduction and summary of results.

1.1. Background. Although Einstein himself made significant contributions to
the development of quantum mechanics, he famously questioned the “completeness”
of the theory with a “paradox” that he formulated with Podolsky and Rosen [17].
Following Bohm [7], the essence of the paradox is that two “quantum coins,” possessed
by two parties called Alice and Bob, may correlate in a state

1√
2

(|Head〉A|Tail〉B − |Tail〉A|Head〉B) .

If each party measures his or her coin, with 1/2 probability, one of the two outcomes
is observed. However, once a measurement is made by one party, say, Alice, then Bob
would always observe the opposite outcome with certainty. A unique property of the
state is that no matter what physical property of the coins is measured—whether
it be their positions or their velocities—Bob’s outcome is always opposite to that of
Alice’s with certainty. It appeared to Einstein that this consequence could not be fully
explained by quantum mechanics, since the uncertainty principle implies that not all
pairs of properties can be determined with certainty.

The Einstein–Podolsky–Rosen (EPR) paradox does not show that quantum me-
chanics is inconsistent. In the far-reaching paper [3], Bell formulated a set of inequal-
ities, now referred to as Bell inequalities, that must be satisfied by the correlations
produced by any so-called hidden variable model of classical physics but nevertheless
would be violated by some quantum correlations. The violation has been confirmed
by several experiments (see, e.g., [40]). The EPR paradox instead reveals the essential
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property of quantum states—quantum entanglement—that underlies the many coun-
terintuitive properties and powerful applications of quantum information. A seminal
example is the quantum teleportation protocol [4], which makes use of one EPR state
to transmit a quantum bit by sending two classical bits. Another example is the con-
struction of unconditionally secure quantum key distribution protocols [5, 18, 28, 30].

Given its importance, quantum entanglement has been the subject of numerous
studies (see, e.g., the books [33, 34]). The focus has been on understanding the inherent
quantitative trade-offs among various resources involved in the creation and conversion
of entangled states. As entanglement is the result of nonlocal quantum interactions,
understanding various aspects of the nonlocality of quantum operations is also of
fundamental importance. Quantifying nonlocality of quantum operators is precisely
the purpose of this paper.

1.2. Main result. A natural nonlocality measure of a quantum operation is its
generating capacity, which is the maximum entanglement increase that it can create
(see, e.g., [6]). Another approach, from more of a computational point of view, is
to measure nonlocality by the amount of resources, such as the time for evolving
elementary Hamiltonians or the number of elementary gates, required to simulate the
operator (see, e.g., [11, 12]).

In this paper, we take a different approach and investigate a nonlocality measure
in the framework of communication complexity. Our work is not the first to apply
communication complexity to the study of entanglement. There are studies, which we
will review shortly, on the classical communication complexity of simulating quan-
tum correlations. Nevertheless, our emphasis is on quantum operators. Although we
focus on measurement operators, our approach can be extended to the most general
quantum operations.

Consider the following quantum process. Alice and Bob share a bipartite state
|E〉AB . They apply local operations RA and RB to their systems, before a final mea-
surement Q is applied to the joint system, producing a distribution μ = μ(Q, |E〉,
RA, RB) of measurement outcomes.

Imagine now that Alice and Bob can process only classical information. However,
they both have a classical description of Q and |E〉. In addition, Alice has a classical
description of RA, and Bob has that of RB . They hope to simulate the quantum
process by producing a random output whose distribution is close to μ. Since Alice
does not know RB and Bob does not know RA, the simulation requires communication.
We allow Alice and Bob to share an unlimited supply of random bits. We define the
classical communication complexity of Q, denoted by Com(Q), to be the minimum
number of bits that need to be exchanged by a simulating protocol that works for all
|E〉, RA, and RB .

Intuitively, Com(Q) reflects how nonlocal Q is. Consider, for example, the ex-
tremal case that Q is the tensor product of two local operations. If there is no quan-
tum correlation in the initial state, it is clear that Alice and Bob could simulate the
quantum process without interaction. We shall see that even if the initial state is
entangled, they need only exchange a constant number of bits.

On the other hand, Com(Q) would be much larger for highly nonlocal Q. Let
n ≥ 1 be an integer. Consider the following operator:

(1) IPn
def
=

∑
x,y∈{0,1}n

x·y=1

|x〉〈x| ⊗ |y〉〈y|.
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When RA creates a state |x〉, x ∈ {0, 1}n, and RB creates |y〉, y ∈ {0, 1}n, then
(IP )n determines if x · y = 1. This is the so-called “inner product” function, which
is well studied in the communication complexity literature. It is well known that any
classical communication protocol for solving the inner product requires Ω(n) bits of
communication. In fact, Cleve et al. [14] proved that Ω(n) quantum bits are necessary,
too. Thus Com(IP) = Ω(n). We do not know if this bound for Com(IP) is tight.

The goal of this paper is to give a general estimation of Com(Q) and its applica-
tions. It is not immediately clear if Com(Q) is finite for all Q acting on a finite space,
since the dimension of the initial state |E〉 could be arbitrarily large. Our main result
is to derive a general upper bound on Com(Q) in terms of a certain operator norm
‖Q‖� on Q, which is bounded from above by a polynomial in the dimension of Q.

Theorem 1.1 (informally). For any bipartite measurement Q, Com(Q) =
O(‖Q‖2

�). In particular, if K is the dimension of the space that Q acts on, Com(Q) =
O(K2).

The diamond norm ‖ · ‖� was originally defined on superoperators and has been
a powerful tool in the study of quantum interactive proof systems [22] and quantum
circuits on mixed states [1]. We use a natural mapping from bipartite operators to
superoperators to define the diamond norm on the former based on the diamond norm
on the latter.

The approach in proving Theorem 1.1 can be extended to obtain general upper
bounds on Com(Q) in terms of other operators norms. Those norms belong to so-called
tensor norms, i.e., norms ‖ · ‖α that satisfy ‖P‖α ≤ ‖A‖ · ‖B‖ whenever P = A⊗B.
Tensor norms have been studied for decades and have yielded a great deal of rich
concepts and deep results (see, e.g., [16]). In recent years, they have been applied to
quantum information theory to characterize and quantify the nonlocality of quantum
states [37, 38]. The tensor norms that appear in our upper bounds capture
the nonlocality of bipartite operators in their own ways and may have further
applications.

1.3. Applications on quantum communication complexity. After obtain-
ing general upper bounds on Com(Q), we show that they in turn have useful
applications on quantum communication complexity. Recall that in the setting of com-
munication complexity [42, 43], Alice and Bob wish to compute a function f(x, y),
of which x is known only to Alice and y is known only to Bob. The communication
complexity of f is the minimum amount of information that Alice and Bob need to
exchange in order to compute f correctly for any input. Communication complex-
ity has been a major research field (see, e.g., the book [27]), with a wide range of
applications.

A concrete application of our result is on the advantage of sharing entanglement
in quantum protocols, a question that has puzzled many researchers [13, 9, 24, 31]. It
is known that sharing entanglement could give a constant additive advantage [13, 9]
or save a half of the communication [14]. However, little is known on the limit of the
advantage. This is in sharp contrast with the classical case of sharing randomness,
where we know that it can only save at most a logarithmic additive term [32]. If there
is a quantum protocol that exchanges q qubits with m qubits of prior entanglement,
then the best classical simulation we know (see, e.g., [25]) is exp(Ω(q + m)). This is
embarrassingly large, especially when q 
 m. Using our upper bound on the classical
communication complexity of nonlocal operators, we prove the following result. Recall
that in the simultaneous message passing (SMP) model with shared randomness, the
two parties holding the inputs share an arbitrarily long random string and send a
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single message to a third party, who is required to determine the outcome correctly
with high probability.

Theorem 1.2. If a two-party quantum protocol uses q qubits of communication
and m qubits of share entanglement, then it can be simulated by a classical protocol
using exp(O(q)) bits with shared randomness. The simulation does not depend on m.
Furthermore, it can be carried out in the SMP model with shared randomness.

Notice that the exponential dependence on q cannot be improved because of the
existence of an exponential gap between the quantum and classical communication
complexities for partial functions [35]. As a consequence of the above theorem, we
have the following corollary.

Corollary 1.3. If a communication complexity problem has a constant cost
quantum communication protocol with shared entanglement, it also has a constant
cost classical SMP protocol with shared randomness.

It is interesting to contrast the above with the following recent result by Yao [44].
Theorem 1.4 (see [44]). If a communication complexity problem of input size

n has a constant cost classical SMP protocol with shared randomness, then it has an
O(log n) cost quantum SMP protocol without shared entanglement.

Combining this result with ours, we have the next corollary.
Corollary 1.5. If a communication complexity problem of input size n has a

constant cost two-party quantum protocol with shared entanglement, it has an O(log n)
cost quantum SMP protocol without shared entanglement.

1.4. Applications on simulating quantum correlations. Yet another ap-
plication of our result is in the classical simulation of quantum correlations. Suppose
that two parties, Alice and Bob, are given an entangled quantum state |E〉. Alice then
applies a local measurement QA to her system and Bob applies QB to his. The result
is a correlated joint distribution μ(|E〉, QA, QB) on both measurement outcomes. If
Alice and Bob do not communicate, the resulting distribution may violate the Bell
inequalities, and hence may be impossible to generate by the hidden variable model
of classical physics [3].

A natural question following from the above work of Bell is how much communi-
cation is required for Alice and Bob to simulate the quantum correlation. Most works
in this direction focus on the exact simulation and on measurements applied to a
constant number of qubits [41, 2, 15, 39, 8, 29]. We study the approximate simulation
of quantum correlations, where the measurement outcomes take a constant number of
possible values while the dimension of the shared entangled state may be arbitrarily
large.

Theorem 1.6 (informally). Let δ ∈ (0, 2), and let |E〉 be a bipartite state. Then
there exists a randomized communication protocol that exchanges an O

(
log 1

δ /δ
2
)

number of bits, and for each pair of local measurements (RA, RB), the protocol outputs
a distribution that is within δ deviation in statistical distance from μ(|E〉, RA, RB).

1.5. Organization. The rest of the paper is organized as follows. We start with
the description of a general framework for classical simulation of quantum protocols.
The cost parameter of this framework is then optimized in the next section, giving
the main theorem. In the section that follows we give applications of the theorem.
Finally, we conclude with several open problems.

2. A simulation framework. Our classical simulation of quantum protocols
falls into the following framework. Let p be the acceptance probability (i.e., the
probability of outputting 1) of a given quantum protocol (which arises either from a
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communication task or from a bipartite measurement). We use p = 〈ψA|ψB〉 to denote
two vectors |ψA〉 and |ψB〉 that can be prepared by Alice and Bob, respectively. Note
that the lengths of the two vectors may be very large in general. Indeed, the shorter
their lengths are, the better the simulation is.

More precisely, if for some number C, ‖|ψA〉‖ ≤ C and ‖|ψB〉‖ ≤ C, then the
following simulation uses O(C4) bits. Alice and Bob send Charlie ‖|ψA〉‖ and ‖|ψB〉‖,
respectively, up to O(1/C) precision. This requires O(logC) bits. They then proceed to
estimate cos θ for the angle θ between |ψA〉 and |ψB〉 up to a precision of O(1/C2). The
protocol in Kremer, Nisan, and Ron [26], which is based on the following observation
of Goemans and Williamson [20], gives a protocol that accomplishes the latter task
using O(C4) bits.

Assume for simplicity that all vectors are real (the complex number case can be
easily reduced to the real case). If |ψ〉 is a random unit vector in the same space of
|φA〉 and |φB〉, then

(2) Prob [sign(〈ψ|ψA〉) �= sign(〈ψ|ψB〉)] = θ/π.

Hence, in order to estimate cos θ with error term δ′, it suffices to estimate θ/π to some
error term O(δ′) using the above equality checking of signs. This can be achieved
by a simple SMP protocol that repeats the following: Alice and Bob interpret the
shared randomness as a unit vector |ψ〉; they then send sign(〈ψ|ψA〉) and sign(〈ψ|ψB〉),
respectively, to Charlie. By a simple application of the Chernoff bound, an O

(
log 1

ε /δ
′2)

number of repetitions is sufficient to give an estimation of p with δ′ accuracy, and the
protocol may fail with ≤ ε probability. With δ′ = O(δ/C2), this is O

(
C4 log 1

ε /δ
2
)

bits.
We note that, using a similar approach, Toner and Bacon [41] gave a protocol that

produces a random ±1 variable whose expectation is precisely cos θ. Their protocol is
not asymptotically more efficient than the above. We summarize the above simulation
result as follows.

Theorem 2.1 (see [26, 20]). Suppose that the acceptance probability p of a quan-
tum protocol can be expressed as p = 〈ψA|ψB〉, where |ψA〉 and |ψB〉 are vectors that
can be prepared by each party individually and ‖|ψA〉‖, ‖|ψB〉‖ ≤ C for some C > 0.
Then there is a randomized SMP protocol with shared randomness in which (a) Alice
and Bob send O

(
C4log 1

ε /δ
2
)

bits to Charlie, and (b) Charlie outputs a number p′ such
that |p′ − p| ≤ δ with probability ≥ 1 − ε.

3. The main theorem. In this section, we formally define the classical com-
munication complexity and the diamond norm of bipartite quantum operators, and
derive an upper bound on the former in terms of the latter. We shall focus on the case
when the measurement gives two outcomes and the dimensions of the two systems
are the same. Our results can be extended trivially to more general cases.

We use script letters, N , M, F , . . ., to denote Hilbert spaces and use L(N ) to
denote the space of operators on N . The identity operator on N is denoted by IN , and
the identity superoperator on L(N ) is denoted by IN . Recall that a positive-operator-
valued measurement (POVM) on a Hilbert space H is a set of positive semidefinite
operators {Q1, Q2, . . . , Qm} on H such that

∑m
i=1 Qi = IH. Each Qi is called a mea-

surement element and corresponds to the measurement outcome i. We may refer to a
semidefinite operator Q, 0 ≤ Q ≤ 1, as a measurement element of the implicit binary
POVM {Q, I − Q}. In this paper, physically realizable operator means a completely
positive superoperator that does not increase the trace. For more details on the basic
notions of quantum information processing, see the textbooks [33, 34].
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3.1. Classical simulation of bipartite measurement. In this subsection we
define the central concept of this paper, which is the classical communication com-
plexity of quantum measurement.

Definition 3.1. Let δ, ε ∈ (0, 1/2), and let Q ∈ L(NA ⊗NB) be a measurement
element. The classical communication complexity of Q with precision δ and success
probability 1 − ε, denoted by Comδ,ε(Q), is the minimum integer k such that there is
a randomized communication protocol between two parties Alice and Bob with shared
randomness that uses k bits and satisfies the following conditions for any bipartite
state |E〉 ∈ L(MA ⊗MB) and physically realizable operators RA : L(MA) → L(NA)
and RB : L(MB) → L(NB):

1. Alice’s input is a classical description of |E〉 and RA; similarly, Bob’s input
is a classical description of |E〉 and RB.

2. The protocol outputs a real number p such that

|p− tr(Q(RA ⊗RB)(|E〉〈E|))| ≤ δ

with probability at least 1− ε. The probability is over the shared randomness.

3.2. The diamond norm on bipartite operators. Let N be a Hilbert space
and T : L(N ) → L(N ) be a superoperator. The diamond norm on superoperators is
defined as [23]

‖T‖�
def
= inf{‖A‖‖B‖ : trF (A ·B†) = T, A, B ∈ L(N ,N ⊗F)}.

For our application, the following alternative characterization of the diamond norm
is more convenient.

Lemma 3.2 (see, e.g., [23]). For any superoperator T ,

‖T‖� = inf

⎧⎨
⎩

∥∥∥∥∥
∑
t

A†
tAt

∥∥∥∥∥
1/2

·
∥∥∥∥∥
∑
t

B†
tBt

∥∥∥∥∥
1/2

: At, Bt ∈ L(N ), T =
∑
t

At ·B†
t

⎫⎬
⎭ .

Let NA, NB , and N be Hilbert spaces of the same dimension. We fix an iso-
morphism between any two of them. For an operator in one space, we use the same
notation for its images and preimages, under the isomorphisms, in the other spaces.

Let Q ∈ L(NA ⊗ NB) be a bipartite operator, and let Q =
∑

t At ⊗ B†
t for

some At ∈ L(NA) and Bt ∈ L(NB). Define a mapping T from bipartite operators on

NA ⊗ NB to superoperators L(N ) → L(N ) by mapping Q → T (Q)
def
=

∑
t At · B†

t .
By direct inspection, the mapping is independent of the choice of the decomposition
of Q and is in fact an isomorphism.

Definition 3.3. Let Q ∈ L(NA⊗NB) be a bipartite operator. The diamond norm

of Q, denoted by ‖Q‖�, is ‖Q‖�
def
= ‖T (Q)‖�.

By Lemma 3.2, for any Q,

‖Q‖� = inf

{ ∥∥∥∥∥
∑
t

A†
tAt

∥∥∥∥∥
1/2

·
∥∥∥∥∥
∑
t

B†
tBt

∥∥∥∥∥
1/2

:

At ∈ L(NA), Bt ∈ L(NB), Q =
∑
t

At ⊗B†
t

}
.
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Note that if a superoperator T = A ·B for some A,B ∈ L(N ), ‖T‖� = ‖A‖ · ‖B‖.
Therefore the diamond norm on bipartite operators is a tensor norm.

Lemma 3.4. For all A,B ∈ L((N)), ‖A⊗B‖� = ‖A‖ · ‖B‖.
A nice property of the superoperator diamond norm is that it is “stable”; i.e., it

remains unchanged when tensored with the identity operator on an additional space
[23].

Lemma 3.5. Let N , M, and F be Hilbert spaces, and let T : L(N ) → L(M) be
a superoperator. Then ‖IF ⊗ T‖� = ‖T‖�.

This stability property carries over to our diamond norm and is important for
our applications. Let FA and FB be Hilbert spaces of the same dimension, and let
Q ∈ L(NA ⊗NB). Denote by QFA,FB

the bipartite operator Q⊗ IFA⊗FB
, where the

two subsystems are NA ⊗FA and NB ⊗FB .
Lemma 3.6. For any Q, ‖QFA,FB

‖� = ‖Q‖�.
If Q is a measurement element of a POVM acting on a Hilbert space of dimension

K, then we have the following upper bound on ‖Q‖�.
Proposition 3.7. Let Q be a bipartite measurement element acting on HA⊗HB.

Then ‖Q‖� ≤ dim(HA ⊗HB).
Proof. Let Kmin = min{dim(HA),dim(HB)}, and let K = dim(HA ⊗HB). Fix a

pure state |u〉 ∈ HA ⊗HB and denote its Schmidt decomposition as

|u〉 =

Kmin∑
i=1

√
pi|i〉A|i〉B ,

where pi ≥ 0,
∑

pi = 1, and {|i〉A : 1 ≤ i ≤ dim(HA)}, {|i〉B : 1 ≤ i ≤ dim(HB)} are
orthonormal bases for the two subsystems, respectively. Then

|u〉
〈
u| =

Kmin∑
i,j=1

√
pipj |i

〉

A

〈j|A ⊗ |i〉B〈j|B .

Let Ai,j =
√
pi|i〉A〈j|A and Bi,j =

√
pj |j〉B〈i|B . We have∥∥∥∥∥∥

Kmin∑
i,j=1

A†
i,jAi,j

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
i,j

pi〈i|A|i〉A|j〉A〈j|A

∥∥∥∥∥∥ = 1.

Similarly, ‖
∑

i,j B
†
i,jBi,j‖ = 1. Thus,

‖|u〉〈u|‖� = ‖T (|u〉〈u|)‖� ≤

√√√√√
∥∥∥∥∥∥
∑
i,j

A†
i,jAi,j

∥∥∥∥∥∥
√∑

i,j

B†
i,jBi,j ≤ 1.

Since Q a is measurement element, Q =
∑K

i=1 ci|ui〉〈ui| for some ci ∈ [0, 1] and

an orthonormal basis {ui : 1 ≤ i ≤ K}. Thus ‖Q‖� ≤
∑K

i=1 ci‖|ui〉〈ui|‖� ≤ K.
This bound is not far from being optimal for IPn, in which case K = 22n. To

prove a lower bound on ‖IPn‖�, we use a fundamental characterization of the diamond
norm (see [23, Theorem 11.1]).

Theorem 3.8 (see [23]). Let T : L(N ) → L(N ) be a superoperator and G be a
space of the same dimension as N . Then

(3) ‖T‖� = sup
ρ∈L(N⊗G),ρ�=0

‖(T ⊗ IG)(ρ)‖tr

‖ρ‖tr
.
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Proposition 3.9. For the IPn operator defined in (1), ‖IPn‖� ≥ 2n/2−1 − 1/2.

Proof. By definition,

T (IPn) =
∑

x,y∈{0,1}n

x·y=1

|x〉〈x| · |y〉〈y|.

Setting ρ =
∑

x,y |x〉〈y| ⊗ IG in (3), we have

‖T (IPn)‖� ≥ 1

2n

∥∥∥∥∥∥∥∥
∑

x,y∈{0,1}n

x·y=1

|x〉〈y|

∥∥∥∥∥∥∥∥
tr

.

Let A =
∑

x,y∈{0,1}n, x·y=1 |x〉〈y|, J be the all-one matrix, and let H be the

Hadamard matrix (i.e.,
∑

x,y∈{0,1}n(−1)x·y|x〉〈y|). Then A = 1
2 (J −H). The largest

eigenvalue of J is 2n and all other eigenvalues are 0; thus ‖J‖tr = 2n. All of the
eigenvalues of H are ±2n/2; thus ‖H‖tr = 23n/2. Therefore,

‖A‖tr ≥
1

2
(‖H‖tr − ‖J‖tr) =

1

2
(23n/2 − 2n).

Thus ‖IPn‖� ≥ 2n/2−1 − 1/2.

We conclude this subsection by noting that our diamond norm on bipartite oper-
ators appears natural in connection with the following matrix analogy of the Cauchy–
Schwarz inequality.

Theorem 3.10 (see Jocić [21]). For any operators At and Bt,

(4)

∥∥∥∥∥
∑
t

At ⊗B†
t

∥∥∥∥∥ ≤
∥∥∥∥∥
∑
t

A†
tAt

∥∥∥∥∥
1/2

·
∥∥∥∥∥
∑
t

B†
tBt

∥∥∥∥∥
1/2

.

Inequality (4) may actually be proved by the same approach that we use to prove
Theorem 3.11 below.

3.3. Upperbounding Com(Q) by the diamond norm. We now use the
diamond norm to derive an upper bound on Comδ,ε(Q). Recall that if M and N are
two Hilbert spaces, an isometric embedding U : M → N is a linear map that satisfies
U†U = IM.

Theorem 3.11. For any bipartite measurement element Q,

(5) Comδ,ε(Q) = O

(
‖Q‖2

� · log
1

ε

/
δ2

)
.

In particular, Comδ,ε(Q) = O(K2 log 1
ε /δ

2), where K is the dimension of the space
on which Q acts. Furthermore, this upper bound can be achieved by an SMP protocol
with shared randomness.

Proof. Fix a bipartite state |E〉 ∈ MA ⊗MB and physically realizable operators
RA : L(MA) → L(NA), RB : L(MB) → L(NB). We first consider the case when
RA = U · U† for an operator U : MA → NA with ‖U‖ ≤, and similarly, RB = V · V †
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for V : MB → NB with ‖V ‖ ≤ 1. Without loss of generality, we assume that Alice
and Bob have agreed on a Schmidt decomposition,

|E〉 =

min{dim(NA),dim(NB)}∑
i=1

√
pi|i〉A ⊗ |i〉B ,

for some pi ≥ 0,
∑

i pi = 1, for an orthonormal basis {|i〉A}i of NA, and for an

orthonormal basis {|i〉B}i of NB . Denote by |iA〉
def
= U |i〉, and |iB〉

def
= V |i〉. Then Q

is applied to |Ē〉 def
= (U ⊗ V )|E〉 =

∑
i

√
pi|iA〉 ⊗ |iB〉.

Suppose ‖Q‖� is achieved under the decomposition Q =
∑

t At ⊗B†
t with which,

if QA
def
=

∑
t A

†
tAt and QB

def
=

∑
t B

†
tBt, we have ‖QA‖ = ‖QB‖ = ‖Q‖�. With those

definitions, we have

p = 〈Ē|Q|Ē〉 =
∑
i,j,t

√
pipj 〈iA|At|jA〉 · 〈iB |B†

t |jB〉.

Define two vectors

|ψA〉
def
=

∑
i,j,t

√
pj 〈jA|A†

t |iA〉 |i, j, t〉,(6)

|ψB〉
def
=

∑
i,j,t

√
pi 〈iB |B†

t |jB〉 |i, j, t〉.(7)

Then p = 〈ψA|ψB〉. With ρA
def
=

∑
j pj |jA〉〈jA|,

〈ψA|ψA〉 =
∑
i,j,t

pj |〈jA|A†
t |iA〉|2 ≤ tr(ρAQA) ≤ ‖QA‖ = ‖Q‖�.

Similarly, 〈ψB |ψB〉 ≤ ‖QB‖ = ‖Q‖�. Therefore, by Theorem 2.1, there is an
SMP protocol that outputs an δ-approximation of p with probability ≥ 1 − ε using
O
(
‖Q‖2

� · log 1
ε /δ

2
)

bits. This bound is O(K2 log 1
ε /δ

2) as ‖Q‖� ≤ K by Proposi-
tion 3.7.

In general, RA = TraceFA
(U · U†) for an operator UA : MA → NA ⊗ FA with

‖U‖ ≤ 1, and similarly, RB = TraceFB
(V · V †) for V : MB → NB ⊗ FB . Then

p = tr(Q⊗ IFA⊗FB
(U ⊗V )|E〉〈E|(U† ⊗V †)). Thus this case reduces to the first case,

since ‖QFA,FB
‖� = ‖Q‖�, by Lemma 3.6.

Remark 3.12. One may improve the above upper bound on Comδ,ε(Q) by a more
carefully chosen |ψA〉 and |ψB〉 in (6) and (7). More specifically, let α ∈ [0, 1], define

|ψα
A〉 =

∑
i,j,t

√
pαi p

1−α
j 〈jA|A†

t |iA〉 |i, j, t〉

and

|ψα
B〉 =

∑
i,j,t

√
p1−α
i pαj 〈iB |B†

t |jB〉 |i, j, t〉.

One can verify that minimizing ‖|ψA〉‖ · ‖|ψB〉‖ over all decompositions of Q gives
rise to a tensor norm; we do not know if is stable under tensoring with identity
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superoperators. Although we have not found any useful application of an α �= 0, we
cannot rule out the possibility that a carefully chosen α may give a better bound.

Remark 3.13. In the case that |E〉 is not entangled, the approach in Theorem 3.11
can be used to derive a systematic classical simulation. More specifically, in this con-
text we would like to estimate p = 〈φA|⊗〈φB |Q|φA〉⊗|φB〉 for a state |φA〉 known only

to Alice and a state |φB〉 known only to Bob. For a decomposition of Q =
∑

t At⊗B†
t ,

we define

|ψA〉 =
∑
t

〈φA|A†
t |φA〉|t〉 and |ψB〉 =

∑
t

〈φB |B†
t |φB〉|t〉.

Then p = 〈ψA|ψB〉. It can be verified that

‖Q‖⊗
def
= inf

{
‖ψA‖ · ‖ψB‖ : Q =

∑
t

At ⊗B†
t

}

is a tensor norm and ‖Q‖⊗ ≤ ‖Q‖�. This approach gives a constant cost simulation
of the elegant quantum fingerprint protocol of Buhrman et al. [10] for testing equality
of two input strings.

4. Applications. We now apply Theorem 3.11 to derive classical upper bounds
on quantum communication complexity.

4.1. Quantum SMP with shared entanglement. If the quantum protocol
is in the SMP model with shared entanglement, we immediately have the following.

Corollary 4.1 (of Theorem 3.11). If, in a quantum SMP protocol, Charlie ap-
plies a measurement P , then the protocol can be simulated by a classical SMP protocol
with shared coins and using O(‖P‖2

�) bits.

4.2. Two-party interactive quantum communication with shared entan-
glement. Now consider the general two-party interactive quantum communication.
We need the following lemma by Razborov [36] and Yao [43].

Lemma 4.2 (see [36, 43]). Let P be a two-party interactive quantum communi-
cation protocol that uses q qubits. Let HA and HB be the state spaces of Alice and
Bob, respectively. For an input (x, y), denote by |Φx,y〉AB the joint state of Alice and
Bob before the protocol starts. Then there exist linear operators Ah ∈ L(HA) and
Bh ∈ L(HB) for each h ∈ {0, 1}q−1 such that

(a) ‖Ah‖ ≤ 1 and ‖Bh‖ ≤ 1 for all h ∈ {0, 1}q−1;
(b) the acceptance probability of P on input x and y is ‖P |Φx,y〉‖2, where

P
def
=

∑
h∈{0,1}q−1

Ah ⊗Bh.

We are now ready to prove Theorem 1.2.
Proof of Theorem 1.2. Let |E〉 ∈ NA ⊗ NB be the shared entanglement. For an

n-bit binary string x, denote by Ux : NA → HA the isometric embedding that maps
|φ〉 → |φ〉⊗|x〉⊗|0 · · · 0〉. The isometric embedding Vy : NB → HB is defined similarly.
Then |Φx,y〉 = (Ux⊗Vy)|E〉. Let P , Ah, and Bh be the quantum protocol and the linear
operators described in Lemma 4.2. To simulate the quantum protocol is to simulate
the measurement element P †P on |E〉, Ux · U†

x, and Vy · V †
y . By Theorem 3.11, the

acceptance probability can be estimated with O(‖P †P‖2
�) bits of communication in
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the SMP model with shared randomness. Since

‖P †P‖� ≤
∑
h,h′

‖
(
(Ah′)†Ah

)
⊗
(
(Bh′)†Bh

)
‖� =

∑
h,h′

‖Ah‖‖Ah′‖‖Bh‖‖Bh′‖ ≤ 22(q−1),

the number of bits communicated in the protocol is exp(O(q)).
Corollary 1.3 follows trivially from the above by setting q to be a constant. Corol-

lary 1.5 follows immediately from Theorem 1.4 and Corollary 1.3.

4.3. Simulating quantum correlations. We shall define precisely what we
mean by simulating quantum correlations.

Definition 4.3. A quantum measurement game is a tuple G = (|E〉AB ,PA,PB ,
VA,VB), where |E〉AB is a bipartite quantum state, PA (PB) is a set of POVM
measurements on the system A (B), and the union of their measurement outcomes is
VA (VB).

We denote by {P v
A : v ∈ VA} the measurement elements for PA ∈ PA (and

similarly for PB ∈ PB), where P v
A is the measurement element yielding outcome v.

For PA ∈ PA and PB ∈ PB , denote by ωG(PA, PB) the distribution on VA × VB

when PA ⊗ PB is applied to |E〉. Recall that the statistical distance between two

distributions π = (p1, . . . , pn) and π̃ = (p̃1, . . . , p̃n) is ‖π − π̃‖1
def
=

∑
i |pi − p̃i|.

Definition 4.4. Let δ ∈ (0, 2). A classical simulation of a quantum measurement
game G = (|E〉AB ,PA,PB ,VA,VB) with statistical distance δ is a randomized com-
munication protocol with shared randomness between two parties Alice and Bob such
that

(a) Alice’s input is a classical description of an element PA ∈ PA, and Bob’s
input is a classical description of an element PB ∈ PB;

(b) at the end of the protocol, Alice (resp., Bob) outputs some v ∈ VA (v′ ∈ VB),
resulting in a distribution ω̃(PA, PB) on VA × VB;

(c) for all (PA, PB) ∈ PA × PB, ‖ω̃(PA, PB) − ω(PA, PB)‖1 ≤ δ.
We are now able to rigorously state Theorem 1.6.
Theorem 4.5. Let G = (|E〉AB ,PA,PB ,VA,VB) be a quantum measurement

game. Let m = |VA| · |VB |, and let δ ∈ (0, 2). There is a classical simulation of G with

δ statistical distance that exchanges an O(m
3

δ2 · log m
δ ) number of bits. In particular,

the simulation cost is O(log 1
δ /δ

2) if m = O(1).
Proof. Let ε = δ/4. Fix a pair of measurements (PA, PB) ∈ PA × PB . In the

classical simulation protocol, for each (v, v′) ∈ VA ×VB , Alice and Bob first compute
the probability of outputting (v, v′) to be within δ

2m deviation with probability at least
1 − ε/m. Then with probability ≥ 1 − ε, all those computed probabilities are within
δ

2m deviation to the correct values. They then output a random (v, v′) according to
the probabilities computed. Then

‖ω̃(PA, PB) − ω(PA, PB)‖1 ≤ ε · 2 + (1 − ε) · δ
2
≤ δ.

Now fix a pair of possible outcome (v, v′). The estimation of ωG(PA, PB) becomes
the simulation of the identity operator, with the initial state being |E〉 and the local

physically realizable operators being
√
P v
A ·

√
P v
A and

√
P v′
B ·

√
P v′
B for some PA ∈ PA

and PB ∈ PB .
Note that the identity operator has diamond norm 1 (this follows from Defini-

tion 3.3 and Theorem 3.8). By Theorem 3.11, the probability of observing outcome
(v, v′) can be calculated with precision δ

2m and with probability at least 1 − ε/m
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by a classical protocol using O(m
2

δ2 log(mε )) bits. Thus the overall simulation cost is

O(m
3

δ2 log(mδ )) bits, which is O(log 1
δ /δ

2) when m = O(1).

5. Conclusion and open problems. We introduce an alternative measure of
nonlocality of bipartite quantum measurement, which is the minimum amount of
classical communication required to simulate the quantum measurement. We give an
upper bound of this nonlocality measure by constructing in terms of a tensor norm.
Variants of our upper bound protocol also lead to variants of the main upper bound
in terms of other tensor norms. We then apply our upper bound to the classical
simulation of quantum communication protocols and the approximation of quantum
correlations by local hidden variable models augmented with classical communication.
In particular, we show that quantum and classical communication protocols with
unlimited shared entanglement or randomness compute the same set of functions if
the amount of communication is a constant. We also show that local measurement of
an entangled state can be simulated by a local hidden variable model with a constant
amount of communication, as long as the number of measurement outcomes is a
constant.

Our study is only the first step toward understanding the classical communication
complexity of bipartite measurement. An obvious open problem is to prove or disprove
that the bound in Theorem 3.11 is tight. Another basic problem is to prove a strong
lower bound (exponential in the number of qubits) on Com(Q) for some Q.

It would be interesting to relate Com(Q) to other measures of nonlocality, such
as entanglement capacity and the minimum number of elementary gates required, or
the amount of time for evolving an elementary Hamiltonian, in order to approximate
Q. It is conceivable that the comparison of those measures may lead to a unique and
representative measure of operator nonlocality.

Gavinsky [19] made recent progress on the question of the usefulness of quantum
entanglement. He showed that entanglement is responsible for the exponential quan-
tum saving in performing some communication task in a restricted communication
model. Whether or not entanglement could result in exponential savings for the two-
party interactive communication model and for the computation of functions remains
open. Can Theorem 1.2 be strengthened so that the amount of entanglement need
not exceed a linear size of the messages?

The cost of our protocol for simulating quantum correlations depends linearly
on the number of measurement outcomes. Is this dependence necessary or can one
dramatically reduce it?

Finally, it appears a very promising direction to us to explore further the connec-
tions of tensor norms and nonlocality of quantum states and operations.

Acknowledgments. We are indebted to Wei Huang, Amnon Ta-Shma, and the
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this paper.
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I/O-EFFICIENT PLANAR SEPARATORS∗

ANIL MAHESHWARI† AND NORBERT ZEH‡

Abstract. We present I/O-efficient algorithms for computing optimal separator partitions of
planar graphs. Our main result shows that, given a planar graph G with N vertices and an integer
r > 0, a vertex separator of size O(N/

√
r) that partitions G into O(N/r) subgraphs of size at most

r and boundary size O(
√
r) can be computed in O(sort(N)) I/Os. This bound holds provided that

M ≥ 56r log2 B. Together with an I/O-efficient planar embedding algorithm presented in [N. Zeh,
I/O-Efficient Algorithms for Shortest Path Related Problems, Ph.D. thesis, School of Computer
Science, Carleton University, Ottawa, ON, Canada, 2002], this result is the basis for I/O-efficient
solutions to many other fundamental problems on planar graphs, including breadth-first search and
shortest paths [L. Arge, G. S. Brodal, and L. Toma, J. Algorithms, 53 (2004), pp. 186–206; L.
Arge, L. Toma, and N. Zeh, I/O-efficient algorithms for planar digraphs, in Proceedings of the
15th ACM Symposium on Parallelism in Algorithms and Architectures, ACM, New York, 2003,
pp. 85–93], depth-first search [L. Arge et al., J. Graph Algorithms Appl., 7 (2003), pp. 105–129;
L. Arge and N. Zeh, I/O-efficient strong connectivity and depth-first search for directed planar
graphs, in Proceedings of the 44th IEEE Symposium on Foundations of Computer Science, IEEE
Press, Piscataway, NJ, 2003, pp. 261–270], strong connectivity [L. Arge and N. Zeh, I/O-efficient
strong connectivity and depth-first search for directed planar graphs, in Proceedings of the 44th IEEE
Symposium on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 2003, pp. 261–270],
and topological sorting [L. Arge and L. Toma, Simplified external memory algorithms for planar
DAGs, in Proceedings of the 9th Scandinavian Workshop on Algorithm Theory, Lecture Notes in
Comput. Sci. 3111, Springer-Verlag, Berlin, New York, 2004, pp. 493–503; L. Arge, L. Toma, and N.
Zeh, I/O-efficient algorithms for planar digraphs, in Proceedings of the 15th ACM Symposium on
Parallelism in Algorithms and Architectures, ACM, New York, 2003, pp. 85–93]. Our second result
shows that, given I/O-efficient solutions to these problems, a general separator algorithm for graphs
with costs and weights on their vertices [L. Aleksandrov et al., Partitioning planar graphs with
costs and weights, in Proceedings of the 4th Workshop on Algorithm Engineering and Experiments,
Lecture Notes in Comput. Sci. 2409, Springer-Verlag, Berlin, New York, 2002, pp. 98–107] can be
made I/O-efficient. Many classical separator theorems are special cases of this result. In particular,
our I/O-efficient version allows the computation of a separator as produced by our first separator
algorithm, but without placing any constraints on r in relation to the memory size.

Key words. I/O-efficient algorithms, memory hierarchies, graph algorithms, planar graphs,
graph separators
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1. Introduction. I/O-efficient graph algorithms have received considerable at-
tention because massive graphs arise naturally in many applications. Recent Web
crawls, for example, produced graphs of on the order of 200 million nodes and 2 billion
edges. Recent work in Web modeling uses depth-first search (DFS), breadth-first
search (BFS), and the computation of shortest paths and connected components as
primitive operations for investigating the structure of the Web [12]. Massive graphs
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are also often manipulated in geographic information systems (GIS), where many fun-
damental problems can be formulated as basic graph problems. Yet another example
of a massive graph is AT&T’s phone call graph [13]. When working with such large
data sets, the transfer of data between internal and external memory, and not the
internal-memory computation, is often the bottleneck. Thus, I/O-efficient algorithms
can lead to considerable run time improvements.

Planar graphs are a natural abstraction of many real-world problems. For ex-
ample, the graphs arising in GIS are often planar or “almost planar.” On the theo-
retical side, planar graphs are among the fundamental combinatorial structures used
in algorithmic graph theory. Planar separators have played the key role in designing
divide-and-conquer algorithms for planar graphs. The classical separator theorem for
planar graphs by Lipton and Tarjan [27], coupled with linear-time planar embedding
algorithms [10, 18, 24, 26], has led to phenomenal developments in algorithmic graph
theory. Numerous research results that followed describe efficient algorithms for com-
puting a variety of separators of other sparse graphs and discuss applications of sepa-
rators such as lower bounds on the size of Boolean circuits, approximation algorithms
for NP-complete problems, nested dissection of sparse systems of linear equations,
load balancing in parallel numerical simulations based on the finite element method,
partitioning triangular irregular networks in the field of GIS, and encoding graphs.

In external memory, planar separators have been the key to obtaining I/O-efficient
algorithms for a variety of problems on embedded planar graphs, including BFS and
single-source shortest paths [5, 8], DFS [6, 9], strong connectivity [9], and topological
sorting [8, 7].

Existing internal-memory algorithms for computing planar separators (see, e.g.,
[2, 3, 27]) are not I/O-efficient because they use BFS to gather structural information
about the graph, and BFS and DFS are among those fundamental graph problems
for which truly I/O-efficient solutions on general graphs are still lacking. The existing
I/O-efficient BFS-algorithms for planar graphs [5, 8] are separator-based; hence, using
them in a separator algorithm creates a circular dependency. In this paper, we present
a new algorithm that applies BFS only to a compressed version of the given graph
and combines this with graph contraction techniques to obtain an optimal separator
partition in an I/O-efficient manner. An added benefit of our algorithm is that it does
not rely on a planar embedding of the given graph.

1.1. Model of computation and previous work. The algorithms in this
paper are designed and analyzed in the I/O-model of Aggarwal and Vitter [1]. This
model quite accurately captures the characteristics of current hard drives and yet is
simple enough to allow the I/O-complexity of complex algorithms to be analyzed. In
the I/O-model, the computer is equipped with two levels of memory. The internal
memory (or memory for short) is of limited size, capable of holding M data items.
The disk-based external memory is of conceptually unlimited size and is divided into
blocks of B consecutive data items. All computation has to be performed on data in
internal memory. The transfer of data between internal and external memory happens
by means of I/O-operations (or I/Os for short), each of which transfers one block of
data to or from the disk. The complexity of an algorithm is the number of I/O-
operations it performs.

For surveys of results obtained in the I/O-model and its extensions, we refer the
reader to [28, 32]. The following results are relevant to the work presented in this
paper.

It has been shown in [1] that sorting and permuting an array of N data items
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take sort(N) = Θ((N/B) logM/B(N/B)) and perm(N) = Θ(min{N, sort(N)}) I/Os,
respectively; scanning an array of size N takes Θ(N/B) I/Os.

In internal memory, that is, in the RAM model, the problem of computing planar
separators is well studied. Lipton and Tarjan [27] were the first to show that every
planar graph with N vertices has a 2

3 -separator of size O
(√

N
)
, that is, a vertex set

of size O
(√

N
)

whose removal partitions G into two subgraphs containing at most
2N/3 vertices each. They also presented a linear-time algorithm to compute such a
separator. In [21], it has been shown that every graph of genus g has a 2

3 -separator
of size O

(√
gN

)
and that such a separator can be computed in linear time. In [2],

a linear-time algorithm for computing a t-separator of size O
(√

(g + 1/t)N
)

for an
embedded graph of genus g was given; for 0 < t < 1, a t-separator is a vertex set
whose removal partitions G into subgraphs of size at most tN . Other results deal
with computing small simple-cycle separators of planar graphs [29], edge separators
of planar graphs [15], separators of planar graphs with negative or multiple vertex
weights [17], and separators of low cost [3, 16].

In [25], the first I/O-efficient algorithm for computing planar separators was pre-
sented. This algorithm is an external-memory version of Lipton and Tarjan’s algo-
rithm and computes a 2

3 -separator of size O
(√

N
)
; its I/O-complexity is O(sort(N)),

provided that a planar embedding and a BFS-tree of the graph are given. In [5], an
external version of Goodrich’s multiway separator algorithm [22] has been developed.
This algorithm computes a t-separator of size O

(
(N/B) logM/B(N/B) +

√
N/t

)
and

takes O(sort(N)) I/Os, again assuming that an embedding and a BFS-tree are given.
A number of subsequent papers develop a hierarchy of reductions that lead to

O(sort(N))-I/O algorithms for a variety of fundamental problems on embedded planar
graphs if an optimal separator decomposition can be obtained in O(sort(N)) I/Os: In
[5, 8], separator-based ideas first pioneered in [19] were used to obtain I/O-efficient
shortest-path algorithms for undirected and directed planar graphs. These algorithms
can, of course, also be used to compute BFS-trees of planar graphs. In [6], a DFS-
algorithm for undirected planar graphs was presented; this algorithm uses BFS in a
planar graph derived from the dual and, hence, also depends on planar separators.
The directed DFS-algorithm of [9] needs to compute directed spanning trees of the
graph; currently, the only I/O-efficient algorithm for this problem is the shortest-
path algorithm of [8]. Other I/O-efficient algorithms for planar graphs that rely on
separators are the strong connectivity algorithm of [9] and the algorithms of [7, 8] for
topologically sorting planar directed acyclic graphs.

1.2. New results. The two main results of our paper are the following:
(i) Given a planar graph G with N vertices and an integer r > 0, it takes

O(sort(N)) I/Os to compute a vertex separator S of size O
(
N/

√
r
)

whose removal
partitions G into O(N/r) subgraphs of size at most r and boundary size O(

√
r). The

bound on the I/O-complexity of the algorithm holds as long as the internal memory
has size at least 56r log2 B.

(ii) Using a bootstrapping approach based on our second algorithm, discussed
below, the memory requirements of the algorithm can be reduced from M =
Ω
(
B2 log2 B

)
to M = Ω

(
B2

)
for the special case when r = B2. This special case is

important because r = B2 is the granularity of the partition required by all separator-
based I/O-efficient algorithms for planar graphs that have been developed so far.

Thanks to our algorithm, a wide variety of problems, as discussed in the previous
section, can be solved in O(sort(N)) I/Os if M = Ω

(
B2

)
. In particular, a shortest-

path tree of a planar graph can be obtained in this complexity. Using this fact, we
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show the following I/O-efficient versions of results from [3]:

(iii) Let G = (V,E) be a planar graph with N vertices, let w : V → R+ and
c : V → R+ be assignments of nonnegative weights and costs to the vertices of G,
and let 0 < t < 1 be an arbitrary constant. Let w(G) =

∑
x∈V w(x) and C(G) =∑

x∈V (c(x))2. If the size of the internal memory is Ω
(
B2

)
, it takes O(sort(N)) I/Os

to compute a vertex separator S of cost c(S) ≤ 4
√

2 · C(G)/t such that no connected
component of G− S has weight exceeding tw(G).

If all vertices have weight and cost equal to 1 and we choose t = r/N , we obtain
a separator of size O

(
N/

√
r
)

that partitions the graph into pieces of size at most r.
This matches the result produced by our first algorithm, but without requiring that
M ≥ 56r log2 B. More precisely, it allows the computation of arbitrarily coarse par-
titions, while our first algorithm is restricted to computing partitions into pieces of
size O

(
M/ log2 B

)
if an I/O-complexity of O(sort(N)) is desired.

(iv) Let G = (V,E) be a planar graph with N vertices, let w : V → R+ be an
assignment of nonnegative weights to the vertices of G, let 0 < t < 1 be an arbitrary
constant, and let w(G) =

∑
x∈V w(x). If w(x) ≤ tw(G) for every vertex x ∈ V , there

exists an edge separator S ⊆ E of size |S| ≤ 4
√

2(
∑

x∈V (deg(x))2)/t such that no
connected component of G− S has weight exceeding tw(G). Such a separator can be
computed in O(sort(N)) I/Os, provided that M = Ω

(
B2

)
.

The algorithm in result (i) performs O(N logN) work in internal memory. Result
(iii) and, thus, also results (ii) and (iv) rely on an I/O-efficient shortest-path algorithm
for planar graphs. Currently, the best such algorithm performing O(sort(N)) I/Os is
the algorithm of [5], which performs O(N logN +BN) work in internal memory. The
algorithms in result (ii)–(iv) inherit this computational bound, but their computa-
tional bound would decrease to O(N logN +T (N)) with the development of a planar
shortest-path algorithm that performs O(sort(N)) I/Os and T (N) = o(N logN+BN)
computation in internal memory.

The presentation of our results is organized as follows. In section 2, we intro-
duce the necessary terminology and notation and discuss some technical results that
will be useful in our algorithms. In section 3, we discuss a graph contraction proce-
dure that is used many times in our algorithms. Our algorithm for partitioning an
unweighted planar graph is presented in section 4. The partition produced by the
algorithm does not have all the properties required by the shortest-path algorithm of
[5] or by any of the other separator-based I/O-efficient algorithms for planar graphs
[7, 8, 9]. In section 5, we explain how to ensure the required additional properties. In
section 6, we discuss our I/O-efficient algorithm for computing separators of planar
graphs with costs and weights. In section 7, we explain how to combine the algorithms
from sections 4 and 6 to reduce the memory requirements of our unweighted separator
algorithm to M = Ω

(
B2

)
. We present concluding remarks in section 8.

2. Preliminaries.

2.1. Graphs and planarity. We assume that the reader is familiar with stan-
dard graph-theoretic terms and notation as defined, for example, in [23, 31]. In this
paper, all graphs are simple, that is, do not contain parallel edges or loops, even
though the results are easy to generalize to multigraphs. Let G = (V,E) be a graph.
For a set W ⊆ V of vertices, we use G[W ] to denote the subgraph of G whose vertex
set is W and whose edge set consists of all edges in G that have both endpoints in
W ; we call G[W ] the subgraph of G induced by vertex set W . For a set of vertices
W ⊆ V , let G−W = G[V \W ]. For a vertex x ∈ V , let G− x = G− {x}. For a set
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of edges F ⊆ E, let G− F = (V,E − F ).
For a vertex x ∈ G, the (open) neighborhood N (x) of x is the set of vertices

adjacent to x, that is, N (x) = {y ∈ V : xy ∈ E}; the closed neighborhood of x
is N [x] = {x} ∪ N (x). We generalize this to vertex sets and subgraphs by defin-
ing N [V ′] =

⋃
x∈V ′ N [x], N (V ′) = N [V ′] \ V ′, N [G′] = G[N [V ′]], and N (G′) =

G[N (V ′)], where G′ = (V ′, E′). We often call N (G′) the boundary of G′. The degree
deg(x) of a vertex x is the number of edges incident to x. Since we assume that G is
simple, we have deg(x) = |N (x)|.

A graph G is planar if it can be drawn in the plane so that the edges of G do
not intersect, except at their endpoints. Such a drawing of G is called a topological
embedding of G; we denote it by E(G). Every topological embedding of G defines an
order of the edges incident to each vertex x ∈ G clockwise around x. A representation
of these orders for all vertices x ∈ G is called a combinatorial embedding of G, which
we denote by Ĝ. Given a topological embedding E(G) consistent with a combinatorial
embedding Ĝ of G, we call the connected regions of R2 \ E(G) the faces of Ĝ. The
size of a face of Ĝ is the number of edges on its boundary. Let F denote the set of
faces of Ĝ. By Euler’s formula, |V | + |F | − |E| = 2. In particular, |E| ≤ 3|V | − 6. We
define the size |G| of a planar graph G = (V,E) to be the number of vertices in G.

For an embedded planar graph G = (V,E) and an edge e ∈ E, the dual e∗ of e
is the edge f1f2, where f1 and f2 are the two faces of Ĝ that have edge e on their
boundaries. The dual of G is the multigraph G∗ = (F,E∗), where E∗ = {e∗ : e ∈ E}.

A partition of a set S is a collection S = {S1, . . . , Sk} of subsets of S so that
every element of S belongs to exactly one set Si, that is, Si ∩Sj = ∅ for all i �= j, and⋃k

i=1 Si = S.
Given a graph G = (V,E) and a partition V = {V1, . . . , Vk} of the vertex set

of G, the contraction of V in G is the graph G/V = (V, E′), where E′ = {ViVj :
∃xy ∈ E such that x ∈ Vi and y ∈ Vj}. If the vertices of G have weights, we define
w(Vi) =

∑
x∈Vi

w(x) for all 1 ≤ i ≤ k. If the graph G[Vi] is connected for all 1 ≤ i ≤ k,
we call G/V an edge contraction. If there exist vertex sets X1, . . . , Xk such that, for
all 1 ≤ i ≤ k and all x ∈ Vi, N (x) \Vi = Xi, that is, if all vertices in Vi have the same
neighbors in V (G)\Vi, we call G/V a vertex bundling. We will use the following facts.
The first one states that edge contractions and vertex bundlings preserve planarity.
Intuitively, the second one says that undoing any contraction preserves separators.

Fact 2.1. If G is planar, then every edge contraction or vertex bundling of G
is planar.

Fact 2.2. Let S ⊆ V; S =
⋃

Vi∈S Vi; Vi, Vj �∈ S; and x ∈ Vi and y ∈ Vj. If Vi

and Vj belong to different connected components of (G/V) − S, then x and y belong
to different connected components of G− S.

2.2. Graph separators. Given an assignment w : V → R+ of weights to the
vertices of a graph G = (V,E) and a parameter 0 < t < 1, we call a set S ⊆ V of
vertices a t-vertex separator of G if no connected component of G − S has weight
greater than tw(G), where w(G) =

∑
x∈V w(x) is the weight of G. Similarly, a t-edge

separator of G is a set S ⊆ E of edges so that no connected component of the graph
G−S has weight exceeding tw(G). Since we are mainly interested in vertex separators
in this paper, we refer to them simply as separators. If G is unweighted, we give every
vertex of G weight one and define separators w.r.t. these weights.

In our separator algorithm for unweighted graphs, we apply the following result
to a compressed version of the graph we want to partition. This produces a first
separator that is then refined during a sequence of refinement steps.
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Fig. 2.1. A regular partition. The solid regions are connected. Each of the hatched regions is
disconnected but shares its boundary with at most two solid regions and no hatched region.

Theorem 2.1 (Aleksandrov and Djidjev [2]). Given a planar graph G of size N ,
an assignment w : V → R+ of weights to the vertices of G, and a constant 0 < t < 1,
a t-vertex separator of size at most 4

√
N/t for G can be computed in linear time.

By grouping the connected components of G−S, where G is an unweighted graph
and S is a t-separator of G, we obtain a tN -partition of G. More precisely, let r > 0
be an integer, let t = r/N , and let S be a t-separator of G. Then an r-partition of G
is a pair P = (S, {G1, . . . , Gq}) with the following properties:

(i) G1, . . . , Gq are vertex-induced subgraphs of G;
(ii) the set {V (G1), . . . , V (Gq)} is a partition of V (G) \ S;
(iii) N (V (Gi)) ⊆ S for all 1 ≤ i ≤ q; and
(iv) |Gi| ≤ r for all 1 ≤ i ≤ q.

The third condition captures that every subgraph Gi is a collection of connected
components of G− S; that is, no connected component of G− S has vertices in two
such subgraphs.

If G is a planar graph, we call an r-partition P = (S, {G1, . . . , Gq}) normal if
|S| = O(N/

√
r), q = O(N/r), and

∑q
i=1 |N (Gi)| = O(N/

√
r). A normal r-partition

P = (S, {G1, . . . , Gq}) is c-proper for some constant c > 0 if |N (Gi)| ≤ c
√
r for all

1 ≤ i ≤ q. If we do not want to specify c, we say that P is proper. A proper r-partition
is stronger than a normal r-partition because the latter may contain subgraphs with
a large boundary, as long as the total size of all subgraph boundaries is small; in the
former, every individual subgraph has to have a small boundary. Finally, we call an
r-partition P = (S, {G1, . . . , Gq}) regular if, for every 1 ≤ i ≤ q, one of the following
conditions holds:

(i) The graph N [Gi] is connected, or
(ii) there are at most two indices 1 ≤ j < k ≤ q, i �∈ {j, k}, such that N (V (Gi))∩

N (V (Gj)) �= ∅ and N (V (Gi)) ∩ N (V (Gk)) �= ∅. N [Gj ] and N [Gk] are connected in
this case.

This concept is visualized in Figure 2.1, which is reproduced from Frederickson
[19], who shows that every planar graph has a proper r-partition and that every planar
graph of bounded degree has a regular proper r-partition. The following result states
that a proper r-partition of a planar graph can be obtained efficiently.

Theorem 2.2 (Frederickson [19]). Given a planar graph G of size N and a normal
r-partition P = (S, {G1, . . . , Gp}) of G, a proper r-partition P ′ = (S′, {G′

1, . . . , G
′
q})

of G such that S ⊆ S′ can be computed in O(N logN) time.
Frederickson also shows how to obtain a normal r-partition of a planar graph in

O(N logN) time. Together with Theorem 2.2, this implies that a proper r-partition
of a planar graph can be computed in O(N logN) time. To prove Theorem 2.2, Fred-
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erickson considers each graph Gi in turn and partitions it into subgraphs of boundary
size O(

√
r). When partitioning Gi, the algorithm requires knowledge of only N [Gi].

Thus, if |N [Gi]| ≤ M for all 1 ≤ i ≤ p, we can implement Frederickson’s procedure by
loading each graph N [Gi] into internal memory and partitioning Gi without incurring
any further I/Os. Assuming that each graph N [Gi] is stored in consecutive memory
locations, we thus have the following.

Corollary 2.3. Given a planar graph G of size N and a normal r-partition
P = (S, {G1, . . . , Gp}) of G, a proper r-partition P ′ = (S′, {G′

1, . . . , G
′
q}) of G such

that S ⊆ S′ can be computed in O(N/B) I/Os, provided that |N [Gi]| ≤ M for all
1 ≤ i ≤ p.

2.3. Bipartite planar graphs. A graph G = (V,E) is bipartite if the vertex
set V can be partitioned into two sets U and W such that x ∈ U and y ∈ W for every
edge xy ∈ E. In this case, we write G = (U,W,E). We use the following two simple
results to bound the sizes of certain bipartite planar graphs in different parts of our
algorithms.

Lemma 2.4. Let G = (U,W,E) be a simple connected bipartite planar graph such
that every vertex in W has degree at least three. Then |W | < 2|U |.

Proof. Consider a planar embedding Ĝ of G. Since G is bipartite, every face of Ĝ
has size at least four and, thus, |F | ≤ |E|/2. By Euler’s formula, |V | + |F | − |E| = 2,
that is,

2 = |V | + |F | − |E|
≤ |V | − |E|/2,

|E| < 2|V |.

On the other hand, |E| ≥ 3|W |, so that

3|W | < 2|V |
= 2(|U | + |W |),

|W | < 2|U |.

Corollary 2.5. Let G = (U,W,E) be a simple connected bipartite planar graph
such that no two vertices x, y ∈ W of degree at most two have the same open neigh-
borhood. Then |G| < 7|U |.

Proof. We have to prove that |W | < 6|U |. To this end, we divide W into three
subsets and bound the size of each of these sets. Let W1 be the set of degree-1 vertices
in W , W2 the set of degree-2 vertices in W , and W3 the set of vertices of degree at
least three in W , that is, W3 = W \ (W1 ∪W2).

Since there are no two vertices x, y ∈ W with deg(x) = deg(y) = 1 and N (x) =
N (y), W1 contains at most |U | vertices, that is, one per vertex in U ; see Figure 2.2(a).

To count the vertices in W3, we consider the bipartite planar graph G3 = (U3,W3,
E3) induced by all edges incident to vertices in W3; see Figure 2.2(b). By Lemma 2.4
and since U3 ⊆ U , we have |W3| < 2|U3| ≤ 2|U |.

To count the vertices in W2, consider the graph H2 = (U2, E2), where U2 =
N (W2) ⊆ U and E2 = {xz : there exists a vertex y ∈ W2 with N (y) = {x, z}}; see
Figure 2.2(d). Since there are no two vertices x, y ∈ W2 with N (x) = N (y), H2

contains exactly one edge per vertex in W2, that is, |E2| = |W2|. Next we argue that
H2 is planar, which, by Euler’s formula, implies that |W2| = |E2| < 3|U2| ≤ 3|U |.



774 ANIL MAHESHWARI AND NORBERT ZEH

(a) (b)

(c) (d)

Fig. 2.2. Illustration of the proof of Corollary 2.5. (a) A bipartite planar graph G = (U,W,E);
the white vertices are in U , and the black ones are in W . The circled vertices are in W1. (b) The
subgraph G3 of G induced by all edges incident to vertices in W3. (c) The subgraph G2 of G induced
by all edges incident to vertices in W2. (d) The graph H2 obtained from G2 by contracting the bold
edges in (c).

To see that H2 is planar, consider the subgraph G2 of G induced by all edges
incident to vertices in W2; see Figure 2.2(c). Since G is planar, G2 is planar. H2 can
be obtained from G2 by contracting one of the edges incident to each vertex y ∈ W2.
By Fact 2.1, this implies that H2 is planar.

In summary, we have |W | = |W1| + |W2| + |W3| < |U | + 3|U | + 2|U | = 6|U |, that
is, |G| = |U | + |W | < 7|U |.

2.4. Primitive operations. Our algorithms make frequent use of a number of
primitive operations. In order to avoid repeatedly discussing their implementations,
we discuss them here and then refer to this section whenever we make use of such an
operation.

Set operations. All elementary operations on two sets A and B—union, intersec-
tion, difference, etc.—can be carried out in O(sort(N)) I/Os if the two sets A and
B are represented as unordered sequences of elements sort A and B (assuming that
every element is represented by a unique integer ID). Then scan the two sorted lists
to produce C = AB, where  ∈ {∩,∪, \}.

Even though it is not a set operation as such, we want to mention duplicate
removal here. Some operations may produce multisets. In order to obtain a proper
representation of the set of elements in such a multiset, we need to remove duplicates.
This can be done in O(sort(N)) I/Os by sorting and scanning the multiset.

Copying labels. Since pointers are mostly useless in I/O-efficient graph algorithms,
graphs are often represented as an (unsorted) list of vertices, each with a unique
vertex ID, and as an (unsorted) list of edges, each labeled with the IDs of its two
endpoints. Edges do not store any pointers to their endpoints. Thus, if certain labels
are assigned to the vertices of the graph, the edges have no knowledge of the labels of
their endpoints. However, it takes O(sort(N)) I/Os to label all edges with the labels of
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their endpoints. Sort the vertices by their IDs. Designate one endpoint of every edge
as being the first endpoint. Then sort the edges by the IDs of their first endpoints.
Now scan the sorted vertex and edge sets to label every edge with the label of its first
endpoint. To label the edges with the labels of their second endpoints, sort the edges
by the IDs of their second endpoints, and repeat the copying process.

Graph contraction. Given a labeling of the vertices of graph G that represents a
partition V = {V1, . . . , Vk} of the vertex set of G, that is, assigns the same label to
two vertices if and only if they belong to the same set Vi ∈ V, the graph G/V can be
computed in O(sort(N)) I/Os as follows: First, label the edges of G with the labels of
their endpoints. Now replace every vertex with its label and every edge xy with the
edge ab, where a is the label of x and b is the label of y. Finally, remove duplicates
from the resulting vertex and edge sets.

In this paper, we choose the label of a set Vi ∈ V to be the ID of a representative
x ∈ Vi. We will then often refer to the vertex Vi in G/V as the vertex x, taking the
point of view that x has survived the contraction and that all other vertices in Vi have
been contracted into x.

Connected components. Chiang et al. [14] proved that it takes O(sort(N)) I/Os
to compute the connected components of an N -vertex planar graph G, that is, to
compute a labeling of the vertices of G such that two vertices have the same label if
and only if they are connected by a path in G.

3. Uniform graph contraction. In this section, we discuss a general contrac-
tion procedure for planar graphs that is used repeatedly in our algorithms. In gen-
eral, when using graph contraction, one repeatedly contracts edges until some goal is
reached (usually a sufficient reduction of the size of the graph). Since it would not
be I/O-efficient to contract edges one at a time, I/O-efficient algorithms based on
graph contraction usually contract many edges simultaneously. More precisely, these
algorithms compute an edge contraction G/V of G such that |V| ≤ c|V |, for some
c < 1; that is, G/V has only a constant fraction of the vertices of G. The algorithms
of [5, 14, 30] for computing connected components and minimum spanning trees are
based on exactly this idea. However, the partition V used in these algorithms is nonuni-
form in the sense that some sets Vi ∈ V may be large, while others may be small; that
is, some vertices in G/V represent many vertices in G, and others represent only few.
As we will see, our separator algorithm for unweighted graphs relies heavily on the
compression being uniform, that is, on every set Vi ∈ V having constant size. Our goal
in this section is to compute a partition V such that |V| ≤ c|V | and that every set in
V has constant size. In order to achieve this, we compute G/V in two phases: First,
we compute an edge contraction G1 = G/V1 and then a vertex bundling G2 = G1/V2.

In section 3.1, we give a high-level description of our uniform contraction pro-
cedure and prove a general bound on the size of the compressed graph it produces.
In section 3.2, we show how to implement this procedure in O(sort(N)) I/Os on an
N -vertex planar graph.

3.1. The high-level procedure. Our separator algorithm requires not only
that V be a partition of V into subsets of constant size, but also that each subset be
of bounded weight according to appropriately chosen weights assigned to the vertices
in V . In this section, we assume more generally that the input to our contraction
procedure consists of a planar graph G, a constant number of real-valued functions
w1, . . . , wk assigning weights to the vertices of G, and a set of weight thresholds
u1, . . . , uk. Initially, every vertex x satisfies wj(x) ≤ uj for all 1 ≤ j ≤ k; we say
that vertex x is within bounds. Our goal is to compute a contraction G/V of G such
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that each set Vi in V is within bounds, that is, wj(Vi) =
∑

x∈Vi
wj(x) ≤ uj for all

1 ≤ j ≤ k. We say that a vertex or set x that is within bounds is light if wj(x) ≤ uj/2
for all 1 ≤ j ≤ k; otherwise, we call it heavy. The main result of this section is stated
in the following theorem.

Theorem 3.1. Let G be a planar graph, w1, . . . , wk real-valued functions assigning
weights to the vertices of G, and u1, . . . , uk weight thresholds such that every vertex
x ∈ G satisfies wj(x) ≤ uj for all 1 ≤ j ≤ k. Then it takes O(sort(N)) I/Os to
compute a planar graph G2 such that G2 is a contraction of G, all vertices of G2 are
within bounds, and more than |G2|/7 vertices in G2 are heavy.

The contraction procedure consists of two phases: The edge contraction phase
computes an edge contraction G1 = G/V1 of G such that all vertices of G1 are within
bounds and every edge of G1 has at least one heavy endpoint. The bundling phase
computes a vertex bundling G2 = G1/V2 of G1 such that all vertices of G2 are within
bounds and there are no two light vertices x, y ∈ G2 of degree at most two that have
the same open neighborhood. Graph G2 is the final graph we return.

In section 3.2, we prove that the two phases of this procedure can be implemented
in O(sort(N)) I/Os. Here we prove that G2 has the properties claimed in Theorem 3.1.

By the description of the contraction procedure, the vertices of G2 are explicitly
ensured to be within bounds. Graph G1 is an edge contraction of G, and G2 is a
vertex bundling of G1. Hence, G2 is a contraction of G and, by Fact 2.1, planar. We
have to prove that at least every seventh vertex in G2 is heavy.

Lemma 3.2. If h is the number of heavy vertices in G2, then |G2| < 7h.
Proof. Consider the subgraph G′ of G2 induced by all edges incident to light

vertices in G2. Since G′ contains all light vertices of G2, it suffices to prove that
|G′| < 7h′, where h′ ≤ h is the number of heavy vertices in G′. We use Corollary 2.5
to do so.

First, observe that G′ is bipartite: By the definition of G′, every edge in G′ has
at least one light endpoint. If there was an edge with two light endpoints in G′ ⊆ G2,
then G1 would have to contain an edge with two light endpoints because G2 is a
vertex bundling of G1, but we ensure explicitly that G1 contains no such edge.

Observe also that no two light vertices of degree at most two in G2 have the
same neighbors. Hence, the same is true in G′, and G′ satisfies the conditions of
Corollary 2.5 with U being the set of heavy vertices and W being the set of light
vertices in G′. Thus, by Corollary 2.5, |G′| < 7h′.

3.2. I/O-efficient implementation. In this section, we discuss how to imple-
ment the two phases of the contraction procedure in O(sort(N)) I/Os.

3.2.1. Edge contraction phase. To implement the edge contraction phase, we
compute a set F of edges and define V1 to be the partition of V corresponding to
the connected components of (V, F ). We use VF to denote this partition. We choose
the edges in F so that the graph (V, F ) is a forest, which makes the computation of
connected components and, thus, the computation of the partition VF , easy [14].

The set F is not necessarily a subset of E. However, whenever we add an edge xy
to F , there exists an edge x′y′ ∈ E such that x and x′ belong to the same set V1, and
y and y′ belong to the same set V2 in VF . Hence, if G[V1] and G[V2] are connected,
so is G[V1 ∪ V2], and the addition of edge xy to F maintains that G/VF is an edge
contraction of G.

We compute the edge set F iteratively, starting with F = ∅. Each iteration
computes a set F ′ of edges such that G/VF∪F ′ is an edge contraction of G and each
of its vertices is within bounds. The edges in F ′ are then added to F . This iterative
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process stops as soon as every edge in G/VF has at least one heavy endpoint. At this
point, we define G1 = G/VF .

To compute the set F ′ efficiently, each iteration consists of three steps: The first
step extracts the subgraph H1 of G/VF induced by all edges in G/VF whose endpoints
are both light. We call these edges contractible and call H1 the contractible subgraph
of G/VF . The second step computes a maximal matching F ′

1 of H1 and contracts the
edges in F ′

1, producing the graph H2 = H1/VF ′
1
. We call a vertex in H2 matched if it

represents the two endpoints of an edge in F ′
1; otherwise, the vertex represents only

one vertex in H1, and we call it unmatched. Note that all neighbors of an unmatched
vertex are matched because F ′

1 is maximal. The third step adds edges between matched
and unmatched vertices to a set F ′

2 so that every nonsingleton set in VF ′
2

contains
exactly one matched vertex. To determine which edges to add to F ′

2, we inspect each
unmatched vertex x in turn. If there is a matched neighbor y of x that is contained
in a light set Vy in VF ′

2
, we add the edge xy to F ′

2, thereby adding x to Vy. After this
third step, we define F ′ = F ′

1 ∪ F ′
2 and add the edges in F ′ to F . This finishes the

iteration.

Note that testing the loop condition—whether or not G/VF contains two adjacent
light vertices—is easy because, by the definition of H1, this is the case if and only
if H1 is nonempty. It is also unnecessary to compute G/VF from scratch after each
iteration: Each iteration is interested only in the contractible subgraph of G/VF . If
H1 and H ′

1 are the contractible subgraphs of G/VF and G/VF∪F ′ , respectively, it is
easy to see that H ′

1 ⊆ H1/VF ′ = H2/VF ′
2
. Thus, each iteration has to compute only

H2 = H1/VF ′
1

and H = H2/VF ′
2
, and the next iteration can extract its contractible

subgraph from H. This leads to the contraction procedure shown in Algorithm 1.

Before providing the implementation details and analyzing the I/O-complexity of
this procedure, we show that it correctly implements the edge contraction phase of
our uniform graph contraction procedure.

Lemma 3.3. Let G1 be the graph produced by procedure ContractEdges. Then
G1 is an edge contraction of G, every vertex of G1 is within bounds, and every edge
of G1 has at least one heavy endpoint.

Proof. We prove by induction on the number of iterations that the graph G/VF

is an edge contraction of G and that all its vertices are within bounds. Since we exit
with G1 = G/VF only when every edge in G/VF has a heavy endpoint, this proves
the lemma.

Before the first iteration, G/VF = G is a trivial edge contraction of G because
F = ∅. Moreover, all vertices of G are assumed to be within bounds.

So assume that, before the current iteration, G/VF is an edge contraction of G
and all its vertices are within bounds. We want to prove that the same is true for
G/VF∪F ′ .

First, we prove that G/VF∪F ′ is an edge contraction of G. Since G/VF is an edge
contraction of G, every set in VF induces a connected subgraph of G. Every edge xy
added to F ′

1 is an edge of H1 ⊆ G/VF . Hence, there exist two sets V1, V2 ∈ VF and
an edge x′y′ ∈ E(G) such that x, x′ ∈ V1 and y, y′ ∈ V2. By adding edge xy to F ′

1,
the sets V1 and V2 are merged into the set V1 ∪ V2 in VF∪F ′

1
. Since G[V1] and G[V2]

are connected, the existence of edge x′y′ ∈ E(G) implies that G[V1 ∪V2] is connected,
and G/VF∪F ′

1
remains an edge contraction of G after adding edge xy to F ′

1.

As for Step 3, every edge added to F ′
2 is an edge of H2 = H1/VF ′

1
⊆ G/VF∪F ′

1
.

Since we have just argued that G/VF∪F ′
1

is an edge contraction of G, the same argu-
ment as in the previous paragraph implies that G/VF∪F ′

1∪F ′
2

is an edge contraction
of G.
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Algorithm 1 The edge contraction phase.

Procedure ContractEdges

Input: A weighted graph G = (V,E) and a set of weight thresholds based on which
every vertex in G is classified as light or heavy.

Output: An edge contraction G1 = G/VF of G.

1: H ← G
2: F ← ∅
3: while H is not empty do
4: Step 1: Extract the contractible subgraph

H1 ← the contractible subgraph of H

5: Step 2: Contract a maximal matching

Compute a maximal matching F ′
1 of H1

H2 ← H1/VF ′
1

6: Step 3: Contract edges incident to unmatched vertices

F ′
2 ← ∅

Let VF ′
2

be the partition of V (H2) defined by F ′
2.

for every unmatched vertex x ∈ H2 do
if x has a (matched) neighbor y contained in a light set Vy ∈ VF ′

2
then

Add edge xy to F ′
2 and increase the weights of Vy by the corresponding weights

of x.
end if

end for
F ← F ∪ F ′

1 ∪ F ′
2

H ← H2/VF ′
2

7: end while
8: G1 ← G/VF

To see that all vertices of G/VF∪F ′ are within bounds, we first observe that all
vertices of G/VF∪F ′

1
are within bounds. Indeed, each vertex x ∈ G/VF∪F ′

1
represents

one or two vertices in G/VF . In the former case, x is obviously within bounds. In the
latter case, the two vertices represented by x both belong to H1 and are thus light;
hence, x is within bounds in this case as well.

In the third step, when adding an edge xy to F ′
2, x is an unmatched vertex of

H2, that is, represents a single vertex in H1 and is thus light. The set Vy containing
y is light because otherwise we would not add edge xy to F ′

2. Thus, after adding xy
to F ′

2, and thereby x to Vy, the vertex in G/VF∪F ′
1∪F ′

2
representing Vy remains within

bounds. Arguing inductively over all edges added to F ′
2 in Step 3, we obtain that all

vertices in G/VF∪F ′
1∪F ′

2
are within bounds. This finishes the proof of the lemma.

Procedure ContractEdges is fairly easy to implement in O(sort(N)) I/Os. To
prove this, we show how to implement every iteration of the while-loop in lines 3–7
in O(sort(|H|)) I/Os, show that |H| decreases by a factor of at least two from one
iteration to the next, and that the rest of the algorithm takes O(sort(N)) I/Os. We
start by analyzing the I/O-complexity of one iteration of the while-loop.

Extracting the contractible subgraph. The contractible subgraph of H can be ex-
tracted in O(sort(|H|)) I/Os: First, we label all edges with the weights of their end-
points, and then we scan the edge set to discard all edges that have at least one heavy
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endpoint. The result is the edge list of the contractible subgraph. Now we scan this
edge list and create a list of the edges’ endpoints. To produce the vertex list of H1,
we remove duplicates from the resulting list. As discussed in section 2.4, all steps of
this construction take O(sort(|H|)) I/Os.

Computing and contracting a matching. Zeh [33] presents an algorithm that
computes a maximal matching of a graph G = (V,E) in O(sort(N)) I/Os, where
N = |V | + |E|. Since H1 is planar, we have N = O(|H1|) when applying this proce-
dure to H1. Hence, the matching can be computed in O(sort(|H1|)) I/Os. Once the
matching is given, its edges can be contracted in O(sort(|H1|)) I/Os by using the
contraction procedure from section 2.4.

Contracting edges between matched and unmatched vertices. To contract edges
between matched and unmatched vertices, that is, to implement Step 3 of the iteration,
we start by extracting all edges in H2 that are incident to unmatched vertices. This
is easily done in O(sort(|H2|)) = O(sort(|H1|)) I/Os by labeling all edges with the
statuses of their endpoints and discarding all edges that have two matched endpoints.
(Recall that every edge in H2 has at least one matched endpoint.)

For the resulting bipartite graph H ′, we compute the following information: Let
Vm be the set of matched vertices, and let Vu be the set of unmatched vertices in
H ′. We arbitrarily number the vertices in Vm as y1, . . . , yr and the vertices in Vu as
x1, . . . , xs. We sort the edges in H ′ by their unmatched endpoints as primary keys
and by their matched endpoints as secondary keys. For every edge xiyj , we store the
unmatched endpoint xi′ of the next edge incident to yj ; that is, if yj is adjacent to
vertices xi1 , . . . , xit with i1 < · · · < it, then, for 1 ≤ h < t, edge xihyj stores the ID of
vertex xih+1

. Edge xityj stores nil to indicate that it is the last edge incident to yj .

This information can easily be computed in O(sort(|H ′|)) I/Os: We sort the edges
by their matched endpoints as primary keys and by their unmatched endpoints as
secondary keys. Then we scan the sorted edge list to compute, for every edge xiyj ,
the endpoint of the next edge incident to yj . (If the next edge in the sorted sequence
is xi′yj , then this endpoint is xi′ . If the next edge is xi′yj′ with j′ �= j, then edge xiyj
stores nil.) Now we sort the edges by their unmatched endpoints as primary keys and
by their matched endpoints as secondary keys.

Given that graph H ′ has been prepared in this manner, we find the edges in F ′
2 as

follows: We scan the sorted edge list, which is equivalent to inspecting the unmatched
vertices in sorted order and scanning their adjacency lists. For every vertex xi, as
soon as we find an edge xiyj such that the set Vyj is light, we add edge xiyj to F ′

2 and
increase each weight wh(Vyj ) by the corresponding weight wh(xi) of xi. The remaining
edges in xi’s adjacency list are then ignored. If all neighbors of xi are contained in
heavy sets, no edge incident to xi is added to F ′

2.

In order to implement this procedure correctly, we need a mechanism to inform
every edge incident to a vertex yj about the current weights of the set Vyj at the
time when this edge is inspected. We use a priority queue Q to do this. Initially, we
have wh(Vyj

) = wh(yj) for all h, because F ′
2 = ∅ and, hence, Vyj

= {yj}. For every
matched vertex yj , we insert the initial weights of Vyj into Q, with priority equal
to the ID of the first edge incident to yj . For every edge xiyj inspected during the
scan, we perform a Delete-Min operation on Q to retrieve the current weights of Vyj

.
If edge xiyj is added to F ′

2, the weights of Vyj
are updated; otherwise, they remain

unchanged. Then, if edge xiyj stores a vertex xi′ �= nil as the next unmatched vertex
incident to yj , we insert the current weights of Vyj

into Q, but now with priority xi′yj .

The whole procedure requires one scan of the sorted edge list of H ′, and two
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priority queue operations per edge, once the edges of H ′ are stored in the right
order and store the appropriate successor pointers as defined above. If we use a
buffer tree [4] to implement the priority queue, every priority queue operation takes
O((1/B) logM/B(r/B)) = O((1/B) logM/B(|H ′|/B)) I/Os amortized. Thus, the con-
struction of F ′

2 takes O(sort(|H ′|)) = O(sort(|H1|)) I/Os.

Total cost of the loop. The previous three paragraphs establish that each iteration
of the while-loop takes O(sort(|H|)) I/Os. Also observe that |H| = N before the first
iteration. To prove that the cost of the whole loop is O(sort(N)) I/Os, it is therefore
sufficient to show that |H| decreases by a factor of at least two from one iteration to
the next.

Lemma 3.4. The loop in lines 3–7 of procedure ContractEdges takes O(sort(N))
I/Os.

Proof. Assume that there are k iterations. For 1 ≤ i ≤ k, let H(i) and H
(i)
1

be snapshots of H and H1 at the beginning of the ith iteration and after Step 1 of
the ith iteration, respectively. Then the total cost of Step 1 over all itera-
tions is O

(∑k
i=1 sort

(∣∣H(i)
∣∣)), and the cost of Steps 2 and 3 over all iterations is

O
(∑k

i=1 sort
(∣∣H(i)

1

∣∣)). It is easy to see that
∣∣H(i+1)

∣∣ ≤
∣∣H(i)

1

∣∣ for all 1 ≤ i < k.

Hence, the total cost of all iterations is O
(
sort

(∣∣H(1)
∣∣)+

∑k
i=1 sort

(∣∣H(i)
1

∣∣)), which is

O(sort(N) +
∑k

i=1 sort(|H(i)
1 |)) because H(1) = G. Next we prove that, for 1 ≤ i < k,∣∣H(i+1)

1

∣∣ ≤ ∣∣H(i)
1

∣∣/2. Hence,
∑k

i=1

∣∣H(i)
1

∣∣ ≤ 2
∣∣H(1)

1

∣∣ ≤ 2N , and the total cost of the
loop is O(sort(N)) I/Os.

Consider the ith iteration. After Step 2, there are at most |H(i)
1 |/2 matched ver-

tices in H2 because each represents two vertices in H
(i)
1 . To bound the number of

vertices in H
(i+1)
1 by |H(i)

1 |/2, we argue that every vertex in H
(i+1)
1 represents a set

V ′ in VF ′
2

that contains a matched vertex. In particular, we argue that every vertex in

H(i+1) = H2/VF ′
2

that represents a singleton set in VF ′
2

containing only an unmatched
vertex has only heavy neighbors and, thus, does not belong to the contractible sub-
graph of H(i+1). To see that this is true, observe that we inspect every unmatched
vertex x in H2 to check whether it has a matched neighbor y whose containing set
Vy ∈ VF ′

2
is light; if so, we add the edge xy to F ′

2, thereby adding x to Vy. Thus, if

x remains in a singleton set, all its neighbors in H(i+1) are heavy. This finishes the
proof.

I/O-complexity of the edge contraction phase. To complete the analysis, we have
to consider the costs of lines 1, 2, and 8 of the algorithm. Lines 1 and 2 are easy to
implement in O(N/B) I/Os. Line 8 requires computing the connected components of
the graph GF = (V, F ). This can be done in O(sort(N)) I/Os (see section 2.4). The
connected components algorithm identifies components by labeling every vertex in a
connected component of GF with a representative. As argued in section 2.4, the graph
G/VF can then be computed in O(sort(N)) I/Os. Together with Lemmas 3.3 and 3.4,
this proves the following.

Lemma 3.5. The edge contraction phase of the uniform graph contraction proce-
dure takes O(sort(N)) I/Os.

3.2.2. Bundling phase. The bundling phase assumes that no two light vertices
in the input graph G1 are adjacent. By Lemma 3.3, this is true for the graph produced
by the edge contraction phase. We first extract all light vertices of degree at most two
and represent each such vertex x as a triple (x, y1,nil) or (x, y1, y2), depending on
whether it has one or two (heavy) neighbors. We sort these triples by their last two
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components, thereby storing all vertices with the same neighbors consecutively. Then
we scan this sorted list; that is, we scan each group C of vertices with the same
neighbors. For each such group, we form subgroups, starting with the first vertex
in C. For every subgroup, we record its total weights W1, . . . ,Wk, which are the sums
of the corresponding weights of the vertices in the group. For every inspected vertex
x, we add it to the current group if Wh ≤ uh/2 for all 1 ≤ h ≤ k. Otherwise, vertex x
starts a new group. Groups are represented by labeling every vertex in a group with
the ID of the first vertex in the group. The final grouping represents the partition
V2 of V (G1), and we compute the graph G2 = G1/V2 using the graph contraction
procedure from section 2.4.

Lemma 3.6. Given an N -vertex planar graph G1 that has no two adjacent light ver-
tices and all of whose vertices are within bounds, the bundling phase takes O(sort(N))
I/Os and produces a vertex bundling G2 = G1/V2 of G1 that contains no two light
vertices of degree at most two that have the same open neighborhood. All vertices in
G2 are within bounds.

Proof. The I/O-bound of the procedure is obvious because we sort and scan the
vertex and edge sets of G1 a constant number of times and then apply the contraction
procedure from section 2.4. It is also obvious that G1/V2 is a vertex bundling because
we add two vertices to the same set in V2 only if they have the same neighbors.

Next assume that G2 contains two light vertices x and y of degree at most two
and such that N (x) = N (y). Then x and y are the representatives of two sets V1 and
V2 in V2 that are subsets of the set C of all vertices with neighborhood N (x), and
both sets are light. Assume w.l.o.g. that V1 is formed before V2, and let z be the first
vertex in C that is not in V1. Since V1 is light, z would have been added to V1, a
contradiction.

Now assume that G2 contains a vertex x that is out of bounds. Since all vertices
of G1 are within bounds, x must represent some set V1 formed by collecting vertices
that belong to a set C of light vertices with the same neighbors. Let y be the last
vertex in C that is added to V1. Since we add y to V1, V1 is light before the addition
of y. Since y is light, this implies that V1 remains within bounds after adding y to it,
a contradiction.

Lemmas 3.5 and 3.6 together establish the I/O-complexity of the uniform graph
contraction procedure claimed in Theorem 3.1 and, thus, finish the proof of Theo-
rem 3.1.

4. An algorithm for partitioning unweighted graphs. In this section, we
present our main result: an I/O-efficient algorithm for computing a proper r-partition
of an unweighted planar graph G. In particular, we prove the following.

Theorem 4.1. Given a planar graph G and an integer r > 0, a proper r-partition
of G can be computed in O(sort(N)) I/Os, provided that M ≥ 56r log2 B.

Our algorithm (Algorithm 2) consists of three steps. The first two compute a
separator S0 of size O(N/

√
r) that defines an

(
r log2 B

)
-partition of G. The last step

then refines this partition to an r-partition by adding at most O(N/
√
r) more vertices

to the separator. The reason for not computing an r-partition immediately in the first
two steps is that Step 2 consists of logB iterations, each of which adds O(N/

√
r′)

vertices to the separator if an r′-partition is desired. By choosing r′ = r log2 B, we
ensure that the total number of separator vertices chosen in the first two steps is
O(N/

√
r), and the refinement in Step 3 increases this number by only a constant

factor.
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Algorithm 2 Computing a separator for an unweighted planar graph.

Procedure Separator

Input: A planar graph G = (V,E) and an integer r > 0.
Output: A proper r-partition P = (S,R) of G.

1: � ← �logB� − 1

2: Step 1: Compute the graph hierarchy

G0 ← G
for i = 1, . . . , � do

Compute a graph Gi that satisfies properties (GH3)–(GH6) from Gi−1.
end for

3: Step 2: Compute the separator S0

Apply Theorem 2.1 to compute a separator S� ⊆ V (G�) of size O(|G�|/(
√
r logB))

and whose removal partitions G� into connected components of size at most r log2 B.
for i = �− 1, . . . , 0 do

Compute a separator Si for Gi. Separator Si consists of two sets S′
i and S′′

i . S′
i is

the set of vertices represented by the vertices in Si+1. S′′
i is the set of separator

vertices introduced in order to partition the connected components of Gi − S′
i into

subgraphs of size at most r log2 B.
end for

4: Step 3: Compute the final partition

Compute the partition P = (S,R) by dividing the connected components of G − S0

into O(N/r) subgraphs of size at most r and boundary size O(
√
r) and adding the

required separator vertices to S0.

Step 3 is easy to implement I/O-efficiently: Given the assumption that M ≥
56r log2 B, every connected component of G− S0 fits in internal memory. Hence, we
can compute the desired r-partition by loading each component of G−S0 into memory
and applying Theorem 2.1 to it without incurring any further I/Os.

In Steps 1 and 2, we apply the same idea iteratively. In Step 1, we construct a
hierarchy of � = �logB� − 1 planar graphs G0, . . . , G�, where G0 = G and |G�| =
O(N/B). We obtain each graph Gi from the previous graph Gi−1 using the uniform
graph contraction procedure from section 3. Given the reduced size of G�, we can
compute an

(
r log2 B

)
-partition of G� in O(N/B) I/Os using Theorem 2.1. Let S� be

the set of separator vertices used in this partition. In Step 2, we undo the contraction
steps that produced graphs G1, . . . , G� from G0, one graph at a time. In each iteration,
we derive a separator Si for Gi from the separator Si+1 computed for Gi+1 in the
previous iteration. We do this as follows: Since Gi+1 is obtained from Gi using the
uniform graph contraction procedure, every vertex in Gi+1 represents a set of vertices
in Gi. Let S′

i be the set of vertices in Gi represented by the vertices in Si+1. In order
to obtain an

(
r log2 B

)
-partition of Gi, we partition every component of Gi − S′

i into

subgraphs of size at most r log2 B and add the separator vertices used in this partition
to a set S′′

i . The separator Si is the union of sets S′
i and S′′

i . S0 is the separator of
G0 = G obtained at the end of this process.

In order to carry out Step 2 efficiently, and in order to obtain a small separator
S0 at the end of Step 2, the graph hierarchy G0, . . . , G� computed in Step 1 has to
satisfy a number of properties.
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First, we want every graph Gi+1 to have roughly half as many vertices as Gi. This
guarantees that the cost of Steps 1 and 2 is dominated by the cost of the computation
on G0 = G and, since � = �logB� − 1, that G� has size O(N/B).

Second, during the construction of the separator Si from S′
i, we would like to use

an internal-memory algorithm to partition each connected component of Gi−S′
i; that

is, we want each such component to fit in memory. Since Si+1 defines an
(
r log2 B

)
-

partition of Gi+1 and M ≥ 56r log2 B, every connected component of Gi − S′
i fits in

memory if every vertex in Gi+1 represents at most 56 vertices in Gi.
Finally, observe that, once we add a vertex x in Gi to Si, all vertices in G repre-

sented by x belong to S0. Thus, to guarantee that S0 is small, we have to ensure that
no vertex in Gi represents too many vertices of G.

These conditions are formalized in the following properties which we require the
graph hierarchy G0, . . . , G� to have:

(GH1) � = �logB� − 1,
(GH2) G = G0,
(GH3) For i = 0, . . . , �, Gi is planar,
(GH4) For i = 0, . . . , �, |Gi| ≤ 7N/2i−1,
(GH5) For i = 1, . . . , �, every vertex in Gi represents at most 56 vertices in Gi−1,

and
(GH6) For i = 0, . . . , �, every vertex in Gi represents at most 2i+1 vertices in G.

In section 4.1, we show how to compute a graph hierarchy with these properties
in O(sort(N)) I/Os. In section 4.2, we show that the desired separator S0 of G can be
computed from this graph hierarchy in O(sort(N)) I/Os. In section 4.3, we provide
the details of Step 3 and show that this step can be carried out in the same I/O
bound as Steps 1 and 2, thereby establishing the complexity of Algorithm 2 claimed
in Theorem 4.1.

4.1. The graph hierarchy. The first step of our algorithm is the computation
of a hierarchy of graphs G0, . . . , G� that satisfy properties (GH1)–(GH6). We start by
setting G0 = G. Then we compute each graph Gi from the previous graph Gi−1 by
using the uniform graph contraction procedure from section 3. To ensure properties
(GH5) and (GH6), we assign a weight w(x) and a size s(x) to every vertex in Gi−1;
the former is equal to the number of vertices in G represented by x, and the latter is
equal to the number of vertices in Gi−1 represented by x, that is, equal to 1. We then
pass a weight threshold uw = 2i+1 and a size threshold us = 56 to the contraction
procedure.

Note that the assignment of weights and sizes to the vertices of Gi−1 before the
construction of Gi is easily accomplished. Initially, we set w(x) = s(x) = 1 for every
vertex x in G0 = G. Subsequently, before computing Gi from Gi−1, the size of every
vertex in Gi−1 can be reset to 1 in a single scan over the vertex set of Gi−1; as a
result of the construction of Gi−1 from Gi−2, every vertex in Gi−1 already stores its
correct weight.

Lemma 4.2. A graph hierarchy G0, . . . , Gq with properties (GH1)–(GH6) can be
constructed in O(sort(N)) I/Os.

Proof. First, we prove that the graph hierarchy computed by the procedure we
have just described has the desired properties. Properties (GH1) and (GH2) are triv-
ially satisfied. Property (GH3) is easy to prove by induction: For i = 0, G0 = G and is
thus planar. For i > 0, the planarity of Gi follows from the planarity of Gi−1 because,
by Theorem 3.1, the uniform contraction procedure preserves planarity.

Properties (GH5) and (GH6) are also easy to show by induction. In particular,
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w(x) = 1 ≤ 2 for every vertex x ∈ G0, and property (GH5) holds vacuously in this
case. When constructing Gi from Gi−1, every vertex in Gi−1 is within bounds because,
by the induction hypothesis, it has weight at most 2i and size 1 (after resetting its
size to 1). Hence, by Theorem 3.1, every vertex in Gi is within bounds and, thus, has
weight at most 2i+1 and size at most 56.

It remains to show property (GH4). For graph G0, property (GH4) holds because
|G0| = |G| = N ≤ 7N/2−1. To prove the claim for graphs G1, . . . , G�, let hi be the
number of heavy vertices in Gi. By Theorem 3.1, each graph Gi has size less than
7hi. To prove property (GH4), it is therefore sufficient to prove that hi ≤ N/2i−1.

We prove this claim by induction. We partition the heavy vertices into two cate-
gories. A heavy vertex of type I has weight exceeding 2i. A type-II vertex has weight
at most 2i and size greater than 28. Graph Gi contains less than N/2i type-I vertices
and less than |Gi−1|/28 type-II vertices; that is, hi < N/2i + |Gi−1|/28.

For i = 1, we obtain h1 < N/2 + N/28 < N/20. For i > 1, we obtain

hi <
N

2i
+

|Gi−1|
28

(1)

≤ N

2i
+

hi−1

4
(2)

≤ N

2i
+

N

2i
(3)

=
N

2i−1
.(4)

Equation (2) follows from (1) because |Gi−1| ≤ 7hi−1, as argued above. Equation (3)
follows from (2) by the induction hypothesis.

To bound the I/O-complexity, we recall that, by Theorem 3.1, the construction
of graph Gi from graph Gi−1 takes O(sort(|Gi−1|)) I/Os. By property (GH4), we

have
∑�

i=0 |Gi| = O(N). Thus, the total I/O-complexity is
∑�

i=1 O(sort(|Gi−1|)) =
O(sort(N)).

4.2. The separator hierarchy. In Step 2 of Algorithm 2, we use the graph
hierarchy computed in the first step to construct a relatively coarse partition of G. In
particular, we compute a separator S0 of size O(N/

√
r) whose removal partitions G

into connected components of size at most r log2 B.
First, we compute a partition of G� into subgraphs of size at most r log2 B. To

do so, we use an arbitrary linear-time planar embedding algorithm (see, e.g., [11]) to
compute a planar embedding of G�, and then we apply Theorem 2.1 to compute the
desired partition. Let S� = S′′

� be the computed separator.
In the loop in Step 2, we apply the following iterative strategy to compute sepa-

rators S�−1, . . . , S0 for graphs G�−1, . . . , G0: Given the separator Si+1 computed for
graph Gi+1 in the previous iteration, we construct the set S′

i of vertices in Gi rep-
resented by the vertices in Si+1. Then we apply Theorem 2.1 to each connected compo-
nent of Gi − S′

i whose size exceeds r log2 B, in order to partition it into
subgraphs of size at most r log2 B. Let S′′

i be the set of separator vertices intro-
duced by partitioning the connected components of Gi − S′

i in this manner. Then
Si = S′

i ∪ S′′
i .

Lemma 4.3. The separator S0 of G computed in Step 2 of Algorithm 2 has size
O(N/

√
r). The connected components of G− S0 have size at most r log2 B.

Proof. The bound on the size of the connected components of G−S0 is explicitly
guaranteed by the construction. We bound the size of S0 as follows: For every vertex
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x ∈ Gi, let R0(x) be the set of vertices in G represented by x. From our computation
of S0 it follows that, for every vertex y ∈ S0, there exists a unique set S′′

i and a unique
vertex x ∈ S′′

i such that y ∈ R0(x). Hence, we have

|S0| =

�∑
i=0

∑
x∈S′′

i

|R0(x)|.

By property (GH6), we have |R0(x)| = w(x) ≤ 2i+1 for all x ∈ S′′
i . Hence,

|S0| ≤
�∑

i=0

2i+1|S′′
i |.

Since we compute S′′
i by applying Theorem 2.1 to disjoint subgraphs of Gi, parti-

tioning each into pieces of size at most r log2 B, we have |S′′
i | ≤ 4|Gi|/(

√
r logB). By

property (GH4), this implies that |S′′
i | ≤ 28N/(2i−1

√
r logB). Thus,

|S0| ≤
�∑

i=0

2i+1 28N

2i−1
√
r logB

=

�∑
i=0

112N√
r logB

=
112N√

r
.

Lemma 4.4. Step 2 of Algorithm 2 takes O(sort(N)) I/Os to compute the sepa-
rator S0, provided that M ≥ 56r log2 B.

Proof. The computation of the separator S� takes O(N/B) I/Os by Theorem 2.1
and because graph G� has size at most 7N/2�−1 = O(N/B). Since the sizes of graphs
G0, . . . , G� are geometrically decreasing, it suffices to show that the separator Si can
be constructed from Si+1 in O(sort(|Gi|)) I/Os. This implies then that Step 2 takes
O(sort(|G0|)) = O(sort(N)) I/Os.

Since the uniform graph contraction procedure labels every vertex x in Gi with
the vertex in Gi+1 representing x, we can compute the separator S′

i in O(sort(|Gi|))
I/Os: First, we sort the vertices in Si+1 by their IDs, and then we sort the vertices
in Gi by their representatives in Gi+1. Then we scan the two lists and mark all those
vertices in Gi as being in S′

i whose representatives in Gi+1 belong to Si+1. Now it takes
O(sort(|Gi|)) I/Os to compute the connected components of Gi−S′

i (see section 2.4).
Since every connected component of Gi+1 − Si+1 has size at most r log2 B, it

follows from property (GH5) and Fact 2.2 that every connected component of Gi−S′
i

has size at most 56r log2 B ≤ M ; that is, each such component fits in memory. Thus,
we can load each connected component of Gi − S′

i whose size exceeds r log2 B into
memory and apply Theorem 2.1 to partition it into connected components of size at
most r log2 B. As the computation of Theorem 2.1 is carried out in internal memory,
partitioning the connected components of Gi − S′

i into subgraphs of size at most
r log2 B takes O(|Gi|/B) I/Os. Thus, the computation of Si takes O(sort(|Gi|)) I/Os,
and the total I/O-bound follows.

4.3. Computing the final partition. In order to obtain the final partition in
Step 3 of Algorithm 2, we have to partition the connected components of G−S0 into
subgraphs of size at most r. We also have to merge subgraphs to reduce their number
to O(N/r), while maintaining the bounds on their size and boundary size. We do this
as follows: First, we use Theorem 2.1 to partition each connected component of G−S0

into pieces of size at most r. This adds O(N/
√
r) vertices to the separator and, thus,

increases the separator size by only a constant factor. The resulting partition may
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contain more than O(N/r) subgraphs, and the total boundary size of its subgraphs
may exceed O(N/

√
r). We group the subgraphs in the current partition to reduce their

number to O(N/r) and their total boundary size to O(N/
√
r). Finally, we partition

each subgraph in the resulting partition into subgraphs of boundary size O(
√
r). This

is similar to Frederickson’s approach [19] and, as argued below, increases both the
number of subgraphs in the partition and the total boundary size by only a constant
factor.

Since every connected component of G − S0 has size at most r log2 B ≤ M , the
partition of G − S0 into connected components of size at most r can be computed
by loading each connected component of G − S0 into internal memory and applying
Theorem 2.1 to it. Let S′ ⊇ S0 be the separator produced by this step. Section 4.3.1
discusses how to obtain a normal r-partition P ′ = (S′, {G′

1, . . . , G
′
r}) of G from S′.

Section 4.3.2 then refines this partition to make it proper.

4.3.1. Grouping components. Intuitively, we compute the partition P ′ in two
phases: The first phase groups connected components of boundary size at most two
with other components that have the same boundary, while ensuring that none of the
resulting subgraphs has size greater than r. This phase reduces the total boundary
size of all subgraphs to O(N/

√
r). The second phase merges subgraphs that share

boundary vertices until no two subgraphs sharing boundary vertices can be merged
without producing a subgraph of size greater than r. This reduces the number of
subgraphs to O(N/r). Note that merging subgraphs in this manner cannot increase the
total boundary size; that is, the total boundary size of all subgraphs in the partition
remains O(N/

√
r), and the resulting partition P ′ is normal.

To determine which connected components to group in these two phases, we
use an auxiliary graph H0 whose vertices represent separator vertices and connected
components of G−S′. Both phases operate on H0, grouping component vertices rather
than actual components. After the two phases have been applied to H0, we obtain P ′

by merging the components in the partition that correspond to merged component
vertices in H0.

Graph H0 contains all vertices in S′ and one vertex per connected component
of G − S′. There is an edge between two separator vertices in H0 if such an edge
exists in G. There is an edge between a separator vertex x and a component vertex
representing a component G′ of G− S′ if x ∈ N (G′). Finally, every vertex in H0 has
a weight equal to the number of vertices in G it represents.

Graph H0 is easily constructed from G and S′ in O(sort(N)) I/Os: First, we
compute the connected components of G−S′, thereby labeling every vertex in G−S′

with the ID of the component it belongs to; we also label every vertex in S′ with its
own ID. Then we apply the contraction procedure from section 2.4 to G.

Reducing the total boundary size. Merging components of boundary size at most
two that have the same boundary is equivalent to merging component vertices in H0

that have the same neighbors and degree at most two. The latter is easily achieved
using the uniform graph contraction procedure (in fact, only the bundling phase is
sufficient). For the purpose of applying this procedure, we change the weight of every
separator vertex to r, leave the weights of all component vertices unchanged, and
set the weight threshold to r. Then the edge contraction phase does nothing because
every edge of H0 has at least one endpoint that is a separator vertex, that is, is heavy.
The bundling phase merges light component vertices that have the same neighbors
and degree at most two. By Theorem 3.1, the application of the uniform contraction
procedure takes O(sort(|H0|)) = O(sort(N)) I/Os. The next lemma proves that this
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produces a graph H1 from H0 whose component vertices represent subgraphs of G−S′

of size at most r each and sufficiently small total boundary size. Note that the bound
on the size of H1 stated in the lemma implies the claimed bound on the boundary
size of the corresponding partition of G because the total boundary size is equal to
the number of edges between component vertices and separator vertices in H1. Since
H1 is planar and has size O(N/

√
r), there are only O(N/

√
r) edges in H1.

Lemma 4.5. Applying the uniform contraction procedure to H0 produces a planar
graph H1 of size O(N/

√
r). Every vertex in H1 has weight at most r.

Proof. Since H0 is an edge contraction of G, Fact 2.1 implies that H0 is planar.
By Theorem 3.1, this implies that H1 is planar. Before applying the contraction
procedure to H0, all vertices are within bounds, that is, have weight at most r. Hence,
by Theorem 3.1, every vertex in H1 has weight at most r. Finally, to bound the size
of H1, observe that H1 contains only O(N/

√
r) heavy vertices: O(N/

√
r) separator

vertices and O(N/r) heavy component vertices; the latter is true because the total
weight of all component vertices in H1 is at most N . By Theorem 3.1, this implies
that H1 has O(N/

√
r) vertices.

Reducing the number of subgraphs. To reduce the size of H1 to O(N/r) by further
merging vertices, we first reset the weight of every separator vertex to 1 and then
apply the uniform contraction procedure to H1, again with weight threshold r. Since
|H1| ≤ N , this takes O(sort(N)) I/Os by Theorem 3.1. Since a vertex is heavy if its
weight exceeds r/2, and the total weight of all vertices in the resulting graph H2 is
N , there are at most 2N/r heavy vertices in H2. By Theorem 3.1, this implies that
the total size of H2 is O(N/r). Moreover, since no vertex in H1 has weight exceeding
r, Theorem 3.1 implies that no vertex in H2 has weight exceeding r. Thus, we have
the following.

Lemma 4.6. Applying the uniform contraction procedure to H1 produces a planar
graph H2 of size O(N/r). Every vertex in H2 has weight at most r.

The final grouping. Every component vertex in H2 now represents a subgraph
in the partition P ′. We finish the computation of P ′ by labeling every nonseparator
vertex with the ID of the subgraph it belongs to. This is easily achieved by sorting
and scanning the vertex sets of G, H0, H1, and H2 a constant number of times.
Indeed, every vertex in G − S′ is initially labeled with the connected component of
G− S′ that contains it, that is, with its representative in H0. Similarly, every vertex
in H0 is labeled with its representative in H1, and every vertex in H1 is labeled with
its representative in H2. Thus, sorting and scanning suffices to label every vertex in
H1, and subsequently every vertex in H0 and G, with its representative in H2. This
labeling represents the subgraphs in P ′.

Lemma 4.7. Given the separator S0, a normal r-partition P ′ of G can be computed
in O(sort(N)) I/Os.

Proof. The I/O-bound of computing P ′ from S0 follows from the above discussion
of the different steps required to obtain P ′ from G and S0.

There are only O(N/r) subgraphs in P ′ because there are only O(N/r) component
vertices in H2 and each of them defines one subgraph in P ′. Every subgraph in the
partition has size equal to the weight of its representative in H2; by Lemma 4.6, no
vertex in H2 has weight exceeding r. Finally, by Lemma 4.5, there are only O(N/

√
r)

edges in H1. Each such edge represents an adjacency between a separator vertex and
a subgraph in the partition P ′′ of G represented by H1. Thus, P ′′ has total boundary
size O(N/

√
r). Since partition P ′ is obtained by merging subgraphs in P ′′, the total

boundary size of the subgraphs in P ′ cannot be greater than the total boundary size
of the subgraphs in P ′′.
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4.3.2. Ensuring small boundary size. In order to obtain a proper r-partition
from the normal r-partition P ′, we have to reduce the boundary size of each individual
subgraph to O(

√
r) by further partitioning each subgraph in P ′ whose boundary size

exceeds this bound. In order to do so, we apply Corollary 2.3. This, however, requires
that each graph N [G′

i] fit in memory. While |G′
i| ≤ r ≤ M , the graph N [G′

i] may be
big and may not fit in memory.

We solve this problem by first augmenting the separator so that its size increases
by only a constant factor, and every graph G′′

i in the resulting partition satisfies
|N [G′′

i ]| = O(r) ≤ M . This then allows us to apply Corollary 2.3 to obtain the final
partition.

To augment the separator, we consider each graph G′
i in the partition P ′ in turn.

Let G̃i be the graph obtained from N [G′
i] as follows: First, we remove all edges between

vertices in N (G′
i). Then we merge all vertices in N (G′

i) whose resulting degree is at
most 2 that have the same set of neighbors (which all belong to G′

i). For every vertex
in G̃i that represents more than one vertex in N (G′

i), we add its neighbors in G′
i to

a set S′′
i . Then we define P ′′ = (S′′, {G′′

1 , . . . , G
′′
p}), where G′′

i = G[V (G′
i) \ S′′

i ] and
S′′ = S′ ∪

⋃p
i=1 S

′′
i ; that is, in P ′′, the vertices in S′′

i are removed from the graph G′
i

and are added to the separator.

Lemma 4.8. Let P ′′ = (S′′, {G′′
1 , . . . , G

′′
p}) be the partition obtained from P ′ using

the above transformation. Then P ′′ is normal, and every graph N [G′′
i ], 1 ≤ i ≤ p, has

size O(r).

Proof. Let P ′ = (S′, {G′
1, . . . , G

′
p}). Then |S′| = O(N/

√
r) and

∑p
i=1 |N (Gi)| =

O(N/
√
r) because P ′ is normal. Now consider subgraphs G′

i and G′′
i , and let Nsh(G′

i) =
N (G′

i) ∩N (G′′
i ) and Ndis(G

′
i) = N (G′

i) \ N (G′′
i ).

We start by proving that |S′′
i | ≤ |Ndis(G

′
i)|. Consider a vertex x ∈ S′′

i . This vertex
belongs to S′′

i because there exists a vertex y ∈ G̃i that represents a set Vy of h ≥ 2
vertices in N (G′

i) that are adjacent to x. We charge each such vertex 1/h ≤ 1/2 for
the addition of x to S′′

i . Since each vertex in Vy is adjacent to at most two vertices
in G′

i, each vertex in Vy is charged for at most two vertices, and the charge to each
vertex is at most 1. Thus, the total number of charged vertices is an upper bound
on |S′′

i |. Note, however, that all neighbors of a charged vertex that belong to G′
i are

added to S′′
i . Hence, every charged vertex belongs to Ndis(G

′
i) and |S′′

i | ≤ |Ndis(G
′
i)|.

This immediately implies that partition P ′′ is normal: The size of S′′ is |S′′| = |S′|+∑p
i=1 |S′′

i | ≤ |S′| +
∑p

i=1 |Ndis(G
′
i)| ≤ |S′| +

∑p
i=1 |N (G′

i)| = O(N/
√
r). For each

graph G′′
i , we have |N (G′′

i )| ≤ |Nsh(G′
i)| + |S′′

i | ≤ |Nsh(G′
i)| + |Ndis(G

′
i)| = |N (G′

i)|.
Therefore,

∑p
i=1 |N (G′′

i )| ≤
∑p

i=1 |N (G′
i)| = O(N/

√
r).

To bound the size of each graph N [G′′
i ], we partition its vertices into two groups:

those in G′
i and those in Nsh(G′

i). Since |G′
i| ≤ r, N [G′′

i ] can contain at most r vertices
that belong to G′

i. Next, observe that there are no two vertices x and y of degree at
most two in Nsh(G′

i) such that N (x) = N (y): if there were two such vertices, their
neighbors in G′

i would have been added to S′′
i . Thus, the subgraph of G induced by

the edges between vertices in Nsh(G′
i) and vertices in G′

i satisfies the conditions of
Corollary 2.5, and the number of vertices in Nsh(G′

i) is less than 6|G′
i| ≤ 6r. The size

of N [G′′
i ] is therefore at most 7r.

The computation of partition P ′′ takes O(sort(N)) I/Os. The computation of
graph G̃i, for every graph N [G′

i], is easily carried out using the uniform graph con-
traction procedure after assigning weight 1 to every separator vertex and weight 2N
to every vertex in G′

i; the weight threshold is 2N . The construction of set S′′
i now

requires scanning the vertex set of G̃i and adding the neighbors of all separator vertices
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of weight at least two and degree at most two to S′′
i . Thus, the computation for each

graph N [G′
i] takes O(sort(|N [G′

i]|)) I/Os, and the total cost is
∑p

i=1 O(sort(|N [G′
i]|))=

O(sort(N)).
To obtain the final partition, we apply Theorem 2.2 to every subgraph G′′

i in
partition P ′′ whose boundary size exceeds c

√
r, for an appropriate constant c > 0. By

Corollary 2.3, this can be done in O(N/B) I/Os and increases the size of the separator
and the number of graphs in the partition by only a constant factor; that is, this final
step produces a proper r-partition of G.

Since we have shown that all three steps of Algorithm 2 can be carried out in
O(sort(N)) I/Os and that the final partition we obtain is proper, we have thus shown
Theorem 4.1.

5. Regular partitions. Our result from the previous section provides an algo-
rithm for computing proper r-partitions of planar graphs, as long as r is small; but the
computed partitions are not necessarily regular. In general, without a bound on the
degrees of the vertices in the graph, a regular proper r-partition may not exist. For
planar graphs of degree three, however, regular proper r-partitions do exist [19], and
the algorithms of [5, 7, 8, 9] rely on the existence of such partitions. In this section,
we show how to modify the partition produced by Algorithm 2 to obtain a regular
proper r-partition for a planar graph of degree three.

Given such a graph G, we use Algorithm 2 to compute a proper r-partition P =
(S, {G1, . . . , Gp}) of G. We are, however, interested only in the separator S and discard
the grouping of the connected components G − S into subgraphs. Next we regroup
the connected components of G − S to obtain the desired regular proper r-partition
P ′ = (S, {G′

1, . . . , G
′
q}). This grouping is again similar to [19].

We use an auxiliary graph H to compute the desired grouping. Graph H contains
one vertex per connected component of G−S. There is an edge between two vertices
in H if the two corresponding components of G − S share a boundary vertex. Since
every vertex in G has degree at most three, graph H is planar. We give two weights
s(x) and b(x) to each vertex x in H: s(x) is the size, that is, the number of vertices
in the connected component represented by x; b(x) is the size of the component’s
boundary. Note that s(x) ≤ r and b(x) ≤ c

√
r, for some c > 0, because P is a proper

r-partition.
Now we apply the uniform graph contraction procedure to H, with thresholds

us = r and ub = c
√
r. This produces a graph H ′, each of whose vertices represents a

set of vertices in H and, thus, a set of connected components of G − S. The graphs
G′

1, . . . , G
′
q in partition P ′ are defined as the graphs represented by the vertices in

H ′. By the arguments in section 4.3, this partition of G − S can be computed in
O(sort(N)) I/Os.

Theorem 5.1. Given an N -vertex planar graph G none of whose vertices has
degree greater than three, and an integer r > 0, a regular proper r-partition of G can
be computed in O(sort(N)) I/Os, provided that M ≥ 56r log2 B.

Proof. The I/O-complexity of the procedure follows immediately from Theo-
rem 4.1 and our discussion above. Next, we argue that the produced partition P ′

is proper. Since the partition P produced by Algorithm 2 is proper, we have |S| =
O(N/

√
r). This implies that the total boundary size of the connected components of

G − S cannot exceed O(N/
√
r) because every vertex in G has degree at most three,

and, thus, every vertex in S is adjacent to at most three connected components of
G− S. Therefore, there are only O(N/r) heavy vertices in H ′: at most 2N/r vertices
of size greater than r/2 and O(N/r) vertices of boundary size greater than c

√
r/2.
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By Theorem 3.1, this implies that |H ′| = O(N/r), that is, that partition P ′ has
O(N/r) subgraphs. Since every vertex x in H has weights s(x) ≤ r and b(x) ≤ c

√
r,

Theorem 3.1 implies that the same is true for every vertex in H ′. Thus, no subgraph
in partition P ′ has size exceeding r or boundary size exceeding c

√
r, and partition P ′

is proper.
In order to prove that P ′ is regular, we analyze the two phases of the computation

of H ′ from H. The edge contraction phase of the uniform contraction procedure
merges only vertices that are adjacent. In G, this corresponds to merging connected
components of G− S that share boundary vertices. Thus, for every graph G′′

i in the
resulting partition, the graph N [G′′

i ] is connected. The bundling phase merges only
vertices of degree at most two that have the same neighbors. Moreover, these neighbors
are heavy, that is, are not merged with any other vertices during the bundling phase.
Thus, the merging of vertices during the bundling phase corresponds to producing
merged subgraphs that are potentially disconnected but share boundary vertices with
at most two other subgraphs G′

j and G′
k, which satisfy that N [G′

j ] and N [G′
k] are

connected.

6. Low-cost separators and edge separators. In this section, we show that
the results from sections 4 and 5 can be used to obtain an I/O-efficient version of the
following theorem by Aleksandrov et al. [3].

Theorem 6.1 (Aleksandrov et al. [3]). Given a planar graph G = (V,E), a
cost function c : V → R+, a weight function w : V → R+, and a real number
0 < t < 1, there exists a t-vertex separator S of cost c(S) ≤ 4

√
2C(G)/t for G, where

c(S) =
∑

x∈S c(x) and C(G) =
∑

x∈V (c(x))2. Such a separator can be computed in
linear time.

In this theorem, the sizes of the subgraphs in the computed partition are measured
in terms of the total weight assigned to their vertices by a weight function w. Similarly,
the size of the separator S is measured in terms of the total cost assigned to the vertices
in S by a cost function c. The former is a fairly standard notion already considered in
the classical paper by Lipton and Tarjan [27]. The latter is a more recent concept that
allows a number of separator theorems to be seen as special cases of Theorem 6.1.
Theorem 2.1, for example, can be obtained from Theorem 6.1 by choosing c(x) = 1
for all x ∈ V , and Aleksandrov et al. have shown how to obtain a generalization of the
edge separator theorem of [15] from Theorem 6.1 (see also Theorem 6.3 in section 6.3).
The main result of this section is as follows.

Theorem 6.2. Given a planar graph G = (V,E), a cost function c : V → R+,
and a weight function w : V → R+, a separator S as in Theorem 6.1 can be computed
in O(sort(N)) I/Os, provided that M = Ω

(
B2 log2 B

)
.

Theorem 6.2 is more general than Theorem 4.1 because it takes vertex costs
and weights into account; moreover, even in the unweighted case, Theorem 4.1 re-
quires that r = tN = O

(
M/ log2 B

)
, while Theorem 6.2 places no such restriction

on r.
Our exposition of the algorithm that proves Theorem 6.2 is organized as follows.

In section 6.1, we review the algorithm by Aleksandrov et al., as it forms the basis
for our I/O-efficient version. In section 6.2, we provide I/O-efficient implementations
of the three main steps of this algorithm, thereby obtaining an I/O-efficient version
of the algorithm. This proves Theorem 6.2. In section 6.3, we briefly argue that this
also leads to an I/O-efficient version of the edge separator algorithm of [3].

We assume throughout sections 6.1 and 6.2 that the given graph is triangulated;
since any planar graph can be triangulated in O(sort(N)) I/Os [25], and a separator
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(a) (b)

Fig. 6.1. (a) The bold cycle separates the white vertices on its outside from the grey ones on
its inside. (b) The dashed nontree edge defines the bold fundamental cycle.

of the resulting triangulation is also a separator of the original graph, this is not a
restriction.

6.1. The algorithm of Aleksandrov et al. The algorithm of [3] can be seen
as a nontrivial extension of Lipton and Tarjan’s algorithm [27]. The first observation
is that every simple cycle C in G separates the vertices inside C from those outside C
in the given embedding of G; see Figure 6.1(a). The central goal then is to compute
a collection of cycles that partition G into regions of the desired weight. These cycles
are chosen from the set of fundamental cycles w.r.t. a spanning tree T of G, where
a fundamental cycle F (e) consists of an edge e ∈ E(G) \ E(T ) and the path in
T connecting the two endpoints of e; see Figure 6.1(b). We refer to an edge e ∈
E(G) \ E(T ) as a nontree edge, while every edge in T is a tree edge.

In order to obtain a separator of low cost in this manner, it is necessary to bound
the number of fundamental cycles comprising the separator, as well as the total cost
of the vertices on each fundamental cycle. As we will see below, the former is easy,
as the number of required cycles is inversely proportional to t. To ensure that each
fundamental cycle is of low cost, Aleksandrov et al. compute T as a shortest-path
tree w.r.t. appropriate edge weights that guarantee that the depth of every vertex x
in T (that is, the weighted distance of x from the root of T ) is equal to the total
cost of the vertices on the path from the root of T to x; the cost of any funda-
mental cycle is then at most twice the radius of T , where the radius of the tree
is the maximum depth of any of its vertices. By itself, this does not yet guarantee
low cost of each fundamental cycle because T may have a large radius. To fix this,
Aleksandrov et al. first find a set of vertices of low total cost whose removal parti-
tions T into subgraphs G0, . . . , Gp of low depth, where the depth of a graph Gi is
the maximal difference between the depths (in T ) of any two vertices in Gi; see Fig-
ure 6.2(a). We call these graphs G0, . . . , Gp layers. They then triangulate each layer
and obtain a spanning tree for the resulting triangulation whose radius is bounded
by the depth of the layer. Hence, each fundamental cycle w.r.t. this spanning tree
has low cost, and the layer can be partitioned using fundamental cycles; see Fig-
ure 6.2(b).

In summary, the algorithm therefore consists of two phases. The first phase com-
putes the shortest-path tree T and partitions G into shallow layers by removing an
appropriate set of vertices of low total cost. The second phase partitions each layer by
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Fig. 6.2. (a) The partition of G into layers G0, . . . , G4 using levels L(�1), . . . , L(�4). (b) The
partition of G2 into subgraphs of weight at most tw(G) using fundamental cycles. The dotted edges
are the ones introduced to connect all vertices that were adjacent to vertices in L(�2) to the new
root vertex s2. The dashed edges are the nontree edges defining the fundamental cycles that are used
to partition G2. (c) The definition of level L(�3). The bold edges are all edges in T spanning depth
�3. Their bottom endpoints are in L(�3). The sets V −(�3) and V +(�3) are shown in light and dark
grey, respectively. Note that there are no edges between V −(�3) and V +(�3).

removing the vertices belonging to a small set of fundamental cycles. The separator
consists of all vertices removed in these two phases.

Next, we provide more details on the three parts of the algorithm: the compu-
tation of the shortest-path tree T , the partitioning of G into shallow layers, and the
partitioning of each layer using fundamental cycles.

6.1.1. The shortest-path tree. To compute the spanning tree T used in the
separator algorithm, recall that we assume that G is triangulated. The algorithm
starts by choosing one face f , adding a new vertex s of cost and weight zero inside
this face, and connecting s to the three vertices on the boundary of f .

Next, every edge xy of G is replaced with two directed edges xy and yx, and each
directed edge xy is assigned a weight w′(xy) = c(y); that is, the weight of every edge
is equal to the cost of its head. Tree T is the shortest-path tree obtained by computing
single-source shortest paths from s w.r.t. edge weights w′. It is easy to see that the
distance of a vertex x from s in T equals the cost of x’s ancestors in T , including x
itself. For every vertex x ∈ G, let its depth be d(x) = distT (s, x), and let the radius
of T be r(T ) = max{d(x) : x ∈ V }.

6.1.2. Cutting G into layers. The set of vertices used to partition G into
shallow layers is the union of a set of levels L(�1), . . . , L(�p), where each level L(�i)
is the set of bottom endpoints of all edges spanning depth �i: L(�i) = {y : e = xy ∈
T and d(x) < �i ≤ d(y)}. See Figure 6.2(c) for an illustration.

Every level L(�i) is a separator of G whose removal partitions the vertex set V
of G into two sets V −(�i) = {x ∈ V : d(x) < �i} and V +(�i) = {x ∈ V : d(x) ≥
�i and x �∈ L(�i)} so that no vertex in V −(�i) is adjacent to a vertex in V +(�i). The
set of levels L(�1), . . . , L(�p) then partitions G into p+1 subgraphs G0, . . . , Gp, where
G0 = G[V −(�1)], Gp = G[V +(�p)], and, for 0 < i < p, Gi = G[V +(�i) ∩ V −(�i+1)].
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Graphs G0, . . . , Gp are the layers we want to compute.
There is obviously a trade-off between the cost of levels L(�1), . . . , L(�p) and the

cost of partitioning the layers G0, . . . , Gp using fundamental cycles. By choosing more
levels �1, . . . , �p, the layers can be made more shallow, thereby reducing the cost of
the fundamental cycles used to partition them. This, however, increases the total cost
of levels L(�1), . . . , L(�p).

As we will see, this trade-off is balanced by partitioning G into p+1 = �r(T )/h�+1
layers of depth at most 2h, where h =

√
tC(G)/8. This is achieved by choosing the

value �i defining each level L(�i) from the interval ((i− 1)h, ih] so that the level L(�i)
has minimal cost among all levels L(�) with (i − 1)h < � ≤ ih. Indeed, this ensures
that two consecutive values �i and �i+1 differ by at most 2h; that is, every layer has
depth at most 2h. As shown by Aleksandrov et al., it also ensures that the cost of the
union S1 of levels L(�1), . . . , L(�p) is c(S1) ≤ C(G)/h = 2

√
2C(G)/t.

6.1.3. Partitioning the layers. The removal of levels L(�1), . . . , L(�p) parti-
tions G into layers G0, . . . , Gp. If a layer Gi has weight at most tw(G), it does not have
to be partitioned further. In general, however, Gi may have a weight exceeding tw(G)
and needs to be partitioned into subgraphs of weight at most tw(G). This is done
by augmenting Gi to obtain a triangulation that has a spanning tree Ti of diameter
not exceeding the depth of Gi; this augmented version of Gi is then partitioned using
fundamental cycles w.r.t. Ti.

The augmentation of G0 involves simply triangulating it. For i > 0, graph Gi

is augmented in two steps: First, a vertex si of weight and cost zero is added to Gi

and connected to all vertices in Gi that, in G, are adjacent to vertices in L(�i). The
resulting graph is then triangulated, and the edges of Gi are assigned weights as in
section 6.1.1. Tree Ti is now chosen to be a shortest-path tree of Gi with root si,
where s0 = s. See Figure 6.2(b) for an illustration.

The approach for finding the fundamental cycles used to partition Gi into sub-
graphs of weight at most tw(G) can be explained as follows: Let T ∗

i be the dual of
Ti. This tree is obtained from the dual G∗

i of Gi by removing all those edges that are
dual to edges in Ti. Thus, every edge e∗ in T ∗

i corresponds to a nontree edge e of Gi

and, hence, represents a fundamental cycle F (e) in Gi. If the vertex corresponding to
the outer face of Gi is chosen as the root of T ∗

i , the descendant vertices and edges of
e∗ in T ∗

i represent the region enclosed by F (e).
The goal now is to assign weights w∗(e∗) to the edges of T ∗

i so that the total
weight of the edges in T ∗

i equals the total weight of the vertices in Gi, and the total
weight of the descendant edges of an edge e∗ in T ∗

i is an upper bound on the weight
of the vertices in Gi enclosed by F (e). Given such an assignment of edge weights, it
suffices to partition T ∗

i into a small number of subtrees of weight at most tw(G) by
removing a set of edges from T ∗

i ; the vertices on the corresponding fundamental cycles
then form a separator partitioning Gi into subgraphs of weight at most tw(G).

The weight function w∗ is obtained by charging the weight of every vertex x in Gi

to some edge e∗ of T ∗
i : If x has at least one incident nontree edge, edge e∗ is chosen to

be the dual of one of these edges. Otherwise, e∗ is chosen to be the dual of a nontree
edge e both of whose endpoints are neighbors of x in Ti. It is easy to see that such an
edge always exists.

The weight function is easily seen to have the two properties above: Since every
vertex of Gi is charged to exactly one edge of T ∗

i , the total weight of the edges in T ∗
i

equals the total weight of the vertices in Gi. A vertex x in the region enclosed by a
fundamental cycle F (e) must have been charged to an edge e∗1 in T ∗

i such that e1 is
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also contained in the region enclosed by F (e). Thus, e∗1 is a descendant edge of e∗ in
T ∗
i , and the weight of the descendant edges of e∗ is an upper bound on the weight of

the vertices in Gi enclosed by F (e). See [2] for a more rigorous argument.

In order to partition T ∗
i into subtrees of weight at most tw(G) by removing a

set of edges Xi, a leaf of T ∗
i is chosen as the root of T ∗

i , and the edges of T ∗
i are

then inspected from the bottom up. For every edge e∗, if the total weight of all its
descendant edges, including e∗ itself, exceeds tw(G)/2, the subtree below e∗ is pruned
from T ∗

i by adding e∗ to the edge separator Xi. The edges in the pruned subtree are
then no longer counted when determining the total weight of the descendant edges of
any ancestor of e∗.

Since the vertices in the dual of a planar triangulation have degree at most three
and the root of T ∗

i has degree one, T ∗
i is a binary tree. Thus, the above procedure

ensures that each subtree in the produced partition has weight at most tw(G) and,
hence, that the fundamental cycles in the set F(Xi) = {F (e) : e∗ ∈ Xi} partition Gi

into subgraphs of weight at most tw(G). To bound the number of fundamental cycles
in F(Xi), observe that every edge e∗ in Xi has descendant edges of total weight
at least tw(G)/2 and that every edge of T ∗

i is counted as a descendant edge of at

most one edge in Xi. Hence |F(Xi)| = |Xi| ≤ 2w∗(T∗
i )

tw(G) = 2w(Gi)
tw(G) . The total number

of fundamental cycles used to partition the layers G0, . . . , Gp is therefore at most
2w(G)
tw(G) = 2/t. Since each layer has depth at most 2h, the cost of the vertices on one

fundamental cycle is at most 4h and, hence, the total cost of all fundamental cycles
in F(X0) ∪ · · · ∪ F(Xp) is at most 8h/t = 2

√
2C(G)/t.

Let S2 be the set of vertices on the fundamental cycles in F(X0) ∪ · · · ∪ F(Xp).
The final separator S = S1 ∪S2 partitions G into subgraphs of weight at most tw(G)
and has cost c(S1) + c(S2) ≤ 4

√
2C(G)/t.

Aleksandrov et al. [3] showed how to implement this procedure in linear time.
In the next section, we show how to carry out the three steps of the algorithm in
O(sort(N)) I/Os.

6.2. An I/O-efficient algorithm.

6.2.1. Computing T . In order to compute the shortest-path tree T , we need
to compute a planar embedding of G, triangulate G, add a new vertex of cost and
weight 0 inside one of its faces, assign weights w′(e) to the edges of G, and finally,
compute single-source shortest paths w.r.t. these edge weights.

A planar embedding of G can be computed in O(sort(N)) I/Os [33]; an embedded
planar graph can be triangulated in the same I/O-bound [25]. Next, we extract a
description of the faces of the triangulation as lists of vertices, each containing the
boundary vertices of one face sorted clockwise around that face; this can also be done
in O(sort(N)) I/Os. We add a vertex s to G and traverse the vertex list representing
one of the faces of G to add edges between s and the vertices on the boundary of this
face to G. Now it takes O(sort(N)) I/Os to label every edge of G with the costs of its
endpoints, replace every edge of G with its corresponding directed edges, and assign
weights as defined in section 6.1.1 to these edges (see section 2.4). The shortest-path
tree T can now be computed in O(sort(N)) I/Os using the shortest-path algorithm
of [8].

This procedure for computing T is where we depend on Theorems 4.1 and 5.1. The
embedding algorithm of [33] relies on a proper B2-partition of G; the shortest-path
algorithm of [8] requires a regular proper B2-partition.
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6.2.2. Cutting T into layers. To compute the levels L(�1), . . . , L(�p) used to
partition G into layers G0, . . . , Gp, we first need to compute the values �1, . . . , �p and
then extract the vertices belonging to S1 = L(�1) ∪ · · · ∪ L(�p).

To compute values �1, . . . , �p, we label both endpoints of every edge in T with
their costs and their distances from s. Then we sort the edges of T by the distances
of their tails from s and scan the sorted edge list to simulate a sweep from � = −∞ to
� = +∞. During this sweep, we maintain the cost c(L(�)) of the current level L(�) and
keep track of the value i such that (i− 1)h < � ≤ ih. We also maintain the minimum
cost cmin(i) of all levels L(�′) with (i−1)h < �′ ≤ ih we have seen so far, as well as the
level �i such that (i− 1)h < �i ≤ ih and c(L(�i)) = cmin(i). When � = d(xj), for some
vertex xj , we perform the following operations: First, we test whether d(xj+1) > ih. If
so, we have finished processing all levels L(�′) with (i−1)h < �′ ≤ ih, so we report �i,
increase i by one, and initialize cmin(i) = +∞. Then we decrease c(L(�)) by c(xj) and
increase c(L(�)) by the total cost of the heads of all edges having xj as their tail. This
produces c(L(d(xj+1))). If c(L(d(xj+1))) < cmin(i), we set cmin(i) = c(L(d(xj+1)))
and �i = d(xj+1).

Given values �1, . . . , �p and the edge set of T as sorted above, the set S1 =
L(�1) ∪ · · · ∪ L(�p) can be extracted as follows: We scan the list of values �1, . . . , �p
and the edge set of T , again to simulate a sweep from � = −∞ to � = +∞. During
the sweep we maintain the index i of the next level �i to be passed by the sweep;
initially, i = 1. When the sweep passes the tail of an edge xy, its tail is at a depth less
than �i. Thus, we add its head y to L(�i) if d(y) ≥ �i. When the sweep passes level
�i, we increase i by one and, thus, start constructing the next level L(�i+1). Since
this computation of set S1 requires sorting and scanning the edge set of T a constant
number of times, its I/O-complexity is O(sort(N)).

6.2.3. Partitioning the layers. The final step of the algorithm extracts graphs
G0, . . . , Gp, computes shortest-path trees T0, . . . , Tp for these graphs, and partitions
each graph Gi, 0 ≤ i ≤ p, into subgraphs of weight at most tw(G) using fundamental
cycles w.r.t. Ti.

Computing the layers. To compute graphs G0, . . . , Gp, we first compute the set
V −S1 and sort the vertices in V −S1 by their distances from s. We scan the vertices
in V − S1 and the values −∞ = �0, . . . , �p+1 = r(T ) to partition V − S1 into sets
V0, . . . , Vp, where Vi = {x ∈ V − S1 : �i < d(x) ≤ �i+1}. For 1 ≤ i ≤ p, we add a new
vertex si to Vi. This produces the vertex sets of graphs G0, . . . , Gp.

Next we partition E into sets E0, . . . , Ep, E
−
1 , . . . , E−

p , and E+ such that every

edge in Ei has both endpoints in Vi; every edge xy in E−
i has one endpoint, say y, in Vi,

and the other endpoint, x, satisfies x ∈ S1 and d(x) < d(y); and set E+ contains the
remaining edges. This partition is easily computed in O(sort(N)) I/Os: We label every
edge with the membership of its endpoints in V0, . . . , Vp or S1 and with their distances
from s. Every edge can then determine its membership in one of the sets based on
its local information, and we can sort E to obtain the desired partition. Graph Gi is
now defined as Gi = (Vi, Ei ∪ E′

i), where E′
i = {siy, ysi : xy ∈ E−

i and d(x) < d(y)}.
Finally, we triangulate Gi using the algorithm of [25].

This procedure requires sorting and scanning the vertex and edge sets of G a
constant number of times. In addition, we invoke the O(sort(N))-I/O triangulation
algorithm of [25] on graphs G0, . . . , Gp, whose total size is O(N). Hence, the construc-
tion of graphs G0, . . . , Gp takes O(sort(N)) I/Os.

Computing shortest-path trees and their duals. Each shortest-path tree Ti can
be computed in O(sort(|Gi|)) I/Os using the procedure described in section 6.2.1.
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To construct T ∗
i , we compute the dual G∗

i = (Fi, E
∗
i ) of Gi, which can be done in

O(sort(|Gi|)) I/Os [25]. Then we remove all edges dual to edges in Ti from E∗
i . This

takes another O(sort(|Gi|)) I/Os (see section 2.4). Thus, in total, the construction of
trees T0, . . . , Tp and T ∗

0 , . . . , T
∗
p takes O(sort(N)) I/Os.

Computing dual edge weights. Before computing an edge separator of T ∗
i and the

corresponding set of fundamental cycles, we have to assign weights w∗(e∗) as defined
in section 6.1.3 to the edges of T ∗

i . We do this in two phases. First, we partition Vi

into two sets V ′
i and V ′′

i such that every vertex in V ′
i has an incident nontree edge,

while all edges incident to a vertex in V ′′
i are tree edges. While doing this, we also

identify a nontree edge e incident to each vertex x ∈ V ′
i and add w(x) to w∗(e∗). In

the second phase, we find a nontree edge e for every vertex x ∈ V ′′
i such that both

endpoints of e are neighbors of x in Ti; we add w(x) to w∗(e∗). The details follow.

To implement the first phase, we create a list Yi of nontree edges of Gi. More
precisely, Yi contains directed edges xy and yx for every nontree edge xy of Gi. We
sort the edges in Yi by their tails and sort the vertices in Vi by their IDs. Now a single
scan of lists Vi and Yi suffices to identify all vertices x in Vi such that Yi contains at
least one edge with tail x. These are the vertices in V ′

i ; all other vertices belong to
V ′′
i . During this scan, we also extract, for every vertex x ∈ V ′

i , the first edge e with
tail x from Yi and add a pair (e∗, w(x)) to a list W . This list will be used after the
second phase to compute the weights of the edges in T ∗

i .

To implement the second phase, we observe that, for every vertex x ∈ V ′′
i and

every nontree edge yz such that y and z are both neighbors of x in Ti, one endpoint
of yz, say y, must be a child of x in Ti, and the other, z, must be x’s parent in Ti or
another child of x. This implies in particular that, for every nontree edge yz, there
exists at most one vertex x ∈ V ′′

i such that y and z are both neighbors of x in Ti.
Our goal, therefore, is to partition the nontree edges of Gi into sets E(x) such that
both endpoints of each edge in E(x) are neighbors of x in Ti; for every vertex x ∈ V ′′

i ,
we then choose one edge from E(x) and add the pair (e∗, w(x)) to W . To obtain the
partition into sets E(x), we first label every vertex x ∈ Ti with its grandparent in
Ti: We create a second copy Pi of Vi, sort the vertices in Pi by their IDs, and sort
the vertices in Vi by the IDs of their parents. This ensures that the vertices in Vi are
stored in the same order as their parents in Pi. Since each vertex in Pi also stores
the ID of its parent, a single scan of Vi and Pi now suffices to label every vertex in
Vi with the ID of its grandparent. Now we label every nontree edge of Gi with the
parents and grandparents of its endpoints. A nontree edge yz belongs to E(x) if and
only if x is the parent of both y and z or, w.l.o.g., x is the parent of y and z is the
grandparent of y. This can now be tested based on the local information stored with
edge yz. If edge yz satisfies this condition, we label it as belonging to E(x). We sort
the nontree edges by their membership in sets E(x) and scan V ′′

i and the sorted edge
list to add a pair (e∗, w(x)) to W for every vertex x ∈ V ′′

i and the first edge e ∈ E(x).

To finish the computation of the weights of the edges in T ∗
i , we sort the edges of

T ∗
i by their IDs and the pairs in W by their first components. A single scan of these

two sorted lists now suffices to add w(x) to w∗(e∗), for every pair (e∗, w(x)) ∈ W .

Since this procedure sorts and scans lists of size O(|Gi|) a constant number of
times, the assignment of weights to the edges of T ∗

i takes O(sort(|Gi|)) I/Os. The
total cost for all graphs G0, . . . , Gp is therefore O(sort(N)).

Computing the edge separator and fundamental cycles. To obtain the edge sep-
arator Xi of T ∗

i , we root T ∗
i in an arbitrary leaf, compute a preorder numbering of

T ∗
i w.r.t. the chosen root, and direct all edges in T ∗

i from children to parents. This
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can be done using the Euler tour technique and list ranking [14]. The construction of
the edge separator Xi as described in section 6.1.3 can now be implemented using the
time-forward processing technique of [14]. Given the edge separator Xi of T ∗

i produced
by this procedure, we mark the endpoints of all edges e ∈ Gi such that e∗ ∈ Xi and
then process Ti from the bottom up (using time-forward processing again) to identify
all vertices of Gi that belong to the fundamental cycles defined by the edges in Xi.
We add these vertices to S2.

This procedure applies the Euler tour technique, list ranking, and time-forward
processing to Ti and T ∗

i , both of which have size O(|Gi|). Hence, this takes O(sort(|Gi|))
I/Os. Apart from this, we sort and scan lists of size O(|Gi|). Thus, partitioning each
graph Gi takes O(sort(|Gi|)) I/Os, and the computation of the whole separator S2

takes O(sort(N)) I/Os.

6.2.4. Final remarks. Since we have shown that the computation of both S1

and S2 takes O(sort(N)) I/Os, Theorem 6.2 is proved. Since the algorithm relies on
the separator algorithm of section 4 and the shortest-path algorithm of [8], it inherits
their memory requirements. In particular, the latter requires a proper Θ

(
B2

)
-partition

as part of the input and uses Θ
(
B2

)
main memory to carry out its computation. The

algorithm from section 4 can be used to produce the desired partition in O(sort(N))
I/Os, provided that M = Ω

(
B2 log2 B

)
.

As a final comment, note that the shortest-path algorithm of [8] relies on a regular
proper Θ

(
B2

)
-partition, which is guaranteed to exist only if the graph has bounded

degree. The triangulations in which we need to compute shortest paths may not satisfy
this constraint, but given an embedding, each planar graph G can be transformed into
a planar graph G′ of size O(|G|) such that every vertex in G′ has degree at most three.
This is done by replacing every vertex x of degree deg(x) > 3 with a cycle of deg(x)
vertices and making every edge incident to x incident to a different vertex on this
cycle. This takes O(sort(|G|)) I/Os. Moreover, if the edges in each cycle replacing
a high-degree vertex are given weight 0, this transformation preserves the distances
between vertices. Thus, the algorithm of [8] can be used to compute shortest paths in
G and in the layers G0, . . . , Gp.

6.3. Edge separators. The final result of this section is an I/O-efficient edge
separator algorithm. Aleksandrov et al. [3] showed that Theorem 6.1 can also be used
to compute optimal edge separators of planar graphs as follows: Define the cost of
each vertex to be equal to its degree. Then compute a vertex separator S of cost at
most 4

√
2(
∑

x∈V (deg(x))2)/t and add all edges incident to a vertex in S to the edge
separator.

It is easy to verify that the computation of the vertex costs and the extrac-
tion of the edge separator from the computed vertex separator can be carried out in
O(sort(N)) I/Os. Hence, the following result is an immediate consequence of Theo-
rem 6.2.

Theorem 6.3. Let G = (V,E) be a planar graph, let 0 < t < 1 be a real number,
and let w : V → R+ be a weight function so that w(x) ≤ tw(G) for all x ∈ V . Then
there exists a set S of at most 4

√
2(
∑

v∈V (deg(v))2)/t edges so that no connected
component of G − S has weight exceeding tw(G). Such an edge separator S can be
found in O(sort(N)) I/Os, provided that M = Ω

(
B2 log2 B

)
.

7. Improving the memory requirements. In this final section of the paper,
we show how to reduce the memory requirements of our algorithm from section 4 to
M ≥ max

(
196B2, 7r

)
. The resulting algorithm also produces a separator significantly
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smaller than the one produced by the algorithm in section 4. However, these two
improvements come at the expense of increasing the internal-memory computation of
the algorithm from O(N logN) to O(N logN + NB).

Recall the reason why M ≥ 56r log2 B is required for the algorithm in section 4:
If we choose to compute an r′-partition of each graph Gi in the graph hierarchy, then
the separator vertices introduced at each level correspond to O

(
N/

√
r′
)

vertices in G;
no better upper bound is known. Since there are �logB� levels in the hierarchy, and
we want a separator of size O(N/

√
r), we have to ensure that O

((
N/

√
r′
)
logB

)
=

O(N/
√
r), which we achieve by choosing r′ = r log2 B. This now forces us to use

56r log2 B main memory because, as argued in section 4, every piece of Gi − S′
i has

size at most 56r′ = 56r log2 B, and we need to load each such piece into memory to
partition it into smaller pieces.

So the central problem is that, if we were to choose r′ = r, then every level in
the hierarchy adds O(N/

√
r) vertices to the final separator of G, that is, we would

obtain a separator that is too big by a factor of logB. Next we explain how to avoid
this problem by using a recursive bootstrapping approach.

The centerpiece of the algorithm is the separator algorithm from section 6, but
now using vertex costs and weights equal to 1. This algorithm takes O(sort(N)) I/Os
using only Θ(B) main memory if we ignore the costs and memory requirements of
computing an embedding of G, computing the shortest-path tree T of G, and com-
puting the shortest-path trees T0, . . . , Tp for layers G0, . . . , Gp. Given appropriate
separator decompositions, the computation of the embedding and the shortest-path
computations take O(sort(N)) I/Os and require Θ

(
B2

)
main memory [5, 33]. Our

strategy is to obtain these separator decompositions by recursive application of our
algorithm.

Embedding G. To compute a planar embedding of G, we require a proper Θ
(
B2

)
-

partition P = (S, {G1, . . . , Gq}) of G. We obtain this partition as follows: First, we
apply the uniform graph contraction procedure to G and recursively compute a proper
B2-partition P̃ =

(
S̃,

{
G̃1, . . . , G̃q

})
of the resulting graph G̃. Then we choose S to

be the set of vertices in G represented by the vertices in S̃, and each graph Gi in
P to be the subgraph of G represented by the vertices in G̃i. To bound the number
of vertices in G represented by each vertex in G̃, we assign weight 1 to every vertex
in G and provide a weight threshold u, to be specified later, to the uniform graph
contraction procedure. This guarantees that |S| ≤ u

∣∣S̃∣∣ = O(N/B), |Gi| ≤ u
∣∣G̃i

∣∣ =

O
(
B2

)
, and |N (Gi)| = O(B) for all 1 ≤ i ≤ q. It also ensures that

∑q
i=1 |N (Gi)| ≤

u
∑q

i=1

∣∣N (
G̃i

)∣∣ = O(N/B). Thus, P is a proper Θ
(
B2

)
-partition of G. An embedding

of G can now be obtained from P in O(sort(N)) I/Os [33]. In total, the cost of
computing a planar embedding of G is O(sort(N)) I/Os plus the cost of the recursive
call on G̃.

Computing T, T0, . . . , Tp. Given a planar embedding of G, we use the procedure
from section 6.2.4 to transform G into a planar graph G′ of degree at most three and
so that the distances between vertices in G are the same as the distances between their
representatives in G′. This takes O(sort(N)) I/Os. Now we apply the procedure from
the previous paragraph to obtain a proper Θ

(
B2

)
-partition of G′ and then use the

procedures from sections 4.3 and 5 to augment this partition to obtain a regular proper
B2-partition of G′. The construction of G′ takes O(sort(N)) I/Os and, as discussed
in the previous paragraph, the cost of computing a proper Θ(B2)-partition of G′ is
O(sort(|G′|)) plus the cost of the recursive call on a compressed version G̃′ of G′. As
discussed in sections 4.3 and 5, augmenting the computed partition to a regular proper
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Θ(B2)-partition also takes O(sort(|G′|)) I/Os. Given such a partition, we use the
single-source shortest-path algorithm of [8] to obtain a shortest-path tree T ′ of G′ in
O(sort(|G′|)) I/Os, which is easily transformed into a shortest-path tree T of G in the
same number of I/Os. Thus, the total cost of computing T is O(sort(N) + sort(|G′|))
plus the cost of the recursive call on G̃′.

The shortest-path trees T0, . . . , Tp are obtained by applying the same procedure
to graphs G0, . . . , Gp. We denote the degree-3 graphs obtained from G0, . . . , Gp by
G′

0, . . . , G
′
p and the compressed versions of G′

0, . . . , G
′
p for which we recursively com-

pute proper B2-partitions by G̃′
0, . . . , G

′
p. Using this notation, our discussion above

implies that the computation of each tree Ti takes O(sort(|Gi|)+sort(|G′
i|)) I/Os plus

the cost of a recursive call on G̃′
i.

Analysis. Summing up the costs of the individual steps of our algorithm, the cost
of computing a proper B2-partition of G is

T (N) = O(sort(N)) + O
(
sort

(∣∣G′∣∣)) + T
(∣∣G̃∣∣) + T

(∣∣G̃′∣∣)

+

q∑
i=0

(
sort(|Gi|) + sort

(∣∣G′
i

∣∣) + T
(∣∣G̃′

i

∣∣)) .

The first O(sort(N)) term includes the cost of computing the separator once the trees
T, T0, . . . , Tp have been computed.

To bound this recurrence by O(sort(N)), we first bound the sizes of the different
graphs involved in the computation as follows: Graph G has N vertices. Graph G′ has
at most 6N vertices, at most two per edge in G. Graphs G0, . . . , Gp contain at most
N vertices, as they are vertex-disjoint subgraphs of G. Thus, graphs G′

0, . . . , G
′
p also

contain at most 6N vertices. The total size of graphs G,G′, G0, . . . , Gp, G
′
0, . . . , G

′
p is

therefore O(N), which implies that the sort(·)-terms in the above recurrence sum to
O(sort(N)), simplifying the recurrence to

T (N) = O(sort(N)) + T
(∣∣G̃∣∣) + T

(∣∣G̃′∣∣) +

p∑
i=0

T
(∣∣G̃′

i

∣∣).

Now, if we choose u = 196, graph G̃ contains at most |G|/98 heavy vertices and, by
Theorem 3.1, has size at most |G|/14. Similarly,

∣∣G̃′∣∣ ≤ |G′|/14 and, for 0 ≤ i ≤ p,∣∣G̃′
i

∣∣ ≤ |G′
i|/14. Thus, we have

∣∣G̃∣∣ +
∣∣G̃′∣∣ +

p∑
i=0

∣∣G̃′
i

∣∣ ≤ |G|
14

+
|G′|
14

+

p∑
i=0

|G′
i|

14

≤ N

14
+

6N

14
+

6N

14

=
13N

14
,

and the recurrence solves to T (N) = O(sort(N)). The memory requirements of the
embedding and shortest-path algorithms are at most uB2 = 196B2, as we provide
them with uB2-partitions. This proves that we can compute a t-vertex separator
and, thus, a t-edge separator, for any 0 < t < 1, in O(sort(N)) I/Os, provided that
M ≥ 196B2. In order to obtain a (regular) proper r-partition from an (r/N)-separator,
we still have to be able to load subgraphs of size at most 7r into internal memory.
This leads to the following result.



800 ANIL MAHESHWARI AND NORBERT ZEH

Theorem 7.1. The partitions in Theorems 4.1 and 5.1 can be computed in
O(sort(N)) I/Os, provided that M ≥ max

(
196B2, 7r

)
. The separators in Theorems 6.2

and 6.3 can be computed in O(sort(N)) I/Os, provided that M ≥ 196B2.

The memory requirements in Theorem 7.1 can be reduced further to M ≥
max

(
cB2, 7r

)
and M ≥ cB2, for an arbitrarily small constant c > 0. Indeed, 196B2

memory is required because we recursively compute B2-partitions of the compressed
graphs, which correspond to

(
196B2

)
-partitions in the uncompressed graphs. Instead,

we can compute
(
cB2/196

)
-partitions of the compressed graphs, thereby obtain-

ing
(
cB2

)
-partitions of the uncompressed graphs. This affects the sizes of the pro-

duced separators—and, thus, the performance of the embedding and shortest-path
algorithms—by only a constant factor but reduces the memory requirements.

8. Conclusions. In this paper, we have demonstrated that different types of
separator decompositions of planar graphs can be computed I/O-efficiently. Using
these partitions, a wide variety of fundamental problems on planar graphs can be
solved I/O-efficiently.

A number of open questions remain, however. The constant factors in our
algorithms—in terms of the size of the produced separator, the memory requirements,
and the efficiency—are big. In order for the algorithms to be of practical value, these
constant factors have to be reduced. Furthermore, even though the individual steps
of the algorithm are fairly simple, the algorithm consists of too many of them. This
makes the algorithm tedious to implement and impacts the efficiency of the algorithm;
for example, only a small number of sorting steps is affordable in practice. From a
practical point of view, it would therefore be desirable to have a simpler—even pos-
sibly a theoretically suboptimal—algorithm for computing separators I/O-efficiently.
On the theoretical side, the most important open questions are whether separators
can be computed in O(sort(N)) I/Os using o

(
B2

)
main memory and whether they

can be computed in O(sort(N)) I/Os cache-obliviously. See [20] for a discussion of
cache-obliviousness.
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of uniform flows. For the weighted region problem with weights in [1, ρ] ∪ {∞}, the time bound of

our algorithm improves to O( ρ log ρ
ε

n3 log( ρn
ε

)).

Key words. computational geometry, approximation algorithm, shortest path, weighted region,
convex distance function
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1. Introduction. The problem of computing a shortest path between two points
arises naturally in geographic information systems, VLSI design, logistics, and mo-
tion planning. Another area of application for shortest path algorithms is computer
graphics, where the geometric properties of shortest paths along a surface can be ex-
ploited for mesh cutting and editing. (See the article by V. Surazhsky et al. [20].) The
path lies in a geometric environment in all of these applications. This environment
is usually represented by a polygonal (or polyhedral) subdivision. Different metrics
may be used in different regions of the subdivision in order to model friction, wind,
steepness, or any other mechanical constraint.

Due to these applications and to the variety of possible geometric environments
and metrics, algorithms for geometric shortest path problems have been extensively
studied. We mention the most relevant work here and refer the interested reader to
the survey by Mitchell [12] for more details.

In the weighted region problem [13], a point robot moves within a planar subdi-
vision T , each face f of T being associated with a weight wf > 0. The cost of a path
within a face f is the length of this path multiplied by wf . Assume that the faces
of the subdivision T are all triangular. (We can make this assumption as any planar
subdivision can be triangulated by introducing a linear number of edges.) We denote
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by n the number of vertices of T . The first approximation scheme for the weighted
region problem was given by Mitchell and Papadimitriou [13]. It runs in O(n8L)
time, where L represents the maximum number of bits of the input numbers (such
as the integer coordinates of the vertices of the subdivision, and the weights). This
algorithm is a continuous version of Dijkstra’s algorithm for finding shortest paths
in a graph. Other algorithms for the weighted region problem discretize the search
space by placing Steiner points and by finding a shortest path in a graph whose nodes
are Steiner points or input vertices and whose edges are line segments. In particular,
Aleksandrov, Maheshwari, and Sack [2] and Sun and Reif [19] gave algorithms that
have linear dependency in n. However, their time bounds depend on the minimum
angle in T (and the weights, too, in the algorithm by Aleksandrov, Maheshwari, and
Sack [2]).

The main limitation of the weighted region model is that it models only situations
where the metrics are isotropic. It cannot account for the effect of wind, current, or
any other force field that favors some directions of travel. A more general model was
introduced by Reif and Sun for motion planning in the presence of uniform flows [16].
In each face f of T , the velocity of the robot is the sum of a flow �vf and a control
velocity chosen by the robot. It allows one to model friction and a uniform flow within
each region. Reif and Sun [16] showed that this problem is PSPACE hard in three
dimensions and gave an FPTAS for the two-dimensional (2D) case. (Some geometric
parameters were treated as constant, such as the minimum angle in T .)

As pointed out by Aleksandrov, Maheshwari, and Sack [2], one challenge is to
remove the dependence on parameters other than n and ε in the running time. It
is also desirable to handle more general types of metrics in order to model a larger
class of problems that arise in applications. (See the article by Sellen [17] on the
direction-weighted problem, where the cost is proportional to a continuous function
of the direction.) We make progress in both aspects in this paper.

1.1. Our results. We consider a generalization of Reif and Sun’s model for
motion planning in the presence of uniform flows [16]. A point robot moves within a
planar subdivision from a source point vs to a target point vd. The planar subdivision
T may have holes in order to model obstacles. The distance within each face f
of the subdivision is measured according to a possibly asymmetric convex distance
function [4]. (See section 2.2 for a definition of convex distance functions.) Different
convex distance functions may be used for different faces. The cost of a path is
measured according to these distance functions. (See section 2 for the case of a
polygonal path and section 6 for the case of a rectifiable path.) Let Bf denote the
unit “disk” of the distance function of a face f . We assume that Bf is contained in a
concentric unit Euclidean disk and that Bf contains a concentric Euclidean disk with
radius 1/ρ. In other words, there exists ρ � 1 such that the speed of the robot in
any direction and within any face of T is in the interval [1/ρ, 1]. The weighted region
problem and the problem of path planning in the presence of uniform flows are special
cases in our model.

We assume that the distance between two points under any of the convex distance
functions can be computed in O(1) time. Our model of computation is the standard
real-RAM model [15] in which the operations (+,−,×, /) can be performed in constant
time.

Our main results include an algorithm that computes in time O(ρ
2 log ρ
ε2 n3 log(ρnε ))

a polygonal path whose cost is at most (1 + ε) times the optimal. This is the first
algorithm that can handle general convex distance functions. For the weighted region
problem, the time bound improves to O(ρ log ρ

ε n3 log(nρε )). Our time bounds have the
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nice feature that they do not depend on the geometry of T . It is not obvious that an
optimal path exists in our model. Indeed, we give an example in which no polygonal
path is optimal. Nevertheless, using the theory of length spaces [3, 10], we can prove
that there exists an optimal rectifiable path. (A rectifiable path is a path with finite
Euclidean length.) Furthermore, we show that there exists a (1 + ε)-approximate
shortest path that is polygonal and has O(ρn2/ε) links. This is instrumental to
establishing the correctness and the complexity of our algorithm.

Our approach is the following. We define a k-link path to be a polygonal path with
at most k edges, each edge being contained in a face of T and having its endpoints on
the boundary of this face. (Our definition is different from the one given by Daescu
et al. [5].) We first give approximation algorithms that return a polygonal path with
cost at most (1 + ε) times the cost of any k-link path (see section 3). In the weighted
region problem, Mitchell and Papadimitriou [13] showed that there exists a shortest
path that is a k-link path with k = Θ(n2), so we apply our algorithm with k = Θ(n2)
and obtain the result stated above. In the general case, we show that for any polygonal
path P , there exists a (21ρn2/ε)-link path with cost at most (1+ε) times the cost of P
(see sections 4 and 5). Thus, by choosing k = 21ρn2/ε, our algorithm returns a path
with cost at most (1 + ε) times the cost of any polygonal path. Then, in section 6,
we prove that there exists an optimal rectifiable path and show that there exists a
polygonal path with cost arbitrarily close to the optimal. It follows that our algorithm
returns a (1 + ε)-approximate shortest path within the class of rectifiable paths.

1.2. Comparison with previous work. A direct comparison cannot be made
with any previous result because our algorithm is the first that can handle general
convex distance functions. Anisotropic shortest path problems have been studied on
terrains [11, 18] in a special case that models some common mechanical constraints
on a mobile robot. This model cannot account for the presence of flows (even uniform
flows), so it is not more general than ours. On the other hand, our algorithm applies
to planar subdivisions, not terrains. The problems of navigating through weighted
regions and in the presence of uniform flows are special cases in our model. So we
compare them with the previous results for these problems.

Weighted region problem. In this case, ρ is equal to the ratio of the maximum
weight to the minimum weight. Other than the dependence on n and ε, there is a
factor of Ω(1/θmin) in the worst-case running times of the algorithms by Aleksandrov,
Maheshwari, and Sack [1, 2] and Sun and Reif [19], where θmin is the minimum angle
in T . The worst-case running time of the algorithms by Aleksandrov, Maheshwari,
and Sack [1, 2] depend on ρ, too. Our running time is independent of the geometry
of T , although it has a higher dependence on n, ε, and ρ. The algorithm of Mitchell
and Papadimitriou [13] has a running time of O(n8 log nNρ

ε ), where the input vertices
have integer coordinates in [0, N ]. In comparison, our algorithm works in the standard
real RAM model, and our algorithm has a smaller dependence on n but a higher
dependence on ε and ρ.

Movement in the presence of uniform flows. Assume that there is a uniform flow
of velocity �vf in each face f of T . The robot can apply a control velocity �vr in any
direction such that ‖�vr‖ is at most some constant cf . For each face f , we define a
convex distance function whose unit “disk” Bf is a Euclidean disk with radius cf and
centered at O+�vf , where O is the origin. Thus, Bf is contained in a disk with radius
cf +‖�vf‖ and centered at O, and Bf contains a disk with radius cf−‖�vf‖ and centered
at O. Let vmin = min{cf − ‖�vf‖ : f ∈ T }. Let vmax = max{cf + ‖�vf‖ : f ∈ T }.
Assuming that vmin > 0, we can model the problem with ρ = vmax/vmin and find an
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P2

P1

vdvs

Fig. 1. The underlying space |T | is shaded. The path P1 is a 7-link path, and thus it is
T -respecting. The path P2 is a T -respecting path with 8 links, but it is not an 8-link path.

approximate shortest path in time O(ρ
2 log ρ
ε2 n3 log(ρnε )). An algorithm by Reif and

Sun runs in O
(
nCskew

ε (log Cskew

ε )(log Cskew

ε + log n)
)

time [16], where Cskew is defined
as follows. Let λ = max{cf/cf ′ : adjacent faces f and f ′}. Let ρmin = min{cf/‖�vf‖ :

f ∈ T }. Let θmin be the minimum angle in T . Then Cskew = Θ( λ(ρmin+1)
θmin(ρmin−1) ). Reif and

Sun’s algorithm requires ρmin > 1, which is equivalent to our condition of vmin > 0.
Our running time does not depend on θmin, but Reif and Sun’s running time has a
better dependence on n, ε, and ρ.

2. Notation and preliminaries.

2.1. Environment. We model the environment T in which the point robot can
move by a simplicial complex [6]: it is a collection of triangles such that any two
triangles can intersect only along a common edge or vertex or not at all. A face of T
is a triangle in T . We consider faces to be closed subsets of R2. A vertex (resp., an
edge) of T is a vertex (resp., an edge) of some face of T . (We do not allow dangling
edges or vertices; that is, all edges and vertices must be edges or vertices of a face of
T .) The underlying space |T | ⊂ R2 of T is the union of its faces (see Figure 1). We
assume that |T | is connected, but we allow |T | to have holes. The point robot is free
to move inside |T |, but it cannot move outside |T |. We use n to denote the number
of vertices in T , and we assume that n is finite.

For any two points p, q ∈ R2, we denote by pq the closed, oriented line segment
from p to q. In particular, when p �= q, we have pq �= qp. We denote by ‖pq‖ the
Euclidean distance between p and q. For any two points p, q ∈ |T |, the geodesic
distance between p and q is the Euclidean length of the shortest polyline in |T | with
endpoints p and q. We use ‖pq‖T to denote this geodesic distance.

For each face f of T , we denote by int(f) (resp., bd(f)) the interior (resp.,
boundary) of f according to the usual topology of R2. For a segment pq, we use
int(pq) to denote the open line segment from p to q. When X is a polyline with
endpoints p, q, we use int(X) to denote X \ {p, q}. A chord of a face f of T is an
oriented line segment pq such that int(pq) ⊂ int(f) and {p, q} ⊂ bd(f). If pq ⊂ bd(f),
we say that pq is a boundary segment.

2.2. Convex distance functions. Each face f of T is associated with a com-
pact convex set Bf ⊂ R2 that contains the origin O in its interior. The convex distance
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function associated with f is defined by

∀x, y ∈ f, df (x, y) = min{λ ∈ [0,+∞) : y ∈ x + λBf}.
This type of distance function has been studied before [4, 7] in the context of Voronoi
diagrams. A convex distance function is not necessarily a metric as it may be asym-
metric. Still, df satisfies the triangle inequality, and the shortest path from p to q is
the oriented line segment pq.

If int(pq) ⊂ int(f) for some face f , the cost of pq is defined as cost(pq) = df (p, q).
If pq is contained in an edge e of T that is adjacent to exactly one face f , we also
define cost(pq) to be df (p, q). On the other hand, if e is adjacent to two faces f1 and
f2, we define cost(pq) to be min(df1(p, q), df2(p, q)).

We assume that there exists ρ � 1 such that, for any face f , the set Bf contains a
Euclidean disk with radius 1/ρ centered at the origin, and Bf is contained in the unit
Euclidean disk centered at the origin. Intuitively, it means that the speed allowed in
any direction is always in the interval [1/ρ, 1]. It implies that, for any face f and for
any points p, q ∈ f , we have ‖pq‖ � cost(pq) � ρ ‖pq‖. Another useful consequence is
that for any two chords ps and qr of the same face f , we have

cost(ps) = df (p, s) � df (p, q) + df (q, r) + df (r, s)

= df (p, q) + cost(qr) + df (r, s)

� ρ ‖pq‖ + cost(qr) + ρ ‖rs‖.(1)

A similar derivation shows that the above inequality also holds when ps and
qr are boundary segments contained in the same edge of T . (If the edge contain-
ing ps and qr is incident to two faces f1 and f2, one needs to replace df (x, y) by
min(df1(x, y), df2(x, y)) for any x and y in the above derivation.)

2.3. Polygonal paths. We consider paths from a point vs to a point vd in |T |.
Without loss of generality, we can assume that vs and vd are vertices of T . If not,
we can force vs and vd to be vertices by splitting the triangle(s) containing them
into smaller triangles. (These smaller triangles inherit their convex distance functions
from the triangles containing them.)

A polygonal path is a polyline in |T | with endpoints vs and vd. A link is an
edge of a polygonal path, and a node is a vertex of a polygonal path—we use this
terminology to avoid confusion with edges and vertices of T . We identify a polygonal
path with its sequence of nodes. Thus if a polygonal path P has the node sequence
(vs = p0, p1, . . . , pm = vd), we write P = (p0, p1, . . . , pm). We do not require the
nodes of P to be distinct. The length of P is defined as length(P ) =

∑m
i=1 ‖pi−1pi‖.

A T -respecting path is a polygonal path P such that each link of P is contained
in a face of T (see Figure 1). The cost of a T -respecting path P is simply the
sum of the costs of its links when P is traversed from vs to vd. Therefore, we have
cost(P ) =

∑m
i=1 cost(pi−1pi). It implies that cost(P )/ρ � length(P ) � cost(P ). We

also define cost(P ) when P is an arbitrary polygonal path. We first obtain a T -
respecting path P ′ by introducing new nodes at the intersections between the links
of P and the edges of T . We then define cost(P ) = cost(P ′).

For any integer k, a k-link path is a polygonal path with at most k links, and
whose links are either chords or boundary segments (see Figure 1). In particular, a
k-link path is T -respecting, and none of its nodes lies in the interior of a face. Our
definition is different from previous work [5] on k-link paths, where the path is not
required to be T -respecting. By our definitions, a T -respecting path can have a node
in the interior of a face of T , but a k-link path cannot.
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3. Approximation algorithms. We present algorithms for approximating a
shortest k-link path for some given ε ∈ (0, 1) and k. The cost of the output polygonal
path is less than (1 + ε) times the cost of any k-link path, but the output path is
allowed to have more than k links. After showing the existence of an approximate
shortest path with few links, we can use these algorithms to find (1 + ε)-approximate
shortest paths.

We first present a simple algorithm in section 3.1, which discretizes the environ-
ment with a graph and then computes a shortest path in the graph. Unlike the pre-
vious discretization schemes [1, 2], our discretization makes use of the global geodesic
distance ‖vsvd‖T . In section 3.2, we show another simple idea to space out the graph
vertices that are far away from vs and vd. It results in a reduction of the graph
size and hence an improvement of the running time. We show that it is possible to
improve the running time further by working with the graph vertices alone (without
computing the graph edges), by employing the algorithm BUSHWHACK [19].

3.1. A simple algorithm. In this section we present a simple algorithm that
computes an approximate k-link shortest path. It is based on two ideas. First, we
observe that any 4

3 -approximate shortest path lies in a region delimited by an ellipse
with diameter 4

3ρ ‖vsvd‖T . Second, we discretize the problem by placing Steiner
points uniformly along the portion of each edge of T that lies inside this ellipse. With
an appropriate spacing of the Steiner points, we show that there is an approximate
shortest path whose nodes are all Steiner points or vertices of T . We find one such
path by computing a shortest path in a graph whose nodes are the Steiner points and
the vertices of T , using Dijkstra’s algorithm.

Let k � 2n− 4 denote an integer. Because T is a planar graph with n vertices, it
has at most 2n− 4 faces [14]. It implies that there exists a k-link path from vs to vd.
Therefore, for any ε > 0, there exists a k-link path P ε

k such that

cost(P ε
k ) �

(
1 +

ε

3

)
inf{cost(Pk) : Pk is a k-link path}.

This path has the following property.

Lemma 1. If k � 2n− 4 and ε ∈ (0, 1), then cost(P ε
k ) � 4ρ

3 ‖vsvd‖T .

Proof. Let G = (g0, g1, . . . , gm) be a T -respecting path with length ‖vsvd‖T
and such that m is minimum. The path G cannot have two links inside the same
face of T : if there were two such links, say gi−1gi and gjgj+1 with i � j, we
could remove from G the nodes (gi, . . . , gj). It would yield a polygonal path with
at most the same length but fewer nodes. As we noted above, T has at most
2n − 4 faces. Therefore, G is a (2n − 4)-link path and hence a k-link path. We
conclude that cost(P ε

k ) �
(
1 + ε

3

)
cost(G) � 4

3 cost(G) = 4
3

∑m
i=1 cost(gi−1gi) �

4
3

∑m
i=1 ρ ‖gi−1gi‖ � 4ρ

3 length(G) = 4ρ
3 ‖vsvd‖T .

Let E denote the following elliptic region:

E =

{
x ∈ R2 : ‖vsx‖ + ‖vdx‖ �

4ρ

3
‖vsvd‖T

}
.

Since length(P ε
k ) � cost(P ε

k ), we know by Lemma 1 that P ε
k ⊂ E. For each edge e of

T , we place a maximal set of equally spaced points on int(e ∩ E) (see Figure 2). The
spacing is δ = ε

6ρk ‖vsvd‖T . The following lemma shows that our Steiner points give
an accurate discretization.
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E

vdvs

Fig. 2. The white points are the Steiner points. The polygonal path is a 9-link path whose
nodes are all Steiner points or vertices of T .

Lemma 2. If k � 2n − 4 and ε ∈ (0, 1), there exists a k-link path Sk such that
cost(Sk) � (1+ ε) cost(Pk) for any k-link path Pk, and all the nodes of Sk are Steiner
points or vertices of T .

Proof. Let (p0, p1, . . . , pm) be the node sequence of P ε
k . For any i ∈ [0,m], we

associate a point si to pi as follows. If pi is a vertex of T , we set si = pi. Otherwise,
since P ε

k is a k-link path, pi lies in the interior of some edge e of T . Thus, there
is a Steiner point x ∈ int(e) such that ‖xpi‖ � δ. We set si = x. We denote
Sk = (s0, s1, . . . , sm). (It is possible that si−1 = si for some i, in which case the link
si−1si degenerates to a point.) By construction, for any i ∈ [1,m], the links pi−1pi
and si−1si either are chords of the same face of T or are contained in the same edge
of T . Therefore, Sk is a k-link path, and inequality (1) implies that

cost(Sk) �
m∑
i=1

ρ ‖si−1pi−1‖ + cost(pi−1pi) + ρ ‖sipi‖(2)

� cost(P ε
k ) + 2ρmδ(3)

= cost(P ε
k ) +

mε

3k
‖vsvd‖T .(4)

By definition, P ε
k is a k-link path. So m � k, and thus cost(Sk) � cost(P ε

k ) +
ε
3 ‖vsvd‖T . Since ‖vsvd‖T � length(P ε

k ) � cost(P ε
k ), we have cost(Sk) � (1 +

ε/3) cost(P ε
k ). Thus, for any k-link path Pk, cost(Sk) � (1 + ε/3)2 cost(Pk) �

(1 + ε) cost(Pk).

The Steiner graph is the directed weighted graph defined as follows. Its nodes are
the Steiner points and the vertices of T . There is a directed edge (p, q) between any
two nodes p and q that lie on the boundary of the same face of T . The edge (p, q) is
assigned the weight cost(pq).

Here is the pseudocode of our approximation algorithm.

Approximate(T , k, ε)
1. Compute ‖vsvd‖T .
2. Compute the Steiner graph.
3. Compute a weighted shortest path S in the Steiner graph.
4. Output S.

In the analysis of this algorithm, we use the standard real-RAM model [15] and assume
that, for any points p and q in the same face of T , we can compute cost(pq) in O(1)
time. We obtain the following result.
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Lemma 3. If k � 2n − 4 and ε ∈ (0, 1), then Approximate(T , k, ε) computes a
polygonal path S such that cost(S) � (1 + ε) cost(Pk) for any k-link path Pk. The
algorithm can be implemented to run in O

(
nk2ρ4/ε2

)
time.

Proof. Correctness follows from Lemma 2. The geodesic distance computation in
line 1 can be performed in O(n2) = O(nk) time [12]. The diameter of E is 4

3ρ ‖vsvd‖T ,
so each edge e of T contains O(kρ2/ε) Steiner points. Therefore, the Steiner graph
has O(nkρ2/ε) nodes and O(nk2ρ4/ε2) edges. Using a Fibonacci heap, Dijkstra’s
algorithm can be implemented to compute single-source shortest paths in O(|E| +
|V | log |V |) time for a graph with |V | nodes and |E| edges [8]. We use this method to
implement step 4 and, thus, we obtain the desired running time.

3.2. A sparser Steiner graph. We can speed up the above algorithm by re-
ducing the number of Steiner points. The idea is to place Steiner points more sparsely
on portions of edges that are far from vs and vd. So we introduce a family of elliptic
regions. For 0 � i � 	log ρ
, each region is defined as

Ei =

{
x ∈ R2 : ‖vsx‖ + ‖vdx‖ �

4ρ

2i 3
‖vsvd‖T

}
.

For convenience, we take E�log ρ�+1 to denote the empty set.
We construct a set of Steiner points as follows. For each edge e of T and for any

integer i such that 0 � i � 	log ρ
, we insert the intersection points between e and
the boundary of Ei, and then we place a maximal set of points on int(e∩ (Ei \Ei+1))
with uniform spacing δi = ε

2i+1 6k ‖vsvd‖T . After obtaining the new set of Steiner
points, the Steiner graph is constructed as before. Observe that now, the number of
Steiner graph nodes per edge is O((kρ log ρ)/ε) instead of O(kρ2/ε). Therefore, the
size of the Steiner graph is O((nk2ρ2 log2 ρ)/ε2), and the running time improves to
O((nk2ρ2 log2 ρ)/ε2).

It remains to prove that this new algorithm is correct. Let j denote the largest
integer such that P ε

k ⊂ Ej . (There is such an integer because P ε
k ⊂ E0 = E by

Lemma 1.) For every edge e of T , the distance between two consecutive Steiner points
along e ∩ Ej is at most δj . Thus, using the derivation in inequalities (2) and (3) in
the proof of Lemma 2, we can show that cost(Sk) � cost(P ε

k ) + ρε ‖vsvd‖T /(2j+1 3).
As P ε

k is not contained in Ej+1, we have

length(P ε
k ) � 4ρ ‖vsvd‖T /(2j+1 3)

and thus cost(Sk) � (1 + ε/4) cost(P ε
k ). Recall that cost(P ε

k ) � (1 + ε/3) cost(Pk) for
any k-link path Pk. It follows that cost(Sk) � (1 + ε) cost(Pk). Therefore, we have
proved the following result.

Lemma 4. If k � 2n− 4 and ε ∈ (0, 1), we can compute in O((nk2ρ2 log2 ρ)/ε2)
time a polygonal path S such that cost(S) � (1 + ε) cost(Pk) for any k-link path Pk.

3.3. Further improvement. We can improve the running time further if we can
avoid computing explicitly the edges of the Steiner graph. This means that, instead
of using Dijkstra’s algorithm, we need to use an algorithm that does not require these
edges to produce a shortest path. BUSHWHACK, an algorithm by Sun and Reif [19],
does exactly this, provided that the cost function is pseudo-Euclidean.

The cost function is pseudo-Euclidean if it meets the following two conditions.
First, it obeys the triangle inequality in the interior of each face (in other words, a
shortest path in the interior of a face is a line segment). Second, let p be a point
inside a face f and let e be an edge of f such that p /∈ e. Let ϕp,e : e → R be the
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function defined by ϕp,e(x) = cost(px). For any p and e, this function is required to
have the following property: we can compute in O(1) time a partition of e into O(1)
subsegments such that ϕp,e is monotone along each such subsegment.

The convexity of the distance functions in T implies that ϕp,e has only one local
extremum, which is a global minimum. (In degenerate cases, when Bf is not strictly
convex, this minimum can be achieved over a closed segment and not just at a single
point.) So if we assume that this minimum can be computed in O(1) time, our metric
is pseudo-Euclidean.

When there are m Steiner points per edge, the BUSHWHACK algorithm runs in
time O(mn log(mn)) instead of O(m2n + mn log(mn)) for Dijkstra’s algorithm. The
algorithm presented in section 3.2 uses m = O((kρ log ρ)/ε) Steiner points per edge.
Thus, we obtain the following improved algorithm.

Theorem 5. If k � 2n− 4 and ε ∈ (0, 1), we can compute in time

O

(
nkρ log ρ

ε
log

(
kρ

ε

))

a polygonal path S such that cost(S) � (1 + ε) cost(Pk) for any k-link path Pk.

3.4. Applications. In the weighted region problem, each face f is associated
with a weight wf ∈ [1, ρ] (assuming that the minimum weight is scaled to 1). Ac-
cording to our terminology, for each face f , the set Bf is the Euclidean disk centered
at the origin with radius 1/wf . Obstacles (holes in |T |) are still allowed; in other
words, we allow weights to be in [1, ρ] ∪ {+∞}. Mitchell and Papadimitriou [12, 13]
proved that, in the weighted region problem, the shortest path is an O(n2)-link path.
Substituting this bound for k into Theorem 5 yields the following result.

Corollary 6. Consider the weighted region problem in a planar subdivision with
n vertices and with weights in [1, ρ] ∪ {+∞}. For any ε ∈ (0, 1), we can compute a
(1 + ε)-approximate shortest path in time O(ρ log ρ

ε n3 log(nρε )).

To realize the (1 + ε)-approximation bound in Corollary 6, one would need to
extract from [13] the constant c0 hidden in the O(n2) bound on the number of links.
Nevertheless, the proof of Lemma 2 reveals that even if k is set to be c1n

2 for some
constant c1 < c0, the approximation ratio is still 1 + O(ε).

In the anisotropic setting where each face f is associated with a convex distance
function df , no bound on the number of links in the shortest path was known before.
In Theorem 16 in section 5 and Corollary 23 in section 6, for any ε ∈ (0, 1), we prove
a bound of 21ρn2/ε on the number of links in a polygonal path whose cost is at most
(1 + ε) times the optimal. Substituting this bound for k into Theorem 5 yields the
following result.

Corollary 7. Consider the anisotropic shortest path problem in a planar sub-
division with n vertices. For any ε ∈ (0, 1), we can compute a (1 + ε)-approximate

shortest path in time O(ρ
2 log ρ
ε2 n3 log(ρnε )).

As we mentioned in the introduction (section 1.2), the shortest path problem in
the presence of uniform flows can be solved using Corollary 7.

Corollary 8. Consider the shortest path problem in the presence of uniform
flows as defined in section 1.2. Assume that vmin > 0. For any ε ∈ (0, 1), we

can compute a (1 + ε)-approximate shortest path in time O(ρ
2 log ρ
ε2 n3 log(ρnε )), where

ρ = vmax/vmin.
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4. Cost-preserving path transformations. In this section we show how to
transform a T -respecting path into another T -respecting path that has at most the
same cost and is free of some undesirable features. This result is used in section 5 to
show that any polygonal path can be converted into a polygonal path with O(ρn2/ε)
links such that the cost increases by a factor of at most 1 + ε.

4.1. Preliminaries. Let P = (vs = p0, . . . , pm = vd) be a polygonal path. We
allow pi = pi+1; in this case, we call pipi+1 = {pi} a degenerate link. The path P is
self-intersecting if

• there exist i < j such that pi−1pi ∩ pjpj+1 �= ∅, or
• there exists i such that pi−1 ∈ pipi+1 or pi+1 ∈ pi−1pi.

The path P is simple if it is not self-intersecting. The points in which P self-intersects
are not necessarily nodes of P .

To describe the cost-preserving transformations, we give a classification of nodes
in P . The vertices of T that are nodes of P are called the nodes of P inherited from
T . The endpoints of degenerate links are called degenerate nodes. The other nodes
are classified as follows (Figure 3 shows some examples).

• Transversal node: pi ∈ int(e) for some edge e, and pi−1pi ∩ int(f) �= ∅ and
pipi+1 ∩ int(g) �= ∅, where f and g are the two faces incident to e.

• Critical node of entry : pi ∈ int(e) and int(pipi+1) ∩ e �= ∅ for some edge e,
and pi−1pi ∩ int(f) �= ∅ for a face f incident to e.

• Critical node of exit : pi ∈ int(e) and int(pi−1pi)∩ e �= ∅ for some edge e, and
pipi+1 ∩ int(f) �= ∅ for a face f incident to e.

• Reflective node: pi ∈ int(e) for some edge e, and pi−1pi ∩ int(f) �= ∅ and
pipi+1 ∩ int(f) �= ∅ for a face f incident to e.

• Interior node: pi ∈ int(f) for some face f .
• Linear node: pi ∈ int(e), int(pi−1pi)∩ e �= ∅, and int(pipi+1)∩ e �= ∅ for some

edge e.
In the definition of a linear, interior, or reflective node pi, we allow pi−1pi and pipi+1 to
overlap. We call a polygonal path nonredundant if it does not contain any degenerate,
reflective, interior, or linear node. Some intermediate results of the cost-preserving
transformations may be self-intersecting paths, so our classification of nodes does not
assume simplicity. Our classification does not assume paths to be T -respecting either.

Our cost-preserving transformations manipulate polygonal paths by modifying
subpaths and concatenating polygonal paths. Recall that, for convenience, we use
the same notation for a polygonal path and its sequence of nodes. For any integers
i, j such that 0 � i � j � m, we use P [i, j] to denote the subpath (pi, . . . , pj).
Given two subpaths A = (a1, . . . , am′) and B = (b1, . . . , bm′′), we denote by A · B =
(a1, . . . , am′ , b1, . . . , bm′′) the concatenation of A and B.

4.2. Splitting a path. Let P = (p0, . . . , pm) be a polygonal path. The proce-
dure Split converts P into a T -respecting path with the same cost. This procedure
operates as follows. For each vertex v that lies in the interior of a link of P , it splits
this link at v and makes v a node of P . For each crossing point x between an edge of
T and a link of P , it splits the link at point x and introduces the node x.

Split(Polygonal path P )
1. If there exist a vertex v of T and a link pipi+1 of P such that

v ∈ int(pipi+1), then return Split(P [0, i] · (v) · P [i + 1,m]).
2. If there exist an edge e of T , a link pipi+1 of P , and a point x

such that x = int(e)∩ int(pipi+1), then return Split(P [0, i] · (x) ·
P [i + 1,m]).

3. Return P .
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Transversal node Critical node of entry Critical node of exit

Reflective node Interior node Linear node

Fig. 3. Different types of nodes of P other than degenerate nodes and nodes inherited from T .

The following lemma describes the effect of Split.

Lemma 9. For any polygonal path P , the path P ′ returned by Split(P ) is T -
respecting, and cost(P ′) = cost(P ).

4.3. Reducing a path. Let P = (p0, . . . , pm) be a T -respecting path. The pro-
cedure Reduce eliminates some locally nonoptimal features in P , including degenerate,
reflective, interior, and linear nodes, as well as self-intersections.

Reduce(T -respecting path P = (p0, . . . , pm))
1. If there exists i such that pi = pi+1,

then return Reduce(P [0, i− 1] · P [i + 1,m]).
2. If a node pi is a reflective, interior, or linear node,

then return Reduce(P [0, i− 1] · P [i + 1,m]).
3. If P self-intersects, then we are in one of the following two cases:

(a) There exist i < j and x ∈ |T | such that x ∈ pi−1pi∩pjpj+1.
Then return Reduce(P [0, i− 1] · (x) · P [j + 1,m]).

(b) There exists i such that pi−1 ∈ pipi+1 or pi+1 ∈ pi−1pi.
Then return Reduce(P [0, i− 1] · P [i + 1,m]).

4. Return P .

It is clear that the number of nodes in P decreases after one application of step 1,
2, or 3. It implies that Reduce terminates.

Recall that the input path is assumed to be T -respecting. Clearly, this condition
continues to hold after applying step 1, 2, or 3 any number of times. In addition,
when Reduce terminates, the output path P ′ returned by Reduce(P ) is simple and
nonredundant.

Lemma 10. Let P be a T -respecting path. The path P ′ returned by Reduce(P ) is
simple, nonredundant, and T -respecting. If P ′ �= P , then P ′ has fewer links than P ,
and cost(P ′) � cost(P ).
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4.4. Sliding subpaths. We call (i, j) a critical pair if pi is a critical node of
exit, pj is a critical node of entry, i < j, and all of the nodes in the interior of the
subpath P [i, j] are transversal nodes (see Figure 4). We introduce a procedure Slide
to remove a critical pair in P if there is one. The same technique of sliding subpaths
was used by Mitchell and Papadimitriou [13]. Because Reduce will be applied before
applying Slide, we assume that P is a simple, nonredundant, T -respecting path.

Slide(simple, nonredundant, T -respecting path P )
1. Look for a critical pair (i, j) in P .
2. If no critical pair is found, return P .
3. Slide P [i, j] in a direction such that cost(P ) does not increase,

until one of the following situations occurs:
(a) pi−1 = pi. Then return P [0, i− 1] · P [i + 1,m].
(b) pj = pj+1. Then return P [0, j − 1] · P [j + 1,m].
(c) P self-intersects or P [i, j] hits a vertex of T . Then return P .

pj+1 pj+1 pj pj+1

pipi

pj

pi

pj

pi−1 pi−1 pi−1

Fig. 4. A critical pair (i, j). The subpath P [i, j] can slide to the left or to the right.

We explain the sliding operation in step 3 in more detail. Refer to Figure 4.
Sliding P [i, j] means shifting pi, all of the transversal nodes on P [i, j], and pj along
the corresponding edges in such a way that the links in P [i, j] remain parallel to
their original positions. The links pi−1pi, pjpj+1, and those in P [i, j] may lengthen
or shrink. Let Δ be the signed distance of the sliding of pi from its original position.
We take Δ to be positive (resp., negative) if pi slides to the right (resp., left). Take a
sliding link papa+1. As the slope of papa+1 is kept constant, the cost of papa+1 is an
affine function of Δ. Clearly, the costs of pi−1pi and pjpj+1 are also affine functions
of Δ. Thus, the total change in cost(P ) is an affine function of Δ. Since the value of
an affine function is minimized at the boundary of its domain, we conclude that there
is a direction in which we can slide P [i, j] without increasing cost(P ). The stopping
criteria in step 3 exhausts all of the possibilities in which (i, j) no longer satisfies
the criteria of being a critical pair or P ceases to be simple. The following lemma
describes the effect of Slide.

Lemma 11. Let P be a simple, nonredundant, T -respecting path. The path P ′

returned by Slide(P ) satisfies the following properties:

(i) P ′ is a T -respecting path.
(ii) cost(P ′) � cost(P ), and P ′ has no more links than P .
(iii) If P ′ �= P and P ′ has as many links as P , then P ′ is self-intersecting or P ′

has more nodes inherited from T than P does.

4.5. Combining the transformations. We define a procedure Simplify that
makes use of the previous procedures. The input is a polygonal path P .
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v3

c1

v1

v2
c3

c2

Fig. 5. An example of a simplified path Q0. There are two critical nodes c2 and c3 between
vertices v2 and v3.

Simplify(Polygonal path P )
1. Q1 := Split(P ).
2. Q2 := Reduce(Q1).
3. Q0 := Slide(Q2). If Q0 �= Q2, set Q1 := Q0 and go back to

step 2.
4. Return Q0.

Lemma 12. Let P be a polygonal path. The path Q0 returned by Simplify(P ) has
the following properties:

(i) cost(Q0) � cost(P ).
(ii) Q0 is a simple, nonredundant, T -respecting path.
(iii) Q0 has no critical pair and has at most 2n critical vertices of entry or exit.
Proof. We first show the termination of Simplify. By Lemmas 10 and 11, the

number of links in the path never increases at steps 2 and 3. If the number of links
stays the same in step 3, then Lemma 11 says that Q0 is self-intersecting or it has
more nodes inherited from T than Q2 does. If Q0 is self-intersecting, the number of
links in the path decreases when Reduce is called in the next step. So if steps 2 and 3
iterate without decreasing the number of links in the path, it means that the path
remains simple and the number of nodes inherited from T increases from iteration to
iteration. But this can happen at most n− 2 times before all vertices of T lie on the
path. Therefore, the number of links in the path must decrease after at most n − 1
iterations of steps 2 and 3. Clearly, the number of links cannot decrease below one,
so Simplify must terminate.

Let (q0, . . . , qm) be the node sequence of Q0. Property (i) follows from the fact
that Split, Reduce, and Slide do not increase the cost. Property (ii) follows from
Lemma 10. The termination of Simplify implies that no critical pair is detected by
Slide. So if we walk along Q0 from vs to vd and encounter a critical node of exit qi,
we will see a node qi′ inherited from T before encountering any critical node of entry
or exit. We charge qi to qi′ . The node qi′ can only be charged once, so there are at
most n critical nodes of exit in Q0. By a symmetric argument (following Q0 backward
from vd to vs), we can show that there are at most n critical nodes of entry. Hence,
the total number of critical nodes is at most 2n.

In fact, the proof of Lemma 12 shows even more. Between any two consecutive
nodes of Q0 inherited from T , there is at most one critical node of entry and one
critical node of exit. In case these two critical nodes are present, they lie on the same
edge e, and the path enters and exits e from the same side (see Figure 5). All of the
other nodes (between these two consecutive inherited nodes) are transversal nodes.
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v
δ

P

pj

pi−1

v
pi

pj+1

(a) (b)

Fig. 6. (a) The δ-neighborhood of v is shaded. (b) The effect of Shortcut(P , δ, v). The subpath
P [i− 1, j + 1] is replaced by the dashed subpath (pi−1, v, pj+1).

5. Path complexity. In this section we show that any polygonal path P can
be approximated by a (21ρn2/ε)-link path with cost at most (1 + ε) cost(P ). This
result, combined with the algorithms for approximating k-link shortest paths that
we presented in section 3, allows us to compute a polygonal path with cost at most

(1 + ε) cost(P ) in time O(ρ
2 log ρ
ε2 n3 log(ρnε )).

5.1. Shortcut near vertices. We introduce a procedure Shortcut that removes
nodes in the vicinity of vertices of T . Shortcut takes as input a polygonal path P , a
real number δ > 0, and a vertex v of T . Shortcut will be invoked repeatedly, starting
with the output of Simplify. The path may no longer be simple or nonredundant after
several applications of Shortcut.

Let v be a vertex of T . The δ-neighborhood of v is the intersection of the δ-
radius Euclidean disk centered at v with the union of the faces that contain v (see
Figure 6(a)). Shortcut(P , δ, v) checks if P has a node in the interior of the δ-
neighborhood of v. If so, let pi and pj be the first and last nodes of P , respectively, in
the interior of the δ-neighborhood of v—here the interior is taken in the topological
sense. Then Shortcut replaces P [i − 1, j + 1] with the subpath (pi−1, v, pj+1) (see
Figure 6(b)). The nodes pi−1 and pj+1 lie on the boundary of a face incident to v, so
the new path is still inside |T |. The links pi−1v and vpj+1 introduced by Shortcut may
make the path redundant or self-intersecting. Here is the pseudocode of Shortcut.

Shortcut(Polygonal path P , δ > 0, vertex v)
1. If no node of P is in the interior of the δ-neighborhood of v,

return P .
2. Let pi and pj be the first and last nodes along P , respectively,

that lie in the interior of the δ-neighborhood of v. Let p0 and
pm be the first and last nodes of P .

3. If v = p0, return (v) · P [j + 1,m].
4. If v = pm, return P [0, i− 1] · (v).
5. Return P [0, i− 1] · (v) · P [j + 1,m].

The following lemma gives a bound on the cost of the path obtained by applying
Shortcut.

Lemma 13. Let P be a T -respecting path. Then the path returned by Shortcut(P, δ, v)
has cost less than cost(P ) + 2ρδ.

Proof. Either pi−1pi is a chord of a face incident to v or it is contained in an edge
incident to v. In any case, as ‖piv‖ < δ, we have cost(pi−1v) < cost(pi−1pi) + ρδ.
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Similarly, we can prove that cost(vpj+1) < cost(pjpj+1) + ρδ.

Remark. Reif and Sun [19] also used a disk neighborhood. Their disk radius is
related to the local geometry around the vertex v, and the disk is completely contained
in the union of the faces incident to v. In our construction, the disk radius will be set
to be proportional to the global path cost. (See the procedure Convert in section 5.2.)
As shown in Figure 6, our disk may not be contained in the union of faces incident to v.

5.2. Path conversion. The pseudocode below describes a procedure Convert
that transforms a polygonal path P into another polygonal path R. We show that
R has at most 21ρn2/ε links and its cost is at most (1 + ε) cost(P ). We denote by
{v1, v2, . . . , vn} the vertices of T in the following pseudocode.

Convert(Polygonal path P , ε ∈ (0, 1))
1. Q0 := Simplify(P ).
2. δ := ε cost(P )/(2ρn).
3. For i = 1 to n, Qi := Shortcut(Qi−1, δ, vi).
4. R := Qn.
5. Return R.

The procedure Convert has the following properties.

Lemma 14. Let R = (r1, . . . , r�) be the path returned by Convert(P, ε).

(i) cost(R) � (1 + ε) cost(P ).
(ii) R is a T -respecting path with distinct nodes.
(iii) If {ri, ri+1} contains no vertex of T , then riri+1 is a link of Q0.
(iv) If v is a vertex of T and ri lies in the interior of an edge incident to v, then

‖riv‖ � δ.

Proof. By Lemma 13, the path cost increases by at most 2ρδ = ε cost(P )/n for
each call to Shortcut. By Lemma 12, cost(Q0) � cost(P ); thus cost(R) � cost(Q0) +
ε cost(P ) � (1 + ε) cost(P ). By Lemma 12 again, Q0 is a T -respecting path with
distinct nodes. Each call to Shortcut preserves these two properties. This proves (ii).
Properties (iii) and (iv) follow from the working of Shortcut.

We prove a technical lemma which essentially says that, for any edge e, the
transversal nodes in the output of Convert(P, ε) that lie on e are sparse.

Lemma 15. Let R = (r1, . . . , r�) be the path returned by Convert(P, ε). Consider
an edge e of T and a node ri ∈ int(e). Suppose that the following conditions hold:

• There exists a node rj ∈ int(e) with j > i+ 1. If there are several such nodes
we choose j to be the minimum.

• All nodes in int(R[i, j]) are transversal nodes.

Then cost(R[i, j]) > δ.

Proof. We denote by 	e the support line of e, and we denote by x the first
intersection point between R[i, j] and 	e. If x �= rj , then x /∈ int(e) as R is T -
respecting (see Figure 7(a)). By Lemma 14(iv), we know that ‖rix‖ > δ and thus
cost(R[i, j]) � ‖rix‖ > δ.

We now assume that x = rj , and thus int(R[i, j]) lies entirely on one side of
	e. We denote by Ri the region delimited by R[i, j] and rirj (see Figure 7(b)). We
first prove that there exists an edge e′ of T with one endpoint v′ inside Ri. Let E
denote the set of edges of T that contain a node of R[i, j]. Pick an edge of E. If this
edge has an endpoint inside Ri, we are done. Otherwise, this edge crosses int(R[i, j])
transversally, so it separates a portion of Ri away from e. By recursively applying the
argument on this portion of Ri, we must find an edge e′ ∈ E that has an endpoint
inside Ri.
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R[i, j]

Ri

rk

(a) (b)

Fig. 7. In (a), the subpath R[i, j] intersects �e outside e at point x. In (b), the node v′ is in
the interior of the region Ri delimited by R[i, j] and rirj .

Let rk denote a node of R[i, j] that lies on e′. Because no vertex of T lies on R[i, j],
Lemma 14(iv) implies that ‖rkv′‖ � δ. It follows that length(R[i, j]) > ‖rkv′‖ � δ.
Hence, cost(R[i, j]) � length(R[i, j]) > δ.

We are now ready to derive a pseudopolynomial bound on the path complexity.
Theorem 16. For any ε ∈ (0, 1) and for any polygonal path P , there exists a

path P ε with at most 21ρn2/ε links such that cost(P ε) � (1+ ε) cost(P ). In addition,
P ε can be chosen to be simple and nonredundant.

Proof. Let Q0 = Simplify(P ), R = Convert(P, ε), and P ε = Reduce(R). By
Lemmas 10, 12, and 14, we know that

• P ε is simple, nonredundant, and T -respecting;
• cost(P ε) � cost(R) � (1 + ε) cost(P ).

Reduce does not increase the number of links. Hence, it suffices to prove that R has
21ρn2/ε nodes. By Lemma 14(ii), R is a T -respecting path with distinct nodes.

Take an edge e of T . We denote by Ne the set of nodes ri ∈ int(e). We show
below that |Ne| � 4ρn/ε+ 3n+ 4. We assume that |Ne| � 2; otherwise, we are done.
Let ri and rj , i < j, be two nodes in Ne that are consecutive in the order along R.

Case 1. ri−1 is a vertex of T . Because ri ∈ int(e), ri−1 must be one of the four
vertices of the two triangles incident to e. So there are at most four such ri’s in Ne.

Case 2. There is a vertex v of T in R[i, j]. We charge ri to v; thus there are at
most n such ri’s in Ne.

Case 3. j = i + 1. As ri, ri+1 ∈ int(e), ri and ri+1 are not vertices of T . Neither
is ri−1 as Case 1 does not apply. By Lemma 14(iii), (ri−1, ri, ri+1) is a subpath of
Q0. We have riri+1 ⊂ int(e) as ri, ri+1 ∈ int(e). It follows that ri is a critical node in
Q0 because Q0 is nonredundant and T -respecting.

Case 4. There is no vertex of T in R[i, j], but there is a critical node rk in
int(R[i, j]). We charge ri to rk. Lemma 14(iii) implies that R[i, j] is a subpath of Q0.
Thus rk is also a critical node in Q0.

Case 5. There is no vertex of T in R[i, j] and no critical node in int(R[i, j]).
Again, Lemma 14(iii) implies that R[i, j] is a subpath of Q0. Because Q0 is T -
respecting and nonredundant, all of the nodes in int(R[i, j]) are transversal nodes. By
Lemma 15, we have cost(R[i, j]) > δ. Because cost(R) � (1 + ε) cost(P ) < 2 cost(P )
and δ = ε

2ρn cost(P ), we get cost(R[i, j]) > ε
4ρn cost(R). So there are at most 4ρn/ε

such ri’s in Ne.
Cases 1, 2, and 5 contribute at most 4ρn/ε + n + 4 nodes to Ne. The nodes

in Cases 3 and 4 are critical nodes in Q0. By Lemma 12(iii), there are at most 2n
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Fig. 8. Bf1 is a square centered at the origin and with edge length
√

2. Bfi is obtained by
rotating Bf1 by an angle (i− 1)π/6. We know that the shortest path from vs to vd is not polygonal.
We conjecture that the shortest path from vs to vd is an infinite sequence of line segments, forming
a spiral around vd.

critical nodes in Q0, so Cases 3 and 4 contribute at most 2n nodes to Ne. In all,
|Ne| � 4ρn/ε+3n+4. The number of edges is at most 3n−6 for a planar graph with
n vertices. Summing over all edges of T and including the vertices of T , the number
of nodes in R is at most n + (3n− 6)(4ρn/ε + 3n + 4) � 21ρn2/ε.

6. General paths. The statement of Theorem 16 is not entirely satisfactory. For
instance, it does not tell us whether there exists a shortest path and if so, whether
it is a polygonal path. We give an example in section 6.1 in which the shortest path
cannot be polygonal. Nonetheless, we show that there exists a shortest rectifiable
path. Intuitively, a path is rectifiable if its length is finite; for example, the class
of rectifiable paths includes piecewise C1 paths. Furthermore, we show that for any
α > 1, there exists a polygonal path with cost at most α times the optimal. These
results imply Corollary 7 in section 3.4.

Throughout this section we do not require the endpoints of a path to be vs and
vd. Also, we do not require paths to be polygonal unless stated explicitly otherwise.

6.1. Example of a nonpolygonal shortest path. There may not be any
(exact) shortest polygonal path. We give an example in Figure 8 in which ρ =

√
2

and there is no shortest polygonal path.

We prove it by contradiction. Consider the points x and c in Figure 8. Assume
that the last link of a polygonal path P is xvd. Then, if we insert the node c between
x and vd in P (thus replacing the subpath (x, vd) by (x, c, vd)), we obtain a polygonal
path with strictly smaller cost than P . The same argument shows that the shortest
path intersects some edge an infinite number of times.

A similar example can be constructed for any ρ > 1 by changing Bfi into a regular
polygon with enough edges and by placing a larger number of faces around vd.

6.2. Rectifiable paths. Intuitively, a path is rectifiable if it has finite length.
The length of a path can be defined as the supremum of the length of the polygonal
paths inscribed in this path. This definition is a common way of introducing the
length of a curve; for instance, see Guggenheimer’s book [9]. It allows one to define
the length of a curve that is not necessarily piecewise C1. It can also be proved
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that, for a C1 curve, the length defined in this way coincides with the other usual
definition through calculus, where the length is obtained by integrating the norm of
the derivative of the curve [9, Theorem 2-3].

We do not require paths to be polygonal, so a path is a continuous function
π : [a, b] → |T | where a < b ∈ R. We use π[a, b] to denote {π(t) : a � t � b} and
π(a, b) to denote {π(t) : a < t < b}. We say that π is a path from x to y if π(a) = x
and π(b) = y.

An [a, b]-sequence is a finite increasing sequence σ = (t0, t1, . . . , tm) such that
a = t0 < t1 < · · · < tm = b. A polygonal path inscribed in π is a polyline πσ =
(π(t0), π(t1), . . . , π(tm)) such that σ is an [a, b]-sequence for some a < b. When there
is no ambiguity, we abuse notation and use πσ to denote

⋃m
i=1 π(ti−1)π(ti).

The length of a path π : [a, b] → |T | is defined as

length(π) = sup{ length(πσ) : σ is an [a, b]-sequence }.

The path π is rectifiable if length(π) is finite.

An inscribed polygonal path πσ is not necessarily contained in |T |. However,
there always exists an inscribed polygonal path contained in |T |.

Lemma 17. For any path π : [a, b] → |T |, there exists an [a, b]-sequence σ such
that πσ ⊂ |T |.

Proof. Let F denote the set of edges e of T such that e ∩ π(a, b) �= ∅. We prove
the lemma by induction on |F |. If F = ∅, then π(a, b) lies in a face of T and we are
done. Otherwise, let S denote the union of the faces that contain π(a). Note that
S is star-shaped around a; i.e., for any x ∈ S, we have ax ⊂ S. If π(b) ∈ S, we are
done (choose σ = (a, b)). Otherwise, let c = max{t : π(t) ∈ S}. Then π(c, b) does not
intersect any edge e in F such that e ⊂ S. Thus, by our induction hypothesis, there
is a [c, b]-sequence σ′ such that πσ′ ⊂ |T |. Choosing σ as the concatenation of (a) and
σ′, we conclude that πσ ⊂ |T |.

6.3. Cost distance. We introduce a new distance function and prove some of
its properties. This distance function yields a measure of the cost of a path. We
prove that this new cost measure coincides with the path cost defined in section 2
in the case of polygonal paths. We also prove the existence of an optimal rectifiable
path under this cost measure, and so the optimal path can be approximated using
our algorithmic result in section 3.

Let x, y be two points in |T |. The cost distance from x to y, denoted by d(x, y),
is defined as follows:

d(x, y) = inf{cost(P ) : P is a polygonal path from x to y and P ⊂ |T |}.

The distance function d(·, ·) is well defined, as the cost of a polygonal path is well
defined and positive. It has several useful properties, listed in the following lemma.
In particular, it is continuous. On the contrary, cost(xy) may not be continuous in
(x, y), for instance, when we move xy from the interior of a face to its boundary.

Lemma 18. The cost distance has the following properties.

(i) For any x, y ∈ |T |, x = y if and only if d(x, y) = 0.
(ii) For any x, y, z ∈ |T |, d(x, z) � d(x, y) + d(y, z).
(iii) For any x, y ∈ |T |, ‖xy‖ � d(x, y).
(iv) d(·, ·) is continuous over |T |2.
(v) For any x, z ∈ |T |, there exists y ∈ |T | such that d(x, y) = d(y, z) = d(x, z)/2.
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Proof. The correctness of (i), (ii), and (iii) follow from the definition of d(·, ·) and
the triangle inequality.

We now prove (iv). Let x0 and y0 be two points in |T |. Let Dδ and D′
δ de-

note the disks centered at x0 and y0 with radius δ, respectively. We assume that
δ > 0 is sufficiently small so that Dδ ∩ |T | and D′

δ ∩ |T | are star-shaped around
x0 and y0, respectively. So, for any x ∈ Dδ ∩ |T | and for any y ∈ D′

δ ∩ |T |, we
have |d(x, y) − d(x0, y0)| � d(x, x0) + d(y0, y) � ρ ‖x0x‖ + ρ ‖y0y‖. It follows that
lim(x,y)→(x0,y0) d(x, y) = d(x0, y0). Thus d(·, ·) is continuous over |T |2.

We now prove (v). By definition, for any n ∈ N, there exists a polygonal path
An ⊂ |T | from x to z such that cost(An) � d(x, z) + 2/n. There is a point yn on
An such that the cost of the subpath from x to yn is cost(An)/2. Then d(x, yn) �
d(x, z)/2 + 1/n and d(yn, z) � d(x, z)/2 + 1/n. Since |T | is compact, {yn} has a
limit point, which we denote by y. By (iv), the cost distance d(·, ·) is continuous;
thus d(x, y) � limn→∞ d(x, z)/2+1/n = d(x, z)/2. Similarly, d(y, z) � d(x, z)/2. We
complete the proof using (ii).

Properties (i) and (ii) show that d(·, ·) is a quasi metric: it is similar to a metric,
except that it is not symmetric.

6.4. Cost of a rectifiable path. We define a measure of path cost using the
distance function d(·, ·). Our definition is similar to the definition of the length of a
rectifiable path. The exposition of this section follows the lecture notes by Lang [10]
on metric geometry and the book by D. Burago, Y. Burago, and Ivanov [3]. The
results in these notes and this book do not apply to our problem directly, because
d(·, ·) is not a metric, so we reprove the results we need.

The d-cost of a path π : [a, b] → |T | is defined as

C(π) = sup

{
m∑
i=1

d(π(ti−1), π(ti)) : σ = (t0, . . . , tm) is an [a, b]-sequence

such that πσ ⊂ |T |
}
.

By Lemma 17, the above supremum is well defined. We say that π is T -rectifiable if
C(π) is finite.

The above definition of the d-cost works for paths specified as maps. We can
extend it to polygonal paths as follows. Let P = (p0, . . . , pm) be a polygonal path.
Construct the map π : [0, 1] → |T | such that π(i/m) = pi for any integer i ∈ [0,m],
and π is affine over [(i − 1)/m, i/m] for any integer i ∈ [1,m]. Then we define
C(P ) = C(π). The following lemma shows that C(P ) coincides with cost(P ) as
defined in section 2.

Lemma 19. For any polygonal path P , we have C(P ) = cost(P ).
Proof. We associate P with a function π : [0, 1] → |T | as explained earlier. Since

π[t, t′] is a polygonal path from π(t) to π(t′), by the definition of d(·, ·), we know that
for any t < t′ in [0, 1], d(π(t), π(t′)) � cost(π[t, t′]). It follows that C(P ) � cost(P ).

We now prove that C(P ) � cost(P ). We put a ball with radius δ centered at each
node of P , each crossing between P and the edges of T , each crossing between links
of P , and each vertex of T lying on P . We make δ sufficiently small so that the balls
are mutually disjoint, each ball intersects only the link(s) of P that contain the ball
center, and each ball intersects only the edge(s) and face(s) of T that contain the
ball center.
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Assume that there are k links in P . Since T has O(n) vertices and edges, there
are O(k2 + kn) balls. We denote by B the set of points in these balls. Clearly, P \ B
is a collection of disjoint line segments, each lying in the interior of an edge or a face
of T .

Pick a line segment xy in P \ B. First, assume that xy lies in the interior of a
face f of T . Let ε be the Euclidean distance between xy and bd(f). Let [a, b] be the
subinterval of [0, 1] such that π[a, b] = xy. Consider any [a, b]-sequence (s0, . . . , s�)

such that ‖π(si−1)π(si)‖ < ε/ρ for any i. So cost(π(si−1)π(si)) < ε for any i. Con-
sider any polygonal path from π(si−1) to π(si). If the path stays in int(f), its cost

is no less than cost(π(si−1)π(si)). If the path reaches bd(f), then the path cost is

at least ε > cost(π(si−1)π(si)). It follows that d(π(si−1), π(si)) = cost(π(si−1)π(si))
for any i. If xy lies in the interior of an edge of T , let F be the union of the face(s)
incident to e and let ε be the distance between xy and bd(F )\int(e). Again, we obtain
d(π(si−1), π(si)) = cost(π(si−1)π(si)) by considering separately polygonal paths that
stay in int(F ) ∪ int(e) and polygonal paths that reach bd(F ) \ int(e).

Consider any [0, 1]-sequence σ = (t0, . . . , tm) such that πσ ⊂ |T | and for each
endpoint x of a segment in P \ B, there exists i ∈ [0,m] such that π(ti) = x. This
implies that if [a, b] is a subinterval of [0, 1] such that π[a, b] = xy for a segment xy
in P \ B, then σ contains a [a, b]-sequence. Then the result in the previous paragraph
implies that

∑m
i=1 d(π(ti−1), π(ti)) �

∑
xy cost(xy), where the second sum runs over

all segments xy in P \B. Since C(P ) = C(π) is the supremum over all [0, 1]-sequences
that yields a polygonal path in |T |, we conclude that C(P ) = C(π) �

∑
xy cost(xy).

The intersection P∩B has a total length of O(δ(k2+kn)). Therefore, cost(P∩B) �
cρδ(k2 + kn) for some constant c > 0. By the triangle inequality,

∑
xy costxy �

cost(P )−cρδ(k2+kn), which tends to cost(P ) as δ → 0. Hence, C(P ) � cost(P ).
Consider the infimum of C(π) over all rectifiable paths π from a point x to another

point y in |T |. Our goal is to show that some rectifiable path from x to y achieves this
infimum and hence this path is shortest. First, we show that this infimum is equal to
d(x, y).

Lemma 20. For any x, y ∈ |T |,

d(x, y) = inf{C(π) : π is a rectifiable path from x to y}.

Proof. By definition, d(x, y) is the infimum of cost(P ) over all polygonal paths
P from x to y in |T |. A polygonal path P is rectifiable and C(P ) = cost(P ) by
Lemma 19. Therefore, d(x, y) � inf{C(π) : π is a rectifiable path from x to y}. As-
sume to the contrary that d(x, y) > inf{C(π) : π is a rectifiable path from x to y}.
Then there exists a rectifiable path π′ : [a, b] → |T | from x to y such that d(x, y) >
C(π′). It follows from the definition of C(π′) that there exists an [a, b]-sequence
σ = (t0, . . . , tm) such that

d(x, y) >

m∑
i=1

d(π′(ti−1), π
′(ti)).

However, this is impossible by Lemma 18(ii).
Next, we show that T -rectifiability is equivalent to rectifiability. It follows that

any rectifiable path has a finite d-cost (in particular, any piecewise C1 path).
Lemma 21. A path π in |T | is rectifiable if and only if π is T -rectifiable.
Proof. Suppose that a path π : [a, b] → |T | is rectifiable. By definition, C(π) is

equal to the supremum of
∑m

i=1 d(π(ti−1),π(ti)) over all [a, b]-sequences σ= (t0, . . . ,tm)
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such that πσ ⊂ |T |. By Lemmas 19 and 20, we have

d(π(ti−1), π(ti)) � C
(
π(ti−1)π(ti)

)
= cost

(
π(ti−1)π(ti)

)
.

Thus, C(π) � supσ cost(πσ) � supσ ρ length(πσ). By definition,

length(π) � length(πσ).

Therefore, C(π) � ρ length(π) which is finite as π is rectifiable. So π is T -rectifiable.
Suppose that a path π : [a, b] → |T | is T -rectifiable. By definition, length(π) =

supσ length(πσ), where the supremum is taken over all [a, b]-sequences. For each such
σ, by applying Lemma 17 to successive numbers in σ, we can find an [a, b]-sequence σ′

such that σ is a subsequence of σ′ (and thus length(πσ) � length(πσ′)) and πσ′ ⊂ |T |.
Therefore, it is also true that length(π) = supσ length(πσ) over all [a, b]-sequences σ
such that πσ ⊂ |T |. By Lemma 18(iii), we have length(πσ) �

∑m
i=1 d(π(ti−1), π(ti))

for any σ = (t0, . . . , tm). Therefore,

length(π) = sup
σ

length(πσ) � sup
σ

{
m∑
i=1

d(π(ti−1), π(ti))

}

over all [a, b]-sequences σ = (t0, . . . , tm) such that πσ ⊂ |T |. By definition, the right-
hand side is equal to C(π), which is finite as π is T -rectifiable. So length(π) is finite
and π is rectifiable.

We are ready to show that there exists a shortest rectifiable path from x to y.
The proof is analogous to the proof of the midpoint lemma in the lecture notes by
Lang [10] and the proof in the book by D. Burago, Y. Burago, and Ivanov [3, Theorem
2.4.16].

Theorem 22. For any x, y ∈ |T |, there exists a rectifiable path π∗ from x to y
such that

C(π∗) = inf{C(π) : π is a rectifiable path from x to y}.

Proof. We claim that it suffices to prove the existence of a path π∗ : [0, 1] → |T |
from x to y such that C(π∗) � d(x, y). Notice that, if this is true, π∗ is T -rectifiable
and hence rectifiable by Lemma 21. Then d(x, y) � C(π∗) by Lemma 20 and so
C(π∗) = d(x, y). We assume, without loss of generality, that d(x, y) = 1.

Let U = {i/2j : i, j ∈ N and 0 � i/2j � 1}. First, we recursively define π∗ over U ,
starting with π∗(0) = x and π∗(1) = y. By Lemma 18(v), we can choose π∗(1/2) such
that d(π∗(0), π∗(1/2)) = d(π∗(1/2), π∗(1)) = 1/2. We repeat this process recursively:
we choose π∗(3/4) such that d(π∗(1/2), π∗(3/4)) = d(π∗(3/4), π∗(1)) = 1/4, and so
on. This completes the definition of π∗ over U .

With this construction, for any r < r′ ∈ U , we have d(π∗(r), π∗(r′)) � r′ − r.
Thus, by Lemma 18(iii), we have ‖π∗(r)π∗(r′)‖ � r′ − r. In other words, π∗ is
Lipschitz over U . As U is dense in [0, 1], we can extend π∗ to a Lipschitz (and thus
continuous) function over [0, 1], by taking

∀t ∈ [0, 1], π∗(t) = lim
r∈U
r→t

π∗(r).

By Lemma 18(iv), we know that d(·, ·) is continuous. Thus, as d(π∗(r), π∗(r′)) � r′−r
for any r < r′ ∈ U , we conclude that d(π∗(t), π∗(t′)) � t′ − t for any t < t′ ∈ [0, 1].



APPROXIMATE SHORTEST PATHS IN ANISOTROPIC REGIONS 823

b

vs
vd

B2 �u

a

B1

Fig. 9. The terrain is formed by triangles abvd, avsvd, and bvsvd. The ellipses B1 and B2 are
the unit balls of faces avsvd and bvsvd, respectively. The vertices a, b, and vs are fixed, and the
convex distance functions are fixed. When vd goes to infinity in direction �u, the number of times a
1.01-approximate shortest path has to turn around the axis (vd, �u) goes to infinity.

Finally, by definition, C(π∗) = supσ{
∑m

i=1 d(π∗(ti−1), π
∗(ti))} over all [0, 1]-

sequences σ = (t0, . . . , tm) such that πσ ⊂ |T |. We have proved that

d(π∗(ti−1), π
∗(ti)) � ti − ti−1.

So
∑m

i=1 d(π∗(ti−1), π
∗(ti)) � 1. Hence, C(π∗) � 1 = d(x, y).

By the definition of a T -rectifiable path, the following corollary holds.

Corollary 23. For any α > 1 and for any x, y ∈ |T |, there exists a polygonal
path Sα from x to y such that cost(Sα) = C(Sα) � αC(π∗), where π∗ is a shortest
rectifiable path from x to y.

Theorem 22 and Corollary 23 allow us to apply the results in sections 3 and 5
to approximate the shortest rectifiable path. We summarize our main results in the
following.

• Theorem 22 shows that there is a shortest rectifiable path. Furthermore,
Corollary 23 shows that, for any α > 1, there exists a polygonal path with
cost at most α times the optimal.

• Corollary 23 and Theorem 16 imply that, for any ε ∈ (0, 1), there exists a
(21ρn2/ε)-link path with cost at most (1 + ε) times the optimal.

• Corollary 23 and Theorem 16 allow us to apply Theorem 5 to approximate
shortest paths in anisotropic regions. As stated in Corollary 7, for any ε ∈
(0, 1), we can compute in time O(ρ

2 log ρ
ε2 n3 log(ρnε )) a polygonal path S with

cost at most (1 + ε) times the optimal.

7. Conclusion. We have given algorithms for shortest path problems in planar
subdivisions. A natural question is whether our results can be generalized to higher
dimensions. The algorithms for k-link paths that we presented in section 3, as well as
the proof of the existence of a shortest rectifiable path (section 6), generalize directly
to the case where T is a 2D simplicial complex properly embedded in Rd (for any
integer d).

However, our bound O(ρn2/ε) on the number of links of an approximate shortest
path (Theorem 16) does not generalize to higher dimensions. It does not even gener-
alize to the case of a terrain. See the example shown in Figure 9, where n = 4 and
ρ is fixed. The number of edges in a 1.01-approximate shortest path goes to infinity
when vd goes to infinity in direction �u.
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A PRIMAL-DUAL BICRITERIA DISTRIBUTED ALGORITHM FOR
CAPACITATED VERTEX COVER∗

F. GRANDONI† , J. KÖNEMANN‡ , A. PANCONESI§ , AND M. SOZIO¶

Abstract. In this paper we consider the capacitated vertex cover problem, which is the variant
of vertex cover where each node is allowed to cover a limited number of edges. We present an effi-
cient, deterministic, distributed approximation algorithm for the problem. Our algorithm computes
a (2 + ε)-approximate solution which violates the capacity constraints by a factor of (4 + ε) in a
polylogarithmic number of communication rounds. On the other hand, we also show that every
efficient distributed approximation algorithm for this problem must violate the capacity constraints.
Our result is achieved in two steps. We first develop a 2-approximate, sequential primal-dual algo-
rithm that violates the capacity constraints by a factor of 2. Subsequently, we present a distributed
version of this algorithm. We demonstrate that the sequential algorithm has an inherent need for
synchronization which forces any naive distributed implementation to use a linear number of commu-
nication rounds. The challenge in this step is therefore to achieve a reduction of the communication
complexity to a polylogarithmic number of rounds without worsening the approximation guarantee.

Key words. vertex cover, approximation algorithms, distributed algorithms, primal-dual algo-
rithms
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1. Introduction. The capacitated vertex cover problem (capVC) is the variant
of vertex cover in which there is a limit on the number of edges that a vertex can
cover. A precise formulation of the problem is as follows. We are given an n-vertex
undirected graph G = (V,E), nonnegative weights wtv, and vertex capacities Bv ≥ 1
for all vertices v ∈ V . A solution to a given capVC instance consists of a subset
C ⊆ V and an assignment π : E → C of edges to vertices such that

1. π(e) ∈ {u, v} ∩ C ∀ edges e = (u, v) ∈ E, and
2. |π−1(v)| ≤ Bv ∀ v ∈ C.

The first set of constraints says that every edge must be covered by some vertex in
the cover C. The second condition limits the number of edges that can be assigned
to any cover vertex v to Bv. The goal is to find a feasible solution that has minimum
total weight

wt(C) :=
∑
v∈C

wtv.
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We emphasize the difference between the above hard-capacity version of capVC
and its soft-capacity counterpart (capVCs): in capVCs, each vertex v ∈ V may be
included xv ≥ 0 times in a cover. Vertex v then contributes xvwtv to the weight of
the cover, and the maximum number of edges that can be assigned to v is xvBv.

In this paper we present bicriteria sequential and distributed approximation algo-
rithms for the (hard) capacitated vertex cover problem. Given a feasible instance of
the problem of optimal weight opt, our sequential primal-dual algorithm computes a
vertex cover C of weight

∑
v∈C wtv ≤ 2opt, which assigns at most 2Bv edges to each

cover vertex v ∈ C. Note that, differently from the hard-capacity case, capacities
might be violated. However, the amount of the violation is bounded, which is not the
case for capVCs. We also remark that, unlike capVCs, every v ∈ C contributes wtv
to the weight of the cover even when its capacity Bv is exceeded.

The distributed implementation of our method has an additional input parameter
ε > 0 and computes a cover of weight at most (2 + ε)opt that violates the capacity
bound of each cover vertex by a factor of at most (4+ε). In the synchronous, message-
passing model of computation, the distributed algorithm takes O(log(nW )/ε) many
rounds, where

W = wtmax/wtmin

is the ratio of largest to smallest vertex weight in the given instance. This reduces
to O(log n/ε) for the interesting case of unit weights. We remark that our algorithm
is deterministic, while typically efficient distributed algorithms for graph problems
require randomization (see [11, 20, 22, 23, 26, 27] among others).

Observe that any sublinear distributed algorithm for capVC must violate the ca-
pacity constraints. Consider for instance a ring where every vertex has unit capacity.
A feasible solution provides a consistent orientation of the ring, something that re-
quires a linear number of communication rounds. Therefore a bicriteria solution is
the best one can hope for in a distributed setting. In this paper we show that in-
deed every efficient distributed approximation algorithm for capVC must violate the
capacity constraints by a large additive term.

In our opinion the most interesting aspect of our work is that the distributed algo-
rithm is derived in a systematic fashion from a sequential primal-dual algorithm. To
our knowledge, the first result of this kind is the (2+ε)-approximate vertex cover algo-
rithm described in [16]. Although described for the PRAM setting, the algorithm can
be easily adapted to the distributed case. Our paper takes the primal-dual approach
pioneered in [16] one step further, giving a new and considerably more sophisticated
example. Chudak, Erlebach, and Panconesi [4] recently showed that the techniques
introduced in this paper can be extended to yield efficient distributed primal-dual
algorithms for vertex cover with soft capacities and for the facility location problem.
The power of the primal-dual method in the design of approximation algorithms is
well established. In this paper we provide further evidence to the fact that it is also
a valuable tool in the design of distributed algorithms.

Capacity constraints arise naturally in distributed computing and computer net-
working; e.g., the scatternet-formation problem of ad hoc Bluetooth networks asks for
a small dominating set where each vertex in the set dominates at most 7 vertices [6].
More generally, a small dominating set can act as the backbone of the routing infras-
tructure of an ad hoc network (see [28, 30] and the references therein). Capacities
model computational and energy limitations and provide effective means to enforce
load distribution among the vertices of the backbone. To the best of our knowledge,
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our paper is the first result that considers a capacitated network design problem from
the distributed computing point of view. Recently, Moscibroda and Kuhn gave an LP-
based, bicriteria distributed solution to the capacitated dominating set problem [17].

Related work. Vertex covers with capacities has received considerable attention
in recent years in the sequential setting, while our main motivation is to study it
from a distributed point of view. The capacitated vertex-cover problem was first
introduced by Guha et al. [12], who presented a simple 4-approximate LP-rounding
based algorithm for capVCs. Later on, the authors showed a 2-approximate primal-
dual algorithm. Subsequently, Gandhi et al. [10] presented a 2-approximate LP-
rounding algorithm for capVCs.

The hard-capacitated vertex-cover problem is significantly harder than its soft-
capacitated variant. Chuzhoy and Naor [5] first gave a sophisticated 3-approximate
LP-rounding algorithm for the special case of capVC with uniform vertex weights.
Finally, in [9], Gandhi et al. presented an LP-rounding-based 2-approximation algo-
rithm for capVC with uniform weights.

In [5], Chuzhoy and Naor also showed that capVC in the presence of nonuniform
vertex weights is as hard to approximate as set-cover. Lund and Yannakakis [24]
proved that there is no o(log n)-approximation for the latter problem unless NP ⊆
DTIME(nO(log log n)) (see also [8] for a refined result). Based on work by Bellare et
al. [3] and Raz and Safra [29], Alon, Moshkovitz, and Safra [1] recently improved
upon this result and showed that no o(log n)-approximation for the set-cover problem
is possible unless P = NP. Chuzhoy and Naor’s work implies that these hardness
bounds translate to the capVC problem.

The best known approximation algorithm for the vertex-cover problem without
capacity constraints is due to Karakostas [15], who presented a 2 − Θ(1/

√
log(n))-

approximation for the problem. This improves upon earlier (2− o(1))-approximation
algorithms due to Halperin [13], Bar-Yehuda and Even [2], and Hochbaum [14]. As
mentioned, the same bound is essentially achievable in the distributed setting [16].

Unconditional lower-bounds based on communication constraints, as opposed to
unproven complexity theoretic assumptions, have been proved since the early stages
[21, 25]. For more recent work, see [18]. Also, Elkin [7] recently established trade-offs
between the performance guarantee of a distributed approximation algorithm for the
minimum-cost spanning tree problem and the number of communication rounds it
needs.

Finally, we mention that LP-duality has been previously used to design distributed
algorithms for the dominating set problem [19, 27].

Our contribution. The first result we give is a bicriteria primal-dual approximation
algorithm for capVC.

Theorem 1. Given a feasible capVC instance with capacities Bv ≥ 1 for all
v ∈ V , there is a polynomial-time primal-dual algorithm that computes a vertex cover
(C, π) of weight at most 2opt that assigns at most 2Bv edges to each vertex v ∈ C.

We remark that if the input instance does not have a feasible solution, then our
algorithm either computes a feasible solution for the (capacity) relaxed version of the
problem or it terminates with a certificate of infeasibility.

Theorem 1 is a natural step toward proving the main result of this paper.
Theorem 2. Given a feasible instance of capVC with capacities Bv ≥ 1 for all

v ∈ V , and let ε ∈ (0, 1] be an input parameter. There is a distributed deterministic al-
gorithm that computes a vertex cover (C, π) of weight at most (2+ε)opt that assigns at
most (4+ε)Bv edges to each vertex v ∈ C. The algorithm needs O(log(nW )/ε) rounds.
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We remark that the message-size of our algorithm is O(log n + log wtmax).
Note that the running time is strongly polylogarithmic for polynomially large

weights only. This includes the important special case of unit weights. Obtaining a
strongly polylogarithmic algorithm in general is a challenging open problem.

Similar to the sequential case, if the input instance does not have a feasible
solution the algorithm either computes a feasible solution for the relaxed version of
the problem, or terminates with a certificate of infeasibility. The latter, however, is
necessarily local in nature. That is, some vertices will know that the algorithm has
failed, but it requires a linear number of communication rounds to distribute this
information across the network in general.

These theorems are complemented by the following lower-bound on the commu-
nication complexity of any algorithm for the weighted capVC problem with hard
capacities.

Theorem 3. Let B, k ≥ 1 be integer parameters. There is a capVC instance with
uniform vertex capacities B, for which any distributed approximation algorithm that
assigns less than (1+1/k) ·B edges to all vertices must take at least k communication
rounds.

This result shows in particular that violating the capacity constraints is necessary
and provides a trade-off between violation of capacities and running time.

Organization of this paper. In section 2 we describe a sequential algorithm for
the capacitated vertex-cover problem and give a proof of Theorem 1. Section 3 shows
how to turn the sequential algorithm into a distributed one. This is done in two steps.
First, we show how to convert the sequential algorithm into a distributed one that
computes a vertex cover that satisfies the approximation requirement. In this step
we assign only a subset of the edges. In the second and final step we assign all of the
remaining edges. The proof of Theorem 4 is given in section 4.

2. A sequential primal-dual algorithm. We present a so called primal-dual
algorithm for the capVC problem. The algorithm and its analysis are based on linear
programming duality. In section 3 we therefore introduce a linear programming formu-
lation of the problem together with its dual. Following that we describe our sequential
algorithm and conclude this section with an analysis of the presented method.

2.1. A linear programming formulation. The problem can be formulated as
an integer program where we introduce a binary indicator variable xv for each v ∈ V .
We let xv = 1 if v ∈ C and xv = 0 otherwise. For each edge e = (u, v) ∈ E we
introduce two binary variables ye,v and ye,u. For w ∈ {u, v} we let ye,w = 1 if and
only if π(e) = w. In the following, let δ(v) be the set of edges incident to vertex v ∈ V
in G:

min
∑
v∈V

wtv · xv(IP)

s.t. ye,v + ye,u ≥ 1 ∀e = (u, v) ∈ E,(1)

ye,w ≤ xw ∀e = (u, v) ∈ E,

∀w ∈ {u, v}(2) ∑
e=(v,u)∈δ(v)

ye,v ≤ Bv · xv ∀v ∈ V,(3)

ye,v, xv ∈ {0, 1} ∀e ∈ E, v ∈ V.(4)
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We now let (LP) be the standard LP relaxation obtained from (IP) by replacing the
constraints (4) by

ye,v ≥ 0 ∀e = (u, v) ∈ E,

0 ≤ xv ≤ 1 ∀v ∈ V.(5)

In the following we use (i)v, (i)e, and (i)e,v to denote constraint (i) for vertex v ∈ V ,
edge e ∈ E, and pair (e, v) ∈ E × V , respectively. In the linear-programming dual
of (LP) we associate variables αe, βe,w, γv and ωv with constraints (1)e, (2)e,w, (3)v,
and (5)v, respectively. The linear programming (LP) dual of is then

max
∑
e∈E

αe −
∑
v∈V

ωv(D)

s.t. αe ≤ βe,w + γw ∀e = (u, v) ∈ E,

∀w ∈ {u, v}(6) ∑
e=(u,v)∈E

βe,v ≤ wtv + (ωv −Bv · γv) ∀v ∈ V,(7)

α, β, γ, ω ≥ 0.

2.2. The algorithm. We remark that the following simple LP rounding scheme,
similar to that proposed by Guha et al. [12], yields a 2-approximate vertex cover in
which each vertex v covers at most 2Bv edges: Solve the LP relaxation (LP) and
let (x, y) be its optimal solution. The cover set C consists of all vertices v with
xv ≥ 1/2. For e = (u, v) ∈ E, constraint (1)e implies that there is w ∈ {u, v} such
that ye,w ≥ 1/2. We assign edge e to vertex w in this case. Clearly, the weight of the
vertices in C is at most twice the optimal LP value. Moreover, each vertex v ∈ C has
at most 2Bv assigned edges.

We provide an alternate primal-dual algorithm in this section. As we shall see
later, this algorithm possesses an efficient distributed implementation.

The high-level idea in primal-dual algorithms is to find a pair of feasible solu-
tions for (D) and (IP). Subsequently, we upper-bound the performance ratio of the
algorithm by bounding the multiplicative gap between the objective values of the two
solutions. Thus, our goal is to find a primal-dual pair of solutions whose objective
functions values are within a small multiplicative constant of each other. Primal-
dual algorithms typically construct such a primal-dual pair in an iterative manner:
Starting from a trivial feasible dual solution and an infeasible primal one, the algo-
rithm continuously raises the objective value of the dual solution while maintaining
its feasibility, and it changes the partial primal solution in order to attain feasibility.

Our primal-dual capVC algorithm starts with the dual feasible solution α = β =
γ = ω = 0 and the infeasible primal solution x = y = 0. In order to obtain a feasible
vertex cover, we have to a) select a set of cover vertices, and b) assign each edge
e ∈ E to one of its endpoints (which must be in the cover). As is typical in primal-
dual approximation algorithms, these decisions are governed by primal complementary
slackness.

In the following we say that a vertex v ∈ V is tight for a current dual solution
(α, β, γ, ω) if constraint (7)v holds with equality. Similarly, a pair (e, w) ∈ E × V is
tight if constraint (6)e,w is satisfied with equality. Our algorithm will now increase
the value of some of the dual variables and, as a consequence, create tight vertices
and tight edge-vertex pairs. Tight vertices are candidates for our final cover and we
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will eventually choose a subset of these. Each edge e will eventually be assigned to
one of its tight endpoints. In particular, edge e = (u, v) ∈ E will only be assigned to
endpoint w ∈ {u, v} if (e, w) is tight. Once an edge is assigned to a vertex, we will
remove it from the graph and continue. Similarly, once all edges incident to a certain
vertex v ∈ V have been decided, the vertex is removed from the graph. The algorithm
terminates, when the graph is empty and, hence, when all edges have been assigned.

We now describe the algorithm. As customary with primal-dual algorithms, we
describe it as a continuous process that can be implemented in polynomial-time by
standard techniques. Initially all edges are unassigned. At any given point, the
algorithm increases the value of dual variables αe of all unassigned edges uniformly
at the same (unit) rate. Increasing variables αe for unassigned edges increases the
left-hand side of constraints of type (6) and we will have to also increase some of the β
and γ variables in order to maintain dual feasibility. We describe the update process
for these variables for each vertex v ∈ V depending on its tightness.
v is nontight. In this case, we increase βe,v for all e ∈ δ(v) uniformly. Thus, the left-

and right-hand side of constraint (6)e,v for all e ∈ δ(v) increase at the same
rate and feasibility is maintained.

v is tight. If v has at most 2Bv incident edges, we add v to the cover, assign all edges
in δ(v) to v, and delete v and the newly assigned edges from G. Otherwise v
has more than 2Bv incident edges. In this case, we increase ωv at rate Bv, γv
at unit rate, and we leave βe,v as is for all e ∈ δ(v). As a consequence, the left-
and right-hand sides of (7)v remain unchanged, and the left- and right-hand
sides of (6)e,v for all e ∈ δ(v) change at the same (unit) rate. Feasibility is
therefore also maintained in this case.

We emphasize that our algorithm maintains a feasible dual solution for (D) for
the original instance. In particular, deleting a vertex v and an edge e ∈ δ(v) means
that the values of variables αe, βe,v, ωv, and γv are frozen at their current state from
this point on in the algorithm. The algorithm terminates when all edges have been
assigned.

We demonstrate the algorithm using the example instance in Figure 1(i), where
we let Bu = 2, Bv = 3, and Bw = ∞ for all other vertices w. We also choose wta = 2,
wtu = 5, wtv = 6, and all other vertices which have infinite weight. In the following
we use V and E to refer to the vertex and edge sets of the given instance.

Running our algorithm for one time unit results in αe = 1 for all e ∈ E and
βe,w = 1 for all w ∈ V and for all e ∈ δ(w). At this point, constraint (7)u is tight.
As u has 5 > 2 · Bu = 4 unassigned incident edges, we cannot assign any edge at

(ii)

u v

a b c d e

u v

a b c d e

(i)

Fig. 1. An example instance for the primal-dual capVC algorithm.
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this point. Thus, we continue to increase αe for all edges e ∈ E. Simultaneously, we
increase βe,w for all w ∈ V \ {u} and for all e ∈ δ(w) at unit rate, increase ωu at rate
Bu = 2, and increase γu at unit rate.

After one more time unit, the positive dual variable values are

αe = 2 ∀e ∈ E,

βe,u = 1 ∀e ∈ δ(u),

βe,w = 2 ∀w ∈ V \ {u},∀e ∈ δ(w),

ωu = 2,

γu = 1.

At this point, vertices a, u, and v are tight. Vertices a and v have one and three
incident edges, respectively, and we can hence add both vertices to the cover and
delete them and their incident edges from the graph. The number of remaining edges
all of which are incident to u is now 4 = 2Bu. We can assign all of them to u.

Figure 1(ii) shows the computed primal solution; cover vertices are shaded and
arc directions indicate edge assignment. We note that the primal solution is feasible
for (IP) only if we relax the capacity constraint of vertex u. In fact, it is not hard to
see that any feasible solution to (IP) for this instance must have infinite weight.

2.3. Analysis. In this section we present a proof of Theorem 1.
Assume first that the algorithm from section 2.2 does not terminate for a given

input instance. It is then not hard to see that the algorithm must reach a point in the
execution, where each tight vertex v ∈ V has a degree of more than 2Bv and where
each remaining edge is incident to tight vertices on both ends. Using the pigeon-hole
principle, it follows that, in any assignment of edges to vertices, there must be at
least one tight vertex v that is assigned more than Bv edges. Thus the given input
instance is infeasible, and the set of tight vertices together with the set of unassigned
edges certifies this fact.

In the following we focus on feasible capVC instances. For such instances our
algorithm terminates with a cover C, an assignment {ye,v}e∈E,v∈V of edges to vertices
in the cover, and a corresponding dual solution (α, β, ω, γ). We first show that the
dual is feasible for (D).

Lemma 1. The dual solution (α, β, ω, γ) is feasible for (D).
Proof. We can think of the execution of the algorithm as a process over time:

The algorithm starts at time zero and then raises αe by one for all edges per unit of
time. We prove the lemma by induction on (appropriately discretized) time.

Our initial dual solution is clearly feasible. Now consider a later time in the
algorithm. Let O be the set of tight vertices at that time.

For a vertex v ∈ V \O and for an edge e ∈ δ(v) we raise αe and βe,v simultaneously
and hence maintain dual feasibility. For a vertex v ∈ O we raise ωv at a rate of Bv

per time unit and raise γv at unit rate. For all edges e ∈ δ(v) we raise αe at unit rate
as well. It is not hard to see that we maintain dual feasibility this way.

We are ready to prove that our algorithm computes a 2-approximate primal so-
lution.

Lemma 2. Our algorithm terminates with a vertex cover C and a corresponding
feasible dual solution (α, β, γ, ω) whenever there exists a feasible solution (x, y) for
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(LP). In particular, we must have

∑
v∈C

wtv ≤ 2

(∑
e∈E

αe −
∑
v∈V

ωv

)
.

Proof. Let v ∈ C be a vertex in the computed vertex cover, and let e ∈ δ(v) be
an edge that is incident to v. Notice that our algorithm always maintains

(8) αe ≥ βe,v

since αe is raised whenever βe,v increases and the rate of increase is the same.
Observe also that γv is only increased if the degree deg(v) of vertex v exceeds

2Bv. Let δ1(v) ⊆ δ(v) be the set of edges that are incident to v when γv is increased
for the last time in the algorithm and notice that we must have |δ1(v)| > 2Bv.

Consider an edge e ∈ δ1(v) and note that γv and αe increase at the same rate after
the point of time where v becomes tight. Notice also that the algorithm increases αe

and βe,v at the same rate before v becomes tight. Variable βe,v is not increased after
v becomes tight, and γv is not increased before v becomes tight. Therefore, for all
e ∈ δ1(v) we must have

(9) αe = βe,v + γv.

Since v is tight when the algorithm adds it to the cover and deletes it from the
graph, it must also be the case that

(10)
∑

e∈δ(v)

βe,v = wtv + ωv −Bv · γv = wtv,

where the last equality follows from the fact that we raise ωv at a rate of Bv if and
only if we raise γv at a rate of 1.

We use δ2(v) = δ(v) \ δ1(v) and obtain

(11) wtv ≤
∑

e∈δ(v)

βe,v ≤
∑

e∈δ1(v)

(αe − γv) +
∑

e∈δ2(v)

αe ≤
∑

e∈δ(v)

αe − 2Bvγv,

where the first inequality uses (10), the second inequality uses (8) and (9), and the
last inequality follows from the fact that v is incident to at least 2Bv edges whenever
γv is increased.

Summing (11) over all v ∈ C gives

(12)
∑
v∈C

wtv ≤
∑
e∈E

|e ∩ C| · αe − 2 ·
∑
v∈C

Bvγv.

Now observe that we raise γv and ωv only for tight vertices in our algorithm. Given
that the input instance is feasible, the degree of any tight vertex v will eventually
drop below 2Bv. It therefore follows from the algorithm description that any vertex
that becomes tight during the execution of the algorithm is eventually included in the
vertex cover C. Hence (12) implies∑

v∈C
wtv ≤

∑
e∈E

|e ∩ C| · αe − 2 ·
∑
v∈V

Bvγv.

The lemma follows from Bvγv = ωv for all v ∈ V and from the fact that |e ∩ C| ≤
2.

Lemmas 1 and 2 complete the proof of Theorem 1.
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3. A distributed algorithm. In this section we will describe a distributed
primal-dual algorithm for capVC which uses the ideas developed in section 2. As be-
fore, the algorithm maintains a pair of (infeasible) primal and (feasible) dual solutions
at all times. However, these solutions need to be stored in a distributed fashion: each
vertex v ∈ V stores and manipulates

(a) primal variables xv and ye,v for all e ∈ δ(v), and
(b) dual variables γv, ωv, αe, and βe,v for all e ∈ δ(v).

Note that, for every edge e = (u, v), both u and v store a copy of αe. The algorithm
guarantees the consistency of the two copies.

Observe that a naive distributed implementation of the method described in sec-
tion 2 yields an algorithm that needs a linear number of communication rounds
in the worst case. In order to illustrate this, consider a graph G with vertex set
{v1, . . . , vn, u1, . . . , u2B} for some n,B ≥ 1. Let the edge-set of G be

E = {(vi, vi+1) : 1 ≤ i ≤ n− 1}∪{(vi, uj) : 1 ≤ i ≤ n, 1 ≤ j ≤ 2B− 1}∪{(vn, u2B)}

and notice that vertex v1 has a degree of 2B while vertices v2, . . . , vn have a degree
of 2B + 1. Let the cost of vertices v1, . . . , vn be 0 and assign a unit cost to all other
vertices in G. In the execution of the sequential primal-dual algorithm, all vertices
v1, . . . , vn are tight immediately and all other vertices are nontight. Vertex v1 is the
only tight vertex with a degree of at most 2B. After assigning the 2B edges in δ(v1)
to v1, the degree of vertex v2 drops to 2B. In general, the degree of vertex vi drops
to 2B after assigning edges to vertices v1, . . . , vi−1 for all 1 ≤ i ≤ n. Doing this in a
distributed fashion takes n communication rounds.

Adapting the algorithm in order to cope with the above synchronization problem
is not an easy task. In fact it can be seen that synchronous increase of the duals is at
the heart of Lemma 2, where it is used to argue that the dual constraints of type (6)
are satisfied with equality at all times.

The distributed algorithm has two main phases.
Vertex-selection. In this phase we compute a vertex cover C ⊆ V that is (2 + ε)-

approximate. It is here that we solve the above mentioned synchronization
problem. While computing an approximate cover, we also assign part of the
edges to the vertices in C. At most 2Bv edges are assigned to each v ∈ C.

Edge-assignment. Here, we assign all of the remaining edges to the vertices in C. This
time, at most (2 + ε)Bv edges are assigned to each v ∈ C.

For ease of presentation we assume from now on that the given capVC instance is
feasible.

3.1. Vertex-selection phase. As said, the distributed algorithm mimics the
primal-dual algorithm from section 2. Each vertex v ∈ V stores part of the dual
solution and it initially sets γv = ωv = 0 and it also lets αe = βe,v = 0 for all edges
e ∈ δ(v).

The distributed algorithm works in rounds. At the beginning of any given round
i, we let the residual weight wtiv of vertex v be the difference between the right- and
left-hand sides of (7)v for the current feasible dual solution. Thus, we initialize wt0v
to wtv for all v ∈ V . A vertex v ∈ V is either active or inactive in any given round i.
An active vertex v can be in one of two states:

nontight Vertex v is nontight whenever the slack in constraint (7)v is more
than θ · wtv for a parameter θ ≥ 0 whose exact value will be
determined later.

tight We let the state of vertex v be tight if wtiv ≤ θ · wtv and if v has
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Fig. 2. The figure shows the possible states of vertex v ∈ V in the vertex-selection phase. The
arrows indicate the possible transitions between the states. Shaded states are active while others are
inactive states.

more than 2Bv nontight neighbors. Intuitively, a tight vertex v
will eventually be part of the computed cover. It will be assigned
a subset of at most 2Bv of the edges to its nontight neighbors.

We will say that an edge (u, v) ∈ E is active in round i if both u and v are active in
that round. For any vertex v ∈ V , we let degit(v) and degint(v) be the number of its
tight and nontight neighbors in round i. We also let degi(v) = degit(v) + degint(v) be
the active neighbors of v in round i. An inactive vertex v can be in one of two states:

inside A tight vertex switches its state to inside if the number degint(v)
of nontight neighbors is at most 2Bv. Vertex v will be part of
the final cover, and we assign all edges between v and any of its
nontight neighbors to vertex v.

outside We switch the state of a nontight vertex v to outside if it has no
tight or nontight neighbors. We will later argue that all neighbors
of v in G are inside in this case.

The vertex-selection phase terminates when no active vertices remain. The resulting
vertex cover C consists of all vertices whose final state is inside. Figure 2 illustrates
all possible transitions between states in the vertex-selection phase.

We proceed with a detailed description of round i of the distributed algorithm.
The round has two steps.

Step 1. All nontight vertices are dormant. Each tight vertex v ∈ V counts the
number of active nontight neighbors. If this number is at most 2Bv, then we assign all
edges connecting v to nontight neighbors to v. We also switch vs state to inside and
let v communicate its state-switch to all active neighbors. At this point each active
vertex v ∈ V knows the number degi(v) of active neighbors in G.

Step 2. The behavior of an active vertex v ∈ V depends on its current state.
v is nontight: If degi(v) is 0, then we know that all edges incident to v have been

assigned to other vertices. Therefore, we can switch the state of v to outside.
On the other hand, assume that v has active neighbors. Raising αe and βe,v

uniformly by wtiv/degi(v) for all active edges e ∈ δ(v) decreases the residual weight
of v to 0. Vertex v strives for tightness and therefore proposes to any active neighbor
u to raise α(u,v) and also β(u,v),v by its proposal

pv =
wtiv

degi(v)
.

Consider an active edge e = (u, v) ∈ δ(v). We raise αe and βe,v by min{pu, pv}
and decrease the residual weight wtiv of v by the same amount.

v is tight: Notice that step 1 guarantees that v has more than 2Bv nontight
neighbors. Vertex v receives proposals from all such neighbors and lets pv be their
minimum. Vertex v then sends pv to all such neighbors.

For all nontight neighbors u of v we increase α(u,v) by pv. In order to maintain
dual feasibility, we cannot increase β(u,v),v since v is tight. Hence we increase ωv by
Bvpv and γv by pv.
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Observe that tight vertices have to wait for the proposals of their nontight neigh-
bors before making their own proposal. Hence two communication rounds are needed
to update all of the variables.

We can show that the number of communication rounds needed to complete the
vertex-selection phase is small. Recall that W denotes the ratio of largest to smallest
vertex weights.

Lemma 3. The vertex-selection phase ends in O(log(nW )/θ) rounds.
Proof. We use a potential function argument in order to show the bound on the

number of communication rounds. For round j ≥ 0 we define the potential of each
vertex v ∈ V as Φj

v = wtv/degj(v) if degj(v) > 0 and we let Φj
v = wtmax otherwise.

Then let

Φj = min
v nontight

Φj
v.

Note that Φj is a nondecreasing function of j. In fact, we will show that Φj doubles

at least every �2/θ� rounds. The lemma then follows since wtmin

n ≤ Φj ≤ wtmax for
all rounds j.

Consider any given round i. Let V j
i be the set of nontight vertices at the beginning

of round j, j ≥ i, with Φj
v ≤ 2Φi, i.e.,

V j
i = {v ∈ V : degj(v) > 0,wtjv > θ · wtv,Φ

j
v ≤ 2Φi}.

Observe that V j+1
i ⊆ V j

i , since the wtjvs and degj(v)s are nonincreasing, while the

Φj
vs are nondecreasing. Consider any vertex v ∈ V i

i . We will show that v /∈ V j′

i for

j′ ≥ i + �2/θ�. As a consequence, for any nontight vertex v, Φj′

v > 2Φi, and, hence,
Φj′ > 2Φi.

Assume by contradiction that v ∈ V j′

i . Then, by the observation above, v ∈ V j
i

for any j ∈ {i, i+1, . . . , j′}. Suppose that w ∈ V is a nontight vertex with the smallest
proposal pw in round j. Recall that wtjw ≥ θwtw for nontight vertices. We then have

(13) pmin,j = pw =
wtjw

degj(w)
≥ θ · wtw

degj(w)
≥ θ · Φj .

It follows that the reduction of the residual weight of v in round j is at least

degj(v) · pmin,j ≥ degj(v) · θ · Φj ≥ degj(v) · θ · Φi ≥ degj(v) · θ · Φj
v/2 = θ · wtv/2,

where the first inequality uses (13) and the third inequality uses the definition of the
set V j

i . Hence

wtj
′

v ≤ wtv −
θwtv

2
�2/θ� ≤ 0 ≤ θ · wtv,

which contradicts the assumption that v ∈ V j′

i .
We now prove that the weight of the vertices in C is small.
Lemma 4. The total weight of the vertices in C is at most 2

1−θ times the optimum.
Proof. Assume that the distributed algorithm finishes after t ≥ 0 rounds, and let

(α, β, γ, ω) be the final dual. A proof very similar to that of Lemma 1 shows that the
dual is indeed feasible. We proceed as in the proof of Lemma 2.
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Consider a vertex v ∈ C and observe that v must have been tight before switching
to the inside state. Thus wttv ≤ θwtv and

(14)
∑

e∈δ(v)

βe,v ≥ wtv(1 − θ).

We will now show that

(15)
∑

e∈δ(v)

βe,v ≤
∑

e∈δ(v)

αe − 2ωv.

Equation (15) is trivially satisfied if we consider only the steps in which v is nontight.
In fact, in these steps ωv = 0 and βe,v = αe, for all e ∈ δ(v).

Consider now a step in which v is tight. The value of the left-hand side of (15)
does not change. If ωv increases by a quantity Bv ·pv, then γv increases by a quantity
pv. It follows that, for all edges e = (v, u) between v and a nontight neighbor u of v
in the current step, the value of αe also increases by at least pv. Since there are at
least 2Bv such neighbors, the right-hand side of (15) cannot decrease.

Let apx denote the weight of C. Hence,

apx =
∑
v∈C

wtv ≤ 1

1 − θ

∑
v∈C

∑
e∈δ(v)

βe,v ≤ 1

1 − θ

∑
v∈C

∑
e∈δ(v)

(αe − 2ωv),

where the first inequality uses (14) and the second inequality (15). Since every edge
is incident to at most two vertices from C we have that the right-hand side of the last
inequality is bounded by

2

1 − θ

(∑
e∈E

αe −
∑
v∈V

ωv

)
.

The claim follows by weak duality.
For a given accuracy parameter ε ≥ 0 we now let θ = 1 − 2/(2 + ε). Note that

this choice implies that 1/θ = O(1/ε) for ε ∈ (0, 1]. Hence, given a feasible instance
of capVC our distributed algorithm terminates within O(log(nW )/ε) communication
rounds with a cover of weight at most (2 + ε)opt as was claimed in Theorem 2.

3.2. Edge-assignment phase. At the end of the vertex-selection phase we are
left with a subset C′ ⊆ C of the tight vertices such that all unassigned edges have both
of their endpoints in C′. In the following we let G0 = G[C′] = (V,E) be the graph
induced by the vertices in C′. Assuming that the given capVC instance is feasible,
there must be an assignment of the edges in G0 to the vertices in C′ that obeys the
original capacity bounds. We describe a deterministic distributed algorithm which
assigns at most (2 + ε)Bv edges to each v ∈ C′ in O(log n/ε) rounds.

Our algorithm starts with all edges unassigned and computes a final assignment
iteratively. In each round t we consider all vertices v ∈ V with at most (2 + ε)Bv

incident unassigned edges, and we assign all such edges (u, v) ∈ δ(v) to v. We continue
until no unassigned edges remain.

To prove that the number of rounds is polylogarithmic we need the following
lemma. Let H be the set of vertices with a degree of more than (2 + ε)Bv, and let
E(H) be the set of those edges that have both of their endpoints in H. Finally use
E(H) as an abbreviation for the set E \E(H) of edges that have at most one endpoint
in H.
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Lemma 5. If there is a feasible assignment, then we must have |E(H)| ≥ ε|E(H)|.
Proof. Let π : E → V be a feasible assignment of edges to vertices. We have that

(16)
∑
v∈H

|δ(v)| ≤ 2|E(H)| + |E(H)|

as every edge in E(H) is counted exactly twice in the sum on the left-hand side while
an edge in E(H) is counted at most once. Moreover,

(17) |E(H)| ≤
∑
v∈H

|π−1(v)|

since every edge in E(H) must be assigned to some vertex in H. From (16) and (17)
it follows that

(2 + ε)
∑
v∈H

Bv ≤
∑
v∈H

|δ(v)| ≤ 2
∑
v∈H

|π−1(v)| + |E(H)| ≤ 2
∑
v∈H

Bv + |E(H)|.

Hence

|E(H)| ≥ ε
∑
v∈H

Bv ≥ ε|E(H)|

which proves the lemma.
Lemma 6. If there is a feasible assignment, then the algorithm above assigns at

most (2 + ε)Bv edges to each v ∈ V . The number of rounds required is O(log n/ε).
Proof. The capacity bound in the theorem follows immediately since for each ver-

tex v in V there is at most one round t in which we assign at most (2+ε)Bv edges to it.
Let Et be the set of unassigned edges at the beginning of iteration t, and let

Gt = G[Et] be the subgraph of G induced by Et. We also use Ht to denote the set
of vertices v ∈ V whose degree is more than (2 + ε)Bv in Gt. Note that for any t,
there must exist a feasible assignment in Gt as Gt is a subgraph of the initial graph
G where a feasible assignment exists. So we can apply Lemma 5 and conclude that

|Et| = |E(Ht)| + |E(Ht)| ≥ (1 + ε)|E(Ht)|.

In round t all of the edges in E(Ht) are assigned to some vertex and so |Et+1| ≤
|E(Ht)|. Hence, |Et+1| ≤ 1

1+ε |Et| and the number of unassigned edges decreases by
a factor of (1 + ε) in every round.

Since at most 2Bu edges are assigned to each u during the vertex-selection phase,
this concludes the proof of Theorem 2.

4. A lower bound. In this section we show that every efficient distributed
approximation algorithm for capVC needs to violate the capacity constraints by a
large additive term.

Consider the following two families of graphs G0
B,k and G1

B,k, where B, k ≥ 1.

Graph G0
B,k has k + 1 levels L0, L1, . . . , Lk, each one containing 2B + 1 vertices.

Each vertex in level Li, i = 0, 1, . . . , k − 1, is adjacent to exactly B vertices in level
Li+1. Symmetrically, each vertex in level Li, i = 1, 2, . . . , k, is adjacent to exactly B
vertices in level Li−1. There are no other edges in the graph. In particular, each level
Li induces an independent set. Graph G1

B,k is obtained from G0
B,k by adding an edge

between each pair of vertices in L0. Let the capacity of all vertices in both graphs



838 F. GRANDONI, J. KÖNEMANN, A. PANCONESI, AND M. SOZIO

L0

L2

L1

L3

L0

L2

L1

L3

Fig. 3. The figure shows graphs G1
B,k (on the left) and G0

B,k for B = 2 and k = 3 (on the right).

be B. Moreover, all vertices have cost zero, except for the vertices in level Lk, which
have cost one. Figure 3 shows an instance of the two graphs.

For 0 ≤ i ≤ k − 1, let δi be the set of edges that connect vertices in Li to those
in Li+1. We obtain a feasible solution for G0

B,k as follows: Let

C = L0 ∪ L1 ∪ · · · ∪ Lk−1

and assign all edges in δi to the vertices in Li for 0 ≤ i ≤ k − 1.
Graph G1

B,k has n = (k + 1)(2B + 1) vertices and Bn edges. Thus, any feasible
capacitated vertex cover must contain all vertices. Moreover, the edges belonging to
the clique on L0 clearly have to be assigned to the vertices in L0. Thus, the unique
feasible capVC solution for G0

B,k assigns all edges in δi to the vertices in Li+1 for all
0 ≤ i ≤ k − 1.

The following lemma turns out to be useful in the proof of the lower bound.
Lemma 7. Consider a solution for G1

B,k that assigns at most (B + c) edges to
each vertex, for some c ≥ 1. For 0 ≤ i ≤ k − 1, let Ai be the number of edges in δi
that are assigned to vertices in Li. Then

Ai ≤ (2B + 1)(i + 1)c

for all 0 ≤ i ≤ k − 1.
Proof. The proof is by induction on i. For i = 0, all clique edges need to be

assigned to vertices in L0. The spare capacity of the vertices in L0 is thus (2B + 1)c
which is the maximum number of edges in δ0 that can be assigned to the vertices in
L0.

Now assume that the claim is true for all 0 ≤ i < k. Using the induction hypoth-
esis, at most (2B+1)(i+1)c edges in δi are assigned to the vertices in Li. Therefore,
the remaining (2B + 1)(B − (i + 1)c) edges need to be assigned to vertices in Li+1.
The remaining capacity of the vertices in Li+1 is thus

(2B + 1)(B + c) − (2B + 1)(B − (i + 1)c) = (2B + 1)(i + 2)c

which is the maximum number of edges in δi+1 that can be assigned to vertices in
Li+1.
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Armed with Lemma 7 we are now ready to provide a proof of Theorem 4. We
restate it here for completeness.

Theorem 4. Let B, k ≥ 1 be integer parameters. There is a capVC instance with
uniform vertex capacities B, for which any distributed approximation algorithm that
assigns less than (1+1/k) ·B edges to all vertices must take at least k communication
rounds.

Proof. The proof is by contradiction. Let c < B/k and consider a distributed
approximation algorithm for capVC that assigns at most (B+ c) edges to each vertex
for any given (uniform capacity) instance whose running time is less than k.

We first execute this algorithm on graph G1
B,k. Lemma 7 shows that at most

(2B + 1) · kc of the edges in δk−1 are assigned to the vertices in Lk−1. The number of
edges that need to be assigned to vertices in Lk is therefore at least

(2B + 1)(B − kc) > 0,

where the inequality uses our assumption on c. Hence at least one vertex in Lk needs
to be in any cover of G1

B,k that assigns at most B + c edges to each vertex. Let u be
this vertex.

We now run the algorithm again on G0
B,k. Since the graphs G0

B,k and G1
B,k are

identical up to distance k from u, this vertex will be included in the cover in this case
too. On the other hand, no vertex in Lk can be part of any approximate solution for
G0

B,k.
For instance, consider an (efficient) distributed approximation algorithm for capVC

with running time O(logd n), where d is a positive constant. Theorem 4 then shows
that there is a family of (uniform capacity) capVC instances for which this algorithm
must assign at least B + Ω( B

logd B
) edges to some vertex.

We observe that graphs G0
B,k and G1

B,k have n = (2B + 1)(k + 1) vertices. This

implies that B = Θ
(
n
k

)
, which is large in the interesting case when k is polyloga-

rithmic. However, this hitch is easily removed by defining a graph G0 (resp., G1)
consisting of t disjoint copies of the main building block G0

B,k (resp., G1
B,k). Using

the new parameter t we can now produce instances in which B is arbitrarily small in
comparison to n while our proof argument goes through unchanged.
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ON THE COMPLEXITY OF VERIFYING CONSISTENCY OF XML
SPECIFICATIONS∗
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Abstract. XML specifications often consist of a type definition (typically, a document type
definition (DTD)) and a set of integrity constraints. It has been shown previously that such specifi-
cations can be inconsistent, and thus it is often desirable to check consistency at compile time. It is
known [W. Fan and L. Libkin, J. ACM, 49 (2002), pp. 368–406] that for general keys, foreign keys,
and DTDs the consistency problem is undecidable; however, it becomes NP-complete when all keys
are one-attribute (unary) and tractable, if no foreign keys are used. In this paper, we consider a
variety of previously studied constraints for XML data and investigate the complexity of the consis-
tency problem. Our main conclusion is that, in the presence of foreign key constraints, compile-time
verification of consistency is infeasible. We look at absolute constraints that hold in the entire doc-
ument and relative constraints that hold only in a part of the document. For absolute constraints,
we prove decidability and establish complexity bounds for primary multiattribute keys and unary
foreign keys and study unary constraints that involve regular expressions. For relative constraints,
we prove that even for unary constraints the consistency problem is undecidable. We also show that
results continue to hold for extended DTDs, a more expressive typing mechanism for XML.
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1. Introduction. XML data, just like relational and object-oriented data, can
be specified in a certain data definition language. While the exact details of XML data
definition languages are still being worked out, it is clear that all of them would contain
a form of document description, as well as integrity constraints. Constraints are
naturally introduced when one considers transformations between XML and relational
databases [10, 12, 18, 19, 23, 30, 31], as well as integrating several XML documents [2,
3, 4, 15].

Document descriptions usually come in the form of DTDs (document type defini-
tions), and constraints are typically natural analogues of the most common relational
integrity constraints: keys and foreign keys. Indeed, a large number of proposals (e.g.,
[35, 38, 36, 5]) support specifications for keys and foreign keys.

We investigate XML specifications with DTDs and keys and foreign keys. We
study the consistency, or satisfiability, of such specifications: given a DTD and a set of
constraints, whether there are XML documents conforming to the DTD and satisfying
the constraints. In other words, we want to validate XML specifications statically, at
compile time. Invalid XML specifications are likely to be more common than invalid
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students

record

@id

. . .
studentstudent dbLab pcLab

acc acc

@num @num

labs

. . .

record

prof

faculty

prof
. . .

@id

cs108cs340 cs434
. . . . . .

@sid @sid

. . .
takenBy takenBy

courses

r

Fig. 1.1. An XML document.

specifications of other kinds of data, due to the rather complex interaction of DTDs
and constraints. Furthermore, many specifications are not written at once, but rather
in stages: as new requirements are discovered, they are added to the constraints, and
thus it is quite possible that at some point they may be contradictory.

An alternative to the static validation would be a dynamic approach: simply
attempt to validate a document with respect to a DTD and a set of constraints. This,
however, would not tell us whether repeated failures are due to a bad specification or
problems with the documents.

The consistency analysis for XML specifications is not nearly as easy as for re-
lational data (any set of keys and foreign keys can be declared on a set of relational
attributes). Indeed, [16] showed that, for DTDs and arbitrary keys and foreign keys,
the consistency problem is undecidable. Furthermore, under the restriction that all
keys and foreign keys are unary (single-attribute), the problem is NP-complete.

These results revealed only the tip of the iceberg, as many other flavors of XML
constraints exist, and are likely to be added to future standards for XML such as
XML Schema [38]. One of our goals is to study such constraints. In particular, we
concentrate on constraints with regular expressions and relative constraints that hold
only in a part of the document. We now give examples of new kinds of constraints
considered here and explain their consistency problem.

Constraints with regular expressions. As XML data are hierarchically structured,
one is often interested in constraints specified by regular expressions. For example,
consider an XML document (represented as a node-labeled tree) in Figure 1.1, which
conforms to the following DTD for schools:

<!ELEMENT r (students, courses, faculty, labs)>

<!ELEMENT students (student+)>

<!ELEMENT courses (cs340, cs108, cs434)>

<!ELEMENT faculty (prof+)>

<!ELEMENT labs (dbLab, pcLab)>

<!ELEMENT student (record)> /* similarly for prof

<!ELEMENT cs434 (takenBy+) /* similarly for cs340, cs108

<!ELEMENT dbLab (acc+) /* similarly for pcLab

Here we omit the descriptions of elements whose type is string (PCDATA). Assume
that each record element has an attribute @id, each takenBy has an attribute @sid
(for student id), and each acc has an attribute @num. One may impose the following
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constraints over the DTD of that document:

r. ∗.(student ∪ prof ).record .@id → r. ∗.(student ∪ prof ).record ,

r. ∗.cs434.takenBy .@sid ⊆FK r. ∗.student .record .@id ,

r. ∗.dbLab.acc.@num ⊆FK r. ∗.cs434.takenBy .@sid .

Here “ ” is a wild card that matches any label (tag), and “ ∗” is its Kleene closure
that matches any path. The first constraint says that @id is a key for all records
of students and professors. The other constraints specify foreign keys, which assert
that cs434 can be taken only by students and only students who are taking cs434 can
have an account in the database lab. Recall that a foreign key also imposes a key
constraint on the target elements; e.g., the last foreign key above also says that @sid
is a key for students taking cs434.

Clearly, there is an XML tree satisfying both the DTD and the constraints. As
was mentioned earlier, specifications are rarely written at once. Now suppose a new
requirement is discovered: all faculty members must have a dbLab account. Conse-
quently, one adds a new foreign key:

r.faculty .prof .record .@id ⊆FK r. ∗.dbLab.acc.@num.

However, this addition makes the whole specification inconsistent. This is because
previous constraints postulate that dbLab users are students taking cs434, and no
professor can be a student since @id is a key for both students and professors, while the
new foreign key insists upon professors also being dbLab users and the DTD enforces
the requirement that at least one professor be present in the document. Thus no XML
document both conforms to the DTD and satisfies all of the constraints.

The consistency problem for regular expression constraints is at least as hard as
for constraints specified for element types with simple attributes: NP-hard in the
unary case and undecidable in general [16]. We use results from [1, 16, 27] to show
that, in the unary case, the problem remains decidable, but the lower bound becomes
PSPACE.

Relative integrity constraints. Many types of constraints are specified for an entire
document. A different kind of constraints, called relative, was proposed in [5]—
those constraints hold only in a part of a document. As an example, consider an
XML document that for each country lists its administrative subdivisions (e.g., into
provinces or states) as well as capitals of provinces. A DTD is given below, and an
XML document conforming to it is depicted in Figure 1.2:

<!ELEMENT db (country+)>

<!ELEMENT country (province+, capital+)>

<!ELEMENT province (capital, city∗)>

Each country has a nonempty sequence of provinces and a nonempty sequence of
province capitals, and for each province we specify its capital and perhaps other
cities. Each country and province has an attribute @name, and each capital has an
attribute @inProvince.

Now suppose that we want to define keys for countries and provinces. One can
state that country @name is a key for country elements. It is also tempting to say
that @name is a key for province, but this may not be the case. The example in
Figure 1.2 clearly shows that which Limburg one is interested in probably depends
on whether one’s interests are in database theory or in the history of the European
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capitalprovince

capital

@inProvince

province capital

capital

@inProvince

country

@name
"Holland". . .

@name
"Limburg"

"Limburg"
"Maastricht"

. . .. . .

@name
"Limburg"

"Limburg"
"Hasselt"

@name
"Belgium". . .

country

. . .

db

Fig. 1.2. An XML document storing information about countries and their administrative
subdivisions.

Union. To overcome this problem, we define @name to be a key for province relative
to a country; indeed, it is extremely unlikely that two provinces of the same country
would have the same name. Thus, our constraints are

country .@name → country ,

country(province.@name → province),

country( ∗.capital .@inProvince → ∗.capital),

country( ∗.capital .@inProvince ⊆FK
∗.province.@name).

The first constraint is like those we have encountered before: it is an absolute key,
which applies to the entire document. The rest are relative constraints which are spec-
ified for subdocuments rooted at country elements. They assert that for each country
@name is a key of all province descendants of the country element and @inProvince
is a key of all capital descendants of the country element and a foreign key referring
to @name of province elements in the same subdocument. The foreign keys assure
that for each capital element in a country element (subdocument) its @inProvince
attribute refers to a province in the same country (recall that capital elements imme-
diately below country also denote province capitals). Note that these constraints are
somewhat related to the notion of keys for weak entities in relational databases (cf.
[33]). In contrast to regular expression constraints given earlier, these constraints are
defined for element types; e.g., the first constraint is a key for all country elements
in the entire document, and the second constraint is a (relative) key for all capital
elements in a subdocument rooted at a country node.

To illustrate the interaction between constraints and DTDs, observe that the
above specification—which might look reasonable at first—is actually inconsistent!
To see this, let T be a tree that satisfies the specification. The constraints say that
for any subdocument rooted at a country c the number of its capital elements is at
most the number of province elements among c’s descendants. The DTD says that
each province has a capital element as a child and that each country element has
at least one capital child. Thus, the number of capital descendants of c is larger
than the number of province descendants of c, which contradicts the previous bound.
Hence, the specification is inconsistent. We note that one can make the specification
consistent by replacing country( ∗.capital .@inProvince → ∗.capital) with two keys:
country(capital .@inProvince → capital) and country(province.capital .@inProvince →
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province.capital), which allow capital.@inProvince and province.capital.@inProvince
to share the same value.

Relative constraints appear to be quite useful for capturing information about
XML documents that cannot possibly be specified by absolute constraints. It turns
out, however, that the consistency problem is much harder for them: it is undecidable
even for single-attribute keys and foreign keys.

Decidable restrictions. Since expensive lower bounds, and even undecidability,
were established for most versions of the consistency problem, we would like to see
some interesting tractable, or decidable, restrictions. In the case of absolute con-
straints, the results of [16] consider either single attributes or multiattribute sets
for both keys and foreign keys and thus say nothing about the intermediate case in
which only keys are allowed to be multiattribute. This class of constraints is rather
common and arises when relational data is translated into XML. While often iden-
tifiers are used as single-attribute keys, other sets of attributes can form a key as
well (e.g., via SQL unique declaration), and those typically contain more than one
attribute. We show that the consistency problem for this class of constraints, when
every key is primary (i.e., at most one key is defined for each element type), remains
decidable.

The main conclusion of this paper is that, while many proposals such as XML
Schema [38] and XML Data [36] support the facilities provided by the DTDs as well
as integrity constraints, and while it is possible to write inconsistent specifications,
checking consistency at compile time appears to be infeasible, even for fairly small
specifications.

Related work. Consistency was studied for other data models, such as object-
oriented and extended relational (e.g., with support for cardinality constraints); see
[8, 9, 22].

A number of specifications for XML keys and foreign keys have been proposed,
e.g., XML Schema [38] and XML Data [36]. A recent proposal [5] introduced relative
constraints. To the best of our knowledge, consistency of XML constraints in the pres-
ence of schema specifications was investigated only in [16]. However, [16] did not con-
sider relative constraints, constraints defined with regular expressions, and the class
of multiattribute keys and unary foreign keys. Other constraints for semistructured
data, different from those considered here, were studied in, e.g., [1, 6, 17]. The latter
also studies the consistency problem; the special form of constraints used there makes
it possible to encode consistency as an instance of conjunctive query containment.
Application of constraints in data transformations was studied in [23, 12]; usefulness
of keys and foreign keys in query optimization has also been recognized [13, 14].

Organization. Section 2 defines DTDs, absolute keys, and foreign keys for XML.
Section 3 studies the class of absolute multiattribute keys and unary foreign keys and
the class of regular expression constraints which is an extension of absolute constraints
with regular path expressions. Section 4 defines and investigates relative keys and for-
eign keys. Section 5 provides lower and upper bounds for the consistency problem for
extended DTDs, a slight extension of DTDs which captures unranked tree automata,
and several different classes of keys and foreign keys. Section 6 summarizes the main
results of the paper.

2. Notations.

2.1. DTDs, XML trees, and paths. Assume that we have the following dis-
joint sets: El of element names, Att of attribute names, S of possible values of at-
tributes and raw text, and Vert of node identifiers. All attribute names start with
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the symbol @, and these are the only ones starting with this symbol. We let S be a
reserved symbol not in any of those sets.

We formalize the notion of DTDs as follows (cf. [35, 7, 25, 16]).
Definition 2.1. A DTD is defined to be D = (E, A, P, R, r), where:
• E ⊆ El is a finite set of element types;
• A ⊆ Att is a finite set of attributes;
• P is a mapping from E to element type definitions: Given τ ∈ E, P (τ) = S

or P (τ) is a regular expression α defined as follows:

α ::= ε | τ ′ | α|α | α, α | α∗,

where S denotes the string type, τ ′ ∈ E, ε is the empty word, and “|”, “,”,
and “∗” denote union, concatenation, and the Kleene closure, respectively;

• R is a mapping from E to the powerset of A. If @l ∈ R(τ), we say that @l
is defined for τ ;

• r ∈ E and is called the element type of the root.
We normally denote element types by τ and assume that R(r) = ∅ and r does not

appear in P (τ) for any τ ∈ E. We also assume that each τ in E \ {r} is connected to
r; i.e., either τ appears in P (r), or it appears in P (τ ′) for some τ ′ that is connected
to r. In this paper we also use the following shorthand for regular expressions: α+

for (α, α∗) and α? for (ε|α). Finally, notice that mixed content is not allowed in XML
trees; for every τ ∈ E, P (τ) is either S or a regular expression over E.

Example 2.2. Let us consider the DTD D given in section 1 for storing information
about countries and their administrative subdivisions. In our formalism, D can be
represented as (E, A, P, R, r), where E = {db, country , province, capital , city}, A
= {@name, @inProvince}, r = db, and P , R are as follows:

P (db) = country+, R(db) = ∅,
P (country) = (province+, capital+), R(country) = {@name},
P (province) = (capital , city∗), R(province) = {@name},
P (capital) = S, R(capital) = {@inProvince},
P (city) = S, R(city) = ∅.

An XML document is typically modeled as a node-labeled tree. Below we describe
valid XML documents w.r.t. a DTD, along the same lines as XQuery [39], XML
Schema [38], and DOM [34].

Definition 2.3. Let D = (E, A, P, R, r) be a DTD. An XML tree T conforming
to D, written T |= D, is defined to be (V, lab, ele, att, root), where

• V ⊆ Vert is a finite set of nodes;
• lab : V → E; if lab(v) = τ (v ∈ V ), τ is said to be the element type of v;
• ele : V → S ∪ V ∗, where V ∗ is the set of all of the finite sequences of values

from V , such that, for every v ∈ V , if P (lab(v)) = S, then ele(v) = [s], where
s ∈ S; otherwise, ele(v) = [v1, . . . , vn], and the string lab(v1) . . . lab(vn) is in
the regular language defined by P (lab(v));

• att is a partial function from V ×A to S such that, for any v ∈ V and @l ∈ A,
att(v, @l) is defined iff @l ∈ R(lab(v));

• root is the root of T : root ∈ V and lab(root) = r.
The parent-child edge relation on V , {(v1, v2) | v2 occurs in ele(v1)}, is required to
form a rooted tree.

In an XML tree T , for each v ∈ V , there is a unique path of parent-child edges
from the root to v, and each node has at most one incoming edge. The root is a
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province

capital@name

@inProvince "Edmonton" @inProvince "Winnipeg"

capital@name

province

@inProvince

capital

country

db
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v2

v5 v6

v3 v4

"Alberta" "Manitoba" "Ontario"

"Manitoba""Alberta"

"Canada"
@name
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"Manitoba" "Ontario"

@inProvince "Toronto"

@name
"Canada"

"Alberta"
@name

(a)

(b)

Fig. 2.1. An XML document represented as a tree.

unique node labeled with r. If a node x is labeled τ in E, then function ele defines
the children of x and function att defines the attributes of x. The children of x
are ordered, and their labels observe the regular expression P (τ). In contrast, its
attributes are unordered and are identified by their labels (names).

Example 2.4. Figure 2.1(a) shows an XML document storing information about
provinces in Canada and conforming to the DTD shown in Example 2.2. Figure 2.1(b)
shows an XML tree T = (V, lab, ele, att, v0) representing this document. In this tree,
V = {vi | i ∈ [0, 6]} and lab is defined as:

lab(v0) = db, lab(v2) = province, lab(v4) = capital , lab(v6) = capital .
lab(v1) = country , lab(v3) = province, lab(v5) = capital ,

Furthermore, function ele is defined as:

ele(v0) = [v1], ele(v2) = [v5], ele(v4) = [Toronto], ele(v6) = [Winnipeg].
ele(v1) = [v2, v3, v4], ele(v3) = [v6], ele(v5) = [Edmonton],

Finally, function att is defined as:

att(v1,@name) = Canada, att(v4,@inProvince) = Ontario,
att(v2,@name) = Alberta, att(v5,@inProvince) = Alberta,
att(v3,@name) = Manitoba, att(v6,@inProvince) = Manitoba.

Our model is simpler than the models of XQuery and XML Schema, as DTDs
support only one basic type (PCDATA or string) and do not have complex type
constructs. Unlike the data model of XQuery, we do not consider nodes representing
namespaces, processing instructions, and references. These simplifications do not
affect the lower bounds, however.

We also use the following notations. Referring to an XML tree T , if x is a τ -
element in T and @l is an attribute in R(τ), then x.@l denotes the @l-attribute value
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of x, i.e., x.@l = att(x,@l). If X is a list [@l1, . . . ,@ln] of attributes in R(τ), then
x[X] = [x.@l1, . . . , x.@ln]. For any element type τ ∈ E, ext(τ) denotes the set of all
of the τ -elements in T . For any @l ∈ R(τ), values(τ.@l) denotes {x.@l | x ∈ ext(τ)},
the set of all of the @l-attribute values of τ -nodes. We write |S| for the cardinality
of a set S. Given a DTD D and a set Σ of constraints, we also use |D| and |Σ| to
denote their sizes, respectively.

Given a DTD D = (E, A, P, R, r) and element types τ, τ ′ ∈ E, a string τ1.τ2. . . . .τn
over E is a path in D from τ to τ ′ if τ1 = τ , τn = τ ′, and for each i ∈ [2, n], τi
is a symbol in the alphabet of P (τi−1). Moreover, paths(D) = {p | there is τ ∈
E such that p is a path in D from r to τ}. We say that a DTD is nonrecursive if
paths(D) is finite and recursive otherwise. We also say that D is a no-star DTD if
the Kleene star does not occur in any regular expression P (τ) (note that this is a
stronger restriction than being ∗-free: a regular expression without the Kleene star
yields a finite language, while the language of a ∗-free regular expression may still be
infinite as it allows boolean operators including complement).

2.2. Keys and foreign keys. We consider two forms of constraints for XML:
absolute constraints that hold on the entire document, denoted by AC, and relative
constraints that hold on certain subdocuments, denoted by RC. Below we define
absolute keys and foreign keys, and we shall define relative constraints in section 4.
The constraints given in section 1 are instances of absolute constraints and relative
constraints.

Regular expression constraints. To capture the hierarchical nature of XML
data, absolute constraints, in their general form, are defined on a collection of elements
identified by a regular path expression. It is common to find path expressions in
specification and query languages for XML (e.g., XML Schema [38], XQuery [39], and
XSL [40]). We define a regular (path) expression over a set of element types E as
follows:

β ::= ε | τ | β.β | β ∪ β | β∗,

where ε denotes the empty word, τ is an element type in E, and “.”, “∪”, and “∗”
denote concatenation, union, and Kleene closure, respectively. A regular expression
defines a language over the alphabet E, which will be denoted by β as well. Given
a DTD D = (E, A, P, R, r) and a regular expression β over E, we say that β is a
regular (path) expression over D if β is of the form r.β′, where β′ does not include r.
In this section, we use “ ” as shorthand for E \ {r}.

Recall that a path in a DTD is a list of E symbols, that is, a string in E∗. Given
an XML tree T = (V, lab, ele, att, root), a pair of nodes x, y in T , with y a descendant
of x, and a path w = τ1. . . . .τn over E, we say that w is a path from x to y if there
exists a sequence of nodes v1, . . ., vn in T such that (1) v1 = x and vn = y, (2) vi+1 is
a child of vi in T , for every i ∈ [1, n−1], and (3) lab(vi) = τi, for every i ∈ [1, n]. Any
pair of nodes x, y in an XML tree T with y a descendant of x uniquely determines the
path, denoted by ρ(x, y), from x to y. We say that y is reachable from x by following
a regular expression β over D, denoted by T |= β(x, y), iff ρ(x, y) ∈ β. For any fixed
T , let nodes(β) stand for the set of nodes reachable from the root by following the
regular expression β: nodes(β) = {y | T |= β(root, y)}. Note that, for any element
type τ ∈ E \ {r}, nodes(r. ∗.τ) = ext(τ).

We now define unary XML keys and foreign keys with regular path expressions.
Let DTD D = (E, A, P, R, r).

• A key over D is an expression ϕ of the form β.τ [X] → β.τ , where
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– τ ∈ E;
– X is a nonempty set of attributes in R(τ); and
– β is a regular expression over D.

For any XML tree T that conforms to D, the tree T satisfies ϕ, denoted by
T |= ϕ, if

∀x, y ∈ nodes(β.τ), x[X] = y[X] → x = y.

• A foreign key over D is an expression ϕ of the form β1.τ1[X] ⊆FK β2.τ2[Y ],
where

– τi ∈ E for i = 1, 2;
– βi is a regular expression over D, for i = 1, 2; and
– X,Y are nonempty lists of attributes in R(τ1), R(τ2) of the same length.

Here T |= ϕ if T |= β2.τ2[Y ] → β2.τ2, and

∀x ∈ nodes(β1.τ1) ∃ y ∈ nodes(β2.τ2)
(
x[X] = y[Y ]

)
.

We use two notions of equality to define keys: value equality is assumed when com-
paring attributes, and node identity is used when comparing elements. We shall use
the same symbol “=” for both, as it will never lead to ambiguity.

The above constraints are generally referred to as multiattribute regular expression
constraints as they may be defined with multiple attributes. A regular expression key
(foreign key) is said to be unary if it is defined in terms of a single attribute; that is,
|X| = 1 (|X| = |Y | = 1) in the above definition. In that case, we write β.τ.@l → β.τ
for regular expression unary keys and β1.τ1.@l1 ⊆FK β2.τ2.@l2 for regular expression
unary foreign keys.

From [16], we immediately obtain that the consistency problem for regular ex-
pression constraints is undecidable. Thus, in this paper we study only the consistency
problem for unary constraints defined with regular expressions. We denote this class
of constraints by ACreg

K ,FK , where subscripts K and FK stand for keys and foreign
keys, respectively. For example, the constraints over the school DTD that we have
seen in section 1 are instances of ACreg

K ,FK .
Constraints associated with element types. A class of absolute keys and

foreign keys, denoted by AC∗,∗
K ,FK (we shall explain the notation shortly), has been

studied in [16]. It is a special case of regular-expression constraints and is defined for
element types as follows. An AC∗,∗

K ,FK -constraint ϕ over a DTD D = (E, A, P, R, r)
has one of the following forms:

• Key. τ [X] → τ , where τ ∈ E and X is a nonempty set of attributes in R(τ).
An XML tree T satisfies ϕ, denoted by T |= ϕ, if

∀x, y ∈ ext(τ)
(
x[X] = y[X] → x = y

)
.

• Foreign key. τ1[X] ⊆FK τ2[Y ], where τ1, τ2 ∈ E and X,Y are nonempty lists
of attributes in R(τ1), R(τ2) of the same length. It is satisfied by a tree T if
T |= τ2[Y ] → τ2, and in addition

∀x ∈ ext(τ1) ∃ y ∈ ext(τ2)
(
x[X] = y[Y ]).

That is, τ [X] → τ says that the X-attribute values of a τ -element uniquely identify
the element in ext(τ). Furthermore, τ1[X] ⊆FK τ2[Y ] says that the list of X-attribute
values of every τ1-node in T must match the list of Y -attribute values of some τ2-
node in T and the Y -attribute values of a τ2-element uniquely identify the element in
ext(τ2).
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Table 2.1

Notation summary.

Notation Meaning

AC∗,∗
K ,FK Multiattribute keys and foreign keys

AC∗,1
PK ,FK Multiattribute primary keys, unary foreign keys

ACK ,FK Unary keys and foreign keys

ACPK ,FK Primary unary keys and unary foreign keys

ACreg
K ,FK Regular expression unary keys and foreign keys

Note that an AC∗,∗
K ,FK -constraint can be readily expressed as a regular expression

constraint, by using r. ∗.τ for τ .
As for the case of regular expression constraints, an AC∗,∗

K ,FK -constraint is gen-
erally referred to as a multiattribute constraint as it may be defined with multiple
attributes. An AC∗,∗

K ,FK -constraint is said to be unary if it is defined in terms of a
single attribute; that is, | X |=| Y |= 1 in the above definition. In that case, we
write τ.@l → τ for unary keys and τ1.@l1 ⊆FK τ2.@l2 for unary foreign keys. As in
relational databases, we also consider primary keys: for each element type, at most
one key can be defined.

We shall use the following notations for subclasses of AC∗,∗
K ,FK : subscripts K and

FK denote keys and foreign keys, respectively. When the primary key restriction
is imposed, we use subscript PK instead of K. The superscript “∗” denotes mul-
tiattribute, and “1” means unary. When both superscripts are left out, we mean
that both keys and foreign keys are unary. We shall be dealing with the following
subclasses of AC∗,∗

K ,FK : AC∗,1
K ,FK denotes the class of multiattribute keys and unary

foreign keys; AC∗,1
PK ,FK is the class of primary multiattribute keys and unary foreign

keys; ACK ,FK is the class of unary keys and unary foreign keys; and ACPK ,FK is the
class of primary unary keys and unary foreign keys. We note that, since a key is part
of a foreign key, the restriction of AC∗,∗

K ,FK to unary keys and multiattribute foreign

keys (AC1,∗
K ,FK ) does not make sense.

For easy reference, in Table 2.1 we summarize our notation for absolute con-
straints.

2.3. The consistency problem. We are interested in the consistency or satisfi-
ability problem for XML constraints considered together with DTDs: that is, whether
a given set of constraints and a DTD are satisfiable by an XML tree. Formally, for
a class C of integrity constraints we define the XML specification consistency problem
SAT(C) as follows:

PROBLEM: SAT(C)
INPUT: A DTD D, a finite set Σ of C-constraints.
QUESTION: Is there an XML tree T such that T |= D and T |= Σ?

It is known [16] that SAT(AC∗,∗
K ,FK ) is undecidable, but SAT(ACK ,FK ) and

SAT(ACPK ,FK ) are NP-complete. Nothing was known, however, about SAT(AC∗,1
K ,FK ),

where only keys are allowed to be multiattribute, or about SAT(ACreg
K ,FK ), where reg-

ular expressions are used to define unary keys and foreign keys. These problems will
be studied in section 3.

In what follows, we write T |= (D,Σ) instead of T |= D and T |= Σ.
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3. Absolute integrity constraints. In this section, we establish the decid-
ability and lower bounds for SAT(AC∗,1

PK ,FK ) and SAT(ACreg
K ,FK ) and the consistency

problems for absolute primary multiattribute keys and unary foreign keys and for
regular expression unary keys and unary foreign keys.

3.1. Consistency of multiattribute keys. We know that SAT(ACK ,FK ), the
consistency problem for unary absolute keys and foreign keys, is NP-complete [16].
In contrast, SAT(AC∗,∗

K ,FK ) is undecidable [16]. This leaves a large gap: namely,

SAT(AC∗,1
K ,FK ), where only keys are allowed to be multiattribute.

The reason for the undecidability of SAT(AC∗,∗
K ,FK ) is that the implication problem

for functional and inclusion dependencies can be reduced to it [16]. However, this im-
plication problem is known to be decidable—in fact, in cubic time—for single-attribute
inclusion dependencies [11], thus giving us hope to get decidability for multiattribute
keys and unary foreign keys.

The problem we resolve here is SAT(AC∗,1
PK ,FK ): the consistency problem for

primary multiattribute keys and unary foreign keys. Recall that a set Σ of AC∗,1
K ,FK -

constraints is said to be primary if for each element type τ there is at most one
key in Σ defined for τ -elements (including key dependencies defined by foreign key
constraints). Even dealing with this version of SAT(AC∗,1

K ,FK ) one encounters consid-
erable difficulties: with a rather involved proof, we manage to show that this problem
is equivalent to a certain decidable version of Diophantine equations problem whose
exact complexity has been an open problem for a while [21]:

PROBLEM: PDE (prequadratic Diophantine equations).

INPUT: An integer n×m matrix A, a vector �b ∈ Zn, and a set
E ⊆ {1, . . . ,m}3.

QUESTION: Is there a vector �x ∈ Nm such that A�x ≤ �b and xi ≤ xj · xk for all
(i, j, k) ∈ E?

Note that for E = ∅ this is exactly the integer linear programming problem [27]. Thus,
PDE can be thought of as integer linear programming extended with inequalities of
the form x ≤ y · z among variables. It is therefore NP-hard, and [21] proved an
NEXPTIME upper bound for PDE. The exact complexity of the problem remains
unknown.

Recall that two problems P1 and P2 are polynomially equivalent if there are
PTIME reductions from P1 to P2 and from P2 to P1. We now show the following.

Theorem 3.1. SAT(AC∗,1
PK ,FK ) and PDE are polynomially equivalent.

Proof. The proof consists of two PTIME reductions, one for each direction.
(a) A reduction from SAT(AC∗,1

PK ,FK ) to PDE. We first define a class of simplified
DTDs called narrow DTDs, and we explain how to reduce the consistency problem for
AC∗,1

PK ,FK -constraints over arbitrary DTDs to that over narrow DTDs. Then we show

how to encode the consistency problem for narrow DTDs and AC∗,1
PK ,FK -constraints

by a prequadratic Diophantine system.
We start by explaining the process of narrowing the DTDs. Intuitively, we replace

long “horizontal” regular expressions in P (τ) by shorter ones. Formally, consider a
DTD D = (E, A, P, R, r). D is basically an extended regular grammar (cf. [7, 25]);
for each τ ∈ E, P (τ) is a regular expression α, and, thus, τ → α can be viewed as
the production rule for τ . We rewrite the regular expression by introducing a set N
of new element types (nonterminals) such that the production rules of the new DTD
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have one of the following forms:

τ → τ1, τ2, τ → τ1 | τ2, τ → τ∗1 , τ → τ ′, τ → S, τ → ε,

where τ, τ1, τ2 are element types in E ∪N , τ ′ ∈ E, S is the string type, and ε denotes
the empty word. More specifically, we conduct the following “narrowing” process on
the production rule τ → α:

• If α = (α1, α2), then we introduce two new element types τ1 and τ2 and
replace τ → α with a new rule τ → τ1, τ2. We proceed to process τ1 → α1

and τ2 → α2 in the same way.
• If α = (α1|α2), then we introduce two new element types τ1 and τ2 and

replace τ → α with a new rule τ → τ1 | τ2. We proceed to process τ1 → α1

and τ2 → α2 in the same way.
• If α = α∗

1, then we introduce a new element type τ1 and replace τ → α with
τ → τ∗1 . We proceed to process τ1 → α1 in the same way.

• If α is one of τ ′ ∈ E, S, or ε, then the rule for τ remains unchanged.
We refer to the set of new element types introduced when processing τ → P (τ) as Nτ

and the set of production rules generated/revised as Pτ . Observe that Nτ ∩ E = ∅
for any τ ∈ E. We define a new DTD DN = (EN , A, PN , RN , r), referred to as the
narrowed DTD of D (or just a narrow DTD if D is clear from the context), where

• EN = E ∪ ∪τ∈ENτ , i.e., all element types of E and new element types
introduced in the narrowing process;

• PN = ∪τ∈EPτ , i.e., production rules generated/revised in the narrowing pro-
cess;

• RN (τ) = R(τ) for each τ ∈ E, and RN (τ) = ∅ for each τ ∈ EN \ E.
Note that the root element type r and the set A of attributes remain unchanged.
Moreover, elements of any type in EN \ E do not have any attribute. The only kind
of PN production rules whose right-hand side contains element type E are of the form
τ → τ ′, where τ ′ ∈ E. It is easy to see that DN is computable in polynomial time.

Obviously, any set Σ of AC∗,1
PK ,FK -constraints over D is also a set of AC∗,1

PK ,FK -
constraints over the narrow DTD DN of D. The next lemma establishes the connec-
tion between D and DN , which allows us to consider only narrow DTDs from now
on.

Lemma 3.2. Let D be a DTD, DN the narrowed DTD of D, and Σ a set of
AC∗,1

PK ,FK -constraints over D. Then there exists an XML tree T1 such that T1 |=
(D,Σ) iff there exists an XML tree T2 such that T2 |= (DN ,Σ).

Proof. Given an element type τ and a sequence of attributes @l1, . . . ,@ln ∈ R(τ),
define values(τ [@l1, . . . ,@ln]) as {(x.@l1, . . . , x.@ln) | x ∈ ext(τ)}.

To prove the lemma, it suffices to show the following.
Claim. Given any XML tree T1 |= D one can construct an XML tree T2 by

modifying T1 such that T2 |= DN , and vice versa. Furthermore, for every ele-
ment type τ in D and @l1, . . . ,@ln ∈ R(τ), |ext(τ)| in T2 equals |ext(τ)| in T1,
and values(τ [@l1, . . . ,@ln]) in T2 equals values(τ [@l1, . . . ,@ln]) in T1.

If the claim holds, we can show the lemma as follows. Assume that there exists an
XML tree T1 such that T1 |= D and T1 |= Σ. By the claim, there is T2 such that T2 |=
DN . Suppose, by contradiction, that there is ϕ ∈ Σ such that T2 �|= ϕ. (1) If ϕ is a key
τ [@l1, . . . ,@ln] → τ , then there exist two distinct nodes x, y ∈ ext(τ) in T2 such that
x.@li = y.@li for every i ∈ [1, n]. In other words, |values(τ [@l1, . . . ,@ln])| < |ext(τ)|
in T2. Since T1 |= ϕ, it must be the case that |values(τ [@l1, . . . ,@ln])| = |ext(τ)|
in T1 because the tuple (x.@l1, . . . , x.@ln) of each x ∈ ext(τ) uniquely identifies x
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among ext(τ). This contradicts the claim that |ext(τ)| in T2 equals |ext(τ)| in T1 and
values(τ [@l1, . . . ,@ln]) in T2 equals values(τ [@l1, . . . ,@ln]) in T1. (2) If ϕ is a unary
foreign key τ1.@l1 ⊆FK τ2.@l2, then either T2 �|= τ2.@l2 → τ2 or there is x ∈ ext(τ1)
in T2 such that, for all y ∈ ext(τ2) in T2, x.@l1 �= y.@l2. In the first case, we reach
a contradiction as in (1). In the second case, we have x.@l1 �∈ values(τ2.@l2) in T2.
By the claim, x.@l1 ∈ values(τ1.@l1) in T1. Since T1 |= ϕ, x.@l1 ∈ values(τ2.@l2) in
T1. Again by the claim, we have x.@l1 ∈ values(τ2.@l2) in T2, which contradicts the
assumption. The proof for the other direction is similar.

We next verify the claim. Given an XML tree T1 = (V1, lab1, ele1, att, root) such
that T1 |= D, we construct an XML tree T2 by modifying T1 such that T2 |= DN .
Consider a τ -element v in T1. Let ele1(v) = [v1, . . . , vn] and w = lab1(v1) . . . lab1(vn).
Recall Nτ and Pτ , the set of nonterminals and the set of production rules generated
when narrowing τ → P (τ). Let Qτ be the set of E symbols that appears in Pτ

plus S. We can view G = (Qτ , Nτ ∪ {τ}, Pτ , τ) as an extended context free grammar,
where Qτ is the set of terminals, Nτ ∪ {τ} the set of nonterminals, Pτ the set of
production rules, and τ the start symbol.1 Since T1 |= D, we have w ∈ P (τ). By a
straightforward induction on the structure of PN (τ), it can be verified that w is in
the language defined by G. Thus there is a parse tree T (w) w.r.t. the grammar G for
w, and w is the frontier (the list of leaves from left to right) of T (w). Without loss of
generality, assume that the root of T (w) is v, and the leaves are v1, . . . , vn. Observe
that the internal nodes of T (w) are labeled with element types in Nτ except that the
root v is labeled τ . Intuitively, we construct T2 by replacing each element v in T1

by such a parse tree. More specifically, let T2 = (V2, lab2, ele2, att, root). Here V2

consists of nodes in V1 and the internal nodes introduced in the parse trees. For each
x in V2, let lab2(x) = lab1(x) if x ∈ V1, and otherwise let lab2(x) be the node label of
x in the parse tree where x belongs. Note that nodes in V2 \ V1 are elements of some
type in EN \ E. For every x ∈ V1, let ele2(x) be the list of its children in the parse
tree having x as root. For every x ∈ V2 \ V1, let ele2(x) be the list of its children in
the parse tree of an element in V1 that contains x. Note that att and root remain
unchanged. By the construction of T2 it can be verified that T2 |= DN ; moreover, for
every element type τ in D and @l1, . . . ,@ln ∈ R(τ), |ext(τ)| in T2 equals |ext(τ)| in T1

and values(τ [@l1, . . . ,@ln]) in T2 equals values(τ [@l1, . . . ,@ln]) in T1 because, among
other things, (1) none of the new nodes, i.e., nodes in V2\V1, is labeled with an E-type;
(2) no new attributes are defined; and (3) the attribute function att is unchanged.

Conversely, assume that there is T2 = (V2, lab2, ele2, att, root) such that T2 |=
DN . We construct an XML tree T1 by modifying T2 such that T1 |= D. For every node
v ∈ V2 with lab(v) = τ and τ ∈ EN \E, we substitute v in ele2(v

′) by the children of v,
where v′ is the parent of v. In addition, we remove v from V2, lab2(v) from lab2, and
ele2(v) from ele2. Observe that, by the definition of DN , no attributes are defined for
elements of any type in EN \E. We repeat the process until there is no node labeled
with element type in EN \E. Now let T1 = (V1, lab1, ele1, att, root), where V1, lab1,
and ele1 are V2, lab2, and ele2 at the end of the process, respectively. Notice that att
and root remain unchanged. By the definition of T1 it can be verified that T1 |= D;
and in addition, for every element type τ in D and @l1, . . . ,@ln ∈ R(τ), |ext(τ)| in T2

equals |ext(τ)| in T1 and values(τ [@l1, . . . ,@ln]) in T2 equals values(τ [@l1, . . . ,@ln])
in T1 because, among other things, none of the nodes removed is labeled with a type
of E and the attribute function att is unchanged.

1If τ is in P (τ), i.e., if τ is recursively defined, we need to rename τ in Qτ to ensure that Qτ and
Nτ ∪ {τ} are disjoint. It is straightforward to handle that case.
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By Lemma 3.2, in the rest of this proof we consider only narrow DTDs. Next
we show how to encode AC∗,1

PK ,FK -constraints by a prequadratic Diophantine system.

Let D = (E, A, P, R, r) be a narrow DTD and Σ be a set of AC∗,1
PK ,FK -constraints,

i.e., primary AC∗,1
K ,FK -constraints. We encode Σ with a set CΣ of integer constraints,

referred to as the cardinality constraints determined by Σ. For every ϕ ∈ Σ,
• if ϕ is a key constraint τ [@l1, . . . ,@lk] → τ , then CΣ contains |ext(τ)| ≤

|values(τ.@l1)| · . . . · |values(τ.@lk)|;
• if ϕ is a unary foreign key τ1.@l1 ⊆FK τ2.@l2, then CΣ contains
|values(τ1.@l1)| ≤ |values(τ2.@l2)| and |ext(τ2)| ≤ |values(τ2.@l2)|;

• furthermore, for any τ ∈ E, if R(τ) = ∅, then 0 ≤ |ext(τ)| is in CΣ. Other-
wise, for every @l ∈ R(τ), |values(τ.@l)| ≤ |ext(τ)| and 0 ≤ |values(τ.@l)|
are in CΣ.

Observe that for a unary key τ.@l → τ we have both |values(τ.@l)| ≤ |ext(τ)| and
|ext(τ)| ≤ |values(τ.@l)| in CΣ. Thus CΣ assures |ext(τ)| = |values(τ.@l)|.

We write T |= CΣ if T satisfies all of the constraints of CΣ, and we write T |=
(D,CΣ) if T conforms to a narrow DTD D and satisfies CΣ. Note that CΣ is equivalent
(in fact, can be converted in polynomial time) to a prequadratic Diophantine system
since x ≤ x1 · . . . ·xk can be written as constraints of the form x ≤ y · z by introducing
k− 2 fresh variables; e.g., x ≤ x1 · x2 · x3 · x4 is equivalent to x ≤ x1 · z1, z1 ≤ x2 · z2,
and z2 ≤ x3 · x4 (in the sense that the former is satisfiable iff the latter is). Thus,
without loss of generality, assume that CΣ consists of linear and prequadratic integer
constraints only. It should be noted that CΣ can be computed in time polynomial in
the size of Σ and D. The lemma below shows that CΣ characterizes the consistency
of Σ if keys in Σ are primary.

Lemma 3.3. Let D be a narrow DTD and Σ a set of AC∗,1
PK ,FK -constraints over

D. Then every XML tree conforming to D and satisfying Σ also satisfies CΣ. In
addition, if there exists an XML tree T2 such that T2 |= (D,CΣ), then there exists an
XML tree T1 such that T1 |= (D,Σ).

Proof. It is easy to see that, for every XML tree T1 that satisfies Σ, it must be
the case that T1 |= CΣ.

Conversely, we show that if there exists an XML tree T2 = (V, lab, ele, att2, root)
such that T2 |= (D,CΣ), then we can construct an XML tree T1 =
(V, lab, ele, att1, root) such that T1 |= (D,Σ). We construct T1 from T2 by modifying
the function att2 while leaving V , lab, ele, and root unchanged. More specifically, let
S = {τ.@l | τ ∈ E, @l ∈ R(τ)}. To define the new function, denoted by att1, we
first associate a set of string values with each τ.@l in S. Let N be the maximum
cardinality of values(τ.@l) in T2, i.e., N ≥ |values(τ.@l)| in T2 for all τ.@l ∈ S. Let
VS = {ai | i ∈ [1, N ]} be a set of distinct string values. For each τ.@l ∈ S, let Vτ.@l =
{ai | i ∈ [1, |values(τ.@l)|]}, and for each x ∈ ext(τ), let att1(x,@l) be a string value
in Vτ.@l such that, in T1, values(τ.@l) = Vτ.@l. The value att1(x,@l) can be selected in
such a way that, for each key ϕ = τ [@l1, . . . ,@lk] → τ in Σ, x[@l1, . . . ,@lk] is a distinct
list of string values from Vτ.@l1×· · ·×Vτ.@lk . This is possible because by the definition
of T1, (1) ext(τ) in T1 equals ext(τ) in T2; (2) |values(τ.@l)| in T1 equals |values(τ.@l)|
in T2; (3) T2 |= CΣ and |ext(τ)| ≤ |values(τ.@l1)| · . . . · |values(τ.@lk)| is in CΣ;
and (4) since ϕ is the only key defined for τ -elements, when we populate attributes
@l1, . . . , lk of x, we need only to select the value of att1(x,@li) from Vτ.@li such that
x[@l1, . . . ,@lk] is distinct, without worrying about whether the population may ham-
per “other keys” defined on x (note that, in the absence of the primary key assumption,
the populations of different keys may interact with each other, and, as a result, the
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simple population strategy given above may no longer work; this is why we assume
primary keys). It should be noted that it may be the case that Vτ1.@l1 ⊆ Vτ2.@l2 even if
Σ does not imply τ1.@l1 ⊆FK τ2.@l2. This does not lose generality as we do not intend
to capture negation of foreign keys. We next show that T1 is indeed what we want.

It is easy to verify that T1 |= D given the construction of T1 from T2 and the
assumption that T2 |= D. To show that T1 |= Σ, we consider ϕ ∈ Σ in the fol-
lowing cases. (1) If ϕ is a key τ [@l1, . . . ,@lk] → τ , it is immediate from the def-
inition of T1 that T1 |= ϕ since for any x ∈ ext(τ), x[@l1, . . . ,@lk] is a distinct
list of string values from Vτ.@l1 × · · · × Vτ.@lk . (2) If ϕ is τ1.@l1 ⊆FK τ2.@l2, then
T2 |= |values(τ1.@l1)| ≤ |values(τ2.@l2)| by T2 |= CΣ. By the definition of att1, for
i = 1, 2, Vτi.@li = {ai | i ∈ [1, |values(τi.@li)|]} and in T1, values(τi.@li) = Vτi.@li .
Thus values(τ1.@l1) ⊆ values(τ2.@l2) in T1. Furthermore, given that |ext(τ2)| ≤
|values(τ2.@l2)| and |values(τ2.@l2)| ≤ |ext(τ2)| are both in CΣ, T2 |= CΣ, |ext(τ2)|
in T2 is equal to |ext(τ2)| in T1, and |values(τ2.@l2)| in T2 is equal to |values(τ2.@l2)|
in T1, we conclude that |ext(τ2)| is equal to |values(τ2.@l2)| in T1 and, hence, T1 |=
τ2.@l2 → τ2 since each x ∈ ext(τ2) in T1 has a distinct @l2-attribute value and thus
the value of its @l2-attribute uniquely identifies x among nodes in ext(τ2). Therefore,
T1 |= ϕ and, thus, T1 |= (D,Σ). This concludes the proof of the lemma.

The above lemma takes care of coding the constraints; the next step is to code
DTDs. For that, we use the technique developed in [16]: for each narrow DTD D,
one can compute in polynomial time in the size of D a set ΨD of linear inequalities
on nonnegative integers, referred to as the set of cardinality constraints determined
by D, which includes |ext(τ)| as a variable for each element type τ in D, but it does
not have |values(τ.@l)| as a variable for any attribute @l of τ . More specifically, for
each symbol τ ∈ E ∪ {S}, |ext(τ)| is treated as a distinct variable, which keeps track
of the number of all τ elements in an XML tree T conforming to D. In addition, for
each occurrence of τ in the definition P (τ ′) of some element type τ ′, we also create
distinct variables as follows: if P (τ ′) = τ1 for τ1 ∈ E ∪ {S}, then we create a distinct
variable x1

τ1,τ ′ ; if P (τ ′) = (τ1, τ2) or P (τ ′) = (τ1|τ2), then we create two distinct

variables x1
τ1,τ ′ and x2

τ2,τ ′ . Intuitively, for i ∈ [1, 2], xi
τi,τ ′ keeps track of the number

of τi subelements at position i under all τ ′ elements in T . Let Xτ be the set of all
variables of the form xi

τ,τ ′ . By using these variables, for each τ ∈ E, we define a set
ψτ of linear integer constraints that characterizes P (τ) quantitatively, as follows:

• If P (τ) = τ1 for τ1 ∈ E ∪ {S}, then ψτ includes |ext(τ)| = x1
τ1,τ . Referring to

an XML tree T that conforms to D, this assures that each τ element has a
unique τ1 subelement.

• If P (τ ′) = (τ1, τ2), then ψτ includes |ext(τ)| = x1
τ1,τ and |ext(τ)| = x2

τ2,τ .
These assure that each τ element in T must have a unique τ1 subelement and
a unique τ2 subelement.

• If P (τ ′) = (τ1|τ2), then ψτ includes |ext(τ)| = x1
τ1,τ +x2

τ2,τ . These assure that
each τ element in T must have either a τ1 subelement or a τ2 subelement,
and thus the sum of the numbers of these τ1 and τ2 subelements equals the
number of τ elements in T .

The set ΨD of cardinality constraints determined by DTD D consists of the following:
• |ext(r)| = 1; i.e., there is a unique root in any XML tree valid w.r.t. D;
• constraints of ψτ for each τ ∈ E; these assure that P (τ) is satisfied;
• |ext(τ)| =

∑
xi
τ,τ′∈Xτ

xi
τ,τ ′ for each τ ∈ (E \ {r}) ∪ {S}; this indicates that

the set ext(τ) includes all τ elements no matter where they occur in an XML
tree;
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• x ≥ 0 for any variable x used above; i.e., the number of elements (subele-
ments) is nonnegative.

It has been shown [16] that ΨD has a nonnegative integer solution iff there exists an
XML tree T conforming to D such that the cardinality of ext(τ) in T equals the value
of the variable |ext(τ)| in the solution for each element type τ in D.

We now combine this coding with the coding for AC∗,1
PK ,FK -constraints. Given

a narrow DTD D and a set Σ of AC∗,1
PK ,FK -constraints over D, we define the set of

cardinality constraints determined by D and Σ to be

Ψ(D, Σ) = ΨD ∪ CΣ ∪ {(|ext(τ)| > 0) → (|values(τ.@l)| > 0) | τ ∈ E, @l ∈ R(τ)},

where CΣ is the set of cardinality constraints determined by Σ, ΨD is the set of cardi-
nality constraints determined by D, and constraints (|ext(τ)| > 0) → (|values(τ.@l)| >
0) are to ensure that every τ -element has an @l-attribute (note that |values(τ.@l)| ≤
|ext(τ)| is already in CΣ). Constraints in Ψ(D, Σ) are either linear integer constraints,
or inequalities of the form x ≤ y · z, which come from CΣ, or constraints of the form
x > 0 → y > 0. Note that, if we leave out constraints of the form x > 0 → y > 0,
Ψ(D, Σ) is a prequadratic Diophantine system. Also note that Ψ(D, Σ) can be com-
puted in polynomial time in the size of D and Σ.

We say that Ψ(D, Σ) is consistent iff Ψ(D, Σ) admits a nonnegative integer so-
lution. That is, there is a nonnegative integer assignment to the variables in Ψ(D, Σ)
such that all of the constraints in Ψ(D, Σ) are satisfied.

Lemma 3.4. Let D be a narrow DTD and Σ a set of AC∗,1
PK ,FK -constraints over

D. Then Ψ(D, Σ) is consistent iff there is an XML tree T such that T |= (D,Σ).
Proof. Suppose that there exists an XML tree T such that T |= (D,Σ). Then

there is a nonnegative integer solution to ΨD such that for each element type τ in
D, the value of the variable |ext(τ)| equals the number of τ -elements in T [16]. By
Lemma 3.3 and T |= Σ, we have T |= CΣ. We extend the solution of ΨD to be
one to Ψ(D, Σ) by letting the variable |values(τ.@l)| equal the number of distinct
@l-attribute values of all τ -elements in T , for each element type τ and attribute @l of
τ in D. Since T |= CΣ, this extended assignment satisfies all of the constraints in CΣ.
In addition, if |ext(τ)| > 0, then |values(τ.@l)| > 0 since every τ -element in T has
an @l-attribute. Hence the assignment is indeed a nonnegative solution to Ψ(D, Σ),
and, therefore, Ψ(D, Σ) is consistent.

Conversely, suppose that Ψ(D, Σ) admits a nonnegative integer solution. Then
there exists an XML tree T such that T |= D, and, moreover, for each element type
τ in D, the cardinality of ext(τ) in T equals the value of the variable |ext(τ)| in
the solution [16]. We construct a new tree T ′ from T by modifying the definition
of the function att such that in T ′, for each element type τ and attribute @l of τ ,
the number of distinct @l-attribute values of all τ -elements equals the value of the
variable |values(τ.@l)| in the solution. This is possible since |values(τ.@l)| ≤ |ext(τ)|
and (|ext(τ)| > 0) → (|values(τ.@l)| > 0) are in Ψ(D, Σ). The assignment is also a
solution to CΣ. Thus T ′ |= D and T ′ |= CΣ. Hence by Lemma 3.3, there exists an
XML tree T ′′ such that T ′′ |= (D,Σ). This concludes the proof of the lemma.

We now conclude the proof of reduction from SAT(AC∗,1
PK ,FK ) to PDE. By Lemma

3.2, given an arbitrary DTD D and a set Σ of AC∗,1
PK ,FK -constraints, one can com-

pute a narrow DTD DN such that (D,Σ) is consistent iff (DN ,Σ) is consistent.
By Lemma 3.4, (DN ,Σ) is consistent iff Ψ(DN ,Σ) has a nonnegative integer so-
lution. Such a solution requires |values(τ.@l)| > 0 if |ext(τ)| > 0. To ensure
this, let Φ(DN ,Σ) be a system that includes all linear integer constraints and pre-
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quadratic constraints in Ψ(DN ,Σ) and, moreover, |ext(τ)| ≤ |values(τ.@l)| · |ext(τ)|
for each (|ext(τ)| > 0) → (|values(τ.@l)| > 0) in Ψ(DN ,Σ). Now Φ(DN ,Σ) is
a prequadratic Diophantine system. In addition, Ψ(DN ,Σ) has a nonnegative in-
teger solution iff Φ(DN ,Σ) has a nonnegative integer solution. To see this, ob-
serve that, for any nonnegative integer assignment to |ext(τ)| and |values(τ.@l)|,
(|ext(τ)| > 0) → (|values(τ.@l)| > 0) iff |ext(τ)| ≤ |values(τ.@l)| · |ext(τ)|. Thus,
(D,Σ) is consistent iff the prequadratic Diophantine system Φ(DN ,Σ) has a nonneg-
ative integer solution. Note that DN can be computed in polynomial time in the size
of D, Ψ(DN ,Σ) can be computed in polynomial time in the size of DN and Σ, and
Φ(DN ,Σ) can be computed in polynomial time in the size of Ψ(DN ,Σ). Hence, it
takes polynomial time to compute Φ(DN ,Σ) from D and Σ. Therefore, there is a
PTIME reduction from SAT(AC∗,1

PK ,FK ) to PDE.

(b) A reduction from PDE to SAT(AC∗,1
PK ,FK ). We now move to the other di-

rection. Given an instance of PDE, i.e., a system S consisting of a set SL of linear
equations/inequalities on integers and a set SP of prequadratic constraints of the
form x ≤ y · z, we define a DTD D and a set Σ of AC∗,1

PK ,FK -constraints such that S
has a nonnegative solution iff there is an XML tree T satisfying Σ and conforming
to D. We use X = {xi | i ∈ [1, n]} to denote the set of all of the variables in S.
Assume that SL = {ej | j ∈ [1,m]} and ej is of the form: aj1 x1 + · · · + ajn xn + cj ≤
bj1 x1 + · · · + bjn xn + dj , where aji (i ∈ [1, n]), bji (i ∈ [1, n]), cj , and dj are nonneg-
ative integers.2 Also, assume that SP = {pj | j ∈ [1, l]}, where pj is a prequadratic
equation of the form x ≤ y · z. Then we define DTD D = (E, A, P, R, r) as follows:

(1) For each variable xi, we define an element type Xi. In addition, for each
ps ∈ SP of the form xi ≤ xj · xk, we define an element type Us

i . For each linear

constraint ej , we define distinct element types Ej , A
j
1, . . ., A

j
n, Cj , Fj , B

j
1, . . ., B

j
n,

Dj . We use r to denote the root element type. That is,

E = {r} ∪ {Xi | i ∈ [1, n]} ∪
{Ej , A

j
1, . . . , A

j
n, Cj , Fj , B

j
1, . . . , B

j
n, Dj | j ∈ [1,m]}∪{Us

i | ps = xi ≤ xj ·xk ∈ SP }.

Intuitively, referring to an XML tree conforming to D, we use |ext(Xi)| to code the
value of the variable xi in S. For every equation ej , we use |ext(Aj

1)|, . . ., |ext(Aj
n)|,

|ext(Cj)| to code the values of constants aj1, . . ., a
j
n, cj ; |ext(Ej)| to code the value of

the expression aj1x1 + · · ·+ ajnxn + cj ; |ext(Bj
1)|, . . ., |ext(Bj

n)|, |ext(Dj)| to code the

values of constants bj1, . . ., b
j
n, dj ; and |ext(Fj)| to code the value of the expression

bj1x1 + · · ·+bjnxn+dj . Furthermore, for each prequadratic equation ps = xi ≤ xj ·xk

in SP , we create a distinct copy Us
i of Xi. The reason to use Us

i instead of Xi is to
ensure that the set Σ of AC∗,1

K ,FK -constraints defined below is primary.
(2) A = {@c, @d, @e}. Intuitively, we shall define @e as a key and use @c and

@d to code prequadratic constraints of the form x ≤ y · z.
(3) We define production rules as follows. For the root of the DTD:

P (r) = (X1, U
s1,1
1 , . . . , U

s1,j1
1 )∗, . . . , (Xn, U

sn,1
n , . . . , U

sn,jn
n )∗,

C1, . . . , C1︸ ︷︷ ︸
c1 times

, . . . , Cm, . . . , Cm︸ ︷︷ ︸
cm times

, D1, . . . , D1︸ ︷︷ ︸
d1 times

, . . . , Dm, . . . , Dm︸ ︷︷ ︸
dm times

,

where {si,1, . . ., si,ji} (i ∈ [1, n]) is the set of indexes {s | ps = xi ≤ xj · xk ∈ SP }.

2For example, we represent the equation −3x + 5y ≤ −7 as 0x + 5y + 7 ≤ 3x + 0y + 0.
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Fig. 3.1. Trees used in the proof of Theorem 3.1.

Furthermore, for every i ∈ [1, n] and every j ∈ [1,m]:

P (Aj
i ) = Ej ,

P (Cj) = Ej ,

P (Bj
i ) = Fj ,

P (Dj) = Fj ,
P (Xi) = A1

i , . . . , A
1
i︸ ︷︷ ︸

a1
i times

, . . . , Am
i , . . . , Am

i︸ ︷︷ ︸
am
i times

, B1
i , . . . , B

1
i︸ ︷︷ ︸

b1i times

, . . . , Bm
i , . . . , Bm

i︸ ︷︷ ︸
bmi times

.

Finally, for every i ∈ [1, n] and every s ∈ [1, l] such that ps = xi ≤ xj · xk ∈ SP ,
P (Us

i ) = ε.
(4) We define the attribute function R as follows: for every j ∈ [1,m], R(Ej) =

R(Fj) = {@e}. In addition, for every i ∈ [1, n], R(Xi) = {@e}, and for every s ∈ [1, l]
such that ps = xi ≤ xj · xk ∈ SP , R(Us

i ) = {@c,@d}. For all other element types τ ,
let R(τ) be empty.

For example, Figure 3.1(a) shows an XML tree conforming to the DTD con-
structed from the set of equations SL = {2x1 ≤ x2 + 4} and SP = {x1 ≤ x2 · x3}.
We note that this tree codes the solution x1 = 1, x2 = 2, x3 = 1 for this system of
equations.

Given DTD D, we define a set Σ of AC∗,1
PK ,FK -constraints over D. For each

j ∈ [1,m], Σ includes keys Ej .@e → Ej and Fj .@e → Fj and foreign key Ej .@e ⊆FK

Fj .@e. Furthermore, for every i, j, k ∈ [1, n] and s ∈ [1, l] such that ps = xi ≤ xj ·xk ∈
SP , Σ includes the following constraints:

Us
i [@c,@d] → Us

i , Us
i .@c ⊆FK Xj .@e, Us

i .@d ⊆FK Xk.@e.
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Clearly, the set Σ is primary; i.e., for any element type τ there is at most one key
defined. In fact, we use copies Us

i of Xi just to ensure that Σ is primary.
We next show that the encoding is indeed a reduction from PDE to SAT(AC∗,1

PK ,FK ).
Suppose that S has a nonnegative solution. Then we construct an XML tree T con-
forming to D as shown in Figure 3.1(a). That is, for each i ∈ [1, n] we let |ext(Xi)|
be the value of the variable xi in the solution. We note that, by the definition of D,
this implies that, for every s ∈ [1, l] such that ps = xi ≤ xj · xk ∈ SP , |ext(Us

i )| is
also equal to the value of xi in the solution. For every i ∈ [1, n] and every Xi-element
x in T , we let x.@e be a distinct value such that, in T , |values(Xi.@e)| = |ext(Xi)|.
For every j ∈ [1,m] and every Ej-element x in T , we let x.@e be a distinct value
such that, in T , |values(Ej .@e)| = |ext(Ej)|. Likewise, we assign values to the @e-
attribute of the nodes in ext(Fj) in such a way that |values(Fj .@e)| = |ext(Fj)| in T .
Finally, for every i, j, k ∈ [1, n] and s ∈ [1, l] such that ps = xi ≤ xj · xk ∈ SP , and for
every node x in T of type Us

i , we let x[@c,@d] be a distinct list of string values from
values(Xj .@e) × values(Xk.@e). This is possible since xi ≤ xj · xk ∈ SP and by the
definition of T , |ext(Us

i )| = |ext(Xi)| = xi, |values(Xj .@e)| = |ext(Xj)| = xj , and
|values(Xk.@e)| = |ext(Xk)| = xk. Since T codes a solution of S, it is straightforward
to prove that T |= CΣ, the set of cardinality constraints determined by Σ. Thus, by
Lemma 3.3 we conclude that there exists an XML tree T ′ such that T ′ |= (D,Σ), and,
hence, (D,Σ) is consistent. Conversely, suppose that there exists an XML tree T such
that T |= (D,Σ). We construct a solution of S by letting variable xi equal |ext(Xi)| in
T . By the definitions of D and Σ, it is easy to verify that this is indeed a nonnegative
integer solution for S. In particular, each ps = xi ≤ xj · xk in SP holds because
T |= (D,Σ), and, thus, |ext(Xi)| = |ext(Us

i )| ≤ |values(Us
i .@c)| · |values(Us

i .@d)| ≤
|values(Xj .@e)| · |values(Xk.@e)| ≤ |ext(Xj)| · |ext(Xk)|.

We observe that the previous reduction is not polynomial since constants aji , b
j
i

(i ∈ [1, n], j ∈ [1,m]) and cj , dj (j ∈ [1,m]) are coded in unary. To overcome this
problem, next we show how to code in a DTD the binary representation of a number.
We introduce this coding separately to simplify the presentation of this proof.

Assume that a =
∑k

i=0 ai · 2i, where each ai (i ∈ [0, k − 1]) is either 0 or 1 and
ak = 1; that is, the binary representation of a is akak−1 . . . a1a0. To code a in a DTD
we include element types A, Y0, . . . , Yk, and we define P on these elements as follows:

P (Yi) =

{
ε i = 0,

Yi−1, Yi−1 otherwise,

and P (A) = Yi1 , . . . , Yil , where i1 > · · · > il ≥ 0 and {i1, . . . , il} is the set of indexes
{j ∈ [0, k] | aj = 1}. We note that the size of this set of rules is polynomial in the
size of a. Furthermore, if an XML tree T conforms to this DTD, then |ext(Y0)| = a
in T . For example, if a = 5, then P (A) = Y2, Y0, P (Y2) = Y1, Y1, P (Y1) = Y0, Y0,
and P (Y0) = ε, and an XML tree conforming to these rules is of the form shown in
Figure 3.1(b).

Thus, by using this coding in our original reduction of PDE to SAT(AC∗,1
PK ,FK ),

we can show that there is a PTIME reduction from PDE to SAT(AC∗,1
PK ,FK ). This

completes the proof of Theorem 3.1.
It is known that the linear integer programming problem is NP-hard and PDE is

in NEXPTIME. Thus from Theorem 3.1 follows immediately the corollary below.
Corollary 3.5. SAT(AC∗,1

PK ,FK ) is NP-hard and can be solved in NEXPTIME.

Obviously we cannot obtain the exact complexity of SAT(AC∗,1
PK ,FK ) without re-

solving the corresponding question for PDE, which appears to be quite hard [21]. The
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result of Theorem 3.1 can be generalized to disjoint AC∗,1
K ,FK -constraints: that is, a

set Σ of AC∗,1
K ,FK -constraints in which, for every element type τ and every two distinct

keys τ [X] → τ and τ [Y ] → τ in Σ (including key dependencies defined by foreign key
constraints), X ∩ Y = ∅. The proof of Theorem 3.1 applies almost verbatim to show
the following.

Corollary 3.6. The restriction of SAT(AC∗,1
K ,FK ) to disjoint constraints is poly-

nomially equivalent to PDE, and, thus, it is NP-hard and can be solved in NEXPTIME.

3.2. Consistency of regular expression constraints. Specifications of
AC∗,∗

K ,FK -constraints are associated with element types. We next consider ACreg
K ,FK ,

the class of unary keys and foreign keys defined in terms of regular path expressions.
For SAT(ACreg

K ,FK ), we are able to establish both an upper and a lower bound. The
lower bound already indicates that the problem is perhaps infeasible in practice, even
for very simple DTDs. Finding the precise complexity of the problem remains open
and does not appear to be easy. In fact, even the current proof of the upper bound
is quite involved and relies on combining the techniques from [16] for coding DTDs
and constraints with integer linear inequalities and from [1] for reasoning about con-
straints given by regular expressions by using the product automaton for all of the
expressions involved in the constraints.

Theorem 3.7.

(a) SAT(ACreg
K ,FK ) can be solved in 2-NEXPTIME.

(b) SAT(ACreg
K ,FK ) is PSPACE-hard, even for nonrecursive no-star DTDs.

Proof. We reduce SAT(ACreg
K ,FK ) to the existence of solution of an (almost) in-

stance of linear integer programming, which happens to be of double-exponential
size; hence the 2-NEXPTIME bound. For the lower bound, we encode the quantified
boolean formula problem (QBF) as an instance of SAT(ACreg

K ,FK ).
Proof of (a). The proof is a bit long, so we first give a rough outline. The idea is

similar to the proof of the NP membership for SAT(ACK ,FK ) [16]: we code both the
DTD and the constraints with linear inequalities over integers. However, compared to
the proof of [16], the current proof is considerably harder due to the following. First,
regular expressions in DTDs (“horizontal” regular expressions) interact in a certain
way with regular expressions in integrity constraints (those correspond to “vertical”
paths through the trees). To eliminate this interaction, we first show how to reduce the
problem to that over narrow DTDs, in which no wide horizontal regular expressions
are allowed. The next problem is that regular expressions in constraints can interact
with each other. Thus, to model them with linear inequalities, we extend the approach
of [16] by taking into account all possible boolean combinations of regular languages
given by expressions used in constraints. The last problem is coding the DTDs in
such a way that variables corresponding to each node have the information about the
path leading to the node and its relationship with the regular expressions used in
constraints. For that, we adopt the technique of [1], and tag all of the variables in
the coding of DTDs with states of a certain automaton (the product automaton for
all of the automata corresponding to the regular expressions used in constraints).

Now it is time to fill in all of the details. First, we need some additional notation.
For every regular expression β and every attribute @l, we write values(β.@l) to
denote the set {y.@l | y ∈ nodes(β) and y.@l is defined}. Observe that, for any
τ ∈ E \ {r} and @l ∈ R(τ), values(r. ∗.τ.@l) corresponds to our original definition of
values(τ.@l).

We say that a DTD D is one-attribute if D contains only one attribute and
no element type τ such that P (τ) = S. We start by showing that SAT(ACreg

K ,FK )
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can be reduced to the consistency problem for regular expression constraints over
one-attribute DTDs. Let D = (E, A, P , R, r) be a DTD and Σ a set of ACreg

K ,FK -
constraints over D. First, define DTD DU = (EU , AU , PU , RU , r) as follows. For
every τ ∈ E and @l ∈ R(τ), assume that τ@l is a fresh element type symbol. Then
define EU as E ∪ {τ@l | τ ∈ E and @l ∈ R(τ)} and AU = {@e}, where @e is a fresh
attribute symbol. Furthermore, define functions PU and RU as follows:

• For every τ ∈ E such that P (τ) = S, if R(τ) = {@l1, . . . ,@ln}, where n ≥ 0,
then PU (τ) = τ@l1 , . . . , τ@ln and RU (τ) = ∅.

• For every τ ∈ E such that P (τ) is a regular expression over E, if R(τ) =
{@l1, . . . ,@ln}, where n ≥ 0, then PU (τ) = P (τ), τ@l1 , . . . , τ@ln and RU (τ) =
∅.

• For every τ ∈ E and @l ∈ R(τ), PU (τ@l) = ε and RU (τ@l) = {@e}.
We note that if P (τ) = S and R(τ) = ∅, then PU (τ) = ε.

Second, define the set ΣU of ACreg
K ,FK -constraints over DU as follows. For every key

constraint β.τ.@l → β.τ in Σ, we include β.τ.τ@l.@e → β.τ.τ@l in ΣU , and, for every
foreign key constraint β.τ.@l ⊆FK β′.τ ′.@l′ in Σ, we add β.τ.τ@l.@e ⊆FK β′.τ ′.τ ′@l′ .@e
to ΣU .

Lemma 3.8. Let D be a DTD, Σ be a set of ACreg
K ,FK -constraints over D, and

DU , ΣU be as defined above. Then there exists an XML tree T1 such that T1 |= (D,Σ)
iff there exists an XML tree T2 such that T2 |= (DU ,ΣU ).

Proof. (⇒) Let T1 = (V1, lab1, ele1, att1, root) be an XML tree such that
T1 |= (D,Σ). We define an XML tree T2 from T1 such that T2 |= (DU ,ΣU ). More
specifically, T2 = (V2, lab2, ele2, att2, root), where V2, lab2, ele2, and att2 are defined
as follows. Let v be a node in T1 such that lab1(v) = τ ∈ E and R(τ) = {@l1, . . . ,@lk}.
Then V2 contains node v and fresh nodes v@l1 , . . ., v@lk such that lab2(v) = τ and
lab2(v@li) = τ@li , for every i ∈ [1, k]. Furthermore, if ele1(v) = [s], where s ∈ S, then
ele2(v) = [v@l1 , . . . , v@lk ]. Otherwise, ele1(v) = [v1, . . . , vn], where n ≥ 0 and each vi
is an element node, and ele2(v) = [v1, . . . , vn, v@l1 , . . . , v@lk ]. Finally, att2(v,@e) is
not defined and att2(v@li ,@e) = att1(v,@li) for every i ∈ [1, k]. Next we show that
T2 |= (DU ,ΣU ).

By the definition of DU and given that T1 |= D, it is easy to see that T2 |= DU .
Assume that T2 �|= ΣU . Then there exist ϕ ∈ ΣU such that T2 �|= ϕ. (1) If ϕ
is a key β.τ.τ@l.@e → β.τ.τ@l, then there exist distinct v1, v2 ∈ nodes(β.τ.τ@l)
in T2 such that att2(v1,@e) = att2(v2,@e). Let u1 and u2 be the parents of v1

and v2 in T2, respectively. By the definition of DU and given that v1 �= v2, we
have u1 �= u2. Thus, by the definition of T2, u1 and u2 are nodes in T1 such
that u1, u2 ∈ nodes(β.τ) and att1(u1,@l) = att1(u2,@l) = att2(v1,@e). Therefore,
T1 �|= β.τ.@l → β.τ , which contradicts the assumption that T1 |= Σ. (2) If ϕ is a
foreign key β.τ.τ@l.@e ⊆FK β′.τ ′.τ ′@l′ .@e, then either T2 �|= β′.τ ′.τ ′@l′ .@e → β′.τ ′.τ ′@l′

or there exists v ∈ nodes(β.τ.τ@l) such that att2(v,@e) �∈ values(β′.τ ′.τ ′@l′ .@e) in
T2. In the former case, we reach a contradiction as in (1). In the latter case, as-
sume that u is the parent of v in T2. By the definition of T2, we have that u is
a node in T1 such that u ∈ nodes(β.τ) and att1(u,@l) = att2(v,@e). Thus, given
that values(β′.τ ′.τ ′@l′ .@e) in T2 is equal to values(β′.τ ′.@l′) in T1, we conclude that
att1(u,@l) �∈ values(β′.τ ′.@l′) in T1. Therefore, T1 �|= β.τ.@l ⊆FK β′.τ ′.@l′, which
contradicts the assumption that T1 |= Σ.

(⇐) Let T2 = (V2, lab2, ele2, att2, root) be an XML tree such that T2 |= (DU ,ΣU ).
We define an XML tree T1 from T2 such that T1 |= (D,Σ). More specifically,
T1 = (V1, lab1, ele1, att1, root), where V1, lab1, ele1, and att1 are defined as follows.
Let v be a node in T2 such that lab2(v) = τ , τ ∈ E, and R(τ) = {@l1, . . . ,@lk}.
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Then V1 also contains node v with lab1(v) = τ . Furthermore, if P (τ) = S, then
ele2(v) = [v@l1 , . . . , v@lk ], where lab(v@lj ) = τ@lj (j ∈ [1, k]), and we define ele1(v)
as [s], where s is an arbitrary string in S , and we define att1(v,@li) as att2(v@li ,@e)
for every i ∈ [1, k]. Otherwise, P (τ) is a regular expression over E and ele2(v) =
[v1, . . . , vn, v@l1 , . . . , v@lk ], where lab(vi) ∈ E (i ∈ [1, n]) and lab(v@lj ) = τ@lj (j ∈
[1, k]), and we define ele1(v) as [v1, . . . , vn] and att1(v,@li) as att2(v@li ,@e) for every
i ∈ [1, k]. Next we show that T1 |= (D,Σ).

By the definition of DU and given that T2 |= DU , it is easy to see that T1 |= D.
Assume that T1 �|= Σ. Then there exists ϕ ∈ Σ such that T1 �|= ϕ. (1) If ϕ is
a key β.τ.@l → β.τ , then there exist distinct u1, u2 ∈ nodes(β.τ) in T1 such that
att1(u1,@l) = att1(u2,@l). By the definition of T1, u1 and u2 are also in nodes(β.τ)
in T2. Let v1 and v2 be the children of u1 and u2 in T2 of type τ@l, respectively. Given
that u1 �= u2, we have v1 �= v2. Thus, by the definition of T1, v1 and v2 are nodes in
T2 such that v1, v2 ∈ nodes(β.τ.τ@l) and att2(v1,@e) = att2(v2,@e) = att1(u1,@l).
Therefore, T2 �|= β.τ.τ@l.@e → β.τ.τ@l, which contradicts the assumption that T2 |=
ΣU . (2) If ϕ is a foreign key β.τ.@l ⊆FK β′.τ ′.@l′, then either T1 �|= β′.τ ′.@l′ → β′.τ ′

or there exists u ∈ nodes(β.τ) such that att1(u,@l) �∈ values(β′.τ ′.@l′) in T1. In
the former case, we reach a contradiction as in (1). In the latter case, assume that
v is the child of u in T2 of type τ@l (u is a node of T2 by the definition of T1). By
the definition of T1, we have v ∈ nodes(β.τ.τ@l) and att2(v,@e) = att1(u,@l). Thus,
given that values(β′.τ ′.τ ′@l′ .@e) in T2 is equal to values(β′.τ ′.@l′) in T1, we conclude
that att2(v,@e) �∈ values(β′.τ ′.τ ′@l′ .@e) in T2. Therefore, T2 �|= β.τ.τ@l.@e ⊆FK

β′.τ ′.τ ′@l′ .@e, which contradicts the assumption that T2 |= ΣU . This concludes the
proof of the lemma.

By Lemma 3.8, from now on we consider only one-attribute DTDs. Let D = (E,
{@l}, P , R, r) be a one-attribute DTD and DN = (EN , {@l}, PN , RN , r) be the
narrow DTD of D (defined in the proof of Theorem 3.1). Observe that DN is also one-
attribute. Furthermore, observe that an XML tree T valid w.r.t. D may not conform
to DN and vice versa. In addition, an ACreg

K ,FK -constraint ϕ over D may be satisfied
by T , but it may not be satisfied by any XML tree conforming to DN . To explore
the connection between XML trees conforming to D and those conforming to DN ,
we replace ACreg

K ,FK -constraints over D by new ACreg
K ,FK -constraints over DN . More

precisely, given a set Σ of ACreg
K ,FK -constraints over D, we define a set ΣN of ACreg

K ,FK -
constraints over DN , referred to as the narrowed set of constraints of Σ, as follows.
Let f be a substitution for the element types in E defined as f(τ) = τ.(EN \E)∗ for
every τ ∈ E. Then for every key constraint β.τ.@l → β.τ in Σ, f(β).τ.@l → f(β).τ is
in ΣN , and, for every foreign key constraint β1.τ1.@l ⊆FK β2.τ2.@l in Σ (recall that
@l is the only attribute of D), f(β1).τ1.@l ⊆FK f(β2).τ2.@l is in ΣN .

We are now ready to establish the connection between D and DN , which allows
us to consider only narrow DTDs from now on.

Lemma 3.9. Let D be a one-attribute DTD, DN the narrowed DTD of D, Σ
a set of ACreg

K ,FK -constraints over D, and ΣN the narrowed set of constraints of Σ.
Then there exists an XML tree T1 such that T1 |= (D,Σ) iff there exists an XML tree
T2 such that T2 |= (DN ,ΣN ).

Proof. It suffices to show the following.
Claim. Given any XML tree T1 |= D, one can construct an XML tree T2 by

modifying T1 such that T2 |= DN , and vice versa. Furthermore, for any regular
expression β.τ over D and @l ∈ R(τ), |nodes(f(β).τ)| in T2 equals |nodes(β.τ)| in T1,
and values(f(β).τ.@l) in T2 equals values(β.τ.@l) in T1, where f is the substitution
defined above.
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If the claim holds, we can show the lemma as follows. Assume that there exists
an XML tree T1 such that T1 |= (D,Σ). By the claim, there is T2 such that T2 |= DN .
Suppose, by contradiction, that there is ϕ ∈ ΣN such that T2 �|= ϕ. (1) If ϕ is a
key f(β).τ.@l → f(β).τ , then there exist two distinct nodes x, y ∈ nodes(f(β).τ) in
T2 such that x.@l = y.@l. In other words, |values(f(β).τ.@l)| < |nodes(f(β).τ)|
in T2. Since T1 |= ϕ, it must be the case that |values(β.τ.@l)| = |nodes(β.τ)|
in T1 because the value x.@l of each x ∈ nodes(β.τ) uniquely identifies x among
nodes(β.τ). This contradicts the claim that |nodes(f(β).τ)| in T2 equals |nodes(β.τ)|
in T1 and values(f(β).τ.@l) in T2 equals values(β.τ.@l) in T1. (2) If ϕ is a foreign
key f(β1).τ1.@l ⊆FK f(β2).τ2.@l, then either T2 �|= f(β2).τ2.@l → f(β2).τ2 or there
is x ∈ nodes(f(β1).τ1) such that, for all y ∈ nodes(f(β2).τ2) in T2, x.@l �= y.@l.
In the first case, we reach a contradiction as in (1). In the second case, we have
x.@l �∈ values(f(β2).τ2.@l) in T2. By the claim, x.@l ∈ values(β1.τ1.@l) in T1.
Since T1 |= ϕ, x.@l ∈ values(β2.τ2.@l) in T1. Again by the claim, we have x.@l ∈
values(f(β2).τ2.@l) in T2, which contradicts the assumption. The proof for the other
direction is similar.

We next verify the claim. Given an XML tree T1 = (V1, lab1, ele1, att, root) such
that T1 |= D, we construct an XML tree T2 by modifying T1 such that T2 |= DN .
Consider a τ -element v in T1. Let ele1(v) = [v1, . . . , vn] and w = lab1(v1) . . . lab1(vn).
Recall Nτ and Pτ , the set of nonterminals and the set of production rules generated
when narrowing τ → P (τ) (see proof of Theorem 3.1), respectively. Let Qτ be the
set of E symbols that appears in Pτ . We can view G = (Qτ , Nτ ∪ {τ}, Pτ , τ) as an
extended context free grammar, where Qτ is the set of terminals, Nτ ∪ {τ} the set of
nonterminals, Pτ the set of production rules, and τ the start symbol.3 Since T1 |= D,
we have w ∈ P (τ). By a straightforward induction on the structure of PN (τ) it can
be verified that w is in the language defined by G. Thus there is a parse tree T (w)
w.r.t. the grammar G for w, and w is the frontier (the list of leaves from left to
right) of T (w). Without loss of generality, assume that the root of T (w) is v and
the leaves are v1, . . . , vn. Observe that the internal nodes of T (w) are labeled with
element types in Nτ except that the root v is labeled τ . Intuitively, we construct
T2 by replacing each element v in T1 by such a parse tree. More specifically, let
T2 = (V2, lab2, ele2, att, root). Here V2 consists of nodes in V1 and the internal nodes
introduced in the parse trees. For each x in V2, let lab2(x) = lab1(x) if x ∈ V1, and
otherwise let lab2(x) be the node label of x in the parse tree where x belongs. Note
that nodes in V2 \ V1 are elements of some type in EN \ E. For every x ∈ V1, let
ele2(x) be the list of its children in the parse tree having x as the root. For every
x ∈ V2 \ V1, let ele2(x) be the list of its children in the parse tree of an element
in V1 that contains x. Note that att remains unchanged. By the construction of
T2 it can be verified that T2 |= DN ; and moreover, for every regular expression
β.τ over D and @l ∈ R(τ), |nodes(f(β).τ)| in T2 equals |nodes(β.τ)| in T1 and
values(f(β).τ.@l) in T2 equals values(β.τ.@l) in T1 because, among other things, (1)
if a string r.τ1. . . . .τn.τ over E is in β.τ , then for every sequence of strings w0, . . . , wn

in (EN \E)∗, r.w0.τ1.w1. . . . .τn.wn.τ is in f(β).τ ; (2) if a string r.w0.τ1.w1. . . . .τn.wn.τ
is in f(β).τ , where τ1, . . ., τn, τ are element types in E and w0, . . ., wn are strings
in (EN \ E)∗, then r.τ1. . . . .τn.τ is in β.τ ; (3) none of the new nodes, i.e., nodes in
V2 \ V1, is labeled with an E type; (4) no new attributes are defined; and (5) the
ancestor-descendant relation on T1-elements is not changed in T2.

3As in the proof of Lemma 3.2, if τ is in P (τ), then we need to rename τ in Qτ to ensure that
Qτ and Nτ ∪ {τ} are disjoint. It is straightforward to handle that case.
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Conversely, assume that there is T2 = (V2, lab2, ele2, att, root) such that T2 |=
DN . We construct an XML tree T1 by modifying T2 such that T1 |= D. For any
node v ∈ V2 with lab(v) = τ and τ ∈ EN \E, we replace v in ele2(v

′) by the children
of v, where v′ is the parent of v. In addition, we remove v from V2, lab2(v) from
lab2, and ele2(v) from ele2. Observe that, by the definition of DN , no attributes are
defined for elements of any type in EN \ E. We repeat the process until there is no
node labeled with an element type in EN \E. Now let T1 = (V1, lab1, ele1, att, root),
where V1, lab1, and ele1 are V2, lab2, and ele2 at the end of the process, respectively.
Observe that att and root remain unchanged. By the definition of T1 it can be
verified that T1 |= D; in addition, for any regular expression β.τ over D and @l ∈
R(τ), |nodes(β.τ)| in T1 equals |nodes(f(β).τ)| in T2, and values(β.τ.@l) in T1 equals
values(f(β).τ.@l) in T2, because of (1) and (2) above and, among other things, the
fact that none of the nodes removed is labeled with a type of E and the attribute
function att is unchanged.

We now move to encoding of DTDs, more specifically, narrow one-attribute DTDs.
Let D = (E, {@l}, P, R, r) be a narrow one-attribute DTD and Σ a set of ACreg

K ,FK -

constraints over D. We encode D with a system ΨΣ
D of integer constraints such that

there exists an XML tree conforming to D iff ΨΣ
D admits a nonnegative solution. The

coding is developed w.r.t. Σ. More specifically, assume that β1.τ1.@l, . . . , βk.τk.@l
is an enumeration of all regular expressions and attributes that appear in Σ and Θ
is the set of functions θ : {1, . . . , k} → {0, 1} which are not identically 0. For every
θ ∈ Θ, define a regular expression:

rθ =

( ⋂
i : θ(i)=1

βi.τi

)
∩
( ⋂

j : θ(j)=0

βj .τj

)
,(3.1)

where βj .τj is the complement βj .τj . We allow intersection and complement operators
only in regular expressions rθ. We note that, for every i ∈ [1, k],4

βi.τi =
⋃

θ : θ(i)=1

rθ.

Then to capture the interaction between D and constraints of Σ, the system ΨΣ
D has

a variable |nodes(βi.τi)|, for every i ∈ [1, k], and |nodes(rθ)|, for every θ ∈ Θ. In
other words, ΨΣ

D specifies the dependencies imposed by D on the number of elements
reachable by following βi.τi (i ∈ [1, k]) and rθ (θ ∈ Θ).

To capture βi.τi (i ∈ [1, k]) and rθ (θ ∈ Θ) in ΨΣ
D, consider, for each regular

expression βi.τi (i ∈ [1, k]), a deterministic automaton that recognizes that expres-
sion. Let M be the deterministic automaton equivalent to the product of all of these
automata. We refer to M as the DFA for Σ. Let sM be the start state of M and δ be
its transition function. Given an XML tree T conforming to D, for each node x in T
we define state(x) as s, if there is a simple path ρ over D such that T |= ρ(root, x) and
s = δ(sM , ρ). The connection between M and T w.r.t. βi.τi (i ∈ [1, k]) is described
by the following lemma.

Lemma 3.10. Let D be a narrow one-attribute DTD, Σ a set of ACreg
K ,FK -

constraints over D, M the DFA for Σ, and βi.τi a regular expression in Σ. Then
for every XML tree T conforming to D and every τi-element x in T , x ∈ nodes(βi.τi)
in T iff state(x) contains some final state fβi.τi of the automaton for βi.τi.

4Recall that the regular language defined by a regular expression β is denoted by β as well.
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In other words, nodes(βi.τi) in T consists of all τi-elements x such that state(x)
(which is a tuple of states of automata corresponding to regular expressions in Σ)
contains some final state fβi.τi of the automaton for βi.τi. A similar idea was exploited
in [1].

Proof. Since T is a tree, there exists a unique simple path ρ over D such that
T |= ρ.τi(root, x). Thus x ∈ nodes(β.τi) in T iff ρ.τi ∈ β.τi. If x ∈ nodes(β.τi) in
T , then ρ.τi ∈ β.τi, and, therefore, there must be a final state fβ.τi in the automaton
for β.τi and a state s in M such that s = δ(sM , ρ.τi) and s contains fβi.τi . Thus
state(x) = s contains some final state fβi.τi of the automaton for βi.τi. Conversely, if
state(x) contains a final state fβi.τi in the automaton for βi.τi, then ρ.τi ∈ β.τi since
s = δ(sM , ρ.τi). Therefore, x ∈ nodes(βi.τi) in T .

We next define a system ΨΣ
D of integer constraints. The variables used in the

constraints of ΨΣ
D are as follows. Let τ ∈ E be an element type and s = δ(sM , ρ.τ)

for some simple path ρ.τ ∈ E∗. For each such pair we create a distinct variable xs
τ .

Intuitively, in an XML tree T conforming to D, we use xs
τ to keep track of the number

of τ -elements with state s. Furthermore, define Y s
τ as the set of pairs (τ ′, s′) such

that τ ′ ∈ E, s′ = δ(sM , ρ.τ ′) for some simple path ρ.τ ′ ∈ E∗, τ is mentioned in P (τ ′),

and s = δ(s′, τ). For each such pair (τ ′, s′), we create a variable xs,s′

τ,τ ′ . Intuitively,

in an XML tree T conforming to D, we use xs,s′

τ,τ ′ to keep track of the number of
τ -elements with state s that are children of a node of type τ ′ with state s′. There are
exponentially many variables (in the size of D and Σ) in total since M is a DFA. By
using these, we define an integer constraint to specify τ → P (τ) at state s as follows.
Let us use Ψs

τ to denote the set of integer constraints defined for τ at s.
• If P (τ) = τ1, then Ψs

τ includes xs
τ = xs1,s

τ1,τ , where s1 = δ(s, τ1).
• If P (τ) = (τ1, τ2), then Ψs

τ includes xs
τ = xs1,s

τ1,τ and xs
τ = xs2,s

τ2,τ , where si =
δ(s, τi) for i = 1, 2. Referring to the XML tree T , these assure that each
τ -element in T must have a τ1-subelement and a τ2-subelement.

• If P (τ) = (τ1|τ2), then Ψs
τ includes xs

τ = xs1,s
τ1,τ + xs2,s

τ2,τ , where si = δ(s, τi)
for i = 1, 2. This assures that each τ -element in T must have either a τ1-
subelement or a τ2-subelement, and thus the sum of the number of these
τ1-subelements and the number of τ2-subelements equals the number of τ -
elements.

• If P (τ) = τ∗1 , then Ψs
τ includes (xs1,s

τ1,τ > 0) → (xs
τ > 0), where s1 = δ(s, τ1).

In addition, Ψs
τ includes xs

τ =
∑

(τ ′,s′)∈Y s
τ
xs,s′

τ,τ ′ .
Recall that β1.τ1.@l, . . . , βk.τk.@l is an enumeration of all regular expressions and

attributes that appear in Σ, that Θ is the set of functions θ : {1, . . . , k} → {0, 1} which
are not identically 0, and that, for each such function θ, rθ is a regular expression
defined as in (3.1). For each i ∈ [1, k], we define Fβi.τi as the set of states s =
(s1, . . . , sk) of the DFA for Σ such that si is a final state of the DFA for βi.τi. Notice
that by Lemma 3.10, for every XML tree T conforming to D and every node x of T ,
x ∈ nodes(βi.τi) in T iff state(x) ∈ Fβi.τi . Furthermore, for each θ ∈ Θ, we define Fθ

as the set of states s = (s1, . . . , sk) of the DFA for Σ such that for every i ∈ [1, k],
si is a final state of the DFA for βi.τi iff θ(i) = 1. Notice that by Lemma 3.10,
for every XML tree T conforming to D and every node x of T , x ∈ nodes(rθ) in T
iff state(x) ∈ Fθ. Finally, for each rθ �= ∅, we have that, for every i, j ∈ [1, k], if
θ(i) = θ(j) = 1, then τi = τj . In this case, we define τθ as τi, for an arbitrary i ∈ [1, k]
such that θ(i) = 1.

By our restriction on regular expressions regarding element type r, there is a
unique variable xs

r associated with r, where s = δ(sM , r). We write xr for xs
r. Then
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we define the set of cardinality constraints determined by DTD D w.r.t. a set Σ of
ACreg

K ,FK -constraints over D, denoted by ΨΣ
D, as follows:

• For each τ ∈ E and each state s given above, ΨΣ
D contains all of the constraints

in Ψs
τ .

• ΨΣ
D contains constraint xr = 1; i.e., there is a unique root in each XML tree

conforming to D.
• For every i ∈ [1, k], ΨΣ

D contains constraint |nodes(βi.τi)| =
∑

s : s∈Fβi.τi
xs
τi .

• For every θ ∈ Θ such that rθ �= ∅, ΨΣ
D contains constraint |nodes(rθ)| =∑

s : s∈Fθ
xs
τθ

.

• For every θ ∈ Θ such that rθ = ∅, ΨΣ
D contains constraint |nodes(rθ)| = 0.

Note that ΨΣ
D can be computed in EXPTIME in the size of D and Σ. We say that

ΨΣ
D is consistent iff it has a nonnegative solution. We next show that ΨΣ

D indeed
characterizes the narrow one-attribute DTD D.

Lemma 3.11. Let D be a narrow one-attribute DTD, Σ a set of ACreg
K ,FK -

constraints over D, and ΨΣ
D the set of cardinality constraints determined by D w.r.t.

Σ. Then ΨΣ
D is consistent iff there is an XML tree T such that T |= D. In addition,

for every i ∈ [1, k] and θ ∈ Θ, |nodes(βi.τi)| and |nodes(rθ)| in T equal the value of
variables |nodes(βi.τi)| and |nodes(rθ)| given by the solution to ΨΣ

D.
Proof. First, assume that there is an XML tree T = (V, lab, ele, att, root) con-

forming to D. We define a nonnegative solution of ΨΣ
D as follows. For each variable

xs,s′

τ,τ ′ in ΨΣ
D, let its value be the number of τ -elements x in T such that x is a child of a

node y of type τ ′ with state(x) = s and state(y) = s′. Furthermore, let xr be 1, and,

for every variable xs
τ in ΨΣ

D, let xs
τ be the sum of the variables xs,s′

τ,τ ′ where (τ ′, s′) ∈ Y s
τ .

Finally, for every i ∈ [1, k] and every θ ∈ Θ, let |nodes(βi.τi)| and |nodes(rθ)| be∑
s : s∈Fβi.τi

xs
τi and

∑
s : s∈Fθ

xs
τθ

, respectively. This defines a nonnegative assignment

since T is finite. It can be verified that the assignment is a solution of ΨΣ
D. Indeed,

it satisfies the constraint xr = 1 and constraints of the form xs
τ =

∑
(τ ′,s′)∈Y s

τ
xs,s′

τ,τ ′ ,

|nodes(βi.τi)| =
∑

s : s∈Fβi.τi
xs
τi , and |nodes(rθ)| =

∑
s : s∈Fθ

xs
τθ

by the definition

of the assignment. Moreover, one can verify that it also satisfies the constraints
of each Ψs

τ , by considering four different cases corresponding to the four different
types of regular expressions in D. In particular, it satisfies constraints of the form
(xs1,s

τ1,τ > 0) → (xs
τ > 0) for each τ → τ∗1 in P , since if xs1,s

τ1,τ > 0, then there exists a
τ1-node in T having as its parent a τ -node y with state(y) = s. Thus, xs

τ > 0 by the
definition of the assignment. Therefore, ΨΣ

D is consistent. Moreover, by Lemma 3.10,
for every i ∈ [1, k] and θ ∈ Θ, the values of variables |nodes(βi.τi)| and |nodes(rθ)| in
the solution are indeed |nodes(βi.τi)| and |nodes(rθ)| in T .

Conversely, assume that ΨΣ
D admits a nonnegative solution. We show that there

exists an XML tree T = (V, lab, ele, att, root) such that T |= D. To do so, for each
element type τ and state s for τ , we create xs

τ many distinct τ -elements. Let ext(τ)
denote the set of all τ -elements created above and

V =
⋃
τ∈E

ext(τ).

Then function lab is defined as lab(v) = τ if v ∈ ext(τ), and function att is defined as
follows:

att(v, @l) =

{
empty string if @l ∈ R(lab(v)),

undefined otherwise.
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It is easy to verify that these functions are well defined. Let root be the node labeled
r, which is unique since xr = 1 is in ΨΣ

D. Finally, to define function ele, we do the

following. For each xs,s′

τ,τ ′ in ΨΣ
D, we choose xs,s′

τ,τ ′ many distinct vertices labeled τ and

mark them with xs,s′

τ,τ ′ . Note that every τ -element in V can be marked once and only

once. Starting at root, for each τ -element x marked with xs,s′

τ,τ ′ for some (τ ′, s′) ∈ Y s
τ ,

consider P (τ) and constraints of ΨΣ
D.5 If P (τ) is τ1 ∈ E, then we choose a distinct

τ1-element y marked with xs1,s
τ1,τ and let ele(x) = [y], where xs

τ = xs1,s
τ1,τ is in ΨΣ

D. If
P (τ) = (τ1, τ2), then we choose a τ1-element y1 marked with xs1,s

τ1,τ and a τ2-element
y2 marked with xs2,s

τ2,τ and let ele(x) = [y1, y2], where xs
τ = xs1,s

τ1,τ and xs
τ = xs2,s

τ2,τ are in

ΨΣ
D. If P (τ) = (τ1|τ2), then we choose an element y marked with either xs1,s

τ1,τ or xs2,s
τ2,τ

and let ele(x) = [y], where xs
τ = xs1,s

τ1,τ +xs2,s
τ2,τ is in ΨΣ

D. If P (τ) = τ∗1 , then we choose a
list [y1, . . . , yn] (n ≥ 0) of τ1-elements marked with xs1,s

τ1,τ and let ele(x) = [y1, . . . , yn],

where (xs1,s
τ1,τ > 0) → (xs

τ > 0) is in ΨΣ
D. By the constraints in ΨΣ

D, each element
of V can be chosen once and only once. One can verify that T defined in this way
is indeed an XML tree and T |= D. Hence, there exists an XML tree conforming
to D.

Finally, to see that, for every i ∈ [1, k] and θ ∈ Θ, |nodes(βi.τi)| and |nodes(rθ)|
in T equal the values of variables |nodes(β.τ)| and |nodes(rθ)| in the solution, respec-
tively, it suffices to show, by Lemma 3.10, that for each node x in T , if x is marked with

xs,s′

τ,τ ′ in the construction, then state(x) = s. Since T is a tree, there is a unique simple
path ρ ∈ E∗ such that T |= ρ(root, x). We show the claim by induction on the length
|ρ| of ρ. If |ρ| = 1, i.e., ρ = r, then x is the root and, obviously, state(x) = δ(sM , r).
Assume the claim for ρ, and we show that the claim holds for ρ.τ . Let y be the
τ ′-element in T such that T |= ρ(root, y) and y is the parent of x. Suppose that y is

marked with xs′,s′′

τ ′,τ ′′ in the construction. By the induction hypothesis, state(y) = s′.

It is easy to see that state(x) = δ(s′, τ). By the definition of Ψs′

τ ′ , we have that s is
precisely the state δ(s′, τ). Thus state(x) = s. This proves the claim and thus the
lemma.

We now move to encoding ACreg
K ,FK -constraints in terms of integer constraints.

Let D be a DTD (E, {@l}, P, R, r) and Σ a set of ACreg
K ,FK -constraints over D.

By Lemmas 3.8 and 3.9, we assume, without loss of generality, that D is a narrow
one-attribute DTD. To encode Σ, let β1.τ1.@l, . . . , βk.τk.@l be an enumeration of
all regular expressions and attributes that appear in Σ, and, for every function θ :
{1, . . . , k} → {0, 1} which is not identically 0, let regular expression rθ be defined as
in (3.1). Then for every nonempty Ω ⊆ Θ, we introduce a new variable zΩ. In any
XML tree conforming to D, the intended interpretation of zΩ is the cardinality of

( ⋂
θ : θ∈Ω

values(rθ.@l)

)
\
( ⋃

θ : θ∈Θ\Ω
values(rθ.@l)

)
.(3.2)

Note that the number of new variables is double-exponential in the number of reg-
ular expression in Σ. By using these variables, we define the set of the cardinality
constraints determined by Σ, denoted by CΣ, which consists of the following:

5We assume that root is marked with xs
r, where s = δ(sM , r) and sM is the initial state of the

DFA for Σ.
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∑
Ω : θ∈Ω

zΩ = |values(rθ.@l)| for every θ ∈ Θ,

∑
Ω : Ω∩{θ|θ(i)=1}�=∅

zΩ = |values(βi.τi.@l)| for every i ∈ [1, k],

|values(βi.τi.@l)| = |nodes(βi.τi)| for every βi.τi.@l → βi.τi in Σ,

|values(βj .τj .@l)| = |nodes(βj .τj)| for every βi.τi.@l ⊆FK βj .τj .@l in Σ,

∑
Ω : Ω∩{θ|θ(i)=1}�=∅,

Ω∩{θ′|θ′(j)=1}=∅

zΩ = 0 for every βi.τi.@l ⊆FK βj .τj .@l in Σ,

|values(βi.τi.@l)| ≤ |nodes(βi.τi)| for every i ∈ [1, k],

|values(rθ.@l)| ≤ |nodes(rθ)| for every θ ∈ Θ.

Note that the size of CΣ is double-exponential in the size of Σ.
We now combine the encodings for constraints and the DTDs and present a system

Ψ(D, Σ) of linear integer constraints for a DTD D and a set Σ of ACreg
K ,FK -constraints.

Assuming that D and Σ are as above, the set Ψ(D, Σ), called the set of cardinality
constraints determined by D and Σ, is defined to be:

ΨΣ
D ∪ CΣ ∪ {(|nodes(βi.τi)| > 0) → (|values(βi.τi.@l)| > 0) | i ∈ [1, k]} ∪

{(|nodes(rθ)| > 0) → (|values(rθ.@l)| > 0) | θ ∈ Θ},

where CΣ is the set of cardinality constraints determined by Σ and ΨΣ
D is the set

of cardinality constraints determined by D w.r.t. Σ. The system Ψ(D, Σ) is said
to be consistent iff it has a nonnegative solution that satisfies all of its constraints.
Observe that Ψ(D, Σ) can be partitioned into two sets: Ψ(D, Σ) = Ψl(D, Σ) ∪
Ψd(D, Σ), where Ψl(D, Σ) consists of linear integer constraints and Ψd(D, Σ) consists
of constraints of the form (x > 0 → y > 0). Also note that the size of Ψ(D, Σ) is
double-exponential in the size of D and Σ.

We next show that Ψ(D, Σ) indeed characterizes the consistency of D and Σ.
Lemma 3.12. Let D be a narrow one-attribute DTD, Σ a finite set of ACreg

K ,FK -
constraints over D, and Ψ(D, Σ) the set of cardinality constraints determined by D
and Σ. Then Ψ(D, Σ) is consistent iff there is an XML tree T such that T |= (D,Σ).

Proof. Suppose that there exists an XML tree T such that T |= (D,Σ). Then by
Lemma 3.11, there exists a nonnegative solution for ΨΣ

D such that, for every i ∈ [1, k]
and θ ∈ Θ, the values of variables |nodes(rθ)| and |nodes(βi.τi)| in this solution
coincide with |nodes(rθ)| and |nodes(βi.τi)| in T , respectively. From this solution, it
is easy to generate a solution to Ψ(D,Σ) by assigning to variable |values(rθ.@l)| the
size of values(rθ.@l) in T , for every θ ∈ Θ, assigning to variable |values(βi.τi.@l)| the
size of values(βi.τi.@l) in T , for every i ∈ [1, k], and then assigning to each variable zΩ

the cardinality of set (3.2) above. It is straightforward to verify that this assignment
is a solution to Ψ(D, Σ).

Conversely, suppose that Ψ(D, Σ) has an integer solution. We show that there
is an XML tree T such that T |= (D,Σ). By Lemma 3.11, given an integer solution
to Ψ(D, Σ), we can construct an XML tree T ′ = (V, lab, ele, att′, root) such that
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T ′ |= D. Moreover, for every i ∈ [1, k], there are exactly nβi.τi elements in T ′

reachable by following βi.τi, where nβi.τi is the value of the variable |nodes(βi.τi)|
in Ψ(D, Σ), and, for every θ ∈ Θ, there are exactly nrθ elements in T ′ reachable by
following rθ, where nrθ is the value of the variable |nodes(rθ)| in Ψ(D, Σ). We modify
the definition of the function att′, while leaving V , lab, ele, and root unchanged, to
generate a tree T = (V, lab, ele, att, root) such that T |= (D,Σ). More specifically,
we modify att′(v,@l) if v is in nodes(β.τ) for some regular expression β.τ mentioned
in Σ and leave att′(v,@l) unchanged otherwise. To do this, for each variable zΩ we
create a set sΩ of distinct string values such that |sΩ| = zΩ and sΩ ∩ sΩ′ = ∅ if
Ω �= Ω′. Then for every Ω ⊆ Θ, we let values(rθ.@l) in T contain sΩ iff θ ∈ Ω. This
is possible because (1)

∑
Ω : θ∈Ω zΩ = |values(rθ.@l)| is in CΣ for every θ ∈ Θ; (2)∑

Ω : Ω∩{θ|θ(i)=1}�=∅ zΩ = |values(βi.τi.@l)| is in CΣ for every i ∈ [1, k]; (3) if rθ = ∅,
then |nodes(rθ)| = 0 is in ΨΣ

D for every θ ∈ Θ; (4) |values(βi.τi.@l)| ≤ |nodes(βi.τi)|
is in CΣ for every i ∈ [1, k]; (5) |values(rθ.@l)| ≤ |nodes(rθ)| is in CΣ for every θ ∈ Θ;
and (6) nodes(β) in T equals nodes(β) in T ′ for every regular expression β over D.

We next show that T has the desired properties. It is easy to verify T |= D given
the construction of T from T ′ and the assumption T ′ |= D. By the definition of T , we
have that, for every i ∈ [1, k] and θ ∈ Θ, |nodes(βi.τi)|, |values(βi.τi.@l)|, |nodes(rθ)|,
and |values(rθ.@l)| in T equal the value of variables |nodes(βi.τi)|, |values(βi.τi.@l)|,
|nodes(rθ)|, and |values(rθ.@l)|, respectively, given by the solution to Ψ(D,Σ). We
use this property to show that T |= Σ. Let ϕ be a constraint in Σ. (1) If ϕ is
a key βi.τi.@l → βi.@l, it is immediate from the definition of T that T |= ϕ since
|values(βi.τi.@l)| = |nodes(βi.τi)| is a constraint in CΣ and, hence, |values(βi.τi.@l)| =
|nodes(βi.τi)| in T . That is, each x ∈ nodes(βi.τi) in T has a distinct @l-attribute
value, and thus the value of its @l-attribute uniquely identifies x among nodes in
nodes(βi.τi). (2) If ϕ is βi.τi.@l ⊆FK βj .τj .@l, it is easy to see that in T :

values(βi.τi.@l) \ values(βj .τj .@l) =
⋃

Ω : Ω∩{θ|θ(i)=1}�=∅,Ω∩{θ′|θ′(j)=1}=∅
sΩ.

Since sΩ ∩ sΩ′ = ∅ if Ω �= Ω′,

|values(βi.τi.@l) \ values(βj .τj .@l)| =
∑

Ω : Ω∩{θ|θ(i)=1}�=∅,Ω∩{θ′|θ′(j)=1}=∅
zΩ.

Thus, given that
∑

Ω : Ω∩{θ|θ(i)=1}�=∅,Ω∩{θ′|θ′(j)=1}=∅
zΩ = 0

is in CΣ (since βi.τi.@l ⊆FK βj .τj .@l ∈ Σ), we have |values(βi.τi.@l)\values(βj .τj .@l)|
= 0 in T , that is, values(βi.τi.@l) ⊆ values(βj .τj .@l) in T . Furthermore, T |=
βj .τj .@l → βj .τj since |values(βj .τj .@l)| = |nodes(βj .τj)| is a constraint in CΣ. Thus
T |= ϕ. This concludes the proof of the lemma.

We need another lemma for a mild generalization of linear integer constraints.
Lemma 3.13. Given a system A�x ≤ �b of linear integer constraints together with

conditions of the form (xi > 0) → (xj > 0), where A is an n×m matrix on integers,
�b is an n-vector on integers, and 1 ≤ i, j ≤ m, the problem of determining whether
the system admits a nonnegative integer solution is in NP.

Proof. Let c1, . . . , cp enumerate the conditions of the form (x > 0) → (y > 0), ck
being (x1

k > 0) → (x2
k > 0). Consider 2p instances Ij of integer linear programming
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obtained by adding, for each k ≤ p, either x1
k = 0 or x2

k > 0 to A�x ≤ �b. Clearly, the
original system of constraints has a solution iff some Ij has a solution. By [27], Ij
has a solution iff it has a solution whose size is polynomial in A, �b, and p. Hence, to
check if the original system of constraints has a solution, it suffices to guess a system
Ij and then guess a polynomial size solution for it; thus, the problem is in NP.

We now conclude the proof of the first part of the theorem. By Lemma 3.8,
given an arbitrary DTD D and a set Σ of ACreg

K ,FK -constraints over D, it is possible

to compute a one-attribute DTD D′ and a set Σ′ of ACreg
K ,FK -constraints over D′

such that (D,Σ) is consistent iff (D′,Σ′) is consistent. By Lemma 3.9, one can
compute a narrow one-attribute DTD D′

N and a set Σ′
N of ACreg

K ,FK -constraints over
D′

N such that (D′,Σ′) is consistent iff (D′
N ,Σ′

N ) is consistent. By Lemma 3.12,
(D′

N ,Σ′
N ) is consistent iff Ψ(D′

N ,Σ′
N ) has a nonnegative integer solution. Thus, (D,Σ)

is consistent iff Ψ(D′
N ,Σ′

N ) has a nonnegative integer solution. Note that (D′,Σ′)
can be computed in polynomial time on |D| + |Σ|, (D′

N ,Σ′
N ) can be computed in

polynomial time on |D′|+|Σ′|, and Ψ(D′
N ,Σ′

N ) can be computed in double-exponential
time on |D′

N |+ |Σ′
N |. Thus, by Lemma 3.13, one can check in 2-NEXPTIME whether

there exists an XML tree T such that T |= (D,Σ).
Proof of (b). We establish the PSPACE-hardness by reduction from the QBF-

CNF problem. An instance of QBF-CNF is a quantified boolean formula in prenex
conjunctive normal form. The problem is to determine whether this formula is valid.
QBF-CNF is known to be PSPACE-complete [20, 28].

Let θ be a formula of the form

Q1x1 . . . Qmxmψ,(3.3)

where each Qi ∈ {∀,∃} (1 ≤ i ≤ m) and ψ is a propositional formula in conjunctive
normal form, say, C1 ∧ · · · ∧ Cn, that mentions variables x1, . . . , xm. We construct a
DTD Dθ and a set Σθ of ACreg

K ,FK -constraint such that θ is valid iff there is an XML
tree conforming to Dθ and satisfying Σθ.

We construct a DTD Dθ = (E, A, P, R, r) as follows. E = {r, C} ∪⋃m
i=1{xi, x̄i, Nxi

, Pxi
}, A = {@l}, and P is defined by considering the quantifiers

of θ. We use Q1 to define P on the root:

P (r) =

{
(Nx1 |Px1), C Q1 = ∃,
(Nx1

, Px1
), C Q1 = ∀.

In general, for each 1 ≤ i ≤ m− 1, we consider quantifier Qi+1 to define P (Nxi) and
P (Pxi):

P (Nxi) = P (Pxi) =

{
Nxi+1 |Pxi+1 Qi+1 = ∃,
Nxi+1 , Pxi+1 Qi+1 = ∀.

We represent formula ψ as a regular expression. Given a clause Cj =
∨p

i=1 yi ∨∨q
i=1 ¬zi (j ∈ [1, n]), tr(Cj) is defined to be the regular expression y1| . . . |yp|z̄1|

. . . |z̄q. We define P on element types Nxm
and Pxm

as P (Nxm
) = P (Pxm

) =
tr(C1), . . . , tr(Cn). For the remaining elements of E, we define P as ε. We define
function R as follows:

R(r) = R(Pxi) = R(Nxi) = ∅, 1 ≤ i ≤ m,
R(C) = R(xi) = R(x̄i) = {@l}, 1 ≤ i ≤ m.
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. . . . . . . . .

Nx1

Px2

Nx3
Px3

Px1

Nx2

Px3
Nx3

r

C

u

(x1|x2|x̄3)

Fig. 3.2. An XML tree conforming to the DTD constructed from ∀x1∃x2∀x3(x1 ∨ x2 ∨ ¬x3).

Finally, Σθ contains the following foreign keys:

r. ∗.Nxi
. ∗.xi.@l ⊆FK r.C.C.@l, r. ∗.Pxi

. ∗.x̄i.@l ⊆FK r.C.C.@l, i ∈ [1,m].

For instance, for the formula ∀x1∃x2∀x3(x1 ∨ x2 ∨ ¬x3), an XML tree conforming
to D is shown in Figure 3.2. In this tree, a node of type Nxi

represents a negative
value (0) for the variable xi, and a node of type Pxi represents a positive value (1)
for this variable. Thus, given that the root has two children of types Nx1 and Px1

,
the values 0 and 1 are assigned to x1 (representing the quantifier ∀x1). Nodes of type
Nx1 have one child of type either Nx2 or Px2 , and, therefore, either 0 or 1 is assigned
to x2 (representing the quantifier ∃x2). The same holds for nodes of type Px2 . The
fourth level of the tree represents the quantifier ∀x3. Note that, in any XML tree T
conforming to D, there is no node in T reachable by following the path r.C.C.

In Figure 3.2, every path from the root r to a node of type either Nx3
or Px3

represents a truth assignment for the variables x1, x2, x3. For example, the path from
the root to the node u represents the truth assignment σu: σu(x1) = 0, σu(x2) = 1,
and σu(x3) = 0. To verify that all of these assignments satisfy the formula x1∨x2∨¬x3

we use the set of constraints Σθ.
Next we prove that θ, defined in (3.3), is valid iff there is an XML tree T con-

forming to Dθ and satisfying Σθ. We show only the “if” direction. The “only if”
direction is similar.

Suppose that there is an XML tree T such that T |= (Dθ,Σθ). To prove that θ is
valid, it suffices to prove that each path from the root r to a node of type either Nxm

or Pxm represents a truth assignment satisfying ψ. Let p be one of these paths, and
let v be the node of type either Nxm

or Pxm reachable from the root by following p.
We define the truth assignment σp as follows:

σp(xi) =

{
1 if p contains a node of type Pxi

,

0 otherwise.

We have to prove that σp(Ci) = 1 for each i ∈ [1, n]. Given that T |= Dθ, v has as
a child a node v′ whose type is in tr(Ci). If the type of v′ is xj , then, given that
T |= r. ∗.Nxj .

∗.xj .@l ⊆FK r.C.C.@l and that there exists no node in T reachable by
following the path r.C.C, p contains a node of type Pxj , and, therefore, σp(Ci) = 1
since σp(xj) = 1. If the type of v′ is x̄j , then, given that T |= r. ∗.Pxj .

∗.x̄j .@l ⊆FK

r.C.C.@l, p contains a node of type Nxj and it does not contain a node of type Pxj ,
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and, therefore, σp(Ci) = 1 since σp(¬xj) = 1. Thus, we conclude that θ is valid. This
concludes the proof of part (b) of the theorem.

4. Relative integrity constraints. Since XML documents are hierarchically
structured, one may be interested in the entire document as well as in its sub-
documents. The latter gives rise to relative integrity constraints [5] that hold only
on certain subdocuments. Below we define relative keys and foreign keys. Recall that
we use RC to denote various classes of such constraints. We use the notation x ≺ y
when x and y are two nodes in an XML tree and y is a descendant of x.

We first define unary relative keys and foreign keys associated with element types.
Let D = (E, A, P, R, r) be a DTD. A relative key is an expression ϕ of the form
τ(τ1.@l → τ1), where @l ∈ R(τ1). It says that, relative to each node x of element
type τ , @l is a key for all of the τ1-nodes that are descendants of x. That is, if a tree
T conforms to D, then T |= ϕ if

∀x ∈ ext(τ) ∀y, z ∈ ext(τ1)
(
(x ≺ y) ∧ (x ≺ z) ∧ (y.@l = z.@l) → y = z

)
.

A relative foreign key is an expression ϕ of the form τ(τ1.@l1 ⊆FK τ2.@l2), where
@li ∈ R(τi), i = 1, 2. It indicates that, for each x in ext(τ), @l1 is a foreign key of
descendants of x of type τ1 that references a key @l2 of τ2-descendants of x. That is,
T |= ϕ if T |= τ(τ2.@l2 → τ2) and T satisfies

∀x ∈ ext(τ) ∀y1 ∈ ext(τ1)
(
(x ≺ y1) → ∃y2 ∈ ext(τ2) ((x ≺ y2) ∧ y1.@l1 = y2.@l2)

)
.

Here τ is called the context type of ϕ. Note that absolute constraints are a special
case of relative constraints when τ = r: i.e., r(τ.@l → τ) is the usual absolute key.
Thus, the consistency problem for multiattribute relative constraints is undecidable
[16], and hence we consider only unary relative constraints here.

Following the notations for AC, we use RCK ,FK to denote the class of all unary
relative keys and foreign keys defined for element types; RCPK ,FK means the pri-
mary key restriction. For example, the constraints given in section 1 over the coun-
try/province/capital DTD can be expressed in RCK ,FK as follows:

country .@name → country ,

country(province.@name → province),

country(capital .@inProvince → capital),

country(capital .@inProvince ⊆FK province.@name).

A more general form of unary relative constraints is defined in terms of regular
path expressions, along the same lines as ACreg

K ,FK . For example, the constraints given
in section 1 over the country/province/capital DTD are instances of this general form
of relative constraints. Since RCK ,FK constraints are a special case of the general
regular-expression relative constraints (by substituting ∗.τ for τ), the lower bound
for SAT(RCK ,FK ) carries over to the consistency problem for unary relative constraints
defined in terms of regular path expressions.

Recall that SAT(ACK ,FK ), the consistency problem for absolute unary constraints,
is NP-complete. One would be tempted to think that SAT(RCK ,FK ), the consistency
problems for relative unary constraints, is decidable as well. We next show, however,
that there is an enormous difference between unary absolute constraints and unary
relative constraints: while clearly SAT(RCK ,FK ) is recursively enumerable, it turns
out that one cannot lower this bound.
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Theorem 4.1. SAT(RCK ,FK ) is undecidable.
Proof. We establish the undecidability of the consistency problem for unary rel-

ative keys and foreign keys by reduction from the Hilbert’s 10th problem [24]. To do
this, we consider a variation of the Diophantine problem, referred to as the positive
Diophantine quadratic system problem. An instance of the problem is

P1(x1, . . . , xk) = Q1(x1, . . . , xk) + c1,

P2(x1, . . . , xk) = Q2(x1, . . . , xk) + c2,

. . .

Pn(x1, . . . , xk) = Qn(x1, . . . , xk) + cn,

where, for 1 ≤ i ≤ n, Pi and Qi are polynomials in which all coefficients are positive
integers; the degree of Pi is at most 2, and the degree of each of its monomials is at least
1; each polynomial Qi satisfies the same condition, and each ci is a nonnegative integer
constant. The problem is to determine, given any positive Diophantine quadratic
system, whether it has a nonnegative integer solution.

The positive Diophantine quadratic system problem is undecidable. To prove this,
it is straightforward to reduce to it another variation of the Diophantine problem, the
positive Diophantine equation problem, which is known to be undecidable. An instance
of this problem is R(ȳ) = S(ȳ), where R and S are polynomials in which all coefficients
are positive integers, and the problem is to determine whether it has a nonnegative
integer solution.

In what follows, we show a reduction from the positive Diophantine quadratic
system problem to SAT(RCK ,FK ). More precisely, given a quadratic equation we show
how to represent it by using a DTD and a set of constraints. It is straightforward to
extend this representation to consider an arbitrary number of quadratic equations.

Consider the following equation:

m∑
i=1

aixαi
+

n∑
i=m+1

aixαi
xβi

=

p∑
i=1

bixγi
+

q∑
i=p+1

bixγi
xδi + o.(4.1)

In this equation, for every i ∈ [1, n] and j ∈ [m+1, n], ai is a positive integer and xαi

and xβj represent variables, where αi, βj ∈ [1, k]. Furthermore, for every i ∈ [1, q] and
j ∈ [p+1, q], bi is a positive integer and xγi and xδj are variables, where γi, δj ∈ [1, k].
Finally, o is a nonnegative integer.

To code the previous equation, we need to define a DTD D = (E,A, P,R, r) and a
set of RCK ,FK -constraints Σ. Here D includes the following elements and attributes:

E = {r,X, Y } ∪
k⋃

i=1

{ni} ∪
n⋃

i=1

{αi} ∪
n⋃

i=m+1

{α′
i, βi, ci, di, ei}

∪
q⋃

i=1

{γi} ∪
q⋃

i=p+1

{γ′
i, δi, fi, gi, hi},

A = {@v}.

In this DTD, r is the root. Intuitively, by referring to an XML tree conforming to D,
we use |ext(ni)| to code the value of the variable xi, and we use |ext(X)| and |ext(Y )|
to code the values of the left- and the right-hand sides of (4.1), respectively.
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We define P (r) as follows:

P (r) = n∗
1, . . . , n

∗
k, α

∗
1, . . . , α

∗
m, (ε|αm+1), . . . , (ε|αn),

γ∗
1 , . . . , γ

∗
p , (ε|γp+1), . . . , (ε|γq), Y, . . . , Y︸ ︷︷ ︸

o times

.

We define the function P on αi and βi as follows:

P (αi) = X, . . . ,X︸ ︷︷ ︸
ai times

, 1 ≤ i ≤ m,

P (αi) = (βi, ci, ci, X, . . . ,X︸ ︷︷ ︸
ai times

)∗, α′
i, m + 1 ≤ i ≤ n,

P (γi) = Y, . . . , Y︸ ︷︷ ︸
bi times

, 1 ≤ i ≤ p,

P (γi) = (δi, fi, fi, Y, . . . , Y︸ ︷︷ ︸
bi times

)∗, γ′
i, p + 1 ≤ i ≤ q.

To code (4.1) we need to capture the multiplication operator. To do this, we use α′
i

and γ′
i:

P (α′
i) = (βi, di, di)

∗, (αi|(ci, ei)∗), m + 1 ≤ i ≤ n,
P (γ′

i) = (δi, gi, gi)
∗, (γi|(fi, hi)

∗), p + 1 ≤ i ≤ q.

For all of the other element types τ in D, P (τ) is defined as ε:

P (βi) = ε, m + 1 ≤ i ≤ n, P (δi) = ε, p + 1 ≤ i ≤ q, P (X) = ε,
P (ci) = ε, m + 1 ≤ i ≤ n, P (fi) = ε, p + 1 ≤ i ≤ q, P (Y ) = ε,
P (di) = ε, m + 1 ≤ i ≤ n, P (gi) = ε, p + 1 ≤ i ≤ q, P (ni) = ε, 1 ≤ i ≤ k,
P (ei) = ε, m + 1 ≤ i ≤ n, P (hi) = ε, p + 1 ≤ i ≤ q.

Finally, we include the following attributes:

R(r) = ∅,
R(ni) = {@v}, 1 ≤ i ≤ k,
R(X) = R(Y ) = {@v},
R(αi) = {@v}, 1 ≤ i ≤ n,
R(γi) = {@v}, 1 ≤ i ≤ q,
R(βi) = R(ci) = R(di) = R(ei) = {@v}, m + 1 ≤ i ≤ n,
R(δi) = R(fi) = R(gi) = R(hi) = {@v}, p + 1 ≤ i ≤ q,
R(α′

i) = ∅, m + 1 ≤ i ≤ n,
R(γ′

i) = ∅, p + 1 ≤ i ≤ q.

To ensure that XML documents that conform to D indeed code (4.1), we need to
define a set of RCK ,FK -constraints Σ. This set contains the following absolute keys:

r(X.@v → X),
r(αi.@v → αi) for every 1 ≤ i ≤ n,
r(βi.@v → βi) for every m + 1 ≤ i ≤ n,
r(ci.@v → ci) for every m + 1 ≤ i ≤ n,
r(di.@v → di) for every m + 1 ≤ i ≤ n,
r(ei.@v → ei) for every m + 1 ≤ i ≤ n,
r(ni.@v → ni) for every 1 ≤ i ≤ k,
r(Y.@v → Y ),
r(γi.@v → γi) for every 1 ≤ i ≤ q,
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r(δi.@v → δi) for every p + 1 ≤ i ≤ q,
r(fi.@v → fi) for every p + 1 ≤ i ≤ q,
r(gi.@v → gi) for every p + 1 ≤ i ≤ q,
r(hi.@v → hi) for every p + 1 ≤ i ≤ q.

Σ contains the following absolute foreign keys:

r(X.@v ⊆FK Y.@v), r(Y.@v ⊆FK X.@v),
r(ns.@v ⊆FK αi.@v), r(αi.@v ⊆FK ns.@v), 1 ≤ i ≤ n and the value of αi in

(4.1) is equal to s,
r(ns.@v ⊆FK ei.@v), r(ei.@v ⊆FK ns.@v), m + 1 ≤ i ≤ n and the value of βi

in (4.1) is equal to s,
r(ns.@v ⊆FK γi.@v), r(γi.@v ⊆FK ns.@v), 1 ≤ i ≤ q and the value of γi in

(4.1) is equal to s,
r(ns.@v ⊆FK hi.@v), r(hi.@v ⊆FK ns.@v), p + 1 ≤ i ≤ q and the value of δi

in (4.1) is equal to s.

Finally, Σ contains the following relative foreign keys:

αi(βi.@v ⊆FK di.@v), αi(di.@v ⊆FK βi.@v), m + 1 ≤ i ≤ n,
α′
i(βi.@v ⊆FK ci.@v), α′

i(ci.@v ⊆FK βi.@v), m + 1 ≤ i ≤ n,
γi(δi.@v ⊆FK gi.@v), γi(gi.@v ⊆FK δi.@v), p + 1 ≤ i ≤ q,
γ′
i(δi.@v ⊆FK fi.@v), γ′

i(fi.@v ⊆FK δi.@v), p + 1 ≤ i ≤ q.

We show next that there is an XML tree T such that T |= (D,Σ) iff there exists a
nonnegative integer solution for (4.1). To do this, we prove that every XML tree T
satisfying D and Σ codifies (4.1). More precisely, if the value of every variable xi is
vi and |ext(ni)| = vi, for i ∈ [1, k], then

|ext(X)| =

m∑
i=1

aivαi
+

n∑
i=m+1

aivαi
vβi

,(4.2)

|ext(Y )| =

p∑
i=1

bivγi +

q∑
i=p+1

bivγivδi + o.(4.3)

Let T be an XML tree conforming to D. Then every node of type X in T appears as
a child of some node of type αi (i ∈ [1, n]). Thus, to prove (4.2) it suffices to show
that the number of X-nodes that are children of some node of type αi (i ∈ [1, n]) is
equal to the ith term of (4.2), that is,

|{x | x is an X-node in T and x is a child of a node of type αi}|
= aivαi

, 1 ≤ i ≤ m,
|{x | x is an X-node in T and x is a child of a node of type αi}|

= aivαivβi , m + 1 ≤ i ≤ n.

Analogously, to show that (4.3) holds, we have to prove that the number of Y -nodes
that are children of some node of type γi (i ∈ [1, q]) is equal to the ith term of (4.3).
We will consider here only the case of X-nodes, the other case being similar.

First, let i ∈ [1,m] and s be the value of αi in (4.2). Given that r(ns.@v ⊆FK

αi.@v) and r(αi.@v ⊆FK ns.@v) are in Σ, by the definition of P (αi) the total number
of X-nodes that are children of a node of type αi is equal to aivαi

. Second, let
i ∈ [m + 1, n] and s and t be the values of αi and βi in (4.1), respectively. Next we
prove that |{x | x is an X-node in T and x is a child of a node of type αi}| = aivsvt.
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αi

r1

(βi, ci, ci, X, ...,X)∗ α′
i

r2

(βi, di, di)
∗ αi

r3

(βi, ci, ci, X, ...,X)∗ α′
i

r4

(ci, ei)
∗(βi, di, di)

∗

Fig. 4.1. Part of the XML tree used in the proof of Theorem 4.1.

Given that r(ns.@v ⊆FK αi.@v) and r(αi.@v ⊆FK ns.@v) are in Σ, |ext(αi)| in
T is equal to |ext(ns)| = vs. Thus, in T there are exactly vs nodes of type αi, each of
them having exactly one child of type α′

i. Hence, there are exactly vs nodes of type α′
i,

the last one being of the form shown in Figure 4.1 (see node r4). By the definition of
P (α′

i), |{x | x is a child of r4 of type ci}| = |{x | x is a child of r4 of type ei}|. Given
that r(nt.@v ⊆FK ei.@v) and r(ei.@v ⊆FK nt.@v) are in Σ and that every node of
type ei in T is a child of r4, |{x | x is a child of r4 of type ci}| = |ext(nt)|. Thus, since
r4 is a node of type α′

i and α′
i(βi.@v ⊆FK ci.@v) and α′

i(ci.@v ⊆FK βi.@v) are in Σ,
|{x | x is a child of r4 of type βi}| = |ext(nt)| = vt. In addition, by the definition of
P (α′

i), the number of children of r4 of type di is 2vt.
Given that r3 is a node of type αi and αi(βi.@v ⊆FK di.@v) and αi(di.@v ⊆FK

βi.@v) are in Σ, |{x | x is a child of r3 of type βi}| = vt, since there are 2vt de-
scendants of r3 of type di and vt children of r4 of type βi. Furthermore, by the
definition of P (αi), the number of children of r3 of type X is aivt, and the number
of children of r3 of type ci is 2vt. We can use the same argument to prove that
the number of children of r2 of types βi and di are vt and 2vt, respectively. Thus,
the number of children of r1 of type X is aivt, and the number of descendants of
r1 of type X is 2aivt. If we continue with this process, we can prove, by induc-
tion, that the number of X-nodes in T that are children of some node of type αi

is vsaivt, since there are vs nodes of type αi in T . This concludes the proof, since
|{x | x is an X-node in T and x is a child of a node of type αi}| = aivsvt.

In the proof of Theorem 4.1, all relative keys are primary. Thus, we obtain the
following.

Corollary 4.2. SAT(RCPK ,FK ), the restriction of SAT(RCK ,FK ) to primary
keys, is undecidable.

5. Extended DTDs. In this section, we consider a slight extension of DTDs
which captures unranked tree automata. An extended DTD [32, 29] ED is a tuple
(D′, f, E), where D′ = (E′, A′, P ′, R′, r′) is a DTD, E is a finite set of element types
such that E ∩ E′ = ∅, and f is a surjective mapping f : E′ → E such that, for every
τ1, τ2 ∈ E′, we have R′(τ1) = R′(τ2) if f(τ1) = f(τ2). We say that a tree T conforms
to ED if there exists a tree T ′ that conforms to D′ such that T = f(T ′); that is, T
can be obtained by replacing each label τ in T ′ by f(τ). Extended DTDs support
a subtyping mechanism (specialization) and have proven useful in data migration
and integration, among other things (see, e.g., [29] for examples of extended DTDs
and their applications in data integration). It is also known that extended DTDs
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capture precisely MSO (monadic second-order logic) definable trees and the regular
tree languages of finite unranked trees [26, 29].

A constraint ϕ is said to be defined over extended DTD ED if every element type
τ mentioned in ϕ is in E.

The consistency problem for extended DTDs is defined exactly as in the case of
DTDs: given a specification (ED ,Σ), the problem is to verify whether there exists a
tree T conforming to ED and satisfying Σ. Next we show that the consistency problem
for extended DTDs can be efficiently reduced to the consistency problem for DTDs.

Let ED = (D′, f, E) be an extended DTD, where D′ = (E′, A′, P ′, R′, r′), and
Σ be either a set of AC∗,∗

K ,FK -constraints over ED or a set of ACreg
K ,FK -constraints

over ED . We consider here only absolute constraints since, by Theorem 4.1, the
consistency problem for extended DTDs and relative constraints is already undecid-
able for unary keys and foreign keys without regular expressions. We define DTD
D(ED) = (EED , A′, PED , RED , r′) as follows. Let EED = E′ ∪ E and

PED(τ) =

{
f(τ), P ′(τ), τ ∈ E′,

ε, τ ∈ E,
RED(τ) =

{
∅, τ ∈ E′,

R′(τ ′), τ ∈ E and f(τ ′) = τ.

Notice that RED is well defined since f is a surjective mapping such that R′(τ1) =
R′(τ2) whenever f(τ1) = f(τ2). Moreover, we define a set of keys and foreign keys
Γ(ED ,Σ) over DTD D(ED) as follows. If Σ is a set of AC∗,∗

K ,FK -constraints, then

Γ(ED ,Σ) = Σ. Otherwise, Σ is a set of ACreg
K ,FK -constraints, and for every ϕ ∈ Σ we

have the following constraint ψ in Γ(ED ,Σ). For every element type τ ∈ E, define
the image of substitution h on τ as h(τ) = (τ1 ∪ · · · ∪ τn), where {τ1, . . . , τn} is the
set of element types τ ′ ∈ E′ such that f(τ ′) = τ . If ϕ is a key β.τ.@l → β.τ , then
ψ = h(β.τ).τ.@l → h(β.τ).τ . If ϕ is a foreign key β1.τ1.@l1 ⊆FK β2.τ2.@l2, then
ψ = h(β1.τ1).τ1.@l1 ⊆FK h(β2.τ2).τ2.@l2. The following simple lemma shows that
the consistency problems for (ED ,Σ) and (D(ED),Γ(ED ,Σ)) are equivalent.

Lemma 5.1. Let ED = (D′, f, E) be an extended DTD and Σ be either a set of
AC∗,∗

K ,FK -constraints over ED or a set of ACreg
K ,FK -constraints over ED. Then (ED ,Σ)

is consistent iff (D(ED),Γ(ED ,Σ)) is consistent.
We note that if C is one of ACPK ,FK , ACK ,FK , AC∗,1

PK ,FK , and ACreg
K ,FK and Σ

is a set of C-constraints over an extended DTD ED , then Γ(ED ,Σ) is a set of C-
constraints over D(ED). Thus, given that D(ED) and Γ(ED ,Σ) can be constructed
in polynomial time from (ED ,Σ), we obtain the following corollary from the previous
lemma, Theorem 4.7 and Corollary 4.8 in [16], Corollary 3.5, and Theorem 3.7.

Corollary 5.2.

(a) The consistency problem for extended DTDs and ACK ,FK -constraints
(ACPK ,FK -constraints) is NP-complete.

(b) The consistency problem for extended DTDs and AC∗,1
PK ,FK -constraints is NP-

hard and can be solved in NEXPTIME.
(c) The consistency problem for extended DTDs and ACreg

K ,FK -constraints is
PSPACE-hard and can be solved in 2-NEXPTIME.

6. Conclusion. We have studied the problem of statically checking XML speci-
fications, which may include various schema definitions as well as integrity constraints.
As observed earlier, such static validation is quite desirable as an alternative to dy-
namic checking, which would attempt to validate each document; indeed, in the case
of repeated failures, one does not know whether the problems lies in the documents
or in the specification. Our main conclusion is that, however desirable, the static



878 MARCELO ARENAS, WENFEI FAN, AND LEONID LIBKIN

Table 6.1

Complexity of the consistency problem for absolute constraints.

Class AC∗,∗
K ,FK [16] AC∗,1

PK ,FK ACreg
K ,FK ACK ,FK [16]

Description Multiattribute Primary Unary regular Unary keys and
keys and multiattribute keys, path constraints foreign keys
foreign keys unary foreign keys (keys, foreign keys)

Upper bound Undecidable NEXPTIME 2-NEXPTIME NP
Lower bound Undecidable NP PSPACE NP

Table 6.2

Complexity of the consistency problem for relative constraints.

Class RC∗,∗
K ,FK [16] RCK ,FK RCPK ,FK

Description Multiattribute Unary keys and Primary unary keys
keys and foreign keys and foreign keys
foreign keys

Lower bound Undecidable Undecidable Undecidable

checking is hard: even with very simple document definitions given by DTDs, and
(foreign) keys as constraints, the complexity ranges from NP-hard to undecidable.

The main results are summarized in Tables 6.1 and 6.2 (we also included the main
results from [16] in those tables for completeness). When one deals with absolute
constraints, which hold in an entire document, the general consistency problem is
undecidable. It is solvable in NEXPTIME if foreign keys are single-attribute and
is NP-complete if so are all of the keys as well. However, if regular expressions are
allowed in single-attribute constraints, the lower bounds become at least PSPACE.
For relative constraints, which are required to hold only in a part of a document, the
situation is quite bleak, as even the very simple case of single-attribute constraints is
undecidable.

Although most of the results of the paper are negative, the techniques developed
in the paper help study consistency of individual XML specification with type and
constraints. These techniques include, e.g., the connection between regular expression
constraints and integer linear programming and automata.

One open problem is to close the complexity gaps. However, these are by no means
trivial: for example, SAT(AC∗,1

PK ,FK ) was proved to be equivalent to a problem related
to Diophantine equations whose exact complexity remains unknown. In the case of
SAT(ACreg

K ,FK ), we think that it is more likely that our lower bounds correspond to
the exact complexity of those problems. However, the algorithms are quite involved,
and we do not yet see a way to simplify them to prove the matching upper bounds.

Another topic for future work is to study the interaction between more complex
XML constraints, e.g., those defined in terms of XPath [37], and more complex schema
specifications such as XML Schema [38] and the type system of XQuery [39]. Our lower
bounds apply to those settings, but it is open whether upper bounds remain intact.
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Abstract. How efficiently can we search an unknown environment for a goal in an unknown
position? How much would it help if the environment were known? We answer these questions for
simple polygons and for undirected graphs by providing online search strategies that are as good as
the best offline search algorithms, up to a constant factor. For other settings we prove that no such
online algorithms exist. We introduce a natural measure which gives reasonable results and is more
realistic than pure pessimistic competitive analysis.
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1. Introduction. One of the recurring tasks in life is to search one’s environment
for an object whose location is—at least temporarily—unknown. This problem comes
in different variations. The searcher may have vision, or be limited to sensing by
touch. The environment may be a simple polygon, for example, an apartment, or a
graph, like a street network. Finally, the environment may be known to the searcher
or be unknown.

Such search problems have attracted a lot of interest in online motion planning;
see, for example, the survey by Berman [5]. Usually the cost of a search is measured
by the length of the search path traversed; this, in turn, is compared against the
length of the shortest path from the start position to the point where the goal is
reached. The maximum quotient of these values, taken over all environments and all
goal positions within an environment, is the competitive ratio of the search algorithm.

Most prominent is the problem of searching two half-lines emanating from a com-
mon start point. The “doubling” strategy visits the half-lines alternatingly, each time
doubling the depth of exploration. This way, the goal point is reached after traversing
a path at most 9 times as long as its distance from the start, and the competitive
ratio of 9 is optimal for this problem; see Baeza-Yates, Culberson, and Rawlins [4]
and Alpern and Gal [2]. This doubling approach frequently appears as a subroutine
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in more complex navigation strategies.
In searching m > 2 half-lines, a constant ratio with respect to the distance from

the start can no longer be achieved. Indeed, even if the half-lines were replaced by
segments of the same finite length, the goal could be placed at the end of the segment
visited last, causing the ratio to be at least 2m − 1. Exponentially increasing the
exploration depth by m/m− 1 is known [4, 2] to lead to an optimal competitive ratio
of

C(m) = 1 + 2m

(
m

m− 1

)m−1

≤ 1 + 2me.

Much less is known about more realistic settings. Suppose a searcher with vision
wants to search an unknown simple polygon for a goal in unknown position. He
could employ the m-way technique from above: By exploring the shortest paths from
the start to the m reflex vertices of the polygon—ignoring their tree structure—a
competitive ratio of C(m) can easily be achieved [23]. Schuierer [27] has refined this
method and obtained a ratio of C(2k), where k denotes the smallest number of convex
and concave chains into which the polygon’s boundary can be decomposed.

But these results do not completely settle the problem. For one, it is not clear
why the numbers m or k should measure the difficulty of searching a polygon. Also,
human searchers can often outperform m-way search, because they make educated
guesses about the shape of those parts of the polygon not yet visited.

In this paper we take the following approach: Let π be a search path for a fixed
polygon P , i.e., a path from the start point, s, through P from which each point p
inside P will eventually be visible. Let pπ be the first point on π where this happens
for a point p. The cost of getting to p via π is equal to the length of π from s to pπ,
plus the Euclidean distance from pπ to p. We divide this value by the length of the
shortest s-to-p path in P . The supremum of these ratios, over all p ∈ P , is the search
ratio of π. The lowest search ratio possible, over all search paths, is the optimum
search ratio of P ; it measures the “searchability” of P .

Apparently, this definition was first given by Koutsoupias, Papadimitriou, and
Yannakakis [24]. They studied graphs with unit length edges where the goal can be
located only at vertices, and they studied only the offline case where the graph is com-
pletely known a priori. They showed that computing the optimal search ratio offline
is an NP-complete problem, and gave a polynomial time 8-approximation algorithm
based on the doubling heuristic.

The crucial question we are considering in this paper is the following: Is it possible
to design an online search strategy whose search ratio stays within a constant factor
of the optimum search ratio for arbitrary instances of the environment? Surprisingly,
the answer is positive for simple polygons as well as for undirected graphs. (However,
for polygons with holes, and for graphs with unit edge length, where the goal positions
are restricted to the vertices, no such online strategy exists.)

Observe that this way of measuring performance is one step beyond competitiv-
ity. Although the definitions of the search ratio and the competitive factor are quite
similar, the concepts are different. In the competitive framework, we simply compare
the online path from the start to the goal to the shortest s-to-t path. For an approx-
imation of the optimal search ratio, we compare the online path to the best possible
offline path, which, in turn, may already have a bad competitive ratio.

To exemplify the given concept let us consider another simple environment: arbi-
trary trees with a common root as a starting point. For a fixed tree, T , there will be
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a strategy S(T ) which attains the best competitive search performance C(T ) among
all possible goals on T . We know that an optimal strategy S(T ) exists, but we do
not know what it looks like. Furthermore, for arbitrary trees it can be shown that
the performance C(T ) of S(T ) can increase arbitrarily, though S(T ) is not known.
Therefore, constant competitive searching is impossible for arbitrary trees T . But we
can try to approximate the strategy S(T ) for any tree T by a simple strategy A(T ).
In this paper we will show that we can design an approximation strategy A(T ) so
that A(T ) is only a constant time worse than S(T ). This means that the competitive
ratio of A(T ) is smaller than c · C(T ) for every T and a fixed constant c. Note that
c = 4 will be shown for this example in section 4.2.1. Thus, although the best search
strategy is not known, we can approximate it efficiently. If the environment is known
(but the goal is still unknown), sometimes the factor c can be slightly improved.

The idea of considering realistic ratios rather than pure pessimistic competitive ra-
tios was also examined in the field of scheduling; see, for example, Edmonds et al. [13],
Kalyanasundaram and Pruhs [22], or Berman and Coulston [6]. To compete with the
optimal offline algorithm in a constant competitive sense, the online scheduler is al-
lowed to have more power in speed or number of processors (or whatever). The
increase of power is mainly represented by a parameter which, in turn, influences the
competitive ratio. In our framework we increase the power of the agent only in the
offline setting where the environment is known but the goal still has to be found. In
the online setting we do not change the power balance between agent and adversary
at all.

The search strategies we will present use, as building blocks, modified versions of
constant-competitive strategies for online exploration, namely, the exploration strat-
egy by Hoffmann et al. [21] for simple polygons and the tethered graph exploration
strategy by Duncan, Kobourov, and Kumar [12].

At first glance it seems quite natural to employ an exploration strategy in search-
ing—after all, either task involves looking at each point of the environment. But
there is a serious difference in performance evaluation! In searching an environment,
we compete against shortest start-to-goal paths, so we have to proceed in a breadth
first search (BFS) manner.1 In exploration, we are up against the shortest round trip
from which each point is visible; this means that once we have entered some remote
part of the environment we should finish it, in a depth first search (DFS) manner,
before moving on.2 However, we can fit these exploration strategies to our search
problem by restricting them to a bounded part of the environment. This will be shown
in section 3, where we present our general framework, which turns out to be quite
elegant despite the complex definitions. The framework can be applied to both online
and offline search ratio approximations. In section 2 we review basic definitions and
notation. Our framework will then be applied to searching in various environments
like trees, (planar) graphs, and (rectilinear) polygonal environments with and without
holes in sections 4 and 5. In section 6 we give a construction scheme for lower bounds
on the search ratio. Finally, in section 7, we conclude with a summary of our results.

2. Definitions. We want to find a good search path in some given environment
E . This may be a tree, a (planar) graph, or a (rectangular) polygon with or without

1But, as opposed to searching a data structure, we do not have pointers that allow us to jump
to a different location for free.

2Observe, however, that neither plain BFS nor DFS would work! BFS is lacking the doubling
element, and DFS, in a simple polygon, would tend to follow a long convex chain even though a
small step to the side could be sufficient to see its endpoint.
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π

s

pπ

p

Fig. 2.1. A search path π in a polygon, visiting all essential cuts (the dotted lines). The dashed
path is the shortest path sp(p) from s to the goal p. Moving along π, p can first be seen from pπ.

holes. In a graph environment, the edges may have either unit length or arbitrary
length. Edge lengths do not necessarily represent Euclidean distances, not even in
embedded planar graphs. In particular, we do not assume that the triangle inequality
holds. The only restriction to the type of environments required by our framework in
section 3 is that there is a shortest path from every point, p, in E back to the start
point, s, that is of the same length as a shortest path from s to p;3 that is, for all p
in E it holds that |sp(s, p)| = |sp(p, s)|.

In most cases, we want to search the whole environment, but there are special
kinds of search problems where we know that the goal may be hidden only in some
parts of the scene. Let the goal set G ⊆ E denote the part of the environment where
the stationary goal may be located. For example, if we search in a graph, G = (V,E),
the goal may be located anywhere along the edges of the graph; we call this setting
geometric search and set G := V ∪ E. On the other hand, we may consider a vertex
search, where the goal is restricted to be hidden in a vertex; in this case, we set G := V .
Now, exploring E means to move around in E until all potential goal positions G have
been seen, whereas searching in E means to follow some exploration path in E , until
the goal has been seen. We require—as usual—that the distance to the goal is at
least 1; otherwise, no search strategy is able to achieve a bounded competitive factor.
Further, we assume that agents have perfect localization abilities; that is, they always
know a map of the already explored part of E , and they can always recognize when
they visit some point for the second time (the robot localization problem is actually
a difficult problem by itself; see, for example, [16]).

The searcher either can be blind (i.e., it can sense only its very close neighborhood)
or can have vision; that is, it can see objects far away from its current position if the
line of sight is not blocked by an obstacle. The model of visibility depends on the
type of environment; see sections 4 and 5 for more details.

We now introduce some notation: Given a start point, s ∈ E , let π be a path in
the environment E starting in s. For a given point q ∈ π let π(q) denote the part of
π from s to q. For an arbitrary point p ∈ E let sp(p) denote a shortest path from s
to p in the given environment, and let pπ ∈ π denote the point from which a searcher
following π sees p for the first time; see Figure 2.1. We denote the length of a path

3Note that this is not the case for directed graphs, but it holds for undirected graphs and polyg-
onal environments. We will see later that there is no constant-competitive online search algorithm
for directed graphs.
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segment π(p) by |π(p)|. Paths computed by some algorithm A will be named A, too.
In particular, we write |A| for the length of the tour computed by A. The main
concept in our paper is the following.

Definition 2.1. Let E be an environment, G ⊆ E a goal set, and s ∈ E a point
in the environment. A search path, π, with start point s is a path which starts in s
and allows a searcher following π to see every goal position in G from at least one
point on π. The search ratio, sr(π), is defined as

sr(π) := sup
p∈G

|π(pπ)| + |pπp|
|sp(p)| .

In other words, we compare the path walked by a searcher to the shortest path and
take the worst ratio among all possible targets as the search ratio of our search path.

An optimal search path, πopt, is a search path with a minimum search ratio
among all possible paths in the environment. We denote the optimal search ratio by
sropt; that is, sropt := sr(πopt). For blind agents, p = pπ holds for every p ∈ E;

therefore, the search ratio can be computed as sr(π) := supp∈G
|π(p)|
|sp(p)| .

As the optimal search path seems hard to compute [24], we are interested in finding
good approximations of the optimal search path in offline and online scenarios. We say
a search algorithm A is search-competitive with factor C—or C–search-competitive
for short—if there are constants C ≥ 1 and B ≥ 0, so that sr(πA) ≤ C ·sropt+B holds
for every path πA computed by A. Note that πA is then a C · sr(πopt)-competitive
search path in the usual competitive sense. We use the term C–search-competitive
also for the approximation factor of offline approximation algorithms. If there is no
C–search-competitive algorithm for any constant C, we call this type of environment
hard-searchable.

In the following, we want to use existing exploration algorithms to approximate
the optimal search path. We assume that every exploration algorithm returns to the
start point when the whole environment is explored.

Definition 2.2. For a given environment E and d ≥ 1, let E(d) denote the
part of E within distance at most d from s, and OPT(d) the optimal exploration for
E(d). Further, let Expl be an—online or offline—algorithm for the exploration of
environments of the given type. Expl is called depth-restrictable if for every d ≥ 1 it
is possible to modify the algorithm Expl to an algorithm Expl(d) that explores E(d)
(i.e., the algorithm sees at least all potential goal positions of distance at most d—and
maybe some more—before it returns to the start point), and there are constants β > 0
and Cβ ≥ 1, so that

(2.1) |Expl(d)| ≤ Cβ · |OPT(β · d)|

holds for every environment of the given type (i.e., Expl(d) is Cβ-competitive with
respect to OPT(β · d)).

For example, the DFS traversal for trees is depth-restrictable with β = 1 and
Cβ = 1: In every step we know exactly the distance to the tree’s root. Thus, we can
decide whether we can explore the children of the current node or cannot explore the
tree more deeply, because we have reached depth d. Obviously, DFS is optimal also
for depth-restricted exploration.

In the usual competitive framework, we would compare Expl(d) to the optimal
algorithm OPT(d) (i.e., β = 1). As we will see later, our more general definition
sometimes makes it easier to find depth-restrictable exploration algorithms. Usually,
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we cannot just take an exploration algorithm Expl for E and restrict it to points
within distance at most d from s. This way, we might miss useful shortcuts outside
of E(d). Even worse, it may not be possible to determine in an online setting which
parts of the environment belong to E(d), making it difficult to explore the right part
of E . In sections 4 and 5 we will derive depth-restricted exploration algorithms for
graphs and polygons by carefully adapting existing exploration algorithms for the
entire environment.

3. A general approximation framework. In this section, we show how to
transform a depth-restrictable exploration algorithm, offline or online, into a search
algorithm, without losing too much on the approximation factor.

Let E be the given environment and πopt an optimal search path. Remember
that we assume that, for any point p, we can reach s from p on a path of length at
most sp(p).

Let Expl be an exploration algorithm for E , and for d ≥ 1, let Expl(d) be the
corresponding depth-restricted exploration algorithm for E(d). Let OPT and OPT(d)
denote the corresponding optimal offline depth-restricted exploration algorithms. We
assume that the exploration strategies will always return to the start.

To obtain a search algorithm for E , we use the well-known doubling paradigm and
successively apply our given exploration strategy with increasing exploration depth;
that is, we successively run Expl(2i), each iteration starting and ending in the start
point, s.

Theorem 3.1. The doubling strategy based on a depth-restrictable exploration
algorithm with factors Cβ and β is a 4βCβ–search-competitive search algorithm for
blind agents and an 8βCβ–search-competitive search algorithm for agents with vision.

Proof. Consider one iteration of the doubling strategy with search radius d ≥ 1.
The optimal search path πopt for E must in particular explore all possible goal po-
sitions within distance at most d from s. Let lastd be the point on πopt from which
we see the last point within distance at most d from s when moving along πopt.
Returning from lastd to s closes an exploration tour of E(d); therefore,

|OPT(d)| ≤ |πopt(lastd)| + |sp(lastd)| .
In contrast to blind searchers, lastd may be located outside E(d) for agents with

vision; thus, we distinguish between blind agents and agents with vision to bound
|sp(lastd)|. A blind agent can detect lastd only by visiting it, so we have sp(lastd) ≤ d.
Thus,

(3.1) sropt ≥
|πopt(lastd)|

d
≥ |OPT(d)| − d

d
⇐⇒ |OPT(d)| ≤ d · (sropt + 1) .

The worst case for the search ratio of the doubling strategy occurs when we
explore the environment up to some distance 2j+1 while the goal is within distance
2j +ε for some small ε > 0. Thus, the search ratio of the doubling strategy is bounded
by

sr(π) ≤
∑j+1

i=1 |Expl(2i)|
2j + ε

.

Expl is depth-restrictable with factor Cβ , so we can apply (2.1):

sr(π) ≤ Cβ

2j
·
j+1∑
i=1

|OPT(β · 2i)| .
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Finally, with (3.1) we get

sr(π) ≤ Cβ

2j
·
j+1∑
i=1

β · 2i · (sropt + 1)

≤ βCβ ·
(

2j+2 − 2

2j

)
· (sropt + 1)

≤ 4β Cβ · (sropt + 1) .

If the agent has vision, it may see the last point within distance at most d from
somewhere else, so we cannot guarantee sp(lastd) ≤ d. We know only |sp(lastd)| ≤
|πopt(lastd)| (i.e., the return path to s cannot be longer than the path the agent
traveled along πopt). Thus,

sropt ≥
|πopt(lastd)|

d
≥ |OPT(d)|

2d
⇐⇒ |OPT(d)| ≤ 2d · sropt .

Further, we detect the goal by applying the exploration strategy with depth 2j+1

and return to the start; then we still have to move to the goal. Similar to the case of
blind agents, we obtain for the search ratio an upper bound of

2j +
∑j+1

i=1 |Expl(2i)|
2j

≤ 1 + Cβ ·
∑j+1

i=1 |OPT(β2i)|
2j

≤ 1 + 2Cβ ·
∑j+1

i=1 β2i sropt

2j

≤ 1 + 8βCβ · sropt .

In the next two sections we will apply our framework to various types of en-
vironments and agents. The difficult part is always to find good depth-restrictable
exploration algorithms.

4. Searching graphs. We distinguish between graphs with unit length and
arbitrary length edges, planar and nonplanar graphs, directed and undirected graphs,
as well as vertex and geometric search. We consider only blind agents: Located at a
vertex of a (directed) graph, the agent senses only the number of outgoing edges, but
neither their lengths nor the positions of the other vertices are known. Incoming edges
cannot be sensed; see Deng and Papadimitriou [10]. Blind agents must eventually visit
all points in the goal set. In the vertex search problem, we assume w.l.o.g. that graphs
do not have parallel edges. Otherwise, there can be no constant–search-competitive
vertex search algorithm: In Figure 4.1(i), the optimal search path s → v → t → s has
length 3, whereas any online search path can be forced to cycle often between s and
v before traversing the edge v → t. Note that we can also use undirected edges.

4.1. Hard-searchable graphs. First, we show that for many graph classes
there is no constant–search-competitive online search algorithm. Incidentally, there
is also no constant-competitive online exploration algorithm for these graph classes.
Note that we have the following implications for hard-searchable graphs:

• If planar graphs are hard-searchable, then so are nonplanar graphs.
• If graphs with unit length edges are hard-searchable, then so are graphs with

arbitrary length edges.
• If undirected graphs are hard-searchable, then so are directed graphs (we can

replace each undirected edge with directed edges in both directions).
Theorem 4.1. For blind agents, there is no constant–search-competitive online

algorithm in the following settings:
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(ii)

t
v

s

(i)

Fig. 4.1. There is no constant–search-competitive vertex search algorithm for (i) graphs with
parallel edges, (ii) vertex search in nonplanar graphs.
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(i)

1 1

1 1
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s t

(ii)

ε
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Fig. 4.2. There is no constant–search-competitive vertex search algorithm for (i) vertex search
and geometric search in directed graphs (the nodes ◦ occur only in the case of unit-length edges),
(ii) vertex search in planar graphs with arbitrary edge length (the arrows denote the points on the
edges where the searcher decides to return to s).

1. Vertex search in nonplanar graphs.
2. Vertex search and geometric search in directed planar graphs.
3. Vertex search in planar graphs with arbitrary edge lengths.

Proof.

1. Consider the graph in Figure 4.1(ii) with unit length edges. It is a k-clique,
where each vertex has a sibling that has only one connection to the clique.
The optimal search ratio is Θ(k): We successively visit every clique vertex
and explore its sibling before proceeding to the next clique vertex. This yields
a path of length 3k. On the other hand, any online search algorithm can be
forced to travel Ω(k2) before reaching the last vertex, so it has search ratio
Ω(k2). Thus, it is not better than k-competitive.
Note that in a k-clique without siblings a BFS traversal achieves the optimal
search ratio.

2. For vertex search, consider the planar graph in Figure 4.2(i) with a very long
edge from s to w. The optimal search path, s → v → w, has search ratio 1.
However, any online algorithm can be forced to first explore the long edge
from s to w, resulting in a very high search ratio.
If we are restricted to unit length edges, we can add more vertices along the
long edge (marked with ◦ in Figure 4.2(i)). Then the optimal search path
explores this long path after exploring the short cycle s → w → s. Because
in the worst case the goal is hidden on the first vertex of the long path, this
path achieves a search ratio of 5.
For a geometric search, with unit length edges or arbitrary edges, we can use
the same planar graph. Again, we force the online algorithm to explore the
long edge at first. In contrast, the optimal strategy visits the cycle s → w → s
before exploring the long edge. The optimal strategy achieves its worst case
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if the goal is hidden within distance 1 on the long edge.
3. For any given online search algorithm, we construct a planar graph as in

Figure 4.2(ii) with k outgoing edges at the start vertex, s. An online algorithm
visits one of the k edges at first. If the algorithm does not return to s while
exploring this edge, the currently visited edge is the only long edge in the
graph and all other edges are very short. The optimal strategy visits only
short edges; thus, this algorithm can be arbitrarily bad.
Hence, to achieve a good approximation factor, an online algorithm must at
some point decide to stop exploring the first edge and to return to s (the
small arrows in the figure indicate this point). We place the endpoint of the
currently visited edge immediately behind the last visited point and continue
similarly with the next k − 2 edges. The last edge ends in vertex t, and its
length is the minimum length among the first k − 1 edges. Then we connect
the endpoints of the first k−1 edges to t by an edge of length ε, where ε > 0 is
some very small number. The optimal search path in this graph first travels
the last edge and then visits every other vertex quickly from t. Thus, its
search ratio is close to 1. On the other hand, the online algorithm has search
ratio at least k. Note that we introduced all the edge endpoints (instead of
having the edges ending in t) because we assumed that there are no parallel
edges.

Note that there is an O(D8)-competitive exploration for directed graphs by Fleis-
cher and Trippen [17]. D denotes the deficiency of the given graph, that is, the
minimum number of edges that must be added to get an Euler graph. This example
shows that there are settings where there is no constant–search-competitive online
algorithm, although there is an O(D8)–competitive exploration algorithm. The prob-
lem is that this algorithm is not depth-restrictable. Besides, directed graphs do not
fulfill |sp(s, p)| = |sp(p, s)| for all p in E , so we cannot apply our framework to directed
graphs, anyway.

4.2. Competitive search in graphs. In this subsection, we present search-
competitive online and offline search algorithms for the remaining graph classes. Note
that we consider only undirected graphs.

4.2.1. Trees. On trees, DFS is a 1-competitive online exploration algorithm
for vertex and geometric search that is depth-restrictable; it is still 1-competitive
when restricted to search depth d for any d ≥ 1. Thus, the doubling strategy gives
a polynomial time 4–search-competitive search algorithm for trees—offline as well
as online. On the other hand, it is an open problem whether the computation of
an optimal vertex or geometric search path in trees with unit length edges is NP-
complete [24].

4.2.2. Vertex search in graphs with unit length edges. Now, we give
competitive search algorithms for vertex search in planar graphs with unit length edges
and—in the next section—for geometric search in undirected graphs with arbitrary
length edges. Both algorithms are based on an online algorithm for tethered graph
exploration.

In the tethered exploration problem the agent is fixed to the start point by a
rope of restricted length. An optimal solution to this problem was given by Duncan,
Kobourov, and Kumar [12]. Their algorithm, closest first exploration (CFX), explores
an unknown graph with unit length edges in 2|E|+ (4 + 16

α )|V | edge traversals, using
a rope length of (1 +α)d, where d is the distance of the point farthest away from the
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start point and α > 0 is some parameter. Note that CFX explores the whole graph
in spite of the tethered restriction.

CFX explores the graph in a mixture of depth-bounded DFS on G, DFS on
spanning trees of parts of G, and recursive calls to explore certain large subgraphs.
The basic idea of CFX is to maintain a set, T , of edge-disjoint, partially4 explored
subtrees—more precisely, spanning trees of incomplete graph parts—that fulfill certain
conditions on minimum size and maximal depth. Initially, T consists of one tree
containing only the start node, s. The strategy successively selects the subtree nearest
to s and walks to its root. Then, CFX traverses the subtree using DFS. For each
encountered, incompletely explored vertex, CFX starts a depth-bounded DFS. In this
process, new vertices are discovered and new subtrees are added to T , possibly split
into several smaller subtrees if they do not fulfill the conditions.

The costs for applying CFX sum up from relocation from s to the roots of the
subtrees and back to s, the DFS traversals, and the costs for the depth-bounded DFS
starting in unexplored vertices. The latter traverses only unexplored edges; thus, we
have costs 2|E| for this part. For a subtree, T , with |T | vertices, we have costs 2|T |
for the DFS traversal. The size restrictions for the subtrees ensure that we can bound
the relocation costs by 8

α |T |. As the subtrees may overlap, we can bound the sum of
all vertices in the subtrees by 2|V |. Altogether, we get

2|E| +
(

2 +
8

α

)∑
T

|T | ≤ 2|E| +
(

2 +
8

α

)
· 2|V | = 2|E| +

(
4 +

16

α

)
|V | .

As Duncan, Kobourov, and Kumar pointed out, the algorithm can be used even
if the necessary rope length, d, is not known: They explore the whole graph by
successively applying CFX and doubling d in every step. The important part is that
the analysis still holds in this case. Particularly, we can apply CFX for a depth-
restricted exploration (i.e., explore only a subgraph of G). For d ≥ 1, let G(d) denote
the subgraph5 of G = (V,E) where all points p ∈ V ∪E have distance at most (1+α)d
from s. For convenience, let G∗ = (V ∗, E∗) := G((1 + α)d). To explore all vertices in
G(d)—and maybe some additional vertices from G((1 + α)d)—using a rope of length
(1 + α)d, the number of edge traversals is bounded by

2|E∗| +
(

4 +
16

α

)
|V ∗| .

Let us call this algorithm CFX(d). We have the following lemma.
Lemma 4.2. In planar graphs with unit length edges, CFX is a depth-restrictable

algorithm for online vertex exploration with β = 1 + α and Cβ = 10 + 16
α .

Proof. As G∗ is planar, we have |E∗| ≤ 3|V ∗| − 6 by Euler’s formula. Thus, the
number of edge traversals of CFX(d) is at most

2 |E∗| +
(

4 +
16

α

)
|V ∗| ≤ 6 |V ∗| +

(
4 +

16

α

)
|V ∗| =

(
10 +

16

α

)
|V ∗| .

On the other hand, we have OPT((1 + α)d) ≤ |V ∗|, because the optimal algorithm
must visit each vertex in V ∗ at least once.

4That is, there are vertices that are already discovered but still have unvisited incident edges.
5In the case of unit-length edges, we omit all edges with length < 1 in the subgraph G(d). Such

edges occur if d is not an integer value.
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Now, we can apply our framework with CFX.
Theorem 4.3. The doubling strategy based on CFX(d) is a 206–search-competitive

online vertex search algorithm for blind agents in planar graphs with unit length edges.
Proof. By Lemma 4.2, CFX(d) is depth-restrictable with β = 1 + α and Cβ =

10 + 16
α . By Theorem 3.1, the doubling strategy based on CFX is 4βCβ-competitive.

Altogether, we have

4 · β · Cβ = 4 · (1 + α) ·
(

10 +
16

α

)
= 104 + 40α +

64

α
.

By simple analysis, we get the minimal competitive ratio of 205.192 . . . attained for

α =
√

8
5 .

4.2.3. Geometric search in graphs with arbitrary length edges. We note
that CFX(d) can be modified to work on graphs with arbitrary length edges: Instead
of counting the number of edge traversals, the algorithm has to track the length of the
traversed edges. Now, it may happen that the maximal rope length is reached on an
edge somewhere between two vertices. In this case, we interrupt the edge traversal,
add an auxiliary vertex, and split the edge into two parts. Note that the added vertex
is incompletely explored, so CFX will return to this vertex in a successive stage. Let
�(E) denote the total length of all edges in E. It is possible to adapt the proofs by
Duncan, Kobourov, and Kumar [12] to prove the following lemma.

Lemma 4.4. In graphs with arbitrary length edges, CFX (d) explores all edges and
vertices in G(d) using a rope of length (1 + α)d at a cost of at most (4 + 8

α ) · �(E∗).
Proof (sketch). The proof is similar to the unit-length case, but we can no longer

use the number of visited vertices to bound the number of traversed edges. Instead,
we bound the costs for the depth-bounded DFS by 2 �(E∗). As the subtrees are
edge disjoint, we can bound the costs for the DFS traversals by 2 �(E∗), too. The
size restriction on the subtrees still ensures that the relocation costs are bound by
8
α �(E∗). Altogether, we get (4+ 8

α ) · �(E∗). Note that we have no additional costs for
the auxiliary vertices, because we count only edge lengths, and by inserting auxiliary
vertices we split one edge into two smaller edges whose total length is the same as the
original edge.

Lemma 4.5. In undirected graphs with arbitrary length edges, CFX is a depth-
restrictable online geometric exploration algorithm with β = 1 + α and Cβ = 4 + 8

α .
Proof. The total cost of CFX(d) is at most (4+ 8

α ) · �(E∗) by Lemma 4.4. On the
other hand, OPT((1 + α)d) must traverse each edge in E∗ at least once.

Theorem 4.6. The doubling strategy based on CFX (d) is a 94–search-competitive
online geometric search algorithm for blind agents in undirected graphs with arbitrary
length edges.

Proof. By Lemma 4.5, CFX(d) is depth-restrictable with β = 1+α and Cβ = 4+ 8
α .

Thus, by Theorem 3.1 the doubling strategy is 4βCβ-competitive, and we have

4 · β · Cβ = 4 · (1 + α) ·
(

4 +
8

α

)
= 48 + 16α +

32

α
.

Simple analysis shows that this factor is minimal for α =
√

2, yielding a factor of
93.254 . . . .

4.2.4. Offline searching. In the offline setting, the searcher knows the graph
but still does not know the location of the target. Thus, we want to compute (or
approximate) an optimal search path in a known graph.
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Computing an optimal search path in a known graph is NP-hard [24], but we
can use our framework to give an approximation. Given a graph G = (V,E) and an
exploration depth d ≥ 1, we can compute the subgraph G(d). Now, we have to find
an appropriate exploration strategy for G(d). In the case of a vertex search, exploring
G(d) amounts to finding a traveling salesperson (TSP) tour on G(d). This problem
is NP-hard, too, but we can approximate a TSP tour within factor Cβ = 2 using the
mimimum–spanning-tree heuristic,6 or we can use one of the 1+ ε approximations by
Grigni, Koutsoupias, and Papadimitriou [18], Arora [3], or Mitchell [25].

The problem of finding a minimum-length tour that visits every edge of a given
graph at least once is known as the Chinese postman problem and can be solved in
polynomial time for graphs that are either directed or undirected [14, 26]. In this
case, we have Cβ = β = 1. Altogether we have the following theorem.

Theorem 4.7. There is a 4–search-competitive strategy for offline geometric
search and an 8–search-competitive strategy for offline vertex search.

5. Searching polygons.

5.1. Simple polygons. A simple polygon, P , is given by a closed, noninter-
secting polygonal chain. Our searcher is equipped with ideal, unlimited vision; that
is, it is provided with the full visibility polygon with respect to the searcher’s current
position.

To apply our framework, we need a depth-restrictable online exploration algo-
rithm. The best known algorithm, PolyExplore, for the online exploration of a simple
polygon by Hoffmann et al. [21] achieves a competitive ratio of 26.5.

Let P (d) ⊆ P denote the part of the polygon P where all points have a distance
at most d from the start. We can modify PolyExplore to explore P (d): During the
exploration, an unseen part of P always lies behind a cut cv emanating from a reflex
vertex, v. These reflex vertices are called unexplored as long as we have not visited
the corresponding cut cv. The algorithm maintains a list of unexplored reflex vertices
and successively visits the corresponding cuts. While exploring a reflex vertex (along
a sequence of line segments and circular arcs), more unexplored reflex vertices may
be detected or unexplored reflex vertices may become explored. These vertices are
inserted into or deleted from the list, respectively. In PolyExplore(d), unexplored
reflex vertices within a distance greater than d from the start are simply ignored; that
is, although they may be detected they will not be inserted into the list. Let OPT(d)
be the shortest path that sees all points in P (d).

Note that both PolyExplore(d) and OPT(d) may exceed P (d), as shown in Fig-
ure 5.1. In (i) PolyExplore(d) successively explores the vertices vr and v�, but OPT(d)
visits the cuts outside P (d). In (ii) PolyExplore(d) leaves P (d) in e4. However, we can
enlarge P (d) to P ′(d) by a well-defined region so that the resulting polygon contains
PolyExplore(d) as well as OPT(d); see Figure 5.1.

More precisely, let d′ be the maximal distance from PolyExplore(d) and OPT(d)
to s; then we simply define P ′(d) := P (d′). Newly inserted reflex vertices in P ′(d)
cannot influence the paths of OPT(d) and PolyExplore(d) in P ′(d). Thus, the analysis
of PolyExplore by Hoffmann et al. still holds for OPT(d) and PolyExplore(d) in P ′(d),
and we have the following lemma.

Lemma 5.1. In a simple polygon, PolyExplore is a depth-restrictable online
exploration algorithm with β = 1 and Cβ = 26.5.

6Note that we cannot apply the Christofides heuristic [8], because the triangle-inequality is not
fulfilled in arbitrary graphs.
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Fig. 5.1. (i) PolyExplore(d) explores the right reflex vertex vr along a circular arc (1), returns
to the start (2), and explores the left reflex vertex v� likewise (3)–(4). OPT(d) (dashed line) leaves
P (d). (ii) PolyExplore(d) leaves P (d), whereas the shortest exploration path for P (d) lies inside P (d).
In both cases, we can extend P (d) (dark gray) to P ′(d) (light gray) containing both PolyExplore(d)
and OPT(d).

Theorem 5.2. The doubling strategy based on PolyExplore(d) is a 212–search-
competitive online search algorithm for an agent with vision in a simple polygon.
There is also a polynomial time 8–search-competitive offline search algorithm.

Proof. The online search-competitiveness follows from Lemma 5.1 and Theo-
rem 3.1.

If we know the polygon, we can compute OPT(d) in polynomial time by adapting
a corresponding algorithm for P . Every known polynomial time offline exploration
algorithm visits the essential cuts in a certain sequence; see, for example, [7, 29, 28, 11].
Any of these algorithms can be used in our framework. As an optimal algorithm has
approximation factor C = 1, our framework yields an approximation of the optimal
search path with a factor of 8.

The overall running time of the algorithm seems to depend on the distance to the
farthest reflex vertex of the polygon. However, we skip a step with distance 2i if there
is no reflex vertex within a distance between 2i−1 and 2i. Thus, we always explore at
least one new vertex in every iteration of the doubling strategy. Altogether, the total
running time is bounded by a polynomial in the number of the vertices of P .

Note that there is a considerable gap between the upper bound given by Hoffmann
et al. [21] and the best known lower bound of 1.2825 [20]. The authors conjecture
that the actual performance of PolyExplore is below 10 [21]; the worst case known so
far is 5 [19]. Under this assumption, the search-competitivity of a doubling strategy
based on PolyExplore can be expected to be below 80.

Now the question arises whether there is a polynomial time algorithm that com-
putes the optimal search path in a simple polygon. We have to visit every essential
cut, so we can try to visit them in any possible order. Anyway, we do not know
exactly which point on the cut we should visit. We are not sure whether there are
only a few possibilities as in the shortest watchman route problem. In other words, it
is unknown whether this subproblem is discrete at all. So the problem of computing
an optimal search path in a polygon is still open.

Even for rectilinear simple polygons no polynomial time algorithm for the optimal
search path is known, but we can find better online algorithms.

Theorem 5.3. For an agent with vision in a simple rectilinear polygon there is
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Fig. 5.2. Lower bound construction for approximating the optimal search path in polygons with
holes (start point s′). The upper half shows the lower bound for the exploration task by Albers,
Kursawe, and Schuierer (start point s).

an 8
√

2–search-competitive online search algorithm. There is also a polynomial time
8–search-competitive offline search algorithm.

Proof. For a rectilinear simple polygon, P , Deng, Kameda, and Papadimitriou
[9] introduced a simple

√
2-competitive online exploration algorithm. Obviously, this

algorithm is depth-restrictable—we simply ignore reflex vertices farther away than
d—while remaining

√
2-competitive compared to the restricted optimal path OPT(d).

The optimal path never leaves P (d), because we have only 90◦ reflex vertices. Our
framework gives an 8

√
2–search-competitive online search algorithm.

In the offline setting, we can obtain a polynomial time 8–search-competitive search
algorithm based on an optimal depth-restricted exploration algorithm similar to The-
orem 5.2.

5.2. Polygons with holes. In this section, we show that there is no constant–
search-competitive online search algorithm for polygons with (rectangular) holes. Al-
bers, Kursawe, and Schuierer [1] showed that there is no constant-competitive online
exploration algorithm for polygons with holes. They filled a rectangle of height k
and width 2k, k ≥ 2, with O(k2) rectangular holes such that the optimal exploration
tour has a length in O(k), whereas any online exploration algorithm needs to travel
a distance within Ω(k2). Additionally, every point p ∈ E has at most the distance 3k
from the start point, s; see Figure 5.2 and Albers, Kursawe, and Schuierer [1] for a
detailed description.

Theorem 5.4. For an agent with vision in a polygon with holes there is no
constant–search-competitive online search algorithm.

Proof. Unfortunately, in the lower bound construction of Albers, Kursawe, and
Schuierer the optimal exploration paths yields a bad search ratio. Thus, we enlarge the
setting by a thin corridor of length k that leads to the former start point, s. Our new
start point, s′, is located at the end of the new corridor; see Figure 5.2. Now, every
point that is not visible from s′ is at least k steps away from s′; that is, sp(s′, p) ≥ k
holds for such a point p. The optimal exploration path is still never longer than C ·k for
a constant C; thus, the optimal exploration path is a C-approximation of the optimal
search path. In the new scene, every online exploration algorithm is forced to walk
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a path of length in Ω(k2). Because every online approximation of the optimal search
path is also an online exploration algorithm, there are points that are discovered after
walking a path length in Ω(k2), although their distance to s′ is within O(k). Thus,
no online approximation is able to achieve a constant approximation factor.

Since the offline exploration problem is NP-complete (by straightforward reduc-
tion from planar TSP) we cannot use our framework to get a polynomial time approx-
imation algorithm of the optimal search path. However, there is an exponential time
8-approximation algorithm. We can list the essential cuts of OPT(d) in any order to
find the best one. Applying our framework gives an approximation factor of 8 for the
optimal search ratio.

The results of Koutsoupias, Papadimitriou, and Yannakakis [24] imply that the
offline problem of computing an optimal search path in a known polygon with holes
is NP-complete.

6. A general lower bound. We have seen that for certain types of environ-
ments there exists an approximation for the optimal search path if there exists a
depth-restrictable, competitive exploration strategy. Further, we have seen that poly-
gons with holes are hard-searchable. Now, we want to generalize the latter result; that
is, we want to show that—under a certain condition—there is no approximation up
to a constant factor if there is no competitive exploration strategy for environments
of the given type.

Usually, the nonexistence of competitive exploration strategies is shown by giving
a lower bound—a scenario in which every exploration strategy is forced to walk a
path whose length exceeds the length of the optimal exploration path by more than a
constant factor. To transfer such a result to search path approximations, we require
that the scenario can be extended around the start point, such that the start point
moves further away from the original scenario. We used this technique in section 5.2.
One might think of an arbitrary large narrow corridor which is added to a given
environment.

Definition 6.1. Let E be an environment of arbitrary type and s be a start
point in E. We call E s-extendable if we can enlarge E locally around the start point;
that is, it is possible to choose a new start point, s′, outside E and enlarge E to
E ′ such that s′ is contained in E ′ and every path from s′ to a point in E passes s.
Additionally, we require that along any path from s′ to s all targets in the extension
will be (successively) detected—but no target ouside the extension. And we can design
E ′ so that the shortest path from s to s′ has arbitrary length.

Beyond this rather technical condition some additional properties of a lower bound
construction should hold.

We consider environments E of a given type such that |sp(s, p)| = |sp(p, s)| holds.
This was already one of our main requirements; see section 2. Let us now assume
that there is an optimal exploration strategy OPT for E but in general there is no
constant competitive online exploration strategy. We assume that this is shown by a
lower bound construction L(n), where n indicates the size of L(n). More precisely,
we assume that any online exploration strategy A has path length |A(L(n))| ≥ C(n) ·
|OPT(L(n))| in the environment L(n) and C(n) is unbounded in n.

Furthermore, the length of the shortest path to any goal in L(n) should be
bounded by K · |OPT(L(n))|, where K is a constant. Obviously, the last condition
always holds for blind agents.

Under the given conditions we can prove the following general result.
Theorem 6.2. If there is no constant-competitive online exploration algorithm
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for environments of a given type as indicated above, and the corresponding lower
bound is s-extendable and additionally fulfills the properties above, then there is no
competitive online approximation of the optimal search path.

Proof. Any online approximation, A, of the optimal search path is also an online
exploration strategy; therefore, we have |A(L(n))| ≥ C(n) · |OPT(L(n))|, and C(n)
is unbounded in n. We extend L(n) by placing a new start point, s′, outside L(n)
with distance |OPT(L(n))| and connecting it to the former start point s. Adding the
shortest path from s to s′ to OPT(L(n)), this offline algorithm obviously has constant
search ratio. The targets in the extension are detected optimally, and every target in
L(n) has a shortest distance of at least |OPT(L(n))| from s′. For visiting a detected
goal t in L(n) the extended version of OPT(L(n)) might first run to its end and back
to the start and then runs along the shortest path to t. This always gives a constant
ratio.

On the other hand, for every online approximation, A, there are some goals t
which are detected after a path length greater than or equal to C(n) · |OPT(L(n))|,
but the shortest path to the goal t is not longer than (K + 1) · |OPT(L(n))| for a

constant K. Thus, there is a search ratio of at least C(n)
K+1 which is still unbounded

in n.

7. Conclusion and open problems. There are environments where no online
search strategy can achieve a constant competitive factor. Therefore, we used the
search ratio as a parameter of a given environment that gives a measure for the
environment’s searchability. A search strategy is considered “good” if it achieves a
good approximation of the optimal search ratio; that is, the search ratio of an online
strategy is at most a constant factor worse than the optimal search ratio.

We showed that we can use depth-restrictable exploration strategies—exploration
strategies that can be modified to explore the environment only up to a certain depth
while they are still competitive—to approximate the optimal search path by succes-
sively applying the exploration with exponentially increasing exploration depths. For
blind agents we showed that there are 4βCβ-approximations and for searchers with
vision 8βCβ-approximations, where β and Cβ are parameters that depend on the
modifications to turn an exploration algorithm into a depth-restricted exploration.
We applied our results to various types of graphs and polygons; see Table 7.1.

Further, we showed that there is no constant–search-competitive strategy for poly-
gons with holes. The main idea for this proof—enlarging the environment close to
the start point—can be generalized for environments that fulfill a certain condition
we called s-extendable. We also showed that some graph settings—including directed
graphs—are hard-searchable.

Altogether, we showed a close relation between searching and exploring: For
environments fulfilling |sp(s, p)| = |sp(p, s)| for all p in E there is some equivalence
between constant-competitive exploring and searching if the exploration strategy is
depth-restrictable and the lower bounds are s-extendable (among some other natural
properties). Naturally, these results lead to the question of whether there is a stronger
connection. More precisely, can we omit at least the prerequisites “depth-restrictable”
and “s-extendable” and show the following conjecture?

Conjecture 1. For a given type of environment that fulfills ∀p ∈ E : |sp(s, p)| =
|sp(p, s)|, there is a constant–search-competitive strategy if and only if there exists a
constant-competitive online exploration for environments of this type.

Proving this conjecture would show a closer relation between exploration and
searching: We are able to approximate the optimal search path—in other words,
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Table 7.1

Summary of our approximation results. The entry marked with * had earlier been proven by
Koutsoupias, Papadimitriou, and Yannakakis [24]. They had also shown that computing the optimal
search path is NP-complete for (planar) graphs. It is also NP-complete for polygons with holes,
whereas it is not known to be NP-complete for trees and polygons without holes.

Polytime approximation ratio
Environment Edge length Goal

Online Offline

Tree unit, arbitrary vertex, geometric 4 4

Planar graph arbitrary vertex no search-compet. alg. 8

Planar graph unit vertex 205.192 . . . 8

Undirected graph unit, arbitrary vertex no search-compet. alg. 8∗

Undirected graph arbitrary geometric 93.254 . . . 4

Simple polygon 212 8

Rect. simple polygon 8
√

2 8

Polygon with holes no search-compet. alg. ?

we can find a good search strategy—if there is a constant-competitive exploration
strategy. And, vice versa, we have no chance of finding a good search strategy if no
constant-competitive exploration is possible. Note that the sp-condition is necessary,
anyway, not only because our approximation framework relies on it, but also because
it seems to be hard to find depth-restrictable exploration strategies for environments
without the sp-condition. For example, there is a competitive exploration strategy for
directed graphs (see Fleischer and Trippen [17]) which does not fulfill the sp-condition
and is not depth-restrictable.
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Abstract. We study the question of finding a deepest point in an arrangement of regions and
provide a fast algorithm for this problem using random sampling, showing it sufficient to solve this
problem when the deepest point is shallow. This implies, among other results, a fast algorithm for
approximately solving linear programming problems with violations. We also use this technique to
approximate the disk covering the largest number of red points, while avoiding all the blue points,
given two such sets in the plane. Using similar techniques implies that approximate range counting
queries have roughly the same time and space complexity as emptiness range queries.
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1. Introduction. In this paper, we study the problem of efficiently computing
the deepest point in a collection of regions. Here, the depth of the point is the number
of regions containing it. This is a natural problem that arises in optimization, where a
constraint induces a region in space where it holds, and we would like to find the point
that satisfies all the constraints; see Figure 1. If no such point exists, we would like to
find a point that satisfies the maximum number of constraints. As a concrete example,
a linear program with n inequalities over d variables induces a set of n halfspaces in
Rd. The given linear program is feasible (i.e., it has a feasible solution) if there is a
point of depth n in this arrangement of n halfspaces. Furthermore, if the given linear
program is not feasible, then a point with maximum depth in the arrangement is a
solution violating the least number of constraints.

In this paper, we provide several reductions for the problem of finding the deepest
point and show how to solve some depth problems using these techniques.

Computing a point of maximum depth via depth thresholding. In section 3, we
present a general reduction that allows one to quickly compute an approximately
deepest point in an arrangement of objects given a slower exact procedure for com-
puting the depth exactly. More precisely, suppose we are given a depth thresholding
procedure that can find, given an integer k, a deepest point for a set of n regions
in Tdt(n, k) time, provided the depth does not exceed k; if it does, the procedure
outputs “depth > k.” The resulting approximation algorithm, given a set S of n
regions, can find a point of depth at least (1 − ε)kopt, where kopt is the maximum
number of regions covering any point. The running time of this new algorithm is
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Fig. 1.

O(Tdt(n, ε
−2 log n) + n), assuming Tdt(n, k) = Ω(n) for any k. This reduction is

applicable to any set of “well-behaved” regions in constant dimension.
Unless explicitly stated otherwise, all bounds on running time and space hold

with high probability (i.e., at least 1 − 1/nO(1)) and also in expectation. The results
returned by these algorithms are correct with high probability.

Next, in section 4, we present several applications of this reduction. In sec-
tion 4.1, we show that one can solve linear programming problems with violations
approximately in near-linear time. Explicitly, consider a linear program L with n
constraints in Rd and a linear objective function f . Suppose kopt is the minimum
number of constraints that have to be violated to make L feasible, and let v be the
optimal solution in this case; namely, v is the point minimizing f(v) with exactly kopt

violated constraints. Then, one can find a point u that violates at most (1 + ε)kopt

constraints of L and such that f(u) ≤ f(v). The running time of the new algorithm

is O(n
(
ε−2 log n

)d+1
). This compares favorably with the previous exact algorithm

of Matoušek [Mat95] which requires O(nkd+1) running time. (In two and three di-
mensions faster exact algorithms exist [Cha05]. See section 4.1.) To appreciate this
result, consider the case where k =

√
n. A natural approach to approximate linear

programming problems with violations is to compute a δ-approximation [VC71] to
the set of constraints in L and apply the exact algorithm on this sample. However, in
this case, δ = ε/

√
n, and the required random sample would include (almost) all the

constraints of L, thus achieving no speedup.
An application: Finding a disc covering red points, but no blue points. Consider

two finite sets of points in the plane, red and blue. As another application of the
aforementioned technique, we investigate the problem of finding a disk containing the
largest number of red points, while avoiding all the blue points. This is a natural
problem related to learning and clustering [DHS01]. For example, one might try to
learn a concept believed to be a disk, from examples, where the red points represent
positive examples and the blue ones represent negative ones. A possible criterion to
optimize is to say that the best concept (i.e., disk) is the one that classifies the blue
points correctly (i.e., avoids them), while minimizing the error on the red points (i.e.,
the disk covers as many red points as possible).

The corresponding problem, in high dimensions, of computing the best such ball
seems to be computationally hard, since computing the separating hyperplane min-
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imizing the number of outliers is NP-hard [AK95]. In fact, approximating it within

a factor of 2log0.5−ε n, for any fixed ε > 0, is “almost” NP-hard; see [ABSS97] for de-
tails. In constant dimension d, this ball can be computed by brute-force enumeration
of all possibilities, in nO(d) time. Motivated by this unattractive option, we develop
approximation algorithms for this problem, where we look for the ball containing
(approximately) the largest number of red points, while avoiding all the blue points.
More specifically, we observe that every red point p induces a feasible region which
is the locus of the centers of the maximal balls containing p and not containing any
blue points in their interior. Thus, the problem reduces to that of finding a point in
the plane (or in space) having the largest number of such regions covering it, namely,
a deepest point in an arrangement of such regions.

In section 4.2, we show that computing the deepest point in an arrangement of
disks in the plane is 3sum-hard [GO95] and present a (1 − ε)-approximation algo-
rithm with O(nε−2 log n) expected running time. In section 4.3, we investigate the
geometry of the problem of, given a set of blue and a set of red points, computing
the disk containing the largest number of red points while avoiding all blue points.
In particular, we show that this is equivalent to, given a set of red planes and a set
of blue planes in three dimensions, computing the point having the largest number of
red planes below it, while having all the blue planes above it. The points lying below
all blue planes and above a specific red plane form the feasible region of that plane.
Projecting the feasible regions to the plane, we obtain a set of pseudodisks which can
be manipulated efficiently using an implicit representation. Plugging this into the
algorithm for computing the depth of an arrangement of pseudodisks results in an
approximation algorithm, with O(nε−2 log2 n) expected running time, which returns
a disk covering (1 − ε)kopt points, where kopt is the number of red points covered by
the optimal disk. We also study this problem in higher dimensions.

Approximate counting. Given a set of points P in Rd and a class of ranges, the
problem of range searching is preprocessing P so that, given a range τ , one can quickly
answer (i) emptiness queries: test whether τ ∩ P = ∅; (ii) counting queries: report
the size of τ ∩P ; or (iii) reporting queries: report the elements of τ ∩P . This problem
and its variants have numerous applications and have received substantial attention.
See [AE99] for a survey of the subject.

Interestingly, there is a complexity gap between emptiness queries and counting
queries. In the (somewhat reasonable) computation model assumed by Brönnimann,
Chazelle, and Pach [BCP93], halfspace counting queries require Ω∗(n1−2/(d+1)) time
per query if only linear space is allowed.1 Matoušek [Mat93] showed how to answer
such queries in O(n1−1/d) time. On the other hand, halfspace emptiness queries can
be answered in logarithmic time in two and three dimensions, and in O∗(n1−1/�d/2�)
time in higher dimensions [Mat92], using near-linear space; this is slightly faster than
the aforementioned lower bound for the counting problem. Especially interesting is
the situation in dimensions two and three, where the gap is between logarithmic query
time for emptiness queries and polynomial query time for counting queries.

In section 5, we show that this gap disappears if one is willing to get an approxi-
mate answer to the counting query. In particular, given a prespecified ε, 0 < ε < 1/2,
we show how to reduce a counting query to a sequence of emptiness queries of length
polynomial in logn and ε−1. For any range τ , this data structure reports a number
μτ , such that (1− ε) |τ ∩ P | ≤ μτ ≤ |τ ∩ P |. Thus, approximate counting and empti-

1We use f(n) = O∗(g(n)) to express f(n) = O(g(n) logc n) and f(n) = Ω∗(g(n)) to mean
f(n) = Ω(g(n) log−c n) for some constant c > 0.
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ness range searching are computationally nearly equivalent. Since this circumvents
the aforementioned gap, we believe it to be of independent interest.

We contrast our results with the work of Arya and Mount [AM00], which con-
siders a different notion of approximation for the range searching problem. They
approximate the range (using a distance which depends on the diameter of the query
shape) and return the exact count inside this approximate shape. In our results, on
the other hand, the shape is fixed but the count returned is approximated. In par-
ticular, our results apply to halfspace range searching, while Arya–Mount methods
cannot be applied here, as a halfspace has infinite diameter.

Our results are based on careful application of random sampling, using several
multiresolution samples. By performing the computation at the right resolution, we
are able to achieve fast running time. This technique is by now standard in the area
of randomized algorithms. Recent results that use similar techniques include [IM98,
Ind00, HI00]; this list is by no means exhaustive. In the context of halfspace range
searching, Chan [Cha00] used multiresolution random samples to roughly estimate the
depth of the query, and speed up halfspace range reporting queries, in the expected
sense.

2. Preliminaries. Given a set of objects S in Rd and a point q ∈ Rd, let the
depth of q in S, depth(q,S), be the number of objects of S containing q. The depth
of S is defined as maxq depth(q,S), with q ranging over all of Rd. Finally, let core(S)
denote the locus of points realizing depth(S).

In the remainder of the paper, we assume that the sets S are well behaved. In
particular, we require that the complexity of the arrangement formed by S be bounded

by |S|O(d)
. The arrangement formed by S is the decomposition of the plane (or, more

generally, Rd) induced by a collection of such shapes [SA95]. The combinatorial
complexity of an arrangement is the total number of edges, faces, and vertices in the
arrangement. A k-level in an arrangement of curves is the closure of the set of points
on the curves that have exactly k curves below them. For a set of regions R, the union
of R is the set of points in the plane covered by at least one region of R. For a union
of regions, its complexity is the number of edges and vertices of the arrangement lying
on the boundary of the union (i.e., this is the descriptive complexity of the union).
Analogous definitions apply in higher dimensions.

In the following, we need the Chernoff inequality; see [MR95].
Theorem 2.1 (Chernoff inequality). Let X1, . . . , Xn be n independent Bernoulli

trials, where Pr[Xi = 1] = pi, Pr[Xi = 0] = 1−pi, Y =
∑

i Xi, and μ = E[Y ]. Then,
for any δ > 0,

(1) Pr[Y > (1 + δ)μ] <

{
exp

(
−μδ2/4

)
, δ ≤ 2e− 1 (case (a)),

2−μ(1+δ), δ ≥ 2e− 1 (case (b)),

and

(2) Pr[Y < (1 − δ)μ] ≤ exp
(
−μδ2/2

)
.

3. From exact depth to fast approximate depth. Given a set S of n objects
and ε > 0, we consider the following two problems:
Problem 1: Computing depth(S) exactly, perhaps also producing a witness point, i.e.,

a point in core(S).
Problem 2: Estimating δ = depth(S), i.e., producing an integer k with the (1− ε)δ ≤

k ≤ δ together with a witness point of that depth.
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We will also need, as a subroutine, a procedure DepthThreshold(S ′, k) with
the following behavior: Given a collection S ′ ⊂ S of n′ objects and an integer k > 0,
determine depth(S ′) exactly (and produce a witness point of this depth) if it does
not exceed k; otherwise, just return “depth(S ′) > k.” We refer to this as depth
thresholding. Let Tdt(n

′, k) be its running time.

Solving Problem 1 seems to require computing the whole arrangement A(S) (at
least in general settings). Therefore, a running time better than O

(
nd

)
for this prob-

lem seems unlikely. As such, we will concentrate in this section on the approximation
version of this problem, namely, Problem 2. In particular, in this section, we show
how to solve Problem 2 by performing a logarithmic number of depth thresholding
calls.

3.1. An approximate decision procedure. The intuitive idea behind approx-
imating δ := depth(S) for a collection S of n objects is to perform a binary search on
the value of the depth. However, we cannot afford to use an exact decision procedure
(i.e., a test comparing δ to a given number k) in each round, as all known methods
of computing the depth exactly essentially compute the full arrangement A = A(S).
(Actually, using the depth thresholding idea, one can test whether δ > k for any
given k, without necessarily computing the whole arrangement, but the cost Tdt(n, k)
of doing this usually grows with k, so it is too expensive to perform the test for large
values of k. This is precisely the case where the randomized procedure given below is
more efficient.) The idea is to first perform a “rough” search for the right depth (up
to a constant factor). Once we are in the right range, one can find the approximate
depth by applying the depth thresholding procedure to a single random sample, using
the relation between the depth of S and that of the sample.

To this end, we develop an approximate decision procedure, which, given a value
k, returns “k < δ” with high probability if k is significantly smaller than δ and
“k > δ” with high probability if k is significantly larger than δ. We start by proving
the following technical lemma.

Lemma 3.1. Let S be a set of n objects in Rd, ε, 0 < ε < 1/2, be fixed, k > 0
be an integer, and R ⊆ S be a random subset formed by picking each object with
probability

ψ = ψ(ε, k) := min

(
c1

log n

kε2
, 1

)

independently, where c1 is a sufficiently large constant. Then, for a point p ∈ Rd, we
have, with high probability, that

(i) if depth(p,R) ≥ α+(ε, k) := 2kψ, then depth(p,S) ≥ (3/2)k;
(ii) if depth(p,R) ≤ α−(ε, k) := (1 − ε)kψ, then depth(p,S) ≤ k;
(iii) if depth(p,R) ≥ α−(ε, k), then

(1 − ε) depth(p,S) ≤ depth(p,R)

ψ
≤ (1 + ε) depth(p,S);

namely, the depth of a “deep” point in A(R) is a good estimate of its depth
in A(S).

Proof. If ψ = 1, there is nothing to prove, so we assume ψ < 1 in what follows.

(i) Consider a point p ∈ A(S) such that r := depth(p,S) < (3/2)k. We have that
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μ := E[depth(p,R)] = rψ and r(1 + ε/4) < 2k. Therefore,

ν := Pr[depth(p,R) ≥ 2kψ] = Pr

[
depth(p,R) ≥ 2k

r
μ

]

= Pr

[
depth(p,R) ≥

(
1 +

(
2k

r
− 1

))
μ

]
.

If 2k
r − 1 ≤ 2e − 1, i.e., k/e ≤ r, then, by the Chernoff inequality ((1), case (a)), we

have

ν ≤ exp

(
−μ

(
2k

r
− 1

)2

/4

)
= exp

(
−rψ

(
2k

r
− 1

)2

/4

)
≤ exp

(
−r

(
c1

log n

kε2

)
ε2

36

)

≤ exp

(
−k

e

(
c1

log n

kε2

)
ε2

36

)
=

1

nΩ(1)
.

If r ≥ k/e then, by the Chernoff inequality ((1), case (b)), we have

ν ≤ 2−2kμ/r = 2−2kψ ≤ 1

nΩ(1)
.

(ii) Let p be a point of Rd such that r = depth(p,S) ≥ k. We have that μ =

E[depth(p,R)] = rψ. Arguing as above, we have

Pr[depth(p,R) < (1 − ε)kψ] ≤ Pr[depth(p,R) < (1 − ε)rψ] ≤ exp

(
−ε2

2
rψ

)
≤ 1

nΩ(1)
.

(iii) Arguing as in case (i), we have that if depth(p,R)
≥ α−(ε, k), then depth(p,S) ≥ k/2, and this holds with high probability. As such,
we have that μ = E[depth(p,R)] ≥ kψ/2. This implies, using the Chernoff inequality
(Theorem 2.1), that

Pr[depth(p,R) > (1 + ε)μ] ≤ exp

(
−ε2

4
μ

)
≤ exp

(
−ε2

8
kψ

)
≤ 1

nΩ(1)
.

Similarly,

Pr[depth(p,R) < (1 − ε)μ] ≤ exp

(
−ε2

2
μ

)
≤ 1

nΩ(1)
,

implying the claim.
Corollary 3.2. Let S be a set of n objects, with δ = depth(S). Let ε, 0 < ε <

1/2, be fixed, k ≥ δ/4 be an integer, and R ⊆ S be a random subset formed by picking
each object with probability

ψ = ψ(ε, k) := min

(
c1

log n

kε2
, 1

)
,

independently, where c1 is a sufficiently large constant. Then, we have that
(i) if depth(R) ≥ α+(ε, k) := 2kψ, then with high probability δ ≥ (3/2)k;
(ii) if depth(R) ≤ α−(ε, k) := (1 − ε)kψ, then with high probability δ ≤ k; and
(iii) for all p ∈ Rd, such that depth(p,R) ≥ α−(ε, k), we have with high probability

that

(1 − ε) depth(p,S) ≤ depth(p,R)

ψ
≤ (1 + ε) depth(p,S).
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Proof. The proof follows immediately from Lemma 3.1, since the complexity of
A(S) is polynomial. Indeed, place a point inside each face of A(S), and apply the
lemma to all these points.

3.1.1. If we know where to look, we can find it. Assume that we are
given an estimate y of δ := depth(S), with y ≤ δ ≤ 8y. Then we can compute
approximately the depth of S. Indeed, compute a random sample R of S as specified
by Lemma 3.1 for k = y/2. Next, perform depth thresholding on R with threshold
M := 16yψ = O(ε−2 log n), where ψ = ψ(ε/4, k). It is easy to verify that, with high
probability (by the Chernoff inequality), the depth of R is bounded from above by
M (as the expected maximum depth is M/2). Furthermore, δ > k, and by Corollary
3.2 (ii), we have depth(R) > α−(ε/4, k) (again, with high probability). Let v be the
witness point returned by DepthThreshold(R,M) with the maximum depth in R.
The depth of v in A(R) exceeds α−(ε/4, k), and by Corollary 3.2 (iii), depth(v,R)/ψ
is a (1 ± ε/4)-approximation to depth(v,S). In particular,

depth(v,R) ≤ (1 + ε/4)ψ depth(v,S).

Now, consider a point q ∈ core(S) that is with depth(q,S) = depth(S). As before,
with high probability, depth(q,R) ≥ α−(ε/4, k), and we have

(1 − ε/4)ψ depth(S) ≤ depth(q,R) ≤ depth(v,R) ≤ (1 + ε/4)ψ depth(v,S).

Namely, depth(v,S) ≥ (1 − ε) depth(S) and

(1 − ε/4) depth(S) ≤ depth(v,R)

ψ
≤ (1 + ε/4) depth(S).

Computing v takes O
(
n + Tdt(2nψ(ε/4, k), O(ε−2 log n))

)
time and succeeds with

high probability, where 2nψ(ε/4, k) is an upper bound on the size of R that holds with
high probability. Let FindDeepPoint(S, y) denote this algorithm.

3.1.2. Testing the water. It remains to find a good estimate of the maximum
depth of S. Assume that we have a guess k such that δ ≤ 4k. We construct procedure
DepthTest that outputs either “guess too big” or a range [y, 4y] containing δ with
high probability.

The procedure DepthTest works by computing the sample R, according to
Corollary 3.2, and applying the depth thresholding to R; formally, we execute
DepthThreshold(R,α+(ε, k)). Consider the random variable X = depth(R).

If X ≥ α+(ε, k) (i.e., DepthThreshold returned “depth exceeds threshold”),
then it follows that δ ≥ (3/2)k by Corollary 3.2(i). In addition, since we assumed
that δ ≤ 4k, we have that (3/2)k ≤ δ ≤ 4k, and DepthTest returns [k, 4k] as the
range containing δ.

If X ≤ α−(ε, k), then by Corollary 3.2(ii), with high probability, δ ≤ k. Namely,
our guess k of the depth is too large, and DepthTest outputs “guess too high.”

If α−(ε, k) < X < α+(ε, k), then, by Lemma 3.1(iii), with high probability, we
have that (1 − ε)k ≤ δ ≤ 2k(1 + ε), so DepthTest returns [k/2, 4k] as the range
containing δ.

The running time of DepthTest is dominated by the running time of Depth-
Threshold.
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3.1.3. The algorithm. The procedure DepthTest can tell us if the guess k
for the maximum depth is in the right range or, alternatively, that the guess is too
large. We use it to perform an exponential decreasing search for the right range, as
follows.

Theorem 3.3. Let S be a set of n objects in Rd of depth δ. Suppose there
exists an algorithm implementing depth thresholding for depth at most k in a set of
m objects in time Tdt(m, k). Then, given a prespecified parameter ε, 0 < ε < 1/2,
one can compute a point of depth at least (1− ε)δ in O(n+ Tdt(r

′, δ′) log n) expected
time, where δ′ = min(c2ε

−2 log n, n) and r′ = min(n, δ′n/δ). In fact, the running time
is O(n + Tdt(r

′, δ′)) if Tdt(r
′, k) is Ω(r′) for any k. The output is correct with high

probability.
Proof. Let ki = n/2i for i = 1, . . . , 
lg n�. In the ith iteration, we estimate

whether δ ≤ ki using DepthTest. This requires O(n + Tdt(ri, δi)) time, where δi
and ri are the depth and the size of the ith random sample, respectively. If ki is too
big according to DepthTest, then we continue to the next iteration.

Otherwise, we know that ki ≤ δ ≤ 4ki. We now use FindDeepPoint(S, ki),
and this returns the required point and its depth; see section 3.1.1. Note that as
for a running time, this invocation of FindDeepPoint takes (asymptotically) the
same time as the last call to DepthTest (as both procedures essentially “just” call
DepthThreshold).

Since at the last call to FindDeepPoint we have ki ≤ δ ≤ 4ki, it follows that
the expected depth of the random sample used is O(ε−2 log n). Note, that the sizes
of the samples used in DepthTest form an increasing geometric sequence. Thus,
the last iteration uses the largest sample. Furthermore, the expected depth of the
sample increases with each sample. Therefore, using the Chernoff inequality again (we
omit the straightforward but tedious details), we deduce that, with high probability,
δi = O(ε−2 log n) for i ≥ 1.

Since we use O(log n) calls to DepthTest, the claim follows. As for the improved
running time, observe that in those O(log n) calls, as mentioned above, we use samples
of geometrically increasing sizes. Thus the overall running time is dominated by the
cost of FindDeepPoint, which results in a call to the depth thresholding algorithm.
With high probability, the sample size in the last iteration is O(c2(n/δ)ε

−2 log n), as
claimed.

To achieve further speedup, observe that we can compute all the random samples
in advance. Let R1 := S, and let Ri be the sample computed from Ri−1, by picking
each element with probability 1/2 (this is known as gradation). Clearly, this takes
O(n) time, with high probability, and we can use the appropriate random sample
when needed. Thus the overall time to compute the random samples is linear. (Note
that, although the samples are no longer independent, the analysis still works since
we have used the union bound to bound the probability of failure.)

In the above algorithm the call to FindDeepPoint can be carried out using the
results of the last DepthTest call issued by the algorithm. Therefore, the procedure
FindDeepPoint can be merged with DepthTest to create a simpler algorithm. We
believe, however, that the current presentation is more intuitive (and we hope that
the reader will agree).

3.2. Finding a point of minimum depth. For a set of objects S in Rd, let
depthmin(S) denote the depth of a point in Rd covered by the fewest objects in S. An
algorithm computes a minimum depth thresholding for a set X of objects if it returns
a point of minimum depth at most k in A(X), in time TminDT(|X|, k), or alternatively
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reports that all points in A(X) are of depth larger than k.
It is easy to verify that the above discussion can be adopted to this “complemen-

tary” setting.
Theorem 3.4. Let S be a set of n objects in Rd of minimum depth δ =

depthmin(S). Suppose there exists an algorithm implementing depth thresholding for
depth at most k in a set of m objects in time TminDT(m, k). Then, given a pre-
specified parameter ε, 0 < ε < 1/2, one can compute a point of depth at most
(1+ε)δ in O(n+TminDT(r′, δ′) log n) expected time, where δ′ = min(c2ε

−2 log n, n) and
r′ = min(n, δ′n/δ). In fact, the running time is O(n+ TminDT(r′, δ′)) if TminDT(r′, k)
is Ω(r′) for any k. The output is correct with high probability.

In fact, if we are given a target depth k, there is no need to perform the binary
search for the right depth, and we obtain the following theorem.

Theorem 3.5. Let S be a set of n objects in Rd. Let f(·) be a function defined
over Rd. Let Alg be an algorithm that, given X ⊆ S, and a parameter t, can report the
point x ∈ Rd such that f(x) is the minimum among all points contained in t or fewer
regions of X (if no such point exists, Alg outputs “infeasible”). Suppose that the run-
ning time of Alg is TminDT(|X|, t). Then, given prespecified parameters ε > 0 and k,
one can compute a point u ∈ Rd of depth at most (1+ε)k in S, in O(n+TminDT(r′, δ′))
expected time, where δ′ = min(c2ε

−2 log n, n) and r′ = min(n, δ′n/k). Furthermore,
f(u) ≤ f(vk), where vk is a point minimizing f among all points in Rd of depth k or
less in A(S)s. The output is correct with high probability.

4. Applications.

4.1. Linear programming with violations. Given a linear program L with
n constraints in Rd, one can determine whether there exists a point that violates at
most k constraints of L in O(nkd+1) time [Mat95]. This problem can be solved in
O((n+k2) log n) time in two dimensions and in O(n+k11/4n1/4) time in three dimen-
sions [Cha05]. Using these algorithms to implement depth thresholding in Theorems
3.4 and 3.5 results in the following.

Theorem 4.1. Let L be a linear program with n constraints in Rd, and let f be
the objective function to be minimized. Let kopt be the minimum number of constraints
that must be violated to make L feasible, and let v be the point minimizing f(v) with
kopt constraints violated. Then one can output a point u ∈ Rd such that u violates
at most (1 + ε)kopt constraints of L, and f(u) ≤ f(v). The results returned are
correct with high probability. The expected running time (which also holds with high
probability) of this algorithm is

• O(n log(ε−1 log n) + (ε−1 log n)O(1)) for d = 2, 3 and
• O(n(ε−2 log n)d+1) for d > 3.

Remark 4.2. For the algorithm of Theorem 4.1, if k is specified in advance, one
can find a point u violating at most (1 + ε)k constraints of L, with f(u) ≤ f(vk),
where vk is the optimal solution violating at most k constraints. If L is not feasible
when violating only k constraints, the algorithm may output “infeasible.”

Note that this observation implies a number of new results; see the introduction
of Chan [Cha05] for a list of problems that can be solved approximately using our
techniques. For example, in Rd, given n points, an integer k, 0 < k < n, and ε > 0,
one can find a spherical shell containing all but (1 + ε)k points which has a volume
smaller than the minimum-volume spherical shell containing all but k points. The
resulting running time is O(n(ε−1 log n)O(d)).

Remark 4.3. Observe that if kopt is sufficiently large in Theorem 4.1, then the
running time is in fact linear, as the samples used by the algorithm are sufficiently
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small. In particular, for kopt = Ω((ε−2 log n)d+2), the running time of the algorithm
of Theorem 4.1 is O(n).

Remark 4.4 (handling outliers). Using Theorem 3.5 and plugging it into the tech-
niques of Har-Peled and Wang [HW04], one can solve shape fitting problems with out-
liers in near-linear time. For example, given a set P of n points in the plane and param-
eters k, ε, δ > 0, one can compute an annulus A, in expected O(n+(ε−1δ−1 log n)O(1))
time. With high probability, the annulus A contains all but at most (1+ε)k points of
P and its width is at most (1 + δ)wopt(P, k), where wopt(P, k) is the minimum width
of an annulus containing all but k points of P . Note that the approximation here is
in terms of both the width of the annulus and the number of outliers. This result was
known before only for the case when the number of outliers was large (i.e., close to
n). Our methods can be applied to all the problems studied by Har-Peled and Wang
[HW04]. To prevent this paper from deteriorating into a shopping list, we omit any
further details.

4.2. Approximating the deepest point in a pseudodisk arrangement.
Lemma 4.5. Determining a point of maximum depth in an arrangement of n

disks is 3sum-hard.
Proof. It is 3sum-hard to decide, given a set of lines in the plane with integer

coefficients, whether any three of the lines have a point in common [GO95]. Consider
such a set L of n lines. We assume they are given by equations of the form ax+by = c,
with a, b, c ∈ Z.

One can compute in O(n log n) time an axis-parallel square Q containing all ver-
tices of the arrangement A(L). Indeed, let M be the coefficient with the largest abso-
lute value appearing in the n given lines. For two lines ax+ by = c and a′x+ b′y = c′,
the coordinates of their intersection point is, by Cramer’s rule, a ratio of two 2 × 2
determinants with entries from among these six numbers. So the x coordinate of such
an intersection point is in [−2M2, 2M2]. Arguing similarly for y, we conclude that the

square Q =
[
−2M2, 2M2

]2
contains all the intersection points of the lines (and it can

be computed in O(n) time). Alternatively, one can compute the leftmost, rightmost,
topmost, and bottommost vertices in the arrangement of the lines L in O(n log n)
time [Mat91].

Furthermore, one can compute a lower bound Δ on the distance between a vertex
of A(L) and a line of L not passing through it. Indeed, consider a line � : ax+ by = c,
where |a|, |b|, |c| ≤ M , and a point p = (α, β), which is formed by the intersection of
two given lines. The distance of p from � is

x =
aα + bβ − c√

a2 + b2
.

Now, aα+ bβ− c is a rational number with denominator smaller than 4M4, since the
denominator of α and β are smaller than 2M2 by the above argument, and a, b, c are
integers. Thus, if the numerator of x is nonzero, its absolute value is at least 1/(4M4).
Therefore, if x is not zero, then

|x| =
|aα + bβ − c|√

a2 + b2
≥ 1/4M4

√
2M2

>
1

8M5
=: Δ.

Next, we replace each line � ∈ L by two sufficiently large disks D�, D
′
� of equal

radii such that ∂D� ∩ ∂D′
� = � ∩ ∂Q (so that D� ∩D′

� is symmetric with respect to �)
and D� ∩D′

� lies in the strip of half-width Δ/4 centered at �. Namely, we replace the
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||p − q|| ≤ Δ
4

p

q

Q

Fig. 2.

segment � ∩ Q by a lens formed by the intersection of two “large” disks. The union
of the two disks that form the lens contains the square Q. By construction, three
original lines intersect if and only if the three corresponding lenses share a point. See
Figure 2.

Let D be the resulting set of 2n disks. Note that no point outside Q is covered
by more than n of the disks. Moreover, there is a point in Q contained in at least
n+3 disks of D if and only if some three lines of L share a point. The reduction takes
linear time.

Having argued that computing the depth exactly appears difficult, we turn to
approximating it. Consider a family S of n x-monotone pseudodisks, i.e., a collection
of regions, each bounded by a connected closed curve of constant algebraic complexity,
such that any vertical line intersects a region in a connected interval, if at all, and
such that the boundaries of any two regions cross at most twice. In the following,
we assume that we can perform the geometric primitives on pseudodisks in constant
time per operation. We need the following facts:

(i) The complexity of the union U :=
⋃
S of n x-monotone pseudodisks is O(n)

[KLPS86].
(ii) Using a randomized incremental construction, one can compute U in O(n log n)

expected time [MMP+94]. Furthermore, in the same amount of time one can
preprocess U for O(log n)-time point-location queries.

(iii) For a set S of n pseudodisks, the total complexity of faces of depth at most
k in their arrangement A = A(S) is O(nk) [CS89, Sha03, Sha91].

(iv) Using a randomized incremental construction, one can compute all faces at
depth at most k in A in time O(nk + n log n) [BY98]. (In fact, if we are
interested in “depth thresholding” rather than construction of a subset of A,
this can be done with a standard plane sweep in O(nk log n) deterministic
time [dBvKOS00].)

Theorem 4.6. Given a set S of n pseudodisks, one can compute a point q of
depth at least (1 − ε) depth(S) in O(nε−2 log n) expected time. The output is correct
with high probability.

Proof. Given any set X of m pseudodisks, we can compute the deepest point in
A(X), in T (m, δ) = O(mδ + m logm) time, using the algorithm of fact (iv) above,
where δ := depth(X). The theorem now follows from Theorem 3.3.
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4.3. Finding a ball with the maximum number of red points. We consider
the following two problems.

Problem 4.7. Given two sets of red and blue points in Rd, denoted by R and B,
respectively, with a total of n points, find a ball that contains the maximum number
of red points while not containing any blue point in its interior.

Problem 4.8. Given two sets of red and blue hyperplanes in Rd, denoted by R and
B, respectively, of total size n, find a point lying below (or on) all blue hyperplanes
and below (or on) the maximum number of red hyperplanes.

The second problem appears more abstract and less natural. However, it is more
general, as the former reduces to the latter, albeit in one higher dimension. Indeed,
if one applies the standard “lifting transformation” [Ede87], which maps balls in Rd

to hyperplanes in Rd+1 and points in Rd to points on the standard paraboloid in
Rd+1 in such a manner that a point lies within a ball if and only if the corresponding
lifted point lies below the corresponding hyperplane, an instance of Problem 4.7 is
transformed into that of Problem 4.8. More precisely, we lifted the two points sets by
one dimension, such that now we look for a hyperplane lying below all the blue points
and that has as many red points below it as possible. Now, using point/hyperplane
duality that preserves the above/below relationship between points and hyperplanes,
we get Problem 4.8.

We now explain how to solve Problem 4.8 efficiently for d = 3 (which corresponds
to solving Problem 4.7 for disks in the plane), both exactly and approximately, and
later discuss higher-dimensional extensions.

Theorem 4.9. Given sets R and B of red and blue planes in R3, respectively,
with a total of n planes, one can compute a point that lies below (or on) all blue planes
and above (or on) the maximum number kopt of red planes in time O(n2 log n).

Given in addition a parameter ε > 0, one can compute a point with the property
that it lies below (or on) all blue planes and above (or on) (1 − ε)kopt red planes, in
expected time O(nε−2 log2 n).

Proof. We reduce the problem to that of depth in the pseudodisk arrangement.
Let B be the (convex) set of points lying below (or on) all of the blue planes. Without
loss of generality, we can restrict our attention to points on ∂B. A point p ∈ ∂B lies
on or above a plane π ∈ R if and only if its projection p′ to the xy-plane lies in the
projection of π ∩ B, which is a convex set in the plane; we denote it by Cπ.

We claim that {Cπ | π ∈ R} is a family of (convex, and therefore x-monotone)
pseudodisks. Indeed, the intersection points of ∂Cπ and ∂Cπ′ are the projections of
the points in π ∩ π′ ∩ ∂B, which is the intersection of a convex surface with a straight
line.

At this point, we observe that B can be computed in time O(n log n) time (for
example, by computing the convex hull of the dual points; see [Ede87]) and prepro-
cessed into the Dobkin–Kirkpatrick hierarchy [DK90], so that Cπ can be manipulated
implicitly. More specifically, it is easily checked that the following operations can be
performed on the resulting pseudodisks in logarithmic time: computation of boundary
intersection points of two pseudodisks, computation of x-extreme points of a pseu-
dodisk, computation of points of intersection of a pseudodisk with a y-vertical line.
Armed with these operations, we can compute the entire arrangement and thus its
depth in time O(n2 log n) as in fact (ii) above. Similarly, Theorem 3.3 together with
the implicit representation yields the desired approximation algorithm.

We now turn to the higher-dimensional version of the problem. Recall that we
aim to compute a point above a maximum number of red hyperplanes, while lying
below all blue hyperplanes. Check if such a point of depth k exists can be performed
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as follows: Compute the (≤ k)-levels of the arrangement A(R ∪ B) [AES99, Mul91].
Traverse the 1-skeleton of the resulting structure, clipping away the portions of those
levels that lie above the lower envelope of B and record the highest-depth unclipped
vertex. This takes time proportional to the time spent on computing the (≤ k)-
levels of A(R ∪ B), which is T (n, k) = O

(
n�d/2�k�d/2�

)
[AES99, Mul91]. Using this

observation to implement depth thresholding in the algorithm of Theorem 4.6, we
obtain the following theorem.

Theorem 4.10. Given sets R and B of red and blue hyperplanes in Rd, for
d ≥ 4, |R| + |B| = n, and a parameter ε > 0, one can compute a point that lies
below (or on) all blue hyperplanes and above (or on) at least (1− ε)kopt hyperplanes,
where kopt is the maximum number achievable. The running time of the algorithm is

O(n�d/2�(ε−2 log n
)�d/2�

) with high probability.

Corollary 4.11. Given sets R and B of red and blue points in Rd for d ≥ 3,
|R| + |B| = n, and a parameter ε > 0, one can compute a ball B that contains
(1 − ε)kopt red points, while avoiding all blue points, where kopt is the maximum
number of red points that can be covered by such a ball. The running time of the
algorithm is O(n�d/2�(ε−2 log n)�(d+1)/2�).

Can the algorithm running time in Theorem 4.10 be further improved? We leave
this as an open problem for further research.

5. From emptiness to approximate range counting. Assume that there
exists an emptiness testing data structure that can be constructed in T (n) time for a
set S of n objects such that, given a query range τ , we can check in Q(n) time whether
τ intersects any of the objects in S. Let S(n) be the space required to store this data
structure. In this section, we show how to build a data structure that quickly returns
an approximate number of objects in S intersecting τ using emptiness testing as a
subroutine.

In particular, let μτ denote the number of objects of S intersected by τ . Below
we use ε > 0 to denote the required approximation quality; namely, we would like the
data structure to output a number ατ such that (1 − ε)μτ ≤ ατ ≤ μτ .

5.1. The decision procedure. Given parameters z ∈ [1, n] and ε, with 1/2 >
ε > 0, we construct a data structure, such that, for any δ, with 1/2 > δ ≥ ε, and a
query range τ , we can decide, with high probability, whether μτ < z or μτ ≥ z. The
twist that makes it efficiently solvable is that the data structure is allowed to make a
mistake if μτ ∈ [(1 − δ)z, (1 + δ)z].

The data structure. Let R1, . . . ,RM be M independent random samples of S,
formed by picking every element with probability 1/z, where M := N(ε),

N(ε) :=
⌈
c3ε

−2 log n
⌉
,

and c3 is a sufficiently large absolute constant. Build M separate emptiness-query data
structures D1, . . . , DM for the sets R1, . . . ,RM , respectively, and put D = D(z, ε) :=
{D1, . . . , DM}.

Answering a query. Consider a query range τ and approximation quality δ, 1/2 >
δ ≥ ε, and let Xi = 1 if τ intersects any of the objects of Ri and Xi = 0 otherwise
for i = 1, . . . , N = N(δ); note that we use N rather than all M of the samples Ri

in answering the query. The value of Xi can be determined using a single emptiness
query in Di. Compute Yτ :=

∑
1≤i≤N Xi.

For a range σ of depth k, the probability that σ does not avoid all the elements



912 BORIS ARONOV AND SARIEL HAR-PELED

of Ri is

ρ(k) := 1 −
(

1 − 1

z

)k

.

If a range σ has depth z, E[Yσ] = Nρ(z) =: Δ. Our data structure returns “depth(τ,S)
< z” if Yτ < Δ, and “depth(τ,S) ≥ z” otherwise.

Correctness. In the following, we show that with high probability the data struc-
ture indeed returns the correct answer if the depth of the query range is outside the
“uncertainty” range [(1 − δ)z, (1 + δ)z]. For simplicity of exposition, we assume in
the following that z ≥ 10 (the case z < 10 follows by similar arguments). Consider
a range τ of depth at most (1 − δ)z. The data structure returns a wrong answer if
Yτ > Δ. We will show that the probability of this event is polynomially small. The
other case, where τ has depth at least (1 + δ)z but Yτ < Δ, is handled in a similar
fashion.

Lemma 5.1. The probability Pr[Yτ > Δ | depth(τ,S) ≤ (1 − δ)z] does not exceed
n−c6 , where c6 = c6(c3) > 0 depends only on c3 and can be made arbitrarily large by
a choice of a sufficiently large c3 > 0.

The proof of this lemma follows from the Chernoff inequality. It is tedious and
not very insightful; thus it is delegated to Appendix A. This implies the following
lemma.

Lemma 5.2. Given a set S of n objects, a parameter 0 < ε < 1/2, and z ∈ [0, n],
one can construct a data structure D(z) which, given a range τ and a parameter
1/2 > δ ≥ ε, returns either low or high. If it returns low, then μτ ≤ (1+ δ)z, and
if it returns high, then μτ ≥ (1− δ)z. The data structure might return either answer
if μτ ∈ [(1 − δ)z, (1 + δ)z].

The data structure D consists of M = O(ε−2 log n) emptiness data structures.
The space and time needed are O(S(2n/z)ε−2 log n) and O(Q(2n/z)δ−2 log n), where
S(m) and Q(m) are the space needed for a single emptiness data structure storing m
objects and the time needed for a single query in such a structure, respectively. All
bounds hold with high probability.

Proof. The lemma follows immediately from the above discussion. The only
missing part is observing that, by the Chernoff inequality, |Ri| ≤ 2n/z, with high
probability.

The path to answering approximate counting query is now clear. We use Lemma
5.2 to perform binary search, repeatedly narrowing the range containing the answer.
We stop when the size of the range is within our error tolerances. At the start of the
process, this range is large, so we use large values of δ. As the range narrows, δ is
reduced. (Recall that δ determines the query cost in Lemma 5.2 by controlling the
number of samples whose range emptiness data structures are consulted to answer
the query.)

One difficulty is that Lemma 5.2 works only for δ < 1/2. We next strengthen it
considerably for much larger values of δ. Intuitively, the number of “experiments” (i.e.,
emptiness queries) we need to perform is only Θ((log n)/ log δ) to answer a low/high

query and have a high probability guarantee.
Lemma 5.3. Given the data structure of Lemma 5.2, z a value to compare to, and

δ > c5, one can decide for a query range τ if μτ < z/(1 + δ) or μτ ≥ z(1 + δ). Here
c5 is a sufficiently large constant. The data structure is allowed to return any answer
if μτ ∈ [z/(1 + δ), (1 + δ)z]. This requires N = 
c6(log n)/ ln δ� emptiness queries,
and the answer returned is correct with high probability, where c6 is an appropriate
absolute constant.
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The proof of this lemma is a tedious but careful application of the Chernoff
inequality and is deferred to Appendix B.

Remark 5.4. Note, that there is a gap between the ranges of δ to which Lemmas
5.2 and 5.3 are applicable, namely, when δ is between 1/2 and c5. If we need to apply
either lemma in such a situation, we use Lemma 5.2 with δ = 1/4 a constant number
of times.

5.2. The data structure. Lemmas 5.2 and 5.3 provide us with a tool for per-
forming a “binary” search for the count value μτ of a range τ . For small values of i,
we just build a separate data structure Di = D(vi, εi) of Lemma 5.3 for depth values
vi = i/2 for i = 1, . . . , U = O(ε−1). For depth i, we use accuracy

(3) εi = 1/8i

(i.e., this is the value of ε when using Lemma 5.2). Using these data structures, we
can decide whether the query range count is at least U or smaller than U . If it is
smaller than U , then we can perform a binary search to find its exact value. The
result is correct with high probability.

Next, consider the values vj = (U/4)(1 + ε/16)j for j = U + 1, . . . ,W , where
W := c log1+ε/16 n = O(ε−1 log n) for an appropriate choice of an absolute constant
c > 0, so that vW = n. We build a data structure Dj = D(vj , ε/16) for each z = vj ,
using Lemma 5.2.

In the end of this process, we have built D1, . . . ,DW .
Answering a query. Given a range query τ , each data structure in our list returns

low or high. Moreover, with high probability, if we were to query all the data
structures, we would get a sequence of highs, followed by a sequence of lows. It
is easy to verify that the value associated with the last data structure returning
high (rounded to the nearest integer) yields the required approximation. We can
use binary search on D1, . . . ,DW to locate this changeover value using a total of
O(logW ) = O(log(ε−1 log n)) queries in the structures of D1, . . . ,DW . Namely, the
overall query time is O(Q(n)ε−2(log n) log(ε−1 log n)).

Answering queries more efficiently. To speed up the query, we organize the search
into O(log(n/ε)) rounds. Treat D1, . . . ,DW as a linked list LM , where M = 
lgW � =
O(log(ε−1 log n)). Next, we build a data structure (which is somewhat similar to a
skip-list), where Li−1 is formed from Li by picking every other element of Li, such
that the base list L1 has, say, 4 to 8 elements.

The search now continues in a top-down fashion starting from the list L1. At the
ith stage, we maintain pointers to four consecutive data structures in Li, such that the
left two return high and the right two return low. Thus the exact answer μτ must
lie between the depth associated with the first and the fourth of these data structures
in Li. The corresponding portion of Li+1 delimited by these two data structures in
Li is a sublist of (at most) seven data structures in Li+1. We now query the at most
three new data structures in the list (i.e., the ones we have not queried on previous
rounds) using Lemmas 5.2 and 5.3 to determine the sublist of four consecutive data
structures whose range contains the query depth. The key observation, leading to a
more efficient query time, is that we answer the queries, on the ith level, using an
error parameter δi which is as large as possible, such that the error intervals of all
these data structures are disjoint.

We continue in this process until we reach the bottom level. Clearly, we have
the required approximation and we return the value associated with, say, the leftmost
data structure in this sublist as the approximation.
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We can set δ1 := n1/4 and (1 + δi/c)
2 = 1 + δi−1/c, where δi−1 > 1 and c is some

constant. Therefore, δi = O(
√
δi−1) as long as, say, δi > c2. To bound the number

of emptiness queries used in this range, where the error is large, we use Lemma 5.3,
implying that the number of emptiness queries used is

∑
i,δi>c2

O

(
log n

log δi

)
=

lg lg n∑
i=O(1)

O

(
log n

log
(
22lg lg n−i

)
)

=

lg lg n∑
i=O(1)

O

(
log n

2lg lg n−i

)
= O(log n).

Next, we bound the number of emptiness queries used when δ < 1/2. In the jth level
of this more refined search, we use δ′j = 1/2j . Thus, the number of emptiness queries
is

lg(1/ε)∑
j=2

O

(
log n

δ′2j

)
=

lg(1/ε)∑
j=2

O
(
22j log n

)
= O(ε−2 log n),

by Lemma 5.2. The number of queries with δ between 1/2 and c5 is constant and
therefore does not affect our asymptotic analysis; see Remark 5.4.

Lemma 5.5. Given a set S of n objects and a data structure that answers
emptiness queries in Q(n) time and can be built in T (n) time, one can construct
in O(T (n)ε−3 log2 n) time a data structure that, given a range τ , outputs a number
ατ , with (1− ε)μτ ≤ ατ ≤ μτ , where μτ is the number of objects in S intersecting τ .
The query time is

O
(
ε−2Q(n) log n

)
.

The output of the query is correct with high probability for all queries, and the running
time bounds hold with high probability.

(In the above lemma, we assumed the number of queries is polynomial.)
Space and time requirements. Assume that the emptiness data structure uses

S(n) space to store n elements, and it can be constructed in T (n) preprocessing time.
We need a technical definition: If a data structure D can be constructed for n

elements using S(n) space in T (n) time, such that S(n/i) = O(S(n)/iλ) and T (n/i) =
O(T (n)/iλ), for all n and 1 ≤ i ≤ n, for a constant λ ≥ 1, then the data structure
has degree λ. (The O notation might hide constants that depend on λ.)

The space requirements to implement the data structure of Lemma 5.5 for the
low range [1, O(1/ε)] can be reduced by using precision δ := εi = 1/8i (see (3)) when
considering numbers in the interval Ii = [i/4, (i + 1)/4], which contains only a single
integer. Therefore, the data structure returns the exact answer in this case. The
space needed is

S1 =

O(1/ε)∑
i=1

O
(
i2S(n/8i) log n

)
=

O(1/ε)∑
i=1

O

(
i2
S(n)

iλ
log n

)

= O

⎛
⎝S(n) log n

O(1/ε)∑
i=1

1

iλ−2

⎞
⎠ = O(Hλ−2(1/ε)S(n) log n),

where Hd(k) =
∑k

i=1 1/id. For the intervals IU+1, . . . ,W , the space is at most pro-
portional to

W−U∑
i=1

S(n/(ε−1(1 + ε/16)i))

ε2
log n ≤

W−U∑
i=1

(ε/(1 + ε/16)i)λ

ε2
O(S(n) log n)
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≤
W−U∑
i=1

O(S(n) log n)

ε2−λ(1 + ε/16)iλ

≤ O(S(n) log n)

ε2−λ

W−U∑
i=1

1

(1 + ε/16)iλ

≤ O(S(n) log n)

ε2−λ

∞∑
i=1

1

(1 + ε)i
=

O(S(n) log n)

ε3−λ
.

Thus, the overall space required is O((ελ−3 +Hλ−2(1/ε))S(n) log n). A similar bound
holds on the preprocessing time.

The result. Putting everything together, we have the following result.
Theorem 5.6. We are given a set of S of n objects. Assume that one can

construct, in T (n) time, a data structure of degree λ that answers emptiness queries
in Q(n) time using S(n) space. Then one can construct a data structure in O((ελ−3 +
Hλ−2(1/ε))T (n) log n) time, using O((ελ−3 +Hλ−2(1/ε))S(n) log n) space, such that,
given a range τ , it outputs a number ατ , such that (1−ε)μτ ≤ ατ ≤ μτ , and the query

time is O
(
ε−2Q(n) log n

)
, where Hd(k) :=

∑k
i=1 1/id and μτ is the exact answer to

the counting query. The result returned is correct with high probability for all queries.
(We assumed in the above theorem that the number of queries is polynomial.)
The number of emptiness queries used by Theorem 5.6 is probably tight. In-

deed, just deciding if the query depth lies in the range [z/(1 + ε), z(1 + ε)] requires
O(ε−2 log n) emptiness queries by the Chernoff inequality. Since the Chernoff inequal-
ity is tight, it seems unlikely that the number of emptiness queries can be improved.
Notice that this argument applies only to the case where emptiness queries are treated
as “black box” operations. If this assumption is removed, certain improvements are
possible [AHS07].

5.3. Applications.

5.3.1. Halfplane and halfspace range counting. Using the data structure of
Dobkin and Kirkpatrick [DK85], one can answer emptiness halfspace range searching
queries in logarithmic time when d = 2, 3. In this case, we have S(n) = O(n),
T (n) = O(n log n), Q(n) = O(log n), and λ = 1.

Corollary 5.7. Given a set P of n points in two (resp., three) dimensions
and a parameter ε > 0, one can construct in expected O(nε−2 log2 n) time a data
structure of size O(nε−2 log n), such that, given a halfplane (resp., halfspace) τ , it
outputs a number α, such that (1 − ε) |τ ∩ P | ≤ α ≤ |τ ∩ P |, and the query time is
O
(
ε−2 log2 n

)
. The result returned is correct with high probability for all queries.

Using the standard lifting of points in R2 to the paraboloid in R3 implies a similar
result for approximate range counting for disks, as a disk range query in the plane
reduces to a halfspace range query in three dimensions.

Corollary 5.8. Given a set of P of n points in two dimensions and a pa-
rameter ε, one can construct a data structure in O(nε−2 log2 n) expected time, us-
ing O(nε−2 log n) space, such that given a disk τ , it outputs a number α, such that
(1−ε) |τ ∩ P | ≤ α ≤ |τ ∩ P |, and the query time is O

(
ε−2 log2 n

)
. The result returned

is correct with high probability for all possible queries.
These algorithms are faster by a polynomial factor in n than previously known

exact procedures for answering the corresponding questions.
Notice that our techniques also apply to the higher dimensions settings in an

obvious way. Since the resulting bounds are somewhat less appealing, we refrain from
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stating them explicitly.

5.3.2. Depth queries. By computing the union of a set of n pseudodisks in the
plane and preprocessing the union for point-location queries, one can perform “empti-
ness” queries in logarithmic time. This is done by computing the union [EHS04] and
then performing a point-location query in it [dBvKOS00]. (Again, we are assuming
here that we can implement the geometric primitives on the pseudodisks in constant
time.) The space needed is O(n), and it takes O(n log n) time to construct the data
structure. Thus, we get the following result.

Corollary 5.9. A set of S of n pseudodisks in the plane can be preprocessed in
expected O(nε−2 log2 n) time, using O(nε−2 log n) space, such that given a query point
q one can output a number α, such that (1 − ε) depth(p,S) ≤ α ≤ depth(p,S), and
the query time is O

(
ε−2 log2 n

)
. The result returned is correct with high probability

for all possible queries.

6. Conclusions. In this paper, we have shown the connection between depth
thresholding, emptiness, and approximate depth computation. Note that Theorem 5.6
is better than the result in the conference version of this paper [AH05].

There are several natural problems for further research:
• Computing a square containing the largest number of red points while avoid-

ing the blue points. Of course, the same question can be asked for other
families of shapes, such as rectangles, ellipses, translates, or homothets of a
fixed shape.

• Proving a lower bound on the problem of computing the ball containing the
largest number of red points while avoiding the blue points. In particular, is
this problem 3sum-hard in two dimensions?

We would also like to point out that the approximate depth computation in the
plane does not require “pseudodiskness.” Indeed, it is sufficient to have a family of
objects with small complexity of the union, such as the one described by [Efr05]. An
analogous statement holds in three dimensions, though there are few known classes
of objects with small union complexity there for which the computation of the union
can be performed efficiently.

6.1. Permutations, emptiness, and randomized incremental construc-
tion. In a followup to this work, Haim Kaplan and Micha Sharir [KS06] showed that
one can use the “permutations technique” of Cohen [Coh97] to approximate the depth
of a query range. The idea is to randomly permute the set of objects S and compute
the first index in the permutation whose corresponding object in S meets the query
range. If the index is i, the estimate of the depth is n/i. Repeating this process a
sufficient number of times implies, by the Chernoff inequality, that the estimate is
within the acceptable error range. To find the lowest index i where this happens, one
can perform the query inside a history graph of a randomized incremental construc-
tion algorithm for computing the union of the objects. This yields polylogarithmic
improvement over the proceedings version of this paper for some specific applications
(but no improvement over the current version). See [KS06] for details.

We observe that up to polylogarithmic factors, the two techniques are equivalent.
Indeed, it is sufficient to approximate the first index in the permutation that contains
the query range up to a factor of 1 + ε, which can be reduced to a binary search over
emptiness data structures.

The other direction is somewhat more interesting. Our data structure has
O(ε−1 log n) data structures at different resolutions, each comprised of O(ε−2 log n)
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emptiness data structures built over random samples. If we were to use instead of in-
dependent random subsets of the input in our data structures a gradation (we remind
the reader that a gradation is a sequence of random samples, where the ith sample is
a random sample of the higher (i − 1)th-level sample), then the sequence of queries
performed along the emptiness data structures associated with this gradation is es-
sentially equivalent to the permutation query. Thus, in some intuitive, rough, and
very informal sense, the data structure of Kaplan and Sharir performs the “same”
computations as our data structure. The “sameness” here should be taken with sev-
eral sizeable grains of salt, as everything looks similar from afar. It is interesting and
surprising that these two different approaches to the problem are so similar once one
inspects the underlying machinery.

Appendix A. Proof of Lemma 5.1.
Proof. The probability α := Pr[Yτ > Δ | depth(τ,S) ≤ (1 − δ)z] is maximized

when depth(τ,S) = (1 − δ)z. Thus

α ≤ β := Pr[Yτ > Δ | depth(τ,S) = (1 − δ)z] .

We argue that this probability is polynomially small.
Observe that Pr[Xi = 1] = ρ((1 − δ)z), where ρ(k) := 1 −(1 − 1/z)

k
. Therefore,

we have

(4) E[Yτ ] = Nρ((1 − δ)z) = N ·
(

1 −
(

1 − 1

z

)(1−δ)z
)

≥ N ·
(
1 − e−(1−δ)

)
≥ N

3
,

since 1 − 1/z ≤ exp(−1/z). The last inequality holds since δ ≤ 1/2. By definition,
Δ = Nρ(z); therefore,

ξ :=
Δ

E[Yτ ]
=

1 −
(
1 − 1

z

)z
1 −

(
1 − 1

z

)(1−δ)z
= 1 +

(
1 − 1

z

)(1−δ)z −
(
1 − 1

z

)z
1 −

(
1 − 1

z

)(1−δ)z

= 1 +

(
1 − 1

z

)(1−δ)z 1 −
(
1 − 1

z

)δz
1 −

(
1 − 1

z

)(1−δ)z
.

Since (1 − 1/z)/e ≤ (1 − 1/z)z ≤ 1/e [MR95], (1 − 1/z)(1−δ)z ≥ ((1 − 1/z)/e)
1−δ ≥

(1 − 1/z)/e. This implies that

ξ ≥ 1 +
1

e

(
1 − 1

z

)
1 − exp(−δ)

1 −
(
1 − 1

z

)
1
e

≥ 1 +
1

2
· 1

e
· 1

1/2
·(1 − exp(−δ)) ,

since (1 − 1/x)x ≤ 1/e (for x ≥ 1) [MR95] and z ≥ 10. Observe that exp(−δ) ≤
1 − δ + δ2/2, using the Taylor expansion of e−δ for δ > 0. Therefore,

ξ ≥ 1 +
1

e

(
δ − δ2/2

)
≥ 1 +

δ

6
.

Deploying the Chernoff inequality, we have that if depth(τ,S) = (1 − δ)z, then

β = Pr[Yτ > Δ] ≤ Pr[Yτ > ξE[Yτ ] ] ≤ Pr[Yτ > (1 + δ/6)E[Yτ ] ]

≤ exp
(
−E[Yτ ] (δ/6)2/4

)
≤ exp

(
− Nδ2

3 · 36 · 4

)
≤ exp

(
−
δ2

⌈
c3δ

−2 log n
⌉

432

)
≤ n−c3/432
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by ((1), case (a)) and (4).

Appendix B. Proof of Lemma 5.3.
Proof. Recall that Yτ =

∑N
i=1 Xi. Again, we can assume that depth(τ,S) =

z/(1+ δ). We want to bound the probability that this “light” range would be consid-
ered to be “heavy” (i.e., Yr > Nρ(z)). We have that

(5) E[Yτ ] = N

(
1 −

(
1 − 1

z

)z/(1+δ)
)

≤ N

(
1 − exp

(
−2z/(1 + δ)

z

))
≤ N

2

1 + δ
,

since 1−1/z ≥ exp(−2/z) and 1−x ≤ exp(−x) for 0 ≤ x ≤ 1/2. By similar reasoning,

(6) E[Yτ ] ≥ N

(
1 − exp

(
−z/(1 + δ)

z

))
≥ N

2(1 + δ)
.

Observe that

lim
z→∞

ρ(z) = lim
n→∞

(
1 −

(
1 − 1

z

)z)
= 1 − 1

e
.

Thus ρ(z) > 1/2 since z is sufficiently large (we remind the reader that we assumed
that z ≥ 10 for the sake of simplicity of exposition). Thus

ζ = Pr[Yτ > Nρ(z)] ≤ Pr[Yτ > N/2] ≤ Pr

[
Yτ >

1 + δ

4
E[Yτ ]

]

≤ Pr

[
Yτ >

(
1 +

δ

5

)
E[Yτ ]

]

by (5) and since δ is sufficiently large. Observe that since δ ≥ c5, we have that

eδ/5

(1 + δ/5)(1+δ/5)/3
≤ 1

e
.

Now, by the Chernoff inequality, we have

ζ <

(
eδ/5

(1 + δ/5)1+δ/5

)E [Yτ ]

≤
(
(1 + δ/5)−(1+δ/5)/2

)E [Yτ ]

,

since δ ≥ c5. Observe that

(1 + δ/5)E[Yτ ]

2
≥ (1 + δ/5)

4(1 + δ)
N ≥ 1

20
N

by (6). As ln(1 + δ/5) ≥ (ln δ)/2, we have

ζ ≤ (1 + δ/5)−N/20 ≤ exp

(
−N

40
ln δ

)
<

1

nΩ(1)

for c6 sufficiently large, since N = 
c6(log n)/ ln δ�.
The other direction is slightly more challenging. Assume that depth(τ,S) =

z(1 + δ), and let Zτ = N − Yτ . Observe that if z/(1 + δ) ≤ 1, then any answer
returned by the algorithm would be valid in this case (here we are trying to bound
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the case that a heavy range is reported as being “light”). Therefore, we assume that
z ≥ 1 + δ. Observe that

E[Zτ ] = N

(
1 − 1

z

)z(1+δ)

≤ N exp(−(1 + δ)).

(Specifically, E[Zτ ] ≤ N/106 since δ ≥ c5, and thus E[Yτ ] is very close to N in this
case.) Now, since z is large enough, we have that ρ(z) < 1 − 1/10 as ρ(z) ≈ 1 − 1/e.
Therefore,

Pr
[
Yτ < Nρ(z)

]
≤ Pr

[
Yτ <

9

10
N

]
= Pr

[
N − Zτ <

9

10
N

]
= Pr

[
Zτ >

N

10

]

≤ Pr

[
Zτ >

E[Zτ ]

10 exp(−(1 + δ))

]

= Pr
[
Zτ > (1 + ξ)E[Zτ ]

]
,

where ξ := (1/10) exp(1+δ)−1 > 108. The variable Zτ can be interpreted as the sum
of N independent 0/1 variables (i.e., it is the complement of the variables forming
Yτ ). By applying the Chernoff inequality to Zτ , we obtain

� := Pr[Yτ < Nρ(z)] ≤ Pr
[
Zτ > (1 + ξ)E[Zτ ]

]
≤
(

eξ

(1 + ξ)(1+ξ)

)E [Zτ ]

.

Now, we have (1 − 1/z)z ≥ (1/e)(1 − 1/z) ≥ exp(−1 − 2/z) ≥ exp(−(1 + 2/δ)), since
z ≥ 1 + δ ≥ δ. As such,

E[Zτ ] = N

(
1 − 1

z

)z(1+δ)

≥ N exp(−(1 + δ)(1 + 2/δ))

≥ N

exp(1 + δ + 2/δ + 2)
≥ N

c7ξ
,

where c7 = 20e3. Thus, as ln(1 + ξ) = ln(1/10) + 1 + δ ≥ ln δ, we have

� ≤
(
(1 + ξ)−(1+ξ)/2

)E [Zτ ]

≤ (1 + ξ)−(1+ξ)N/c7ξ ≤ exp

(
−N ln(1 + ξ)

c7

)

≤ exp

(
−N

c7
ln δ

)
<

1

nΩ(1)
,

since N = 
c6(log n)/ ln δ� and c6 is sufficiently large.
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Abstract. Given a finite set of vectors over a finite totally ordered domain, we study the problem
of computing a constraint in conjunctive normal form such that the set of solutions for the produced
constraint is identical to the original set. We develop an efficient polynomial-time algorithm for
the general case, followed by specific polynomial-time algorithms producing Horn, dual Horn, and
bijunctive formulas for sets of vectors closed under the operations of conjunction, disjunction, and
median, respectively. Our results generalize the work of Dechter and Pearl on relational data, as
well as the papers by Hébrard and Zanuttini. They complement the results of Hähnle et al. on
multivalued logics and Jeavons et al. on the algebraic approach to constraints.
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1. Introduction and summary of results. Constraint satisfaction problems
constitute today a well-studied topic on the frontier of complexity, logic, combina-
torics, and artificial intelligence. It is indeed well known that this framework allows
us to encode many natural problems or knowledge bases. In principle, an instance
of a constraint satisfaction problem is a finite set of variable vectors associated with
an allowed set of values. A model is an assignment of values to all variables that
satisfies every constraint. When a constraint satisfaction problem encodes a decision
problem, the models represent its solutions. When it encodes some knowledge, the
models represent possible combinations that the variables can assume in the described
universe.

Constraints can be represented by means of a set of variable vectors associated
with an allowed set of values. This representation is not always well suited; therefore,
other representations have been introduced. The essence of the most studied alter-
native is the notion of a relation, making it easy to apply it within the database or
knowledge base framework. We focus on the representation by formulas in conjunc-
tive normal form with the literals taking the form (x ≤ d) and (x ≥ d), where x is
a variable and d is an element from the given finite domain D, totally ordered by
the relation ≤ (see Hähnle et al. [5, 6, 16]). We study in this paper the constraint
description problem, i.e., the problem of converting a set of vectors M to a formula ϕ
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‡LIX (UMR 7161), École Polytechnique, 91128 Palaiseau, France (hermann@lix.polytechnique.fr).
§Department of Computer Science, Technische Universität Wien, 1040 Wien, Austria (salzer@

logic.at).
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in conjunctive normal form, such that its satisfying assignments Sol(ϕ) equals the
original set M . We consider this problem first in its general setting without any
restrictions imposed on the initial set of vectors. We continue by imposing several
properties on the initial set, like the closure under the minimum, maximum, and me-
dian operations. We subsequently discover that these closure properties induce the
description by Horn, dual Horn, and bijunctive constraints, respectively. Moreover,
we give an elegant and unified solution to the structure identification problem of these
three classes, as it was defined by Dechter and Pearl [11]. Given a set of vectors, this
problem asks whether it can be represented by a formula of a special type, computing
such a formula if the answer is affirmative.

The motivations to study description and identification problems are numerous.
From the artificial intelligence point of view, description problems formalize the notion
of exact acquisition of knowledge from examples. This means that they formalize
situations where a system is given access to a set of examples and it is asked to
compute a formula describing it exactly. Moreover, this representation takes usually
less space than the original set of examples; thus it can be stored more easily in a
knowledge base.

Satisfiability poses a keystone problem in artificial intelligence, automated de-
duction, databases, and verification. It is well known that the satisfiability problem
for arbitrary constraints is an NP-complete problem. Therefore, it is important to
look for restricted classes of constraints that admit polynomial algorithms deciding
satisfiability. Horn, dual Horn, bijunctive, and affine constraints, in the Boolean case,
constitute exactly these tractable classes, as was proved by Schaefer [24]. Thus the
description problem for these four classes can be seen as storing specific knowledge
into a knowledge base while we are required to respect its format. This problem is also
known as structure identification, studied by Dechter with Pearl [11] and by Hébrard
with Zanuttini [17, 25]. Another motivation for studying description problems comes
from combinatorics. Indeed, since finding a solution for an instance of a constraint
satisfaction problem is difficult in general but tractable in the four aforementioned
cases, it is important to be able to recognize constraints belonging to these tractable
cases.

The study of Boolean constraint satisfaction problems, especially their complex-
ity questions, was started by Schaefer in [24], although he did not yet consider con-
straints explicitly. During the last ten years, constraints gained considerable interest
in theoretical computer science. An excellent complexity classification of existing
Boolean constraint satisfaction problems can be found in the monograph [10]. Jeav-
ons et al. [9, 19, 20] started to study constraint satisfaction problems from an algebraic
viewpoint. Feder, Kolaitis, and Vardi [12, 22] posed a general framework for the study
of constraint satisfaction problems. A part of the research in constraint satisfaction
problems requires the existence of efficient description and identification methods for
special constraint classes.

Recently, there has been much progress on constraint satisfaction problems over
domains with larger cardinality. Hell and Nešetřil [18] studied constraint satisfaction
problems by means of graph homomorphisms. Bulatov [7] made a significant break-
through with a generalization of Schaefer’s result to three-element domains. He also
proved a dichotomy theorem for conservative constraints over arbitrary domains [8].
On the other hand, Hähnle et al. [5, 6, 16] studied the complexity of satisfiability
problems for many-valued logics that present yet another viewpoint of constraint sat-
isfaction problems. We realized reading the previous articles on many-valued logics
that in the presence of a total order the satisfiability problems for the Horn, dual
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Horn, and bijunctive many-valued formulas of signed logic are decidable in polyno-
mial time. We also noticed that Jeavons and Cooper [21] studied some aspects of
tractable constraints on finite ordered domains from an algebraic standpoint. This
led us to the idea to look more carefully at constraint description problems over fi-
nite totally ordered domains, developing a new formalism for constraints based on an
already known concept of inequalities.

The purpose of our paper is manifold. We want to generalize the work of Dechter
and Pearl [11], based on the more efficient algorithms for Boolean description problems
by Hébrard and Zanuttini [17, 25]. We also want to complement the work of Hähnle
et al. on many-valued logics. Finally, we want to provide a characterization by closure
properties of polynomial-time decidable subcases of constraint satisfaction problems
over finite totally ordered domains, which are straightforward generalizations of the
known polynomial-time decidable Boolean cases.

2. Preliminaries. Let D = {0, . . . , n− 1} be a finite, totally ordered domain of
cardinality n, and let V be a set of variables. For a variable x ∈ V and a value d ∈ D,
the inequalities x ≥ d and x ≤ d are called positive and negative literal, respectively.
The set of formulas over D and V is inductively defined as follows:

• the logical constants false and true are formulas;
• literals are formulas;
• if ϕ and ψ are formulas, then the expressions (ϕ∧ψ) and (ϕ∨ψ) are formulas.

We write ϕ(x1, . . . , x�) to indicate that formula ϕ contains exactly the variables
x1, . . . , x�. For convenience, we use the following shorthand notation:

• x > d means x ≥ d + 1 for d ∈ {0, . . . , n− 2}, and false otherwise;
• x < d means x ≤ d− 1 for d ∈ {1, . . . , n− 1}, and false otherwise;
• x = d means x ≥ d ∧ x ≤ d;
• ¬false and ¬true mean true and false, respectively;
• ¬(x ≥ d), ¬(x ≤ d), ¬(x > d), and ¬(x < d) mean x < d, x > d, x ≤ d, and
x ≥ d, respectively;

• ¬(x = d) and x �= d both mean x < d ∨ x > d;
• ¬(ϕ ∧ ψ) and ¬(ϕ ∨ ψ) mean ¬ϕ ∨ ¬ψ and ¬ϕ ∧ ¬ψ, respectively.

Note that x = d and x �= d asymptotically require the same space as their alternative
notation, i.e., O(log n). Indeed, since d is bounded by n, its binary coding has length
O(log n).

A clause is a disjunction of literals. It is a Horn clause if it contains at most one
positive literal, dual Horn if it contains at most one negative literal, and bijunctive
if it contains at most two literals. A formula is in conjunctive normal form (CNF)
if it is a conjunction of clauses. It is a Horn, a dual Horn, or a bijunctive formula
if it is a conjunction of Horn, dual Horn, or bijunctive clauses, respectively. Since
the considered formulas in what follows are all in CNF, we will use the expression
“formula” with a slight abuse of terminology also for CNF formulas, without explicitly
specifying it.

Note that contrary to the Boolean case, a clause in our formalism can contain
the same variable twice, in both a negative and a positive literal, without being
reducible. However, such a clause can be assumed to contain not more than twice
the same variable, since x ≥ d ∨ x ≥ d′ can be reduced to x ≥ min(d, d′) and, dually,
x ≤ d ∨ x ≤ d′ can be reduced to x ≤ max(d, d′).

Example 2.1. Let D = {0, 1, 2, 3, 4} be the domain for our running example. The
expressions x ≤ 2 and y ≥ 4 are a negative and a positive literal, respectively. Instead
of x ≤ 2 and y ≥ 4, we can also write x < 3 and y > 3, respectively. The disjunction
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of literals (x ≤ 2 ∨ x ≥ 4 ∨ y ≤ 4) is a Horn clause, (x ≤ 2 ∨ x ≥ 4 ∨ y ≥ 3) is a dual
Horn clause, and (x ≤ 2 ∨ x ≥ 4) is a bijunctive clause. The formula

ϕ(x, y) = (x ≤ 2 ∨ x ≥ 4 ∨ y ≤ 4) ∧ (x ≤ 2 ∨ x ≥ 4 ∨ y ≥ 4) ∧ (x ≤ 2 ∨ x ≥ 3)

is in CNF.
An assignment for a formula ϕ(x1, . . . , x�) is a mapping m : {x1, . . . , x�} → D

assigning a domain element m(x) to each variable x. The satisfaction relation m |= ϕ
is inductively defined as follows:

• m |= true and m �|= false;
• m |= x ≤ d if m(x) ≤ d, and m |= x ≥ d if m(x) ≥ d;
• m |= ϕ ∧ ψ if m |= ϕ and m |= ψ;
• m |= ϕ ∨ ψ if m |= ϕ or m |= ψ.

The set of all assignments satisfying ϕ is denoted by Sol(ϕ), also called models of ϕ.
If we arrange the variables in some arbitrary but fixed order, say, as a vector x =
(x1, . . . , x�), then the models can be identified with the vectors in D�. The jth
component of a vector m, denoted by m[j], gives the value of the jth variable, i.e.,
m(xj) = m[j]. The operations of conjunction, disjunction, addition, and median on
vectors m,m′,m′′ ∈ D� are defined as follows:

m ∧m′ = (min(m[1],m′[1]), . . . ,min(m[�],m′[�])),

m ∨m′ = (max(m[1],m′[1]), . . . ,max(m[�],m′[�])),

med(m,m′,m′′) = (med(m[1],m′[1],m′′[1]), . . . ,med(m[�],m′[�],m′′[�])).

The ternary median operator is defined as follows: for each choice of three values
a, b, c ∈ D such that a ≤ b ≤ c, we have med(a, b, c) = b. Moreover, median is a
permutative operator; i.e., the identity med(a, b, c) = med(π(a), π(b), π(c)) holds for
every permutation π on all domain elements a, b, c ∈ D. Note that the median can
also be defined by med(a, b, c) = min(max(a, b),max(b, c),max(c, a)) as well as by
med(a, b, c) = max(min(a, b),min(b, c),min(c, a)), which implies the identities

med(m1,m2,m3) = (m1 ∨m2) ∧ (m2 ∨m3) ∧ (m3 ∨m1)

= (m1 ∧m2) ∨ (m2 ∧m3) ∨ (m3 ∧m1)

for all vectors m1,m2,m3 ∈ D�.
Example 2.2. Consider the set of vectors M = {010, 013, 220, 440, 444}. It is

closed under conjunction, since for each pair of vectors m,m′ ∈ M we have m∧m′ ∈
M . It is not closed under disjunction, since 013∨220 = 223 �∈ M . It is also not closed
under median, since med(013, 220, 444) = 223 �∈ M .

3. Formulas in conjunctive normal form. We investigate first the descrip-
tion problem for arbitrary sets of vectors.
Problem: description.

Input : A finite set of vectors M ⊆ D� over a finite totally ordered domain D.
Output : A formula ϕ(x1, . . . , x�) over D in CNF such that Sol(ϕ) = M .

The naive approach to this problem is to compute first the complement set M̄ =
D� �M , followed by the construction of a clause c(m̄) for each vector m̄ ∈ M̄ missing
from M such that m̄ is the unique vector falsifying c(m̄). The formula ϕ is then
the conjunction of the clauses c(m̄) for all missing vectors m̄ ∈ M̄ . However, this
algorithm is essentially exponential, since the complement set M̄ can be exponentially
bigger than the original set of vectors M .
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Example 3.1. Consider again the set of vectors M = {010, 013, 220, 440, 444}
as in Example 2.2. The complement set M̄ contains 53 − 5 = 120 vectors, where
the lexicographically first ones are 000, 001, . . . , 004, 011, 012 and the last ones are
434, 441, 442, 443. For example, the clause c(001) is (x1 �= 0 ∨ x2 �= 0 ∨ x3 �= 1),
equivalent to (x1 ≥ 1∨x2 ≥ 1∨x3 ≤ 0∨x3 ≥ 2). The only assignment to the variables
x1, x2, x3 which does not satisfy the clause c(001) is the vector 001. Similarly, the
clause c(223) is (x1 ≤ 1∨ x1 ≥ 3∨ x2 ≤ 1∨ x2 ≥ 3∨ x3 ≤ 2∨ x3 ≥ 4). The formula ϕ
describing M and built in this manner contains exactly 120 clauses.

We present a new algorithm running in polynomial time and producing a CNF for-
mula of polynomial length with respect to the cardinality of the set M , the dimension
of vectors �, and the size O(log |D|) of the domain elements in binary notation.

In what follows we assume without loss of generality the set of vectors M to be
nonempty, which simplifies the presentation. Note, however, that the empty set ∅ is
easily recognized and described by the formula (x1 ≤ 0)∧ (x1 ≥ 1), which is logically
equivalent to false.

To construct the formula ϕ we proceed in the following way. We arrange the
set M into an ordered n-ary semantic tree TM [14], with branches corresponding to
the vectors in M . In case M contains all possible vectors, i.e., M = D�, TM is a
complete tree of branching factor |D| and depth �. Otherwise, some branches are
missing, leading to gaps in the tree. We characterize these gaps by conjunctions of
literals. Their disjunction yields a complete description of all vectors that are missing
from M . Finally, by negation and de Morgan’s laws we obtain ϕ.

Let TM be an ordered tree with edges labeled by domain elements such that each
path from the root to a leaf corresponds to a vector in M . The tree TM contains a
path labeled d1. · · · .di from the root to some node if there is a vector m ∈ M such
that m[j] = dj holds for every j = 1, . . . , i. The level of a node is its distance to the
root plus 1; i.e., the root is at level 1 and a node reachable via d1. · · · .di is at level
i + 1 (Figure 3.1(a)). Note that all leaves are at level � + 1. If the edges between
a node and its children are sorted in ascending order according to their labels, then
traversing the leaves from left to right enumerates the vectors of M in lexicographic
order, say, m1, . . . ,m|M |. A vector m is lexicographically smaller than a vector m′ if
there is a level i such that m[i] < m′[i] holds, and for all j < i we have m[j] = m′[j].

Fig. 3.1. Tree representation of vectors.

Example 3.2. Let M = {m1 = 010, m2 = 013, m3 = 220, m4 = 440, m5 = 444}
be the set of vectors over the domain D = {0, 1, 2, 3, 4} for which we want to construct
a formula ϕ in CNF satisfying the condition Sol(ϕ) = M . The tree TM is depicted in
Figure 3.2 in solid lines.

Suppose that mk and mk+1 are immediate neighbors in the lexicographic enumer-
ation of M , and let m be a vector lexicographically in between, thus missing from M .
There are three possibilities for the path corresponding to m. It may leave the tree
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Fig. 3.2. Tree TM and the missing parts for the set M = {010, 013, 220, 440, 444}.

at the fork between mk and mk+1 (Figure 3.1(b)), or at the fork to the left of mk+1

(Figure 3.1(c)), or at the fork to the right of mk (Figure 3.1(d)). Let i be the least
position in which the consecutive vectors mk and mk+1 differ. In other words, we
have mk[i] �= mk+1[i] and mk[j] = mk+1[j] for all j < i. The set of missing vectors
can be characterized by the conjunctions middle(k, i), left(k + 1, i), and right(k, i),
defined as follows:

middle(k, i) =
∧
j<i

(xj = mk[j]) ∧ (xi > mk[i]) ∧ (xi < mk+1[i]),

left(k + 1, i) =
∧
j<i

(xj = mk+1[j]) ∧ (xi < mk+1[i]),

right(k, i) =
∧
j<i

(xj = mk[j]) ∧ (xi > mk[i]).

The situation depicted in Figure 3.1 is a snapshot at level i of the tree TM .

Example 3.3. The missing parts in the tree TM , displayed in Figure 3.2 by dotted
lines, are described by the following conjunctions. First are the parts missing between
two vectors,

middle(1, 3) = (x1 = 0) ∧ (x2 = 1) ∧ (x3 > 0) ∧ (x3 < 3),

middle(2, 1) = (x1 > 0) ∧ (x1 < 2),

middle(3, 1) = (x1 > 2) ∧ (x1 < 4),

middle(4, 3) = (x1 = 4) ∧ (x2 = 4) ∧ (x3 > 0) ∧ (x3 < 4),

followed by the parts missing to the left,

left(1, 2) = (x1 = 0) ∧ (x2 < 1),

left(3, 2) = (x1 = 2) ∧ (x2 < 2),

left(4, 2) = (x1 = 4) ∧ (x2 < 4),
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and finally the parts missing to the right,

right(2, 2) = (x1 = 0) ∧ (x2 > 1),

right(2, 3) = (x1 = 0) ∧ (x2 = 1) ∧ (x3 > 3),

right(3, 2) = (x1 = 2) ∧ (x2 > 2),

right(3, 3) = (x1 = 2) ∧ (x2 = 2) ∧ (x3 > 0).

There are no other missing parts in the tree TM .
To describe all vectors missing from M we form the disjunction of the above

conjunctions for appropriate values of k and i. We need to determine the levels at
which neighboring models fork by means of the following function:

fork(k) =

⎧⎪⎨
⎪⎩

0 for k = 0,

min{i | mk[i] �= mk+1[i]} for k = 1, . . . , |M | − 1,

0 for k = |M |.

The values fork(0) and fork(|M |) correspond to imaginary models m0 and m|M |+1

forking at a level above the root. They allow us to write the conditions below in a
concise way at the left and right borders of the tree. The three situations in Figure 3.1
can now be specified by the following conditions:

i = fork(k) ∧ mk[i] + 1 < mk+1[i] (edges missing in between),
fork(k) < i ∧ mk+1[i] > 0 (. . . to the left),
fork(k) < i ∧ mk[i] < |D| − 1 (. . . to the right).

The second condition in each line ensures that there is at least one missing edge. It
avoids the conjunctions middle(k, i), left(k + 1, i), and right(k, i) to evaluate to false.

Example 3.4. The function fork for M = {m1 = 010, m2 = 013, m3 = 220,
m4 = 440, m5 = 444} is given by the following table:

0 1 2 3 4 5
fork 0 3 1 1 3 0

The aforementioned fork conditions for missing edges are satisfied in the following
cases.

(i) For the first condition, implying edges missing in between, we have four
cases where it is satisfied:

3 = fork(1) ∧ 1 = m1[3] + 1 < m2[3] = 3,

1 = fork(2) ∧ 1 = m2[1] + 1 < m3[1] = 2,

1 = fork(3) ∧ 3 = m3[1] + 1 < m4[1] = 4,

3 = fork(4) ∧ 1 = m4[3] + 1 < m5[3] = 4.

(ii) For the second condition, implying edges missing to the left, we have three
cases where it is satisfied:

fork(0) < 2 ∧ 1 = m1[2] > 0,

fork(2) < 2 ∧ 2 = m3[2] > 0,

fork(3) < 2 ∧ 4 = m4[2] > 0.
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(iii) Finally, for the third condition, implying edges missing to the right, we have
also three cases where it is satisfied:

fork(2) < 2 ∧ 1 = m2[2] < 4,

fork(2) < 3 ∧ 3 = m2[3] < 4,

fork(3) < 2 ∧ 2 = m3[2] < 4,

fork(3) < 3 ∧ 0 = m3[3] < 4.

It can be easily seen that these conditions trigger the middle, left, and right formulas
shown in Example 3.3.

The disjunction of terms middle(k, i), left(k+1, i), and right(k, i) that satisfy the
first, second, and third condition, respectively, for all models and all levels represents a
disjunctive formula satisfied by the models missing from M . After applying negation
and de Morgan’s laws, we arrive at the required formula in CNF,

ϕ(M) =
∧

{ ¬middle(k, i) | 0 < k < |M | , i = fork(k), mk[i] + 1 < mk+1[i] }

∧
∧

{ ¬ left(k + 1, i) | 0 ≤ k < |M | , fork(k) < i ≤ �, mk+1[i] > 0 }

∧
∧

{ ¬ right(k, i) | 0 < k ≤ |M | , fork(k) < i ≤ �, mk[i] < |D| − 1 },

where the condition Sol(ϕ) = M holds. Note that we use the negation symbol not
as an operator on the syntax level but as a metanotation expressing that the formula
following the negation sign has to be replaced by its dual. Note also that the conjunct
left(k+1, i) is defined and used with the shifted parameter k+1 since it characterizes
a gap lexicographically before the vector mk+1.

Example 3.5. The set of vectors M = {010, 013, 220, 440, 444} is described by
the following CNF formula:

ϕ(M) = ¬middle(1, 3) ∧ ¬middle(2, 1) ∧ ¬middle(3, 1) ∧ middle(4, 3)

∧ ¬ left(1, 2) ∧ ¬ left(3, 2) ∧ ¬ left(4, 2)

∧ ¬ right(2, 2) ∧ ¬ right(2, 3) ∧ ¬ right(3, 2) ∧ ¬ right(3, 3).

After substitution and application of de Morgan laws, this amounts to

ϕ(M) = (x1 �= 0 ∨ x2 �= 1 ∨ x3 ≤ 0 ∨ x3 ≥ 3) ∧ (x1 ≤ 0 ∨ x1 ≥ 2)

∧ (x1 ≤ 2 ∨ x1 ≥ 4) ∧ (x1 �= 4 ∨ x2 �= 4 ∨ x3 ≤ 0 ∨ x3 ≥ 4)

∧ (x1 �= 0 ∨ x2 ≥ 1) ∧ (x1 �= 2 ∨ x2 ≥ 2) ∧ (x1 �= 4 ∨ x2 ≥ 4)

∧ (x1 �= 0 ∨ x2 ≤ 1) ∧ (x1 �= 0 ∨ x2 �= 1 ∨ x3 ≤ 3) ∧ (x1 �= 2 ∨ x2 ≤ 2)

∧ (x1 �= 2 ∨ x2 �= 2 ∨ x3 ≤ 0).

Replacing the shorthand notation �= by proper literals gives the following final formula:

ϕ(M) = (x1 ≥ 1 ∨ x2 ≤ 0 ∨ x2 ≥ 2 ∨ x3 ≤ 0 ∨ x3 ≥ 3) ∧ (x1 ≤ 0 ∨ x1 ≥ 2)

∧ (x1 ≤ 2 ∨ x1 ≥ 4) ∧ (x1 ≤ 3 ∨ x2 ≤ 3 ∨ x3 ≤ 0 ∨ x3 ≥ 4)

∧ (x1 ≥ 1 ∨ x2 ≥ 1) ∧ (x1 ≤ 1 ∨ x1 ≥ 3 ∨ x2 ≥ 2) ∧ (x1 ≤ 3 ∨ x2 ≥ 4)

∧ (x1 ≥ 1 ∨ x2 ≤ 1) ∧ (x1 ≥ 1 ∨ x2 ≤ 0 ∨ x2 ≥ 2 ∨ x3 ≤ 3)

∧ (x1 ≤ 1 ∨ x1 ≥ 3 ∨ x2 ≤ 2) ∧ (x1 ≤ 1 ∨ x1 ≥ 3 ∨ x2 ≤ 1 ∨ x2 ≥ 3 ∨ x3 ≤ 0).
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Algorithm: description

Input : Nonempty set M ⊆ D� of vectors.
Output : Formula ϕ(M) in CNF, satisfying Sol(ϕ) = M .
Method :

1: let M = (m1, . . . ,m|M |) be lexicographically sorted
2: ϕ(M) ← true
3: fork ← fork(M)
4: for k ← 0 to |M | do
5: f ← fork[k]
6: if f > 0 and mk[f ] + 1 < mk+1[f ] then
7: ϕ(M) ← ϕ(M) ∧ ¬middle(k, f)
8: end if
9: for i ← f + 1 to � do

10: if k < |M | and mk+1[i] > 0 then
11: ϕ(M) ← ϕ(M) ∧ ¬ left(k + 1, i)
12: end if
13: if k > 0 and mk[i] < |D| − 1 then
14: ϕ(M) ← ϕ(M) ∧ ¬ right(k, i)
15: end if
16: end for
17: end for
18: return ϕ(M)

Algorithm: fork

Input : Lexicographically sorted nonempty list M ⊆ D� of vectors without duplicates.
Output : Array fork: [0 . . . |M |] containing the fork function for M .
Method :

1: fork[0] ← 0
2: fork[|M |] ← 0
3: for k ← 1 to |M | − 1 do
4: i ← 1
5: while mk[i] = mk+1[i] do
6: i ← i + 1
7: end while
8: fork[k] ← i
9: end for

10: return fork

Fig. 3.3. Algorithm for the description problem.

It can be easily checked that the constructed formula ϕ(M) satisfies the condition
Sol(ϕ(M)) = M .

The main algorithm that implements the construction of a formula ϕ in CNF
for a given set of vectors M over a finite totally ordered domain D, satisfying the
condition Sol(ϕ) = M , and the algorithm computing the fork function are displayed
in Figure 3.3.

Theorem 3.6. For each set of vectors M ⊆ D� over a finite ordered domain D
there exists a formula ϕ in CNF such that M = Sol(ϕ). It contains at most 2 |M | �
clauses and its length is O(|M | �2 log |D|). The algorithm constructing ϕ runs in time
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O(|M | �2 log |D|).
Proof. The formula ϕ(M) contains at most |M | − 1 middle-clauses and at most

� + (|M | − 1)(� − 1) left/right-clauses. Summing up these partial bounds, we obtain
for the total number of clauses the bound

|M | − 1 + 2(� + (|M | − 1)(�− 1)) = 2 |M | �− |M | + 1 ≤ 2 |M | � (for M �= ∅).
Each clause contains at most 2� literals, namely at most one positive and one nega-
tive for each variable. Each literal has length O(log |D|), since the domain elements
are written in binary notation. Hence, the overall length of the formula ϕ(M) is

O(|M | �2 log |D|).
The vectors in M can be lexicographically sorted in time O(|M | � log |D|) using

a decision tree (trie) or a radix sort. The factor log |D| stems from the comparison
of domain elements. The fork levels can also be computed in time O(|M | � log |D|),
in parallel with sorting the set M . The formula ϕ(M) is produced by two loops,
where the outer loop is going through each vector in M and the inner loop through
the variables. The three clauses ¬middle(k, i), ¬ left(k + 1, i), and ¬ right(k, i) are
potentially written in each step inside the combined loops. This makes an algorithm
with time complexity O(|M | �2 log |D|).

An important property of our algorithm is its linearity with respect to the number
of models |M | being the most relevant parameter. In fact, the paper by Amilhastre,
Fargier, and Marquis [1] mentions an industrial problem provided by Renault DVI,
where the cardinality of the set of vectors is |M | = 1.5 · 1012 with the vector arity � =
101 over a domain of size |D| = 43. The complement set M̄ contains 43101 − 1.5 · 1012

vectors; therefore, the naive algorithm is inapplicable in this situation.

4. Prime formulas. The formulas in CNF computed by Algorithm descrip-

tion in section 3 are of a particular form: The variables in each clause form a prefix
of the variable vector (x1, . . . , x�). As a consequence, although polynomial in the size
of the initial relation M , the size of the formulas is not minimal. In Example 3.5, for
instance, it can be easily seen that several literals and even clauses can be removed
from the formula. We investigate in this section a way to shorten formulas. To this
aim we generalize the notion of a prime formula in propositional logic to the case
of finite domains and show how to obtain such a prime formula in CNF describing
the given relation M . Note that although we apply the minimization process to the
formulas produced by our algorithm, it can be applied to any formula in CNF.

The notion of primality and prime clauses in many-valued logic was considered
for the first time by Murray and Rosenthal in [23].

4.1. Notions of primality. Recall that a clause of a propositional formula ϕ in
CNF is said to be prime (with respect to ϕ) if ϕ implies none of its proper subclauses.
This leads to the following straightforward generalization. Let ϕ be a CNF formula
over some finite totally ordered domain. A clause c = (l1 ∨ · · · ∨ lq) of ϕ is said to be
prime (with respect to ϕ) if for each i = 1, . . . , q there exists a model mi ∈ Sol(ϕ) not
satisfying the reduced clause c � li = (l1 ∨ · · · ∨ li−1 ∨ li+1 · · · ∨ lq). The formula ϕ is
said to be prime if all its clauses are prime.

However, this notion of primality considers each literal as a whole. This is ade-
quate in the case of classical propositional logic but does not meet our requirements
in the case of larger domains. The following more sophisticated notion of primality
also considers the value d involved in a literal x ≤ d or x ≥ d.

Definition 4.1 (primality). For a variable x and a pair of values d, d′ ∈ D
satisfying the relation d′ > d (resp., d′ < d), the literal x ≥ d′ (resp., x ≤ d′) is said
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to be stronger than the literal x ≥ d (resp., x ≤ d). The constant false is stronger
than any other nonfalse literal. Removal of a literal from a clause is a particular case
of strengthening, namely, of this literal to the constant false.

Let ϕ be a CNF formula over a finite totally ordered domain D. A clause c in ϕ
is prime with respect to ϕ if strengthening any literal in c yields a clause which is not
implied by ϕ. A formula ϕ is prime if all its clauses are prime.

As in the propositional case, it is easily seen that for a given formula ϕ there
always exists at least one prime formula ϕ′ which is logically equivalent to ϕ and can
be obtained from ϕ by strengthening and removing some of its literals. If ϕ is already
prime, then ϕ and ϕ′ are identical.

The interest in this new, stronger notion of primality comes from efficiency re-
quirements. In fact, the presence of a literal x ≤ d or x ≥ d instead of x ≤ d′ or
x ≥ d′′, respectively, for d < d′ or d > d′′ reduces the search space during a search for
a suitable satisfying assignment.

4.2. Algorithm. Given a CNF formula ϕ, we show how to efficiently compute
a prime formula ϕ′ satisfying the equality Sol(ϕ) = Sol(ϕ′). Our algorithm, specified
in Figure 4.1, is inspired by the one presented in [25] for the Boolean domain. The
algorithm considers each clause l1 ∨ · · · ∨ lq of ϕ separately. First, it determines for
each model mk the last literal satisfied by it and stores the index of the literal in the
array last [k] (lines 3–9). Then the literals are strengthened in turn, starting with the
first one.

Suppose that the literal is positive; i.e., it is of the form xi ≥ d (lines 12–20).
Strengthening means to increase the value of d. Some models that satisfied the literal
before might not satisfy the literal after strengthening. This is a problem only for
those models for which the literal was the last possibility to make the clause true
(remember that for a model to satisfy a clause it suffices to satisfy a single literal).
Therefore, we choose the new value d′ as the minimum of all such models (lines 14–19)
and construct the new literal as xi ≥ d′. Negative literals are handled dually by taking
the maximum (lines 21–30). If the literal is redundant, i.e., if no model depends on
it as its last literal, the minimum (maximum) would have to be taken over the empty
set; in this case we set d′ to n (resp., −1).

Line 31 checks whether the literal is redundant. If it is not redundant, it is added
to the new clause constructed to replace the old one (line 32). Finally, all models
mk satisfying the new literal are marked by setting last [k] to zero (lines 33–37). As
a consequence, the minimum/maximum computations for the remaining literals will
ignore these models.

Example 4.2. Let x1 ≤ 3 ∨ x2 ≤ 3 ∨ x3 ≤ 0 ∨ x3 ≥ 4 be the clause under
consideration, and let M be as in Example 3.5. The array last is set to the values

010 013 220 440 444
last 3 2 3 3 4

The first literal is eliminated since there is no model mk such that last [k] = 1. The
second literal is strengthened to x2 ≤ 1 since d′ = 1 for j = 2. The last two literals
remain unchanged, since the maximum for j = 3 is d′ = 0 and the minimum for j = 4
is d′ = 4. Hence the reduced clause is equal to x2 ≤ 1 ∨ x3 ≤ 0 ∨ x3 ≥ 4.

The primality algorithm applied to the whole formula ϕ(M) from Example 3.5
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Algorithm: primality

Input : A formula ϕ in conjunctive normal form and a nonempty set M ⊆ D� of
vectors such that Sol(ϕ) = M .
Output : A reduced prime formula ϕ′ such that Sol(ϕ) = Sol(ϕ′).
Method :

1: ϕ′ ← true
2: for all clauses c = (l1 ∨ · · · ∨ lq) ∈ ϕ do � compute the vector last
3: for k ← 1 to |M | do
4: for j ← 1 to q do
5: if mk satisfies lj then
6: last [k] ← j
7: end if
8: end for
9: end for

10: c′ ← false � greedy strengthening of literals
11: for j ← 1 to q do
12: if lj is positive then
13: let lj = xi ≥ d
14: d′ ← n � d′ = min({n} ∪ {mk[i] | 1 ≤ k ≤ |M | , last [k] = j})
15: for k ← 1 to |M | do
16: if last [k] = j then
17: d′ ← min(d′,mk[i])
18: end if
19: end for
20: l′ ← xi ≥ d′

21: else
22: let lj = xi ≤ d
23: d′ ← −1 � d′ = max({−1} ∪ {mk[i] | 1 ≤ k ≤ |M | , last [k] = j})
24: for k ← 1 to |M | do
25: if last [k] = j then
26: d′ ← max(d′,mk[i])
27: end if
28: end for
29: l′ ← xi ≤ d′

30: end if
31: if 0 ≤ d′ ≤ n− 1 then
32: c′ ← c′ ∨ l′

33: for k ← 1 to |M | do
34: if mk satisfies l′ then
35: last [k] ← 0
36: end if
37: end for
38: end if
39: end for
40: ϕ′ ← ϕ′ ∧ c′

41: end for
42: return ϕ′

Fig. 4.1. Reduction to a prime formula.
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returns the reduced formula

ϕ′(M) = (x3 ≤ 0 ∨ x3 ≥ 3) ∧ (x1 ≤ 0 ∨ x1 ≥ 2) ∧ (x1 ≤ 2 ∨ x1 ≥ 4)

∧ (x2 ≤ 1 ∨ x3 ≤ 0 ∨ x3 ≥ 4) ∧ (x2 ≥ 1) ∧ (x1 ≤ 0 ∨ x2 ≥ 2)

∧ (x1 ≤ 2 ∨ x2 ≥ 4) ∧ (x1 ≥ 2 ∨ x2 ≤ 1) ∧ (x2 ≥ 4 ∨ x3 ≤ 3)

∧ (x1 ≥ 4 ∨ x2 ≤ 2) ∧ (x2 ≤ 1 ∨ x2 ≥ 4 ∨ x3 ≤ 0) .

Note that ϕ′(M) is a Horn formula with at most three literals per clause.
Theorem 4.3. For a formula ϕ in conjunctive normal form (CNF) there exists

a logically equivalent prime formula ϕ′ such that Sol(ϕ) = Sol(ϕ′), which can be
computed in time O(|ϕ| |M | � log |D|), where |ϕ| is the number of clauses in ϕ.

Proof. The time complexity directly follows from Figure 4.1. To prove the cor-
rectness of the algorithm, let c be a clause of ϕ and c′ be the clause obtained from c
by running Algorithm primality.

We first show that the models satisfying c are the same as those satisfying c′.
The lines 3–9 set last [k] to a value in {1, . . . , q} for every k, since every model in M
satisfies at least one literal in c. Moreover, last [k] is set to zero if and only if the
corresponding model satisfies the literal added to c′. Obviously every element of last
will eventually be set to zero: either the model “accidentally” satisfies a new literal
before the last one, or otherwise the new literal derived from the literal identified by
last [k] is satisfied by mk. Therefore, we have Sol(ϕ) = Sol(ϕ′).

It remains to show that c′ is prime. According to Definition 4.1 we have to prove
that no literal from c′ can be removed or strengthened. Consider the start of the jth
iteration of the for-loop in lines 11–39. Construct the set M (j) = {mk | 1 ≤ k ≤ |M | ,
last [k] = j}. The models in M (j) satisfy none of the literals added to c′ so far
(otherwise their last-entry would have been set to zero, preventing their inclusion into
the set M (j)), nor will they satisfy any future literal since the jth literal is the last
one satisfied by the models. Therefore, the literal constructed in this iteration cannot
be dropped from c′ without changing the set of satisfying models. Now suppose that
the literal considered in this round is lj = xi ≥ d (the other case is dual). Let m(j) be
one of the models in M (j) for which the ith component is minimal, i.e., m(j)[i] = d′.
It satisfies xi ≥ d′ but clearly no other literal xp ≥ dp satisfying dp > d′. We conclude
that the literals added to c′ can be neither removed nor strengthened, which implies
that c′ is prime.

Combining Algorithms description and primality, i.e., first describing M by
means of a CNF formula ϕ(M), followed by a reduction of ϕ(M) to a prime formula,
we get the following result.

Corollary 4.4. For each set of vectors M ⊆ D� over a finite totally ordered do-
main D there exists a prime formula ϕ in CNF such that M = Sol(ϕ). The algorithm

constructs ϕ in time O(|M |2 �2 log |D|).
5. Horn formulas. Horn clauses and formulas constitute a frequently stud-

ied subclass of propositional formulas. This is due to the fact that there exists a
polynomial-time algorithm for deciding their satisfiability problem. It turns out that
this is still the case for Horn formulas over finite domains [4], which motivates our
study of their description and identification problems. As we will see, the sets of
vectors described by Horn formulas are closed under the minimum operation.

A question may arise about the usefulness and practical implications of computing
a Horn formula ϕ(M) for a given set of vectors M whenever it is possible. Since
the complexity of the description algorithm is determined by the cardinality of the
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set of vectors M , it may seem superfluous to compute a Horn formula describing
them. However, imagine a two-stage procedure, where first a describing formula ϕ
is computed offline for the set of vectors M , followed by its extensive use during a
second stage for online reasoning. It is obvious that we prefer a structurally simpler
formula ϕ for the second stage reasoning process. There exist numerous examples
in logic and automated deduction (see, e.g., the survey [3] in case of many-valued
logics), like resolution or several tableau methods, where it is more efficient to work
with Horn clauses or Horn formulas, compared with general formulas in CNF.
Problem: description[horn].

Input : A finite set of vectors M ⊆ D�, closed under conjunction, over a finite totally
ordered domain D.
Output : A Horn formula ϕ over D such that Sol(ϕ) = M .

The general construction in section 3 does not guarantee that the final formula
is Horn whenever the set M is closed under conjunction. For instance, there exists a
Horn formula describing the set M presented in Example 2.2, but the formula ϕ(M)
computed by the description algorithm in Example 3.5 is not Horn. Therefore, we
must reduce the clauses of the formula ϕ, produced in section 3, to obtain only Horn
clauses. For this, we will modify a construction proposed by Jeavons and Cooper
in [21]. Their method is exponential, since it proposes to construct a Horn clause
for each vector in the complement set D� � M . We will first adapt the method of
Jeavons and Cooper to get a polynomial-time algorithm and then propose a more
sophisticated implementation of the approach that will guarantee us an algorithm
with even lower asymptotic complexity.

Let ϕ(M) be a formula produced by the description algorithm in section 3, and
let c be a clause from ϕ(M). We denote by c− the disjunction of the negative literals
in c. The vectors in M satisfying a negative literal in c also satisfy the restricted
clause c−. Hence we have only to care about the vectors that satisfy a positive literal
but no negative literals in c, described by the set

Mc = {m ∈ M | m �|= c−}.

If Mc is empty, we can replace the clause c by h(c) = c− in the formula ϕ(M)
without changing the set of models Sol(ϕ). Otherwise, note that Mc is closed under
conjunction, since M is already closed under this operation. Indeed, if the vectors m
and m′ falsify every negative literal x ≤ d of c−, then the conjunction m∧m′ falsifies
the same negative literals. Hence Mc contains a unique minimal model m∗ =

∧
Mc.

Every positive literal in c satisfied by m∗ is also satisfied by all vectors in Mc. Let l be
a positive literal from c and satisfied by m∗. There exists at least one such literal since
otherwise m∗ would satisfy neither c− nor any positive literal in c; hence it would
not be in Mc. Then c can be replaced with the Horn clause h(c) = l ∨ c−, without
changing the set of models Sol(ϕ). We obtain a Horn formula h(M) for a Horn set M
by replacing every non-Horn clause c in ϕ(M) by its Horn restriction h(c).

Example 5.1. Consider again the set of vectors M = {010, 013, 220, 440, 444} and
the non-Horn clause c = (x1 ≥ 1∨x2 ≤ 0∨x2 ≥ 2∨x3 ≤ 0∨x3 ≥ 3) from Example 3.5.
We have c− = (x2 ≤ 0 ∨ x3 ≤ 0); thus any subclause of c containing c− is already
satisfied by the vectors 010, 220, and 440. We need to keep a positive literal from c in
order to satisfy the reduced clause also by the vectors 013, 444 ∈ M . In other words,
we have Mc = {013, 444}. The unique minimal model is m∗ = 013∧ 444 = 013. Since
the minimal model m∗ satisfies the positive literal (x3 ≥ 3) in c, we can reduce the
clause c to h(c) = (x3 ≥ 3 ∨ x2 ≤ 0 ∨ x3 ≤ 0).
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The length of h(M) is basically the same as that of ϕ(M). The number of clauses
is the same and the length of clauses is O(� log |D|) in both cases. There are at most
2� literals in each clause of ϕ(M) (one positive and one negative literal per variable)
versus � + 1 literals in each clause of h(M) (one negative literal per variable plus a
single positive literal).

The construction of each Horn clause h(c) requires time O(|M | � log |D|). Indeed,
for every vector m ∈ M we have to evaluate at most � negative literals in c to find out
whether m belongs to Mc. The evaluation of a literal takes time O(log |D|). Hence the
computation of the set Mc takes time O(|M | � log |D|). To obtain m∗ =

∧
Mc, we have

to compute |Mc|−1 conjunctions between vectors of length �, each of the � conjunctions
taking time O(log |D|). Therefore, m∗ can also be computed in time O(|M | � log |D|).
Since there are at most 2 |M | � clauses in ϕ(M), the transformation of ϕ(M) into

h(M) can be done in time O(|M |2 �2 log |D|). Hence, the whole algorithm producing

the Horn formula h(M) from the set of vectors M runs in time O(|M |2 �2 log |D|).
Note that we can also use the primality algorithm to reduce a CNF formula ϕ

to a Horn formula h(ϕ) whenever there exists a Horn formula logically equivalent
to ϕ. The application of the primality algorithm yields the same asymptotic time
complexity as the aforementioned method according to Corollary 4.4. However, nei-
ther the application of the primality algorithm nor the aforementioned method are
asymptotically optimal.

Another interest for using the primality algorithm comes from the fact that this
method does not need the assumption that M is closed under conjunction. Indeed,
once we compute a prime formula describing M , we can conclude that M is Horn
if the obtained prime formula is Horn. We will return to this issue in section 6 on
bijunctive formulas.

We now describe a new algorithm that significantly outperforms the previous
methods in terms of running time. This new algorithm is inspired by the one from [17]
for the Boolean case. The basic idea is to describe the set M directly by means of
a CNF formula as in section 3, but keeping only one or no positive literal in each
obtained clause. For this purpose, we define the terms hmiddle(k, i), hleft(k+1, i), and
hright(k, i) that replace the corresponding terms defined in section 3. The replacement
of the previous terms by the new ones is based on the following lemma.

Lemma 5.2. Let M ⊆ D� be a finite set of vectors closed under conjunction and
let c be a clause satisfied by each model m ∈ M . Then there exists a Horn subclause
h(c) of c that is satisfied by every model from M .

Proof. If c contains only one or no positive literals, then we set h(c) equal to c.
Otherwise, let c = (xi ≥ a ∨ xj ≥ b ∨ c′) be a clause containing two different positive
literals, where i �= j since otherwise one of the two positive literals would be implied
by the other and could therefore be eliminated. Assume that neither xi ≥ a nor xj ≥ b
can be removed from c if the truth of c with respect to M has to be preserved. Then
there must be two models m,m′ ∈ M satisfying the conditions m[i] ≥ a, m[j] < b
and m′[i] < a, m′[j] ≥ b. Moreover, neither m nor m′ satisfy the rest of the clause c′.
Then it can be easily seen that (m ∧m′)[i] < a, (m ∧m′)[j] < b, and that the model
m∧m′ does not satisfy c′. Hence, the model m∧m′ ∈ M does not satisfy the clause
c. This contradicts the hypothesis because M is closed under conjunction.

We now define the terms for the Horn formulas by distinguishing the cases
hmiddle, hleft, and hright. The conditions of their application are inherited from
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section 3. The first two cases are relatively easy to determine:

hmiddle(k, i) =
∧
j<i

(xj ≥ mk[j]) ∧ (xi > mk[i]) ∧ (xi < mk+1[i]),

hleft(k + 1, i) =
∧
j<i

(xj ≥ mk+1[j]) ∧ (xi < mk+1[i]).

We can easily see that ¬hmiddle(k, i) and ¬hleft(k + 1, i) are Horn clauses. Ob-
serve that ¬hleft(k + 1, i) implies ¬ left(k + 1, i). We will show that the rightmost
literal cannot be removed from ¬ left(k + 1, i) when we compute the Horn subclause
¬hleft(k + 1, i). From the tree TM and the term left(k + 1, i) observe that the clause
c = ¬ left(k+1, i) � (xi ≥ mk+1[i]) is falsified by at least one model in M . Therefore,
there is no Horn subclause h(c) of c that is satisfied by all models in M . Since M
is closed under conjunction, from Lemma 5.2 it follows that there must be a Horn
subclause h(c) of c that is satisfied by all models of M . Hence, the clause h(c)
must contain the literal xi ≥ mk+1[i] and since it is Horn, it must be a subclause
of ¬hleft(k + 1, i). Similarly for hmiddle(k, i), the construction ensures that the
rightmost literal cannot be removed from ¬middle(k, i), since otherwise the clause
¬middle(k, i) would be equal to ¬ right(k, i). Thus all other positive literals can be
removed from ¬middle(k, i) to obtain the Horn subclause ¬hmiddle(k, i).

The construction of the term hright(k, i) is more involved. Recall that for all
convenient parameters k and i we have the clause

¬ right(k, i) =
∨
j<i

(xj < mk[j] ∨ xj > mk[j]) ∨ (xi ≤ mk[i]).

We look for the positive literals that can be removed from ¬ right(k, i) in order to
derive the term hright(k, i). For this purpose, construct the set

M(k, i) = {m ∈ M | m[i] > mk[i] and ∀j < i, m[j] ≥ mk[j]}

for the given parameters k and i. Clearly, M(k, i) is the set of all vectors from M
that falsify all negative literals in ¬ right(k, i). The set M(k, i) corresponds to the
previously defined set Mc for c = ¬ right(k, i).

We distinguish the cases M(k, i) = ∅ and M(k, i) �= ∅. When the set M(k, i) is
empty, this means that every model m ∈ M satisfies at least one negative literal in
¬ right(k, i). Thus we can construct ¬hright(k, i) from ¬ right(k, i) by removing all
positive literals. In other words, hright(k, i) is obtained from right(k, i) by removing
all negative literals.

When the set M(k, i) is nonempty, we know from Lemma 5.2 that there exists a
positive literal in ¬ right(k, i) which is satisfied by all models in M(k, i). This amounts
to the computation of intersection

∧
M(k, i) followed by a choice of a model from it,

but we need to do it in a more sophisticated way than in the previous Horn method
if we wish to obtain an algorithm with lower asymptotic complexity. Let us define a
function that will compute the position of the kept literal:

pos(k, i) = max
1≤j≤k

{j | ∃m ∈ M(k, i) such that ∀p, p < j implies m[p] ≤ mk[p]}.

Note that since every model m ∈ M(k, i) satisfies the clause ¬ right(k, i) and thus at
least one of its positive literals, the condition pos(k, i) < i is satisfied.
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Algorithm: pos

Input : Nonempty set M ⊆ D� of vectors and a parameter k.
Output : The position function pos(k).
Method :

1: for i ← 1 to � do
2: pos(k)[i] ← 0
3: end for
4: for k′ ← 1 to |M | do
5: if k′ �= k then
6: i0 ← 1
7: while i0 < � and mk′ [i0] ≤ mk[i0] do
8: i0 ← i0 + 1
9: end while

10: i ← 1
11: while i ≤ � and mk′ [i] ≥ mk[i] do
12: if i > fork(k) and mk[i] < |D| − 1 and mk′ [i] > mk[i] then
13: pos(k)[i] ← max(pos(k)[i], i0)
14: end if
15: i ← i + 1
16: end while
17: end if
18: end for
19: return pos(k)

Fig. 5.1. Position function pos(k, i).

The term hright(k, i) is defined as follows:

hright(k, i) =

⎧⎪⎪⎨
⎪⎪⎩

∧
j<i(xj ≥ mk[j]) ∧ (xi > mk[i]) if M(k, i) = ∅,

∧
j<i(xj ≥ mk[j]) ∧ (xi > mk[i]) ∧ (xpos(k,i) ≤ mk[pos(k, i)])

otherwise.

We can finally present the Horn formula h(M) for a set of vectors M closed under
conjunction that satisfies the equality Sol(h(M)) = M . It resembles the formula ϕ(M)
from section 3 modulo some syntactic changes.

h(M) =
∧

{ ¬hmiddle(k, i) | 0 < k < |M | , i = fork(k), mk[i] + 1 < mk+1[i] }

∧
∧

{ ¬hleft(k + 1, i) | 0 ≤ k < |M | , fork(k) < i ≤ �, mk+1[i] > 0 }

∧
∧

{ ¬hright(k, i) | 0 < k ≤ |M | , fork(k) < i ≤ �, mk[i] < |D| − 1 }.

Our algorithm computing the Horn formula h(M) for a given set of vectors M
is equivalent to Algorithm description, where the terms middle(k, i), left(k + 1, i),
and right(k, i) are replaced by the terms hmiddle(k, i), hleft(k+1, i), and hright(k, i),
respectively. Computing the clauses ¬hmiddle(k, i) and ¬hleft(k + 1, i) does not
pose any problems, whereas the clause ¬hright(k, i) heavily depends on the position
function pos(k, i) which must be computed efficiently. For a given k, Algorithm pos

in Figure 5.1 computes the values of pos(k, i) for all positions i = 1, . . . , � at the same
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time. This is what makes our algorithm efficient. The result is returned in the form
of an array pos(k), where the equality pos(k)[i] = pos(k, i) holds for all positions i.

The algorithm is based on the following principle. Given a vector mk, it considers
every vector mk′ ∈ M different from mk. For a pair of vectors mk and mk′ , the
algorithm considers each index i in increasing order. While the condition mk′ [i] ≥
mk[i] (line 11) holds, we are sure that the model mk′ belongs to M(k, i), and therefore
mk′ is taken into account for the value of pos(k, i) (line 13). On the other hand, as
soon as the condition does not hold any more, then we are sure that for all j > i the
vector mk′ does not belong to M(k, i), and therefore mk′ does not need to be taken
into account for the value of pos(k, i). Note that the value pos[k, i] has no meaning
for a nonconvenient i, and therefore it is set to 0, which also means M(k, i) = ∅.

Example 5.3. We already know from Example 4.2 that there exists a Horn formula
describing the set of vectors M = {010, 013, 220, 440, 444}. Let us transform the terms
middle, left, and right from Example 3.3 to hmiddle, hleft, and hright, respectively.
We will get the middle terms

hmiddle(1, 3) = (x1 ≥ 0) ∧ (x2 ≥ 1) ∧ (x3 > 0) ∧ (x3 < 3),

hmiddle(2, 1) = (x1 > 0) ∧ (x1 < 2),

hmiddle(3, 1) = (x1 > 2) ∧ (x1 < 4),

hmiddle(4, 3) = (x1 ≥ 4) ∧ (x2 ≥ 4) ∧ (x3 > 0) ∧ (x3 < 4)

and the left terms

hleft(1, 2) = (x1 ≥ 0) ∧ (x2 < 1),

hleft(3, 2) = (x1 ≥ 2) ∧ (x2 < 2),

hleft(4, 2) = (x1 ≥ 4) ∧ (x2 < 4)

easily. To transform the terms right(2, 2), right(3, 2), and right(3, 3) to hright(2, 2),
hright(3, 2), and hright(3, 3), respectively, we need first to compute the arrays pos(2)
and pos(3). We get

pos 1 2 3
2 0 1 1
3 0 1 1

which implies the terms

hright(2, 2) = (x1 ≥ 0) ∧ (x2 > 1) ∧ (x1 ≤ 0),

hright(2, 3) = (x1 ≥ 0) ∧ (x2 ≥ 1) ∧ (x3 > 3) ∧ (x1 ≤ 0),

hright(3, 2) = (x1 ≥ 2) ∧ (x2 > 2) ∧ (x1 ≤ 2),

hright(3, 3) = (x1 ≥ 2) ∧ (x2 ≥ 2) ∧ (x3 > 0) ∧ (x1 ≤ 2).

The final Horn formula will be

h(M) = (x2 ≤ 0 ∨ x3 ≤ 0 ∨ x3 ≥ 3) ∧ (x1 ≤ 0 ∨ x1 ≥ 2) ∧ (x1 ≤ 2 ∨ x1 ≥ 4)

∧ (x1 ≤ 3 ∨ x2 ≤ 3 ∨ x3 ≤ 0 ∨ x3 ≥ 4) ∧ (x2 ≥ 1) ∧ (x1 ≤ 1 ∨ x2 ≥ 2)

∧ (x1 ≤ 3 ∨ x2 ≥ 4) ∧ (x1 ≥ 1 ∨ x2 ≤ 1) ∧ (x1 ≥ 1 ∨ x2 ≤ 0 ∨ x3 ≤ 3)

∧ (x1 ≤ 1 ∨ x1 ≥ 3 ∨ x2 ≤ 2) ∧ (x1 ≤ 1 ∨ x1 ≥ 3 ∨ x2 ≤ 1 ∨ x3 ≤ 0).
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Theorem 5.4. For each set of vectors M ⊆ D� over a finite totally ordered
domain D that is closed under conjunction, there exists a Horn formula ϕ such
that M = Sol(ϕ). The formula ϕ contains at most 2 |M | � clauses, its length is

O(|M | �2 log |D|), and it can be computed in time O(|M | �(|M | + �) log |D|).
Proof. Time complexity is straightforward since we essentially run the descrip-

tion algorithm from section 3 with the computation of pos(k) added. As for correct-
ness, it is a consequence of the previously written reasoning in this section.

Using Theorem 5.4, we are able to prove a generalization of a well-known charac-
terization of the set of models Sol(ϕ) of a Horn formula ϕ. We wish to point out that
this characterization is not new and was proved before. Indeed, a related character-
ization in a different setting can be found in [15], and a similar proof can be found
in [21]. We mention the result here for completeness.

Proposition 5.5. A set of vectors M over a finite totally ordered domain is
closed under conjunction if and only if there exists a Horn formula ϕ satisfying the
identity Sol(ϕ) = M .

Proof. Theorem 5.4 shows that there exists a Horn formula ϕ describing a set of
vectors M if M is closed under conjunction. It remains to show the converse, namely,
that the set Sol(ϕ) is closed under conjunction if ϕ is a Horn formula. We need to
show that for any two models m and m′ of ϕ, their conjunction m∧m′ is also a model
of ϕ. A model satisfies a Horn formula ϕ if and only if it satisfies every clause of ϕ.
Therefore, we need to show for each clause c that m∧m′ satisfies c whenever both m
and m′ satisfy c. We distinguish two cases.

(i) Clause c contains a positive literal x ≥ d that is satisfied by both m
and m′. Then we have m(x) ≥ d and m′(x) ≥ d, which implies (m ∧ m′)(x) =
min(m(x),m′(x)) ≥ d. This proves that m ∧m′ satisfies the clause c.

(ii) Clause c contains no positive literal satisfied by both m and m′. Then at
least one model, say, m, must satisfy a negative literal x ≤ d in c, i.e., m(x) ≤ d.
We obtain (m ∧ m′)(x) = min(m(x),m′(x)) ≤ m(x) ≤ d. Hence also m ∧ m′ satis-
fies c.

If we interchange conjunctions with disjunctions of models, as well as positive
and negative literals throughout section 5, we obtain identical results for dual Horn
formulas.

Theorem 5.6. A set of vectors M ⊆ D� over a finite ordered domain D is
closed under disjunction if and only if there exists a dual Horn formula ϕ satisfying
the identity M = Sol(ϕ). Given M closed under disjunction, the dual Horn formula

ϕ contains at most 2 |M | � clauses, and its length is O(|M | �2 log |D|). It can be
constructed in time O(|M | �(|M | + �) log |D|).

6. Bijunctive formulas. Bijunctive clauses and formulas present another fre-
quently studied subclass of propositional formulas, once more because there exists
a polynomial-time algorithm for deciding their satisfiability which generalizes to the
finite-domain case [5]. We investigate in this section the description problem for a
generalization of bijunctive formulas to ordered finite domains, namely, for sets of
vectors closed under the median operation.
Problem: description[bijunctive].

Input : A finite set of vectors M ⊆ D�, closed under median, over a finite totally
ordered domain D.
Output : A bijunctive formula ϕ over D such that Sol(ϕ) = M .

Once again, the general construction in section 3 does not guarantee that the
final formula is bijunctive whenever the set M is closed under median. Therefore,



DESCRIPTION PROBLEMS OVER FINITE ORDERED DOMAINS 941

we add a postprocessing step that transforms the formula ϕ into a bijunctive one
b(ϕ). Let ϕ(M) be the formula produced by the method of section 3, and let c be a
clause from ϕ(M). We construct a bijunctive restriction b(ϕ) by removing appropriate
literals from ϕ such that no more than two literals remain in each clause. Since ϕ is a
CNF, any model of b(ϕ) is still a model of ϕ. The converse does not hold in general.
However, if Sol(ϕ) is closed under median, the method presented below preserves the
models; i.e., every model of ϕ remains a model of b(ϕ). In the proof we need the
following simple lemma.

Lemma 6.1. The model med(m1,m2,m3) satisfies a literal l if and only if at
least two of the models m1, m2, and m3 satisfy l.

Proof. Recall the identities med(m1,m2,m3) = (m1∨m2)∧(m2∨m3)∧(m3∨m1) =
(m1∧m2)∨ (m2∧m3)∨ (m3∧m1). Recall also that m∧m′ and m∨m′ are shorthand
for the more cumbersome prefix notation min(m,m′) and max(m,m′), respectively.
Let l be satisfied by at least two models, say, m1 and m2. If the literal l is positive,
then it is also satisfied by the models m1 ∨m2, m2 ∨m3, and m3 ∨m1. If the literal
l is negative, then it is also satisfied by the models m1 ∧m2, m2 ∧m3, and m3 ∧m1.
Hence, in both cases, l is also satisfied by med(m1,m2,m3).

Conversely, if l is satisfied only by one model, say, m1, or if l is not satisfied by
any of the three models, then it is falsified by the model m2 ∨m3 if l is positive and
by the model m2 ∧ m3 if l is negative. Hence, the literal l cannot be satisfied by
med(m1,m2,m3).

Definition 6.2. We say that a literal l is essential for a clause c with respect to
a set of models M if there is a model m ∈ M that satisfies l, but no other literal in c.
We also say that m is a justification for l with respect to M .

Obviously, we may remove nonessential literals from c without losing models. It
remains to show that no clause from ϕ contains more than two essential literals.

To derive a contradiction, suppose that c is a clause from ϕ containing at least
three essential literals, say, l1, l2, and l3. Let m1, m2, and m3 be their justifications;
i.e., for each i we have mi |= li and mi does not satisfy any other literal in c. According
to Lemma 6.1, in this case the model med(m1,m2,m3) satisfies no literal at all. Hence
med(m1,m2,m3) satisfies neither c nor ϕ, which contradicts the assumption that
Sol(ϕ) is closed under median.

The previous discussion suggests applying the following algorithm to every clause c
of ϕ. For every literal l in c = c′ ∨ l, check whether the remaining clause c′ is still
satisfied by all models in M . If the answer is yes, the literal is not essential and can be
removed. Otherwise, it is one of the (at most) two literals in the final bijunctive clause
b(c). As we can easily see, this operation is performed by the primality algorithm
from section 4.

Theorem 6.3. For each set of vectors M ⊆ D� over a finite ordered domain D
that is closed under median, there exists a bijunctive formula ϕ such that M = Sol(ϕ).
The length of ϕ is O(|M | �(log � + log |D|)), and it contains at most 2 |M | � clauses.

The algorithm constructing ϕ runs in time O(|M |2 �2 log |D|).
Proof. The main part of the result follows from Theorems 3.6 and 4.3. Concerning

the length of ϕ, note that each clause contains at most two literals. Each literal
consists of a variable and one domain element. Hence we can represent a literal by
the index of its variable and the domain value, both written in binary. Therefore,
the length of a literal and subsequently of each bijunctive clause is O(log �+ log |D|).
Since there are at most 2 |M | � clauses, this implies the length of ϕ.

Similarly to the Horn and dual Horn formulas, we get a nice relation between
bijunctive formulas by means of a closure property.
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Proposition 6.4. A set of vectors M over a finite totally ordered domain is
closed under median if and only if there exists a bijunctive formula ϕ satisfying the
identity M = Sol(ϕ).

Proof. Theorem 6.3 shows that there exists a bijunctive formula for every set of
vectors M closed under median. It remains to show the converse, namely, that Sol(ϕ)
is closed under median if ϕ is a bijunctive formula. Since ϕ is a conjunction of clauses,
it is sufficient to show the closure property for a bijunctive clause c = l ∨ l′. Let m1,
m2, and m3 be three models of c. From the pigeonhole principle it follows that one
of the two literals l or l′ of the clause c is satisfied by at least two models. Hence, by
Lemma 6.1, at least one of the two literals l and l′, and therefore also the clause c, is
satisfied by med(m1,m2,m3).

We wish to point out that contrary to the Horn case, the most efficient known
algorithm for the bijunctive description problem does not seem to lift well from the
Boolean to the finite domain. Dechter and Pearl [11] showed that in the Boolean

case this problem can be solved in time O(|M | �2), which is better than our result
even when ignoring the unavoidable factor log |D|. Their algorithm generates first all

the O(�
2
) bijunctive clauses built from the variables of the formula, followed by an

elimination of those falsified by a vector from M , where the bijunctive formula is the
conjunction of the retained clauses. However, there are O(�

2 |D|2) bijunctive clauses

for a finite domain D yielding an algorithm with time complexity O(|M | �2 |D|2),
which is exponential in the size O(log |D|) of the domain elements.

Another idea, not applicable more efficiently in the finite domain case, is that of
projecting M onto each pair of variables and then computing a bijunctive formula for
each projection. This requires time O(|M | �2) in the Boolean case, since we need only
to compute a CNF for each projection. A CNF for a projection is always bijunctive;
thus only the general Algorithm description has to be used. However, in the finite
domain case, computing a formula with Algorithm description does not necessarily
yield a bijunctive CNF. Each clause can contain up to four literals, a positive and
a negative one for each variable. Thus we need to use an algorithm for computing
a bijunctive CNF, like that of Theorem 6.3, yielding an overall time complexity of
O(|M |2 �2 log |D|).

Finally, let us return to the identification problem. As was mentioned in the
introduction, our results present an elegant and unified algorithm for identification of
Horn, dual Horn, and bijunctive sets of vectors. Given a set of vectors M , the method
presented by the primality algorithm computes a prime formula ϕ satisfying the
identity Sol(ϕ) = M . Then we check in linear time whether it is Horn, dual Horn,
or bijunctive. The results in sections 5 and 6 ensure that the resulting formula ϕ is
Horn, dual Horn, or bijunctive if and only if M is a Horn, dual Horn, or bijunctive
set of vectors, respectively. This generalizes the result presented by Zanuttini and
Hébrard in [25].

7. Changing the literals. We finish the paper with a short discussion of the
description problems for a slightly different formalism, where only the literals are
changed.

If we change the underlying notion of literals, using the expressions x = d and
x �= d as basic building blocks, the situation changes drastically. Former positive
literal x ≥ d becomes shorthand for the disjunction (x = d) ∨ (x = d + 1) ∨ · · · ∨
(x = n− 1), whereas the former negative literal x ≤ d now represents the disjunction
(x = 0) ∨ (x = 1) ∨ · · · ∨ (x = d). Even if we compress literals containing the same
variable into a bit vector, the new representation still needs n bits; i.e., its size is O(n).
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Compared to the former literals of size O(log n), this amounts to an exponential blow-
up. As an immediate consequence, the algorithms given in the preceding sections
become exponential, since we have to replace literals like xi < mk[i], xi > mk[i], and
xi < mk+1[i] by disjunctions of equalities.

The satisfiability problem for formulas in CNF over finite totally ordered do-
mains with basic operators ≤ and ≥ is defined similarly to Boolean satisfiability.
The complexity of these problems was studied for fixed domain cardinalities, from
the standpoint of many-valued logics, by Béjar, Hähnle, and Manyà [6] and Hähnle
[16]. The NP-completeness proof for Boolean satisfiability generalizes uniformly to
finite ordered domains. Béjar, Hähnle, and Manyà [6] and Hähnle [16] proved that
the satisfiability problems restricted to Horn, dual Horn, and bijunctive formulas are
decidable in polynomial time for a fixed domain cardinality. These algorithms can
be generalized to arbitrary domain cardinalities, adding only the unavoidable factor
log |D|.

The satisfiability of formulas in CNF is also affected when switching to = and �=
as basic operators. While the satisfiability problem for general formulas remains NP-
complete, the restrictions to Horn, dual Horn, and bijunctive formulas change from
polynomially solvable to NP-complete for |D| ≥ 3. This can be shown by encoding,
for example, the graph problem of k-coloring [2, 9]. When we use the Horn and
bijunctive clause (u �= d∨v �= d), we can express by C(u, v) = (u �= 0∨v �= 0)∧· · ·∧(u �=
k−1∨v �= k−1) that the adjacent vertices of the edge (u, v) are “colored” by different
“colors.” On the other hand, Beckert, Hähnle, and Manyà [5] proved that bijunctive
formulas restricted to positive literals can be solved in linear time.

8. Concluding remarks. The studied formula description problems constitute
a generalization of the Boolean structure identification problems, studied by Dechter
and Pearl [11], with more efficient algorithms as a byproduct. Our paper presents a
complement to the work of Hähnle et al. [5, 6, 16] on the complexity of the satisfiability
problems in many-valued logics. It also completes the study of tractable formulas
[9, 20, 21] by Jeavons and his group.

We have constructed an efficient polynomial-time algorithm for the formula de-
scription problem over a finite totally ordered domain, where the produced formula is
in CNF. We have then presented a subsequent algorithm that eliminates in polyno-
mial time redundancies from the previously computed formula, given the original set
of vectors, producing in this way the prime formula. The notion of primality that we
use is an extension of the same notion used in Boolean formulas. It not only captures
irrelevant literals in clauses but also strengthens the value d in the literals x ≤ d or
x ≥ d, respectively. If the original set of vectors is closed under the operation of con-
junction, disjunction, or median, we have presented specific algorithms that produce a
Horn, a dual Horn, or a bijunctive formula, respectively. These algorithms generalize
the well-known ones from the Boolean domain. It is interesting to note that they
are compatible, with respect to asymptotic complexity, with known algorithms for
the Boolean case presented in [17, 25]. This means that the restriction of the new
algorithms presented in our paper to domains D with cardinality |D| = 2 produces
the aforementioned algorithms for the Boolean case. We also found that in the case
when the finite domain is totally ordered, the three well-known special cases, namely,
Horn, dual Horn, and bijunctive, display the same behavior as in the Boolean case:
(1) they have polynomial satisfiability algorithms and (2) they have the same closure
properties.

It would be interesting to know if more efficient algorithms exist or whether
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our algorithms are asymptotically optimal. Certainly a more involved lower bound
analysis is necessary to answer this open question. Another possible extension of our
work would be a generalization of our algorithms to partially ordered domains and
to domains with a different structure, like lattices. An additional direction for future
work is to look at infinite domains. Some related complexity results for satisfiability
problems in the infinite domain case can be found in [4].
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[5] B. Beckert, R. Hähnle, and F. Manyà, The 2-SAT problem of regular signed CNF formu-
las, in Proceedings of the 30th IEEE International Symposium on Multiple-Valued Logic
(ISMVL 2000), Portland, OR, 2000, IEEE Computer Society, Washington, DC, 2000, pp.
331–336.
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Abstract. This paper studies the algorithmic issues of the spanning star forest problem. We
prove the following results: (1) There is a polynomial-time approximation scheme for planar graphs;
(2) there is a polynomial-time 3

5
-approximation algorithm for graphs; (3) it is NP-hard to approxi-

mate the problem within ratio 259
260

+ ε for graphs; (4) there is a linear-time algorithm to compute the

maximum star forest of a weighted tree; (5) there is a polynomial-time 1
2
-approximation algorithm

for weighted graphs. We also show how to apply this spanning star forest model to aligning multiple
genomic sequences over a tandem duplication region.
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1. Introduction. A star is a tree in which some vertex is incident to each of
the edges in the graph. Let G be a graph. A spanning star forest SFG of a graph
G is a spanning subgraph of G in which each connected component is a star. The
size of SFG is defined to be the number of edges in SFG; if G is weighted, the size of
SFG is defined to be the sum of the weights of all edges in SFG. Even in a graph,
spanning star forests may have different sizes. As in any forest, the size of a spanning
star forest of a graph G is equal to the number of vertices of G minus the number of
stars in the star forest. We call the vertex that is incident to all edges the center of a
star. A subset of vertices dominates G if every other vertex is adjacent to at least one
vertex in the subset. It is not hard to see that the centers of the stars in a spanning
star forest form a dominating set for G. Hence, finding a maximum spanning star
forest of a graph is equivalent to finding a smallest dominating set. The latter is a
fundamental problem in algorithmic graph theory.

Although the size of a spanning star forest of a graph and its relationship to
the dominating number have been observed [13], the problem of finding a maximum
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spanning star forest of a graph has yet to be well studied. Our work focuses on this
algorithmic problem.

Our motivation for studying this problem comes from aligning multiple genomic
sequences, a basic bioinformatics task in comparative genomics. A speciation is an
evolutionary process that creates new species. Two genes from different species are
orthologous if they diverged as the result of a speciation event. A duplication is an
evolutionary event in which a genomic segment is copied and inserted at a different
position. Two related genes could have diverged due to an intraspecies duplication
event. To perform comparative genome analysis, it is desirable to produce a multi-
species orthologous alignment, in which there is at most one row of sequence from
a given species in each alignment block. The many-to-many orthologous relation-
ships among duplicated genes causes a dramatic explosion of the alignment size when
the multispecies alignment contains all combinations of pairwise orthologous relation-
ships [16].

Currently, there are no good solutions to aligning duplication-rich genomic re-
gions. The existing threaded blockset aligner (TBA) program screens out duplicated
alignments and thus is not able to capture all pairwise orthologous relationships in a
duplicated-gene cluster [7]. For example, using TBA, each human alpha-globin gene
is aligned to only one rat alpha-globin gene, despite the fact that a human alpha-
globin gene is actually orthologous to several rat alpha-globin genes, and those other
alignments are lost. To control the size of the computed alignment blocks while guar-
anteeing the alignment quality, we propose to define a so-called alignment graph using
the pairwise similarity of the given sequences and then utilize a maximum spanning
star forest of the resulting alignment graph as a guide for building alignment blocks
(see section 5 for details).

In addition, the spanning star forest problem has potential application in com-
parison of phylogenetic trees [6]. A directed star is defined to be outward if all arcs
are from the center to a leaf. The directed version of the spanning star forest problem
is, given a directed graph, to find a maximum spanning subgraph in which each con-
nected component is an outward star. Such a directed version of the spanning star
forest problem arises from the diversity problem in the automobile industry [1].

The dominating set problem is a well-known NP-hard problem. Because of this,
the problem of finding a maximum spanning star forest is NP-hard in general but is
polynomial-time solvable for trees and has a polynomial-time approximation scheme
(PTAS) for planar graphs, as indicated in section 3.1. In section 3.2, we also present
a polynomial-time algorithm of approximation ratio 3

5 for any graph. On the other
hand, we prove in section 3.3 that it is NP-hard to approximate the problem within
ratio 259

260 + ε for any small ε > 0.

For weighted graphs, the spanning star forest problem is not equivalent to the
dominating set problem. In section 4, we present a dynamic programming algorithm
for weighted trees; we also give a simple polynomial-time algorithm of approximation
ratio 1

2 for arbitrary weighted graphs.

Finally, in section 5, we show how to apply this spanning star forest model to
aligning multiple genomic sequences over a duplicated region.

2. The spanning star forest problem. In this paper, we consider simple
graphs that are undirected and connected, weighted or unweighted. We simply say
that G is a graph if it is unweighted. A star is a tree having a vertex (called the
center) incident to each of all edges in the graph. The center of a star S has the
maximum degree. If a star has only two vertices, either vertex can be its center. A
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star forest is a graph in which each component is a star.
Star forests have previously appeared in the literature on star arboricity [2]. The

star arboricity of a graph G is the minimum number of star forests whose union
contains all edges of G. Bounds on star arboricity have been established for several
classes of graphs including planar graphs [3, 4, 11, 14].

The size of a graph G is the number of edges in G, and it is the sum of the edge
weights if G is weighted. A spanning star forest of a graph G is a star forest that
contains all the vertices of G. Different spanning star forests of G may have different
sizes. In the rest of paper, we study the following algorithmic problem:
Spanning Star Forest.
Instance: A (unweighted or weighted) graph G = (V,E).
Objective: Find a spanning star forest of G that has the largest size.

As we shall prove in the next section, this problem is NP-hard. Hence, we shall
focus on developing approximation algorithms for it. An approximation algorithm for
the spanning star forest problem has approximation ratio r < 1 if it always outputs a
spanning star forest of size at least r · OPTsf (G) given a graph G, where OPTsf (G)
is the maximum size of a spanning star forest of G. We call such an algorithm an
r-approximation algorithm.

3. Algorithms for unweighted graphs.

3.1. Spanning star forest and dominating set. The dominating set is one of
the most important concepts in graph theory [15]. Given a graph G = (V,E), a subset
of vertices D ⊆ V is called a dominating set if, for every v ∈ V −D, there is at least
one vertex u ∈ D that is adjacent to it, i.e., (u, v) ∈ E. Assume D = {v1, v2, . . . , vk}
is a k-vertex dominating set of G. For each u ∈ V − D, we select a unique vertex
vu ∈ D such that (u, vu) ∈ E and associate the edge (u, vu) to vu. For each d ∈ D, all
the associated edges of the form (v, d) give rise to a star Sd centered at d. Trivially,
∪d∈DSd is a spanning star forest of G. As in any spanning forest of d components,
there are n − d edges in ∪d∈DSd, where n is the number of vertices in G. Note that
from a dominating set, one may construct different spanning star forests with the
same size.

Conversely, given a spanning star forest F of size k of G, the centers of the stars
in F form a dominating set that contains n − k vertices. In summary, we have the
following simple fact.

Lemma 3.1. Let the largest size of a spanning star forest of a graph G be denoted
by α(G) and the domination number of G be denoted by γ(G). Then, α(G) = n−γ(G),
where n is the order of G.

This implies that finding a maximum spanning star forest of a graph is equivalent
to finding a minimum dominating set. Therefore, as the dominating set problem [10],
the spanning star forest problem can be solved in linear time for trees. The lemma
also implies the following result.

Theorem 3.2. The spanning star forest problem has a PTAS for planar graphs.
Proof. Recall that γ(G) denotes the dominating number of a graph G. Since the

dominating set problem has a PTAS for planar graphs [5], for any small ε > 0, there
is a polynomial-time algorithm Aε of approximation ratio (1+ ε) for the problem. We
first obtain a dominating set Dε of at most (1 + ε)γ(G) vertices by applying Aε to G.
Then, we construct a spanning star forest Fε from Dε as described before Lemma 3.1.
Since γ(G) ≤ n

2 (Ore theorem; see [15], for example), by Lemma 3.1, Fε has size

n− |Dε| ≥ n− (1 + ε)γ(G) ≥ (1 − ε)(n− γ(G)) = (1 − ε)α(G).
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Thus, Fε is a (1 − ε)-approximation solution of the spanning star forest problem
for G.

3.2. A 3
5
-approximation algorithm. In this subsection, we mainly present a

polynomial-time 3
5 -approximation algorithm using a known upper bound on the size

of a dominating set in a graph.
Theorem 3.3. If there is a polynomial-time algorithm that finds a dominating

set of at most ( 1
2 − ε)n vertices given an n-vertex graph of minimum degree at least 2,

then there is a polynomial-time ( 1
2 + ε)-approximation algorithm for the spanning star

forest problem.
Proof. Let A be the algorithm that outputs a dominating set of at most (1

2 − ε)n
vertices given an n-vertex graph of minimum degree 2. Consider a graph G. A vertex is
called a support vertex if it is adjacent to some degree-1 vertices. Suppose G contains
l degree-1 vertices. For simplicity, we first assume that G contains an even number of
support vertices u1, u2, . . . , u2k, k ≥ 0. Obviously, l ≥ 2k. We first construct a graph
H from G by removing all the degree-1 vertices and adding k vertices v1, v2, . . . , vk
and the following 2k edges

(u2i−1, vi), (u2i, vi), 1 ≤ i ≤ k.

Then, H has n − l + k vertices of degree at least 2. Applying A to H, we obtain a
dominating set DH of at most ( 1

2−ε)(n−l+k) vertices. Now we construct a dominating
set DG of G as follows: for each i, if vi ∈ DH , we remove vi from DH and add u2i−1

and u2i into the set; if vi �∈ DH , then at least one of u2i−1 and u2i is in DH , and we add
the other into the set. In other words, DG = (DH−{v1, v2, . . . , vk})∪{u1, u2, . . . , u2k}.
It is easy to verify that DG is a dominating set. By the construction of DG, its size
is at most

(3.1) |DH | + k ≤
(

1

2
− ε

)
(n− l + k) + k ≤

(
1

2
− ε

)
n +

(
1

2
+ ε

)
k

since l ≥ 2k. This implies that a spanning star forest F of G can be obtained from
DG with at least

(3.2) n− |DG| ≥ n−
[(

1

2
− ε

)
n +

(
1

2
+ ε

)
k

]
>

(
1

2
+ ε

)
(n− 2k)

edges. Since any dominating set of G must contain each support vertex or its degree-1
neighbors, γ(G) ≥ 2k, and hence α(G) ≤ n − 2k. Therefore, F contains at least
( 1
2 + ε)α(G) edges. This has proved that A can be extended into a ratio-(1

2 + ε)
approximation algorithm for the spanning star forest problem.

When G contains an odd number of support vertices u1, u2, . . . , u2k+1, k ≥ 1,
we modify the construction of H presented above by adding two new vertices xk+1

and xk+2 and three edges (u2k+1, xk+1), (xk+1, xk+2), (xk+2, u2k+1). Now, H has
n− l+k+2 vertices. We derive dominating set DG of G from the output dominating
set DH from the algorithm as

DG = (DH − {v1, v2, . . . , vk, xk+1, xk+2}) ∪ {u1, u2, . . . , u2k+1}.

The size of DG is at most |DH | + k and the inequalities (3.1) and (3.2) become

|DH | + k ≤
(

1

2
− ε

)
(n− l + k + 2) + k ≤

(
1

2
− ε

)
(n + 1) +

(
1

2
+ ε

)
k
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and

n− |DG| ≥ n−
[(

1

2
− ε

)
(n + 1) +

(
1

2
+ ε

)
k

]
>

(
1

2
+ ε

)
(n− 2k − 1),

respectively. Since α(G) ≤ n− 2k − 1, we have that the corresponding spanning star
forest F contains at least ( 1

2 + ε)α(G) edges. Hence, the theorem also holds in this
case.

Theorem 3.4. There is a 3
5 -approximation algorithm for the spanning star forest

problem.
Proof. McCuaig and Shepherd proved that any n-vertex graph of minimum de-

gree 2 has a dominating set of size at most 2
5n for any n ≥ 8 (see [18]). We demonstrate

that such a dominating set can be found in polynomial time by giving a different con-
structive proof of their theorem (see Appendix A). Hence, by Theorem 3.3, there is a
polynomial-time algorithm of approximation ratio 1

2 + 1
10 = 3

5 for the problem.
The above result could be improved by using a better upper bound on γ(G)

for graphs G with large minimum degree δ(G). If δ(G) ≥ 7, γ(G) ≤ |VG|[1 −
δ(G)( 1

δ(G)+1 )1+1/δ(G)] (Theorem 2.8 in [15]). Although such a bound is not true for

δ(G) = 3, γ(G) ≤ 3
8 |VG| if δ(G) ≥ 3 (see [19]). If there is a polynomial-time algorithm

that, given a graph of minimum degree at least 3, always outputs a dominating set
of at most α|VG|, 3

8 ≤ α < 2
5 , the following theorem implies a better approximation

algorithm.
Theorem 3.5. Let 3

8 ≤ α < 2
5 . If there is a polynomial-time algorithm that finds

a dominating set of at most αn vertices given an n-vertex graph of minimum degree
at least 3, then there is a polynomial-time ( 4

5 − 1
2α)-approximation algorithm for the

spanning star forest problem.
Proof. Let G = (V,E) be a graph with n vertices, where n ≥ 8. We denote

the subset of vertices of degree i by Vi, and hence V = ∪iVi. First, we construct a
maximal subset A1 ⊆ V1 such that the distance between any two vertices in A1 is
at least 3. Recall that a vertex is called a support vertex if it is adjacent to some
degree-1 vertices. It is easy to see that each support vertex is adjacent to a unique
vertex in A1. We next construct an A2 ⊆ V2 having the following property:

(i) Any pair of vertices in A1 ∪A2 has distance at least 3; and
(ii) A2 is maximal; i.e., A2∪{u} does not satisfy condition (i) for any u ∈ V2−A2.
Such a subset can be constructed recursively in polynomial time. Initially, we set

A2 = φ and add the vertices in V2 one by one to A2 subject to condition (i).
Let aj denote the number of vertices in Aj , j = 1, 2. By condition (i), no vertex

in G can dominate more than one vertex in A1 ∪A2. Thus,

(3.3) γ(G) ≥ a1 + a2.

For each vertex u, we use N(u) to denote the set of its neighbors. Define Bj =
∪u∈AjN(u), j = 1, 2. By the above observation, B1 is identical to the set of the
support vertices and |B1| = |A1| = a1. Hence, for each u ∈ V1 −A1, there is a unique
v ∈ A1 such that the distance d(u, v) between u and v is 2.

Since no two vertices in A2 have a common neighbor, |B2| = 2a2. By the max-
imality property of A2, for each u ∈ V2 − A2, there is some v ∈ A1 ∪ A2 such that
d(u, v) ≤ 2. If d(u, v)=1, then u ∈ B1 ∪B2. If d(u, v) = 2, then u is adjacent to some
vertex in B1 ∪B2. This implies that the disjoint union B1 ∪B2 dominates V1 ∪ V2.

Now, we construct from G a graph G′ such that δ(G′) ≥ 3 as follows.
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Step 1. Delete all the degree-1 vertices. For simplicity, we assume that 3 divides
|B1|. Partition B1 into groups of 3 vertices each. For each group of vertices x, y, z, we
add a new vertex uxyz and three edges uxyzx, uxyzy, and uxyzz. We also add edges
xy, yz, and zx if any of them is not in G. In this way, x, y, x, uxyz all have degree at
least 3. After the completion of step 1, the number of vertices in the resulting graph
is

n− |V1| +
|B1|
3

≤ n− |B1| +
|B1|
3

= n− 2a1

3
.

Step 2. Add edge uv if it is not in G for every u, v ∈ V2 − A2. This makes each
vertex in V2−A have degree at least three if |V2−A2| ≥ 4. (In case 0 ≤ |V2−A2| ≤ 3, in
the argument below D∪B1∪V2 would be a dominating set of G, and so the right-hand
side of inequality (3.4) would be replaced by αn + 2

3 (1 − α)a1 + 1
3 (1 − α)a2 + 3.)

Step 3. Delete all vertices in A2. For simplicity, again, we assume that 3 divides
|B2|. Partition B2 into groups of 3 vertices each. For each group of three vertices
x, y, z, add a new vertex uxyz and three edges uxyzx, uxyzy, and uxyzz. We also add
edges xy, yz, and zx if any of them is not in G. As a result, x, y, z, uxyz all have
degree at least 3. After this step is done, the resulting graph G′ has at most

n− 2a1

3
− a2 +

|B2|
3

= n− 2a1

3
− a2

3

vertices and δ(G′) ≥ 3.
By applying the polynomial-time algorithm to G′, we obtain a dominating set D′

of size at most (n− 2a1

3 − a2

3 )α. Since B1∪B2 dominates V1∪V2, D
′∪B1∪B2 induces

a dominating set D1 for G: For each group x, y, z in steps 1 and 3, if uxyz is in D′,
we replace it with x, y, z. The resulting dominating set D1 is of size at most

(3.4) |D′| + 2(|B1| + |B2|)
3

≤ αn +
2(1 − α)

3
a1 +

4 − α

3
a2.

Notice that B1 is the set of support vertices and |B1| = a1. Applying inequality
(3.1) with the McCuaig–Shepherd bound (1

2 − ε = 2
5 , k = a1

2 ), we can also obtain a
dominating set D2 of size at most 2

5n + 3
10a1. By selecting the smaller one between

D1 and D2, we obtain a dominating set D having size at most

1

2
(|D1| + |D2|) ≤

5α + 2

10
n +

29 − 20α

60
a1 +

4 − α

6
a2.

From D, by inequality (3.2), we construct a desired spanning star forest that has at
least

(3.5)

n− |D|
≥ ( 4

5 − 1
2α)n− 29−20α

60 a1 − 4−α
6 a2

≥ ( 4
5 − 1

2α)(n− a1 − a2)

≥ ( 4
5 − 1

2α)(n− γ(G))

edges since 4
5 − 1

2α ≥ 29−20α
60 , 4

5 − 1
2α ≥ 4−α

6 , and γ(G) ≥ a1 + a2. This shows the
fact stated in the theorem.

When 3 does not divide |B1| and |B2|, we can modify the above argument in
the same way as we have done in the proof of Theorem 3.4. For j = 1, 2, if |Bj | ≡
2 (mod 3), we add two more vertices to form a 4-vertex clique with the last two
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vertices in Bj ; if |Bj | ≡ 1 (mod 3), we add three more vertices to form a 4-vertex
clique with the last vertex. By this modification, the inequality (3.5) becomes

n− |D| ≥
(

4

5
− 1

2
α

)
(n− γ(G)) − 6 − r1 − r2

6
(4α− 1),

where rj ≡ |Bj | (mod 3), j = 1, 2. Since n − γ(G) ≥ n/2, the fact stated in the
theorem remains true.

3.3. Hardness of approximation. We have shown that the spanning star for-
est problem can be approximated within a constant ratio in polynomial time. On the
other hand, the dominating set problem cannot be approximated within (1−ε) lnn for
any ε unless NP ⊂ DTIME(nlog log n) [17, 12]. Hence, intuitively, the spanning star
forest problem should not be approximated within a large constant ratio in polynomial
time. Now, we prove this fact rigorously.

Theorem 3.6. The spanning star forest problem cannot be approximated within
a ratio 259

260 + ε in polynomial time for any ε > 0 unless P = NP .
Proof. We prove this fact using a reduction from the VERTEX COVER problem.

Recall that the VERTEX COVER problem is to find the smallest subset U ⊂ V such
that every edge has at least one endpoint in U given a graph G = (V,E). It is known
that this problem cannot be approximated within a ratio 53

52 − ε for 4 regular graphs
unless P = NP [9]. Given a 4-regular graph G = (VG, EG), we construct a graph
H = (VH , EH) from G by adding a length-2 path parallel to each edge in G. Without
loss of generality, we assume that G is connected and not a tree. Formally,

VH = VG ∪ {ve| e ∈ EG},
EH = EG ∪ {(x, ve), (ve, y)| e = (x, y) ∈ EG}.

It is easy to see that the following facts hold:
(�) For any V ⊂ VG, if it is a vertex cover set of G, then it is a
dominating set of H. Conversely, for each subset V ⊂ VH , if it is
a dominating set of H, then (V ∩ VG) ∪ {x ∈ VG | ve ∈ V and
e = (x, y) ∈ E and x < y} ⊆ VG is a vertex cover of G.

Let OPTvc(G), OPTd(H), and OPTsf (H) denote the minimum size of a vertex
cover of G, the minimum size of a dominating set of H, and the maximum size
of a spanning star forest of H, respectively. Then, the above facts imply that
OPTd(H) = OPTvc(G). Since G is 4-regular and connected,

|EG| ≤ 4OPTvc(G).

By the handshaking theorem,

|VG| =
1

2
|EG| ≤ 2OPTvc(G).

Therefore,

OPTsf (H)
= |VH | − OPTd(H) = (|VG| + |EG|) − OPTd(H)
= (|VG| + |EG|) − OPTvc(G)
≤ 5OPTvc(G).

Assume S is a spanning star forest of H. If S contains k stars, then the size |S|
of S is |VH | − k. In addition, these k centers of S form a dominating set of H and
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hence induce a vertex cover VS of size at most k of G by the fact (�). Hence, since
OPTd(H) = OPTvc(G),

|VS | − OPTvc(G) ≤ k − OPTd(H) = k − (|VH | − OPTsf (H)) = OPTsf (H) − |S|.

Thus, if |S| is a ratio-(1− 1
5 ·

1
52 +ε) approximation of the spanning star forest problem

for H, where ε > 0, i.e., |S| ≥ (1 − 1
5 · 1

52 + ε)OPTsf (H), then the resulting vertex
cover set VS satisfies

|VS | − OPTvc(G) ≤
(

1

5
· 1

53
− ε

)
OPTsf (H) ≤

(
1

52
− 5ε

)
OPTvc(G).

In other words, VS is a ratio-( 53
52−5ε) approximation of the VERTEX COVER problem

for G. This implies that the spanning star forest problem cannot be approximated
within a ratio 1 − 1

5 · 1
52 + ε = 259

260 + ε in polynomial time unless P = NP .

4. Algorithms for weighted graphs.

4.1. A remark on the maximum spanning star forests. In a connected
weighted graph, every maximum spanning star forest may contain some isolated ver-
tices. For example, the graph shown in Figure 4.1 has a unique spanning star graph
with the maximum weight 7. Therefore, when we design an algorithm for the span-
ning star forest problem for connected weighted graphs, we have to consider the start
forests with isolated vertices.

4.2. A linear-time algorithm for weighted trees. Trees are the simplest
connected graphs. In this subsection, we present a linear-time algorithm for finding
the maximum spanning star forest of a tree.

Given a tree T , we first root T at an arbitrary vertex r and consider each edge
(u, v) as a directed edge from the endpoint closer to the root to the other endpoint.
In the rest of this subsection, when we mention that (u, v) is an edge, we mean that u
is closer to the root; we say that u is the parent of v or v is a child of u if (u, v) is an
edge in the rooted tree. Obviously, in a star forest of T , the root can be a center of
a star, a leaf of a star centered at one of its children, or an isolated vertex. For each
vertex u of T , we let T (u) be the subtree rooted at u and define the following three
numbers:

Φ(u): The maximum weight of a spanning star forest of T (u) in which
u is a center of a multiple-vertex star.
Ψ(u): The maximum weight of a spanning star forest of T (u) in
which u is a leaf of a multiple-vertex star.
Ω(u): The maximum weight of a spanning star forest of T (u) in which
u is an isolated node.

First, these three numbers can be computed through recurrence formulas as shown
below.

Lemma 4.1. Let C(u) be the set of the children of u. Then,

Φ(u) =
∑

v∈C(u) Δ(v)

−minv∈C(u)(Δ(v) − Ω(v) − w(uv)),

Ψ(u) = maxv∈C(u)[w(uv) + max{Φ(v),Ω(v)}
+
∑

x∈C(u)−{v} max{Φ(x),Ψ(x),Ω(x)}],

Ω(u) =
∑

v∈C(u) max{Φ(v),Ψ(v),Ω(v)},



954 NGUYEN, SHEN, HOU, SHENG, MILLER, AND ZHANG

1 2 4 1

(a)

1 2 4

(b)

Fig. 4.1. (a) A weighted graph; (b) The unique maximum spanning star forest with an isolated
vertex.

where Δ(v) = max{Φ(v),Ψ(v),Ω(v) + w(uv)}.
Proof. For any vertex u of T , let SFR(u) be a star forest of T (u) that has a

maximum weight Φ(u), over all the star forests in which u is a center of a star Su. For
any v ∈ C(u), we use SFR(u)|v to denote the restriction of SFR(u) in the subtree
T (v) rooted at v and define Δ(v) = max{Φ(v),Ψ(v),Ω(v) +w(uv)}. We consider the
following cases.

Case 1. The star Su centered at u contains at least two leaves. If v is a leaf of
the star Su centered at u in SFR(u), then SFR(u)|v must be a star forest of T (v)
that has the maximum weight Ω(v), over all the star forests in which v is an isolated
vertex. Moreover, w(uv) + Ω(v) ≥ Φ(v),Ψ(v). Equivalently, Δ(v) = w(uv) + Ω(v).
Otherwise, we could obtain a star forest with larger weight from SFR(u) by removing
edge uv and replacing SFR(u)|v by a star forest (of T (v)) in which v is not isolated,
contradicting our assumption that SFR(u) has the maximum weight.

If v is a not a leaf of the star Su, then SFR(u)|v is a star forest (of T (v)) with
weight Δ(v), which is max{Ψ(v),Φ(v)}. Otherwise, we can obtain a star forest of
T (u) with a larger weight by replacing SFR(u)|v by another star forest of weight
Ω(v) and adding the edge uv into T (u).

This implies that Φ(u) =
∑

v∈C(u) Δ(v) =
∑

v∈C(u) max{Φ(v),Ψ(v),Ω(v)+w(uv)}.
For any v ∈ C(u), by definition, Δ(v) − w(uv) − Ω(v) ≥ 0. For any v that is a leaf
of the star Su, by the above argument, Δ(v) = w(uv) + Ω(v). Therefore, in this case,
minv∈C(u)(Δ(v) − w(uv) − Ω(v)) = 0, and hence

Φ(u) =
∑

v∈C(u) max{Φ(v),Ψ(v),Ω(v) + w(uv)}
−minv∈C(u)(Δ(v) − w(uv) − Ω(v)).

Case 2. The star Su centered at u contains only one leaf. Let v′ be the unique leaf
in Su. Then, for any v ∈ C(u), we have Δ(v)−w(uv)−Ω(v) ≥ Δ(v′)−w(uv′)−Ω(v′).
Otherwise, we could obtain a star forest of a larger weight from SRF (u) by the
following operations:

(a) add edge uv,
(b) delete uv′,
(c) replace SFR(u)|v by a star forest (of T (v)) in which v is isolated,
and
(d) replace SFR(u)|v′ by the star forest (of T (v′) with the maximum
weight Δ(v′).

Hence, the weight Φ(u) of the star forest SFR(u) is equal to

∑
v∈C(u)−{v′} Δ(v) + (w(uv′) + Ω(v′))

=
∑

v∈C(u) Δ(v) − (Δ(v′) − w(uv′) − Ω(v′))

=
∑

v∈C(u) Δ(v) − minv∈C(u)(Δ(v) − w(uv) − Ω(v)).
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This proves the recurrence formula for Φ(u).
Let SFL be a star forest (of T (u)) in which u is a leaf of a star Su centered at

one of its children, v ∈ C(u). Then, SFL|v is a star forest (of T (v)) in which v is
isolated or the center of a star. Hence, SFL|v has weight max{Φ(v),Ω(v)}. For any
other v′ �= v in C(u), SFL|v′ is a star forest (of T (v′)) in which v′ can be a center of
a star, a leaf of a star, or an isolated vertex, and so SFL|v′ has weight Δ(v′). Hence,

Ψ(u) = maxv∈C(u)[w(uv) + max{Φ(v),Ω(v)}
+
∑

x∈C(u)−{v} max{Φ(x),Ψ(x),Ω(x)}].

This proves the recurrence formula for Ψ(u).
Let SFI(u) be the star forest (of T (u)) with the maximum weight Ω(u) in which

u is isolated. Then, for each v ∈ C(u), SFI(u)|v has to be a star forest of T (v) with
the maximum weight Δ(v). Otherwise, SFI(u) does not have the maximum weight
Ω(u). Therefore, the recurrence formula for Ω(u) is correct. This finishes the proof
of the lemma.

Theorem 4.2. There is a linear-time algorithm that outputs a star forest with
the maximum weight given a weighted tree.

Proof. Lemma 4.1 implies a dynamic programming approach for computing the
maximum star forest of a weight tree rooted at r. For each u in the tree, compute
Ψ(u), Φ(u), Ω(u) from the corresponding numbers at its children according to the
recurrence formulas given in the lemma in linear time.

After Φ(r), Ψ(r), Ω(r) are computed, the maximum star forest can be found by
backtracking along the computation path. We call a star forest SF (u) in which u is
a center of a star, a leaf of star, or an isolated vertex a type-1, type-2, or type-3 star
forest. The goal of finding the maximum star forest can be achieved by introducing
backtracking pointers r-ptr, l-ptr, i-ptr, which are used to construct the maximum star
forest of type-1, type-2, and type-3 at each vertex. At each vertex u, r-ptr(u) specifies
(a) which child of u is in the star Su centered at u, and (b) if v ∈ C(u) is not in the
star Su, the type of the restriction star forest on T (v); l-ptr(u) specifies (a) which
child of u is the center of the star containing u, and (b) the type of the restriction
star forest on T (v) for each v ∈ C(u); i-ptr(u) specifies the type of the restriction star
forest on T (v) for each v ∈ C(u). Obviously, with these backtracking pointers, the
maximum star forest can be found in linear time. This finishes the proof.

4.3. A 1
2
-approximation algorithm. For an arbitrary weighted graph, we find

a spanning star forest using the following algorithm:
1. Find a maximum spanning tree TG of the given graph G.
2. Compute a maximum spanning star forest SFG of TG.

Given a positively weighted connected graph, its maximum spanning tree can be
computed in polynomial time. For example, we can use Kruskal’s algorithm for this
purpose. Since Step 2 also takes polynomial time, the above method can be executed
in polynomial time.

Let OPTsf (G) and OPTt(G) be the maximum weight of a spanning star forest
and a spanning tree of G, respectively. Since G is connected, any spanning star forest
can be extended into a spanning tree by adding some “bridge” edges between the
stars. Hence, OPTsf (G) ≤ OPTt(G).

Consider a rooted weighted tree T . We call a node an odd node if the unique
path from the root to it has an odd number of edges and an even node otherwise.
Deleting from T all edges from an odd node to an even node gives a spanning star
forest of T ; deleting from T all edges from an even node to an odd node gives another
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spanning star forest of T . In addition, these two resulting spanning star forests are
edge-disjoint and the weight of one of these two spanning star forests is at least half
of the weight of T . Hence,

w(SFG) ≥ 1

2
w(TG) =

1

2
OPTt(G) ≥ 1

2
OPTsf (G).

Therefore, the above algorithm has approximation ratio 1
2 . This has proved the

following theorem.

Theorem 4.3. The spanning star forest problem can be approximated within
ratio 1

2 in polynomial time for arbitrary weighted graphs.

5. Application to aligning genomic sequences. To align multiple genomic
sequences from different species, the TBA program [7] works on the phylogenetic tree
T over the species in a bottom-up fashion. At each internal node v of T , the program
outputs a set of alignments of multiple segments (called blocks) in the given sequences
by merging the blocks generated at the left and right children of v through pairwise
alignments between sequences contained in left and right children. The program stops
and outputs a set of blocks (called a blockset) at the root of T . The output blockset
can be considered as a packing of the pairwise alignments between sequence segments
generated at each internal node.

Tandem duplication is an evolutionary event in which a genomic segment is du-
plicated into several adjacent copies. It is believed to be a major mechanism for
producing large gene clusters. In the human and mouse genomes, a gene family may
have dozens or even hundreds of members due to tandem duplication. Assume we
align a set of genomes. Consider a gene family that has multiple homologous genes in
each species. At an internal node v of T , in the worst case, an alignment program will
generate a pairwise alignment between every pair of the orthologous gene sequences
contained in the left and right subtrees, respectively. As a result, every pair of blocks
that contain the orthologous gene sequences and that are generated at the left and
right children of v, respectively, will be merged into a larger block. Hence, the number
of blocks that contain the gene sequences is equal to the product of the numbers of
blocks generated in the left and right children of v. When the program stops at the
root of T , it will output a blockset of an exponentially large size.

Currently, there are no good solutions to aligning duplication-rich genomic re-
gions. The existing TBA program screens out duplicated alignments and thus is not
able to capture all pairwise orthologous relationships in a duplicated-gene cluster.
An example of this deficiency, involving the human and rat alpha-globin genes, is
described in the introduction.

One way to avoid exponential growth of the number of blocks is to generate a
linear number of blocks at each internal node by carefully selecting the blocks to be
merged. More specifically, for the node v, we use Bv to denote the blockset generated
at v and |Bv| to denote the number of blocks contained in Bv. Obviously, when v is
a leaf in T , Bv = φ. Let v′ and v′′ be the left and right children of v, respectively.
A size explosion can be avoided by arranging that the blockset Bv contains at most
|Bv′ | + |Bv′′ | + c blocks, where c is a constant independent of |Bv′ | and |Bv′′ |. In
this way, for a gene family having gi copies in species i of N species, the final output
blockset will contain at most

∑N
i=1 gi + cN blocks over the gene family.

Let P be the set of pairwise alignments generated at v. We denote an alignment
in P with rows a and b by a.b, where a and b are segments of sequences in the left
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and right subtree, respectively. Define

LP = {a | a.b ∈ P for some b}

and

RP = {b | a.b ∈ P for some a}.

Our method selects blocks in Bv′ and Bv′′ to merge according to the following theory.
We first define a weighted bipartite graph Gv with vertex bipartition (V ′, V ′′).

The vertices in V ′ correspond one-to-one to the blocks in Bv′ and the rows in Lp that
are not contained in any blocks in Bv′ ; the vertices in V ′′ correspond to the blocks in
Bv′′ and the rows in RP in the same way. For simplicity, we considered the rows in LP

and RP as trivial blocks. For each x ∈ V ′, y ∈ V ′′, there is an edge between x and y if
and only if there is a pairwise alignment a.b ∈ P such that a and b appear in the blocks
corresponding to x and y, respectively, called a reference alignment of the blocks. In
general, there are multiple reference alignments for each pair of blocks. Hence, the
weight of the edge (x, y) is then defined to be the maximum alignment score over all
the reference alignments of the blocks corresponding to x and y. In practice, the rows
in P can partially overlap with some rows of a block in Bv′ ∪ Bv′′ . Here, however,
we assume a row in P is either contained in or disjoint from any row in Bv′ ∪ Bv′′ .
Since each genomic sequence may contain many different orthologous sequences, the
resulting bipartite graph Gv has more than one connected component in general. By
construction, none of the connected components in the graph are singletons.

To control the size of the output blockset, we make use of a maximum spanning
star forest of Gv to merge the blocks Bv′ and Bv′′ as shown in the Block-Merging
Algorithm. One desired property of a spanning star forest SF of a graph G is that
each edge has at least one degree-1 endpoint in SF . Such a property is critical for
controlling the size of the output blockset as shown below.

Block-Merging Algorithm

Input: Bv′, Bv′′, and P.

0. Bv = φ;
1. Construct the graph Gv by using Bv′, Bv′′,

and P;
2. Heuristically compute a maximum spanning

star forest SF of Gv;

3. For each edge (x, y) in SF,
merge the blocks correspondent to x and y,
and add the resulting block into Bv;

4. Output Bv.

Theorem 5.1. The Block-Merging Algorithm outputs a blockset satisfying the
following properties:

Full coverage property. Any position covered by a pairwise alignment
produced during the aligning process appears in some block in the
output blockset.
Nonredundancy property. Each block in the output blockset contains
a unique row that does not appear in any other blocks.
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Proof. The full coverage property is obvious. We prove the nonredundancy prop-
erty by induction on the depth of an internal node. Let v be an internal node. If the
children v′ and v′′ of v are leaves, then Bv′ and Bv′′ are empty; hence each vertex of
the bipartite graph Gv corresponds to a segment in some given sequence. For each
edge e = (x, y) in the spanning star forest of Gv computed in step 3 of the algorithm,
one of x and y, say, x, is of degree 1 and hence incident only to e. Then, the segment
corresponding to x is covered only by the block derived from e through merging the
two segments corresponding to x and y, respectively. Therefore, each block in Bv has
a unique row.

If at least one of v′ and v′′ is not a leaf, by induction, we assume that both
Bv′ and Bv′′ satisfy the nonredundancy property if they are not empty. Consider a
block Z ∈ Bv obtained through an edge (x, y) of the spanning star forest found in
step 3 of the algorithm. Without loss of generality, we assume that x is of degree 1
in the spanning star forest. If x corresponds to a block in Bv′ , then the unique row
in the block corresponding to x appears only in Z among all the blocks in Bv. If x
corresponds to a row Rx of a pairwise alignment in P , then, by the definition of Gv,
Rx is not contained in any block in Bv′ and Bv′′ and hence appears uniquely in Z
among all the blocks in Bv. This concludes the proof.

Theorem 5.1 can be used to estimate the base-pair size ||B|| of the blockset B
generated by the algorithm. Let N be the number of sequences in the input genomic
sequence set S. Since any pair of orthologous sequence segments s and s′ can be
assumed to have more than 50% identical bases, they have roughly equal length; i.e.,
|s| = Θ(|s′|). For each block X ∈ B, we use runique(X) to denote the unique row in
X. By assumption, the base-pair size |X| of X is at most NΘ(|runique(X)|) since X
has at most N rows. Therefore, using the fact that runique(X)’s are disjoint segments
of the input sequences in S, we have

||B|| =
∑
X∈B

|X| ≤
∑
X∈B

NΘ(|runique(X)|) ≤ NΘ

(∑
s∈S

|s|
)
.

In other words, the base-pair size of the output blockset is at most N times the
base-pair size of the input sequence set.

An initial test shows that our proposed approach is quite promising. For ex-
ample, we consider the alpha-globin gene cluster that has as many as 91 genes in
20 mammals. Both alpha-related and theta-related genes have clear many-to-many
homologous relationships. When aligning the alpha-globin gene cluster region (of total
length 3.9 Mbytes) in 20 mammals, a straightforward strategy meeting the two re-
quirements described in the last theorem produced a blockset of size over 900 Mbytes,
but the preliminary implementation of our approach can reduce the alignment size to
less than 10 Mbytes with little sacrifice of the alignment quality.

6. Conclusions. In this paper, we initiate the algorithmic study of the span-
ning star forest problem. In particular, we present a 3

5 -approximation algorithm for
graphs and a 1

2 -approximation algorithm for weighted graphs. In contrast, we also
prove that it is NP-hard to approximate the problem within a ratio 259

260 +ε. This study
raises several research questions for future investigation. For example, how to obtain
an approximation algorithm with better ratio and how to improve the inapproxima-
bility result are two interesting open problems. After this work was submitted, a
polynomial-time algorithm with approximation ratio 0.71 was presented in [8]. An-
other interesting question is how to design approximation algorithms for the spanning
star forest problem for directed and weighted graphs.
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H2
H1 H3 H4

H5 H6 H7

Fig. A.1. Seven bad graphs whose minimum dominating sets have size larger than 2n/5 (re-
produced from [18]; reprinted with permission of John Wiley & Sons, Inc.).

Appendix A. Finding a dominating set of size at most 2n/5.

Theorem A.1. Let G = (V,E) be a connected graph such that each vertex has
degree at least 2. If G is not one of the 7 graphs in Figure A.1 (called bad graphs),
then γ(G) ≤ 2

5 |V |. Moreover, such a dominating set can be found in O(|E|2|V |) time.

Proof. We use δ(G) to denote the minimum degree of a vertex in G = (V,E). We
prove by induction on |V |. It is easy to check that, for |V | ≤ 15, we can always find
a desired dominating set. Now assume that |V | > 15 and that the theorem holds for
all graphs G′ that have a smaller number of vertices than G and that are not listed
in Figure A.1. We show how to construct a dominating set of G whose size is at most
2
5 |V |.

If G is not edge-minimal with respect to connectedness and with a minimum
degree of 2, we keep deleting edges. Therefore, in the following, we assume that G is
edge-minimal with respect to these conditions.

Let B(G) = {u ∈ V | d(u) > 2}. If |B(G)| = 0, then G is a cycle. In this case,
a dominating set of G can be found by numbering its vertices starting from 0 and
choosing all the vertices whose indices is divisible by 3. It is readily verified that such
a dominating set contains at most 2

5 |V | vertices for any cycles that are different from
H1 and H2.

If |B(G)| = 1, then G is a union of cycles that intersect at the unique vertex
u ∈ B(G). Let A, B, C be the sets of cycles of length 4, 7, and another length,
respectively. Furthermore, let C = {C1, C2, . . . , Ct}. A dominating set of G can be
constructed by the following steps: (i) Construct a dominating set of size 2 that
contains u for each cycle in A; (ii) construct a dominating set of size 3 that contains
u for each cycle in B; (iii) construct a dominating set that contains u and is of size at
most 2

5 |Ci| for each i; (iv) merge all the dominating sets. The size of this dominating
set is

1 + |A| + 2|B| +
t∑

i=1

(
2

5
ni − 1

)
= 1 + |A| + 2|B| + 2

5

t∑
i=1

ni − t,

in which ni denotes the number of vertices in Ci. Noting that |V | = 3|A| + 6|B| +∑t
i=1 ni− t+1, we have that the size of the constructed dominating set is larger than

2
5 |V | only if G = H3, which contains exactly two length-4 cycles.

Now assume that |B(G)| ≥ 2. In the following, we call G a good graph if it is not
listed in Figure A.1. We consider the following cases.

Case 1. There is an edge uv between two vertices u and v in B(G). Due to the
minimality of G, this edge must be a bridge of G. Let Gu and Gv be the components
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Fig. A.2. A graph formed by adding a vertex to a bad graph contains one of these graphs.
The white vertex is the additional vertex. The circles mark the vertices in a dominating set of each
graph.

of G− uv containing u and v, respectively. Then both Gu and Gv are connected and
δ(Gu) ≥ 2 and δ(Gv) ≥ 2.

Case 1.1. Both Gu and Gv are good. By hypothesis, we can find dominating sets
Du and Dv of Gu and Gv such that Du ≤ 2

5 |Vu| and Dv ≤ 2
5 |Vv|. Du ∪Dv contains

at most 2
5 |V | vertices and dominates G.

Case 1.2. Only one, say, Gv is a good graph. Then Gu is a bad graph. Let
Gu = (Vu, Eu), and let G∗

u be the graph with vertex set V ∗
u = Vu ∪ {v} and edge set

E∗
u = Eu ∪ {uv}. We also let G∗

v be the graph constructed by (i) choosing a neighbor
v′ of v in Gv; (ii) joining v′ with all other neighbors of v in Gv; and (iii) deleting
v. Then, G∗

v is connected and δ(G∗
v) ≥ 2. Since Gu is a bad graph, G∗

u contains
one of the graphs in Figure A.2. Note that H4, H5, H7 in Figure A.1 contain H2 and
H6 contains H3, and so we need only to consider the cases in Figure A.2. From this
figure, we can see that G∗

u has a dominating set D∗
u that contains v and satisfies that

|D∗
u| ≤ 2

5 |V ∗
u |. Since Gu is bad and |V | ≥ 16, G∗

v contains at least eight vertices, and
so it is good. By induction, it has a dominating set D∗

v of size at most 2
5 |V ∗

v |. Then
D∗

u ∪D∗
v form a dominating set of G whose size is at most 2

5 |V |.
Case 2. There is no edge between any two vertices in B(G). In the following, we

will use 2-cycles to refer to the cycles that contain exactly one vertex in B(G), and
this unique vertex is called the endpoint of the cycle. We will also use 2-paths to refer
to the paths whose endpoints are in B(G) and in which other vertices are of degree 2.

If there is a path vv1v2v3v
′ in G such that v �= v′ and d(v1) = d(v2) = d(v3) = 2,

we construct a graph G′ by removing v1, v2, v3 and adding the edge vv′ if vv′ �∈ E(G).
Clearly G′ is connected and δ(G′) ≥ 2. Since |V | > 16, G′ must be good. Hence, G′

has a dominating set D′ of size at most 2
5 |V ′|. We construct a dominating set D for

G as follows: (i) if v ∈ D′, then D = D′ ∪ {v3}; (ii) if v′ ∈ D, then D = D′ ∪ {v1};
and (iii) if neither v nor v′ is in D′, then D = D′ ∪ {v2}. Then |D| = |D′| + 1 ≤
2
5 (|V ′|+ 3) = 2

5 |V |. Now assume that all 2-cycles in G are of length at most 4 and all
2-paths in G are of length at most 3.

Case 2.1. G contains a 2-cycle of length 4 whose endpoint’s degree is larger than
3. Let this cycle be vv1v2v3v, where v is the endpoint. A graph G′ is formed by
deleting v1, v2, and v3 from G. Since G′ contains at least thirteen vertices, it is good
and has a dominating set D′ of size at most 2

5 |V ′|. Then D′ ∪ {v2} is a dominating
set of G whose size is smaller than 2

5 (|V ′| + 3) = 2
5 |V |.

Case 2.2. Every 2-cycle of length 4 in G has an endpoint of degree 3. Consider
such a cycle vv1v2v3v, where v is the endpoint. The other neighbor v′ of v has degree 2,
since there is no edge between two vertices in B(G). The subgraph of G induced by
{v, v1, v2, v3, v

′} is called a 4-cluster and v′ is called the anchor of this cluster.

In this case, we assume that G contains a 4-cluster, say, C = {v, v1, v2, v3, v
′},

with anchor v′ such that the neighbor u of v′ not in C has degree larger than 2 in G,
and we define G′ = G − C. Then G′ is a connected graph with δ(G) ≥ 2. Since G′

contains at least eleven vertices, G′ is good, and it has a dominating set D′ such that
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|D′| ≤ 2
5 |V ′|. Furthermore, D = D′∪{v, v2} is a dominating set of G and |D| ≤ 2

5 |V |.
Case 2.3. For every 4-cluster, its anchor’s neighbor that is not in the cluster is of

degree 2. We define a 2-cycle of length 3 in G to be a 3-cluster, and the anchor of a
3-cluster is the endpoint of the cluster. Note that we define the anchor of a 3-cluster
differently. Finally, each vertex u such that d(u) > 2 and u is not an endpoint of any
2-cycles is considered as a 1-cluster with u as the anchor.

If there is an edge joining two anchors, the two anchors must be that of two 4-
clusters since other cases have been considered in Case 2.2. In this case, this graph
has only ten vertices. But we assume G has at least sixteen vertices. Hence, there is
no edge joining two anchors in G. A dominating set D of G is formed by collecting
all anchors and one vertex in each 4-cluster. Now we prove that |D| ≤ 2

5 |V |.
Let m4, m3, m1 be the number of 4-clusters, 3-clusters, and 1-clusters, respec-

tively. Then, there are also m4, m3, and m1 anchors of 4-clusters, 3-clusters, and
1-clusters, respectively. Clearly, |D| = 2m4 + m3 + m1.

Now we count the nonanchor vertices. Each 4-cluster, 3-cluster, and 1-cluster
contains 4, 2, and 0 nonanchor vertices, respectively. Furthermore, on each 2-path
connecting two anchors, there are one or two nonanchor vertices depending on whether
it is of length two or three. Therefore, the number of nonanchor vertices on these paths
is at least 1

2 (m4 +m3 +3m1) since there is at least one nonanchor vertex in the 2-path
between two anchors and the degree of the unique vertex in a 1-cluster is at least 3.
Hence, the number of nonanchor vertices is at least 9

2m4 + 5
2m3 + 3

2m1. Recall that
the dominating set D contains one nonanchor vertex in each 4-cluster. This implies
|V | ≥ 11

2 m4 + 7
2m3 + 5

2m1. Simple computation shows that |D| ≤ 2
5 |V |.

A recursive algorithm to compute a desired dominating set follows from the above
induction proof. To implement this algorithm, we have to compute d(v) for each
vertex in G and find (a) an edge between two vertices in B(G), (b) a length-4 path
that contains three consecutive degree-2 vertices in the middle, and (c) a 4-cluster
with an endpoint of degree larger than 3. Given the adjacent matrix of a graph G
as input, we can find the degree of a vertex in O(|V |) time and thus find B(G) in
O(|V |2) time. With B(G), we can find an edge between two vertices in B(G) if any
exist in O(|V |2) time. To compute (b), we just need to check if there is a degree-2
vertex having two degree-2 neighbors and these two neighbors have different neighbors
in O(|E|2) time. The task (c) can be done similarly. Overall, the algorithm finds a
dominating set iteratively. The number of vertices decreases by at least 1 after each
iteration step, and each iteration step takes O(|E|2) time and removes three vertices
from the graph. Therefore, the running time of the algorithm is O(|E|2|V |).
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SIMULATING QUANTUM COMPUTATION BY CONTRACTING
TENSOR NETWORKS∗
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Abstract. The treewidth of a graph is a useful combinatorial measure of how close the graph is
to a tree. We prove that a quantum circuit with T gates whose underlying graph has a treewidth d can
be simulated deterministically in TO(1) exp[O(d)] time, which, in particular, is polynomial in T if d =
O(log T ). Among many implications, we show efficient simulations for log-depth circuits whose gates
apply to nearby qubits only, a natural constraint satisfied by most physical implementations. We also
show that one-way quantum computation of Raussendorf and Briegel (Phys. Rev. Lett., 86 (2001),
pp. 5188–5191), a universal quantum computation scheme with promising physical implementations,
can be efficiently simulated by a randomized algorithm if its quantum resource is derived from a
small-treewidth graph with a constant maximum degree. (The requirement on the maximum degree
was removed in [I. L. Markov and Y. Shi, preprint:quant-ph/0511069].)

Key words. quantum computation, computational complexity, treewidth, tensor network, clas-
sical simulation, one-way quantum computation
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1. Introduction. The recent interest in quantum circuits is motivated by several
complementary considerations. Quantum information processing is rapidly becoming
a reality as it allows the manipulation matter on an unprecedented scale. Such ma-
nipulations may create particular entangled states or implement specific quantum
evolutions—they find uses in atomic clocks, ultra-precise metrology, high-resolution
lithography, optical communication, etc. On the other hand, engineers traditionally
simulate new designs before implementing them. Such simulation may identify subtle
design flaws and save both costs and effort. It typically uses well-understood host
hardware, e.g., one can simulate a quantum circuit on a commonly-used conventional
computer.

More ambitiously, quantum circuits compete with conventional computing and
communication. Quantum-mechanical effects may potentially lead to computational
speed-ups, more secure or more efficient communication, better keeping of secrets,
etc. To this end, one seeks new circuits and algorithms with revolutionary behav-
ior as in Shor’s work on number-factoring, or provable limits on possible behaviors.
While proving abstract limitations on the success of unknown algorithms appears
more difficult, a common line of reasoning for such results is based on simulation.
For example, if the behavior of a quantum circuit can be faithfully simulated on a
conventional computer, then the possible speed-up achieved by the quantum circuit
is limited by the cost of simulation. Thus, aside from sanity-checking new designs
for quantum information-processing hardware, more efficient simulation can lead to
sharper bounds on all possible algorithms.
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Since the outcome of a quantum computation is probabilistic, we shall clarify our
notion of simulation. By a randomized simulation, we mean a classical randomized
algorithm whose output distribution on an input is identical to that of the simulated
quantum computation. By a deterministic simulation, we mean a classical deter-
ministic algorithm which, on a given pair of input x and output y of the quantum
computation, outputs the probability that y is observed at the end of the quantum
computation on x.

To simulate a quantum circuit, one may use a näıve brute-force calculation of
quantum amplitudes that has exponential overhead. Achieving significantly smaller
overhead in the generic case appears hopeless—in fact, this observation lead Feynman
to suggest that quantum computers may outperform conventional ones in some tasks.
Therefore, only certain restricted classes of quantum circuits were studied in existing
literature on simulation.

Classes of quantum circuits that admit efficient simulation are often distinguished
by a restricted “gate library,” but do not impose additional restrictions on how gates
are interconnected or sequenced. A case in point is the seminal Gottesman–Knill
theorem [12] and its recent improvement by Aaronson and Gottesman [1]. These re-
sults apply only to circuits with stabilizer gates—controlled-NOT, Hadamard, phase,
and single-qubit measurements in the so-called Clifford group. Another example is
given by match gates defined and studied by Valiant [33], and extended by Terhal and
DiVincenzo [31].

A different way to impose a restriction on a class of quantum circuits is to limit
the amount of entanglement in intermediate states. Jozsa and Linden [16], as well as
Vidal [36], demonstrate efficient classical simulation of such circuits and conclude that
achieving quantum speed-ups requires more than a bounded amount of entanglement.

In this work we pursue a different approach to efficient simulation and allow
the use of arbitrary gates. More specifically, we assume a general quantum circuit
model in which a gate is a general quantum operation (so-called physically realizable
operators) on a constant number of qubits. This model, proposed and studied by
Aharonov, Kitaev, and Nisan [2], generalizes the standard quantum circuit model,
defined by Yao [40], where each gate is unitary and measurements are applied at the
end of the computation. We also assume that (i) the computation starts with a fixed
unentangled state in the computational basis, and (ii) at the end each qubit is either
measured or traced-out.

Our simulation builds upon the framework of tensor network contraction. Being
a direct generalization of matrices, tensors capture a wide range of linear phenomena
including vectors, operators, multilinear forms, etc. They facilitate convenient and
fundamental mathematical tools in many branches of physics such as fluid and solid
mechanics, and general relativity [14]. More recently, several methods have been
developed to simulate quantum evolution by contracting variants of tensor networks,
under the names of matrix product states (MPS), projected entangled pairs states
(PEPS), etc. [36, 37, 34, 41, 35, 24]. Under this framework, a quantum circuit is
regarded as a network of tensors. The simulation contracts edges one by one and
performs the convolution of the corresponding tensors, until there is only one vertex
left. Having degree 0, this vertex must be labeled by a single number, which gives the
final measurement probability sought by simulation. In contrast with other simulation
techniques, we do not necessarily simulate individual gates in their original order—in
fact, a given gate may even be simulated partially at several stages of the simulation.

While tensor network contraction has been used in previous work, little was known
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about optimal contraction orders. We prove that the minimal cost of contraction is
determined by the treewidth tw(GC) of the circuit graph GC . Moreover, existing
constructions that approximate optimal tree-decompositions (e.g., [28]) produce near-
optimal contraction sequences. We shall define the concepts of treewidth and tree
decompositions in section 2. Intuitively, the smaller a graph’s treewidth is, the closer
it is to a tree, and a tree decomposition is a drawing of the graph to make it look
like a tree as much as possible. Our result allows us to leverage the extensive graph-
theoretical literature dealing with the properties and computation of treewidth.

Theorem 1.1. Let C be a quantum circuit with T gates and whose underlying
circuit graph is GC . Then C can be simulated deterministically in time TO(1)

exp[O(tw(GC))].

A rigorous restatement of the above theorem is Theorem 4.6. By this theorem,
given a function computable in polynomial time by a quantum algorithm but not
classically, any polynomial-size quantum circuit computing the function must have
super-logarithmic treewidth. The following corollary is an immediate consequence.

Corollary 1.2. Any polynomial-size quantum circuit of a logarithmic treewidth
can be simulated deterministically in polynomial time.

Quantum formulas defined and studied by Yao [40] are quantum circuits whose
underlying graphs are trees. Roychowdhury and Vatan [30] showed that quantum
formulas can be efficiently simulated deterministically. Since every quantum formula
has treewidth 1, Corollary 1.2 gives an alternative efficient simulation.

Our focus on the topology of the quantum circuit allows us to accommodate arbi-
trary gates, as long as their qubit-width (number of inputs) is limited by a constant.
In particular, Corollary 1.2 implies efficient simulation of some circuits that create
the maximum amount of entanglement in a partition of the qubits, e.g., a layer of
two-qubit gates. Therefore, our results are not implied by previously published tech-
niques.

We now articulate some implications of our main result to classes of quantum
circuits, in terms of properties of their underlying graphs. The following two classes
of graphs are well-studied, and their treewidths are known. The class of series parallel
graphs arises in electric circuits, and such circuits have treewidth ≤ 2. Planar graphs
G with n vertices are known to have treewidth tw(G) = O(

√
|V (G)|) [4].

Corollary 1.3. Any polynomial size parallel serial quantum circuit can be
simulated deterministically in polynomial time.

Corollary 1.4. A size T planar quantum circuit can be simulated determinis-
tically in exp[O(

√
T )] time.

Another corollary deals with a topological restriction representative of many phys-
ical realizations of quantum circuits. Let q ≥ 1 be an integer. A circuit is said to
be q-local-interacting if under a linear ordering of its qubits, each gate acts only on
qubits that are at most q distance apart. A circuit is said to be local-interacting if
it is q-local interacting with a constant q independent of the circuit size. Such local-
interaction circuits generalize the restriction of qubit couplings to nearest-neighbor
qubits (e.g., in a spin-chain) commonly appearing in proposals for building quantum
computers, where qubits may be stationary and cannot be coupled arbitrarily. To
this end, we observe that the treewidth of any local-interaction circuit of logarithmic
depth is at most logarithmic.

Corollary 1.5. Let C be a quantum circuit of size T and depth D and q-local-
interacting. Then C can be simulated deterministically in TO(1) exp[O(qD)] time. In
particular, if C is a polynomial-size local-interacting circuit with a logarithmic depth,
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then it can be simulated deterministically in polynomial time.

Yet another important application of our approach is the simulation of one-way
quantum computation. In two influential papers [7, 25], Briegel and Raussendorf
introduced the concept of graph states—quantum states derived from graphs,—and
show that an arbitrary quantum circuit can be simulated by adaptive, single-qubit
measurements on the graph state derived from the grid graph. Note that the graph
state for a one-way quantum computation does not depend on the quantum circuit
to be simulated (except that its size should be large enough) and that for most phys-
ical implementations single-qubit measurements are much easier to implement than
multiqubit operations. Hence it is conceivable that graph states would be manu-
factured by a technologically more advanced party, then used by other parties with
lesser quantum-computational power in order to facilitate universal quantum com-
puting. This makes one-way quantum computation an attractive scheme for physical
implementations of universal quantum computation. An experimental demonstration
of one-way quantum computation appeared in a recent Nature article [38].

A natural question about one-way computation is to characterize the class of
graphs whose graph states are universal for quantum computation. We call a family
of quantum states φ = {|φ1〉, |φ2〉, . . . , |φn〉, . . .} universal for one-way quantum com-
putation if (a) the number of qubits in |φn〉 is bounded by a fixed polynomial in n; (b)
any quantum circuit of size n can be simulated by a one-way quantum computation on
|φn〉. On the other hand, φ is said to be efficiently simulatable if any one-way quantum
computation on |φn〉 can be efficiently simulated classically for all sufficiently large n.
Note that the class of universal families and that of efficiently simulatable families are
disjoint if and only if efficient quantum computation is indeed strictly more powerful
than efficient classical computation. We show that it is necessary for graphs with a
constant maximum degree to have high treewidth so that the corresponding graph
states are not efficiently simulatable.

Theorem 1.6. Let G be a simple undirected graph with the maximum degree
Δ(G). Then a one-way quantum computation on the respective graph state can be
simulated by a randomized algorithm in time |V (G)|O(1) exp[O(Δ(G)tw(G))].

The above result was improved in [19] so that the simulation time does not depend
exponentially in Δ(G). Our simulation can be made deterministic with a better upper
bound on time complexity if the one-way computation satisfies additional constraints,
such as those in [25]. We shall elaborate on this improvement in section 6.

An important limitation of our techniques is that a circuit family with suffi-
ciently fast-growing treewidth may require super-polynomial resources for simulation.
In particular, this seems to be the case with known circuits for modular exponentia-
tion. Therefore, there is little hope to efficiently simulate number-factoring algorithms
using tree decompositions. As an extreme example to illustrate the limitation of our
technique, we give a depth-4 circuit—including the final measurement as the fourth
layer—that has large treewidth.

Theorem 1.7. There exists a depth-4 quantum circuit on n qubits using only
one- and two-qubit gates such that its treewidth is Ω(n).

Note that a circuit satisfying the assumption in the above theorem must have
O(n) size. Our construction is based on expander graphs, whose treewidth must be
linear in the number of vertices (Lemma 5.2).

This finding is consistent with the obstacles to efficient simulation that are evident
in the results of Terhal and DiVincenzo [32], later extended by Fenner et al. [13]. In
contrast, we are able to efficiently simulate any depth-3 circuit deterministically while
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the simulation in [32] is probabilistic.
Theorem 1.8. Assuming that only one- and two-qubit gates are allowed, any

polynomial-size depth-3 quantum circuit can be simulated deterministically in polyno-
mial time.

Our simulation algorithm is related to algorithms for other tasks in that its run-
time depends on the treewidth of a graph derived from the input. Bodlaender wrote
an excellent survey [8] on this subject. Particularly relevant are algorithms based
on “vertex eliminations,” e.g., the bucket elimination algorithm for Bayesian infer-
ence [11]. Another parallel can be made with the work by Broering and Lokam [10],
which solves circuit-SAT in time exponential in the treewidth of the graph of the
given circuit. However, to the best of our best knowledge, we are the first to relate
the treewidth of a quantum circuit to its classical simulation.

Our results are applicable to the simulation of classical probabilistic circuits,
which can be modeled by matrices, similarly to quantum circuits. Such simulation
has recently gained prominence in the literature on the reliability of digital logic [17],
and is particularly relevant to satellite-based and airborne electronics which experience
unpredictable particle strikes at higher rates.

The rest of this paper is organized as follows. After introducing notation, we
describe how quantum circuits and their simulation can be modeled by tensor net-
works. The runtime of such simulation depends on the graph parameter that we call
the contraction complexity. We then relate the contraction complexity to treewidth,
and apply the simulation to restricted classes of graphs and to one-way quantum com-
putation. Finally, we discuss possible directions for future investigations with a brief
survey on the subsequent development since the announcement of our results.

2. Notation and definitions. For integer n ≥ 1, define [n]
def
= {1, 2, . . . , n}. An

ordering π of an n-element set is denoted by π(1), π(2), . . ., π(n). Unless otherwise
stated, graphs in this paper are undirected and may have multiple edges or loops.
Edges connecting the same pair of vertices are called parallel edges. If G is a graph,
then its vertex set is denoted by V (G) and its edge set by E(G). When it is clear in
this context, we use V = V (G) and E = E(G). The degree of a vertex v, denoted
by d(v), is the number of edges incident to it. In particular, a loop counts as 1 edge.
The maximum degree of a vertex in G is denoted by Δ(G).

Treewidth of a graph. Let G be a graph. A tree decomposition of G [27] is a tree
T , together with a function that maps each vertex w ∈ V (T ) to a subset Bw ⊆ V (G).
These subsets Bw are called bags (of vertices). In addition, the following conditions
must hold.

(T1)
⋃

v∈V (T ) Bv = V (G), i.e., each vertex must appear in at least one bag.

(T2) ∀ {u, v} ∈ E(G), ∃w ∈ V (T ), {u, v} ⊆ Bw, i.e., for each edge, at least one bag
must contain both of its endvertices.

(T3) ∀ u ∈ V (G), the set of vertices w ∈ V (T ) with u ∈ Bw form a connected subtree,
i.e., all bags containing a given vertex must be connected in T .

The width of a tree decomposition is defined by maxw∈V (T ) |Bw| − 1. The treewidth
of G is the minimum width over its tree decompositions. For example, all trees have
treewidth 1 and single cycles of length at least 3 have treewidth 2. Figure 1 shows
an example of tree decomposition. Intuitively, a tree decomposition T is a way of
drawing a graph to look like a tree, which may require viewing sets of vertices (bags)
as single vertices. The less a graph looks like a tree, the larger the bags become. The
notion of tree decomposition has been useful in capturing the complexity of constraint
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Fig. 1. A graph and its decomposition of width 2 with 6 bags.

satisfaction problems, Bayesian networks, and other combinatorial phenomena repre-
sented by graphs. In further writing, we may refer to a vertex in T by its bag when
the context is clear.

Treewidth can be defined in several seemingly unrelated ways, e.g., as the mini-
mum k for which a given graph is a partial k-tree, as the induced width (also called the
dimension), or as the elimination width [29, 5]. An elimination ordering π of a graph
G is an ordering of V (G). The induced width of a vertex v ∈ V (G) in the ordering is
the number of its neighbors at the time it is being removed in the following process:
Start with π(1), add an edge for each pair of its neighbors that were previously not
adjacent, remove π(1), then repeat this procedure with the next vertex in the order-
ing. The width of π is the maximum induced width of a vertex, and the induced width
of G is the minimum width of an elimination ordering. It is known that the induced
width of a graph is precisely its treewidth [5].

It follows straightforwardly from the definition of treewidth that if G is obtained
from G′ by removing a degree 1 vertex, then tw(G) = tw(G′), unless G′ has only
1 edge, in which case tw(G) = 0 and tw(G′) = 1. We will also use the following
well-known and simple fact, a proof for which is provided in the appendix.

Proposition 2.1. Let G be a simple undirected graph, and w be a degree 2
vertex. Then removing w and connecting its two adjacent vertices does not change
the treewidth.

Quantum circuits. We review some basic concepts of quantum mechanics and
quantum computation. For a more detailed treatment, we refer the readers to the
book by Nielsen and Chuang [23].

The state space of one qubit is denoted by H def
= C2. We fix an orthonormal basis

for H and label the basis vectors with |0〉 and |1〉. The space of operators on a vector
space V is denoted by L(V ). The identity operator on V is denoted by IV , or by I
if V is implicit from the context. A density operator, or a mixed state, of n qubits
is a positive semidefinite operator ρ ∈ L(H⊗n) with traceρ = 1. For a binary string

x = x1x2 · · ·xn ∈ {0, 1}n, let ρx
def
=

⊗n
i=1 |xi〉〈xi| be the density operator of the state

|x〉 def
= ⊗n

i=1|xi〉.
In this paper, a quantum gate with a input qubits and b output qubits is a

superoperator Q : L(H⊗a) → L(H⊗b). There are certain constraints that Q must
satisfy in order to represent a physically realizable quantum operation. We need not
be concerned about those constraints as our simulation method does not depend on
them. In existing applications one typically has a ≥ b and often a = b, though a
density operator can also be regarded as a gate with a = 0. The ordering of inputs
and outputs is, in general, significant. If Q is a traced out operator, then b = 0, and
Q(|x〉〈y|) = 〈x|y〉 for all x, y ∈ {0, 1}a. We denote by Q[A] the application of Q to an
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ordered set A of a qubits.
The information in a quantum state is retrieved through the application of mea-

surements. A POVM (positive operator-valued measure) M on n qubits is a set
M = {M1,M2, . . . ,Mk}, where each Mi is called a POVM element, and is a positive

semidefinite operator in L(H⊗n) such that
∑k

i=1 Mi = I. The single-qubit measure-
ment in the computational basis is {|0〉〈0|, |1〉〈1|}.

We assume that the maximum number of qubits on which a quantum gate can
act is bounded by a constant (often two or three). A quantum circuit of size T with
n input-qubits and m output-qubits consists of the following:
(1) A sequence of n input-wires, each of which represents one input-qubit, i.e., a qubit

which is not the output qubit of any gate.
(2) A sequence of T quantum gates g1, g2, . . ., gT , each of which is applied to some

subset of the wires.
(3) A sequence of m output-wires, each of which represents an output-qubit, i.e., a

qubit which is not the input qubit of any gate.
Note that by the above definition, a quantum circuit C defines a function C :
L(H⊗n) → L(H⊗m). In most applications, a circuit C is applied to an input state

ρx
def
= ⊗n

i=1|xi〉〈xi|, for some binary string x = x1 · · ·xn ∈ {0, 1}n, and at the end of
the computation, measurements in the computational basis are applied to a subset of
the qubits. We shall restrict our discussions to such a case, though our results can be
extended to more general cases.

The graph of a quantum circuit C, denoted by GC , is obtained from C as follows.
Regard each gate as a vertex, and for each input/output wire add a new vertex to the
open edge of the wire.1 Each wire segment can now be represented by an edge in the
graph.

3. Tensors and tensor networks. Tensors, commonly used in physics, are
multidimensional matrices that generalize more traditional tools from linear algebra,
such as matrix products. Here we focus on features of tensors that are relevant to our
work.

Definition 3.1. A rank-k tensor in an m-dimension space g = [gi1,i2,...,ik ]i1,i2,...,ik
is an mk-dimensional array of complex numbers gi1,i2,...,ik , indexed by k indices, i1,
i2, . . ., ik, each of which takes m values. When the indices are clear we omit them
outside the bracket.

For example, a rank-0 tensor is simply a complex number, and a rank-1 tensor is
a dimension-m complex vector. We focus on dimension-4 tensors, and set the range

of each index to be Π
def
= {|b1〉〈b2| : b1, b2 ∈ {0, 1}}. We fix the following tensor

representation of a density operator and a superoperator.
Definition 3.2. Let ρ be a density operator on a qubits. The tensor of ρ is

[ρσ1,σ2,...,σa
]σ1,σ2,...,σa∈Π, where

ρσ1,...,σa

def
= tr(ρ · (⊗a

i=1σi)
†).

Let Q be a superoperator acting on a input qubits and b output qubits. The tensor
of Q is

Qσ1,σ2,...,σa,τ1,τ2,...,τb ]σ1,...,σa,τ1,...,τb∈Π,

1These vertices are going to represent input states, as well as measurements and trace-out oper-
ators at the end of the computation.
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where

Qσ1,σ2,...,σa,τ1,τ2,...,τb
def
= tr(Q(⊗a

i=1σi) · (⊗b
j=1τj)

†).

We shall use the same notation for a density operator (or a superoperator) and
its tensor. We now define the central object of this paper.

Definition 3.3. A tensor network is a collection tensors, each index of which
may be used by either one or two tensors.

A rank-k tensor g can be graphically represented as a vertex labeled with g,
and connected to k open wires, each of which is labeled with a distinct index. We
may represent a tensor network by starting with such graphical representations of its
tensors, and then connecting wires corresponding to the same index. Note that now
each wire corresponds to a distinct index. Also, an index that appears in one tensor
corresponds to an open wire, and an index that appears in two tensors corresponds to
an edge connecting two vertices. Parts (a) and (b) in Figure 2 give an example of the
graphical representation of a tensor and a tensor network. In the tensor gQ, we call
the σi wires, 1 ≤ i ≤ a, input wires, and the τj wires, 1 ≤ j ≤ b, the output wires.

jk

j1

j2

jk

h

j′1

j′2

j′k′
i3

i1

i4
i3

i1

i4

i1

i2

i�

i�−1

g

(a) (b) (c) (d)

i2
i2

f

j′1

j′2

j′k′

j1

j2

Fig. 2. A rank-4 tensor is illustrated in (a), and a tensor network with four tensors is shown
in (b). Contraction of two tensors is illustrated in (c) and (d).

Suppose in a tensor network there are � parallel edges i1, i2, . . ., i� between two
vertices g = [gi1,...,i�,j1,...,jk ] and h = [hi1,...,i�,j′1,...,j

′
k′ ]. We may contract those edges

by first removing them, then merging vg and vh into a new vertex vf , whose tensor
is f = [fj1,...,jk,j′1,...,j′k′ ], and

(1) fj1,...,jk,j′1,...,j′k′
def
=

∑
i1,i2,...,i�

gi1,...,i�,j1,...,jk · hi1,...,i�,j′1,...,j
′
k′ .

Parts (c) and (d) in Figure 2 illustrate the above contraction. Note that a tensor
network with k open wires can be contracted to a single tensor of rank k, and the result
does not depend on the order of contractions. The following example is instructive.

Example 1. Let ρ be an a-qubit density operator and Q be a superoperator
with a input qubits and b output qubits. Consider the tensor network that connects
all wires of the tensor ρ to the input wires of the tensor Q. Then contracting this
tensor network gives the tensor of the density operator Q(ρ). Figure 3 illustrates this
example.

A quantum circuit C can be naturally regarded as a tensor network N(C): each
gate is regarded as the corresponding tensor. The qubit lines are wires connecting
the tensors, or open wires that correspond to the input and output qubits. Figure 4
illustrates the concept.

Let C be a quantum circuit with n input qubits and m output qubits. Suppose
that C is applied to the initial state ρx, for some x ∈ {0, 1}n. We are interested in
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=⇒

ρ

Q

Q(ρ)

Fig. 3. Contracting the wires connecting the tensors for a density operator ρ and a gate Q
results in the tensor for Q(ρ).

knowing the probability of observing some particular outcome when some single-qubit
measurements are applied to a subset of the qubits. The setting can be described by
a measurement scenario defined as follows.

Definition 3.4. Let m ≥ 1 be an integer. A measurement scenario on m qubits
is a function τ : [m] → L(C2), such that τ(i) is a single-qubit POVM measurement
element.

Note that if a qubit i is not to be measured, then we can set τ(i) = I.
To compute the probability that τ is realized on C(ρx), we build a tensor network

N(C;x, τ) from N(C) by attaching to each input open wire i the tensor for |xi〉〈xi|,
and attaching to each open wire for the output qubit i the tensor for τ(i). When
x = 0n, we abbreviate N(C;x, τ) as N(C; τ). Figure 4 illustrates the concept of
N(C) and N(C; τ).

=⇒

τ(1) τ(2) τ(3) τ(4)

trace(
⊗m

i=1 τ(i) C(|0〉〈0|⊗n))

|0〉〈0| |0〉〈0|· · ·

=⇒ C

(a) (b)

N(C) N(C; τ)

Fig. 4. In (a), a circuit C can be naturally regarded as a tensor network N(C). Contracting
N(C) gives the tensor for the operator that C realizes. Part (b) illustrates the tensor network
N(C; τ), contracting which gives the rank-0 tensor whose value is precisely the probability that the
measurement scenario τ is realized on C(|0〉〈0|⊗n).

Proposition 3.5. Let C be a quantum circuit, x be a binary string, and τ be a
measurement scenario. Contracting the tensor network N(C;x, τ) to a single vertex
gives the rank-0 tensor which is the probability that τ is realized on C(ρx).

Proof. Let ρt
def
= gtgt−1 · · · g1(ρx), 1 ≤ t ≤ T , and ρ0 = ρx. By the definitions of

tensors for density operators and superoperators and tensor contraction, contracting
wires connecting the tensor of a superoperator Q and the tensors for a density operator
ρ gives the tensor of Q(ρ). Thus sequentially contracting input wires of g1, . . ., gt
gives the tensor for ρt, and contracting the remaining wires gives the tensor for τ(ρT ),
which is the probability of realizing τ on ρT = C(ρx).
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We remark that N(C;x, τ) is not the only tensor network for which the previous
proposition holds.

Although the ordering of the edges in the contraction process does not affect the
final tensor, it may significantly affect space and time requirements.

Proposition 3.6. Given a tensor network N of a size T quantum circuit, and a
contraction process specified by an ordering of wires in N , let d be the maximum rank of
all the tensors that appear in the process. Then the contraction takes O(T exp[O(d)])
time.

Proof. Note that the size of N is Θ(T ). The algorithm stores the tensors of each
vertex. When contracting an edge, it computes the new tensor according to (1) and
updates the tensor accordingly. This takes exp[O(d)] time. Hence the total runtime
is O(T exp[O(d)]).

In the next section we will investigate near-optimal orderings for simulation and
ways to find them. While traditional simulation of quantum circuits proceeds in the
same order in which the gates are applied, it appears that an optimal ordering may not
have any physical meaning. Therefore, we formalize this optimization using abstract
graph contractions.

4. Contraction complexity and treewidth. Let G be a graph with vertex set
V (G) and edge set E(G). Recall that the contraction process discussed in the previous
section removes parallel edges in one step because contracting one edge at a time can
create multiple loops. However, for future convenience we prefer the latter simulation
and therefore allow loops to remain uncontracted, counting toward the degree of a
vertex. Note that if a “parallel” contraction contracts � edges between two vertices u
and v of degrees �+k and �+k′, respectively, the corresponding “one-edge-at-a-time”
contraction would create vertices of degrees k+k′+�−1, k+k′+�−2, . . ., k+k′, each of
which is ≤ d(u) + d(v). Thus the one-edge-at-a-time contraction process can emulate
the parallel contraction, while increasing the maximum vertex degree observed by no
more than twofold. We make the definition of this new contraction process precise
below.

Definition 4.1. The contraction of an edge e removes e and replaces its end
vertices (or vertex) with a single vertex. A contraction ordering π is an ordering of
all the edges of G, π(1), π(2), . . ., π(|E(G)|). The complexity of π is the maximum
degree of a merged vertex during the contraction process. The contraction complexity
of G, denoted by cc(G), is the minimum complexity of a contraction ordering.

Since only the degrees of the merged vertices are considered in defining the con-
traction complexity, cc(G) could be strictly larger than Δ(G). For example, if G is a
path, then cc(G) = 1 and Δ(G) = 2.

Note that sequentially contracting all π(i), 1 ≤ i ≤ |E(G)|, reduces G to a single
vertex (or an empty graph of several vertices). Also, for any graph G, cc(G) ≤
|E(G)| − 1, since any merged vertex would be incident to no more than |E(G)| − 1
number of edges. Furthermore, cc(G) ≥ Δ(G) − 1, since when an edge incident to a
vertex of degree Δ(G) is removed, the resulting merged vertex is incident to at least
Δ(G) − 1 edges.

The nature of cc(G) becomes clearer once we consider the line graph of G, denoted

by G∗. That is, the vertex set of G∗ is V (G∗)
def
= E(G), and the edge set is

E(G∗)
def
= {e1, e2} ⊆ E(G) : e1 �= e2,∃v ∈ V (G)

such that e1 and e2 are both incident to v.
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Proposition 4.2. For any graph G = (V,E), cc(G) = tw(G∗). Furthermore,
given a tree decomposition of G∗ of width d, there is a deterministic algorithm that
outputs a contraction ordering π with cc(π) ≤ d in polynomial time.

Computing the treewidth of an arbitrary graph is NP-hard [6], but we do not
know if this remains true for the special class of graphs G∗. Nevertheless, this is not
critical in our work since the constant-factor approximation due to Robertson and
Seymour [28] suffices for us to prove our key results.

Theorem 4.3 (see Robertson and Seymour [28]). There is a deterministic algo-
rithm that, given a graph G, outputs a tree decomposition of G of width O(tw(G)) in
time |V (G)|O(1) exp[O(tw(G))].

Proof of Proposition 4.2. There is a one-to-one correspondence of the contraction
of an edge in G and the elimination of a vertex in G∗, and the degree of the merged
vertex resulting from contracting an edge e in G is the same as the degree of e being
eliminated in G∗. Thus cc(G) = tw(G∗).

To prove the second part of the statement, denote the tree decomposition by T .
Repeat the following until the tree decomposition becomes an empty graph. Choose
a leaf � in T . If � is the single vertex of T , then output vertices (of G∗) in B� in
any order. Otherwise, let �′ be its parent. If B� ⊆ B�′ , then remove � and repeat
this process. Otherwise, let e ∈ B� − B�′ . Then, output e, remove it from the tree
decomposition, and continue the process until all vertices of the tree decomposition
are removed. The number of steps in this process is polynomial in the size of the tree
decomposition.

Note that each output e appears in only one bag in the tree decomposition.
Therefore, all (current) neighbors of e must appear in the same bag. Hence its induced
width is at most d, by the one-to-one correspondence of the vertex elimination in G∗

and the contraction process in G, cc(π) ≤ d.
Before we complete the description of our simulation algorithm, we relate the

treewidth of G to that of G∗. This is useful for reasoning about quantum circuits C
when the graph GC is easier to analyze than its line graph G∗

C . In such cases one
hopes to bound the runtime of the simulation algorithm in terms of parameters of G
rather than G∗. Fortunately, since GC is of bounded degree, the treewidths of GC

and G∗
C are asymptotically the same.

Lemma 4.4. For any graph G of maximum degree Δ(G),

(tw(G) − 1)/2 ≤ tw(G∗) ≤ Δ(G)(tw(G) + 1) − 1.

Proof. From a tree decomposition T of G of width d we obtain a tree decompo-
sition T ∗ of G∗ of width (d + 1) · Δ(G) − 1 by replacing each vertex v ∈ V (G) with
all edges e incident to v. This guarantees that every edge of G∗ is in some bag, i.e.,
(T1) is true. Item (T2) is true since if e1 and e2 are both incident to a vertex u in G,
then any bag in T containing u contains both e1 and e2 in T ∗. To verify item (T3),
suppose that e connects u and v in V (G). Take two bags a and b that both contain
e. Then, in T , both bags a and b must have either u or v. If they contain the same
vertex, then a and b are connected, by (T3). Otherwise, there must be a bag c that
contains both u and v, by (T2). So a and b are connected through c. Therefore we
have proved that tw(G∗) ≤ Δ(G)(tw(G) + 1) − 1.

Now to prove tw(G) ≤ 2tw(G∗)+ 1, we start with a tree decomposition T ∗ of G∗

of width d, and replace every e by its two endvertices in V (G). The verification of
(T1) through (T3) can be accomplished in a similar way.

Note that the above bounds are asymptotically tight, since for an m-ary tree (of
which each nonroot internal vertex has degree m + 1), the treewidth is 1 and the
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contraction complexity is m. We summarize the previous finding in the following
theorem.

Theorem 4.5. Let d ≥ 1 be an integer. For any family of graphs Gn, n ∈ N,
such that Δ(Gn) ≤ d for all n. Then

(tw(Gn) − 1)/2 ≤ cc(Gn) = tw(G∗
n) ≤ d(tw(Gn) + 1) − 1 ∀n ∈ N.

We are now ready to put everything together to prove the following restatement
of Theorem 1.1.

Theorem 4.6. Let C be a quantum circuit of size T and with n input and
m output qubits, x ∈ {0, 1}n be an input, and τ : [m] → L(C2) be a measurement
scenario. Denote by GC the underlying circuit graph of C. Then the probability that τ
is realized on C(ρx) can be computed deterministically in time TO(1) exp[O(cc(GC))] =
T (1) exp[O(tw(GC))].

Proof. The following algorithm computes the desired probability.

(1) Construct N = N(C;x, τ).
(2) Apply the Robertson–Seymour algorithm to compute a tree decomposition T of

N∗ of width w = O(tw(N∗)) (Theorem 4.3).
(3) Find a contraction ordering π from T (Proposition 4.2) of width w.
(4) Contract N using π, and output the desired probability from the final (rank-0)

tensor (Proposition 3.5).

The runtime bottlenecks are steps (2) and (4), which can be combined, and both
take time TO(1) exp(O[tw(N∗)]), which by Theorem 4.5 is TO(1) exp[O(cc(GC))] =
TO(1) exp[O(tw(GC))]; for the sake of clarity we separate both steps .

5. Treewidth and quantum circuits. In this section we prove the implications
of Theorem 1.1 stated in the introduction. A number of tight bounds for the treewidth
of specific families of graphs have been published, including those for planar and series-
parallel graphs. However, similar results for graphs derived from quantum circuits are
lacking. To this end, we strengthen Corollary 1.5 as follows.

Proposition 5.1. Let C be a quantum circuit in which each gate has an equal
number of input and output qubits, and whose qubits are index by [n], for an integer
n ≥ 1. Suppose that the size of C is T , and r is the minimum integer so that for any
i, 1 ≤ i ≤ n − 1, no more than r gates act on some qubits j and j′ with j ≤ i < j′.
Then C can be simulated deterministically in time TO(1) exp[O(r)].

Corollary 1.5 follows since r = O(qD) under its assumption.

Proof of Proposition 5.1. Assume without loss of generality that tw(GC) ≥ 2.
Let G be the graph obtained from GC by removing degree 1 vertices and contracting
edges incident to degree 2 vertices. Then tw(G) = tw(GC), by Proposition 2.1 and
the observation stated before it. Then each vertex in G corresponds to a multiqubit
gate in C.

We now construct a tree decomposition T for G that forms a path of n−1 vertices
B1−B2−· · ·−Bn−1. The bag Bi of the ith vertex (1 ≤ i ≤ n−1) consists of multiqubit
gates (vertices) that act on some qubits j and j′ with j ≤ i < j′. Hence |Bi| ≤ r
by the assumption. If u acts on qubits i1, i2, . . . , ik, i1 < i2 < · · · < ik, then u ∈ Bi

for all i, i1 ≤ i ≤ ik. Thus (T1) and (T3) are true. If a wire segment corresponding
to the qubit i connects two gates u and v, then the bag Bi contains both u and v.
Thus (T2) is true. Therefore T is a tree decomposition for G with width r− 1. Hence
tw(GC) = tw(G) = O(r), which by Theorem 1.1 implies that C can be simulated in
TO(1) exp[O(r)] time.
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We now turn to quantum circuits of bounded depth. To prove Theorem 1.7 we
will make use of the following observation that relates expander graphs to contraction
complexity. Let d be a constant and {Gn}n∈N be a family of d-regular graphs, and
ε > 0 be a universal constant. Recall that {Gn} is called a family of expander graphs
with expansion parameter ε if, for any subset S ⊆ V (Gn) with |S| ≤ |V (Gn)|/2, there
are no less than ε|S| edges connecting vertices in S with vertices in V (G) − S.

Lemma 5.2. For an expander graph Gn with the expansion parameter ε, cc(Gn) ≥
ε|V (Gn)|/4.

Proof. Fix a contraction ordering of Gn. Let v be the first merged vertex so that
kv, the number of vertices in V (Gn) that were eventually merged to v, is at least
|V (Gn)|/4. Then kv ≤ |V (Gn)|/2, and v must have a degree ε|V (Gn)|/4.

The following graph is shown to be an expander by Lubotzky, Phillips, and Sar-

nak [18]. Let p > 2 be a prime, and Gn be the graph with V (Gp)
def
= Zp∪{∞}. Every

vertex x is connected to x + 1, x − 1, and x−1 (∞ ± 1 are defined to be ∞). Note
that Gp is a 3-regular graph.

Proof of Theorem 1.7. By Lemma 5.2, cc(Gp) = Ω(p). Since Gp is a 3 regular
graph, tw(Gp) = Θ(cc(Gp)) = Ω(p), by Theorem 4.5. Let G′

p be the graph obtained
from Gp by removing the vertex ∞ and the edge {0, p− 1}. This would only decrease
tw(Gp) by at most constant. Hence tw(G′

p) = Ω(p). Therefore to prove the theorem,
it suffices to construct a quantum circuit C on p qubits so that G′

p is a minor of G∗
C .

Each qubit of C corresponds to a distinct vertex in V (G′
p). Observe that edges in

E(G′
p) can be partitioned into three vertex-disjoint subsets: (1) {x, x−1}; (2) {x, x+1}

for even x, 0 ≤ x ≤ p− 3; (3) the remaining edges. Each subset gives a layer of two-
qubit gates in C. In G∗

C , contracting all of the vertices that correspond to the same
qubit gives a graph of which G′

p is a minor. Hence tw(C) = Θ(tw(G∗
C)) = Ω(p).

Proof of Theorem 1.8. By Theorem 4.5, it suffices to prove that cc(GC) = O(1)
for any depth-2 circuit. Observe that for any such circuit, after contracting the input
and output vertices (those are of degree 1, hence contracting them will not increase
the contraction complexity), every vertex in GC has degree either 1 or 2. Hence the
edges can be decomposed into disjoint paths and cycles, which can be contracted
without increasing the degree. Hence cc(GC) ≤ 2.

6. Simulating one-way quantum computation. This section revisits the no-
tions of graph states and one-way quantum computation. We simulate one-way compu-
tation with an algorithm whose complexity grows exponentially with the contraction
complexity of the underlying graph.

Let G = (V,E) be a simple undirected graph with |V | = n. For a subset V ′ ⊆ V ,
denote by e(V ′) the number of edges in the subgraph induced by V ′. We associate
a qubit with each vertex v ∈ V and refer to it by qubit v. For a subset V ′ ⊆ V , we
identify the notation |V ′〉 with the computational basis |x〉, for x ∈ {0, 1}n being the
characteristic vector of V ′ (i.e., the ith bit of x is 1 if and only if the ith vertex under
some fixed ordering is in V ′). The graph state |G〉 is the following n-qubit quantum
state [7]

|G〉 def
=

1√
2n

∑
V ′⊆V

(−1)e(V
′)|V ′〉.

Note that |G〉 can be created from |0n〉 by first applying Hadamard gates to all qubits,
followed by the controlled-phase gate Λ(σz) =

∑
b1,b2∈{0,1}(−1)b1·b2 |b1, b2〉〈b1, b2| on

each pair of qubits u and v with {u, v} ∈ E. Since all of the Λ(σz) operators commute,
the order of applying them does not affect the result.
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A basic building block of our simulation algorithm is the following.
Lemma 6.1. Let G = (V,E) be a graph with n vertices, and let τ be a measuring

scenario (defined in Definition 3.4) on n qubits. Then the probability p that τ is
realized on |G〉 can be computed deterministically in time O(|V |O(1) exp[O(cc(G))]).

Proof. Fix a circuit CG that creates |G〉 from |0〉〈0|⊗n. Let {u, v} ∈ E and
g = gu+,u−,v+,v− be a tensor in N(CG; τ) corresponding to Λ(σz)[u, v]. The wires
representing the qubit u (or v) before and after the gate are labeled u+ (or v+)
and u− (or v−), respectively. We replace g by two tensors gu = guu+,u−,t+,t− and

gv = gvv+,v−,t+,t− , which share two labels t+ and t− and are defined as follows. For a
wire segment with a label a, denote by La the 4-dimensional space of linear operators
associated with this wire segment. Set gu to be the identity superoperator that
maps Lu+ ⊗ Lt− → Lt+ ⊗ Lu− , and gv to be the tensor for a Λ(σz) that maps
Lt+ ⊗ Lv+ → Lt− ⊗ Lv− . By their definitions, contracting gu and gv gives precisely
g. We call the inserted wires labeled with t+ and t− transition wires. See Figure 5
for an illustration.

v+u+ u+ v+

u− v− v−

t+

t−

g

u−

gu gv

Fig. 5. Replacing a tensor g corresponding to σz [u, v] by two tensors gu and gv.

Denote by N ′(CG; τ) the tensor network obtained from N(CG; τ) by applying the
above replacement procedure for each edge in E. Let G′ be the underlying graph
of N ′(CG; τ). Note that G′ has the maximum degree 4 and the number of vertices
is O(|E|). See Figure 6 for an illustration. Thus p can be computed by contracting
N ′(CG; τ) in time O(|V |O(1) exp[O(cc(G′))]), according to Theorem 4.6.

We now prove that cc(G′) = O(cc(G)). This can be seen by contracting all wire
segments corresponding to the same qubit in G′, while leaving the transition wires
untouched. Since contracting the edge incident to an input or output vertex results in
a new vertex of degree 3, and contracting the rest of the wires for a qubit v results in
a new vertex of degree 2d(v), the maximum degree of a merged vertex in this process
is max{3, 2Δ(G)}. The one-to-one correspondence between the resulting vertex set
and V induces naturally a one-to-one correspondence between the pairs of transition
wires and E. Thus a contraction ordering of G gives a contraction ordering of G′ (of
this stage) with at most twice the contraction complexity. Therefore

cc(G′) ≤ max{3, 2Δ(G), 2cc(G)} = O(cc(G) + 1).

Thus p can be computed deterministically in time O(|V |O(1) exp[O(cc(G′))])
= O(|V |O(1) exp[O(cc(G))]).

A one-way computation on a quantum state |φ〉 consists of a sequence of adap-
tive single-qubit measurements and single-qubit unitary operations applied to |φ〉.
The description of each measurement or unitary operation, including the index of the
qubit that it acts on, can be computed by a deterministic and efficient (polynomial
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(a)                                                    (b)                                                 (c)                                             (d)

G N ′(CG; τ)N(CG; τ)

Fig. 6. For a graph G in (a), the tensor network N(CG; τ) is shown in (b). Input vertices are
at the top, and output vertices are at the bottom. Each box is a tensor corresponding to a Λ(σz)
applied to qubits adjacent in G. In (c), each Λ(σz) tensor is replaced by two tensors and two wires
connecting them, as described in Figure 5. Contracting all solid lines in (c) produces the graph in
(d), which is precisely G with each edge doubled.

time) algorithm from previous operations and their measurement outcomes. In our
discussion we treat this computation time as a constant. We call a one-way quantum
computation oblivious if before the last measurement (which produces the outcome
of the computation), different computational paths involve the same number of mea-
surements, take place with the same probability, and result in an identical state. Note
that the one-way computation of Raussendorf and Briegel [25] is oblivious.

We point out that allowing single-qubit unitary operations in the definition is for
the convenience of discussion only, since each single-qubit unitary can be combined
with a future measurement on the same qubit (should there be one). To see this fact,
let us call two quantum states LU-equivalent (where LU stands for local unitary), if
there exists a set of single-qubit unitary operations applying which maps one state
to the other. A one-way computation with unitary operators always has an almost
identical one-way computation without unitary operations: the measurements are
in one-to-one correspondence with identical outcome distributions, and the states
after corresponding measurements are LU-equivalent. Therefore, when we are only
interested in the distribution of the measurement outcomes, we may assume without
loss of generality that a one-way computation does not involve any unitary operation.

We now derive a simulation algorithm whose complexity depends on the contrac-
tion complexity.

Theorem 6.2. A one-way quantum computation on a graph G = (V,E) can be
simulated by a randomized algorithm in time O(|V |O(1) exp[O(cc(G)]). If the one-way
computation is oblivious, then the simulation can be made deterministic.

Theorem 1.6 follows immediately from the combination of the above theorem with
Theorem 4.5.

Proof of Theorem 6.2. Let T be the number of measurements during the one-way
computation. Assume without loss of generality that no single-qubit unitary operation
is applied. The simulation consists of T steps, one for each single-qubit measurement.
It maintains a data structure r = (τ, p), where τ is a measurement scenario, and p is
the probability that τ is realized on |G〉. Denote by rt = (τt, pt) the value of r when
t measurements have been simulated. Initially τ0(i) = I for all i, 1 ≤ i ≤ n, and
p0 = 1.
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Suppose we have simulated the first t− 1 measurements, 1 ≤ t ≤ T − 1.

(1) Based on the one-way algorithm, compute from τt−1 the description of the tth
measurement Pt = {P 0

t , P
1
t } and the qubit at that it acts on. Denote by τ0

t the
measurement scenario identical to τt−1, except that τ0

t (at) = P 0
t .

(2) Compute p0
t , the probability of realizing τ0

t . By Lemma 6.1, this step takes
O(|V |O(1) exp[O(cc(G))]) time.

(3) Flip a coin that produces 0 with probability p0
t/pt−1, resulting in an outcome

bt ∈ {0, 1}. Set τt to be identical to τt−1, except that τ(at) = pbtt . Set pt =
(1 − bt)p

0
t + bt(pt−1 − p0

t ). Continue the simulation until t = T .

By construction, the output distribution is identical to that of the one-way com-
putation. The complexity of the algorithm is O(|V |O(1) exp[cc(G)]).

If the one-way computation is oblivious, then there is no need to adaptively
simulate the first T − 1 measurements, as all of them lead to the same state with the
same probability pT−1. Let τT−1 (τT ) be the measurement scenario corresponding to
the first T − 1 (T , respectively) measurements giving the outcome 0. We compute
the probabilities pT−1 and pT that τT−1 and τT are realized. Then the probability
that the one-way computation produces 0 is precisely pT /pT−1. The computation is
deterministic and takes |V |O(1) exp[O(cc(G))] time by Lemma 6.1.

7. Discussion. In this work we studied quantum circuits regardless of the types
of gates they use, but with a focus on how the gates are connected. We have shown
that quantum circuits that look too similar to trees do not offer significant advantage
over classical computation. More generally, when solving a difficult classical problem
on a quantum computer, one encounters an inherent trade-off between the treewidth
and the size of quantum circuits for solving it—the smaller the quantum circuit, the
more topologically sophisticated it must be. Investigating such trade-offs for specific
problems of interest is an entirely open and very attractive avenue for future research.
Similar considerations may apply to classical circuits. We conjecture that there are
simple functions, such as modular exponentiation, whose circuit realizations require
large treewidth.

Furthermore, our work raises an intriguing possibility that the treewidth of some
quantum circuits may be systematically reduced by restructuring the circuit, while
preserving the final result of the entire computation. Perhaps future research in this
direction can clarify the limits to efficient quantum computation, while the tools
developed in this context will be useful for practical tasks.

The preprint of this paper [19] has lead to several follow-up results. Jozsa [15] and
Aharonov, Landau, and Makowsky [3] gave alternative proofs for some of our theo-
rems. Furthermore, Aharonov, Landau, and Makowsky [3], and Yoran and Short [39]
pointed out that quantum Fourier transform (QFT) over Zn admits approximate cir-
cuit realizations that, viewed as tensor networks, have small treewidth. Given the
central role of QFT in known quantum algorithms, their results are somewhat unex-
pected and their implications are yet to be fully explored. For example, what type
of circuits would remain efficiently simulatable when interleaved with QFT circuits?
In general, as implied by Theorems 1.7 and 1.8, the treewidth of a circuit may in-
crease dramatically under composition. Yoran and Short [39] have shown that this
drawback may be avoided in some cases. Extending their result would deepen our
understanding of quantum speed-ups.

As mentioned earlier, Theorem 1.6 was improved in [19] so that any one-way
quantum computation on a graph state |G〉 can be simulated deterministically in
|V (G)|O(1) exp(tw(G)) time. The proof relies on a graph-theoretical result from [20]:
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for any graph G there is a graph G′ such that Δ(G′) ≤ 3, tw(G′) ≤ tw(G) + 1, and
that G can be restored from G′ by contracting a subset of edges forming a forest. A
small modification turns G′ into a graph G′′ with Δ(G′′) ≤ 3, tw(G′′) ≤ tw(G) + 1,
and |G〉 can be constructed from |G′′〉 through an efficient one-way computation.
Since cc(G′′) = O(tw(G′′)) = O(tw(G)) (Theorem 4.5), this implies, by Theorem 6.2,
that any one-way computation on |G〉 can be simulated deterministically in time
|V (G)|O(1) exp(O(tw(G))). The interested reader is referred to [19, 20] for details.

The important question of characterizing quantum states that are universal (or
efficiently simulatable) for one-way quantum computation remains unsolved. In an-
other follow-up thread, van den Nest et al. [22, 21] defined additional width-based
parameters of quantum states and demonstrated results for those parameters similar
to Theorem 1.6. It is unlikely that the set of quantum states with small width-based
parameters includes all efficiently simulatable states because a set of simulatable states
of high widths was identified recently by Bravyi and Raussendorf [9]. Nevertheless,
it remains plausible that those width-based results and their further extensions may
be part of a classification theorem that gives a complete characterization of efficiently
simulatable states.

Appendix. Proof of Proposition 2.1. Recall that a minor of a graph G is
a graph obtained from a subgraph of G by contracting edges. A basic property of
treewidth is that it does not increase under taking minors [26].

Proof of Proposition 2.1. Let G′ be the graph resulting from the contractions.
Since G′ is a minor of G, tw(G′) ≤ tw(G) [26]. If tw(G′) = 1, then G′ is a nonempty
forest (otherwise, G has a triangle minor, thus tw(G) ≥ 2). Thus G is also a nonempty
forest and tw(G) = 1 = tw(G′). Suppose tw(G′) ≥ 2. Let T be a tree decomposition
for G′. We obtain a tree decomposition T ′ for G by inserting a bag containing
{u,w, v}, and connecting it to a bag that contains {u, v}. One can verify directly
that the three conditions (T1 −T3) that define tree decompositions hold for T ′. Since
the width of T ′ is no more than that of T , we have tw(G) ≤ tw(G′). Therefore,
tw(G) = tw(G′).
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EFFICIENT COLORED ORTHOGONAL RANGE COUNTING∗
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Abstract. Let P be a set of n points in R
d, so that each point is colored by one of C given colors.

We present algorithms for preprocessing P into a data structure that efficiently supports queries of
the following form: Given an axis-parallel box Q, count the number of distinct colors of the points
of P ∩ Q. We present a general and relatively simple solution that has a polylogarithmic query
time and worst-case storage about O(nd). It is based on several interesting structural properties
of the problem, which we establish here. We also show that for random inputs, the data structure
requires almost linear expected storage. We then present several techniques for achieving space-
time tradeoff. In R

2, the most efficient solution uses fast matrix multiplication in the preprocessing
stage. In higher dimensions we use simpler tradeoff mechanisms, which behave just as well. We
give a reduction from matrix multiplication to the off-line version of problem, which shows that in
R

2 our time-space tradeoffs are reasonably sharp, in the sense that improving them substantially
would improve the best exponent of matrix multiplication. Finally, we present a generalized matrix
multiplication problem and show its intimate relation to counting colors in boxes in higher dimension.

Key words. colored orthogonal range counting, generalized range searching, matrix multipli-
cation, union of orthants, output-sensitive decomposition, time-space tradeoff
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1. Introduction. We consider the following range counting problem. Let P be
an input set of n points in Rd, each colored in one of C different colors. Our goal is
to preprocess P into a data structure that, for any query axis-parallel box Q ⊂ Rd,
can efficiently count the number of distinct colors of points in Q ∩ P . We call this
problem colored orthogonal range counting. In this work we deal only with the static
setting of the problem, not allowing insertions of points into, or deletions, from the
data structure.

The problem arises in many applications. For example, in database applications,
a person may be stored in the database as an item with attributes (e.g., the city
where the person has been born, the college that she has attended, or even numerical
attributes such as her age), and the query may ask for the number of different attribute
values of all the items in a query box (e.g., How many different cities of birth do the
persons in a query box have?). In geometric contexts, the problem arises, e.g., in the
following scenario: We are given C rectilinear polygons in the plane with a total of n
edges and wish to count the number of distinct polygons that intersect a given query
box (which represents, say, a window on the screen). Similar problems arise in higher
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dimensions.

1.1. Related work. Colored intersection range searching. In colored intersec-
tion range searching we are given n colored objects of constant description complexity.
We wish to construct a data structure that can report or count the colors of objects
in a query range. Colored range searching problems1 have been extensively studied
by Gupta, Janardan, Smid, and others (see a recent survey by Gupta, Janardan, and
Smid [12] for a comprehensive review). As has been observed, colored variants of
range searching are in general much harder than the standard variants. The reason
for this contrast is that colored problems are not decomposable. For example, parti-
tioning the query box into two (disjoint) subranges and counting the number of colors
in each subrange tells us practically nothing about the number of colors in the full
range. Halfspace colored range searching (with halfspaces as queries and points as
colored objects) was studied in [15]. Orthogonal colored range searching problems
(where queries are axis-parallel boxes) were studied in [4, 5, 13, 16, 19]. Additional
colored range searching problems were studied in [4, 5, 14, 15]. Batched colored range
intersection problems, where we wish to report all pairs of colors (c1, c2) such that an
object of color c1 intersects an object of color c2, were studied in [6, 20].

Orthogonal colored range reporting. In [16], Gupta, Janardan, and Smid describe
solutions for colored range reporting in R1, R2, and R3, with polylogarithmic query
time and near-linear storage. For R1, the authors perform orthogonal colored range
searching (counting and reporting) in both static and dynamic settings, by a reduc-
tion to standard orthogonal range searching in R2. The authors obtain a dynamic
data structure of size O(n), such that the i distinct colors of the points in a query
interval can be reported in O(log n + i) time, while supporting updates (insertions
and deletions of points) in O(log n) time. Specifically, if the points of some color
are {p1, p2, . . . , pn}, such that p1 < p2 < · · · < pn, then they are mapped to the
points (p1,−∞), (p2, p1), . . . , (pn, pn−1) in R2. A query interval [a, b] is mapped to
the semiunbounded rectangle [a, b]× (−∞, a]. It is an easy observation that [a, b] con-
tains at least one (resp., no) point of color c iff the corresponding rectangle contains
exactly one (resp., no) transformed point of color c. Hence, counting or reporting
colors in intervals in R1 is equivalent to counting or reporting points in the above
kind of semiunbounded rectangles in the transformed set in R2. See Figure 1.1 for an
illustration.

�
�
�
�

��

�
�
�
�

��
��
��
��

�
�
�
�

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

(b, a)

(pi, pi−1)

(pi+2, pi+1)
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x = y

(a, a)

Fig. 1.1. The transformed point set of color c (points below the line x = y). The highlighted
semiunbounded rectangle [a, b] × (−∞, a] contains exactly one transformed point of color c; the
interval [a, b] contains two original points of color c.

1These problems are also referred to in the literature as generalized range searching problems;
see [12].
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In R2, the static data structure of Janardan and Lopez [19] uses O(n log2 n)
space and answers reporting queries in time O(log n + i), where as before, i is the
output size. Gupta, Janardan, and Smid [16] obtain a semidynamic solution for
the reporting problem by first dealing with the special case, when the queries are
quadrants of the form [a,∞) × [b,∞). They reduce this special case to standard
ray-segment intersection searching in R2. In order to process arbitrary rectangular
queries, the authors decompose a rectangular query into four quadrant queries, each
answered over an appropriate subset of points. The resulting data structure requires
O(n log2 n) space and allows the reporting of the i distinct colors of points contained
in a query rectangle in O(log2 n + i) time. A point can be inserted into this data
structure in O(log3 n) amortized time. Gupta, Janardan, and Smid [16] then give a
fully dynamic solution to the reporting problem in R2. Their solution is based on
decomposing the two-dimensional query into O(log n) one-dimensional queries, each
answered over a proper subset of points. This data structure uses O(n log n) space,
supports queries in O(log2 n + i log n) time, and allows insertions and deletions in
O(log2 n) time.

In R3, Gupta, Janardan, and Smid [16] extend their two-dimensional semidynamic
solution and describe a static data structure of size O(n log4 n) with O(log2 n + i)
query time, where i is the number of reported colors. In [13], Gupta, Janardan, and
Smid describe a static data structure for orthogonal colored range reporting in any
dimension, which requires storage O(n1+ε), such that for any query box in Rd, the i
distinct colors of points contained in it are reported in O(log n + i) time.2

These results use the fact that if we decompose the problem into a small (constant
or logarithmic) number of subproblems and solve each subproblem separately, then
each color is discovered only a small number of times. This still keeps the query time
close to O(polylog(n) + i).

Orthogonal colored range counting. Orthogonal colored range counting turns out
to be harder than orthogonal colored range reporting. In [16], Gupta, Janardan, and
Smid describe solutions for colored range counting in R1 and R2. Similarly to the
case of reporting, they reduce3 the one-dimensional problem to standard orthogonal
range searching in R2. The resulting solution has query time O(log n) and storage and
preprocessing cost O(n log n). Its dynamic version also requires O(n log n) space and
supports queries and updates in O(log2 n) time. (The storage of the static and the
dynamic data structures can be further reduced by a logarithmic factor, as noted in
[4].) Using persistence, Gupta, Janardan, and Smid [16] extend their one-dimensional
data structure into a static two-dimensional structure which supports queries that
involve 3-sided boxes, that is, boxes of the form, say, [a, b] × (−∞, c]. Using a linear
number of copies of this structure, they obtain a complete solution in R2, with query
time O(log2 n) and storage and preprocessing cost O(n2 log2 n).

Halfspace colored range searching. Efficient static data structures for halfspace
colored range searching were described by Gupta, Janardan, and Smid [15]. Their
solution in R2 and R3 for counting and reporting is based, through duality, on a
straightforward reduction to an instance of the ray-envelope intersection problem. In
this problem, we are given a set of upper envelopes of linear functions (the lines/planes
dual to the input points), such that each envelope is computed for the lines/planes of

2Bounds of the form O(f(n, ε)) hold for any ε > 0; the constant of proportionality depends on ε
and generally tends to ∞ as ε > 0 approaches to 0.

3In a sense, their reduction is the forefather of the decomposition scheme that we develop for the
higher-dimensional cases; see section 3.
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h∗

Ec

Fig. 1.2. Ec is the upper envelope of the dual hyperplanes of the input points having color c.
h∗ is the point dual to the hyperplane h bounding the query halfspace below h. There is an input
point below h having color c iff the upward vertical ray emanating from h∗ intersects Ec (that is,
h∗ lies below Ec).

some fixed color. The overall complexity of the envelopes is O(n). The objective is
to preprocess the envelopes into a data structure such that, given an upward vertical
ray, we can report (resp., count) the envelopes that it intersects. See Figure 1.2. The
solution in R2 uses O(n log n) space and answers reporting (resp., counting) queries in
O(log2 n+ i) (resp., O(n1/2)) time. The solution in R3 is based on partition trees (see
[23]) and uses O(n log2 n) space and answers reporting (resp., counting) queries in
O(n1/2+ε + i) (resp., O(n2/3+ε)) time. Using cutting trees instead [24, 25], reporting
in R3 can be solved with O(n2+ε) storage, so that a query takes O(log2 n + i) time.
Note that the time and space bounds for the colored range counting in R2 and R3

are close to those achieved for the standard range counting problems in R2 and R3,
respectively, [23, 24, 25].

This approach does not efficiently generalize to Rd, for d > 3. Gupta, Janardan,
and Smid [15] solve the reporting problem in Rd, for d > 3, using a balanced binary
tree CT built over the colors. Each node v in CT points to a halfspace range-emptiness
data structure (described in [22]), built over the points, whose colors belong to the
subtree of v. The query algorithm starts at the root of CT and continues to the chil-
dren of a node v only if the query range contains at least one point, whose color belongs
to the subtree of v. The resulting data structure requires O(n�d/2�/ log�d/2�−1−ε n)
storage and can report the i distinct colors of points contained in a query halfspace
in time O(log n + i log2 n). Other applications of this approach can be found in [14].

Batched colored intersection searching. In a batched colored intersection searching
problem we are given a set of colored geometric objects and wish to compute all the
pairs of colors (c1, c2) such that there are two intersecting input objects, one of color
c1 and one of color c2. Often a bipartite version of the problem is considered, where we
are given two sets of objects of two different classes and wish to report all pairs (c1, c2)
such that an object of the first set having color c1 intersects an object of the second
set having color c2. Efficient solutions of the colored batched intersection searching
problem for line segments in R1, line segments in R2, axis-parallel boxes in Rd, points
and triangles in R2, and points and halfspaces in Rd are given in [6, 20]. For example,
in the case of segments in R1 the problem can be solved in time O(nc0.69) if n ≥ c1.69,
and O(n0.7c1.21+c2) if n ≤ c1.69, using matrix multiplication techniques [20]. Variants
of these techniques will also be used in this paper. See section 4.

1.2. Our contribution. We present a different approach to orthogonal colored
range counting, based on a reduction from this problem to standard orthogonal range
counting, which works in any dimension. We transform P into a higher-dimensional
space, where each query box corresponds to a point, and for each color c ∈ C, the
space Q(c)+ of all (points representing) query boxes containing a point with color c
is the union of positive orthants.
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For each color c, we show how to decompose Q(c)+ into pairwise disjoint boxes.
As a consequence, a query box contains a point of color c iff the point corresponding
to the query in the transformed space is contained in exactly one of the boxes in the
decomposition of Q(c)+. Our algorithm thus collects the decomposition boxes, over
all colors c, and stores them in a data structure that supports efficient containment
counting queries of the following form: Given a query point x, count the number of
boxes that contain x.

A straightforward implementation of this technique yields a solution for the
colored orthogonal range counting problem in Rd, having query time O(log2d−1 n),
storage complexity O(nd log2d−1 n), and worst-case deterministic preprocessing time
O(nd log2d−1 n). A simple enhancement of the technique reduces all three performance
parameters by a factor of logn, thus matching the performance parameters of the al-
gorithms of Gupta, Janardan, and Smid [12] for d = 2. If our queries are orthants,
that is, boxes that are semiunbounded in each (say, negative) coordinate direction,
then we can do better, obtaining a data structure with a query time of O(logd−1 n)
and storage and preprocessing cost O(n�d/2� logd−1 n). For d ≥ 4 and even, the same
enhancement trick mentioned above reduces all three performance parameters by a
log n factor.

In fact, the storage size and preprocessing time of our algorithm depends on the
overall number of boxes in the decomposition of Q(c)+, over all colors c. We show that
for some sets of points the number of boxes in any such decomposition is Ω(nd), but
in practice we expect it to be much smaller. To support this statement, we show that,
for random point sets (drawn independently and uniformly at random from [0, 1]d),
the expected number of boxes in our decomposition is only O(n logd−1 n), which leads
to algorithms with polylogarithmic query time and near-linear expected storage and
preprocessing cost.

Time-space tradeoff. We also consider techniques for reducing the storage (and
preprocessing) at the cost of increasing the query time. In R2, we use a technique of
Gupta, Janardan, and Smid [12] to decompose a query [a, b] × [c, d] into two 3-sided
queries [a, b]× (−∞, d] and [a, b]× [c,∞) on secondary structures stored at the nodes
of a binary search tree over the points sorted by their y-coordinates. (This leads to
significant gains, because, as we show, the structure for answering 3-sided queries
requires only near-linear storage and preprocessing, whereas the structure for 4-sided
queries may require near-quadratic storage.) We obtain the solution for each 3-sided
query as a collection of pairwise disjoint canonical sets of colors. The difficulty is that
a single color may appear in the solutions of the two 3-sided queries but we need to
count it only once. To efficiently compute the union of the answers of the two queries,
we use the principle of inclusion-exclusion to reduce the problem to computing the
sizes of all pairwise intersections of the output canonical subsets. We use sparse
matrix multiplication techniques [7, 20, 27] to precompute efficiently some of these
intersection sizes and handle others on the fly when processing a query.

We obtain a solution that has query time O(X log7 n) and O
( (

n
X

)2
log6 n +

n log4 n
)

storage, for any tradeoff parameter 1 ≤ X ≤ n. The construction time
of the data structure is (the O∗(·) notation hides polylogarithmic factors)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O∗
(

n(ω+1)/2

X(ω−1)/2

)
= O

(
n1.688

X0.688

)
when X ≥ n

ω−1
ω+1 ≈ n0.408,

O∗
(

n
2−αβ+2β

β+1

X
2−αβ
β+1

)
= O

(
n1.898

X1.203

)
when n

α/2
α/2+1 ≈ n0.128 ≤ X ≤ n

ω−1
ω+1 ≈ n0.408,

O∗( n2

X2 ) when X ≤ n
α/2

α/2+1 ≈ n0.128.
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Here ω is the smallest number such that two t × t matrices can be multiplied in
time O(tω) (the best known upper bound on ω is roughly 2.376), α > 0.294 is another
parameter related to matrix multiplication, and β = ω−2

1−α ; see [10, 11] and section 4.
In particular, it follows from these bounds that, for m ≤ n, we can answer m queries

in overall time O∗(nm
ω−1
ω+1 ) = O(nm0.408) (including preprocessing).

Interestingly, we also show a reduction of a version of sparse matrix multiplica-
tion to an off-line version of colored orthogonal range counting in R2. This reduction
implies that if we can answer m queries on a set of n points, for m

1+ω
4 ≤ n, in

o(nm
ω−1

4 ) = o(n1.34) time, then we can obtain a better algorithm for sparse multipli-
cation of rectangular zero-one matrices than the best known to date. Furthermore, if
we can answer n such queries in o(n

2.376
2 ) = o(n1.188) time, we improve the best known

bound on ω (restricted to zero-one matrices). This suggests that our bounds, while
not claimed to be near optimal, are significant, and that substantial improvements
are likely to be quite difficult.

A simple bucketing technique allows us to trade time for space also in dimension
d > 2. Specifically, for any threshold parameter 1 ≤ X ≤ n, we obtain a data
structure, having query time O(X logd n + log2d−1 n) and preprocessing and storage

cost O( nd

Xd−1 log2d−1 n). We suggest two additional techniques to improve this tradeoff

for X = Ω∗(n
d−2
d−1 ).

Finally, we show that colored orthogonal range counting in dimension d > 2
is related to the following generalization of sparse matrix multiplication, which we
believe to be of independent interest. One is given a 0-1 matrix A with N nonzero
entries in sparse representation and a list O of M d-tuples of indices of rows of
A. Let t be the number of columns in A. The goal is to compute for each tuple
(i1, . . . , id) ∈ O the sum

∑t
j=1

∏d
k=1 Aik,j . We call this problem d-dimensional output

restricted sparse matrix multiplication (ORSMMd). (Note that the case d = 2 asks
for computing t specified entries in AAT .) We give a reduction from this problem to
colored range counting in boxes in dimension d, showing that the off-line version of the
latter problem is at least as hard as this generalized matrix multiplication problem.
Finally, we describe reasonably efficient algorithms for ORSMMd.

This paper is organized as follows.
In section 2 we describe the solution to colored orthogonal range counting in Rd,

which requires polylogarithmic query time and uses Õ(nd) space. The solution is
based on a decomposition of the c-positive region Q+(c) (the union of the positive
orthants dual to points with color c), for each of the colors c, into pairwise disjoint
boxes.

In section 3 we describe the decomposition of the c-positive region into pairwise
disjoint boxes and analyze its complexity and construction time. Next, we analyze,
for random point sets (according to a natural model that we detail in section 3.3),
the expected number of boxes in our decomposition. This leads to algorithms with
polylogarithmic query time and Õ(n) expected storage and preprocessing cost.

In section 4 we describe efficient methods for achieving time-space tradeoff. We
also consider the time required to answer m queries over an input set of n colored
points.

In section 5 we consider the relation between colored orthogonal range counting
in Rd and sparse matrix multiplication, or its generalized version ORSMMd, as de-
fined above. In addition, we provide efficient algorithms for solving the generalized
ORSMMd.

We conclude this paper in section 6, with a brief discussion and a few open
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problems.

2. Reducing to standard orthogonal range counting. We first solve the
semiunbounded colored range counting problem, in which the query boxes are orthants
of the form

∏d
i=1(−∞, ai]. Then we show how to reduce the colored counting problem

in general boxes to the semiunbounded case.
Let us represent each query orthant

∏d
i=1(−∞, ai] by its apex (a1, . . . , ad) ∈ Rd.

Fix a color c, 1 ≤ c ≤ C, and let Pc denote the subset of points of P with color c. For a
point p ∈ Pc, denote by Q+

p ⊆ Rd the locus of all points that represent (closed) query
orthants containing p. Clearly, if p = (p1, . . . , pd), then Q+

p is the positive orthant∏d
i=1[pi,∞) ⊆ Rd. We refer to Q+

p as the dual orthant of p.

The c-positive region of color c, denoted Q(c)+, is the region in Rd of all points
representing queries that contain at least one point of Pc. Clearly, Q(c)+ =

⋃
p∈Pc

Q+
p .

For any point set A ⊂ Rd, define U(A) :=
⋃

p∈A Q+
p . According to this definition,

Q(c)+ = U(Pc). In section 3 we establish the following theorem.
Theorem 2.1. Let A be a set of n points in Rd. We can decompose U(A) into

B pairwise disjoint boxes, where B is proportional to the complexity of U(A). Fur-
thermore, we can generate these boxes in O((B +n) logd−1 n) time. Our construction
implies that B = O(n�d/2�), and we prove that this bound is tight in the worst case.

In particular, when A is a set of n points in R, U(A) is a (positively oriented)
closed orthant, which can be computed in O(n) time.

We remark that Theorem 2.1 can be regarded as a refinement of the result of
Boissonnat et al. [3] concerning the complexity of the union of n congruent axis-
parallel cubes in Rd (think of the orthants as very large congruent cubes). As a
matter of fact, our constructive proof of the theorem follows similar footsteps to
those in the proof of the bound in [3]; see also [8]. In the rest of this paper, unless
stated otherwise, decomposition of U(A) means the disjoint decomposition asserted
in Theorem 2.1.

We use Theorem 2.1 to solve the semiunbounded colored range counting problem
as follows. For each color 1 ≤ c ≤ C, we generate the boxes in the decomposition
of U(Pc) = Q(c)+. We build a standard orthogonal range searching data structure
for counting the number of boxes containing a query point4 q ∈ Rd. By construction
(using the fact that the boxes corresponding to any fixed color are pairwise disjoint),
this number is equal to the number of distinct colors that appear in the original query
orthant.

To implement the data structure, we use a d-dimensional segment tree with frac-
tional cascading at its deepest level. Let Bc be the number of boxes in the decom-
position of Q(c)+. Then this structure has a query time O(logd−1 n) and requires
O(

∑
1≤c≤C Bc logd−1 n) space and preprocessing time. These improved bounds on

the storage and preprocessing time (by a logarithmic factor, as compared with stan-
dard d-dimensional segment trees) are based on the fact, established in section 3,
that all the decomposition boxes are unbounded in the positive x1-direction. This
allows us to use sorted lists instead of segment trees at the bottom level of the data
structure, thereby saving a logarithmic factor in both storage and preprocessing time.
Fractional cascading takes care of the corresponding saving in the query time.

Specifically, at the top level we have a segment tree over the xd-coordinates of the
boxes. The boxes assigned to a node v in this top-level tree are stored in a secondary
segment tree, associated with v, defined over their xd−1-coordinates. The structure

4The problem is called the “stabbing query problem” in [2].
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continues this way where each node of a segment tree over the xj-coordinates of the
boxes stores the boxes assigned to it in a segment tree over their xj−1-coordinates for
every 3 ≤ j ≤ d. At the bottom-level we have a segment tree over the x2-coordinate
of the boxes. Each node of such a segment tree stores the boxes assigned to it in a list
sorted by the left endpoints of their x1-projections. The sorted lists at the bottom-
level of each segment tree are linked together in a fractional cascading data structure
(see, e.g., [2]) so once we find the location of the query in the list associated with a
node v we can search in the lists associated with the children of v in O(1) time. (We
also need a search tree over the list associated with the root of the tree to efficiently
search in the first list.) Each node of a bottom-level list stores the number of boxes
covering it, that is, the number of elements preceding it in the list. We obtain the
following theorem.

Theorem 2.2. Let P be a set of n colored points in dimension d ≥ 2, let Bc be the
number of boxes in the decomposition of Q(c)+, for each color 1 ≤ c ≤ C, and let B =∑

1≤c≤C Bc. Then there exists a data structure supporting semiunbounded (orthant)

colored range counting queries in O(logd−1 n) time, whose storage is O(B logd−1 n)
and which can be constructed in O((B + n) logd−1 n) time.

Using the bounds of Theorem 2.1, we immediately obtain the following theorem.
Theorem 2.3. There exists a data structure for colored semiunbounded (orthant)

range counting queries on n colored points in dimension d ≥ 2, which answers a
query in O(logd−1 n) time, requires O(n�d/2� logd−1 n) space, and can be constructed
in O(n�d/2� logd−1 n) time.

General orthogonal range counting. The general colored orthogonal range count-
ing problem, in which queries are arbitrary bounded axis-parallel boxes in Rd, can be
reduced to the semiunbounded case in R2d, as follows. We denote the xi-coordinate of
a point p by xi(p). Double all of the coordinates of each point p = (x1(p), . . . , xi(p), . . . ,
xd(p)) ∈ P , to obtain the point (x1(p),−x1(p), . . . , xi(p),−xi(p), . . . , xd(p),−xd(p))
in R2d, which is given the same color as the original point p. Now, answering a colored
range counting query

∏d
i=1[ai, bi] on the original point set is equivalent to answering

the range counting query
∏d

i=1[ai,∞)× [−bi,∞) on the transformed point set. Thus
we obtain the following theorems.

Theorem 2.4. Let P be a set of n colored points in Rd, let P̃ ⊂ R2d be the
transformed point set of P as defined above, let Bc be the number of boxes in the
decomposition of U(P̃c), for color 1 ≤ c ≤ C, and let B =

∑
1≤c≤C Bc. Then there

exists a data structure supporting colored range counting queries in O(log2d−1 n) time,
whose storage is O(B log2d−1 n) and which can be constructed in O((B+n) log2d−1 n)
time.

Theorem 2.5. There exists a data structure for colored orthogonal range counting
queries on n colored points in Rd, which answers a query in O(log2d−1 n) time, requires
O(nd log2d−1 n) space, and can be constructed in O(nd log2d−1 n) time.

We can generalize this approach to colored orthogonal range counting queries
for boxes with bounded projections on k specific coordinates and semiunbounded
projections on the remaining d−k coordinates. In this case we can reduce the problem
to a semiunbounded problem in Rd+k, by duplicating the k “bounded” coordinates of
each point in our input set. A query then takes O(logd+k−1 n) time, and the storage
and preprocessing costs are both O(n�(d+k)/2� logd+k−1 n).

As a special case, consider the colored orthogonal range counting problem on n
points in the plane, where the queries are 3-sided boxes of the form [a, b] × (−∞, c].
Here d = 2, k = 1, and we obtain an algorithm with O(log2 n) query time and space
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and preprocessing cost O(n log2 n). These performance parameters are the same as
those obtained by Gupta, Janardan, and Smid [12], using a different approach based on
persistence (which, as already noted, does not seem to extend to higher dimensions).

We can then use the same paradigm as in [12] to extend this solution to the general
case of bounded box queries. That is, let (p1, . . . , pn) be the sorted sequence of the
points of P in their increasing y-order. For each i = 1, . . . , n, construct the above
data structure (for 3-sided queries) for the set P+

i = {pj | j ≥ i}. Now, given a query
box [a, b]× [c, d], we find, by binary search, the index i satisfying y(pi−1) < c ≤ y(pi)
and search with the 3-sided box [a, b]× (−∞, d] in the structure of P+

i . This yields a
slightly improved algorithm, in which a query takes O(log2 n) time, and the storage
and the preprocessing cost are both O(n2 log2 n) (saving a logarithmic factor over
the bounds in Theorem 2.5). The same enhancement can be applied in arbitrary
dimension d ≥ 2, leading to the following result.

Theorem 2.6. There exists a data structure for colored orthogonal range counting
queries on n colored points in dimension d ≥ 2, which answers a query in O(log2d−2 n)
time, requires O(nd log2d−2 n) space, and can be constructed in O(nd log2d−2 n) time.

The same enhancement can save a logarithmic factor for any d and k for which
d + k is even and ≥ 4. In particular, for even d ≥ 4 and k = 0, we can improve all
three performance parameters in Theorem 2.3 by a logarithmic factor.

In section 4 we present a more sophisticated approach that reduces colored box
range counting to colored range counting with boxes unbounded in one direction, so
as to obtain a much more significant reduction in storage and preprocessing (at the
cost of increasing query time).

3. Decomposing the union of orthants into disjoint boxes. Let A be a
set of n points in Rd in general position, meaning that no two points have the same
xi-coordinate,5 for any i = 1, . . . , d. In this section we prove Theorem 2.1. We
start proving the first part of Theorem 2.1 and show how to decompose U(A) into
B = O(n�d/2�) pairwise disjoint boxes, where B is proportional to the complexity of
U(A). We then show, in section 3.2, that this bound is tight in the worst case.

An open maximal empty orthant O (with respect to A) is a region of the form∏d
i=1(−∞, ai), where ai ∈ R ∪ {+∞} for each i, which does not contain any point

of A, and is maximal with this property under inclusion. That is, any open orthant
O′ that strictly contains O must also contain a point of A. It follows that each facet
of O must contain a distinct point of A in its relative interior. Let si be the point
in the relative interior of the facet of O orthogonal to the xi-axis, for 1 ≤ i ≤ d.
Thus O =

∏d
i=1(−∞, xi(si)) (see Figure 3.1). We also include, under this definition,

orthants O that are unbounded in the positive direction of some coordinate axes;
for each such direction, we replace the corresponding value xi(si) by +∞. As an
extreme example, the halfspace x1 < mins∈A x1(s) is such a degenerate maximal
empty orthant. Alternatively, for each coordinate xi in which O is unbounded in
both directions, we can define si to be the point at infinity whose xi-coordinate is
+∞ and all other coordinates are −∞. We follow the latter convention and say that
O is defined by the tuple of points 〈s1, . . . , sd〉.

5We can avoid this assumption by symbolically perturbing the xi-coordinates of all points for
1 ≤ i ≤ d and constructing the decomposition with respect to the perturbed point set. In terms of the
old coordinates, we obtain a legal decomposition of U(A) into pairwise disjoint boxes. The cardinality
of this decomposition, however, might be larger than the boundary complexity of U(A), and some
of its boxes are possibly empty (redundant). Alternatively, we can apply standard but tedious care
of degenerate configurations which we omit here; see [2] for an example of such a treatment.



COUNTING COLORS IN BOXES 991

s1

s2

O

Fig. 3.1. A maximal empty orthant.

Our decomposition of U(A) is constructed so that there is a bijection between
its boxes and the maximal empty orthants defined by tuples 〈s1, . . . , sd〉 such that
x1(s1) < ∞. Specifically, let O be such a maximal empty orthant defined by 〈s1, . . . , sd〉.
The box in our decomposition corresponding to O is

B(O) = [x1(s1),∞) ×
d∏

i=2

[
max
j<i

{xi(sj)}, xi(si)
)
.

Note that each interval in the product is nonempty, which follows from the above
general position assumption. See Figure 3.2 for an illustration.
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O

B(O)

Fig. 3.2. A maximal empty orthant O and its corresponding box B(O) in the decomposition of
U(A). Altogether there are four maximal empty orthants bounded in the (+x1)-direction and four
respective boxes in the decomposition of U(A).

Lemma 3.1. Let A be a finite point set in Rd, let O be the set of all maximal
empty orthants with respect to A, which are defined by tuples 〈s1, . . . , sd〉 satisfying
x1(s1) < ∞, and let B be the collection of boxes of the form B(O), for O ∈ O. Then
the boxes of B are pairwise disjoint, and their union is U(A).

Proof. We establish the lemma by induction on the dimension of the space con-
taining A.

For the induction basis, consider a one-dimensional set of points A = {p1, . . . , pn} ⊂
R, where p1 < p2 < · · · < pn. The orthant (−∞, p1), defined by 〈p1〉, is the only max-
imal empty orthant with respect to A (which clearly satisfies x1(p1) < ∞). The
corresponding box B = [x1(s1),∞) = [p1,∞) is indeed equal to U(A), as required.

Assume now that the lemma is true for any finite set of points in Rd−1. Sweep
U(A) with a hyperplane h orthogonal to the xd-axis. Let (p1, . . . , pn) be the sequence
of the points of A sorted in increasing order of their xd-coordinates. For 1 ≤ j ≤ n,
put qj := xd(pj), let hj be the hyperplane xd = qj , and let Hj be the half-closed slab
bounded between hj and hj+1 (containing hj but not hj+1); let Hn be the infinite
slab “beyond” hn, i.e., the slab xd ≥ xd(pn).
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Hj

pj
hj

O

pj+1hj+1

Fig. 3.3. The proof of Lemma 3.1.

By definition, the boxes in our decomposition that intersect Hj correspond to
maximal empty orthants defined by tuples 〈s1, . . . , sd〉, such that qj+1 ≤ xd(sd) (or
xd(sd) = ∞ for j = n), maxj<d{xd(sj)} ≤ qj , and x1(s1) < ∞. See Figure 3.3 for
an illustration. Denote by Oj the set of these orthants, and denote by B(Oj) the
corresponding set of boxes. We claim that the intersections of the boxes in B(Oj)
with Hj form a pairwise disjoint decomposition of Hj ∩ U(A).

Indeed, let Dj = {pi | i ≤ j}, and let D′
j be the orthogonal projection of Dj

on the hyperplane hj . Let O′
j be the set of maximal empty orthants with respect

to D′
j in the (d− 1)-dimensional space hj , defined by tuples 〈s1, . . . , sd−1〉 satisfying

x1(s1) < ∞. Let B(O′
j) be the corresponding set of boxes within hj . The following

facts are easy to verify.
1. The intersection of U(A) with hj is equal to the intersection of U(Dj) with

hj , which in turn is equal to U(D′
j).

2. Each maximal empty orthant O′ ∈ O′
j is the intersection of an orthant O ∈ Oj

with hj . Conversely, for each orthant O ∈ Oj , the (d−1)-orthant O′ = O∩hj

is a maximal empty orthant with respect to D′
j .

3. Let O ∈ Oj , and let B(O) be the corresponding box. The intersection of
B(O) with hj is equal to B(O′), where O′ is the (d− 1)-orthant O ∩ hj .

See Figure 3.3 for an illustration. By the induction hypothesis, the boxes of B(O′
j)

form a pairwise disjoint decomposition of U(D′
j). Furthermore, by 2. and 3., each

box B(O) in B(Oj) corresponds to a box B(O′) in B(O′
j), where O′ = O ∩ hj , so

that B(O′)× [qj , qj+1) ⊆ B(O), and vice versa. Thus the boxes in B(Oj) are pairwise
disjoint within Hj , and by 1. their union is equal to U(A) ∩ Hj . Repeating this
argument for each slab Hj completes the proof.

The number of boxes. Let A ⊂ Rd be an arbitrary set of points. As we have
seen, the number of cells in the decomposition of U(A) is bounded by the number
of maximal empty orthants with respect to A. Hence, it suffices to bound the latter
quantity.

Here is a straightforward constructive derivation of the bound O(n�d/2�) for this
latter quantity, which resembles the analysis of Boissonnat et al. [3]. We have already
seen, for dimension d = 1, that the decomposition of U(A) consists of a single orthant.
Now assume that d ≥ 2. Note that the number of maximal empty orthants that are
halfspaces, and contain only one point of A on their boundary, is O(n). So it remains
to count maximal empty orthants with at least two points of A on their boundary.
Given any empty orthant O, with at least two points of A on its boundary (possibly on
lower-dimensional faces of the boundary), a shift of O is the operation of shrinking O
by translating a facet of O in the negative direction of the orthogonal coordinate axis.
By the general position assumption, when a shift starts, exactly one point leaves the
boundary of O. The shift is legal if such a point lies in the relative interior of a facet.
A legal shift terminates as soon as one of the points of A on ∂O reaches the relative
boundary of the face it is currently on, so that it now lies on a lower-dimensional face.
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a a

b b b c
cc

a

(i) (ii) (iii)

Fig. 3.4. Three legal shifts that turn a maximal empty orthant into the one that has point b as
an apex.

Note that the orthant reached at the end of a legal shift is contained in the original
orthant and is thus also empty.

We start with a maximal empty orthant O, with at least two points of A on its
boundary, and apply to it any sequence of legal shifts, until we reach an orthant O′

to which no further legal shifts can be applied. See Figure 3.4. Upon termination, no
point of A lies in the relative interior of any facet of O′. Hence each point of A on ∂O′

determines at least two of the coordinate values that define facets of O′, and, since
we assume general position, no such coordinate value is determined by more than
one point. Hence, the number of points on ∂O′ is at most d/2�, which implies that
the number of such empty orthants O′, which can be obtained from some maximal
empty orthant in the manner described above, is O(n�d/2�). Moreover, knowing the
sequence of directions of the legal shifts that have transformed an original maximal
empty orthant O into O′, the orthant O can be uniquely reconstructed from O′, using
a sequence of reverse legal shifts, each stopping when the facet that moves outwards
hits a new point. Clearly, the total number of such sequences of shifts is at most d!.
The bound of O(n�d/2�) on the number of maximal empty orthants with respect to
A, and therefore on the number of boxes in our decomposition, follows.

We claim that each maximal empty orthant corresponds to a distinct face on the
boundary of U(A). This implies that the number of boxes B in our decomposition
is at most the number of distinct faces on the boundary of U(A). (Note that not
every maximal empty orthant induces a decomposition cell B(O), because O may
be unbounded in the positive direction of the x1-axis, having x1(s1) = ∞.) On the
other hand, it is clear that the number of boxes cannot be smaller by more than a
constant factor than the complexity of U(A). So it follows that number of boxes
B is proportional to the complexity of U(A) (and to the number of maximal empty
orthants) and thereby asymptotically optimal.

To establish the claim, let O be a maximal empty orthant, defined by the d-
tuple 〈s1, . . . , sd〉. Let J denote the (nonempty) set of all indices 1 ≤ i ≤ d, such that
xi(si) < ∞. For each i ∈ J , let Fi denote the (closed) facet of the (positively oriented)
dual orthant, Q+

si , of si, that is orthogonal to the xi-axis. Let F be the set of all
points o, such that for 1 ≤ i ≤ d, xi(o) = xi(si) if i ∈ J , and xi(o) ≥ maxj∈J{xi(sj)},
otherwise. We claim that F =

⋂
i∈J Fi, and therefore F ⊆ U(A). It is immediate

that
⋂

i∈J Fi ⊆ F . To show that F ⊆
⋂

i∈J Fi, note that for each o ∈ F and i ∈ J ,
the negatively oriented orthant with apex o contains si on its facet orthogonal to the
xi-axis, and therefore o is contained in Fi. We next show that F does not intersect
the interior of U(A). To see that, note that any negatively oriented orthant O′, whose
apex belongs to F , does not contain any point of A in its interior. Let k be the number
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of indices 1 ≤ i ≤ d such that xi(si) = ∞. Then F is a k-dimensional (closed) face,
on the boundary of U(A), having nonzero (and unbounded) extent in exactly the k
coordinates just defined. Moreover, as is easy to check, O is uniquely defined by F .

3.1. Output-sensitive construction. In order to construct the desired de-
composition of U(A), it suffices to enumerate all the maximal empty orthants with
respect to A, each with the d-tuple defining it. As mentioned previously, when d = 1,
U(A) is an orthant which we can compute in O(n) time. Hence, we can assume
d ≥ 2. We have seen that each such maximal empty orthant can be defined (up to
a constant number of possibilities) by a t-tuple of points of A, such that t ≤ d/2�.
The constructive proof of the bound on the number of boxes (or, rather, of maximal
open orthants) can be trivially converted into an algorithm that generates O(n�d/2�)
candidate empty orthants, prunes away those that are not empty (using orthogonal
emptiness range queries on the set A), and extends each of them, by some sequence
(out of O(1) possible ones) of reverse legal shifts, into a maximal empty orthant.

The running time of this straightforward algorithm is close to O(n�d/2�), and
is always Ω(n�d/2�), which might be much larger than the actual complexity of the
decomposition of U(A). In this section, we present an alternative output-sensitive
algorithm for constructing all maximal empty orthants with respect to A. This im-
mediately leads to an output-sensitive construction of our decomposition of U(A).

We can enumerate all maximal empty orthants with respect to A by implementing
the sweep that was used to establish Lemma 3.1. Let p1, . . . , pn be the points in the
increasing order of their xd-coordinates. We sweep Rd with a hyperplane π orthogonal
to the xd-direction. As above, let Dj = {pi | i ≤ j}, let p′j be the projection of pj on
π, and let D′

j be the projection of Dj onto π, i.e., D′
j = {p′i | i ≤ j}.

After π passes through pj , we update the maximal empty ((d − 1)-dimensional)
orthants with respect to D′

j on π. Specifically, we find the set Q of all maximal empty
orthants (on π) with respect to D′

j−1 which are not maximal empty orthants with
respect to D′

j (because the projection p′j of pj , or rather, pj itself at this moment,
lies in their relative interior). Each such orthant, together with pj , defines a maximal
empty orthant with respect to A, which we output. We delete all orthants in Q and
generate a new set N of maximal empty orthants with respect to D′

j which were not
maximal empty (d − 1)-orthants with respect to D′

j−1 (those have a (d − 2)-facet
containing pj in its relative interior). See Figure 3.5.

To efficiently identify the set Q when processing pj , we maintain the maximal
empty (d− 1)-orthants on π in a dynamic (d− 1)-dimensional range tree, where each
orthant is represented by its apex (a point on π). Using this structure, we can find all
k orthants containing p′j in O(logd−1 n + k) time. We can also delete from, or insert

into, the dynamic data structure an orthant, in O(logd−1 n) time (see [26] for more
details).

To efficiently identify the set N , we make the following observation. Let O be
an orthant in N , containing pj on its facet which is orthogonal to the xi-axis, for
some i < d. Ignoring pj , and shifting the facet containing pj away from O, we either
hit a point of D′

j−1 or have this facet of O reach infinity. In both cases, we end up
with an orthant O′ of Q. Hence, each orthant in N can be obtained by taking an
orthant O′ of Q and by replacing a facet of O′ by a parallel facet through pj . (Not all
orthants obtained in this manner are valid: One also needs to ensure that each facet
of the shrunk orthant, other than the one through pj , still contains a point of D′

j in
its relative interior.)

It is easily verified that the total number of updates to the dynamic range tree
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pj

O1

O2

O3

pj

N1

N2

O1

O3

(a) (b)

Fig. 3.5. The sweep procedure in R
3: (a) The structure on the sweep plane π just before

reaching pj ; the set Q of (d− 1)-orthants that are eliminated by pj is shaded. (b) The structure on
π immediately after reaching pj ; the set N of (d − 1)-orthants that are generated by pj is shaded.
In the example, |Q| = 3 and |N | = 2. The new orthant N1 is obtained by shrinking O1 to the left,
and N2 is obtained by shrinking O3 downwards.

is bounded by the number H of maximal empty orthants with respect to A. Indeed,
this is clear for orthants in Q: each such orthant O corresponds to a unique maximal
empty d-orthant that is “completed” when the sweep hyperplane reaches its present
position. Each orthant O in N will either be completed into a maximal empty d-
orthant when it hits a new point at some future position of the sweep hyperplane, or
else survive until the sweep is completed, and then become a degenerate d-orthant,
unbounded in both directions of the xd-axis. Since we argued before that the overall
number H of maximal empty orthants with respect to A is proportional to the number
B of boxes in our decomposition of U(A), it follows that the decomposition of U(A)
can be constructed in O((B + n) logd−1 n) time.

3.2. Lower bounds. We now show that the upper bound in Theorem 2.1 is
tight in the worst case. Specifically, we construct, for every dimension d ≥ 2 and
n, a set of n points A in Rd such that there are Ω(n�d/2�) maximal empty orthants
with respect to A. Since each of these orthants corresponds to a distinct face on the
boundary of U(A), we obtain that the number of boxes in any decomposition of U(A)
is Ω(n�d/2�).

In fact, we prove a more general lower bound on the number of maximal empty
boxes with respect to a finite set of points A ⊆ Rd. A maximal empty box with respect
to a point set A is an open axis-parallel box, which does not contain any point of A
in its interior, and is maximal with this property under inclusion (so, as in the case
of orthants, each facet of the box contains a point of P in its relative interior). We
allow a maximal empty box to be unbounded in certain directions, so every maximal
empty orthant with respect to P is also a maximal empty box.

Worst-case tightness of the upper bound in Theorem 2.1 is an easy consequence
of the following two lemmas.

Lemma 3.2. There exists a set of points A = {pji | 1 ≤ i ≤ n, 1 ≤ j ≤ d} in
general position in dimension d ≥ 2 such that, for any choice of indices 1 ≤ id ≤
id−1 ≤ · · · ≤ i1 ≤ n, there is an (open) empty box R whose boundary contains only
the points pjij , for 1 ≤ j ≤ d.
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Fig. 3.6. Illustrating Lemma 3.2 in dimension d = 2. We have p1
i = (i, i) for 1 ≤ i ≤ n, and

p2
j = (n + j, j) for 1 ≤ j ≤ n. For any choice of 1 ≤ j ≤ i ≤ n, the rectangle (i, j + n) × (j, i)

contains only p1
i and p2

j on its boundary.

Proof. Let �1 ∈ Rd be the vector with all components equal to 1. Let �1<j ∈ Rd be

the vector whose �th component is 1, for � < j, and 0 for � ≥ j. Let pji = n�1<j + i�1,
for 1 ≤ i ≤ n and 1 ≤ j ≤ d. We claim that the box R = (i1, i2 + n) × (i2, i3 +
n) × · · · × (id−2, id−1 + n) × (id−1, id + n) × (id, i1) contains only the points pjij . See
Figure 3.6 for an illustration in dimension d = 2.

To prove the claim, consider a fixed point pjij . The first j − 1 coordinates of this
point are equal to ij +n, and the rest are equal to ij . It easily follows that this point
is on the boundary of R. On the other hand, let pja be a point such that a �= ij . We
argue that pja does not belong to the closure of R.

Case 1a. If a < ij and j �= d, then the projection of R on the jth coordinate is
the interval (ij , ij+1 + n), but the jth coordinate of pja is a, and since a < ij , p

j
a does

not belong to the closure of R.
Case 1b. If a < ij and j = d, then the projection of R on the dth coordinate is

the interval (id, i1), but the dth coordinate of pja is a, and since a < id, p
j
a does not

belong to the closure of R.
Case 2a. If a > ij and j �= 1, then the projection of R on the (j−1)th coordinate

is the interval (ij−1, ij + n), but the (j − 1)th coordinate of pja is a + n, since a > ij ,
pja does not belong to the closure of R.

Case 2b. If a > ij and j = 1, then the projection of R on the dth coordinate is
the interval (id, i1), but the dth coordinate of pja is a, since a > i1, p

j
a does not belong

to the closure of R.
By symbolically perturbing the points of A, we can ensure that A is a set of points

in general position, and the lemma still holds for the perturbed set.
Lemma 3.3. For any dimension d, there exists a set A of n points in Rd in

general position, such that there is Ω(nd) maximal empty boxes with respect to A.
Proof. If d = 1, we can choose A to be any set of points in R in general position.

We thus assume that d > 1.
Let A be the point set of Lemma 3.2. Then, for any of the Ω(nd) possible choices

of indices 1 ≤ id ≤ id−1 ≤ · · · ≤ i1 ≤ n, there is an empty box R whose boundary
contains pij for all 1 ≤ j ≤ d. Let R be this set of empty boxes. For each box R ∈ R,
let B(R) be any maximal empty box containing R. (By the definition of a maximal
empty box, B(R) always exists.) Clearly, the boundary of B(R) also contains pij for
all 1 ≤ j ≤ d. Since A is a set of points in general position, B(R) contains at most
2d points on its boundary. It follows that B(R) may be equal to B(R′) for at most a
constant number of boxes R′ ∈ R. So we obtain Ω(nd) distinct maximal empty boxes
in this way.

To see the tightness of the upper bound in Theorem 2.1 for an even d ≥ 2, take
a point set B of n points in Rd/2 such that there are Ω(nd/2) maximal empty boxes
with respect to B. Such a set exists by Lemma 3.3. Let A be the point set in
dimension d obtained from B by applying the transformation of Theorem 2.4. It is
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easy to verify that if
∏d

i=1(ai, bi) is a maximal empty box with respect to B, then∏d
i=1(−∞, ai) × (−∞,−bi) is a maximal empty orthant with respect to A and vice

versa. So it follows that there are Ω(nd/2) maximal empty orthants with respect to
A.

If we embed A in Rd+1 by setting coordinate xd+1 of all points to 0 (and then
symbolically perturb it), we establish the tightness of the bound in Theorem 2.1 also
for odd d ≥ 3.

This, at long last, completes the proof of Theorem 2.1.
Remark. The storage required by the data-structure of Theorem 2.3 depends on

the number of maximal empty orthants with respect to each of the sets of points Pc

of color c, for 1 ≤ c ≤ C. Since this quantity can be as large as Ω(n�d/2�), we have a
lower bound of Ω(n�d/2�) for the storage required by the data structure of Theorem 2.3
in a worst-case scenario.

The storage required by the data-structure of Theorem 2.5 depends on the number
of maximal empty orthants with respect to each of the sets P̃c, for 1 ≤ c ≤ C, obtained
from Pc by doubling each coordinate in the manner described above. As just noted,
the number of maximal empty orthants with respect to each transformed set P̃c is
equal to the number of maximal empty boxes with respect to the initial set Pc. By
Lemma 3.3, a point set of cardinality n in dimension d ≥ 1 can define Ω(nd) maximal
empty boxes in the worst-case. So we obtain a lower bound of Ω(nd) on the worst-
case storage required by the data-structure of Theorem 2.5. Similarly, we can prove
a lower bound of Ω(nd) for the worst-case storage required by the data-structure of
Theorem 2.6.

3.3. Random sets of points. The decomposition-based data structures of The-
orems 2.5 and 2.3 are especially efficient, when the number of maximal empty boxes
with respect to each of the sets Pc ⊂ Rd is small for all 1 ≤ c ≤ C. In this subsection
we prove that the expected number of maximal empty boxes for a random point-set
with n points in Rd is only O(n logd−1 n). It would be interesting to explore the
connection between this result and the known bound of O(logd−1 n) on the expected
number of maximal points in a set of n random points in Rd; see [1, 17].

We assume that the set P is constructed so that each point is chosen independently
and uniformly at random from the uniform distribution on [0, 1]d. Thus, with prob-
ability 1, the points of P are in general position, and, for each i, the xi-coordinates
of the sampled points form a random permutation, which are independent of each
other. We define a t-box to be an axis-parallel box B, that may be unbounded in
certain directions, containing t points on its boundary, such that each one of the
finite facets of B contains a point of P (possibly on its relative boundary).6 Let
Bt,k(P ) (resp., Bt,≤k(P )), for 1 ≤ t ≤ 2d, denote the set of t-boxes containing exactly
(resp., at most) k points of P in their interior, and put Nt,k(P ) = |Bt,k(P )| (resp.,
Nt,≤k(P ) = |Bt,≤k(P )|). Note that we may have degenerate boxes with identical op-
posite facets. However, the number of such boxes is at most O(n), due to the general

position assumption. Finally, we let N
(d)
t,k (n) (resp., N

(d)
t,≤k(n)) denote the expected

value of |Bt,k(P )| (resp., |Bt,≤k(P )|), over the random choice of a set P of n points
in Rd. In order to obtain the asserted bound on the expected number of maximal

empty boxes with respect to P , it suffices to show that N
(d)
t,0 (n) = O(n logd−1 n) for

all 1 ≤ t ≤ 2d.

6With some abuse of notation, we allow degenerate 1-boxes contained in orthogonal planes.
Clearly, there are O(n) such boxes.
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We prove the bound by induction on d. The case d = 1 is trivial: We clearly have

N
(1)
1,0 (n) is 2, since any empty nondegenerate 1-box in R1 is an empty ray emanating

from a point of P . Similarly, N
(1)
2,0 (n) = n − 1, since any empty 2-box is a segment

bounded by a pair of consecutive points of P .
Assume now that d > 1, and that the bound holds for d − 1 (and for all t ≤

2(d− 1)). Assume also (without really changing the model) that we draw each point
p ∈ P by first drawing a point p′ ∈ [0, 1]d−1, thereby fixing the projection of p on
the hyperplane xd = 0 to be p′, and then drawing xd uniformly from [0, 1] to be the
xd-coordinate of p.

Let P ′ = {p′ | p ∈ P} be the set of projections of all points in P on the hyperplane
xd = 0. Let B̂t,0(P ) denote the set of empty t-boxes of P whose both facets orthogonal

to the xd-axis contain a point of P on their relative boundary. Set N̂t,0(P ) = |B̂t,0(P )|
and N̂t,0(n) = max|P |=n N̂t,0(P ). Every t-box B in B̂t,0(P ) corresponds to the t-box
B′ of P ′, obtained by projecting B onto xd = 0; note, however, that B′ is not
necessarily empty.

Fix P ′, and consider the random drawings of the xd-coordinates of the points of
P . What is the probability that a t-box B′ in Bt,k(P

′) corresponds to an empty t-box

B in B̂d
t,0(P )? For this to happen, it is necessary and sufficient that the t boundary

points of B′ be consecutive in the permutation defined by the t + k boundary and
interior points of B′ along the xd-axis (see Figure 3.7). This happens with probability
t!(k+1)!
(k+t)! = t!

(k+2)(k+3)···(k+t) . So we obtain the following inequality:

E(N̂t,0(P )) ≤
n−t∑
k=0

t!∏t
i=2(k + i)

|Bt,k(P
′)|.

Rearranging this sum, we get

E(N̂t,0(P )) ≤
n−t−1∑
k=0

t!(t− 1)∏t+1
i=2(k + i)

|Bt,≤k(P
′)| + t!∏t

i=2(n− t + i)
|Bt,≤n−t(P

′)|.

This holds for every choice of P ′, so if we average over the choices of P ′, we obtain
the following recurrence:

(3.1) N̂
(d)
t,0 (n) ≤

n−t−1∑
k=0

t!(t− 1)∏t+1
i=2(k + i)

N
(d−1)
t,≤k (n) +

t!∏t
i=2(n− t + i)

N
(d−1)
t,≤n−t(n).

To estimate N
(d−1)
t,≤k (n), for k ≥ 1, we note that if we sample a random subset of

P of size n/k, we obtain a random set of n/k points drawn independently from the
same uniform distribution as P . Hence, we can apply the Clarkson–Shor probabilistic
technique [9] to conclude that

(3.2) N
(d−1)
t,≤k (n) = O(ktN

(d−1)
t,0 (n/k)).

By the induction hypothesis we have N
(d−1)
t,0 (n) = O(n logd−2 n), for any 1 ≤ t ≤ 2d,

and for any n. Hence, by (3.2), N
(d−1)
t,≤k (n) = O(nkt−1 logd−2 n), for any 1 ≤ t ≤ 2d.

Plugging this into inequality (3.1), we obtain the bound N̂
(d)
t,0 (n) = O(n logd−1 n), for

1 ≤ t ≤ 2d.
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We next consider empty t-boxes, for which neither of their facets orthogonal to
the xd-axis contains points of P in their relative boundaries. We consider only boxes
that are not strips bounded by one or two hyperplanes orthogonal to the xd-direction
(there are O(n) such strips). Any such box B can be charged to a box in B̂t′,0(P ),
for some t− 2 ≤ t′ ≤ t, by applying two legal shifts to B (as defined at the beginning
of this section), the first of which shifts the top facet down, and the second shifts the
bottom facet up. With some care, this also applies to boxes that are unbounded in the
xd-direction. The resulting box B̂ is uniquely charged in this manner. Similarly, an
empty t-box B, such that one of its facets orthogonal to the xd-axis does not contain
a point in the relative boundary, can be charged to a box B̂ in B̂t′,0(P ), for some
t− 1 ≤ t′ ≤ t. This can be done by applying just one legal shift that shifts that facet.
Such a B̂ is charged at most twice. Hence we have

(3.3) N
(d)
t,0 (n) = O(N̂

(d)
t,0 (n) + N̂

(d)
t−1,0(n) + N̂

(d)
t−2,0(n) + n).

Since we have already proved that N̂
(d)
t,0 (n) = O(n logd−1 n), for 1 ≤ t ≤ 2d, the

induction step follows from (3.3). The following theorem summarizes what we have
shown.

Theorem 3.4. Let P be a set of n points in Rd, drawn independently from the
uniform distribution on [0, 1]d. Then the expected number of maximal empty boxes
with respect to P is O(n logd−1 n), where the constant of proportionality depends on
d.

B

x2

x1

Fig. 3.7. Bounding the expected number of empty boxes in the plane. The highlighted box B
belongs to B̂2,0(P ), and its x1-projection belongs to B2,5(P ′). The two points defining B must be
consecutive in the x2-order of the points in the shaded strip.

Semiunbounded colored range counting for random sets. In particular, the bound
of Theorem 3.4 also applies to the expected number of maximal empty orthants. Since
the storage required by the data-structure of Theorem 2.2 depends on the number of
maximal empty orthants with respect to each of the sets Pc, for 1 ≤ c ≤ C, we obtain
the following result.

Theorem 3.5. Let P be a set of n colored points in dimension d ≥ 2, such
that each point is drawn independently from the uniform distribution on [0, 1]d. Then
there exists a data structure supporting semiunbounded colored range counting queries
in O(logd−1 n) time, whose expected storage is O(n log2d−2 n) and which can be con-
structed in expected O(n log2d−2 n) time.

General colored range counting for random sets. Recall that we solve the problem
when queries are general bounded boxes by a reduction to the semibounded problem.
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However, since this reduction transforms the points by doubling each coordinate, we
can no longer assume that the transformed set satisfies our randomness assumption.

We overcome this difficulty using the following observation from section 3.2. Let
A be a random point set in Rd and Ã the point set in R2d into which A is mapped;
then every maximal empty orthant in R2d with respect to Ã corresponds to a maximal
empty box in Rd with respect to A. Hence, we can still apply Theorem 3.4 to the
original set A in order to upper-bound the number of maximal empty orthants with
respect to Ã. Using the data structure of Theorem 2.4 we obtain the following result.

Theorem 3.6. Let P be a random colored point-set of cardinality n in Rd, such
that the points of each color are selected as above. Then there exists a data structure
supporting colored range counting queries in O(log2d−1 n) time, whose expected storage
is O(n log3d−2 n) and which can be constructed in expected O(n log3d−2 n) time.

Using the same technique, we can build a data structure to answer colored range
counting queries for boxes with bounded projections on k specific coordinates, for a
random point set, by reducing the problem to a semiunbounded problem in Rd+k and
using Theorem 3.4.

Remark. The enhancement that shaves off a logarithmic factor, as provided in
Theorem 2.6, does not apply in this case, because it is based on n copies of the
structure, and the expected number of maximal empty orthants may be linear in each
subproblem, giving rise to an overall data structure of superquadratic size.

4. Achieving time-space tradeoff. In this section we present several tech-
niques for reducing storage at the expense of increasing query time.

4.1. The planar case: Splitting boxes. Our tradeoff technique for the planar
case uses the more space efficient data structure of Theorem 2.3 that supports colored
range counting queries with 3-sided boxes of the form [a, b]× (−∞, d] or [a, b]× [c,∞).
Recall that we transform this problem into a standard orthogonal containment search-
ing in R3, and that the resulting data structure requires only O(n log2 n) storage and
preprocessing cost. (See the discussion preceding Theorem 2.2.) This data structure is
a three-level segment tree where each node of a segment tree at the second level stores
a linked list of all the boxes associated with it sorted according to their x1-coordinate.

To obtain Theorem 2.2 we stored at each node of a bottom-level list the number of
boxes preceding it in its list. For the present solution, in addition to counting colors,
we also want to represent the set of all colors in the query 3-sided box as a disjoint
union of canonical sets of colors. This is easy to achieve with our three-level segment
tree. We associate a canonical set of colors with each node w of a bottom-level list
in the three-level segment tree. This is the set of colors of boxes preceding w in the
list. (The prefix of the list up to w in fact represents this set.) The representation
of the set of all colors in the query 3-sided box consists of the canonical sets of the
bottom-level nodes reached by the query. Since the data structure has three levels,
the number of such sets in a query output is O(log3 n), and each color appears in at
most one of these sets (because of the disjointness of the boxes in the decomposition
of any single U(Pc)).

The full data structure. In order to handle general queries of the form [a, b]×[c, d],
we use the following technique, which has already been used in [12], for solving or-
thogonal colored range reporting problems. We store the points of P , in the increasing
order of their y-coordinates, at the leaves of a balanced binary tree T . At each internal
node v, we store a pair of auxiliary data structures, one for answering queries of the
form [a, b] × [c,∞), and one for queries of the form [a, b] × (−∞, d]. The first (resp.,
second) structure is built on the points stored at the left (resp., right) subtree of v.
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We also store at v a y-coordinate Y (v) that separates the y-coordinates of the points
stored at the left subtree from those stored at the right subtree of v. If v is a leaf, we
let Y (v) be the y-coordinate of the singleton point stored at v.

For each node w of a bottom-level list of an auxiliary structure we denote by c(w)
the canonical set of colors associated with w.

Let q = [a, b] × [c, d] be a query box. We search down the tree T with [c, d] and
denote by vq the highest node for which [c, d] contains Y (vq). If vq is a leaf, we check
whether the single point that it stores lies in q, and return 1 if it does and 0 otherwise.
If vq is an internal node, we query the two structures at vq with [a, b] × [c,∞) and
with [a, b] × (−∞, d], respectively. Let Dq (resp., Uq) denote the set of O(log3 n)
bottom-level nodes reached by the former (resp., latter) subquery. Observe that the
set of colors in q is exactly the union of the canonical sets of colors associated with
the nodes in Uq ∪Dq. Another crucial property (which follows from the fact that, for
each color c, the boxes that represent U(Pc) are pairwise disjoint) is that each color
in the output appears in the canonical set of at most one node of Uq and at most one
node of Dq (see [12] for more details). Hence, using the exclusion-inclusion principle,
the number of colors that appear in q is equal to

(4.1)
∑
s∈Uq

|c(s)| +
∑
t∈Dq

|c(t)| −
∑

s∈Uq, t∈Dq

|c(s) ∩ c(t)|.

Ideally, we would like to have for every s ∈ Uq and t ∈ Dq the value of |c(s) ∩ c(t)|
prestored. However, doing this for every possible pair of canonical sets would be too
expensive and may result in superquadratic space complexity. Nevertheless, if we did
have these values available, answering a query could then be done in O(log6 n) time,
using (4.1).

Instead, we derive a tradeoff between storage and query time, determined by a
threshold parameter X in the range 1 ≤ X ≤ n. Let D(v) (resp., U(v)) be the set of
all bottom-level nodes in the auxiliary structure of a node v ∈ T used for answering
queries of type [a, b] × [c,∞) (resp., [a, b] × (−∞, d]). A node t ∈ D(v) ∪ U(v) is
called X-heavy if |c(t)| > X; otherwise it is called X-light. For every node v ∈ T we
construct and store, as part of the preprocessing stage, a matrix M(v), whose rows
and columns correspond to the X-heavy nodes in D(v) and U(v), respectively. For
each pair of X-heavy nodes s ∈ U(v) and t ∈ D(v), we store in Ms,t(v) the value of
|c(t) ∩ c(s)|. Let nv be the number of points stored at the subtree of T rooted at v.
The overall size of all the canonical sets associated with the nodes of U(v) ∪ D(v) is
O(nv log3 n). Hence, the number of X-heavy nodes in D(v)∪U(v) is O

(
nv

X log3 n
)
, so

M(v) has size O
( (

nv

X

)2
log6 n

)
. (The time needed to construct M(v), for all nodes

v ∈ T , is discussed later.) Summing this bound over all nodes v of T , we get an

overall bound of O(
(
n
X

)2
log6 n).

For each node t ∈ D(v)∪U(v), in addition to storing the size |c(t)| of its canonical
set, we also store a dictionary data structure on c(t) (implemented as a binary search
tree), supporting logarithmic-time searches. Clearly, since

∑
t∈D(v)∪U(v) |c(t)| =

O(nv log3 n), these additional dictionary structures take a total of O(n log4 n) extra
storage.

The total space complexity of our solution is thus O
( (

n
X

)2
log6 n + n log4 n

)
.

Answering queries. It suffices to describe how to compute |c(s) ∩ c(t)| efficiently,
for each s ∈ Uq and t ∈ Dq. If both s and t are X-heavy, then this value is stored in
M(vq) and we simply retrieve it. Otherwise, we can assume, without loss of generality,
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that |c(s)| ≤ X. In this case we check, for each c ∈ c(s), whether c ∈ c(t) and count
the number of such colors. Using the dictionary structure over c(t) takes a total of
O(|c(s)| log n) = O(X log n) time. We repeat this for each pair (s, t) ∈ Uq ×Dq, for a
total of O(X log7 n) query time.

Preprocessing. It is easy to see that the primary tree T with all its auxiliary data
structures can be constructed in O(n log3 n) time and the dictionary structures at the
nodes of |U ∪D| can be constructed in overall time O(n log4 n). It remains to describe
the construction of matrices Mv.

Denote by D (resp., U) the set of bottom-level nodes in all of the auxiliary struc-
tures used for answering queries of type [a, b] × [c,∞) (resp., [a, b] × (−∞, d]). Let
MD (resp., MU ) denote the matrix whose rows correspond to the X-heavy nodes
of D (resp., of U), and whose columns correspond to the colors 1, . . . , C, such that,
for t ∈ D (resp., t ∈ U) and color c, the (t, c)-entry of the matrix is 1 if c ∈ c(t)
and is 0 otherwise. It follows that M = MDMU

T contains all the matrices Mv as
submatrices.7

Using the fact that
∑

v nv = O(n log n), we get that each of the matrices MD and
MU has t = O

(
n
X log4 n

)
rows and N = O(n log4 n) nonzero entries. Hence, we can

construct M using the sparse rectangular matrix multiplication technique of Kaplan,
Sharir, and Verbin [20] (which extends a technique of Yuster and Zwick [27] and of
Chan [7]). Specifically, for two matrices A,B, each having t rows and at most N
nonzero items, these methods construct ABT in time

(4.2)

⎧⎪⎨
⎪⎩

O(Nt
ω−1

2 ) if N ≥ t
ω+1

2 ,

O(N
2β

β+1 t
2−αβ
β+1 ) if t1+

α
2 ≤ N ≤ t

ω+1
2 ,

O(t2) if N ≤ t1+
α
2 .

Here (i) ω is the exponent of matrix multiplication; i.e., ω is the smallest number
such that two t× t matrices can be multiplied in time O(tω), (ii) α is the largest value
of r for which a t× tr matrix and a tr × t matrix can be multiplied in time O(t2), and
(iii) β = ω−2

1−α . It is known (see, e.g., [18]) that ω < 2.376 and α > 0.294; thus we can
use β ≈ 0.533.

Hence, the construction time of the data structure is

(4.3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O∗
(

n(ω+1)/2

X(ω−1)/2

)
= O

(
n1.688

X0.688

)
when X ≥ n

ω−1
ω+1 ≈ n0.408,

O∗
(

n
2−αβ+2β

β+1

X
2−αβ
β+1

)
= O

(
n1.898

X1.203

)
when n

α/2
α/2+1 ≈ n0.128 ≤ X ≤ n

ω−1
ω+1 ≈ n0.408,

O∗( n2

X2 ) when X ≤ n
α/2

α/2+1 ≈ n0.128.

We thus have the following result.

Theorem 4.1. Let P be a set of n colored points in the plane, and let 1 ≤ X ≤ n
be a given tradeoff parameter. Then we can preprocess P into a data structure of size

O
( (

n
X

)2
log6 n + n log4 n

)
so that a colored range counting query can be answered in

O(X log7 n) time. The preprocessing cost is as given in (4.3).

7We combine all of the matrices Mv into one matrix M to simplify the presentation. In doing
so, we lose a polylogarithmic factor in the time bound.
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Optimizing for a fixed number of queries. Suppose next that we know (or guess)
in advance the number m of queries. We can then optimize the choice of X, so as to
minimize the overall time for answering m colored range counting queries, including
the time spent at the preprocessing stage. A simple calculation yields the following
corollary.

Corollary 4.2. Let P be a set of n colored points in the plane.

(a) m ≤ n colored range counting queries can be answered in overall time O∗(nm
ω−1
ω+1 )

= O(nm0.408).

(b) n ≤ m ≤ n
4−α
α+2 ≈ n1.616 colored range counting queries can be answered in

overall time O∗(n
2−αβ+2β
3−αβ+β m

2−αβ
3−αβ+β ) = O(n0.862m0.546).

(c) m ≥ n
4−α
α+2 ≈ n1.616 colored range counting queries can be answered in overall

time O∗(m2/3n2/3).

In particular, n colored range counting queries can be answered in O(n
2ω

ω+1 ) =
O(n1.408) time, including time spent at the preprocessing stage.

4.2. Time-space tradeoff in dimension d > 2. In higher dimensions, there
are other approaches to achieving a tradeoff between query time and storage.

Bucketing. Partition the set of colors into O(log n) “buckets” Ci, such that c ∈ Ci
iff 2i−1 ≤ |Pc| < 2i. Put Ci := |Ci|, and let ni be the number of points having colors
in Ci. Clearly, ni = Θ(2iCi). We solve the colored range counting problem separately
within each Ci and output the sum of the counts obtained in each of these O(log n)
subproblems.

We use a threshold parameter 1 ≤ X ≤ n. Answering a colored range counting
query with a box q within Ci depends on the relationship between X and Ci. If
X ≥ Ci, we simply test, for each color c in Ci, whether q ∩ Pc �= ∅ and count the
number of colors with this property. Using the standard orthogonal range searching
machinery [2], this takes O(logd−1 |Pc|) = O(id−1) time per color c, for a total of
O(id−1Ci) = O(id−1X) time. Summing these bounds over all buckets with X ≥ Ci,
we obtain a total of O(X logd n) time.

If X < Ci, we use the technique of Theorem 2.5 for answering the query. We use
a single colored range counting data structure for all the buckets with Ci > X. Let
N =

∑
{i|X<Ci} ni ≤ n be the overall number of points in buckets with X < Ci. The

query time is O(log2d−1 N) = O(log2d−1 n), and the space and preprocessing cost are
both

O

(∑
i

Ci ·
(
ni

Ci

)d

log2d−1 n

)
=O

(∑
i

nd
i

Xd−1
log2d−1 n

)
=O

(∑
i

nd

Xd−1
log2d−1 n

)
,

where the summation is over all those “heavy” buckets (we use here the facts that
ni/Ci = Θ(2i) and that X < Ci). Hence, summing over the buckets, and
adding the costs for buckets with X ≥ Ci, the overall query time is O(X logd n +

log2d−1 n). The overall preprocessing and space complexity is O
(

nd

Xd−1 log2d−1 n
)
.

Optimizing the choice of X, we can answer m colored range counting queries in time
O(nm1−1/dlogd+1−1/d n+m log2d−1 n), including time spent at the preprocessing stage

(for this we take X = n
m1/d log

d−1
d (n)). We thus have the following result.

Theorem 4.3. Let P be a set of n colored points in Rd, d > 2, and let

1 ≤ X ≤ n be a tradeoff parameter. We can preprocess P , in time O
(

nd

Xd−1 log2d−1 n
)
,

into a data structure of size O
(

nd

Xd−1 log2d−1 n
)
, which supports colored range count-

ing queries in time O(X logd n). In particular, m such queries can be answered in
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O(nm1−1/d logd+1−1/d n+m log2d−1 n) time, including the cost of preprocessing. The

storage required in this case is O(nm1−1/d logd+1−1/d n).
Two additional methods are presented in section 4.3. They partially improve the

upper bounds in the time-space tradeoff for X = Ω∗(n
d−2
d−1 ), but they are more ex-

pensive at the preprocessing stage. Ignoring storage, the bucketing method described
previously provides the best upper bound so far on the time required to answer any
fixed number of queries, if time spent at the preprocessing stage is also included.

4.3. Additional time-space tradeoffs in dimension d > 2.
Bucketing with box-splitting. We further improve the tradeoff achieved by buck-

eting for values of X = Ω∗(n
d−2
d−1 ), by using the box-splitting technique within each

bucket, as in the planar case. Specifically, apply bucketing with some threshold value
1 ≤ X ≤ n. Again, if the number of colors within a fixed bucket Ci is smaller than
X, test each of the Ci colors in the bucket for intersection with the query range. This
costs O(X logd−1 n) time per bucket, for a total of O(X logd n).

Consider then all the “heavy” buckets with Ci > X. Apply the box splitting
technique for the colors in the corresponding union ∪iCi (using the same threshold
parameter X to distinguish between “heavy” and “light” canonical sets; see section
4.1). That is, construct a binary tree on the points sorted by their x1-coordinates.
For each node of the tree we maintain two auxiliary structures for querying with
boxes that are semiunbounded in the x1-direction. As above, the data structure is
implemented so that processing a query takes O(log2d−1 n) time, and returns the
output as the disjoint union of O(log2d−1 n) canonical sets, each associated with some
bottom-level node of the structure. The preprocessing and space complexity of the
structure are both

O

(∑
i

Ci ·
(
ni

Ci

)d−1

log2d−1 ni

)
=O

(∑
i

nd−1
i

Xd−2
log2d−1 n

)
=O

(
nd−1

Xd−2
log2d−1 n

)
,

where the summation is over all “heavy buckets.” Note that this bound holds also if
we store a dictionary over each canonical set.

To process a bounded-box query, we proceed as above, finding the highest node
in the tree that splits the x1-span of the query box, performing appropriate queries
in the auxiliary data structures with the two corresponding semiunbounded “half-
boxes,” and combining the solutions, using an appropriate variant of (4.1). The time
of the query is then O(X log4d−1 n) by a straightforward extension of the analysis of
the planar case.

Since the total size of all the canonical sets of nodes of the respective collections

U(v), D(v) is now O
( nd−1

v

Xd−2 log2d−1 n
)
, for a given vertex v ∈ T , the size of the matrix

M(v) is

O

⎛
⎝
(

nd−1
v

Xd−2

X

)2

log4d−2 n

⎞
⎠ = O

((nv

X

)2d−2

log4d−2 n

)
,

and the total storage, over all nodes v and buckets i, is thus

O

(
nd−1

Xd−2
log2d−1 n +

( n

X

)2d−2

log4d−2 n

)
.

Comparing this with the bound for the bucketing technique alone, we get an improved

tradeoff for X = Ω∗(n
d−2
d−1 ), as asserted.
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It remains to bound the preprocessing time, which is dominated by the cost of
computing the matrices M(v). As in section 4.1, denote by D (resp., U) the set of
bottom-level nodes in all of the auxiliary structures used for answering queries of
type [a, b] × [c,∞) (resp., [a, b] × (−∞, d]). Let MD (resp., MU ) denote the matrix
whose rows correspond to the X-heavy nodes of D (resp., of U), and whose columns
correspond to the colors 1, . . . , C, such that, for t ∈ D (resp., t ∈ U) and color c, the
(t, c)-entry of the matrix is 1 if c ∈ c(t), the canonical set of t, and is 0 otherwise. We
compute the matrix M = MDMU

T which contains all the matrices Mv as submatrices.

Here each of the matrices MD and MU has O
(
nd−1

Xd−2 log2d−1 n
)

nonzero entries, which

is the total size of all canonical set, and O
(
nd−1

Xd−1 log2d−1 n
)

rows, each corresponding
to an X-heavy canonical set. Using (4.2) we obtain the following bound on the time
to compute M :

(4.4)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O∗
(

n(d−1)(ω+1)/2

X(d−1)(ω+1)/2−1

)
when n

(d−1)(ω−1)
(d−1)(ω−1)+2 ≤ X,

O∗
(

n
(d−1)

2β+2−αβ
β+1

X
(d−2)

2β
β+1

+(d−1)
2−αβ
β+1

)
when n

(d−1)α
(d−1)α+2 ≤ X ≤ n

(d−1)(ω−1)
(d−1)(ω−1)+2 ,

O∗
(

n2d−2

X2d−2

)
when X ≤ n

(d−1)α
(d−1)α+2 .

That is, we have the following theorem.
Theorem 4.4. Let P be a set of n colored points in Rd, d > 2, and let 1 ≤ X ≤ n

be a tradeoff parameter. We can preprocess P , in time as in (4.4), into a data structure
of size

O

(
nd−1

Xd−2
log2d−1 n +

( n

X

)2d−2

log4d−2 n

)
,

which supports colored range counting queries in time O(X log4d−1 n).
Grid. Using this method, we achieve additional improvement of the time-space

tradeoff for X = Ω∗(n
d+1
d+2 ). Recall that we assume general position of the points of

P , in the sense that no two points have the same xi-coordinate for any 1 ≤ i ≤ d. We
fix a parameter t, and partition Rd, for each 1 ≤ i ≤ d, into t slabs, each containing
n/t points of P and bounded by two hyperplanes orthogonal to the xi-axis. These
partitions, when superimposed on each other, induce a nonuniform grid G with td

cells. There are O(t2d) “canonical” boxes, each bounded by 2d grid hyperplanes. In
the preprocessing stage we compute for each such box the number of colors that it
contains, using the bucketing method in O(nt2d−2 logd+1−1/d n + t2d log2d−1 n) time.
This bound follows from Theorem 4.3 (with m = t2d).

To perform an actual query with some box Q, we find the maximal canonical box
Q0 that it contains and retrieve the number C0 of colors in Q0. We then retrieve the
n′ ≤ 2dn/t points of P that lie in the “fringe” Q\Q0 of Q, using a standard orthogonal
range reporting data structure [2]. See Figure 4.1. For each such point p, we check
whether its color c(p) is a color that appears in Q0. For this, we preprocess each of
the monochromatic subsets Pc of P , for c = 1, . . . , C, for d-dimensional orthogonal
emptiness range queries. For each p ∈ Q\Q0, with color c = c(p), such that this is the
first fringe point of that color, we test whether Q0∩Pc(p) = ∅ using the corresponding

structure in O(logd−1 n) time. If this is the case, we add 1 to the color count. In all
other cases p is ignored. The overall query time is O

(
n
t logd−1 n

)
. The data structure
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Q0

Q

Fig. 4.1. The grid construction in the plane, a query rectangle Q, its (lightly-shaded) “core”
Q0, and its (darkly-shaded) fringe.

uses O(n logd−1 n + t2d) storage and can be constructed in O(t2d−2n logd+1−1/d n +
t2d log2d−1 n) time. Alternatively, substituting X := n

t , we obtain tradeoff bounds
that are similar to the previous ones (we leave it to the reader to verify that we get

an improvement for X = Ω∗(n
d+1
d+2 )).

Theorem 4.5. Let P be a set of n colored points in Rd, d > 2, and let 1 ≤ X ≤
n be a tradeoff parameter. We can preprocess P , in O

( (
n
X

)2d−2
n logd+1−1/d n+(

n
X

)2d
log2d−1 n

)
time, into a data structure of size O(( n

X )2d + n logd−1 n), which

supports colored range counting queries in O(X logd−1 n) time.

5. Colored range counting and sparse matrix multiplication. In this sec-
tion we further elaborate on the relation between sparse matrix multiplication and
colored orthogonal range counting. We use this relation to derive lower bounds for the
off-line version of the problem in R2. We also define and analyze a generalized version
of sparse matrix multiplication that is related to colored orthogonal range counting
in higher dimensions.

5.1. Hardness of orthogonal colored range counting. Consider the follow-
ing output restricted sparse matrix multiplication problem (ORSMM). The input is a
sparse matrix A with N nonzero entries (and therefore at most N rows and columns),
and a set O of M pairs, (i, j), where i and j are indices of two rows of A. The goal
is to compute, for each pair (i, j) ∈ O, the (i, j)th entry of the product AAT . We
further assume here that A is zero-one, although AAT is computed over the integers
(or reals).8

The off-line version of the colored orthogonal range counting problem with n
points and m queries is closely related to the ORSMM problem, as follows from our
solution to colored range counting in R2 in section 4.

Theorem 5.1. The 2-dimensional orthogonal colored range counting problem
on n points and m query rectangles can be reduced to an ORSMM problem, where
the matrix A has N = O(n log4 n) nonzero entries and we ask for M = O(m log6 n)
entries of the matrix AAT . The reduction takes O(n log4 n) time.

The following theorem shows that a reverse reduction also exists.
Theorem 5.2. The ORSMM problem, for a zero-one matrix A with N nonzero

entries, where we need to compute M output pairs, can be reduced in linear time to

8We can instead ask for M entries in the product of two arbitrary zero-one matrices A and B
with N nonzero items in both. Our results carry over to this generalized version.



COUNTING COLORS IN BOXES 1007

a 2-dimensional colored orthogonal range counting problem on O(N) points and M
query rectangles.

Proof. We can restate the ORSMM problem as follows. Let Z be the set of
columns in the matrix A. For each row i, let Si ⊆ Z denote the set of columns where
row i has ones. Let O be the set of M output pairs to be computed. For each pair
(i, j) ∈ O we have to compute |Si ∩ Sj |, which is the (i, j)th entry of AAT . Since
|Si∩Sj | = |Si|+|Sj |−|Si∪Sj |, this is equivalent to computing, for each pair (i, j) ∈ O,
the quantity |Si ∪ Sj |.

Let k denote the number of nonempty rows of A. We construct a colored range
counting instance with the point set defined in Lemma 3.2; see Figure 3.6. That is,
we choose p1

1 = (1, 1), p1
2 = (2, 2), . . ., p1

k = (k, k) and p2
1 = (k + 1, 1), p2

2 = (k + 2, 2),
. . ., p2

k = (2k, k). We assign a distinct color to each column of A. We next replace
each point p1

i by |Si| points, colored by the colors of the columns in Si. We place the
|Si| colored points, which correspond to p1

i , close to each other within distance ε � 1
of pi. We do the same for each of the points p2

i . Let P denote the resulting point
set; we have |P | = 2N . Clearly, with an appropriate representation of the input, this
construction takes O(N) time.

Now, in order to calculate |Si ∪ Sj |, for j ≤ i, we query P with the rectangle
R = [i − ε, k + j + ε] × [j − ε, i + ε] which is slightly larger than the rectangle in the
proof of Lemma 3.2 and contains it. Since R contains only the points p1

i and p2
j , it is

clear that the number of distinct colors in R is |Si ∪ Sj |.
We next describe some observations regarding the complexity of ORSMM and

the implications of Theorem 5.2. For any t × t zero-one matrix A, computing AAT

(over the reals) is a special case of ORSMM , with N = M = t2 [11]. The best known
algorithm for computing AAT runs in O(tω) = O(Nω/2) time, for ω � 2.376. So any
algorithm for ORSMM whose running time is faster than O(min(N,M)ω/2) would
immediately imply a better algorithm for multiplying zero-one matrices (over the
reals), thereby solving a long-standing open problem. Using Theorem 5.2, we obtain
that an algorithm for planar colored orthogonal range counting that can answer m
box queries with respect to a set of O(n) colored points in o(min(n,m)ω/2) time would
imply an algorithm that can compute AAT in o(tω) time, for any t×t zero-one matrix
A.

Similarly, consider the problem of computing AAT , where A is a sparse rectan-
gular zero-one matrix with t rows and N ones such that N ≥ t

ω+1
2 . The best known

algorithm for performing this computation runs in O(Nt
ω−1

2 ) time (see section 4).
For any such matrix A, computing AAT is also an instance of ORSMM , with N ones
and M = t2 pairs. So an algorithm for ORSMM that runs in o(NM

ω−1
4 ) time, for

N ≥ M
ω+1

4 , would imply a faster algorithm for sparse rectangular matrix multiplica-
tion than the best known to date. Using Theorem 5.2, we obtain that the existence
of an algorithm for planar colored orthogonal range counting that can answer m box
queries with respect to a set of n colored points in o(nm

ω−1
4 ) ≈ o(nm0.344) time, for

n ≥ m
1+ω

4 ≈ m0.844, would also imply an algorithm that can compute AAT for any
rectangular zero-one matrix A with t rows and N ones, such that N ≥ t

ω+1
2 , faster

than what is known to date.

Generalized matrix multiplication and higher-dimensional colored range counting.
For d > 2, we can show a similar relation between colored orthogonal range counting
and a generalization of ORSMM . In this generalization, one is given a zero-one
matrix A with N nonzero entries in sparse representation and a list O of M d-tuples
of indices of rows of A. Let t be the number of columns in A. The goal is to compute,
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for each tuple (i1, . . . , id) ∈ O, the sum
∑t

j=1

∏d
k=1 Aik,j , which is the ORSMMd

problem stated in subsection 1.2, and denote it by ORSMMd. The following theorem
generalizes Theorem 5.2 to dimension d > 2.

Theorem 5.3. Any instance of the ORSMMd problem, of a zero-one matrix A
with N nonzero entries and M output tuples, can be reduced, in linear time, to O(1)
instances of d′-dimensional colored orthogonal range counting, for d′ ≤ d, each on
O(N) points and M query boxes.

Proof. Let Z be the set of columns of A. The ORSMMd problem is equivalent
to the following problem if we take Si to be the set of columns with nonzero entries
in row i.

We are given a family of sets F = {S1, . . . , Sk}, such that Si ⊆ Z and
∑k

i=1 |Si| =
N , and M d-tuples {(i1, . . . , id)}Mi=1; the goal is to compute, for each of the tuples,

the corresponding quantity |
⋂d

j=1 Sij |.
By using the inclusion-exclusion principle, one can easily verify that the above

problem is equivalent to computing, for each output tuple (i1, . . . , id), the quantities
|
⋃

j∈J Sij |, for every J ⊆ {1, . . . , d}. We first show how to do it for the case where
J = {1, . . . , d}.

Let k denote the number of nonempty rows of A. We assign to each column of
A a distinct color. Let {pji | 1 ≤ i ≤ k, 1 ≤ j ≤ d} be the set of points defined
in Lemma 3.2. We define a colored range counting instance composed of dk “point
clusters” P j

i , for 1 ≤ i ≤ k and 1 ≤ j ≤ d, as follows. For each i and j, we replace

pji by a set P j
i of |Si| distinct points placed at distance less than ε � 1 from pji , each

colored by one of the colors of the columns in Si. Let P be the resulting set of points.

Now, in order to compute |
⋃d

j=1 Sij |, where 1 ≤ id < id−1 < · · · < i1 ≤ k, we
query P with the box R = [i1− ε, i2 +k+ ε]× [i2− ε, i3 +k+ ε]×· · ·× [id−2− ε, id−1 +
k + ε] × [id−1 − ε, id + k + ε] × [id − ε, i1 + ε]. (This box is slightly larger than the
corresponding box used in Lemma 3.2 and contains it.)

By Lemma 3.2, R ∩ P =
⋃d

j=1 P
j
ij

. The number of colors in R is then |
⋃d

i=1 Sij |.
We have |P | = dN , and P can be constructed in O(N) time, assuming an appropriate
representation of A.

We find |
⋃

j∈J Sij |, for each tuple (i1, . . . , id) and some fixed J ⊂ {1, . . . , d} by
a similar reduction obtaining a |J |-dimensional colored orthogonal range counting
instance with O(N) points and M query boxes.

5.2. Efficient algorithms for ORSMMd. We obtain an efficient algorithm
for ORSMMd in three stages, where each stage uses the previous algorithm as a
subroutine.

The case of nonsparse matrices with no output restriction. We start by consider-
ing the nonsparse version of the problem where A is any t× t matrix and we want to
compute

∑t
j=1

∏d
k=1 Aik,j for all d-tuples of rows of A. We refer to this problem as

d-dimensional matrix multiplication.

Recall that we denote by ω the smallest constant such that standard matrix
multiplication of t × t matrices takes O(tω) time. Let ωd be a constant such that
d-dimensional matrix multiplication takes O(tωd) time (in particular, ω2 = ω). The
output size of the d-dimensional matrix multiplication problem is Θ(td), so ωd ≥ d.

On the other hand we can compute each of the O(td) sums
∑t

j=1

∏d
k=1 Aik,j in O(t)

time, so ωd ≤ d + 1. In fact it is not hard to obtain a better upper bound on ωd.

Lemma 5.4. For any d ≥ 2, ωd ≤ ω + d − 2. Furthermore, if ω > 2 and d > 2,
then ωd < ω + d− 2.
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Proof. For d = 2 the lemma obviously holds, so we assume d ≥ 3. Let A be the
input matrix. First compute two matrices B and C, so that B (resp., C) is a t
d/2�× t
matrix (resp., t× t�d/2� matrix) whose rows (resp., columns) contain the elementwise
products of all sets of �d/2� rows (resp., d/2� columns) of A. Both B and C can be
computed in time O(

(
t


d/2�
)
·t) = O(td). By construction, the (usual, two-dimensional)

product BC provides a solution to the d-dimensional matrix multiplication for A. By
partitioning BC into blocks of size t × t, computing BC can be done in O(tω+d−2)
time. In fact, if ω > 2, then the results of Huang and Pan [18] about rectangular
matrix multiplication allows us to improve this, thus establishing the second part of
the lemma.

Lemma 5.5. Let A be an s × t rectangular matrix. Then one can compute∑t
j=1

∏d
k=1 Aik,j, for all d-tuples of rows of A, in time⎧⎨

⎩
O(sω+d−3t) if s ≤ t,
O(sd−αβtβ) if sα < t < s,
O(sd) if t ≤ sα.

Proof. As in the proof of Lemma 5.4, we reduce the problem, in O(
(

s

d/2�

)
· t)

time, to the multiplication of two rectangular matrices B and C of size s
d/2� × t and
t× s�d/2�, respectively. The multiplication can be done by partitioning B and C into
blocks of size s× t and t× s, respectively. The lemma follows using the upper bound⎧⎨

⎩
O(sω−1t) if s ≤ t,
O(s2−αβtβ) if sα < t < s,
O(s2) if t ≤ sα

on the complexity of multiplication of two rectangular matrices of size s× t and t× s,
respectively (Coppersmith [10], Huang and Pan [18]; see also [7, 20, 27]).

The case of sparse matrices with no output restriction. We next consider the d-
dimensional sparse matrix multiplication problem, where the zero-one input matrix
has N ones and s rows, and the goal is to compute

∑t
j=1

∏d
k=1 Aik,j for all d-tuples

of the rows. We already considered this problem for d = 2 in section 4.
We solve this problem, for d > 2, using the same approach as in [20] (which is

built upon the earlier technique of [27]; see also [7]). Let x be a parameter to be de-
termined shortly. We consider separately columns with fewer than x nonzero entries
(light columns) and columns with at least x nonzero entries (heavy columns). A light
column with z ≤ x nonzero entries contributes a nonzero term to zd products. So the
total time to handle the light columns is at most O(

∑
i x

d
i ), where xi is the number of

nonzero items in the ith light column. This expression is maximized and equals N
x x

d,
if we split the at most N nonzero entries among at most N/x light columns, plac-
ing x nonzero entries in each column. We have at most N/x heavy columns and we
compute their contribution to the output by the previous algorithm for d-dimensional
multiplication of the corresponding rectangular (nonsparse) matrix with s rows and
N/x columns, as provided by Lemma 5.5. Optimizing over x, we obtain the following
overall bound on the running time:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Ns(ω+d−3) d−1

d

)
if N ≥ s1+(ω+d−3)/d,

O
(
N

β−1
d+β−1 (d−1)+1s

d−αβ
d+β−1 (d−1)

)
if s1+α−α

d ≤ N ≤ s1+(ω+d−3)/d,

O(sd) if N ≤ s1+α−α
d .
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The general case: An efficient algorithm for ORSMMd. We fix another threshold
parameter y and consider separately the rows with at most y nonzero entries (the
light rows) and the rows with at least y nonzero entries (the heavy rows). We can
compute each product in which a light row takes part in O∗(y) time, so all such
products can be computed in O∗(My) time. We are left with products that include
only heavy rows. Since there are at most N/y heavy rows, we can compute all
remaining products by solving a d-dimensional sparse multiplication problem (with
no output restriction) with s = N

y rows and N nonzero entries, using the algorithm
just described. Optimizing over y in order to minimize the total time complexity of
the solution, we obtain the following theorem.

Theorem 5.6. For any d ≥ 2, ORSMMd with N nonzero entries and M output
tuples can be solved in time:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O∗
(
NM

(d−1)(ω+d−3)
d+(d−1)(ω+d−3)

)
if M ≤ N

d+(d−1)(ω+d−3)
ω+2d−3 ,

O∗
(
N

(d−αβ+β−1)(d−1)+d+β−1
(d−αβ)(d−1)+d+β−1 M

(d−1)(d−αβ)
(d−1)(d−αβ)+d+β−1

)
if N

d+(d−1)(ω+d−3)
ω+2d−3 ≤ M ≤ N

d−α+α/d
1+α−α/d ,

O∗
(
N

d
d+1 M

d
d+1

)
if M ≥ N

d−α+α/d
1+α−α/d .

In particular, we get for d = 2 a solution for ORSMM2 that takes O∗(NM
ω−1
ω+1

)
time, for M ≤ N . Note that this solution is inferior to the one given in subsection 4.1
for the case M =

(
t
2

)
(no output restriction): The previous algorithm takes O

(
Nt

ω−1
2

)
time, whereas the new one takes O

(
Nt

2(ω−1)
ω+1

)
time, which is indeed much larger. It

would be interesting to improve the new algorithm for all possible values of M .

6. Conclusion. In this paper we obtain the first nontrivial solution for colored
orthogonal range counting in dimension d ≥ 3. In dimension d = 2, we provide an
efficient tradeoff scheme between query time and storage. In particular, we show
that the off-line version of the problem is nearly equivalent to an output-restricted
version of sparse (zero-one) matrix multiplication (ORSMM). This suggests that our
tradeoff scheme, in dimension d = 2, which takes O∗(n1.408) time to answer n queries
of n points, is fairly efficient. Moreover, its substantial improvement (to o(n1.188) for
the above off-line version) would immediately reduce the best known bound on the
exponent ω of matrix multiplication (for zero-one matrices).

The challenge, however, is to provide a uniform (and efficient) tradeoff scheme in
dimension d ≥ 3. It would be interesting to find a reduction from the off-line version of
the problem in dimension d ≥ 3 to the ORSMMd problem (which is a straightforward
generalization of ORSMM), presented in section 5. The reverse reduction is stated
(and proven) in Theorem 5.3.
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FINDING BRANCH-DECOMPOSITIONS AND
RANK-DECOMPOSITIONS∗

PETR HLINĚNÝ† AND SANG-IL OUM‡

Abstract. We present a new algorithm that can output the rank-decomposition of width at
most k of a graph if such exists. For that we use an algorithm that, for an input matroid represented
over a fixed finite field, outputs its branch-decomposition of width at most k if such exists. This
algorithm works also for partitioned matroids. Both of these algorithms are fixed-parameter tractable,
that is, they run in time O(n3) where n is the number of vertices / elements of the input, for
each constant value of k and any fixed finite field. The previous best algorithm for construction
of a branch-decomposition or a rank-decomposition of optimal width due to Oum and Seymour
[J. Combin. Theory Ser. B, 97 (2007), pp. 385–393] is not fixed-parameter tractable.

Key words. rank-width, clique-width, branch-width, fixed-parameter tractable algorithm,
graph, matroid
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1. Introduction. Many graph problems are known to be NP -hard in general;
however, for practical application we still need to solve them. One method to solve
them is to restrict the input graph to have a certain structure. Clique-width, defined
by Courcelle and Olariu [4], is very useful for that purpose. Many hard graph problems
(in particular all those expressible in monadic second-order logic (MSOL) of adjacency
graphs) are solvable in polynomial time as long as the input graph has bounded
clique-width and is given in the form of the decomposition for clique-width, called
a k-expression [3, 24, 6, 15, 10]. A k-expression is an algebraic expression with the
following four operations on a vertex-labeled graph with k labels: create a new vertex
with label i, take the disjoint union of two labeled graphs, add all edges between
vertices of label i and label j, and relabel all vertices with label i to have label j.
However, for fixed k > 3, it is not known how to find a k-expression of an input graph
having clique-width at most k. (If k ≤ 3, then it has been shown in [2, 1].)

Rank-width is another graph structural invariant introduced by Oum and Sey-
mour [19], aiming at the construction of an f(k)-expression of the input graph having
clique-width k for some fixed function f in polynomial time. Rank-width is defined
(section 7) as the branch-width (see section 2) of the cut-rank function of graphs.
Rank-width turns out to be very useful for algorithms on graphs of bounded clique-
width, since a class of graphs has bounded rank-width if and only if it has bounded
clique-width. In fact, if rank-width of a graph is k, then its clique-width lies between
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k and 2k+1 − 1 [19] and an expression can be constructed from a rank-decomposition
of width k.

In this paper, we are mainly interested in the following problem.

Find a fixed-parameter tractable algorithm that outputs a rank-
decomposition of width at most k if the rank-width of an input graph
(with more than one vertex) is at most k.

The first rank-width algorithm by Oum and Seymour [19] finds only a rank-
decomposition of width at most 3k + 1 for n-vertex graphs of rank-width at most
k in time O(n9 log n). This algorithm has been improved by Oum [18] to output a
rank-decomposition of width at most 3k in time O(n3). Using this approximation
algorithm and finiteness of excluded vertex-minors [17], Courcelle and Oum [5] have
constructed an O(n3)-time algorithm to decide whether a graph has rank-width at
most k. However, this is only a decision algorithm; if the rank-width is at most k,
then this algorithm verifies that the input graph contains none of the excluded graphs
for rank-width at most k as a vertex-minor. It does not output a rank-decomposition
showing that the graph indeed has rank-width at most k.

In another paper, Oum and Seymour [20] have constructed a polynomial-time
algorithm that can output a rank-decomposition of width at most k for graphs of
rank-width at most k. However, it is not fixed-parameter tractable; its running time
is O(n8k+12 log n). Obviously, it is very desirable to have a fixed-parameter tractable
algorithm to output such an “optimal” rank-decomposition, because most algorithms
on graphs of bounded clique-width require a k-expression on their input. So far, the
only known efficient way of constructing an expression with bounded number of labels
for a given graph of bounded clique-width uses rank-decompositions.

In this paper, we present an affirmative answer to the above problem (Theo-
rem 7.3). An amusing aspect of our solution is that we deeply use submodular func-
tions and matroids to solve the rank-decomposition problem, which shows (somehow
unexpectedly) a “truly geometrical” nature of this graph-theoretical problem. In fact
we solve the following related problem on matroids, too (Theorem 6.7).

Find a fixed-parameter tractable algorithm that, given a matroid
represented by a matrix over a fixed finite field, outputs a branch-
decomposition of width at most k if the branch-width of the input
matroid (with more than one element) is at most k.

So to give the final solution of our first problem, Theorem 7.3, we are going to bring
together two previously separate lines of research: We will combine Oum and Sey-
mour’s above sketched work on rank-width and on branch-width of submodular func-
tions with Hliněný’s recent works [13, 14] on parametrized algorithms for matroids
over finite fields.

Namely, Hliněný [13] has given a parametrized algorithm which in time O(n3)
either outputs a branch-decomposition of width ≤ 3k + 1 of an input matroid M
represented over a fixed finite field or confirms that the branch-width of M is more
than k + 1 (Algorithm 6.1). Using the ideas of [14] and minor-monotonicity of the
branch-width parameter, he has concluded with an O(n3) fixed-parameter tractable
algorithm [13] for the (exact value of) branch-width k of an input matroid M repre-
sented over a fixed finite field (Theorem 5.1). Similarly as above, this algorithm is
only a decision algorithm and does not output a branch-decomposition of width k.

We last remark that the following (indeed widely expected) hardness result has
been given only recently by Fellows et al. [7]: It is NP -hard to find graph clique-
width. To argue that it is NP -hard to find rank-width, we combine some known
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results: Hicks and McMurray Jr. [11] and Mazoit and Thomassé [16] independently
proved that the branch-width of the cycle matroid of a graph is equal to the branch-
width of the graph if it is 2-connected. Hence, we can reduce (section 7) the problem
of finding branch-width of a graph to finding rank-width of a certain bipartite graph,
and finding graph branch-width is NP -hard as shown by Seymour and Thomas [23].
Still, the main advantage of rank-width over clique-width is the fact that we currently
have a fixed-parameter tractable algorithm for rank-width but not for clique-width.

Our paper is structured as follows: The next section briefly introduces definitions
of branch-width, partitions, matroids, and the amalgam operation on matroids. In
section 3, we explain the notion of so-called titanic partitions, which we further use
in section 4 to “model” partitioned matroids in ordinary matroids. At this point it
is worth noting that partitioned matroids present the key tool that allows us to shift
from a branch-width-testing algorithm [13] to a construction of an “optimal” branch-
decomposition (see Theorem 5.7) and of a rank-decomposition. In section 5, we will
discuss a simple but slow algorithm for matroid branch-decompositions. In section 6,
we will present a faster algorithm. As the main application, we then use our result to
give an algorithm for constructing a rank-decomposition of optimal width of a graph
in section 7.

2. Definitions. Branch-width. Let Z be the set of integers. For a finite set V ,
a function f : 2V → Z is called symmetric if f(X) = f(V \ X) for all X ⊆ V , and
is called submodular if f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) for all subsets X,Y of
V . A tree is subcubic if all vertices have degree 1 or 3. For a symmetric submodular
function f : 2V → Z on a finite set V , the branch-width is defined as follows (see
Figure 1).

A branch-decomposition of the symmetric submodular function f is a pair (T, μ)
of a subcubic tree T and a bijective function μ : V → {t : t is a leaf of T}. (If
|V | ≤ 1, then f admits no branch-decomposition.) For an edge e of T , the connected
components of T \ e induce a partition (X,Y ) of the set of leaves of T . (In such a
case, we say that μ−1(X) (or μ−1(Y )) is displayed by e in the branch-decomposition
(T, μ). We also say that V and ∅ are displayed by the branch-decomposition.) The
width of an edge e of a branch-decomposition (T, μ) is f(μ−1(X)). The width of (T, μ)
is the maximum width of all edges of T . The branch-width of f , denoted by bw(f),
is the minimum of the width of all branch-decompositions of f . (If |V | ≤ 1, we define
bw(f) = f(∅).)

eX

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Y

Fig. 1. An illustration of the definition of a branch-decomposition (T, μ) of f : An edge e of the
tree T displays the sets μ−1(X) and μ−1(Y ), and the width of e is f(μ−1(X)).

A natural application of this definition is the branch-width of a graph, as intro-
duced by Robertson and Seymour [22] along with better known tree-width, and its
direct matroidal counterpart below in this section. We also refer to further formal
definition of rank-width in section 7.
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Partitions. A partition P of V is a collection of nonempty pairwise disjoint subsets
of V whose union is equal to V . Each element of P is called a part. For a symmetric
submodular function f on 2V and a partition P of V , let fP be a function on 2P (also
symmetric and submodular) such that fP(X) = f(∪Y ∈XY ). The width of a partition
P is f(P) = max{f(Y ) : Y ∈ P}.

We will often denote a partition by a function as follows. For a function π : V →
W , let πy = {x : π(x) = π(y)} for y ∈ V , and let [π] = {πx : x ∈ V } be the partition
of V induced by π.

Matroids. We refer to Oxley [21] in our matroid terminology. A matroid is a
pair M = (E,B), where E = E(M) is the ground set of M (elements of M), and
B ⊆ 2E is a nonempty collection of bases of M , no two of which are in an inclusion.
Moreover, matroid bases satisfy the “exchange axiom”: if B1, B2 ∈ B and x ∈ B1\B2,
then there is y ∈ B2 \ B1 such that (B1 \ {x}) ∪ {y} ∈ B. We consider only finite
matroids. A typical example of a matroid is given by a set of vectors (forming the
columns of a matrix A) with usual linear independence. The matrix A is then called
a representation of the matroid.

All matroid bases have the same cardinality called the rank r(M) of the matroid.
Subsets of bases are called independent, and sets that are not independent are depen-
dent. A matroid M is uniform if all subsets of E(M) of certain size are the bases,
and M is free if E(M) is a basis. The rank function rM (X) in M is the maximum
cardinality of an independent subset of a set X ⊆ E(M). The dual matroid M∗ is
defined on the same ground set with the bases as set-complements of the bases of M .
For a subset X of E, the deletion M \X of X from M , or the restriction M � (E \X)
of M to E \X, is the matroid on E \X in which Y ⊆ E \X is independent in M \X
if and only if Y is an independent set of M . The contraction M/X of X in M is the
matroid (M∗ \X)∗. Matroids of the form M/X \ Y are called minors of M .

To define the branch-width of a matroid, we consider its (symmetric and submod-
ular) connectivity function

λM (X) = rM (X) + rM (E \X) − rM (E) + 1

defined for all subsets X ⊆ E = E(M). A “geometric” meaning is that the subspaces
spanned by X and E\X intersect in a subspace of dimension λM (X)−1. Branch-width
bw(M) and branch-decompositions of a matroid M are defined as the branch-width
and branch-decompositions of λM . Notice that λM∗ ≡ λM .

Partitioned matroids. A pair (M,P) is called a partitioned matroid if M is a
matroid and P is a partition of E(M). A partitioned matroid (M,P) is representable
if M is representable. A connectivity function of a partitioned matroid (M,P) is
defined as λP

M . We note that λP
M is symmetric and submodular ; in other words,

λP
M (X) = λP

M (P \X),

λP
M (X) + λP

M (Y ) ≥ λP
M (X ∩ Y ) + λP

M (X ∪ Y ).

Branch-width bw(M,P) and branch-decompositions of a partitioned matroid (M,P)
are defined as branch-width, branch-decompositions of λP

M .
Amalgams of matroids. Let M1, M2 be matroids on E1, E2, respectively, and

T = E1 ∩ E2. Moreover, let us assume that M1 � T = M2 � T . If M is a matroid on
E1 ∪ E2 such that M � E1 = M1 and M � E2 = M2, then M is called an amalgam of
M1 and M2 (see Figure 2).

It is known that an amalgam of two matroids need neither exist nor be unique.
However, there are certain interesting cases when an amalgam is known to exist.
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We show one such example here, and we use another one in Proposition 5.4 with
representable matroids. Let r1, r2 be the rank function of M1, M2, respectively. Let
r be the rank function of M1 � T . Let

η(X) = r1(X ∩ E1) + r2(X ∩ E2) − r(X ∩ T )

and

ζ(X) = min{η(Y ) : Y ⊇ X}.

Proposition 2.1 (see [21, Proposition 12.4.2]). If ζ is submodular, then ζ is the
rank function of a matroid that is an amalgam of M1 and M2.

If ζ is submodular, then the matroid on E1 ∪ E2 having ζ as its rank function is
called the proper amalgam of M1 and M2.

Lemma 2.2. If M1 � T is free, then ζ is submodular and therefore the proper
amalgam of M1 and M2 exists.

Proof. Since M1 � T is a free matroid, we have r(X ∩ T ) = |X ∩ T | and therefore
η is submodular. We will show that this implies that ζ is submodular, that is to
show that ζ(X1) + ζ(X2) ≥ ζ(X1 ∩ X2) + ζ(X1 ∪ X2). For i ∈ {1, 2}, let Yi be a
set such that Yi ⊇ Xi and ζ(Xi) = η(Yi). Then ζ(X1) + ζ(X2) = η(Y1) + η(Y2) ≥
η(Y1 ∩ Y2) + η(Y1 ∪ Y2) ≥ ζ(X1 ∩X2) + ζ(X1 ∪X2). By Proposition 2.1, the proper
amalgam of M1 and M2 exists.

⊕ →

Fig. 2. A “geometrical” illustration of an amalgam of two matroids, in which hollow points are
the shared elements T .

3. Titanic partitions. This technical section is about general symmetric sub-
modular functions. Let V be a finite set and f be a symmetric submodular function
on 2V .

A set T ⊂ 2V of subsets of V is called an f-tangle of order k + 1 if it satisfies the
following three axioms.

(T1) For all A ⊆ V , if f(A) ≤ k, then either A ∈ T or V \A ∈ T .
(T2) If A,B,C ∈ T , then A ∪B ∪ C �= V .
(T3) For all v ∈ V , we have V \ {v} /∈ T . Robertson and Seymour [22] showed

that tangles are related to branch-width.
Theorem 3.1 (Robertson and Seymour [22]). There is no f-tangle of order k+1

if and only if the branch-width of f is at most k.
A subset X of V is called titanic with respect to f if whenever A1, A2, A3 are

pairwise disjoint subsets of X such that A1 ∪A2 ∪A3 = X, there is i ∈ {1, 2, 3} such
that f(Ai) ≥ f(X).

Lemma 3.2. Let V be a finite set and f be a symmetric submodular function on
2V . Let X be a titanic set with respect to f . If X1 ∪X2 ∪X3 = X, then there exists
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i ∈ {1, 2, 3} such that f(Xi) ≥ f(X). (Note that X1, X2, X3 are not required to be
pairwise disjoint.)

Proof. Suppose not. We pick a counterexample with minimum |X1|+ |X2|+ |X3|.
If X1, X2, X3 are pairwise disjoint, then by definition the lemma is true.

We may assume that X1 ∩X2 �= ∅. Let Y1 be a set minimizing f(Y1) subject to
the condition X1 \X2 ⊆ Y1 ⊆ X1. Then f(X1) ≥ f(Y1) and f(X1 \X2) ≥ f(Y1). Let
Y2 = X2 \ Y1. By the submodular inequality,

f(Y1) + f(X2) ≥ f(X1 \X2) + f(Y2) ≥ f(Y1) + f(Y2),

and therefore f(X2) ≥ f(Y2). Since Y1∪Y2∪X3 = X, |Y1|+|Y2|+|X3| < |X1|+|X2|+
|X3|, and f(X3) < f(X), we conclude that either f(Y1) ≥ f(X) or f(Y2) ≥ f(X).
But both cases lead to the conclusion that either f(X1) ≥ f(X) or f(X2) ≥ f(X), a
contradiction.

A partition P of V is called titanic with respect to f if every part of P is titanic
with respect to f . The following lemmas are equivalent to a lemma by Geelen, Ger-
ards, and Whittle [9, Proposition 4.4], which generalizes a result of Robertson and
Seymour [22, Proposition (8.3)].

Lemma 3.3. Let V be a finite set and f be a symmetric submodular function on
2V of branch-width k. Let Q be a nonempty titanic set with respect to f . Let y ∈ Q.
Let π(x) = x if x /∈ Q and π(x) = y if x ∈ Q. If f(Q) ≤ k, then the branch-width of
f [π] is at most k.

Proof. Suppose that the branch-width of f [π] is larger than k. Then by Theo-
rem 3.1, there is an f [π]-tangle T [π] of order k + 1. Let T ′ = {∪Z∈Y Z : Y ∈ T [π]}.

We would like to construct an f -tangle T of order k + 1 as follows:

T =
{
X ⊆ V : f(X) ≤ k and either X ∪Q ∈ T ′ or X \Q ∈ T ′}.

To show that T is an f -tangle of order k + 1, it is enough to verify the three axioms
(T1)–(T3).

For (T1), suppose that f(X) ≤ k and X,V \ X /∈ T . Since Q is titanic, either
f(X ∩ Q) ≥ f(Q) or f(Q \ X) ≥ f(Q). We may assume that f(X ∩ Q) ≥ f(Q) by
replacing X with V \X if necessary. By the submodular inequality,

f(X) + f(Q) ≥ f(X ∪Q) + f(X ∩Q) ≥ f(X ∪Q) + f(Q),

and therefore f(X ∪Q) ≤ f(X) ≤ k. Since T [π] is an f [π]-tangle, we know that either
X ∪ Q ∈ T ′ or V \ (X ∪ Q) ∈ T ′. If X ∪ Q ∈ T ′, then X ∈ T . If V \ (X ∪ Q) =
(V \X) \Q ∈ T ′, then V \X ∈ T . So, (T1) is proved.

To show (T2), suppose that there are X1, X2, X3 ∈ T such that X1∪X2∪X3 = V .
By Lemma 3.2, there exists i ∈ {1, 2, 3} such that f(Xi∩Q) ≥ f(Q). We may assume
that i = 1. By the submodular inequality, we deduce that f(X1 ∪ Q) ≤ f(X1) ≤ k.
Since T ′ has no three sets whose union is V , we have X1 ∪ Q /∈ T ′. Therefore,
X1 \ Q ∈ T ′ and V \ (X1 ∪ Q) ∈ T ′. By (T3) of T [π], we have V \ Q /∈ T ′. Since
f(Q) ≤ k, we have Q ∈ T ′ by (T1) of T [π]. However, (V \(X1∪Q))∪(X1\Q)∪Q = V ,
contradictory to the fact that T [π] is an f [π]-tangle.

To show (T3), suppose that X = V \{v} ∈ T for some v ∈ V . Since V, V \Q /∈ T ′

and V \ {v} /∈ T ′ when v /∈ Q, we deduce that v /∈ Q and V \ {v} \Q ∈ T ′. We know
that {v}, Q ∈ T ′. Then the union of three sets {v}, Q, V \ {v} \ Q is equal to V , a
contradiction.

Now we conclude that T is an f -tangle of order k + 1. However, this is a contra-
diction to Theorem 3.1, because we assumed that the branch-width of f is k.
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Lemma 3.4. Let V be a finite set and f be a symmetric submodular function
on 2V of branch-width at most k. If P is a titanic partition of width at most k with
respect to f , then the branch-width of fP is at most k.

Proof. Suppose that there is a counterexample. We pick a counterexample with
a minimum number of parts having at least two elements. If all parts have exactly
one element, then it is trivial.

Choose one member from each part of P and consider a function π : V → V that
maps each element x of V to a representative of the part containing x. Then [π] = P.

Let y be an element of V such that |πy| ≥ 2. Then let π′ : V → V be a function
such that

π′(x) =

{
π(x) if x /∈ πy,

x if x ∈ πy.

By definition, [π′] = {πx : x /∈ πy} ∪ {{x} : x ∈ πy}. Since the number of parts in
[π′] having at least two elements is strictly smaller than that of [π] = P and [π′] is
a titanic partition of width at most k, we know that the branch-width of f [π′] is at
most k.

Then Q = {{x} : x ∈ πy} is titanic with respect to f [π′], because P is a titanic

partition and πy ∈ P. In addition, f [π′](Q) = f(πy) ≤ k. Therefore, by Lemma 3.3,

the branch-width of f [π′] is at most k. This contradicts the assumption that P is
chosen as a counterexample with a minimum number of parts with more than one
element.

4. Replacing each part by a gadget. The purpose of this section is to show
how a partitioned matroid may be “modeled” by an ordinary matroid having the same
branch-width.

Lemma 4.1. Let M be a matroid and T be a subset of E(M). If |T |+1 > λM (T ),
then there is e ∈ T such that one of the following is true:

1. λM/e(X) = λM (X) for all X ⊆ E(M) \ T , or
2. λM\e(X) = λM (X) for all X ⊆ E(M) \ T .

Proof. Let X be a subset of E(M) \ T . If there is an element e ∈ T that is not
spanned by E(M) \ T , then rM/e(X) = rM (X). Therefore, λM/e(X) = rM/e(X) +

rM/e

(
E(M)\({e}∪X)

)
−r(M/e)+1 = rM (X)+rM

(
E(M)\X

)
−rM ({e})−

(
r(M)−

rM ({e})
)

+ 1 = λM (X).
So, we may assume that E(M) \T spans T . Since |T |+ 1 > λM (T ) = rM (T ) + 1,

T is dependent in M , and hence in the dual matroid M∗ the set T is not spanned by
E(M∗) \ T . We apply the previous argument to M∗. (Note that (M \ e)∗ = M∗/e
and λM∗ ≡ λM .)

Corollary 4.2. Let M be a matroid, and let T be a subset of E(M). Then there
exist disjoint subsets C,D of T such that λM/C\D(T \ (C ∪D)) = |T \ (C ∪D)| + 1,
and λM/C\D(X) = λM (X) for all X ⊆ E(M) \ T .

We aim to transform a partitioned matroid (M,P) to another partitioned matroid
(M#,P#), such that they have the same branch-width and P# is a titanic partition
with respect to λM# . To do so, we use an amalgam operation on matroids, described
in section 2.

Let (M,P) be a partitioned matroid. We may assume each part T of P satisfies
λM (T ) = |T | + 1 if |T | > 1, because otherwise we can contract or delete elements
in T while preserving bw(M,P) by Corollary 4.2. This means that M � T is a free
matroid. For each part T of (M,P), if |T | > 1, then we define a matroid UT (a titanic
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gadget of T ) as a rank-|T | uniform matroid on the ground set ET = E(UT ) such that
|ET | = 3|T | − 2, E(M) ∩ ET = T , and ET ∩ ET ′ = ∅ if T ′ �= T is a part of P and
|T ′| > 1. Since M � T = UT � T is a free matroid, an amalgam of M and UT exists by
Lemma 2.2.

Lemma 4.3. Let M be a matroid and T be a subset of E(M) such that λM (T ) =
|T | + 1. Let M ′ be an amalgam of M and UT . Then the following are true:

1. If T ⊆ X ⊆ E(M ′), then rM (X ∩ E(M)) = rM ′(X).
2. λM (X) = λM ′(X) for all X ⊆ E(M) \ T .
3. The set E(UT ) is titanic in the matroid M ′.

Proof. 1. Because M ′ � E(M) = M , we have rM (X ∩E(M)) = rM ′(X ∩E(M)) ≤
rM ′(X).

Since T is independent in UT , we can pick a maximally independent subset I of
X in M ′ such that T ⊆ I. Since M ′ � E(UT ) = UT , the set I ∩E(UT ) is independent
in UT , and therefore I ∩ E(UT ) = T . So, I ⊆ E(M). Therefore, rM (X ∩ E(M)) ≥
|I| = rM ′(X).

2. Let Y = E(M ′) \X. We note that E(UT ) is a subset of Y . By definition,

λM (X) = rM (X) + rM (Y ∩ E(M)) − r(M) + 1,

λM ′(X) = rM ′(X) + rM ′(Y ) − r(M ′) + 1.

Since M ′ � E(M) = M , we have rM (X) = rM ′(X). By 1, rM (Y ∩ E(M)) = rM ′(Y )
and r(M ′) = r(M). Thus λM (X) = λM ′(X).

3. We claim that if X is a subset of E(UT ) and |X| ≥ |T |, then λM ′(X) ≥
λM ′(E(UT )). Since UT is a uniform matroid of rank |T |, we have

rM ′(X) = |T | = rM ′(E(UT )),

rM ′(E(M ′) \X) ≥ rM ′(E(M ′) \ E(UT )).

Therefore, λM ′(X) ≥ λM ′(E(UT )).
Now suppose that X1, X2, X3 are pairwise disjoint subsets of E(UT ). Then

there is i ∈ {1, 2, 3} such that |Xi| ≥
⌈
|E(UT )|/3

⌉
= |T | and therefore λM ′(Xi) ≥

λM ′(E(UT )). Therefore, E(UT ) is titanic in M ′.
Using Corollary 4.2, we first obtain a minor M0 of M such that λM0

(T∩E(M0)) =
|T ∩ E(M0)| + 1 for all parts T ∈ P, and if a subset X of E(M) satisfies that
X ∩ T ∈ {∅, T} for all parts T ∈ P, then λM0(X ∩ E(M0)) = λM (X). Let P0

be the partition of E(M0) induced by P. Then we deduce from Corollary 4.2 that
the branch-width of (M,P) is equal to the branch-width of (M0,P0). However, the
branch-width of the matroid M0 may still be different from the branch-width of the
partitioned matroid (M0,P0).

In the following theorem, we will extend (M0,P0) by amalgamating uniform ma-
troids in the fashion of Lemma 4.3 so that the obtained partitioned matroid (M#,P#)
has the same branch-width as the matroid M# itself.

Theorem 4.4. Let (M0,P0) be a partitioned matroid, and let T1, T2, . . . , Tm be
the parts of P0 having at least two elements. Assume that λM0(Ti) = |Ti|+1 for every
i ∈ {1, 2, . . . ,m}. For all i = 1, 2, . . . ,m, let Mi be an amalgam of Mi−1 and UTi .
Then the branch-width of Mm is equal to the branch-width of the partitioned matroid
(M0,P0).

We call the resulting M# = Mm the normalized matroid of the partitioned ma-
troid (M0,P0).

Proof. Let Pi = (Pi−1 \ {Ti}) ∪ {E(UTi)}. By 2. of Lemma 4.3, the branch-
width of (Mi,Pi) is equal to that of (Mi−1,Pi−1), and therefore the branch-width
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of (Mm,Pm) is equal to the branch-width of (M0,P0). By 3. of Lemma 4.3, Pm is
a titanic partition. Let k be the branch-width of Mm. It is easy to see that the
branch-width of the uniform matroid UTi is |Ti| + 1 = λMm(E(UTi)). Since UTi is a
minor of Mm, the branch-width of Mm is at least |Ti| + 1 for all i, and therefore the
width of Pm is at most k. We conclude that the branch-width of (Mm,Pm) is at most
k by Lemma 3.4.

To finish the proof, we need to show that the branch-width of (Mm,Pm) is at
least k. Let (T, μ) be the branch-decomposition of (Mm,Pm) of width at most w.
From (T, μ), we would like to obtain a branch-decomposition (T ′, μ′) of Mm whose
width is at most w as follows. Let vi be the leaf of T corresponding to E(UTi

).
We prepare a rooted binary tree with a bijection from its leaves to E(UTi) and then
identify the root with vi. Let T ′ be the new tree obtained by the above process for
all i. A bijection μ′ from E(Mm) to leaves of T ′ is easily obtained from the above
process. Since λMm

(X) = |X|+1 ≤ λMm(E(UTi)) ≤ w for all X ⊆ E(UTi), the width
of (T ′, μ′) is at most w.

5. Branch-decompositions of represented partitioned matroids. We now
specialize the above ideas to the case of representable matroids. We aim to provide
an efficient algorithm for testing small branch-width on such partitioned matroids.
For the rest of our paper, a represented matroid is the vector matroid of a (given)
matrix over a fixed finite field. We also write an F-represented matroid to explicitly
refer to the field F. In other words, an F-represented matroid is a set of points (a
point configuration) in a (finite) projective geometry over F. To begin, we restate a
previous result of Hliněný.

Theorem 5.1 (see [13, Theorems 4.14 and 5.5]). Let k > 1 be a constant, and let
F be a fixed finite field. There is a parametrized algorithm that, for a given matroid M
represented by an r×n matrix over F for some r ≤ n, tests whether the branch-width
of M is at most k in time O(n3).

We remark that the algorithm for Theorem 5.1 in [13] is purely of theoretical
importance. First, it uses the result of Geelen et al. [8] stating that minor-minimal
matroids of branch-width larger than k have size at most (6k − 1)/5. Second, it
tests whether the input matroid contains such a minor-minimal matroid as a minor
by encoding the question in a monadic second-order logic formula on matroids and
using a generic algorithm to solve an MSOL formula for F-represented matroids of
branch-width at most k. Since our algorithm will use Theorem 5.1, it will be purely
theoretical and difficult to implement.

Not all matroids are representable over F. Particularly, in the construction of the
normalized matroid (Theorem 4.4) we apply amalgams with uniform matroids which
need not be F-representable. To achieve their representability, we extend the field F
in a standard algebraic way.

Remark 5.2. Let F be a fixed finite field with q elements and d be a fixed
positive integer. We assume that one can perform arithmetic operations over F in
time depending only on q. Then, one can construct by brute force an extension
(finite) field F′ = F(α) with qd elements by searching for a polynomial root α of
degree d over F. This can be done by searching through all polynomials in F[x] of
degree d for the irreducible ones.

Lemma 5.3. The n-element rank-r uniform matroid Ur,n is representable over a
(finite) field F if |F| ≥ n− 1.

Proof. Let |F| = q. It is trivial to represent U0,n, U1,n, Un−1,n, or Un,n over
every field. Furthermore, standard arguments of projective geometry show that a
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so-called normal rational curve in a projective geometry over F is a representation of
the uniform matroid Ur, q+1, for every 1 < r < q; see, for instance, [12, section 3].
Although it is not useful in our context, it is worth noting that the size bound q+1 is
almost optimal in most cases. Finally, if q + 1 > n, then we delete arbitrary q + 1−n
points from the representation to get Ur,n.

Recall the notion of a matroid amalgam from section 2 from the perspective of
represented matroids. We shall use the following proposition.

Proposition 5.4. Let M1,M2 be two matroids such that E(M1) ∩ E(M2) = T
and M1 � T = M2 � T . If both M1,M2 are F-represented, and the matroid M1 � T has
a unique F-representation up to linear transformations, then there exists an amalgam
of M1 and M2 which is also F-represented.

Proof. We denote by [A1 |AT ] the matrix over F representing M1, where the
columns of AT represent the set T . Analogously we denote by [A2 |A′

T ] the matrix
representing M2. Since M1 � T = M2 � T has a unique F-representation, there is
a linear transformation carrying A′

T onto AT . This transformation takes a whole
[A2 |A′

T ] to an equivalent matrix [A′
2 |AT ] representing the same matroid M2. It

is now trivial to verify that the matroid M which is F-represented by the composed
matrix [A1 |AT |A′

2] is an amalgam of M1 and M2.

We remark that representable matroids typically do have inequivalent vector rep-
resentations, but we are using Proposition 5.4 only in the case when M1 � T is a free
matroid which clearly has a unique F-representation for every field F.

We now outline a simple fixed-parameter tractable algorithm for testing branch-
width ≤ k on F-represented partitioned matroids.

Algorithm 5.5. Testing branch-width of a represented partitioned matroid.

Parameters: A finite field F, and a positive integer k.
Input: A rank-r matrix A ∈ Fr×n and a partition P of the columns of A. (Assume

n ≥ 2.)
Output: For the vector matroid M = M(A) on the columns of A partitioned by P, a

correct answer whether the branch-width of (M,P) is at most k.

1. First, we extend F to a nearest field F′ such that |F′| ≥ 3k− 6 (Remark 5.2).
2. If the width of the partition P in given (M,P) is more than k, then we answer

NO.
3. Otherwise, we directly construct the normalized matroid M# (Theorem 4.4),

together with its vector representation over F′ (Lemma 5.3 and Proposi-
tion 5.4).

4. Finally, we use Theorem 5.1 to test whether the branch-width of M# is at
most k.

Hence, we can conclude with the following theorem.

Theorem 5.6. Let k > 1 be a constant, and let F be a fixed finite field. There is
a parametrized algorithm that, for a partitioned matroid (M,P) represented over F,
tests in time O(|E(M)|3) whether the branch-width of (M,P) is at most k.

Proof. We refer to Algorithm 5.5. Denote n = |E(M)|. In the first step we find
the extension field F′ which takes only constant time by Remark 5.2. Since F′ ⊇ F,
we do not need to touch the input vector representation of M . Step 2. of Algorithm
5.5 is trivial.

The technical part comes in step 3. of Algorithm 5.5. For each part X ∈ P of more
than one element, we compute the intersection of the spans of X and of E(M) \X,
called the guts of the separation (X,E(M) \ X), in the representation of M . The
reader should understand that we deal with represented matroids, that means we
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Fig. 3. Splitting x.

compute with actual vectors and subspaces in a projective geometry over F′. If the
dimension λM (X)−1 of these guts was at least k, then each branch-decomposition of
(M,P) should have width at least λM (X) > k, and we have answered NO in step 2. of
Algorithm 5.5 in such a case. Therefore, the dimension of the guts of (X,E(M) \X)
is bounded by a constant k, and a set T of its independent generator vectors can be
easily computed in time O(n2) (see, e.g., [13, Algorithm 4.4]), per each part of P.

In order to get the situation anticipated in Theorem 4.4—each part representing
a free matroid—we replace the vectors of each nonsingleton part X ∈ P by the re-
spective vectors T computed in the previous paragraph. Let the resulting represented
partitioned matroid be denoted by (M0,P0), and note that bw(M0,P0) = bw(M,P).
For each T ∈ P0 we construct an F′-representation of the titanic gadget (uniform
matroid) UT from section 4 using Lemma 5.3, and then construct an amalgam of M0

with UT according to Proposition 5.4. Since UT is of bounded size, this last step can
be computed in time proportional to the vector length O(n), per each part of P0.

After processing all O(n) nonsingleton parts in P0 by the previous procedure,
we get a vector F′-representation of the normalized matroid M# for (M0,P0). By
Theorem 4.4, bw(M#) = bw(M0,P0) = bw(M,P). So, we call the algorithm of
Theorem 5.1 to determine whether the branch-width of M# (as well as the branch-
width of (M,P)) is at most k. This takes only O(n3) time since both k, F′ are of
bounded size here.

We are now able to test branch-width of partitioned matroids. We show how this
result can be extended to finding an appropriate branch-decomposition.

Theorem 5.7. Let K be a class of matroids, and let k be an integer. If there is
an f(|E(M)|, k)-time algorithm to decide whether a partitioned matroid (M,P) has
branch-width at most k for every pair of a matroid M ∈ K and a partition P of E(M),
then a branch-decomposition of the partitioned matroid (M,P) of width at most k, if
it exists, can be found in time O

(
|P|3 · f(|E(M)|, k)

)
.

The idea of the proof is due to Jim Geelen, published by Oum and Seymour in
[20]. Details of the algorithm follow. Clearly, we may assume that the branch-width
of the partitioned matroid (M,P) in question is at most k, since otherwise there is
nothing to compute. A splitting of a leaf x of a subcubic tree is an operation that
creates two new leaves and makes them adjacent to x (see Figure 3).

Algorithm 5.8. Computing a branch-decomposition of a partitioned matroid.
Oracle: A subroutine for testing the branch-width of a partitioned matroid (M,P),

where M belongs to a given class K, and P is a partition of E(M).
Input: A partitioned matroid (M,P) of branch-width at most k, where M ∈ K.
Output: A branch-decomposition of (M,P) of width at most k.

1. If |P| ≤ 2, then it is trivial to output a branch-decomposition.
2. We find a pair X,Y of disjoint parts of P such that a partitioned matroid

(M, (P \ {X,Y }) ∪ {X ∪ Y }) has branch-width at most k. Let P ′ = (P \
{X,Y }) ∪ {X ∪ Y }.

3. Let (T ′, μ′) be the branch-decomposition of (M,P ′) of width at most k ob-
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tained by calling this algorithm recursively.
4. Let T be a tree obtained from T ′ by splitting the leaf μ′(X∪Y ) into two leaves

which we denote by μ(X) and μ(Y ). Let μ(Z) = μ′(Z) for all Z ∈ P\{X,Y }.
We output (T, μ) as the resulting branch-decomposition of (M,P ) of width
at most k.

Proof of Theorem 5.7. We start by estimating the running time of the algorithm.
At each level of recursion, we call our oracle (the decision algorithm) at most

(|P|
2

)
=

O(|P|2) times. The depth of recursion is |P|− 1, and therefore the number of calls to
the decision algorithm is at most O(|P|3). Thus, the running time of the algorithm
is O

(
|P|3 · f(|E(M)|, k)

)
.

It remains to show correctness of the algorithm. It is obvious that in every
subcubic tree with at least three leaves, there are two leaves that have a common
neighbor. Suppose that (T, μ) is a branch-decomposition of (M,P) of width at most
k. Then there are two leaves μ(X) and μ(Y ) having a common neighbor z in T . It
is easy to see that if we remove μ(X) and μ(Y ) from T and map X ∪ Y to z by μ,
then (T, μ) is a branch-decomposition of (M,P ′) of width at most k. Therefore, the
branch-width of (M,P ′) is at most k.

Conversely, suppose that (T ′, μ′) is the branch-decomposition of (M,P ′). Since
(M,P) has a branch-width of at most k, we know that λM (X) ≤ k and λM (Y ) ≤ k.
Thus (T, μ) is a branch-decomposition of (M,P) of width at most k.

Corollary 5.9. For a constant k and a fixed finite field F, we can find a
branch-decomposition of a given F-represented matroid M of branch-width at most k,
if it exists, in time O(|E(M)|6).

Proof. Let P = {{x} : x ∈ E(M)}. Then the branch-decomposition of M is one-
to-one correspondent to the branch-decomposition of a partitioned matroid (M,P).
By Theorem 5.6, the problem of deciding whether branch-width is at most k can be
done in time O(|E(M)|3), and therefore we can construct the branch-decomposition
of width at most k in time O(|P|3 · |E(M)|3) = O(|E(M)|6) by Theorem 5.7.

Remark 5.10. One can actually improve the bound in Theorem 5.7 to O
(
|P|2 ·

f(|E(M)|, k)
)

time. The basic idea is the following: At the first level of recursion we
find not only one pair of parts but a maximal set of disjoint pairs of parts from P
that can be joined (pairwise) while keeping the branch-width at most k. This again
requires O(|P|2) calls to the decision algorithm. At the deeper levels of recursion
we then use the same approach but process only such pairs of parts that contain
one joined at the previous level. An amortized complexity analysis shows that only
additional O(|P|2) calls to the decision algorithm are necessary at all subsequent levels
of recursion together. Detailed arguments of this approach can be found further in
Theorem 6.7, part (III) of the proof.

6. Faster algorithm for branch-decompositions. Even with Remark 5.10
in account, the approach of section 5 results in an O(n5) parametrized algorithm for
constructing a branch-decomposition of an n-element matroid represented over a fixed
finite field. That is still far from the cubic running time of the decision algorithm in
Theorem 5.1. Although not straightforwardly, we are able to improve the running
time of our constructive algorithm to asymptotically match cubic time of that and
[5].

It is the purpose of this section to present a detailed analysis of such a faster
implementation of Algorithm 5.8 using Remark 5.10. For that we have to dive into
fine details of the ideas and algorithms in [13]. To be consistent, we also adopt the
writing style of [13] for this section and recall a few necessary technical definitions
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here. More technical details are given along with a formal setting of Algorithm 6.6.
We first give a brief informal outline of our faster algorithm, which seems necessary
since Algorithm 6.6 itself is quite long and complex. We also collect formal state-
ments of useful subroutines from [13], and then we conclude with the main algorithm
(Algorithm 6.6) and a proof of its correctness.

One key point in the approach of [13, 14] is that a matroid M , which is F-
represented by a matrix A, is equivalent to a projective point configuration over F,
and therefore we can speak about M in schematic geometric terms. Briefly speaking,
a parse tree [14] of an F-represented matroid M is a rooted tree T , with at most two
children per node, such that the leaves of T hold nonloop elements of M represented
by points of a projective geometry over F, or loops of M represented by the empty
set. The internal nodes of T , on the other hand, hold suitable “composition operators
over F.”

Such a composition operator � is a configuration in the projective geometry over
F such that � has three subspaces (possibly empty) distinguished as its boundaries;
two of which are used to “glue” the matroid elements represented in the left and right
subtrees, respectively, together. The third one, upper boundary, is then used to “glue”
this node further up in the parse tree T . Our “glue” operation, called the boundary
sum by Hliněný [14], is analogous to the amalgam of matroids in Proposition 5.4.
The ranks of adjacent boundaries of two composition operators in T must be equal
for “gluing.” A parse tree T is ≤ t-boundaried if all composition operators in T have
boundaries of rank at most t. Such a parse tree actually gives a branch-decomposition
of width at most t + 1 and vice versa, by [14, Theorem 3.8]. See [14] for additional
details.

We will use the following algorithm shown by Hliněný [13].

Algorithm 6.1 (see [13, Algorithm 4.1]). Computing a parse tree of a repre-
sented matroid.

Parameters: A finite field F, and a positive integer k.
Input: A rank-r matrix A ∈ Fr×n representing a matroid M over F. (Assume n ≥ 2.)
Output: Computed in time O(n3); either a ≤3k-boundaried parse tree T of the ma-

troid M , or a proof that the branch-width of M is more than k + 1.

The basic idea of Algorithm 6.1 is as follows: We start with a basis Ir of the
input matrix A = [Ir |A′] ∈ Fr×n, and assign an arbitrary parse tree T to Ir. Then
we are adding, one by one, the remaining elements of A′ arbitrarily to T . Whenever
the largest boundary rank (the width) of T exceeds certain constant threshold, say
10k, we “compress” T into a new parse tree T ′ of width at most 3k again. However, if
the compression step fails, then we have a certificate that the branch-width of M(A)
is more than k + 1. The compression routine, [13, Algorithm 4.1, step 3] and [13,
Lemma 4.13], is crucial also in our new algorithm, and thus we restate it explicitly
here.

Algorithm 6.2 (see [13, Algorithm 4.1]). “Compressing” a parse tree of bounded
width.

Parameters: A finite field F, and a positive integer k.
Input: A ≤ ck-boundaried parse tree T (of an n-element matroid M represented

over F), where c > 3 is a fixed constant, say c = 10.
Output: Computed in time O(n2); either a ≤3k-boundaried parse tree T ′ of the same

matroid M , or a proof that the branch-width of M is more than k + 1.

Outline of the faster algorithm. Before giving full details of our new Algorithm 6.6
for computing a branch-decomposition of a represented partitioned matroid, we sketch
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its main ideas with respect to the previous Algorithms 6.2 and 6.1.

Parameters: A finite field F, and a positive integer k.
Input: A rank-r matrix A ∈ Fr×n and a partition P of the columns of A. (Assume

n ≥ 2.)
Initial phase. Let M = M(A) be the vector matroid on the columns of A. We run

Algorithm 5.5 to obtain the represented normalized matroid M# for our M
and P, and to decide whether bw(M#) ≤ k. In the positive case, we also call
Algorithm 6.1 to obtain a ≤3(k− 1)-boundaried parse tree T for the matroid
M#.

Construction phase. We construct a branch-decomposition of (M,P) as a rooted for-
est D which is initialized to the set of disconnected nodes P1 := P. A rooted
forest is a forest in which every connected component has a specified vertex
called a root.
In the first iteration, we find an inclusion-wise maximal collection of pairwise
disjoint pairs {Xi, Yi}, i = 1, 2, . . . , c, of parts of P1 such that the branch-
width of (M,P ′

1) is at most k, where P ′
1 is obtained from P1 via replacing

parts Xi, Yi with Xi ∪ Yi for i = 1, 2, . . . , c. The meaning is that these pairs
{Xi, Yi} simultaneously correspond to pairs of leaves of distance two in some
branch-decomposition of width ≤ k. We let Q1 = {Xi ∪ Yi : i = 1, 2, . . . , c},
and add the new nodes from Q1 to our forest D connected to the appropriate
Xi, Yi’s. Then we set P1 := P ′

1.
In each of the subsequent iterations, we again find an inclusion-wise maximal
collection of pairwise disjoint pairs {Xi, Yi}, i = 1, 2, . . . , c, of parts of P1 such
that the branch-width of (M,P ′

1) is at most k, but now we restrict Yi ∈ Q1

(whereas Xi ∈ P1). Then we continue analogously to the first iteration, until
D becomes a tree.

Output: Either a branch-decomposition D of (M,P) of width at most k, or the answer
NO if bw(M,P) > k.

There are two important points to notice in the above outline, which make the
whole algorithm run in time O(n3). First, we only consider altogether O(n2) pairs
{Xi, Yi} of parts for possible merging, throughout all iterations of the algorithm. A
formal proof of this fact in included as part (III) of the proof of Theorem 6.7. Second,
to be able to run a quick test whether the branch-width of (M,P ′

1) exceeds k or not,
we need to maintain a certain “working” parse tree T1 of bounded width. Then, as
noted already after Theorem 5.1, such a test can be done by looking for the excluded
minors for branch-width at most k because each excluded minor has size at most
(6k − 1)/5, shown by Geelen et al. [8].

Theorem 6.3 (see [14, Theorem 6.1] and [13, Corollary 5.4]). Let t > 1 be a
constant, and let F be a fixed finite field. There is a parametrized algorithm that, for
every k ≤ t and for a given ≤ t-boundaried parse tree T of an n-element matroid M ,
decides whether the branch-width of M is at most k in time O(n).

We have skipped, for simplicity, an explicit reference to the “working” parse tree
T1 in the above outline; however, one can roughly say that T1 is maintained as a
parse tree of the normalization of the current partitioned matroid (M,P1). This will
be precise in Algorithm 6.6. It is essential that we keep the width of T1 bounded
throughout the computation, for which we use to call Algorithm 6.2 after each of the
O(n) major updates to T1.

Therefore, to quickly test whether merging a pair of parts Xi, Yi ∈ P1 increases
the branch-width of (M,P1) above k or not, we temporarily modify the parse tree T1
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each time by replacing W = Xi ∪ Yi with the titanic gadget (amalgamated according
to section 4). As this (Algorithm 6.4) does not increase the width of T1 much, we
then solve the task in time O(n) using Theorem 6.3.

To make a precise statement of this procedure, we introduce an additional tech-
nical definition inspired by section 4: Let M be a matroid and X ⊆ E(M). Let
F = E(M) \X and Y be disjoint from E(M). Assume M ′ is a matroid on E(M)∪Y
such that M ′ � F = M � F , rM ′(X ∪ Y ) = rM (X) (i.e., Y is spanned by X), and
λM ′\X(Y ) = |Y | + 1 = λM (X) > 1. If a matroid N is an amalgam of M ′ \ X
and the titanic gadget UY , then we say that N is obtained from M by a (titanic)
normalization of the set X. If, on the other hand, λM (X) = 1, then a normal-
ization of the set X in M results in M \ X. The point is that, by Lemmas 3.3
and 4.3, part 3., the branch-width of N equals the branch-width of (M,PX), where
PX =

{
{X}

}
∪
{
{y} : y ∈ E(M) \X

}
.

Algorithm 6.4. Computing a titanic normalization of a point set on the parse
tree.

Parameters: A finite field F, and an integer k ≥ 1. (We may assume that |F| ≥ 3k−6
as in Remark 5.2.)

Input: A ≤ (3k − 1)-boundaried parse tree T1 representing a matroid M1 with n ele-
ments, and a set W ⊆ E(M1) such that λM1

(W ) = � ≤ k.
Output: A ≤ (3k + � − 2)-boundaried parse tree T2 of an F-represented matroid M2

such that M2 can be obtained from M1 by the normalization of W .

Algorithm 6.4 is an immediate extension of [13, Algorithm 4.9] for computing
λM1(W ). We describe it in terms of a projective geometry and the point configuration
representing a matroid M1 via the parse tree T1. If � = 1, then we return T1 without
W , immediately.

At the beginning we make T2 a copy of T1. The idea is to “enlarge” all of the
composition operators in T2 to fully contain the guts Γ (a projective subspace of
rank �− 1 with a basis Y ) of the separation

(
W, E(M1) \W

)
, and then to “glue” or

amalgamate a decomposition of the titanic gadget UY � U�−1,3�−5 to the root of T2

so that it matches Y in Γ. For that we apply leaf-to-root dynamic programming on
T2 with constant-time operations at each node.

At a node x ∈ V (T2), we compute the subspace Σx of Γ spanned by the elements
of W held in the leaves below x. Knowing Σx′ and Σx′′ for the children x′, x′′ of
x in T2, it is a constant-time manipulation to determine Σx using the composition
operator � at x. Notice that as our algorithm is set up, Σx is spanned by �. If the
upper boundary of � does not fully contain Σx, we enlarge it accordingly and also
freely extend the matching boundary at the parent node of x. Note that Σr = Γ will
become the upper boundary of the root node r.

After finishing that computation, we take an arbitrary parse tree T3 of the titanic
gadget (i.e., uniform matroid) UY � U�−1,3�−5, and add to T2 a new root node r′

adjacent to the former root r of T2 and to the root of T3. The composition operator
at r′ “glues” UY directly to Σr. Finally, we strip from T2 all leaves holding the points
of W . This is trivial since our definition of a parse tree allows nodes with only one
descendant.

Since we use only constant-time operations at each node of T2, we conclude with
the following lemma.

Lemma 6.5. Algorithm 6.4 computes correctly in time O(n).

We are now ready to restate the above algorithmic outline in a formal setting.
Our notation of variables in Algorithm 6.6 essentially follows the outline, but we need
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X1 X2

W = X1 ∪ X2

M

M1

M2

(T1)

(T2)

titanic gadgets

E(UY )

τ

P

P1M1

P1 ∪ {W} \ {X1, X2}

titanic gadget (UY )
P2

bw(M2) = bw(M2,P2) = bw(M1,P1 ∪ {W} \ {X1, X2})

Fig. 4. An illustration of Algorithm 6.6.

a few more of them. For instance, Q2 at each round holds the set of all pairs of parts
among which we are looking for the admissible ones. See also an informal hint in
Figure 4.

Algorithm 6.6. Computing a branch-decomposition of a represented parti-
tioned matroid.

Parameters: A finite field F, and a positive integer k.
Input: A rank-r matrix A ∈ Fr×n and a partition P of the columns of A. (Assume

n ≥ 2.)
Output: For the vector matroid M = M(A) on the columns of A, either a branch-

decomposition of the partitioned matroid (M,P) of width at most k, or the
answer NO if bw(M,P) > k.

1. Using brute force, we extend the field F to a (nearest) finite field F′ such that
|F′| ≥ 3k − 6 (Remark 5.2 and Lemma 5.3).

2. We check whether bw(M,P) ≤ k, using Algorithm 5.5. If bw(M,P) > k,
then we answer NO. Otherwise we keep the normalized matroid M# and its
F′-representation A# obtained at this step. We denote by P1 the (titanic)
partition of E(M#) corresponding to P, and by τ(X) ∈ P for X ∈ P1 the
corresponding parts.

3. Calling Algorithm 6.1, we compute a ≤3(k − 1)-boundaried parse tree T for
the matroid M# which is F′-represented by A# (regardless of P1).

4. We initially set T1 := T , Q1 := ∅, Q2 :=
{
{X1, X2} : X1 �= X2, X1, X2 ∈ P1

}
,

and create a new rooted forest D consisting so far of the set of disconnected
nodes P1.
Let M1 (M2) denote the matroid represented by T1 (T2, respectively) at each
step. Then we repeat the following steps (a), (b), until P1 contains at most
two parts:
(a) While there is {X1, X2} ∈ Q2 such that X1, X2 ∈ P1, we perform the

following steps:
i. Let Q2 := Q2 \

{
{X1, X2}

}
. Calling [13, Algorithm 4.9] in linear

time, we compute connectivity value � = λM1
(X1 ∪ X2) over the

parse tree T1. If � > k, then we continue this cycle again from (a).
ii. We call Algorithm 6.4 on T1 and W = X1∪X2 to compute a ≤ (3k+

�− 2)-boundaried parse tree T2 of a matroid M2 which is obtained
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by a titanic normalization of the part W .
By Lemmas 3.4 and 4.3 we have bw

(
M1, P1 ∪ {W} \ {X1, X2}

)
=

bw(M2).
iii. We check whether branch-width bw(M2) ≤ k by applying Theo-

rem 6.3. If bw(M2) > k, then we continue this cycle again from (a).
iv. If bw

(
M1, P1 ∪ {W} \ {X1, X2}

)
= bw(M2) ≤ k, then we add

a new node Z = E(UY ) (UY given by the normalization of W in
Algorithm 6.4) adjacent to X1 and X2 in the rooted forest D, and
make Z the root for its component. We update P1 := P2 = P1 ∪
{Z} \ {X1, X2}, and Q1 := Q1 ∪ {Z}.

v. Last, by calling Algorithm 6.2 on T2, we compute in a new ≤3(k−1)-
boundaried parse tree T3 for the matroid M2, and set T1 := T3.

(b) When the “while” cycle (4.a) is finished, we set Q2 :=
{
{X1, X2} : X1 �=

X2, X1 ∈ P1, X2 ∈ Q1

}
and Q1 := ∅, and continue from (4.a).

5. Finally, if |P1| = 2, then we connect by an edge in D the two nodes X1, X2 ∈
P1. We output (D, τ) as the branch-decomposition of (M,P).

Theorem 6.7. Let k be a fixed integer and F be a fixed finite field. We assume
that a vector matroid M = M(A) is given as an input together with a partition P
of E(M), where n = |E(M)| and |P| ≥ 2. Algorithm 6.6 outputs in time O(n3)
(parametrized by k and F) a branch-decomposition of the partitioned matroid (M,P)
of width at most k, or confirms that bw(M,P) > k.

Proof. We refer to the above outline. Our proof of the theorem constitutes the
following three claims holding true if bw(M,P) ≤ k.

(I) The computation of Algorithm 6.6 maintains invariants, with respect to the
actual matroid M2 of T2, the rooted forest D, and the current value P2 of the
partition variable P1 after each call to step (4.a.iv), such that

• P2 is the set of roots of D, and a titanic partition of M2 such that
bw(M2,P2) = bw(M2) ≤ k,

• λM

(
τD(S)

)
= λP2

M2
(S) for each S ⊆ P2, where τD(S) is a shortcut for the

union of τ(X) with X running over all leaves of the connected components
of D whose root is in S (see Algorithm 6.6, step 2. for τ).

(II) Each iteration of the main cycle in Algorithm 6.6 (4.) succeeds to step (4.a.iv)
at least once.

(III) The main cycle in Algorithm 6.6 step 4. is repeated O(n) times. Moreover, the
total number of calls to the steps in (4.a) is O(n2) for steps i, ii, iii, and O(n)
for steps iv, v.

Having all of these facts at hand, it is now easy to finish the proof. It is immediate
from (I) that the resulting (D, τ) is a branch-decomposition of width at most k of
(M,P). Note that all parse trees involved in the algorithm have constant width less
than 4k (see in steps (4.a.ii,v)). The starting steps (1.), (2.), (3.) of the algorithm are
already known to run in time O(n3) (Theorem 5.6 and Algorithm 6.1), and the partic-
ular steps in (4.a) need time (III) O(n2) ·O(n)+O(n) ·O(n2) = O(n3) by Lemma 6.5
and Algorithm 6.2. The size of the matroid M1 clearly stays linear in n after O(n)
constant-size updates. Hence, our Algorithm 6.6 runs correctly in parametrized time
O(n3), provided that (I)–(III) hold true.

The proof of (I) essentially extends the arguments of Theorem 5.7. Initially, with
M1 and P1 in place of M2, P2, all the claims of (I) obviously hold true, analogously to
Theorem 5.6. Each call to step (4.a.iv) then adds a new titanic set E(UY ) to P2 (see
Lemma 4.3 (3)), and hence the partition P2 remains titanic for M2 and, subsequently,
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bw(M2,P2) = bw
(
M1, P1∪{W}\{X1, X2}

)
= bw(M2) ≤ k follows from Lemma 3.4.

The most complex claim of (I) is the last assertion, that λM (τD(S)) = λP2

M2
(S) for

each S ⊆ P2. By induction, we may assume that λM (τD(S1)) = λP1

M1
(S1) holds for

all S1 ⊆ P1 just before this call to (4.a.iv). Now, by Algorithm 6.4, the titanic gadget
E(UY ) in the representation spans exactly the same subspace because it is the guts
of the separation (X1 ∪ X2, E(M1) \ (X1 ∪ X2)) in M1. Therefore, for all S1 ⊆ P1

such that |S1 ∩{X1, X2}| �= 1, the corresponding S ⊆ P2 satisfies λP2

M2
(S) = λP1

M1
(S1).

This proves the assertion.

To prove (II), we use that bw(M1,P1) ≤ k at each iteration of the main cycle (4.),
which directly follows from above bw(M2,P2) ≤ k. Then, by the same arguments as
in Theorem 5.7, there is a pair {X1, X2} ⊂ P1 for which (4.a) would succeed up to step
(4.a.iv), which happens if bw

(
M1, P1∪{X1∪X2}\{X1, X2}

)
≤ k. We call such a pair

X1, X2 admissible. It remains to argue that all admissible pairs {X1, X2} ⊂ P1 belong
also to Q2, which is trivial only during the first round of (4.). For a contradiction,
assume that {X1, X2} �∈ Q2 at the least round i > 1. Consider now the values of
our variables P1,Q1,Q2 at the previous round i − 1: It was {X1, X2} ∩ Q1 = ∅ by
the assignment to Q2 in (4.b), and so {X1, X2} ⊂ P1 is already there. That means
the pair X1, X2 has been admissible since round i − 1 started, but it has not been
processed only due to {X1, X2} �∈ Q2 at round i−1, which contradicts our least choice
of i.

Concerning (III), each iteration of (4.) adds at least one new node to the de-
composition D by (II), and hence no more than O(n) iterations occur. The same
argument also bounds the total number of calls to the crucial steps (4.a.iv–v). The
situation with steps i, ii, iii is more versatile, and we bound the total number of calls
to them from above by the total number of iterations of the cycle in (4.a): During
the initial round of the main cycle (4.), there are clearly at most |Q2| = O(n2) itera-
tions of (4.a). For each subsequent round i > 1, the number of iterations is at most
|Q2| ≤ qi · |P1|, where qi = |Q1| at the end of the previous run i − 1. Hence, the
total number of iterations of the cycle in (4.a) is at most O(n2)+O(n) ·

∑r
i=2 qi since

|P1| = O(n) always. It remains to argue that
∑r

i=2 qi = O(n), which follows from
the fact that each element ever assigned to Q1 in step (4.a.iv) appears as an internal
node of the decomposition D, and |V (D)| = O(n).

This also finishes the whole proof of Theorem 6.7.

7. Finding a rank-decomposition of a graph. In this last section, we present
a fixed-parameter tractable algorithm to find a rank-decomposition of width at most k
or confirm that the input graph has rank-width larger than k. It is a direct translation
of the algorithm of Theorem 6.7. Let us first review necessary definitions from [19]
and [17]. We assume that all graphs in this section have no loops and no parallel
edges.

We have seen in section 2 that every symmetric submodular function can be used
to define branch-width. We define a symmetric submodular function on a graph,
called the cut-rank function of a graph. For an X × Y matrix R and A ⊆ X, B ⊆ Y ,
let R[A,B] be the A× B submatrix of R. For a graph G = (V,E), let A(G) be the
adjacency matrix of G, that is a V ×V matrix over the binary field GF(2) such that an
entry is 1 if and only if vertices corresponding to the column and the row are adjacent
in G. The cut-rank function ρG(X) of a graph G = (V,E) is defined as the rank of the
matrix A(G)[X,V \X] for each subset X of V . Then ρG is symmetric and submodular;
see [19]. Rank-decomposition and rank-width of a graph G is branch-decomposition
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V

V ∗

Fig. 5. Graph G and the associated bipartite graph bip(G) with its canonical partition.

and branch-width of the cut-rank function ρG of the graph G, respectively. So, if the
graph has at least two vertices, then the rank-width is at most k if and only if there
is a rank-decomposition of width at most k.

Now let us recall why bipartite graphs are essentially binary matroids. Oum [17]
showed that the connectivity function of a binary matroid is exactly one more than
the cut-rank function of its fundamental graph. The fundamental graph of a binary
matroid M on E = E(M), with respect to a basis B, is a bipartite graph on E such
that two vertices in E are adjacent if and only if one vertex v is in B, another vertex
w is not in B, and (B \ {v}) ∪ {w} is independent in M . Given a bipartite graph G,
we can easily construct a binary matroid having G as a fundamental graph; if (C,D)
is a bipartition of V (G), then take the matrix

⎛
⎜⎝

C D

C

1 0
. . .

0 1

A(G)[C,D]
C ×D submatrix of

the adjacency matrix

⎞
⎟⎠

as the representation of a binary matroid. Thus, the column indices are elements of
the binary matroid, and a set of columns is independent in the matroid if and only
if its vectors are linearly independent. After all, finding the rank-decomposition of
a bipartite graph is equivalent to finding the branch-decomposition of the associated
binary matroid, that is essentially Theorem 6.7.

To find a rank-decomposition of nonbipartite graphs, we transform the graph into
a canonical bipartite graph. For a finite set V , let V ∗ be a disjoint copy of V , that is,
formally speaking, V ∗ = {v∗ : v ∈ V } such that v∗ �= w for all w ∈ V and v∗ �= w∗ for
all w ∈ V \{v}. For a subset X of V , let X∗ = {v∗ : v ∈ X}. For a graph G = (V,E),
let bip(G) be the bipartite graph on V ∪ V ∗ such that vw∗ are adjacent in bip(G) if
and only if v and w are adjacent in G (see Figure 5). Let Pv = {v, v∗} for each v ∈ V .
Then Π(G) = {Pv : v ∈ V } is a canonical partition of V (bip(G)).

Lemma 7.1. For every subset X of V (G), 2ρG(X) = ρbip(G)(X ∪X∗).
Proof. This is clear from the construction of bip(G). Let Y = V (G) \ X. Let

N = A(G)[X,Y ]. Since

ρbip(G)(X ∪X∗) = rank

( Y Y ∗

X 0 N
X∗ N t 0

)
,

we conclude that ρbip(G)(X ∪X∗) = 2 rankN = 2ρG(X).

Corollary 7.2. Let p : V (G) → Π(G) be the bijective function such that

p(x) = Px. If (T, μ) is a branch-decomposition of ρ
Π(G)
bip(G) of width k, then (T, μ ◦ p)
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is a branch-decomposition of ρG of width k/2. Conversely, if (T, μ′) is a branch-

decomposition of ρG of width k, then (T, μ′ ◦p−1) is a branch-decomposition of ρ
Π(G)
bip(G)

of width 2k. Therefore, the branch-width of ρG is equal to half of the branch-width of

ρ
Π(G)
bip(G).

Let M = mat(G) be the binary matroid on V ∪ V ∗ represented by the matrix

( V V ∗

V
Identity
matrix

A(G)
)
.

Since the bipartite graph bip(G) is a fundamental graph of M , we have λM (X) =
ρbip(G)(X) + 1 for all X ⊆ V ∪ V ∗ (see Oum [17]) and therefore (T, μ) is a branch-
decomposition of a partitioned matroid (M,Π(G)) of width k + 1 if and only if it is

a branch-decomposition of ρ
Π(G)
bip(G) of width k. Corollary 7.2 implies that a branch-

decomposition of ρ
Π(G)
bip(G) of width k is equivalent to that of ρG of width k/2. So, we

can deduce the following theorem from Theorem 6.7.

Theorem 7.3. Let k be a constant. Let n ≥ 2. For an n-vertex graph G, we can
output the rank-decomposition of width at most k or confirm that the rank-width of G
is larger than k in time O(n3).

Proof. We apply Theorem 6.7 to find a branch-decomposition of a partitioned
matroid (mat(G),Π(G)) of width at most 2k + 1. If such a branch-decomposition
is found, then one can canonically transform it into a rank-decomposition of G of
width at most k by Corollary 7.2. If there is no such branch-decomposition, then the
rank-width of G is larger than k.
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QUERY-EFFICIENT ALGORITHMS FOR POLYNOMIAL
INTERPOLATION OVER COMPOSITES∗

PARIKSHIT GOPALAN†

Abstract. The problem of polynomial interpolation is to reconstruct a polynomial based on its
valuations on a set of inputs I. We consider the problem over Zm when m is composite. We ask
the following question: Given I ⊆ Zm, how many evaluations of a polynomial at points in I are
required to compute its value at every point in I? Surprisingly for composite m, this number can
vary exponentially between log |I| and |I|, in contrast to the prime case where |I| evaluations are
necessary. While we show this minimization problem to be NP-hard, we give an efficient algorithm of
query complexity within a factor t of the optimum, where t is the number of prime factors of m. We
use our interpolation algorithm to design algorithms for zero testing and distributional learning of
polynomials over Zm. In some cases, we get an exponential improvement over known algorithms in
query complexity and running time. Our main technical contribution is the notion of an interpolating
set for I which is a subset S of I such that a polynomial which is 0 over S must be 0 at every point in I.
Any interpolation algorithm needs to query an interpolating set for I. Our query-efficient algorithms
are obtained by constructing interpolating sets whose size is close to optimal.

Key words. polynomials, composites, interpolation
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1. Introduction. The problem of polynomial interpolation is to reconstruct a
polynomial from its evaluations. This is a fundamental algorithmic question in algebra
with numerous applications. The problem is especially well studied when the polyno-
mial is over a field such as R or Zp dating back to Newton and Lagrange. Relatively
less is known about interpolation over rings which contain zero divisors, in particular
over Zm with m composite. The zero-testing problem is a special case of the inter-
polation problem where we want to know if the polynomial is 0 everywhere. In this
paper we study the problem of learning a univariate polynomial in Zm[X] based on
its evaluations at a set I ⊆ Zm. We ask the following question: Given I ⊆ Zm, how
many evaluations of a polynomial at points in I are required to compute its value at
every point in I? Throughout, we will consider a polynomial as a function rather than
a formal sum, and our aim will be to correctly predict its values at every point in I.

Polynomials and specifically the problem of interpolation over Zm are well studied
in mathematics [18, 31]. Dueball (see [31]) shows that when I = Zm, there is a subset
S whose size can lie between logm and m such that the evaluations at S are sufficient
for interpolation. However, this result leaves open the question of whether a similar
statement holds for subsets of Zm. Polynomials over Zm have many applications in
computer science. They are used in algorithms for primality testing [1, 2], in the
construction of explicit Ramsey graphs and extremal set systems [21, 24], and in
circuit lower bounds [7, 36]. As we will elaborate shortly, many of these applications
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implicitly address questions related to polynomial interpolation. We hope that a better
understanding of the interpolation problem will throw new light on these problems.

The polynomial interpolation problem over Zm is very different from Zp, since it
is no longer true that a degree d polynomial has at most d zeroes. For instance Xk ≡
0 mod 2k has 2k−1 roots. This implies that even two polynomials of small degree can
agree on a large fraction of points in Zm. Hence, unlike over Zp one cannot interpolate
even low degree polynomials from their evaluations at a few arbitrarily chosen points.
On the other hand, not every function f : Zm → Zm is a polynomial, since functions
defined by polynomials need to satisfy certain congruences. For instance let m = pq
and x, y ∈ Zm such that x ≡ y mod p. Then P (x) ≡ P (y) mod p for any polynomial
P (X) ∈ Zm[X]. Thus the values of a polynomial at a point give some information
about its values at other points. This raises the possibility of learning a polynomial
by looking at its evaluations at only a few carefully chosen points.

We give an query-efficient algorithm to solve the following problem.

Problem 1. Generalized Polynomial Interpolation: Given m, a set
I ⊆ Zm, and black-box access to the values of a polynomial P (X) ∈ Zm[X] at points
in I, compute P (X) and minimize the number of black-box queries.

The query complexity of our algorithm is within a factor t of the optimum, where
t is the number of prime divisors of m. One has to settle for approximation, since we
prove that the problem of minimizing the number of queries is NP-hard. Our main
technical contribution is the notion of interpolating sets for I which are subsets of I
such that a polynomial which is 0 over that subset must in fact be 0 at every point in
I. We show that any interpolation algorithm needs to query an interpolating set for I.
Our query-efficient algorithms are obtained by constructing interpolating sets whose
size is close to optimal. We use our interpolation algorithm to design algorithms for
zero testing and distributional learning of polynomials over Zm. In some cases, we get
an exponential improvement over known algorithms in query complexity and running
time. We show some new results about the structure of polynomials over Zm, which
may be useful in other applications.

1.1. History and motivation. Given a commutative ring R, a function f :
R → R which can be computed by a polynomial in R[X] is called a polynomial
function. Polynomial functions over various commutative rings are well studied in
algebra [15, 31, 18]. The problem of characterizing polynomial functions over Zm

was first studied by Carlitz and Spira (see [35] and the book by Narkiewicz and the
references therein [31]). Kempner gave a canonical polynomial for every polynomial
function over Zm [30]. Dueball studied the problem of interpolation over Zm [31]. He
proved that one can solve the interpolation problem over Zm with as few as O(logm)
queries for some composites m. More precisely, he showed the following result:

Let k(m) be the smallest integer such that k(m)! ≡ 0 mod m. Every polynomial
function over Zm can be learned from its values at {0, . . . , k(m) − 1}.

In the zero-testing problem, we are given an implicit representation of a polyno-
mial P , either as a circuit or a black box which returns the value P (x) on query x. We
wish to determine if P is the 0 polynomial. The problem of zero testing for polynomi-
als over Zm was studied by Agrawal and Biswas [1], motivated by primality testing.
They give a randomized algorithm for this problem. However, they view polynomials
as formal sums rather than as functions, and this is important for their application.
Karpinski, van der Poorten, and Shparlinski [28] give a black-box algorithm for zero
testing over Zm. However, they require that all nonzero coefficients of the polynomial
are relatively prime to m. Bshouty, Tamon, and Wilson give a randomized algorithm
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for interpolation over Zm [14]. However, if the smallest prime dividing m is p, they
require the degree to be at most p

2 . The results of [14, 28] hold for multivariate poly-
nomials, but in the univariate case Dueball’s result is stronger.

Interpolation and zero testing for polynomials over Zp have been studied exten-
sively in computer science, motivated by applications in coding theory, proof checking,
and several other areas (see, for instance, [20]). Most of these applications crucially
use the fact that a degree d polynomial over Zp has at most d roots, which does not
hold for polynomials over Zm. Nevertheless, polynomials over Zm have found surpris-
ing applications in algorithms, combinatorics, and complexity, which rely on the fact
that they behave differently from polynomials over Zp.

• Primality and factoring: The primality testing algorithms of Agrawal and
Biswas and the AKS algorithm reduce testing primality to testing a poly-
nomial identity over Zm[X] [1, 2]. They then devise algorithms to solve the
problem of zero testing over Zm[X]. Shamir [33] shows that the problem of
factoring polynomials over Zm[X] is as hard as integer factoring.

• Boolean function complexity: A frontier open problem in complexity theory
is to show lower bounds for circuits with Mod-m gates. Strong lower bounds
are known when the circuit contains only Mod-p gates for a single prime
p [32, 34]. In contrast much less is known if Mod-m gates are allowed with m
composite, or Mod-p and Mod-q gates for distinct primes [26, 16]. Motivated
by this problem, Barrington, Beigel, and Rudich [7] studied representations
of Boolean functions by polynomials over Zm. They proved that functions
like OR can have low degree representations when m is composite, unlike in
the prime case. The problem of showing tight bounds for such representations
over Zm is wide open [4, 13, 36].

• Extremal set theory: A set system on [n] is said to have restricted intersections
modulo m if there exists L ⊆ Zm such that the pairwise intersections mod
m lie in L but the set sizes lie outside it [5]. Polynomials over Zm have been
used to explicitly construct large set systems and also to prove upper bounds
on their size. A surprising insight from this area is that when m is a prime
or a prime power, the size of such set systems is polynomial in the number
of elements in the universe [5, 6, 21]. In contrast, when m has two or more
prime divisors, the size can be superpolynomial [24]. These results about set
systems have important combinatorial applications [5].

• Explicit Ramsey constructions: A Ramsey graph is a graph with no large
cliques and independent sets. The problem of explicitly constructing good
Ramsey graphs is an important open problem in combinatorics. Recently,
the author [21] showed that the algebraic Ramsey graph constructions of
Alon [3], Frankl and Wilson [17], and Grolmusz [24, 25] can be derived in a
unified manner from low degree polynomials over Zm. Further, facts about
interpolating sets over Zpa from this work are used in [21] in order to show
that certain approaches (based on symmetric polynomials) cannot yield better
Ramsey graphs.

The last three applications deal with whether certain functions can be computed
by low degree polynomials over Zm, and hence they all implicitly address questions
related to polynomial interpolation.

1.2. Our results.

The generalized interpolation problem. Our main result is an efficient al-
gorithm to solve the generalized interpolation problem. We prove that minimizing
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the number of queries is NP-hard, and hence one can hope only to approximately
minimize the query complexity. Our algorithm has query complexity close to optimal.

Theorem 1. Let t be the number of distinct prime factors of m. There is an
algorithm to solve the general interpolation problem over Zm, with query complexity
within a factor t of the optimum.

In fact the guarantee is slightly stronger. When the algorithm terminates, it pro-
duces a factorization of m into t′ ≤ t relatively prime factors. The approximation
factor is in fact bounded by t′. Thus input sets I which force the algorithm to make
several queries must also reveal the factorization of m. The algorithm first computes
a set S of queries to ask based on the input set I. Thus the set of queries is chosen
nonadaptively. The size of S is within a factor t′ of the optimal query complexity.
This step takes time proportional to |S| · |I|. Once the set S is found, the polynomial
can be computed with |S| queries in time poly(logm, |S|).

While Dueball’s result gives an efficient algorithm for the case when I = Zm, it
does not imply anything for the general interpolation problem. The naive approach for
this problem would be to write a linear equation for each point in I. We can replace
each equation

∑
j aijXij = bi mod m with

∑
j aijXij = bi + yim, where the yi’s are

integer variables, and find integer solutions to the resulting system of equations. This
has query complexity |I|, which can be exponentially larger than the complexity of
our algorithm.

The generalized zero-testing problem is a special case of the interpolation problem,
where we wish to know if some identity holds for every point in I. Theorem 1 implies
a query-efficient algorithm for this problem. It improves on the algorithms of [14, 28],
since there are no restrictions on the degree or coefficients of the polynomial. Our
results are incomparable with those of Agrawal and Biswas [1], who view polynomials
as formal sums.

Learning under a distribution. We give the first efficient algorithms for learn-
ing polynomials over Zm under a distribution. Here we are given evaluations of the
polynomial at points which are drawn from some distribution, and we are asked to
learn the polynomial. See section 5 for precise problem definitions.

Theorem 2. Polynomials in Zm[X] are exactly learnable under the uniform dis-
tribution and PAC learnable under an arbitrary distribution in polynomial time.

The algorithm for the uniform distribution learns the polynomial exactly, but its
running time is a random variable. These algorithms use the algorithm for the general
interpolation problem as a subroutine. For distributional learning it is essential that
our algorithm solves the general interpolation problem, where inputs come from some
subset I ⊆ Zm rather than all of Zm.

Interpolating sets. The crux of our algorithm is the notion of an interpolating
set which we introduce and study here. A set S ⊆ I is an interpolating set for I if
knowing the values of any polynomial at S fixes its value at every point in I. We
show that the set of queries of an interpolation algorithm must correspond to an
interpolating set for I, and thus the problem of designing query-efficient algorithms
reduces to finding small interpolating sets.

Let k(I) denote the size of the smallest interpolating set for I. In general k(I)
can lie between log |I| and |I|. However, we prove that the problem of computing a
minimum interpolating set for I is NP-hard. We define a related quantity k̄(I), which is
the smallest integer such that there is a degree k̄(I) monic polynomial M(X) ∈ Zm[X]
which is 0 over I. This quantity can be computed in polynomial time by solving a
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system of linear equations. We show that for I ⊆ Zm, where m has t prime divisors,
the following relation holds:

k̄(I) ≤ k(I) ≤ t · k̄(I).

Thus k̄(I) is a factor t approximation to k(I), where t is the number of prime divisors
of m. This is where the approximation factor of t in the query complexity of our
algorithm comes from.

We sketch the idea behind the algorithm for computing an interpolating set. For
the prime-power case, we use a greedy algorithm. There is a natural metric on the
points I ⊆ Zpa , namely p-adic distance. Our algorithm finds a set of points so that
the sum of pairwise distances is maximized; this is done by picking a new point in
a natural greedy manner. We show that this in fact gives an interpolating set. For
the composite case, we essentially try and repeat this greedy approach. However, this
approach might fail: first, we do not know the factorization of m, and, second, distinct
prime divisors p and q give different metrics on the set I. However, we show that when
it fails, one can get a factorization m = m1 ·m2, where (m1,m2) = 1. This allows us to
use divide and conquer: we find interpolating sets modulo m1 and m2 independently
and combine the result using the Chinese remainder theorem.

Interpolating sets over Zpa have rich algebraic and combinatorial structure which
we study in detail; these properties are also useful in analyzing our algorithm. In
proving these properties, we make crucial use of the fact that the underlying space is
in fact an ultrametric space (metrics where the following strengthening of the triangle
inequality holds: d(x, y) ≤ max(d(x, z), d(y, z)). Ultrametric spaces are well studied
in computer science [8, 9, 10]. We show that many algebraic properties of polynomials
can be reinterpreted as geometric properties of ultrametric spaces. Further, the proof
of these properties for general ultrametric spaces follows directly from the proof for
polynomials over Zpa . We note that our notion of interpolating sets over Zpa is closely
related to very well distributed and well-ordered sequences that have been studied in
mathematics [15].

1.3. Organization of this paper. In the next section, we give some basic
definitions and results about interpolation over Zm. We study interpolating sets in
section 3. We present our algorithms for interpolation in section 4 and learning algo-
rithms in section 5. We present other algebraic and combinatorial characterizations of
interpolating sets in section 6. In section 7, we use these characterizations to establish
some geometric properties of ultrametric spaces. An extended abstract of this paper
appeared in SODA’06 [22].

2. Preliminaries. We will use X to denote a variable and x for a constant. Let
(a, b) denote the greatest common divisor of a and b.

Given x ∈ Zpa , x �= 0, let its p-adic valuation valp(x) be the highest power of p
which divides x. Set valp(0) = ∞. We have the so-called ultrametric inequality, which
states that

valp(x + y) ≥ min(valp(x), valp(y)).

The p-adic norm of x is defined as

|x|p = p− valp(x).

The p-adic norm satisfies the following condition:

|x + y|p ≤ max(|x|p, |y|p).
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This induces a metric (the p-adic metric) on Zpa given by d(x, y) = |x − y|p. This
metric satisfies the following strong form of the triangle inequality:

(1) d(x, z) ≤ max(d(x, y), d(y, z)).

Metrics which satisfy (1) are known as ultrametrics.
We will also define valuations over Zm, where m is not a prime power. Assume

that p divides m, and let pe be the highest power of p dividing m. For x ∈ Zm, we
define

valp(x) = valp(x mod pe).

All our results can be stated either in terms of p-adic valuations or norms. For our
algorithmic results, it is more natural to work with valuations. For our combinatorial
results, we will use p-adic norms, since it is easier to translate these results into general
ultrametric spaces.

We start with some basic algebraic facts that will be useful to us.
Proposition 3 (see [27]). Let a, b ∈ Zm and a �≡ 0. The equation

aX ≡ b mod m

has a solution in Zm iff (a,m)|b. If this condition holds, there is a unique solution in
the interval

[
0, . . . , m

(a,m) − 1
]
.

Proposition 4. Let M(X) be a monic polynomial in Zm[x] of degree k. Given
P (X) ∈ Zm[X], we can divide it by M(X) and get a remainder of degree at most
k − 1.

Proof. This is just Euclidean division. Let P (X) =
∑

i≤d ciX
i, where d ≥ k.

Since M(X) is monic, P (X) − cdX
d−kM(X) has degree d− 1. Now repeat the same

procedure until we are left with a polynomial of degree ≤ k − 1.
Proposition 5. Let N0(X), . . . , Nk(X) be polynomials in Zm[X], where Ni(X)

is a monic polynomial of degree i. Every polynomial P (X) of degree at most k can be
written as

P (X) =

k∑
i=0

ciNi(X).

Further, if P (X) is a monic polynomial of degree k, then ck = 1.
Proof. The proof is by induction on k. When k = 0, N0(X) = 1, so there is

nothing to prove. Assume the claim holds for k − 1. Let P (X) =
∑

i≤k aiX
i. Since

Nk(X) is monic, P (X)− akNk(X) has degree k − 1, so we can apply induction to it.
Note that the leading coefficient in the monomial basis and the {Ni(X)} basis is the
same. This shows the second part of the claim.

We can use this to give a canonical form for polynomial functions over Zm due
to Kempner [30]. Let N0(X) = 1, and, for j ≥ 1, let

Nj(X) =

j−1∏
i=0

(X − i).

Let the elements {0, . . . ,m − 1} of Zm be endowed with the ordering 0 < 1 < · · · <
m− 1. Let k(m) be the smallest integer such that k(m)! ≡ 0 mod m.
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Lemma 6 (see [30]). Every polynomial function over Zm is computed by a unique
polynomial of the form

(2) P (X) =

k(m)−1∑
j=0

cjNj(X), 0 ≤ cj <
m

(m, j!)
.

Proof. For any x ∈ Z,

Nj(x) =

j−1∏
i=0

(x− i) =

(
x

j

)
j!.

Hence Nj(x) is divisible by j!. So the polynomial m
(m,j!)Nj(X) is zero over Zm. In

particular, Nk(m)(X) is a degree k(m) monic polynomial which is 0 over Zm.
Given an arbitrary polynomial Q(X), we first divide by Nk(m)(X) to get a poly-

nomial Q′(X) of degree k(m)−1. Since the polynomial Nj(X) is monic and of degree
j for j ∈ {0, . . . , k(m) − 1}, we can write Q(X) as

Q′(X) =

k(m)−1∑
j=0

cjNj(X).

We can reduce this to the form of (2) by subtracting an appropriate multiple of
m

(m,j!)Nj(X) for j ≤ k(m). Since we are subtracting only polynomials that are 0 over

Zm, the resulting polynomial computes the same function as the polynomial Q(X)
that we started with.

To show that this representation is unique, take two polynomials

P (X) =

k(m)−1∑
j=0

cjNj(X), 0 ≤ cj <
m

(m, j!)
,

Q(X) =

k(m)−1∑
j=0

djNj(X), 0 ≤ dj <
m

(m, j!)
.

Pick the smallest index j so that cj �= dj , and assume that cj > dj . We claim that
P (j) �≡ Q(j) mod m. Since Ni(j) = 0 for i > j and ci = di for i < j, we have

P (j) −Q(j) = (cj − dj)Nj(j) = (cj − dj)j! �≡ 0 mod m,

since

0 < cj − dj <
m

(m, j!)
.

An easy consequence is the following result of Dueball (see [31]).
Corollary 7 (see [31]). Every polynomial function over Zm can be interpolated

from its evaluations at the points {0, . . . , k(m) − 1}.
Proof. Let

P (X) =
∑
j

cjNj(X), 0 ≤ cj <
m

(m, j!)
.
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We let c0 = P (0). Assuming we know c0, . . . , cj−1, we solve for cj from the equation

cjj! ≡ P (j) −
∑
i<j

ciNi(j) mod m.

The coefficients of P (X) in the canonical form are a solution to this equation. Further,
the solution must be unique, since the canonical form is unique.

The following estimates for k(m) show that the number of queries can be signifi-
cantly smaller than m if m is smooth.

Lemma 8. For prime powers,

p(a− 1) + 1 ≤ k(pa) ≤ pa.

If m =
∏

j p
aj

j , then

k(m) = max
j

k(p
aj

j ).

Proof. Since (pa)! ≡ 0 mod pa, k(pa) ≤ pa. Let k =
∑

i kip
i be the base-p expan-

sion of k. Using a formula due to Legendre (see [23]),

(3) valp(k!) =
∑
i

⌊
k

pi

⌋
=

k −
∑

ki
p− 1

.

Hence if k! ≡ 0 mod pa, then

k −
∑

ki
p− 1

≥ a ⇒ k ≥ (p− 1)a +
∑
i

ki ≥ (p− 1)a + 1.

For m =
∏

j p
aj

j , by Chinese remaindering, k! ≡ 0 mod m is equivalent to k! ≡
0 mod p

aj

j for all j. So k(m) = maxj k(p
aj

j ).
Next we show that the problem of computing k(m) from m is as hard as factoring

m.
Lemma 9. The problem of computing k(m) given m as input is equivalent to

factoring m.
Proof. One can check in polynomial time if m is a prime power [11], so assume

it is not. We will show that (k(m),m) gives a nontrivial factor of m. Note that
k(m) = maxj k(p

aj

j ). Assume this maximum is attained for the prime pi. Note that
k(pa) ≡ 0 mod p; else

valp(k(pa)!) = valp((k(pa) − 1)!),

which contradicts the definition of k(pa). Then k(m) = k(pai
i ) is divisible by pi.

Further,

k(pai
i ) ≤ piai ≤ pai

i < m,

since m is not a prime power. Hence

pi ≤ (k(m),m) < m.

Thus we get a nontrivial factor of m. If (k(m),m) is not a prime power, we can repeat
this procedure until we get a prime-power divisor of m.
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3. Interpolating sets. We say that a polynomial P (X) is 0 over set S if it
evaluates to 0 at every point in S.

Definition 1. Given I ⊆ Zm, S ⊆ I is an interpolating set for I if every
polynomial which is 0 over S is 0 over I. Let k(I) denote the size of the smallest
interpolating set for I.

Note that I itself is trivially an interpolating set. However, in general there can be
interpolating sets which are significantly smaller than I. Note that two polynomials
P (X) and Q(X) that agree at S must in fact agree at every point in I by considering
P (X) − Q(X). Thus the values of a polynomial over I are uniquely determined by
the values at points in an interpolating set. The next lemma shows that the minimum
number of queries to interpolate a polynomial over I is k(I).

Lemma 10. The set of black-box queries of any interpolation algorithm is an
interpolating set for I.

Proof. Assume that the set S of queries to the black box is not an interpolating
set. Then there exists polynomial Q(X) ∈ Zm[X] such that Q(x) is 0 at all x ∈ S
but nonzero at some point y ∈ I. Hence the algorithm cannot distinguish between
polynomials P (X) and P (X)+Q(X) which agree on S but are different at y ∈ I.

Note that this bound holds even if the algorithm chooses its queries adaptively.
Definition 2. Let k̄(I) be the smallest integer such that there is a degree k̄(I)

monic polynomial M(X) ∈ Zm[X] which is 0 over I.
If S is an interpolating set of size k(I), then the polynomial

∏
α∈S(X − α) is a

monic polynomial of degree k(I). It is zero over S and hence over I. Hence

(4) k̄(I) ≤ k(I).

This lets us prove lower bounds on k(I) by showing that any polynomial that is 0
over I must have a certain degree.

Example 1. For I ⊆ Zp, k̄(I) = k(I) = |I|. Since Zp is a field, the smallest degree
monic polynomial which is 0 over I is M(X) =

∏
α∈I(X − α), and hence k̄(I) = |I|.

Example 2. For I = Zm, k̄(I) = k(I) = k(m). By Corollary 7, the set S =
{0, . . . , k(m)− 1} is an interpolating set, so k(I) ≤ k(m). To show that k̄(I) ≥ k(m),
assume that M(X) is a monic polynomial of degree d < k(m). Writing it in the
canonical form, we get M(X) =

∑
i≤d ciNi(X), where cd = 1. So M(X) cannot be

zero over Zm by Lemma 6.
One can use the Chinese remainder theorem to relate the problem of computing

k(I) and k̄(I) for I ⊆ Zm for composite m to the prime-power case. First, we need
to introduce some notation. Let m =

∏t
j=1 p

ai
i . Given a set L ⊆ Zm we define the

projection Lj of L mod p
aj

j as

Lj = {y ∈ Zpj
aj |∃ x ∈ L, x ≡ y mod p

aj

j }.

For a polynomial P (X) ∈ Zm[X], we define Pj(X) ∈ Zpj
aj [X] to be its projection

modulo p
aj

j obtained by taking each coefficient of P (X) modulo p
aj

j . Conversely, given
polynomials Pj(X) ∈ Zpj

aj [X] we can combine the coefficients using the Chinese
remainder theorem to get a unique polynomial P (X) ∈ Zm[X] whose projections are
the polynomials Pj(X). We call P (X) the lift of the Pj(X)’s.

Lemma 11. Let I ⊆ Zm. Then

(5) k̄(I) = max
j

k̄(Ij).
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Proof. It is easy to show using the Chinese remainder theorem that a polynomial
P (X) is zero over I iff Pj(X) is zero over Ij for all j. Let M(X) be a monic polynomial
which is zero over I ⊆ Zm. Then, by the Chinese remainder theorem, Mj(X) is a monic
polynomial which is 0 over Ij ⊆ Zpj

aj . Hence k(I) ≥ k(Ij) for every j.

Conversely let maxj k̄(Ij) = d. For each j, there is a monic polynomial Mj(X) of
degree dj ≤ d which is zero over Ij . The polynomial

M ′
j(X) = Xd−djMj(X)

is a degree d monic polynomial which is zero over Ij . Let M ′(X) ∈ Zm[X] be the lift
of the M ′

j(X)s. It follows that M ′(X) is a monic polynomial of degree d and that it
is zero over I.

Lemma 12. Let I ⊆ Zm. The set S is an interpolating set for I iff Sj is an
interpolating set for Ij for every j.

Proof. Assume that Sj is an interpolating set for Ij for every j, but S is not
an interpolating set for I. Then there is a polynomial Q(X) ∈ Zm[X] such that at
every point x ∈ S,Q(x) ≡ 0 mod m, but for some y ∈ I, Q(y) �≡ 0 mod m. But then
Q(y) �≡ 0 mod p

aj

j for some j. Consider the polynomial Qj(X). Since Q(X) is zero

over S, Qj(X) is zero over Sj . However, there exists y′ ≡ y mod p
aj

j in Ij such that

Qj(y
′) �≡ 0 mod p

aj

j . This contradicts the assumption that Sj is an interpolating set
for Ij .

In the other direction, assume that S is an interpolating set for I, but Sj is not an
interpolating set for Ij . Then there is a polynomial Qj(X) ∈ Zpj

aj [X] such that for

every x ∈ Sj , Q(x) ≡ 0 mod p
aj

j , but there exists y ∈ Ij such that Q(y) �≡ 0 mod p
aj

j .
Take Qi(X) = 0 for i �= j, and set Q(X) ∈ Zm[X] to be the lift of the Qi(X)’s.
Then Q(X) is zero over S, since it is zero over every Sj . But it is not zero at some
point in I, since Qj is not zero over Ij . This contradicts the assumption that S is an
interpolating set.

Corollary 13. Let I ⊆ Zm. Then

(6) max
j

k(Ij) ≤ k(I) ≤
t∑

j=1

k(Ij).

Proof. The bound k(I) ≥ k(Ij) follows trivially since |S| ≥ |Sj | ≥ k(Ij). To prove
the other direction, let Sj be a minimum interpolating set for Ij . For y ∈ Sj , there
exists a preimage x ∈ I such that x ≡ y mod p

aj

j . Define S′
j ⊆ I by choosing one

preimage for each y. Set T = ∪jS
′
j . T is an interpolating set for I, since Sj ⊆ Tj is

an interpolating set for Ij . Also |T | ≤
∑

j k(Ij).

Example 3. We give an example where k̄(I) < k(I) and the upper bound in (6)
is (near) tight. Let m = p1p2, and let

I = {ap1|1 ≤ a ≤ p2 − 1} ∪ {bp2|1 ≤ b ≤ p1 − 1}.

It is easy to see that k̄(I1) = k(I1) = p1, k̄(I2) = k(I2) = p2, and hence k̄(I) =
max(p1, p2). On the other hand, the only interpolating set for I is I itself. Each point
of the form ap1 must be included, since it is the only point in its congruence class
modulo p2. Similarly, every point bp2 must be included. Thus k(I) = p1 + p2 − 2.

The following extension of the above lemmas can be proved similarly using the
Chinese remainder theorem.
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Corollary 14. Let m =
∏t′

j=1 mj and (mi,mj) = 1. Let Ij denote the projection
of I modulo mj:

k̄(I) = max
j

k̄(Ij),

max
j

k(Ij) ≤ k(I) ≤
∑
j

k(Ij).

Theorem 15. The problem of computing k(I) given I and m as input is NP-hard.

Proof. Consider the following decision problem.

Problem 2. Min-Interpolating-Set: Given m and I ⊆ Zm, is k(I) ≤ n?

We prove this problem is NP-hard by reduction from 3-dimensional matching [19].

Problem 3. 3-Dimensional Matching: Given sets U, V,W of size n and a set
of edges E ⊆ U ×V ×W , is there a subset of E of size n that covers all the vertices?

Take p1, p2, p3 to be three distinct primes greater than n. Let m = p1p2p3. For
each triple (ui, vj , wk) ∈ E with i, j, k ≤ n, we add a number x ∈ Zm to I, where
x ≡ i mod p1, x ≡ j mod p2, x ≡ k mod p3. We claim that there is a matching of size
n iff the set I has an interpolating set of size n. We may assume that every vertex
occurs in some edge, and hence |I1| = |I2| = |I3| = n. Thus S is an interpolating set
for I iff Sj = Ij for 1 ≤ j ≤ 3. Thus an interpolating set corresponds to a set of edges
that cover every vertex. If there is an interpolating set of size n, then there is a cover
of size n and vice versa.

In fact, it is possible to show that the Min-Interpolating-Set problem is NP-
complete, so we skip the proof.

In Theorem 17, we will show that for I ⊆ Zpa , k̄(I) = k(I). Combining this with
(5) and (6),

(7) k̄(I) ≤ k(I) ≤ tk̄(I).

Thus k̄(I) is a factor t approximation to k(I), where t is the number of prime divisors
of m.

4. Algorithms for interpolation.

4.1. The prime-power case. We give an algorithm to solve the polynomial
interpolation problem over Zpa using exactly k(I) queries. We first give a (greedy)
algorithm to find a minimum interpolating set.

We start by picking an arbitrary element in I. Suppose that we have chosen
{α0, . . . , αi−1} so far. If the polynomial NS

i (X) =
∏

j<i(X −αj) is 0 over I, we stop.
Else we choose the next element αi ∈ I so that valp(Ni(αi)) is minimized.
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Algorithm 1. IntSet(I, pa)
Input: Set I ⊆ Zpa.

Output: Interpolating set S for I.

Pick α0 ∈ I arbitrarily. Set S = {α0}, i = 1.
Repeat

Let NS
i (X) =

∏
j<i(X − αj).

If NS
i (x) is zero for all x ∈ I,

Output S = {α0, . . . , αi−1}. Stop.

Else

Find x ∈ I that minimizes valp(N
S
i (x)).

Set αi = x, i = i + 1.

Assume that the algorithm outputs a set S = {α0, . . . , αk−1} of size k, and let
ei = valp(N

S
i (αi).

Lemma 16. Every polynomial function over I is computed by a unique polynomial
of the form

(8) P (X) =

k−1∑
j=0

cjN
S
j (X), 0 ≤ cj < pa−ej .

Proof. The proof is similar to that of Lemma 6. Given any polynomial Q(X), we
give an algorithmic procedure to construct P (X) with the above form that agrees with
Q(X) on I. By the termination condition, the polynomial NS

k (X) =
∏

j<k(X−αj) is

identically zero over I. Dividing Q(X) by NS
k (X) and taking the remainder, we get

Q′(X) of degree k − 1 that computes the same function on I. Let us set NS
0 (X) = 1.

Since the polynomial NS
j (X) is monic and of degree j for j ∈ {0, . . . , k − 1}, we

can write any polynomial of degree at most k − 1 as a linear combination of these
polynomials. Hence we have

Q′(X) =
∑
j<k

cjN
S
j (X).

Note that, by our choice of αj ,

ej = valp(N
S
j (αj)) ≤ valp(N

S
j (x)) for x ∈ I.

So the polynomials pa−ejNS
j (X) are 0 over I. So by subtracting appropriate multiples

of these polynomials from Q′(X) we can get a polynomial P (X), where 0 ≤ cj < pa−ej ,
that computes the same function as Q(X).

To show uniqueness of this representation, consider two polynomials

P (X) =

k−1∑
j=0

cjN
S
j (X), 0 ≤ cj < pa−ej ,

Q(X) =

k−1∑
j=0

djN
S
j (X), 0 ≤ dj < pa−ej

with different canonical forms. Pick the smallest j such that cj �= dj . We claim that
P (αj) �= Q(αj). Note that

P (αj) −Q(αj) =
∑
i

(ci − di)N
S
i (αj).
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Since NS
i (αj) = 0 for i > j and ci = di for i < j, we have

P (αj) −Q(αj) = (cj − dj)N
S
j (αj).

Since valp(N
S
j (αj)) = ej and val(cj − dj) < a− ej , hence

P (αj) −Q(αj) �≡ 0 mod pa.

Theorem 17. The set S is a minimum interpolating set. In fact, k̄(I) = k(I) =
|S|.

Proof. Since S is an interpolating set of size k, k(I) ≤ k, it suffices to show that
k̄(I) ≥ k. Let M(X) be a monic polynomial of degree d ≤ k − 1. We can put M(X)
in the canonical form using the procedure above to get

M(X) =
∑
j≤d

cjN
S
j (X), 0 ≤ cj < pa−ej .

Since M(X) is monic, it follows that cd = 1. Thus M(X) does not compute the 0
function by Lemma 16. So k̄(I) ≥ k.

Note that Algorithm 1 for picking a minimum interpolating set is essentially a
greedy algorithm: at each stage it picks a new element x that minimizes

∑
j<i valp(x−

αj). One can ask what objective function is being optimized by this greedy algorithm.
In Theorem 30 (proved in section 6), we prove that this algorithm minimizes the power
of p that divides the Vandermonde determinant of

∏
i<j(αi−αj). In other words, the

minimum interpolating sets of I are all subsets S = {βi} of size k(I) that minimize

∑
i<j≤k(I)

valp(βi − βj).

This gives a simple algorithm to check if a set T = {βi} is a minimum interpolating
set for I. We first compute an interpolating set S = {αi} using Algorithm 1 and then
check that |T | = |S| and that

∑
valp(βi − βj) =

∑
valp(αi − αj).

We now give an algorithm for polynomial interpolation over Zpa whose query
complexity is optimal. One can show that this algorithm computes the canonical
form of P (X) using an argument similar to Corollary 7.

Algorithm 2. Interpolate(I,Zpa)
Input: Set I ⊆ Zpa, a black box for P (X) evaluated at I.
Output: The polynomial P (X).

Compute S = {α0, . . . , αk−1} using IntSet(I, pa).
For i = 0, . . . , k − 1,

Query P (αi).
Compute ci so that 0 ≤ ci < pa−ei and

P (αi) ≡
∑
j≤i

cjN
S
j (αi) mod pa.

Output P (X) =
∑

i<k ciN
S
i (X).
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4.2. The general interpolation problem. We first give an algorithm to find
interpolating sets over Zm. The algorithm is given I as input; it does not have the
factorization of m. It computes an interpolating set for I. We sketch the idea of
the algorithm for m = pq. The algorithm tries to add elements to S greedily as
in the prime-power case. Assume we have picked {α0, . . . , αi−1}, and let NS

i (X) =∏
j<i(X − αi). We compute g(x) = (NS

i (x),m) for every x ∈ I. This quantity plays

the role of valp(N
S
i (X)) in Algorithm 1.

1. If there is an x such that valp(N
S
i (X)) and valq(N

S
i (X)) are both minimized

at x, then g(x)|g(y) for all y ∈ I. We add x to S and proceed.
2. If valp(N

S
i (X)) and valq(N

S
i (X)) are minimized at distinct points x and y,

then g(x) � |g(y) and vice versa. Here the greedy approach fails. But in this
case we can efficiently factor m = pq using g(x) and g(y). We then use divide
and conquer.

For general m, in case 2 we compute a factorization m = m1m2, where (m1,m2) = 1
using the subroutine Factor, and then use divide and conquer.

Algorithm 3. IntSet(I, m)
Input: Set I ⊆ Zm.

Output: A factorization m =
∏t′

j=1 m
′
j, where (m′

i,m
′
j) = 1 and a

minimum interpolating set Sj for Ij = I mod m′
j.

Pick α0 ∈ I arbitrarily. Set S = {α0}, i = 1.
Repeat

Let NS
i (X) =

∏
j<i(X − αj).

If NS
i (x) is zero for all x ∈ I,

Output S = {α0, . . . , αi−1},m. Stop.

Else

For each x ∈ I, set g(x) = (NS
i (x),m).

If some g(x) divides g(y) for all y ∈ I,
Set αi = x, i = i + 1.

Else

Find g(x), g(y) that do not divide each other.

Factor(m, g(x), g(y)) = m1 ·m2.

Return IntSet(I1,m1), IntSet(I2,m2). Stop.

We first analyze the algorithm when Factor is not called. We then present the
factoring subroutine. In particular, Lemmas 18, 19, and 20 all assume that Factor was
not called. In this case, the behavior of the algorithm is similar to the prime-power
case.

Let m =
∏t

j=1 p
aj

j . Let S = {αi} be the set output. Let Ij and Sj be the projec-

tions of I and S modulo p
aj

j . We show that if Factor is not called, then the algorithm

finds a minimum interpolating set by showing k̄(I) = k(I) = |S|. This is done by
simulating Algorithm 1 on Ij and showing that it would produce the same outcome.

Fix a prime pj . Let α′
i ≡ αi mod p

aj

j . We take T to be the projection of the first
k(Ij) elements of I. In other words, let T = {α′

1, . . . , α
′
k(Ij)

}. Note that T ⊆ Sj .

Lemma 18. The set T is a minimum interpolating set for Ij.

Proof. We will show that valpj (N
T
i (x)) is minimized over Ij at α′

i. Hence the set
T is a possible output when we run Algorithm 1 on the set Ij .
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Assume that there is a y′ ∈ Ij such that

valpj (N
T
i (y′)) < valpj (N

T
i (α′

i)).

Choose y ∈ I so that y ≡ y′ mod p
aj

j . Note that

valpj (N
T (y′)) = valpj (g(y)), valpj (N

T (α′
i)) = valpj (g(αi));

hence valpj (g(y)) < valpj (g(αi)).

So g(αi) cannot divide g(y). But since Factor is not used, αi satisfies g(αi)|g(y) for
all y ∈ I, which is a contradiction.

Lemma 19. The set S is a minimum interpolating set for I. In fact, k̄(I) =
k(I) = |S|.

Proof. By Lemma 18, the set Sj is an interpolating set for Ij , so S is an interpo-
lating set for I. We will show that k̄(I) = k(I) = |S|.

For each j, the polynomial
∏

i<k(Ij)
(X−αi) is 0 mod p

aj

j over Ij because the first

k(Ij) elements are an interpolation set for Ij . Take k = maxj k(Ij). The polynomial∏
i<k(X−αi) is 0 mod m over I. Since this is the termination condition for Algorithm

3, it will stop after k steps and output S of size k = maxj k(Ij). By (6), we have

max
j

k(Ij) ≤ k(I).

Hence the set S is a minimum interpolating set. Further, by (5),

k̄(I) = max
j

k̄(Ij).

But for prime powers, k̄(Ij) = k(Ij). So we conclude that

k̄(I) = max
j

k̄(Ij) = max
j

k(Ij) = k(I).

P (X) can be computed by a procedure similar to Algorithm 2.
Lemma 20. The polynomial P (X) can be computed from the values at points in

S.
Proof. The proof of correctness is similar to Corollary 7. For i ≤ k, the polynomials
m

(m,NS
i (αi))

NS
i (X) are 0 over I. This is because

m

(m,NS
i (αi))

NS
i (αi) ≡ 0 mod m

and, for every x ∈ I,

NS
i (x) = y ·NS

i (αi) mod m for some y ∈ Zm.

Hence every polynomial function over I can be canonically represented as

P (X) =

k−1∑
i=0

ciN
S
i (X), 0 ≤ ci <

m

(m,NS
i (αi))

.
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To compute the canonical form of P (X), we query the value of P (X) at every
point in S. For i ≤ k − 1 we solve the equation

ciN
S
i (αi) ≡ P (αi) −

∑
j<i

cjN
S
j (αi) mod m, 0 ≤ ci <

m

(m,NS
i (αi))

.

The unique solution to this system is the canonical from of P (X).
We now turn to the subroutine for factoring. The idea is to use g(x) and g(y) to

get m1,m2, which divide m and are relatively prime. Their product m1m2 might be
less than m. At each step, we take a nontrivial divisor of m

m1m2
and multiply either

m1 or m2 by it. We do this in such a way that they stay relatively prime.

Algorithm 4. Factor(m,g(x),g(y))
Input: A number m and g(x), g(y) that divide m but do not divide

each other.

Output: m1 ·m2 = m and (m1,m2) = 1.

Let g = (g(x), g(y)). Let m1 = g(x)
g , m2 = g(y)

g .

Repeat

Set c = m
m1·m2

.

If (c,m1) = 1, Set m2 = m2 · c.
Else, Set m1 = m1 · (c,m1).
If m1 ·m2 = m, Output m1,m2. Stop.

Lemma 21. Factor(m, g(x), g(y)) returns m1,m2 such that m1 · m2 = m and
(m1,m2) = 1.

Proof. At the start of the algorithm,

m1 =
g(x)

(g(x), g(y))
, m2 =

g(y)

(g(x), g(y))
,

so (m1,m2) = 1. Also m1,m2 are nontrivial divisors of m, since g(x) and g(y) do not
divide each other.

Let

c =
m

m1m2
.

If (m1, c) = 1, since (m1,m2) = 1, we have (m1, cm2) = 1. So we set m2 = cm2, and
we are done. If (c,m1) = d > 1, then since d divides m1, we have (d,m2) = 1. So we
set m1 = dm1. In either case, the product m1m2 increases by a factor of 2, and hence
the algorithm terminates in O(logm) iterations.

The subroutine above is somewhat inefficient. The running time can be con-
siderably improved by running the factor refinement algorithm of Bernstein [12] on
g(x), g(y), and m. This algorithm gives a factorization into coprimes in near linear
time.

If we find factors m1,m2 which are relatively prime, then we run IntSet(I1,m1)
and IntSet(I2,m2). In doing so we could find further factors of m1 and m2, but these
will be relatively prime, since m1 and m2 are relatively prime. So finally, the algorithm
returns a factorization m =

∏
i≤t′ m

′
i, where the m′

i’s are relatively prime. If m has
t distinct prime factors, then clearly t′ ≤ t. We now solve the interpolation problem
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modulo m′
j using Lemma 20 and combine the results using the Chinese remainder

theorem.

Algorithm 5. Interpolate(I,Zm)
Input: Set I ⊆ Zm, a black box for P (X) evaluated at I.
Output: The polynomial P (X).

Using IntSet(I,m), compute m =
∏t′

j=1 m
′
j and interpolating sets

Sj for Ij.
For each j ∈ 1, . . . , t′

For each y ∈ Sj,

Query P (X) at x ∈ I so that x ≡ y mod m′
j.

Use these to compute Pj(X) mod m′
j.

Lift the polynomials Pj(X) to a polynomial P (X) ∈ Zm[X] using

Chinese remaindering.

Lemma 22. Algorithm 5 solves the interpolation problem over Zm[X]. The number
of queries is within a factor t′ of the optimal.

Proof. The proof that the polynomial P (X) is correct follows by the Chinese
remainder theorem. The number of queries is at most

∑
j≤t′ |Sj |. By Lemma 19, since

each mj is not factored further, the set Sj is a minimum interpolating set for Ij .
Hence |Sj | = k(Ij). Hence by Corollary 14,

max
j

|Sj | ≤ k(I) ≤
∑
j≤t′

|Sj | ≤ t′k(I).

Also by Corollary 14,

k̄(I) = max
j

k̄(Ij) = max
j

|Sj |.

Hence Algorithm 3 can be used to compute k̄(I) exactly. (Note that this can also be
done by solving a system of linear equations.)

5. Learning algorithms. One can use the algorithms in the previous section
to design efficient algorithms for interpolation over Zm in various learning theoretic
settings. We consider the problem of learning under the uniform distribution and PAC
learning under an arbitrary distribution. In the uniform distribution problem, we are
given evaluations of a polynomial P (X) at points x chosen at random from Zm. In the
PAC-learning problem, the samples are drawn from an unknown distribution D over
Zm. We are required to output a polynomial that computes P (X) correctly with good
probability on points chosen from the same distribution. In this setting, it is necessary
to allow some error probability. Consider a distribution D which is concentrated on a
set I which does not contain an interpolating set for Zm. A polynomial time algorithm
cannot distinguish between the 0 function and a function which is 0 on I but nonzero
elsewhere.

For learning algorithms, the notion of polynomial running time needs to be de-
fined carefully. Let F (m) denote the number of polynomial functions over Zm. The
algorithm is required to output some polynomial function which requires at least
logF (m) bits to represent. Hence we say the algorithm runs in polynomial time if the
running time is poly(logF (m)).



1050 PARIKSHIT GOPALAN

From Lemma 6, we get

(9) F (m) =
∏

0≤j<k(m)

m

(m, j!)
.

Note that logF (m) can vary between logm and m depending on the prime factoriza-
tion of m. We compute a rough lower bound on logF (m) in terms of its factorization.
Note that, if m = pa, it follows from Lemma 6 that

F (pa) ≥ (pa)p = pap.

Hence if m =
∏

j≤t p
aj

j , then

F (m) ≥
∏
j

p
ajpj

j ⇒ logF (m) ≥
∑
j≤t

ajpj log pj .

5.1. Learning under the uniform distribution. We first consider the prob-
lem of learning polynomials from their evaluations at random points in Zm.

Problem 4. Learning under the Uniform Distribution: Given samples
(x, f(x)), where x is drawn uniformly from Zm and f is a polynomial function, find
a polynomial P (X) that computes f .

Algorithm 6. Interpolation under the Uniform Distribution
Input: Black box for evaluations of P (X) under the uniform

distribution.

Output: The polynomial P (X).

Compute the factorization m =
∏t

j=1 p
aj

j .

Draw samples until we have an interpolating set Sj for Zpj
aj .

Compute Pj(X) for each j.
Let P (X) be the lift of the Pj(X)’s.

We compute the factorization using brute force which takes time O(
∑

j pjaj) =
O(F (m)). We now bound the number of samples needed until we have an interpolating
set modulo pa. Let pb be the smallest power of p such that pb > k(pa). By Lemma 8,
pb < p2a. Let S = {α0, . . . , αk(pa)−1}, where αi ≡ i mod pb.

Lemma 23. The set S is an interpolating set for Zpa .
Proof. By Corollary 7, T = {0, . . . , k(pa) − 1} is an interpolating set for Zpa . By

the choice of αi, αj ,

αi − αj ≡ i− j + cpb mod pa.

Since 0 ≤ i �= j < pb, valp(αi − αj) = valp(i− j). Hence

∑
i<j≤k(pa)

(αi − αj) =
∑

i<j≤k(pa)

(i− j).

So, by Theorem 30, S is an interpolating set.
Lemma 24. Algorithm 6 requires O(log2 F (m)) samples with high probability.
Proof. The uniform distribution over Zm induces the uniform distribution over

congruence classes modulo p
bj
j , since bj < aj . By the coupon collector’s problem,
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in time O(p
bj
j log(p

bj
j )) we will see a sample from each congruence class with high

probability. By Lemma 23, this gives an interpolating set modulo p
aj

j . Overall the

number of samples needed can be bounded by O(log2 F (m)) with high probabili-
ty.

Theorem 25. Algorithm 6 learns the polynomial P (X) exactly under the uniform
distribution. It runs in time O(log2 F (m)) with high probability.

We needed to factor m to check whether the set of points seen so far is an inter-
polating set for Zm. Is there an algorithm to check if S is an interpolating set for Zm

that does not need to factor m?

5.2. PAC learning. Next we consider the problem of PAC-learning polyno-
mials. We refer the reader to the book of Kearns and Vazirani for details of the
PAC-learning model [29].

Problem 5. PAC Learning: Given samples (x, f(x)), where x is drawn from
an unknown distribution D and f is a polynomial function, find a polynomial P (X)
that computes f over D with probability 1 − ε.

We show that polynomial functions are PAC learnable under an arbitrary dis-
tribution in polynomial time. Once we have drawn the set of samples, the problem
reduces to one of general interpolation. The number of samples to be drawn can be
determined from F (m) using Occam’s razor [29]. We first compute F (m) using (9).

This can be done in time O(logF (m)). We then draw 1
ε log F (m)

δ samples from D and
solve the interpolation problem on these inputs using Algorithm 5. The proof that
this suffices for PAC learning is standard [29].

Theorem 26. Polynomials over Zm are PAC learnable in polynomial time using
1
ε log F (m)

δ queries.

6. Algebraic structure of interpolating sets modulo prime powers. In
this section we study the algebraic properties of interpolating sets modulo prime
powers. We give alternate algebraic characterizations of such sets (Theorems 29 and
30). In this section and the next, we use p-adic distance as opposed to valuations.

Recall that by the definition of interpolating sets, every polynomial which is
nonzero over I is in fact nonzero over some point in S. The next lemma generalizes
this to show that, in fact, the norm of every polynomial is maximized over I at some
point in S.

Lemma 27. A set S is an interpolating set iff, for any polynomial P (X), there
exists α ∈ S such that

(10) |P (α)|p ≥ |P (x)|p ∀x ∈ I.

Proof. (⇒) Assume there exists P (X) ∈ Zpa such that |P (x)|p > |P (α)|p for all α ∈
S. But then for an appropriately chosen e, peP (X) is nonzero at x but 0 everywhere
in S. Hence S cannot be an interpolating set.

(⇐) Assume that S satisfies (10). There cannot exist a polynomial P (X) which
is 0 on S, but P (x) �= 0 for some x ∈ Zpa , since this implies that |P (x)|p >
|P (α)|p for all α ∈ S. Hence S is an interpolating set.

This property of interpolating sets allows us to order its elements in a natural
manner. Given an ordered set S = {α0, α1, . . .}, let NS

j (X) =
∏

i<j(X − αi).
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Algorithm 7. Ordering an Interpolating Set
Input: An interpolating set T of I.
Output: An ordered set S ⊆ T which is a (minimal) interpolating

set.

Pick α0 ∈ T arbitrarily, and put it in S.
Given S = {α0, . . . , αj−1}.

If NS
j (X) is 0 over T, stop and output S = {α0, . . . , αj−1}.

Else pick αj ∈ T, which maximizes |NS
j (αj)|p, and add it to S.

Assume that the above procedure outputs an ordered set S = {α0, . . . , αk−1} of
size k. Let ej = valp(N

S
j (αj)) for i ≤ j ≤ k − 1. Observe that 0 ≤ ej < a. Using

the argument of Lemma 16, we can show that every polynomial function over I is
computed by a unique polynomial of the form

P (X) =

t∑
j=0

cjN
S
j (X), 0 ≤ cj < pa−ej .

Using the canonical form above, one can show that all minimal interpolating sets over
Zpa have the same size. The proof is similar to that of Theorem 17.

Corollary 28. The set S = {α0, . . . , αk−1} is an interpolating set iff |NS
j (αj)|p ≥

|NS
j (x)|p for all x ∈ I.

Proof. Clearly an interpolating set with the canonical ordering has this property.
To prove the other direction, simply take T = I in Algorithm 7. Since |NS

j (x)|p is
maximized at αj , we can add αj to S at step j, giving the interpolating set S =
{α0, . . . , αk−1}.

Henceforth we will assume that interpolating sets are canonically ordered and
that polynomials are in the canonical form. Lemma 27 states that for any polynomial
function P (X), |P (x)|p is maximized at some point α ∈ S. We strengthen this to
show that if the degree of P (X) is d, such an α can be found among the first d + 1
elements in S.

Theorem 29. The set S = {α0, . . . , αk−1} is an interpolating set iff, for ev-
ery polynomial P (X) of degree d, there exists α ∈ {α0, . . . , αd} such that |P (α)|p ≥
|P (x)|p for all x ∈ I.

Proof. Clearly a set with this property is an interpolating set by Lemma 27. We
prove the other direction. The proof is by induction on d. The base case when d = 0
is trivial. Assume the claim holds for d − 1. Let P (X) = Q(X) + cdN

S
k (X), where

deg(Q) ≤ d− 1.

(11) |P (x)|p ≤ max(|Q(x)|p, |cdNS
d (x)|p) (ultrametric inequality).

We bound |Q(x)|p using the inductive hypothesis. Since Q(X) has degree d− 1,

(12) |Q(x)|p ≤ max(|Q(α0)|p, . . . , |Q(αd−1)|p).

By our choice of αd,

|cdNS
d (x)|p ≤ |cdNS

d (αd)|
= |P (αd) −Q(αd)|p
≤ max(|Q(αd)|p, |P (αd)|p)
≤ max(|Q(α0)|p, . . . , |Q(αd−1)|p, |P (αd)|p) (induction on Q(X)).(13)
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Hence from (11), (12), and (13) we get

|P (x)|p ≤ max(|Q(α0)|p, . . . , |Q(αd−1)|p, P (αd)|p).

Since NS
d (αj) = 0 for j < d, we have Q(αj) = P (αj) for j < d. Hence

(14) |P (x)|p ≤ max(|P (α0)|p, . . . , |P (αd−1)|p, |P (αd)|p).

We use this to show that interpolating sets are greedy solutions for the problem of
maximizing the p-adic norm of the Vandermonde determinant. Since the determinant
could vanish mod pa, we define the norm of the Vandermonde determinant as follows:

Let |V (α0, . . . , αk−1)|p =
∏

0≤i<j≤k−1

|(αi − αj)|p =

k−1∏
j=1

|NS
j (αj)|p.

This is equivalent to regarding the determinant as an integer and taking its norm.

Theorem 30. The set S = {α0, . . . , αk−1} is an interpolating set for I iff, for all
subsets {x0, . . . , xk−1} of I,

(15) |V (α0, . . . , αk−1)|p ≥ |V (x0, . . . , xk−1)|p.

Proof. (⇒). We will show a stronger statement: for 1 ≤ j ≤ k − 1, for any subset
{x0, . . . , xj} of I,

(16) |V (α0, . . . , αj)|p ≥ |V (x0, . . . , xj)|p.

Consider the polynomial Q(X) =
∏

i<j(X − xi). By Theorem 29, there exists αi ∈
{α0, . . . , αj} such that |Q(αi)|p ≥ |Q(xj)|p. Hence one can replace xj by αi without
decreasing the norm of the Vandermonde determinant. Now repeat the same argument
for the set {x0, . . . , xj−1, αi} and the element xj−1 and so on. We get

|V (α0, . . . , αj)|p ≥ · · · ≥ |V (x0, . . . , xj−1, αi)|p ≥ |V (x0, . . . , xj)|p.

(⇐). Assume we have a set S satisfying (15). Assume that the αi’s are ordered
canonically. We will show that |NS

j (αj)|p ≥ |NS
j (x)|p for all x ∈ I. This implies S is

an interpolating set by Corollary 28.

Assume there exists β such that |NS
j (αj)|p < |NS

j (β)|p. Pick αi ∈ {αj , . . . , αk−1}
such that |β − αi|p is minimized. We will show that replacing αi by β will increase
the norm of the Vandermonde determinant. Observe that, for any � �= i and � ≥ j,

|α� − αi|p ≤ max(|β − α�|p, |β − αi|p)
but |α� − β|p ≥ |β − αi|p by choice of αi;

hence |αi − α�|p ≤ |β − α�|p
⇒

∏
�>j,��=i

|αi − α�|p ≤
∏

�≥j,� �=i

|β − α�|p.(17)

We also have

|NS
j (αi)|p ≤ |NS

j (αj)|p < |NS
j (β)|p.
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The first inequality is because S is ordered canonically, and the second is by the
definition of β. Hence, from the definition of NS

j (X),

(18)

∣∣∣∣∣∣
∏
�<j

(αi − α�)

∣∣∣∣∣∣
p

<

∣∣∣∣∣∣
∏
�<j

(β − α�)

∣∣∣∣∣∣
p

.

Combining (17) and (18), we get

(19)

∣∣∣∣∣∣
∏
� �=i

(αi − α�)

∣∣∣∣∣∣
p

<

∣∣∣∣∣∣
∏
� �=i

(β − α�)

∣∣∣∣∣∣
p

.

Hence replacing αi with β increases the norm of the Vandermonde determinant, which
contradicts the assumption that the norm is maximized at S.

Corollary 31. The parameters e1, . . . , ek−1 are independent of the choice of
interpolating set.

Proof. Note that

|NS
j (αj)| = p−ej

and

|V (α0, . . . , αj)|p =
∏
i≤j

|NS
i (αi)|p = p−

∑
i≤j ei .

This quantity is maximized over subsets of I at every interpolating set. So
∑

i≤j ei,
and hence ei is the same for every interpolating set of I.

7. Some combinatorial properties of ultrametric spaces. We show that
many of our results for interpolating sets can be translated into properties of general
ultrametric spaces. Further, the proof of these properties for general ultrametric spaces
follows directly from the proof for polynomials over Zpa .

Definition 3. Let T be a tree rooted at a vertex r such that the distances of all
leaves from the root r are equal. The metric space whose points are the leaves of the
tree and distance is the shortest path in the tree is called an equidistant tree and is
denoted by (T, d).

It is easy to show that (T, d) is an ultrametric . In fact, the converse is also true.
Fact 32. Every finite ultrametric space embeds isometrically into an equidistant

tree.
Every equidistant tree can in turn be associated with I ⊆ Zpa for appropriate

choices of p, a, and I.
Lemma 33. There is a mapping from any equidistant tree T to I ⊆ Zpa for some

p, a such that

|x− y|p = p
d(x,y)

2 −a for x �= y.

Proof. There is a natural way to associate Zpa with an equidistant tree of degree p
and depth a [6]. The root is at depth 0. The edges from each vertex to its descendants
are labeled {0, . . . , p − 1}. Given a point x =

∑
i xip

i ∈ Zpa , we associate it with a
leaf of the tree as follows: Start from the root. At depth i, follow the edge labeled xi.
Thus the leaf nodes correspond to points in Zpa , while nodes at depth d correspond
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to congruence classes modulo pd. If d(x, y) is the tree distance between the points,

then |x− y|p = p
d(xi,xj)

2 −a.
Given an equidistant tree T , we take p to be a prime larger than the maximum

degree of T and a to be the depth of the tree. For any node, we arbitrarily label the
edges to its descendants with {0, . . . , p−1}. This can be done, since there are at most
p of them. This will map the leaves of T to I ⊆ Zpa , and it is easy to verify that the
distance satisfies the desired condition.

Based on this correspondence, we can translate properties of interpolating sets
into properties of ultrametric spaces. We consider the following NP-hard optimization
problem.

Problem 6. Max-Dist-k: Given a metric space (X, d), pick a subset S of k
points such that the sum of pairwise distances is maximized.

For ultrametrics, the problem can be solved greedily.

Algorithm 8. Greedy Algorithm for Max-Dist-k
Input: An n point ultrametric space (T, d).
Output: A subset S of size k maximizing the sum of pairwise

distances.

Pick α0 ∈ T arbitrarily.

For j ≤ k − 1,
Pick αj so that

∑
i<j d(αj , αi) is minimized.

Output S = {α0, . . . , αk−1}.

Lemma 34. The greedy algorithm solves Max-Dist-k over ultrametric spaces.
Proof. Associate T with I ⊆ Zpa . For any subset (x0, . . . , xk−1) of size k,

∏
i<j

|xi − xj |p = p
∑

i,j

d(xi,xj)

2 −(k2)a.

Hence Max-Dist-k on an ultrametric reduces to choosing k points in I such that
|V (x0, . . . , xk−1)|p is maximized; by Theorem 30 this can be done by choosing the
points greedily.

Next we consider the problem of finding a point in a metric space that is farthest
from a given set of points.

Problem 7. Farthest-Point: Given a metric space (X, d) and a set of points
{y1, . . . , yk−1} of size k − 1, find the point x ∈ X that maximizes

∑
i<k d(x, yi).

This problem is easy to solve for arbitrary metric spaces; we can just try every
point in X and pick the best. However, ultrametric spaces admit a more efficient
solution with some preprocessing. In the preprocessing step, we find a solution S to
Max-Dist-k using the greedy algorithm. This step is oblivious of the yi’s. We then
return the point x ∈ S that maximizes

∑
i<k d(x, yi). The running time of this step

depends only on k; it is independent of the number of points n.
Lemma 35. Let {y1, . . . , yk−1} be any subset of size k − 1 in X. Let S =

{α0, . . . , αk−1} be a greedy solution to Max-Dist-k. The quantity
∑

i<k d(x, yi) is max-
imized over X at a point α ∈ S.

Proof. Associate X with I ⊆ Zpa . Given points yi, consider the polynomial

P (X) =
∏
i<k

(X − yi).
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Note that

|P (x)|p = p
∑ d(x,yi)

2 −a(k−1).

Hence, maximizing the distance is equivalent to maximizing |P (x)|p. Since P (X)
is of degree k − 1, by Theorem 29 its norm over I is maximized at some point in
{α0, . . . , αk−1}.

The case k = 2 of this lemma is a direct consequence of the ultrametric inequality.
We are unaware of a direct combinatorial proof of Lemma 35 for k ≥ 3 and higher.
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Abstract. We show that the treewidth and the minimum fill-in of an n-vertex graph can be
computed in time O(1.8899n). Our results are based on combinatorial proofs that an n-vertex graph
has O(1.7087n) minimal separators and O(1.8135n) potential maximal cliques. We also show that
for the class of asteroidal triple–free graphs the running time of our algorithms can be reduced to
O(1.4142n).
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1. Introduction. Exact exponential algorithms. The interest in exact (fast)
exponential algorithms dates back to Held and Karp’s paper [28] on the travelling
salesman problem in the early 1960s. We mention just a few examples: an O(1.4422n)
time algorithm for knapsack (Horowitz and Sahni [29]); O(1.2600n) and O(1.2109n)
time algorithms for independent set (Tarjan and Trojanowski [43] and Robson [40]);
3-coloring in time O(1.4422n) (Lawler [35]); and 3-SAT in time O(1.6181n) (Monien
and Speckenmeyer [36]).1

Nowadays, it is commonly believed that NP-hard problems cannot be solved in
polynomial time. For a number of NP-hard problems, we even have strong evidence
that they cannot be solved in subexponential time [30]. In order to obtain exact
solutions to these problems, the only hope is to design exact algorithms with good
exponential running times. In recent years there has been emerging interest in at-
tacking this question for concrete combinatorial problems: there are, for example,
an O∗(2n) time algorithm for coloring (Björklund and Husfeldt [5] and Koivisto
[34]); an O(1.3289n) time algorithm for 3-coloring (Beigel and Eppstein [3]); an
O(1.7325n) time algorithm for Max-Cut (Williams [45]); an algorithm for 3-SAT in
time O(1.4726n) (Brueggemann and Kern [15]); and an O(1.5129n) time algorithm
for dominating set (Fomin, Grandoni, and Kratsch [23]).

There are several explanations for the current revival of interest in fast exponential
algorithms within the algorithmic community.

• The design and analysis of exact algorithms leads to a better understanding
of NP-hard problems and initiates interesting new combinatorial and algo-
rithmic challenges.

∗Received by the editors October 24, 2005; accepted for publication (in revised form) January 17,
2008; published electronically July 2, 2008. This project was supported by The Aurora Programme
Collaboration Research Project between Norway and France. A preliminary version of these results
appeared in [25] and [44].

http://www.siam.org/journals/sicomp/38-3/64335.html
†Department of Informatics, University of Bergen, 5020 Bergen, Norway (fomin@ii.uib.no,

yngvev@ii.uib.no). The work of the first author was supported by the Norwegian Research Council.
‡LITA, Université de Metz, 57045 Metz Cedex 01, France (kratsch@univ-metz.fr).
§LIFO, Université d’Orléans, 45067 Orléans Cedex 2, France (Ioan.Todinca@univ-orleans.fr).
1Because cn ·nO(1) = O((c+ε)n) for any ε > 0, we omit polynomial factors in the big-Oh notation

every time we round the base of the exponent. We also use a modified big-Oh notation that suppresses
all other (polynomially bounded) terms. Thus for functions f and g we write f(n) = O∗(g(n)) if
f(n) = O(g(n) · nO(1)).
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• For certain applications it is important to find exact solutions. With the
increased speed of modern computers, fast algorithms, even though they have
exponential running times in the worst case, may actually lead to practical
algorithms for certain NP-hard problems, at least for moderate instance sizes.

• Approximation algorithms, randomized algorithms, and different heuristics
are not always satisfactory. Each of these approaches has weak points such
as the necessity of exact solutions, difficulty of approximation, limited power
of the method itself, and many others.

• A reduction of the base of the exponential running time, say from O(2n) to
O(1.8n), increases the size of the instances solvable within a given amount of
time by a constant multiplicative factor. However, running a given exponential
algorithm on a faster computer can enlarge the mentioned size by only a
constant additive factor.

For overviews and introductions to the field see the recent surveys by Fomin,
Grandoni, and Kratsch [24], Iwama [31], Schöning [41], and Woeginger [46, 47].

Treewidth and minimum fill-in. Treewidth is one of the most basic parame-
ters in graph algorithms [7], and it plays an important role in structural graph theory.
It serves as one of the main tools in Robertson and Seymour’s graph minors project
[39]. Treewidth also plays a crucial role in parameterized complexity theory [19].
The minimum fill-in problem (also known as minimum chordal graph completion) has
important applications in sparse matrix computations and computational biology.

The problems of computing the treewidth and minimum fill-in of a graph are
known to be NP-hard even when the input is restricted to complements of bipartite
graphs (so called cobipartite graphs) [2, 48]. Despite the importance of treewidth al-
most nothing is known about how to cope with its intractability. For a long time the
best known approximation algorithm for treewidth had a factor logOPT [1, 11] (see
also [10]). Recently, Feige, Hajiaghayi, and Lee [21] obtained a factor

√
logOPT ap-

proximation algorithm for treewidth. Furthermore, it is an old open question whether
the treewidth can be approximated within a constant factor.

Treewidth is known to be fixed parameter tractable. Moreover, for any fixed k,
there is a linear time algorithm to compute the treewidth of graphs of treewidth at
most k (unfortunately there is a huge hidden constant in the running time) [6]. There
is a number of algorithms that, for a given graph G and integer k, either report that
the treewidth of G is at least k or produce a tree decomposition of width at most c1·k
in time c2

k ·nO(1), where c1, c2 are some constants (see, e.g., [1]). Fixed parameter
algorithms are known for the minimum fill-in problem as well [16, 32].

There exists an exact O(2.9512n) time algorithm that computes the treewidth of
a graph in polynomial space [9]. We are not aware of any previous work on exact
algorithms for the treewidth or minimum fill-in problem that solves the problem in
O(cn) time where c < 2. There are three relatively simple approaches resulting in
time O∗(2n) algorithms:

• One can reformulate the problems as problems of finding special vertex elimi-
nation orderings and then find an optimal permutation by using the dynamic
programming based technique as in the article of Held and Karp [28] for the
travelling salesman problem. The algorithm of Bodlaender et al. [9] also uses
this approach.

• With some modifications, the algorithm of Arnborg, Corneil, and Proskurowski
[2] for a given k deciding in time O(nk+1) if the treewidth of a graph is at most
k can be used to compute the treewidth (and similarly fill-in) in time O∗(2n).
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• Both problems can be solved by making use of the game theoretic approach,
by finding a specific path in the graph of possible states of a cop and robber
game [22].

However, it is not clear whether any of the aforementioned approaches can bring
us to an O(cn) time algorithm for some c < 2. Prior to our work, no exact algorithm
computing the treewidth or minimum fill-in of a graph in time O(cn) for some c < 2
was known.

Our results. In this paper we obtain the first exact algorithm computing the
treewidth in time O(cn) for c < 2. Additionally it can be adapted to solve a number
of other minimal triangulation problems such as minimum fill-in.

Our main result is an O(1.8899n) algorithm computing the treewidth and mini-
mum fill-in of a graph on n vertices. The algorithm can be regarded as dynamic pro-
gramming across partial solutions and is based on results of Bouchitté and Todinca
[13, 14]. The analysis of the running time is difficult and is based on combinatorial
properties of special structures in a graph, namely, potential maximal cliques, i.e.,
vertex subsets in a graph that can be maximal cliques in some minimal triangulation
of this graph. (See the next section for the definition.)

More precisely, first we modify the algorithm of Bouchitté and Todinca [13] which
computes the treewidth and minimum fill-in of a graph G with the given set ΠG of
all potential maximal cliques of G and then improve the analysis of its running time
to obtain an O∗(|ΠG|) time complexity. The most technical and difficult part of the
paper is the proof that all potential maximal cliques can be listed in time O(1.8899n).
Very roughly, our listing algorithm is based on the following combinatorial result:
every “large” potential maximal clique either is “almost” a minimal separator or can
be represented by a “small” vertex subset. The technique developed to prove this
combinatorial result can be interesting on its own.

For several special graph classes, for which both problems remain NP-complete,
we are able to prove that our approach guarantees significantly better bounds. To
exemplify this we show that, for the class of asteroidal triple (AT)-free graphs, the
number of minimal separators and the number of potential maximal cliques, and thus
the running time of our algorithm, is O∗(2n/2).

This paper is organized as follows. In section 2 we give basic definitions. In
section 3 we show how Bouchitté and Todinca’s approach can be used to compute
the treewidth and fill-in in time linear in the number of potential maximal cliques. In
section 4 we prove that every graph on n vertices has O(n·1.7087n) minimal separators.
In section 5 we show that an n-vertex graph contains O(1.8135n) potential maximal
cliques. This bound is of only combinatorial interest because it is not constructive, in a
sense, that we do not know how to use this bound to list all potential maximal cliques
in time O(1.8135n). In order to obtain a fast algorithm computing the treewidth and
the fill-in of a graph, we need an algorithm listing all potential maximal cliques. In
the remaining part of section 5 we derive the most difficult and important algorithmic
result of this paper, namely, that all potential maximal cliques of a graph can be listed
in time O(1.8899n). This result is based on a novel characterization of potential
maximal cliques. Combined with the results from section 3, this yields the main
result of the paper, that the treewidth and minimum fill-in can be computed in time
O(1.8899n). In section 6 we design a faster O∗(2n/2) time algorithm for AT-free
graphs. We conclude with open problems and final remarks in section 7.

2. Basic definitions. We denote by G = (V,E) a finite, undirected, and simple
graph with |V | = n vertices and |E| = m edges. For any nonempty subset W ⊆ V ,
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the subgraph of G induced by W is denoted by G[W ]. For S ⊆ V we often use G \ S
to denote G[V \ S]. The neighborhood of a vertex v is N(v) = {u ∈ V : {u, v} ∈ E},
N [v] = N(v) ∪ {v}, and for a vertex set S ⊆ V we set N(S) =

⋃
v∈S N(v) \ S,

N [S] = N(S)∪ S. A clique C of a graph G is a subset of V such that all the vertices
of C are pairwise adjacent. By ω(G) we denote the maximum clique-size of a graph G.

Treewidth and minimum fill-in of graphs. The notion of treewidth is due
to Robertson and Seymour [38]. A tree decomposition of a graph G = (V,E), denoted
by TD(G), is a pair (X,T ) in which T = (VT , ET ) is a tree and X = {Xi | i ∈ VT } is
a family of subsets of V such that

(i)
⋃

i∈VT
Xi = V ;

(ii) for each edge e = {u, v} ∈ E there exists an i ∈ VT such that both u and v
belong to Xi; and

(iii) for all v ∈ V , the set of nodes {i ∈ VT | v ∈ Xi} induces a connected subtree
of T .

The maximum of |Xi| − 1, i ∈ VT , is called the width of the tree decomposition. The
treewidth of a graph G, denoted by tw(G), is the minimum width taken over all tree
decompositions of G.

A graph H is chordal (or triangulated) if every cycle of length at least four has a
chord, i.e., an edge between two nonconsecutive vertices of the cycle. A triangulation
of a graph G = (V,E) is a chordal graph H = (V,E′) such that E ⊆ E′. H is a
minimal triangulation if, for any intermediate set E′′ with E ⊆ E′′ ⊂ E′, the graph
F = (V,E′′) is not chordal.

The following result is very useful for our algorithms.
Theorem 2.1 (folklore). For any graph G, tw(G) ≤ k if and only if there is a

triangulation H of G such that ω(H) ≤ k + 1.
Thus the treewidth of a graph G can be defined as the minimum of ω(H) − 1

taken over all triangulations H of G, of ω(H) − 1.
The minimum fill-in of a graph G = (V,E), denoted by mfi(G), is the smallest

value of |EH − E|, where the minimum is taken over all triangulations H = (V,EH)
of G.

In other words, computing the treewidth of G means finding a (minimal) trian-
gulation with the smallest maximum clique-size, while computing the minimum fill-in
means finding a (minimal) triangulation with the smallest number of edges. Clearly,
in both cases it is sufficient to consider only minimal triangulations of G, which makes
minimal separators and potential maximal cliques important tools of our algorithmic
approach.

Minimal separators. Minimal separators and potential maximal cliques are
the most important tools used in our proofs. Let a and b be two nonadjacent vertices
of a graph G = (V,E). A set of vertices S ⊆ V is an a, b-separator if a and b are in
different connected components of the graph G\S. A connected component C of G\S
is a full component (associated to S) if N(C) = S. S is a minimal a, b-separator of
G if no proper subset of S is an a, b-separator. We say that S is a minimal separator
of G if there are two vertices a and b such that S is a minimal a, b-separator. Notice
that a minimal separator can be strictly included in another one. We denote by ΔG

the set of all minimal separators of G. A set of vertices Ω ⊆ V of a graph G is called
a potential maximal clique if there is a minimal triangulation H of G such that Ω is
a maximal clique of H. We denote by ΠG the set of all potential maximal cliques of
G. Clearly, |ΔG| ≤ 2n and |ΠG| ≤ 2n for every graph G on n vertices, and no better
upper bounds had been known prior to our work.
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The following result will be used to list all minimal separators of a graph.
Theorem 2.2 (see [4]). There is an algorithm listing all minimal separators of

an input graph G in O(n3|ΔG|) time.
There is a very useful relationship between the minimal separators of a graph and

its minimal triangulations. Two minimal separators S and T of a graph G are said
to be crossing if S is a minimal u, v-separator for a pair of vertices u, v ∈ T , in which
case T is a minimal x, y-separator for a pair x, y ∈ S. (See [33] and [37] for a full
proof.)

Theorem 2.3 (see [37]). The graph H is a minimal triangulation of the graph
G if and only if there is a maximal set of pairwise noncrossing minimal separators
{S1, S2, . . . , Sp} of G such that H can be obtained from G by completing each Si,
i ∈ {1, 2, . . . , p}, into a clique.

Although we do not use this characterization explicitly it is fundamental for our
paper.

Potential maximal cliques. The following structural characterization of po-
tential maximal cliques is extremely useful for our purposes.

For a set K ⊆ V , a connected component C of G\K is a full component associated
to K if N(C) = K.

Theorem 2.4 (see [13]). Let K ⊆ V be a set of vertices of the graph G = (V,E).
Let C(K) = {C1(K), . . . , Cp(K)} be the set of the connected components of G\K and
let S(K) = {S1(K), S2(K), . . . , Sp(K)}, where Si(K), i ∈ {1, 2, . . . , p}, is the set of
those vertices of K which are adjacent to at least one vertex of the component Ci(K).
Then K is a potential maximal clique of G if and only if

1. G \K has no full component associated to K, and
2. the graph on the vertex set K obtained from G[K] by completing each Si ∈

S(K) into a clique is a complete graph.
Moreover, if K is a potential maximal clique, then S(K) is the set of the minimal
separators of G contained in K.

Remark 2.5. By Theorem 2.4, for every potential maximal clique Ω of G, the
sets Si(Ω) are exactly the minimal separators of G contained in Ω. For each minimal
separator Si = Si(Ω), all vertices of Ω \ Si are contained in the same component of
G \ Si.

The following result is an easy consequence of Theorem 2.4.
Theorem 2.6 (see [13]). There is an algorithm that, given a graph G = (V,E)

and a set of vertices K ⊆ V , verifies if K is a potential maximal clique of G. The
time complexity of the algorithm is O(nm).

According to [14], the number of potential maximal cliques of a graph G is at
least |ΔG|/n and at most n|ΔG|2 + n|ΔG| + 1.

3. Computing treewidth and minimum fill-in. We describe a modification
of the algorithm of [13] that, given a graph, all its minimal separators, and all its
potential maximal cliques, computes the treewidth and the minimum fill-in of the
graph. The running time stated in [13] could be reformulated as O(n2 |ΔG| · |ΠG|).
We show how the algorithm can be implemented to run in time O(n3 · |ΠG|).

For a minimal separator S and a component C ∈ C(S) of G\S, we say that (S,C)
is a block associated to S. We sometimes use the notation (S,C) to denote the set of
vertices S ∪ C of the block. It is easy to notice that if X ⊆ V corresponds to the set
of vertices of a block, then this block (S,C) is unique: indeed, S = N(V \ X) and
C = X \ S.



EXACT ALGORITHMS FOR TREEWIDTH AND MINIMUM FILL-IN 1063

A block (S,C) is called full if C is a full component associated to S. The graph
R(S,C) = GS [S ∪ C] obtained from G[S ∪ C] by completing S into a clique is called
the realization of the block B.

Theorem 3.1 (see [33]). Let G be a noncomplete graph. Then

tw(G) = min
S∈ΔG

max
C∈C(S)

tw(R(S,C)),

mfi(G) = min
S∈ΔG

(
fill(S) +

∑
C∈C(S)

mfi(R(S,C))

)
,

where fill(S) is the number of nonedges of G[S].
Remark 3.2. In the equations of Theorem 3.1 we may take the minimum only

over the inclusion-minimal separators of G. Then all the blocks in the equations are
full.

Unfortunately, Theorem 3.1 is not sufficient for computing the treewidth and
the minimum fill-in. Therefore we now express the treewidth and the minimum fill-
in of realizations of full blocks from realizations of smaller full blocks. Let Ω be a
potential maximal clique of G. We say that a block (S′, C ′) is associated to Ω if C ′ is
a component of G \ Ω and S′ = N(C ′).

Theorem 3.3 (see [13]). Let (S,C) be a full block of G. Then

tw(R(S,C)) = min
S⊂Ω⊆(S,C)

max(|Ω| − 1, tw(R(Si, Ci))),

mfi(R(S,C)) = min
S⊂Ω⊆(S,C)

(
fill(Ω) − fill(S) +

∑
mfi(R(Si, Ci))

)
,

where the minimum is taken over all potential maximal cliques Ω such that S ⊂ Ω ⊆
(S,C) and (Si, Ci) are the blocks associated to Ω in G such that Si ∪ Ci ⊂ S ∪ C.

Theorem 3.4. There is an algorithm that, given a graph G together with the
list of its minimal separators ΔG and the list of its potential maximal cliques ΠG,
computes the treewidth and the minimum fill-in of G in O(n3 |ΠG|) time. Moreover,
the algorithm constructs optimal triangulations for the treewidth and the minimum
fill-in.

Proof. W.l.o.g. we may assume that the input graph G is connected (otherwise
we can run the algorithm for each connected component of G).

The algorithm for computing the treewidth and the minimum fill-in of a graph,
using its minimal separators and its potential maximal cliques, is given below. It is a
slightly different version of the algorithm given in [13].
Input: G, all its potential maximal cliques and all its minimal separators
Output: tw(G) and mfi(G)
begin

compute all the full blocks (S,C) and sort them by the number of vertices
for each full block (S,C) taken in increasing order

tw(R(S,C)) := |S ∪ C| − 1 if (S,C) is inclusion-minimal
and tw(R(S,C)) := ∞ otherwise

mfi(R(S,C)) := fill(S ∪ C) if (S,C) is inclusion-minimal
and mfi(R(S,C)) := ∞ otherwise

for each p.m.c. Ω with S ⊂ Ω ⊆ (S,C)
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compute the blocks (Si, Ci) associated to Ω s.t. Si ∪ Ci ⊂ S ∪ C
tw(R(S,C)) := min(tw(R(S,C)),

max
i

(|Ω| − 1, tw(R(Si, Ci))))

mfi(R(S,C)) := min(mfi(R(S,C)),
fill(Ω) − fill(S) +

∑
i(mfi(R(Si, Ci))))

end for

end for

let Δ∗
G be the set of inclusion-minimal separators of G

tw(G) := min
S∈Δ∗

G

max
C∈C(S)

tw(R(S,C))

mfi(G) := minS∈Δ∗
G
(fill(S) +

∑
C∈C(S) mfi(R(S,C)))

end

For the sake of completeness we shortly discuss the correctness proof. Accord-
ing to Theorem 3.3, at the end of the outer for loop the values of tw(R(S,C))
and mfi(R(S,C)) are correctly computed for each full block (S,C) of G. Then the
treewidth and the minimum fill-in of the graph are computed using Theorem 3.1 and
the fact that in Theorem 3.1 one can work only with inclusion-minimal separators.

Let us show how the algorithm can be implemented such that its running time is
O(n3 · |ΠG|).

To store and manipulate the minimal separators, potential maximal cliques, and
blocks we use data structures that allow us to search, to insert, or to check whether
an element is inclusion-minimal in O(n) time.

During a preprocessing step, we realize the following operations.
• Compute the list of all full blocks and, for each minimal separator S, store

a pointer towards each full block of type (S,C). These operations are per-
formed as follows. For each minimal separator S, we compute the connected
components of G \ S. For each such component C, if N(C) = S, then the
block (S,C) is full, so we add it to the list of full blocks and store the pointer
from S to (S,C). Note that this procedure will generate all the full blocks,
and each of them is encountered exactly once. For a given minimal separator
S, there are at most n full blocks associated to it, and thus at most n pointers
to be stored. The insertion of these blocks into the list of full blocks requires
O(n) time for each block. Hence the whole step costs O(n2|ΔG|) time.

• For each potential maximal clique Ω, store a pointer to each full block as-
sociated to it as follows: compute the components Ci of G \ Ω, and then
(N(Ci), Ci) are precisely the blocks associated to Ω. In particular there are
at most n such blocks. This computation can be done in O(n2) time for each
potential maximal clique, hence globally in O(n2|ΠG|) time.

• Compute all the good triples (S,C,Ω), where (S,C) is a full block and Ω is
a potential maximal clique such that S ⊂ Ω ⊆ S ∪ C. Moreover, for each
good triple we store a pointer from (S,C) to Ω. By Theorem 2.4, there are
at most n minimal separators S ⊂ Ω, each of them being the neighborhood
of a component of G \Ω, and for each such S there is exactly one component
G \ S intersecting Ω (in particular there are at most n|ΠG| good triples).
For each component C ′ of G \ Ω we take S = N(C ′), find the component
C of G \ S intersecting Ω, and store the pointer from (S,C) to Ω. Thus
this computation takes O(nm) time for each potential maximal clique, hence
O(nm|ΠG|) globally.

Hence this preprocessing step costs O(n2|ΔG|+nm|ΠG|). Sorting the blocks by their
size can be done in O(n|ΔG|) time using a bucket sort.
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Observe that the cost of one iteration of the inner for loop is O(n2), by the fact
that there are at most n blocks associated to a potential maximal clique. With the
data structures obtained during the preprocessing step, each full block (S,C) keeps
a pointer towards each potential maximal clique Ω such that (S,C,Ω) form a good
triple. Thus the number of iterations of the two nested loops is exactly the number
of good triples, that is, at most n|ΠG|. It follows that the two loops cost O(n3|ΠG|)
time.

After the execution of the loops, computing the set Δ∗
G of inclusion-minimal sep-

arators costs O(n|ΔG|) time. Each inclusion-minimal separator S keeps the list of its
associated blocks, obtained during the preprocessing step. Computing the maximum
required by the two last instructions costs O(n) time for a given S. This last step
costs O(n|ΔG|) time.

Altogether, the algorithm runs in time O(n2 · |ΔG| + n3 · |ΠG|). It is known [14]
that each minimal separator is contained in at least one potential maximal clique.
According to Theorem 2.4, each potential maximal clique contains at most n minimal
separators. Therefore |ΠG| ≥ |ΔG|/n. We conclude that the algorithm runs in O(n3 ·
|ΠG|) time.

The algorithm can be easily transformed in order to output not only the treewidth
and the minimum fill-in of the graph, but also optimal triangulations with respect to
these parameters. It is sufficient to keep, for each full block, the set of potential
maximal cliques realizing the minimum treewidth and fill-in of its realization. At the
end of the algorithm, the potential maximal cliques of the chosen blocks will be the
maximal cliques of the computed optimal triangulation: optimal tree decomposition
or minimum triangulation.

Using Theorem 3.4, the only missing ingredient of our treewidth and minimum fill-
in algorithms is an algorithm listing all (minimal separators and) potential maximal
cliques of a graph in time O∗(cn) for some c < 2. This requires exponential upper
bounds of the type O∗(cn) for some c < 2 for the number of minimal separators and
for the number of potential maximal cliques in a graph on n vertices. In the next two
sections we discuss this issue.

4. The number of minimal separators. In this section we show that any
graph with n vertices has O(1.7087n) minimal separators. For the main algorithm
of this paper the upper bound O(1.8899n) would be sufficient. However, bounding
the number of minimal separators in a graph is a nice combinatorial problem, and we
prefer to give here the best upper bound we were able to find.

Let S be a separator in a graph G = (V,E). For x ∈ V \ S, we denote by Cx(S)
the component of G \ S containing x. The following lemma is an exercise in [27].

Lemma 4.1 (folklore). A set S of vertices of G is a minimal a, b-separator if
and only if a and b are in different full components associated to S. In particular, S
is a minimal separator if and only if there are at least two distinct full components
associated to S.

Here is one of the main combinatorial results of our paper.
Theorem 4.2. For any graph G, |ΔG| = O(1.7087n).
Proof. For a constant α, 0 < α < 1, we distinguish two types of minimal separa-

tors: small separators, of size at most αn, and big separators, of size more than αn.
We denote the cardinalities of these sets by #small sep and #big sep. Notice that
|ΔG| = #small sep + #big sep.

The number of big separators. Let S be a minimal separator. By Lemma 4.1, there
are at least two full components associated to S. Hence at least one of these full
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components has at most n(1 − α)/2 vertices. For every S ∈ ΔG we choose one of
these full components and call it the small component of S, denoted by s(S).

By the definition of a full component, S = N(s(S)). In particular, for distinct
minimal separators S and T , we have that s(S) 
= s(T ). Therefore the number #big

sep of big minimal separators is at most the number of small components, and we
conclude that #big sep does not exceed the number of subsets of V of cardinality
at most n(1 − α)/2; i.e.,

#big sep ≤
�n(1−α)/2	∑

i=1

(
n

i

)
.

By making use of Stirling’s formula we deduce that

#big sep ≤ n(1 − α)

2

(
πn(1 − α)

(1 + α)

2

)− 1
2

[(
1 − α

2

)− 1−α
2

(
1 + α

2

)− 1+α
2

]n

.

The number of small separators. To count small separators we use a different tech-
nique. Let S be a minimal separator, let x be a vertex of a full component Cx(S)
associated to S with minimum number of vertices, and let X ⊂ V be a vertex subset.
We say that (x,X) is a bad pair associated to S if Cx(S) ⊆ X ⊆ V \ S.

Claim 1. Let S 
= T be two minimal separators and let (x,X) and (y, Y ) be two
bad pairs associated to S and T , respectively. Then (x,X) 
= (y, Y ).

Proof. Since Cx(S) ⊆ X and X∩S = ∅, we have that the connected component of
G[X] containing x is Cx(S). Similarly, the connected component of G[Y ] containing
y is Cy(T ).

Thus if x = y and X = Y , then Cx(S) = Cy(T ). Since Cx(S) is a full component
associated to S in G, we have that S = N(Cx(S)) and T = N(Cy(T )). Therefore
S = T , which is a contradiction.

By Lemma 4.1, there are at least two full components associated to every small
separator S. For a full component Cx(S) associated to S with the minimum number
of vertices, |V \ (S ∪ Cx(S))| ≥ n · (1 − α)/2. For any Z ⊆ V \ (S ∪ Cx(S)), the pair
(x, Z ∪ Cx(S)) is a bad pair associated to S. Therefore there are at least 2n·(1−α)/2

distinct bad pairs associated to S. Hence by Claim 1, the total number of bad pairs
is at least #small sep · 2n·(1−α)/2. On the other hand, the number of bad pairs is at
most n · 2n. We conclude that

#small sep ≤ n2n·(1+α)/2.

Finally, choosing α = 0.5456, we obtain

|ΔG| = #small sep + #big sep = O(n · 1.7087n).

Let us note that, by Theorem 2.2, Theorem 4.2 yields that all minimal separators
of a graph can be listed in time O(1.7087n).

5. The number of potential maximal cliques. In this section we prove that
the number of potential maximal cliques in a graph with n vertices is O(1.8135n) and
then show that there exists an algorithm to list all potential maximal cliques of any
graph in time O(1.8899n).

We bound the number of potential maximal cliques by counting specific potential
maximal cliques called nice potential maximal cliques. Later these nice potential max-
imal cliques are used to generate and to bound the number of all potential maximal
cliques.
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Definition 5.1. Let Ω be a potential maximal clique of a graph G, and let
S ⊂ Ω be a minimal separator of G. We say that S is an active separator for Ω
if Ω is not a clique in the graph GS(Ω)\{S}, obtained from G by completing all the
minimal separators contained in Ω except S. If S is active, a pair of vertices x, y ∈ S
nonadjacent in GS(Ω)\{S} is called an active pair. Otherwise, S is called inactive for
Ω.

Definition 5.2. We say that a potential maximal clique Ω is nice if at least one
of the minimal separators contained in Ω is active for Ω.

We define Πn as the maximum number of nice potential maximal cliques in a
graph on n vertices. By the theorem and lemma below, the number of potential
maximal cliques is polynomially bounded by the number of nice potential maximal
cliques and minimal separators.

Theorem 5.3 (see [14]). Let Ω be a potential maximal clique of G, and let a be
a vertex of G and G′ = G \ {a}. Then one of the following cases holds:

1. either Ω or Ω \ {a} is a potential maximal clique of G′;
2. Ω = S ∪ {a}, where S is a minimal separator of G;
3. Ω is nice.

Lemma 5.4. A graph G on n vertices has at most n2|ΔG|+nΠn potential maximal
cliques.

Proof. Let x1, x2, . . . , xn be the vertices of G and Gi = G[{x1, . . . , xi}] for all i ∈
{1, 2, . . . , n}. By Theorem 5.3, for each i ∈ {2, 3, . . . , n}, |ΠGi

| ≤ |ΠGi−1
|+n|ΔGi

|+Πi.
By [14, Corollary 4], |ΔGi | ≤ |ΔG| for any i ∈ {1, . . . , n}. This yields that

|ΠGn | ≤
n∑

i=1

n|ΔGi | + Πi ≤ n2|ΔGn | + nΠn.

5.1. Nonconstructive upper bound on the number of potential maxi-
mal cliques. We show that the number of potential maximal cliques in a graph is
O(1.8135n). This bound is obtained by finding an upper bound on the number of
nice potential maximal cliques. We do this by computing two numbers (as for the
separator bound): the number of nice potential maximal cliques of size less than αn
and the number of nice potential maximal cliques of size at least αn for 0 < α < 1.

Definition 5.5. We say that the pair (Z, z) is a vertex representation of a
potential maximal clique Ω in G where Z ⊂ V and z ∈ Z if Ω = N(Z)∪{z} and G[Z]
is connected.

Lemma 5.6. Let Ω be a potential maximal clique of G and let z ∈ Ω. Then
(Z, z) is a vertex representation of Ω if and only if Z is the vertex set of the connected
component of G \ (Ω \ {z}) containing z.

Proof. Suppose that (Z, z) is a vertex representation of Ω. Vertex z is contained
in Z, and thus every neighbor of z not in Ω has to be contained in Z. By applying
this argument recursively, every connected component C of G \ Ω, where z ∈ N(C),
is contained in Z. On the other hand, these are the only vertices in Z, because the
rest are separated by Ω \ {z}.

Conversely, let Z be the vertex set of the component of G \ (Ω \ {z}) containing
z. Clearly N(Z)∪{z} is contained in Ω, so it remains to prove that any x ∈ Ω\{z} is
contained in N(Z). By Theorem 2.4, x is adjacent to z or there is a component C of
G \Ω such that both x and z are in N(C). Since C ⊂ Z the conclusion follows.

Lemma 5.7. Let Ω be a nice potential maximal clique of size αn. Then there
exists a vertex representation (U, u) of Ω such that |U | ≤ 2n(1 − α)/3 + 1.
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Proof. Let S be a minimal separator active for Ω, let x, y ∈ S be an active pair,
and let z be a vertex contained in Ω \ S. By Lemma 5.6, every vertex in a potential
maximal clique defines a unique vertex representation. Let (X,x), (Y, y), (Z, z) be the
unique vertex representations defined by Ω and, respectively, x, y, and z (Lemma 5.6).

Let us now prove that one of the sets X,Y, Z contains at most 2n(1 − α)/3 + 1
vertices. By Lemma 5.6, we can observe that if (U, u) is a vertex representation of Ω,
then G[U \{u}] is formed exactly by the set of connected components of G\Ω having u
in their neighborhood. We partition the connected components of G\Ω into three sets:

• A1 = (X \ {x}) ∩ (Y \ {y}),
• A2 = (X \ {x}) \ (Y \ {y}), and
• A3 = (V \ Ω) \ (A1 ∪A2).

Let us emphasize that
• |A1 ∪A2 ∪A3| = n(1 − α) (because A1 ∪A2 ∪A3 = V \ Ω and |Ω| = αn),
• the sets A1, A2, A3 are pairwise disjoint,
• X \ {x} = A1 ∪A2,
• Y \ {y} ⊆ A1 ∪A3, and
• Z \{z} ⊆ A2∪A3 (by construction, G[A1] is the union of components of G\Ω

that see both x and y; since S is an active separator for Ω, x, y is an active
pair, and z 
∈ S, it follows by Definition 5.1 that none of these components
can see z; thus A1 ∩ Z = ∅).

One of the vertex sets A1, A2, A3, say A1, is of size at least n(1 − α)/3; then
|A2| + |A3| ≤ 2n(1 − α)/3. Since Z \ {z} ⊆ A2 ∪ A3, we have that |Z \ {z}| ≤
2n(1 − α)/3, and thus there exists a vertex representation (U, z) = (Z, z) of Ω such
that |U | ≤ (2n(1 − α)/3) + 1.

Lemma 5.8. For a constant 0 < α < 1 and a graph G, the number Π≥αn of nice

potential maximal cliques of size at least αn is at most n
∑2n(1−α)/3

i=1

(
n
i

)
.

Proof. By Lemma 5.7, every potential maximal clique Ω of size at least αn has
a vertex representation (X,x) such that |X \ {x}| ≤ 2n(1 − α)/3. Thus Π≥αn is at
most the number of pairs (X,x), where |X \{x}| ≤ 2n(1−α)/3 and x ∈ V \X, which

is at most n
∑2n(1−α)/3

i=1

(
n
i

)
.

Lemma 5.9. For a constant 0 < α < 1 and a graph G, the number Π<αn of nice
potential maximal cliques of size less than αn is at most n · 2n(2+α)/3.

Proof. We say that (x,X) is a bad pair associated to Ω if Ω = N(Cx)∪{x}, where
Cx is the connected component of G[X ∪ {x}] containing x.

To prove that a bad pair is unique for a potential maximal clique, we let (x,X)
be a bad pair associated to Ωx, and let (y, Y ) be a bad pair associated to Ωy, where
Ωx 
= Ωy. We claim that (x,X) 
= (y, Y ). Targeting a contradiction, we assume
that x = y and that X = Y . From the definition of a bad pair, we know that
N(X) ∪ {x} = N(Y ) ∪ {y}. But this is a contradiction because N(X) ∪ {x} = Ωx,
N(Y ) ∪ {y} = Ωy, and Ωx 
= Ωy.

By Lemma 5.7, every potential maximal clique Ω of size less than αn has a vertex
representation (U, u) such that |V \ (Ω ∪ U)| ≥ n(1 − α)/3. Thus we can create
2n(1−α)/3 unique bad pairs (u,X) for Ω by selecting X = U ∪ Z, where Z is any of
the 2n(1−α)/3 subsets of V \N [U ]. The number of bad pairs is at most n · 2n, and we
get that n · 2n ≥ Π<αn · 2n(1−α)/3.

Lemma 5.10. The number of nice potential maximal cliques in a graph G with n
vertices is O(1.8135n).

Proof. The number of nice potential maximal cliques Πn is at most Π≥αn +Π<αn

for 0 ≤ α ≤ 1. By using Lemmas 5.8 and 5.9, we have that Πn ≤ n ·
∑2n(1−α)/3

i=1

(
n
i

)
+
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n ·2n(2+α)/3. By making use of Stirling’s formula for α = 0.5763, we obtain the bound
O(1.81349n).

Theorem 5.11. For every graph G on n vertices, |ΠG| = O(1.8135n).
Proof. By Lemma 5.4, G has at most n2|ΔG| + nΠn potential maximal cliques.

By Theorem 4.2 and Lemma 5.10, this yields that ΠG = O(n21.7087n +n1.81349n) =
O(1.8135n).

5.2. Listing potential maximal cliques. Notice that the proof of Lemma 5.9
is nonconstructive; i.e., the proof cannot be turned into an algorithm listing potential
maximal cliques, which is required by the algorithms computing treewidth and fill-in.

Roughly speaking, the idea of this subsection is to show that each potential max-
imal clique of a graph can be identified by a set of vertices of size at most n/3. The
algorithm for generating all the potential maximal cliques of a graph lists all the sets
of vertices of size at most n/3 and then, by applying a polynomial time procedure for
each set, generates all the potential maximal cliques of the input graph. A potential
maximal clique can be recognized by the following three representations.

Definition 5.12. Let Ω be a potential maximal clique of G. The triple (S, a, b)
is called a separator representation of Ω if S is a minimal separator of G, a ∈ S,
b ∈ V \S, and Ω = S∪(N(a)∩Cb), where Cb is the component of G\S containing b.

The number of all possible separator representations of a graph is at most n2|ΔG|.
Unfortunately, not every nice potential maximal clique has a separator representation.
The two definitions below allow us to represent a potential maximal clique by using
a small vertex set.

Definition 5.13. For a potential maximal clique Ω of G, we say that a pair
(X, c), where X ⊂ V and c ∈ X, is a partial representation of Ω if Ω = N(Cc)∪ (X \
Cc), where Cc is the connected component of G[X] containing c.

Definition 5.14. For a potential maximal clique Ω of G, we say that a triple
(X,x, c), where X ⊂ V and x, c 
∈ X, is an indirect representation of Ω if Ω =
N(Cc ∪Dx ∪ {x}) ∪ {x}, where

• Cc is the connected component of G \N [X] containing c;
• Dx is the vertex set of the union of all connected components C ′ of G[X] such

that x ∈ N(C ′).
Let us note that for a given vertex set X and two vertices x, c one can check

in polynomial time whether the pair (X, c) is a partial representation or if the triple
(X,x, c) is a separator representation or indirect representation of a (unique) potential
maximal clique Ω.

The next step is to partition the vertex sets of the graph into smaller sets that
can be used to create one of the three representations for the nice potential maximal
clique. First the following theorem is required.

Theorem 5.15 (see [14]). Let Ω be a potential maximal clique of G and S ⊂ Ω
a minimal separator, active for Ω. Let (S,C) be the block associated to S containing
Ω, and let x, y ∈ Ω be an active pair. Then Ω \ S is a minimal x, y-separator in
G[C ∪ {x, y}].

We are now ready to divide the set of connected components of G\Ω into subsets.
Lemma 5.16. Let Ω be a nice potential maximal clique, S be a minimal separator

active for Ω, x, y ∈ S be an active pair, and C be the component of G \ S containing
Ω \ S. There is a partition (Dx, Dy, Dr) of C \ Ω such that N(Dx ∪ {x}) ∩ C =
N(Dy ∪ {y}) ∩ C = Ω \ S.

Proof. By Theorem 5.15, Ω\S is a minimal x, y-separator in G[C∪{x, y}]. Let Cx

be the full component associated to Ω\S in G[C∪{x, y}] containing x, Dx = Cx\{x},
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and let Cy be the full component associated to Ω \ S in G[C ∪ {x, y}] containing y,
Dy = Cy \ {y}, and Dr = C \ (Ω ∪Dx ∪Dy). Since Dx ∪ {x} and Dy ∪ {y} are full
components of Ω\S, we have that N(Dx∪{x})∩C = N(Dy ∪{y})∩C = Ω\S.

By the lemma below we get that every potential maximal clique Ω that is not
defined by the closed neighborhood of a vertex or defined by a separator representation
has a neighbor outside of Ω in a full connected component of S.

Lemma 5.17. Let Ω be a potential maximal clique of G, S be a minimal separator
contained in Ω, and C be the component of G \ S intersecting Ω. Then one of the
following holds:

1. there is a vertex a such that Ω = N [a];
2. Ω has a separator representation;
3. Ω = N(C \ Ω).

Proof. Suppose that there is a vertex a ∈ Ω having no neighbor in C \ Ω. We
consider first the case a ∈ Ω \ S. We claim that in this case Ω = N [a]. Because
a ∈ Ω \ S ⊆ C, we conclude that N [a] ⊆ Ω. Thus to prove the claim we need to
show that Ω ⊆ N [a]. For sake of contradiction, suppose that there is b ∈ Ω which
is not adjacent to a. By Theorem 2.4, every two nonadjacent vertices of a potential
maximal clique are contained in some minimal separator Si(Ω). Thus both a and b
should have neighbors in a component Ci(Ω) of G \ Ω. Since a ∈ Ω \ S ⊆ C, we have
that Ci(Ω) ⊆ C \ Ω. But this contradicts the assumption that a has no neighbors in
C \ Ω.

The case a ∈ S is similar. Suppose that Ω \ S 
= N(a) ∩ C; i.e., there is a vertex
b ∈ Ω \ S nonadjacent to a. Then again, a and b are contained in some minimal
separator and thus should have neighbors in a component Ci(Ω) ⊆ C of G \ Ω which
is a contradiction.

Since C is a component of G\S and S is contained in Ω, we have that N(C \Ω) ⊆
Ω. If every vertex of Ω is adjacent to a vertex of C \ Ω, then Ω = N(C \ Ω).

We state now the main tool for upper bounding the time required to list the set
of nice potential maximal cliques.

Lemma 5.18. Let Ω be a nice potential maximal clique of G. Then one of the
following holds:

1. there is a vertex a such that Ω = N [a];
2. Ω has a separator representation;
3. Ω has a partial representation (X, c) such that |X| ≤ n/3;
4. Ω has a indirect representation (X,x, c) such that |X| ≤ n/3.

Proof. Let S be a minimal separator active for Ω, x, y ∈ S be an active pair, and
C be the component of G \ S containing Ω \ S. By Lemma 5.16, there is a partition
(Dx, Dy, Dr) of C \Ω such that N(Dx ∪ {x})∩C = N(Dy ∪ {y})∩C = Ω \S. If one
of the sets Dx, Dy, say Dx, is empty, then N(Dx ∪{x})∩C = N(x)∩C = Ω \S, and
thus the triple (S, x, z) is a separator representation of Ω.

Suppose that none of the first two conditions of the lemma holds. Then Dx and
Dy are nonempty. In order to argue that Ω has a partial representation (X, c) or an
indirect representation (X,x, c) such that |X| ≤ n/3, we partition the graph further.
Let R = Ω \ S, and let DS be the union of all full components associated to S in
G \ Ω. The vertex set Dx is the union of vertex sets of all connected components C ′

of G\ (Ω∪DS) such that x is contained in the neighborhood of C ′. Thus a connected
component C ′ of G\(Ω∪DS) is contained in Dx if and only if x ∈ N(C ′). Similarly, a
connected component C ′ of G \ (Ω∪DS) is contained in Dy if and only if y ∈ N(C ′).
We also define Dr = V \ (Ω ∪ DS ∪ Dx ∪ Dy), which is the set of vertices of the
components of G \ (Ω ∪DS) which are not in Dx and Dy.
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We partition S in the following sets:
• Sx = (S \N(Dx)) ∩N(Dy);
• Sy = (S \N(Dy)) ∩N(Dx);
• Sxy = S \ (N(Dy) ∪N(Dx));
• Sxy = S ∩N(Dy) ∩N(Dx).

Thus Sx is the set of vertices in S with no neighbor in Dx and with at least one
neighbor in Dy, Sy is the set of vertices in S with no neighbor in Dy and with at least
one neighbor in Dx, Sxy is the set of vertices in S with neighbors in neither Dx nor
Dy, and, finally, Sxy is the set of vertices in S with neighbors in both Dx and Dy.
Notice that the vertex sets DS , Dx, Dy, Dr, R, Sx, Sy, Sxy, and Sxy are pairwise
disjoint. The set Sxy is mentioned only to complete the partition of S and will not
be used in the rest of the proof.

Both for size requirements and because of the definition of indirect representation
we cannot use the sets Sx, Sy, and Sxy directly; they have to be represented by
the sets Zx, Zy, and Zr, which are subsets of the vertex sets Dy, Dx, and Dr. By
the definition of Sx and Sy it follows that there exist two vertex sets Zx ⊆ Dy and
Zy ⊆ Dx such that Sx ⊆ N(Zx) and Sy ⊆ N(Zy). Let Z be such a set of minimum
cardinality. By Lemma 5.17, Ω = N(Dx∪Dy∪Dr) since cases 1 and 2 of Lemma 5.17
correspond to cases 1 and 2 of the lemma we are proving. Thus, there exists a vertex
set Zr ⊆ Dr such that Sxy ⊆ N(Zr). Let Z be such a set of minimum cardinality. A
sketch of how these vertex sets relate to each other is given in Figure 5.1.

xyS

Dy Z_
x

Dx Zy
_

Dr
Z_

r
D R

S

S

y
_

x
_

xy
__

S

S

Fig. 5.1. The figure shows a sketch of how the vertex sets DS , Dx, Dy , Dr, R, Sx, Sy , Sxy , and
Sxy partition the graph G, and how the sets Zx, Zy , and Zr relate to this partition.

Let C∗ be a connected component of G[DS ] (let us remind that N(C∗) = S). We
define the following sets:

• X1 = C∗ ∪R;
• X2 = Dx ∪ Zx ∪ Zr;
• X3 = Dy ∪ Zy ∪ Zr.

First we claim that
• the pair (X1, c), where c ∈ C∗, is a partial representation of Ω;
• the triple (X2, x, c), where c ∈ C∗, is an indirect representation of Ω;
• the triple (X3, y, c), where c ∈ C∗, is an indirect representation of Ω.

In fact, the pair (X1, c) = (C∗ ∪ R, c) is a partial representation of Ω because
N(C∗) ∩R = ∅, C∗ induces a connected graph, and Ω = N(C∗) ∪R.

To prove that (X2, x, c) = (Dx∪Zx∪Zr, x, c) is an indirect representation of Ω, we
have to show that Ω = N(Cc∪D′

x∪{x})∪{x}, where Cc is the connected component
of G \ N [X2] containing c, and D′

x is the vertex set of the union of all connected
components C ′ of G[X2] such that x ∈ N(C ′). Notice that (S ∪ C∗) ∩ X2 = ∅ and
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that S ⊆ N(X2) since S ⊆ N(Dx ∪ Zx ∪ Zr) and X2 = Dx ∪ Zx ∪ Zr. Hence the
connected component Cc of G \N [X2] containing c is C∗.

Every connected component C ′ of G[X2] is contained in Dx, Zx, or Zr since Ω ∩
(Dx∪Zx∪Zr) = ∅ and Ω separates Dx, Zx, and Zr. From the definition of Dx it follows
that x ∈ N(C ′) for every component C ′ of G[Dx], and from the definition of Dy and Dr

it follows that x 
∈ N(C ′) for every component C ′ of G[Zx∪Zr]. We can now conclude
that Dx is the vertex set of the union of all connected components C ′ of G[X2] such
that x ∈ N(C ′). It remains to prove that Ω = N(C∗∪Dx∪{x})∪{x}. By Lemma 5.16,
we have that Ω\S = R is a subset of N(Dx∪{x}) and N(Dy∪{y}), and we remember
that N(C∗) = S. From this observation it follows that Ω = N(C∗ ∪Dx ∪ {x}) ∪ {x}
since N(C∗ ∪Dx ∪ {x}) = (S ∪R) \ {x}.

By similar arguments, (X3, y, c) is an indirect representation of Ω.
To conclude the proof of the lemma, we argue that at least one of the vertex sets

X1, X2, or X3 used to represent Ω contains at most n/3 vertices.
We partition the graph into the following three sets:
• V1 = DS ∪R;
• V2 = Dx ∪ Sx ∪ Sxy;
• V3 = Dy ∪ Sy ∪Dr.

These sets are pairwise disjoint, and at least one of them is of size at most n/3; to
prove the lemma we show that |X1| ≤ |V1|, |X2| ≤ |V2|, and |X3| ≤ |V3|.

|X1| ≤ |V1|. Since C∗ ⊆ DS , we have that X1 = C∗ ∪R ⊆ V1 = DS ∪R.
|X2| ≤ |V2|. To prove the inequality we need the additional result

(5.1) |Zx| ≤ |Sx|, |Zy| ≤ |Sy|, and |Zr| ≤ |Sxy|.

In fact, since Zx is the smallest subset of Dy such that Sx ⊆ N(Zx), we have that
for any vertex u ∈ Zx, Sx 
⊆ N(Zx \ {u}). Thus u has a private neighbor in Sx, or in
other words there exists v ∈ Sx such that {u} = N(v) ∩ Zx. Therefore Sx contains
at least one vertex for every vertex in Zx, which yields |Zx| ≤ |Sx|. The proofs of
inequalities |Zy| ≤ |Sy| and |Zr| ≤ |Sxy| are similar.

Now the proof of |X2| ≤ |V2|, which is equivalent to |Dx∪Zx∪Zr| ≤ |Dx∪Sx∪Sxy|,
follows from (5.1) and the fact that all subsets on each side of the inequality are
pairwise disjoint.

|X3| ≤ |V3|. This inequality is equivalent to |Dy ∪ Zy ∪ Zr| ≤ |Dy ∪ Sy ∪ Dr|.
Again, the sets on each side of the inequality are pairwise disjoint. |Zr| ≤ |Dr| because
Zr ⊆ Dr, and |Zy| ≤ |Sy| by (5.1).

Thus min{|X1|, |X2|, |X3|} ≤ n/3, which concludes the proof of the lemma.
Lemma 5.19. The set of nice potential maximal cliques in a graph G on n vertices

can be listed in listed in O∗(
(

n
n/3

)
) time.

Proof. By Lemma 5.18, the number of possible partial representations (X, c) and

indirect representations (X,x, c) with |X| ≤ n/3 is at most 2n2
∑n/3

i=1

(
n
i

)
. By Theo-

rem 4.2, the number of all possible separator representations is at most n2|ΔG| ≤
n2

(
n

n/3

)
, and we deduce that the number of nice potential maximal cliques is at

most 2n2
∑n/3

i=1

(
n
i

)
. Moreover, these potential maximal cliques can be computed in

O∗(
(

n
n/3

)
) time as follows. We enumerate all the triples (S, a, b) where S is a minimal

separator and a, b are vertices, and check if the triple is the separator representation
of a potential maximal clique Ω; if so, we store this potential maximal clique. We also
enumerate all the potential maximal cliques of type N [a], a ∈ V (G) in polynomial
time. Finally, by listing all the sets X of at most n/3 vertices and all the couples



EXACT ALGORITHMS FOR TREEWIDTH AND MINIMUM FILL-IN 1073

of vertices (x, c), we compute all the nice potential maximal cliques with a partial
representation (X, c) or an indirect representation (X,x, c).

Theorem 5.20. There is an algorithm to list all potential maximal cliques of a
graph G on n vertices in time O(1.8899n).

Proof. Let x1, x2, . . . , xn be the vertices of G and Gi = G[{x1, . . . , xi}] for all
i ∈ {1, 2, . . . , n}. Theorem 5.3 and Lemma 5.19 imply that |ΠGi

| ≤ |ΠGi−1
|+n|ΔGi

|+
2n2

∑n/3
i=1

(
n
i

)
for all i ∈ {2, 3, . . . , n}. By Theorem 4.2, |ΠG| ≤ 2n3

∑n/3
i=1

(
n
i

)
.

Clearly, if we have the potential maximal cliques of Gi−1, the potential maximal
cliques of Gi can be computed in O∗(|ΠGi−1

| +
(

n
n/3

)
) time by making use of Theo-

rems 5.3 and 4.2 and Lemma 5.19. The graph G1 has a unique potential maximal
clique, namely, {x1}. Therefore ΠG can be listed in time O∗(

(
n

n/3

)
) time which is

O(1.8899n).
Theorems 3.4 and 5.20 imply the main result of this paper.
Theorem 5.21. For a graph G on n vertices, the treewidth and the minimum

fill-in of G can be computed in O(1.8899n) time.

6. AT-free graphs. In this section we establish exact algorithms to compute
the treewidth and the minimum fill-in of AT-free graphs which are faster than the
ones obtained for general graphs in the previous section. Both algorithms are based on
new upper bounds on the number of minimal separators and the number of potential
maximal cliques in AT-free graphs.

Three pairwise nonadjacent vertices of a graph G form an asteroidal triple (AT)
if any two of them are connected by a path avoiding the neighborhood of the third
vertex. Graphs without asteroidal triples are called AT-free.

Corneil, Olariu, and Stewart studied structural properties of AT-free graphs in
their fundamental paper [17]. Among other results, they showed that every connected
AT-free graph has a dominating pair, where two vertices x and y of G form a dom-
inating pair (DP for short) if the vertex set of each x, y-path is a dominating set of
G.

AT-free graphs contain cocomparability graphs, permutation graphs, interval
graphs, and cobipartite graphs. Thus the treewidth problem and the minimum fill-in
problem remain NP-hard when restricted to AT-free graphs [2, 48].

Remark 6.1. There is a well-known cobipartite (and thus AT-free) graph con-
sisting of two cliques of size n/2 and a perfect matching between them which has
precisely 2n/2 − 2 minimal separators. It is not hard to show that this is indeed the
largest number of minimal separators of a cobipartite graph on n vertices.

First we show that |ΠG| = O∗(|ΔG|) for AT-free graphs, improving a result in
[13, Corollary 5.2]. This also establishes an algorithm to list the potential maximal
cliques of an AT-free graph in O∗(|ΔG|) time. Then we prove that an AT-free graph
on n vertices has at most 2n/2 +3 minimal separators.

First let us summarize some structural properties of potential maximal cliques in
AT-free graphs.

Lemma 6.2 (Proposition 5.1 of [13]). Let Ω be a potential maximal clique of an
AT-free graph G. Then the set S(Ω) of minimal separators contained in Ω has at
most two inclusion-maximal elements.

Lemma 6.3 (Theorem 3.10 of [13]). Let G be a graph and Ω be a potential
maximal clique of G such that S(Ω) has a unique inclusion-maximal element S. Then
Ω \ S is a connected component of G \ S.

Let S and T be two noncrossing minimal separators of G, incomparable with
respect to inclusion. Thus S meets a unique component of G \ T , say CS(T ), and T
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meets a unique component of G \ S, say CT (S). We define the piece between S and
T as P (S, T ) = S ∪ T ∪ (CT (S) ∩ CS(T )).

Lemma 6.4 (Theorem 3.11 of [13]). Let G be a graph and Ω be a potential
maximal clique of G such that S(Ω) has exactly two inclusion-maximal elements S
and T . Then Ω = P (S, T ).

Lemma 6.5. Let G be an AT-free graph and Ω be a potential maximal clique of
G such that S(Ω) has two inclusion-maximal elements S and T . Choose s ∈ S \ T .
Then Ω = S ∪ (N(s) ∩ CT (S)).

Proof. By Lemma 6.4, Ω = P (S, T ). Clearly s is in the unique component CS(T )
of G\T meeting S, so N(s)∩CT (S) ⊆ P (S, T ). Consequently, S∪(N(s)∩CT (S)) ⊆ Ω.

Conversely, suppose there is a vertex t ∈ Ω, not contained in S ∪ (N(s)∩CT (S)).
Let S′ = (S \ {s}) ∪ (N(s) ∩ CT (S)). Clearly S′ separates s and any vertex of
CT (S) \ S′ in G; in particular S′ separates s and t. It follows that there is a minimal
separator S′′ ⊆ S′ of G, contained in Ω and separating two vertices of Ω. According
to Theorem 2.4, for each minimal separator U contained in Ω, Ω intersects exactly
one component of G \ U , which is a contradiction.

Theorem 6.6. An AT-free graph G has at most n2|ΔG| + n|ΔG| + 1 potential
maximal cliques. Furthermore, there is an algorithm to list the potential maximal
cliques of an AT-free graph in O∗(|ΔG|) time.

Proof. If G has no minimal separator, then G is a complete graph, and its vertex
set is the unique potential maximal clique of G.

Suppose now that G is not complete. Fix a minimal separator S of G. By
Lemma 6.3, the number of potential maximal cliques Ω such that S is the unique
inclusion-maximal element of S(Ω) is bounded by the number of connected compo-
nents of G \ S. Hence, there are at most n such potential maximal cliques.

Now let us consider the potential maximal cliques Ω for which S is one of the two
inclusion-maximal separators contained in S(Ω). For any component C of G\S, there
are, by Lemma 6.5, at most |S| such potential maximal cliques contained in S ∪C. It
follows that there are at most n2 potential maximal cliques of this type.

Therefore, G contains at most (n2 +n)|ΔG|+1 potential maximal cliques. These
combinatorial arguments can easily be transformed into an algorithm listing the po-
tential maximal cliques of an AT-free graph in time O∗(|ΔG|).

Hence Theorem 3.4 implies that to construct an O(1.4142n) algorithm computing
the treewidth and the minimum fill-in of an AT-free graph it is enough to prove that
the number of minimal separators in an AT-free graph is O(1.4142n).

Our proof that the number of minimal separators in an AT-free graph is at most
2n/2 +3 relies on properties of 2LexBFS, i.e., a combination of two runs of lexicographic
breadth-first-search (also called 2-sweep LexBFS), on AT-free graphs established by
Corneil, Olariu, and Stewart in [18].

Definition 6.7. A vertex ordering xn, xn−1, . . . , x1 is said to be a 2LexBFS
ordering of G if some 2LexBFS(G) returns the vertices in this order (starting with
xn) during the second sweep of LexBFS on G where xn is supposed to be the last vertex
of the first sweep of LexBFS on G.

We shall write u ≺ v if u = xi, v = xj , and i < j. A 2LexBFS ordering and
the levels L0 = {xn}, L1 = N(xn), . . . , Li = {xj : d(xj , xn) = i}, . . . , Lr are called
a 2LexBFS scheme of G. Consider any 2LexBFS scheme. Clearly all neighbors of
a vertex v ∈ Li are contained in Li−1 ∪ Li ∪ Li+1. For a vertex v ∈ Li we denote
N(v) ∩ Li−1 by N↑(v), and we denote N(v) ∩ Li+1 by N↓(v).

Theorem 6.8 (see [18]). Every 2LexBFS ordering xn, xn−1, . . . , x1 of a con-
nected AT-free graph has the dominating pair-property (DP-property); i.e., for all
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i ∈ {1, 2, . . . , n}, (xn, xi) is a dominating pair of the graph G[{xi, xi+1, . . . , xn}].
The following easy consequence of Theorem 6.8 is useful.
Lemma 6.9. Let xn, xn−1, . . . , x1 be a 2LexBFS ordering of an AT-free graph G,

and let L0, L1, . . . , Lr be the corresponding 2LexBFS scheme. Let s > r, xs, xr ∈ Li

and {xr, xs} /∈ E. Then N↑(xr) ⊆ N↑(xs).
Proof. Let w ∈ N↑(xr) \ N↑(xs). Then the path xr, w, ui−2, . . . , u1, xn with

uj ∈ Lj and uj−1 ∈ N↑(uj) for all j = i − 2, . . . , 1 contains no neighbor of xs,
contradicting the DP-property of a 2LexBFS scheme of an AT-free graph.

Theorem 6.10. An AT-free graph on n vertices has at most 2n/2+3 minimal
separators.

Proof. Let G be an AT-free graph. Let xn, xn−1, . . . , x1 be a 2LexBFS ordering
of G, and let L0, L1, . . . , Lr be the levels of the corresponding 2LexBFS scheme.

Let S be any minimal separator of G. Let C and C ′ be two (not necessarily full)
components of G \ S. We claim that at most one level of the 2LexBFS scheme may
contain vertices of C and C ′. Suppose not. Let Li and Li+1 be levels containing
vertices of C and C ′. Then there are edges {u, v} in C and {w, x} in C ′ such that
u,w ∈ Li and v, x ∈ Li+1. W.l.o.g. assume u ≺ w. Then Lemma 6.9 implies that w
and v are adjacent, a contradiction.

Let C and C ′ be two (not necessarily full) components of G \ S such that both
contain vertices of some level of the 2LexBFS scheme, say Li. Furthermore, assume
C ∩Li−1 
= ∅ and C ′ ∩Li−1 = ∅. Hence there is an edge {u, v} in C such that u ∈ Li

and v ∈ Li−1. Then for each w ∈ C ′ holds w ≺ u. Otherwise u ≺ w, w ∈ Li, and
Lemma 6.9 would imply that w and v are adjacent, a contradiction.

Finally we claim that in this case c′ ≺ c for each vertex c ∈ C and each vertex
c′ ∈ C ′. This is obviously true if one of c and c′ is not in Li. It remains to consider
the case c ∈ Li, c

′ ∈ Li. To the contrary assume c ≺ c′. Since C contains vertices of
Li and Li−1, there is a path in C starting in c passing through vertices of C ∩Li only
until it passes through an edge {u, v} in C with u ∈ Li and v ∈ Li−1. This path can
be extended to a path from c to xn that does not contain a neighbor of c′ although
c ≺ c′, a contradiction to the DP-property.

Now we are able to upper bound the number of those minimal separators in
an AT-free graph in which no full component contains only vertices of one level.
Simply divide the vertex set into two halves: A = {xn, xn−1, . . . , x�n/2	+1} and B =
{xn/2�, . . . , x1}. Now consider two full components C and C ′ of a minimal separator
S of G, i.e., S = N(C) = N(C ′). Then either C or C ′ is a subset of either A or B,
and surely each of C and C ′ uniquely determines S. Hence we simply consider all
subsets of A and all subsets of B as possible full components of a minimal separator
of G. Consequently, there are at most 2n/2 +1 minimal separators of this type.

It remains to upper bound the number of all those minimal separators S of an
AT-free graph G for which each full component is neither a subset of A nor a subset
of B. Hence at least one full component of S contains only vertices from one level of
the 2LexBFS scheme.

Let S be such a minimal separator of G. Let C and C ′ be two full components of
G \ S. W.l.o.g. assume C ⊆ Li. Hence xn/2� ∈ Li, and thus the level Li is uniquely
determined.

C ′∩
⋃i−1

j=0 Lj = ∅ since otherwise c ≺ c′ for all c ∈ C and all c′ ∈ C ′, and either C or
C ′ is a subset of A or B. Similarly C ′ must contain vertices of Li. Consequently, C ′ ⊆⋃r

j=i Lj . It is easy to see that C ⊆ Li and S = N(C) imply N(C ′) = S ⊆
⋃i+1

j=i−1 Lj .

Furthermore, N(C) = N(C ′) = S implies S ∩ Li−1 = N↑(C ∩ Li) = N↑(C ′ ∩ Li).

Now let us consider the graph G′ = G \
⋃i−1

j=0 Lj . Then S′ = S \
⋃i−1

j=0 Lj is
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a separator of G′; C and C ′ are components of G′ \ S′. Furthermore, every vertex
of S′ ⊆ S has a neighbor in C and C ′, and thus S′ is a minimal separator of G′.
Consequently, every minimal separator S of G for which no full component is a subset
of A or B corresponds uniquely to a minimal separator of G′. Notice that G′ has at
most n− 1 vertices since we remove at least one vertex of Li−1 from G to obtain G′.

Let f(n) be a function such that f(n) is an upper bound for the number of
minimal separators in an n-vertex AT-free graph. Then we establish the recurrence
f(n) ≥ 2n/2+1 + f(n− 1) and conclude with f(n) = 4 · 2n/2+1 = 8 · 2n/2.

Combining Theorems 3.4, 6.6, and 6.10, we obtain algorithms for AT-free graphs
that are faster than the corresponding ones for general graphs.

Theorem 6.11. There are algorithms to compute the treewidth and the minimum
fill-in of an AT-free graph in O(1.4142n) time.

7. Open problems and final remarks. Planar graphs. The computational
complexity of treewidth restricted to planar graphs is a longstanding open problem
in graph algorithms. The treewidth of planar graphs can be approximated within a
constant factor of 1.5. More precisely, Seymour and Thomas [42] gave a polynomial
algorithm for computing the branchwidth of planar graphs, and the latter parameter
differs by at most a factor of 1.5 from the treewidth.

In the case of planar graphs with n vertices, the treewidth is at most O(
√
n).

Theorem 7.1 (see [26]). For any planar graph G on n vertices, tw(G) ≤
3.182

√
n + O(1).

Also, given a graph G and a number k, one can decide if tw(G) ≤ k in O∗(nk)
time, either using the algorithm of Arnborg Corneil, and Proskurowski [2] or our
technique, restricted to potential maximal cliques of size at most k + 1.

Consequently, the treewidth of planar graphs can be computed in time O∗(n3.182
√
n)

= 2O(
√
n logn).

Unfortunately, although the structure of potential maximal cliques in planar
graphs is very particular [12], our approach cannot be used for obtaining algorithms
of running time 2O(

√
n) for planar treewidth. This is because the number of “large”

potential maximal cliques in planar graphs can be “large.”
Claim 2. For any integer N , there is a planar graph on n > N vertices with at

least 20.49
√
n logn potential maximal cliques of size at least 2

√
n + 2.

Proof. Consider the planar graph Gp depicted in Figure 7.1. It has n = p2 +p+3
vertices. The set of vertices S = {a1, b1i1 , a2, b2i2 , . . . , ap, bpip , ap+1} forms a c, d-
minimal separator for any values i1, i2, . . . , ip between 1 and p. By making use of
Theorem 2.4, it is not hard to see that S ∪ {c} is a potential maximal clique of
size p + 1 in Gp. Consequently, G has at least pp potential maximal cliques. If
p ≥ 2, we have p >

√
n− 1; thus the number of potential maximal cliques is at least

(
√
n− 1)

√
n−1.

Since we do not know if the treewidth of a planar graph can be computed in
polynomial time, an interesting task is to design an algorithm of running time 2O(

√
n).

As we mentioned, this will need new techniques.

Combinatorial bounds. The running time estimation of our algorithms is
based on combinatorial upper bounds on the number of minimal separators and an
upper bound for the time to list all potential maximal cliques of a graph. Finding
better bounds on the number of minimal separators and potential maximal cliques in
a graph is an interesting combinatorial challenge.

How many potential maximal cliques can be in a graph? We have shown that the
number of potential maximal cliques in a graph on n vertices is at most O(1.8135n).
Unfortunately, it is not clear if the same bound can be obtained by an algorithm
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Fig. 7.1. Planar graphs with many large potential maximal cliques.

listing potential maximal cliques. Of course, such an algorithm can be used to speed
up our algorithm for treewidth and fill-in. A related interesting question is whether
it is possible to list potential maximal cliques with polynomial time delay.

How many minimal separators can be in a graph? We are aware of the following
construction providing the lower bound 3n/3 ≈ 1.4422n on the number of minimal
separators: Let G be a graph on n = 3k + 2 vertices. G has two vertices a, b that
are connected by k vertex disjoint paths of length 4. Every minimal a, b-separator in
G contains exactly one inner vertex of each a, b-path. Thus the number of minimal
separators in G is at least 3n/3 ≈ 1.4422n. However, the gap between the lower bound
and the upper bound O(1.7087n) from Theorem 4.2 is still big. A related question is
whether it is possible to list the minimal separators with polynomial delay.

For some special graph classes, the use of minimal separators can imply faster
algorithms for triangulation problems. For example, we have shown that every AT-
free graph on n vertices has at most 2n/2 +3 minimal separators and that this upper
bound is tight up to a multiplicative constant factor. The interesting question here
is whether similar techniques can be used for other graph classes, such as bipartite
graphs and graphs of small degree.

Related problems. Our algorithms for treewidth and minimum fill-in can also
be used for solving other problems that can be expressed in terms of minimal tri-
angulations such as finding a tree decomposition of minimum cost [8] or computing
treewidth of weighted graphs. However, there are two “width” parameters related
to treewidth, namely bandwidth and pathwidth, and one parameter called profile,
related to minimum fill-in, that do not fit into this framework. Bandwidth can be
computed in time O∗(10n) [20], and reducing Feige’s bounds is a challenging problem.
Pathwidth (and profile) can be expressed as vertex ordering problems and thus solved
in O∗(2n) time by applying a dynamic programming approach similar to Held and
Karp’s approach [28] for the travelling salesman problem. Let us note that reach-
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ing time complexity O∗(cn) for any constant c < 2, even for the Hamiltonian cycle
problem, is a longstanding problem. So it is unlikely that some modification of Held
and Karp’s approach would provide us with a better exact algorithm for pathwidth
or profile. It is tempting to ask if one can reach time complexity O∗(cn), for any
constant c < 2, for these problems.

Acknowledgment. We are grateful to Hans Bodlaender for nice discussions and
for pointing out that the algorithm of Arnborg, Corneil, and Proskurowski [2] can be
used to compute treewidth and minimum fill-in in time O∗(2n).
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DIMENSIONS OF POINTS IN SELF-SIMILAR FRACTALS∗
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Abstract. Self-similar fractals arise as the unique attractors of iterated function systems (IFSs)
consisting of finitely many contracting similarities satisfying an open set condition. Each point x in
such a fractal F arising from an IFS S is naturally regarded as the “outcome” of an infinite coding
sequence T (which need not be unique) over the alphabet Σk = {0, . . . , k−1}, where k is the number
of contracting similarities in S. A classical theorem of Moran (1946) and Falconer (1989) states that
the Hausdorff and packing dimensions of a self-similar fractal coincide with its similarity dimension,
which depends only on the contraction ratios of the similarities. The theory of computing has
recently been used to provide a meaningful notion of the dimensions of individual points in Euclidean
space. In this paper, we use (and extend) this theory to analyze the dimensions of individual points
in fractals that are computably self-similar, meaning that they are unique attractors of IFSs that
are computable and satisfy the open set condition. Our main theorem states that, if F ⊆ R

n is
any computably self-similar fractal and S is any IFS testifying to this fact, then the dimension
identities dim(x) = sdim(F ) dimπS (T ) and Dim(x) = sdim(F ) DimπS (T ) hold for all x ∈ F and
all coding sequences T for x. In these equations, sdim(F ) denotes the similarity dimension of the
fractal F ; dim(x) and Dim(x) denote the dimension and strong dimension, respectively, of the point
x in Euclidean space; and dimπS (T ) and DimπS (T ) denote the dimension and strong dimension,
respectively, of the coding sequence T relative to a probability measure πS that the IFS S induces
on the alphabet Σk. The above-mentioned theorem of Moran and Falconer follows easily from our
main theorem by relativization. Along the way to our main theorem, we develop the elements of the
theory of constructive dimensions relative to general probability measures. The proof of our main
theorem uses Kolmogorov complexity characterizations of these dimensions.

Key words. Billingsley dimension, computability, constructive dimension, fractal geometry,
geometric measure theory, iterated function system, Hausdorff dimension, packing dimension, self-
similar fractal

AMS subject classifications. 68Q15, 68Q30, 03D99, 28A78, 11K55

DOI. 10.1137/070684689

1. Introduction. The theory of computing has recently been used to formu-
late effective versions of Hausdorff dimension and packing dimension, the two most
important dimensions in geometric measure theory [36, 37, 11, 1]. These effective
fractal dimensions have already produced quantitative insights into many aspects
of algorithmic randomness, Kolmogorov complexity, computational complexity, data
compression, and prediction [24]. They are also beginning to yield results in geometric
measure theory itself [20].

The most fundamental effective dimensions are the constructive dimension [37]
and the constructive strong dimension [1]. These two constructive dimensions (which
are defined explicitly in section 3 below) are the constructive versions of the Hausdorff
and packing dimensions, respectively. For each set X of (infinite) sequences over a
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finite alphabet Σ, the constructive dimension cdim(X) and the constructive strong
dimension cDim(X) are real numbers satisfying the inequalities

cdim(X) ≤ cDim(X) ≤ 1

≤ ≤

0 ≤ dimH(X) ≤ DimP(X),

where dimH(X) and DimP(X) are the Hausdorff and packing dimensions, respectively,
of X. These constructive dimensions are exact analogues of the constructive Lebesgue
measure that Martin-Löf used to formulate algorithmic randomness [38]. As such, they
are endowed with universality properties that make them especially well behaved. For
example, unlike the other effective dimensions, and unlike their classical counterparts,
the constructive dimensions are absolutely stable, meaning that the dimension of any
union (countable or otherwise) of sets is the supremum of the dimensions of the
individual sets. In particular, this implies that, if we define the dimension and strong
dimension of an individual sequence S ∈ Σ∞ to be

(1.1) dim(S) = cdim({S})

and

(1.2) Dim(S) = cDim({S}),

respectively, then the constructive dimensions of any set X ⊆ Σ∞ are determined by
the equations

(1.3) cdim(X) = sup
S∈X

dim(S)

and

(1.4) cDim(X) = sup
S∈X

Dim(S).

Constructive dimensions are thus investigated entirely in terms of the dimensions of
individual sequences.

The two constructive dimensions also admit precise characterizations in terms of
Kolmogorov complexity [39, 1]. Specifically, for any sequence S ∈ Σ∞,

(1.5) dim(S) = lim inf
j→∞

K(S[0..j − 1])

j log |Σ|

and

(1.6) Dim(S) = lim sup
j→∞

K(S[0..j − 1])

j log |Σ| ,

where K(S[0..j − 1]) denotes the Kolmogorov complexity of the j-symbol prefix of S
[33] and the logarithm is base-2. Since K(w) measures the algorithmic information
content (in bits) of a string w, (1.5) and (1.6) say that dim(S) and Dim(S) are
asymptotic measures of the algorithmic information density of S.

Although the constructive dimensions have primarily been investigated in se-
quence spaces Σ∞, they work equally well in Euclidean spaces Rn. One of several
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equivalent ways to achieve this is to fix a base k ≥ 2 in which to expand the coordi-
nates of each point x = (x1, . . . , xn) ∈ Rn. If the expansions of the fractional parts of
these coordinates are S1, . . . , Sn ∈ Σ∞

k , respectively, where Σk = {0, . . . , k − 1}, and
if S is the interleaving of these sequences, i.e.,

S = S1[0]S2[0] . . . Sn[0]S1[1]S2[1] . . . Sn[1]S1[2]S2[2] . . . ,

then the dimension of the point x is

(1.7) dim(x) = n dim(S),

and the strong dimension of x is

(1.8) Dim(x) = nDim(S).

If one or more of the coordinates of x have two base-k expansions (because they
are rationals whose denominators are powers of k), it is easily seen that the numbers
dim(x) and Dim(x) are unaffected by how we choose between these base-k expansions.
Also, a theorem of Staiger [47], in combination with (1.5) and (1.6), implies that
dim(x) and Dim(x) do not depend on the choice of the base k. The dimension and
strong dimension of a point x ∈ Rn are properties of the point x itself and not
properties of a particular encoding.

Clearly, 0 ≤ dim(x) ≤ Dim(x) ≤ n for all x ∈ Rn. In fact, this is the only
restriction that holds in general; i.e., for any two real numbers 0 ≤ α ≤ β ≤ n, there
is a point x in Rn with dim(x) = α and Dim(x) = β [1].

The theory of computing thus assigns a dimension dim(x) and a strong dimen-
sion Dim(x) to each point x in Euclidean space. This assignment is robust (i.e.,
several natural approaches all lead to the same assignment), but is it geometrically
meaningful? Prior work already indicates an affirmative answer. By Hitchcock’s cor-
respondence principle for constructive dimension ([26], extending a result of [46]),
together with the absolute stability of constructive dimension [37], if X ⊆ Rn is any
countable (not necessarily effective) union of computably closed, i.e., Π0

1, sets, then
cdim(X) = dimH(X). Putting this together with (1.3) and (1.7), we have

(1.9) dimH(X) = sup
x∈X

dim(x)

for any set X that is a union of computably closed sets. That is, the classical Haus-
dorff dimension [15] of any such set is completely determined by the dimensions of its
individual points. Many, perhaps most, of the sets which arise in “standard” math-
ematical practice are unions of computably closed sets, so (1.9) constitutes strong
prima facie evidence that the dimensions of individual points are indeed geometri-
cally meaningful.

This paper analyzes the dimensions of points in the most widely known type of
fractals, the self-similar fractals. The class of self-similar fractals includes such famous
members as the Cantor set, the von Koch curve, the Sierpinski triangle, and the
Menger sponge, along with many more exotic sets in Euclidean space [2, 12, 13, 15].
A self-similar fractal (defined precisely in section 5 below) is constructed from an
iterated function system (IFS) S = (S0, . . . , Sk−1), which is a list of two or more
contracting similarities mapping an initial nonempty, closed set D ⊆ Rn into itself.
Each set Si(D) is a strictly smaller “copy” of D inside of D, and each set Si(Sj(D))
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is a strictly smaller “copy” of Sj(D) inside of Si(D). Continuing in this way, each
sequence T ∈ Σ∞

k encodes a nested sequence

(1.10) D ⊇ ST [0](D) ⊇ ST [0](ST [1](D)) ⊇ . . .

of nonempty, closed sets in Rn. Each of these sets is strictly smaller than the one
preceding it, because each similarity Si has a contraction ratio ci ∈ (0, 1). Hence
there is a unique point S(T ) ∈ Rn that is an element of all the sets in (1.10). Figure 1
illustrates how a coding sequence T represents a point S(T ) in the Sierpinski triangle.

Fig. 1. A sequence T ∈ {0, 1, 2}∞ codes a point S(T ) in the Sierpinski triangle.

The attractor of the IFS S is the set

(1.11) F (S) = {S(T ) | T ∈ Σ∞
k } .

In general, the sets S0(D), . . . , Sk−1(D) need not be disjoint, so a point x ∈ F (S)
may have many coding sequences, i.e., many sequences T for which S(T ) = x. A
self-similar fractal is a set F ⊆ Rn that is the attractor of an IFS S that satisfies
a technical open set condition (defined in section 5), which ensures that the sets
S0(D), . . . , Sk−1(D) are “nearly” disjoint.

The similarity dimension of an IFS S is the (unique) solution sdim(S) of the
equation

(1.12)

k−1∑
i=0

c
sdim(S)
i = 1,

where c0, . . . , ck−1 are the contraction ratios of the similarities S0, . . . , Sk−1, respec-
tively. The similarity dimension of a self-similar fractal F = F (S) is sdim(F ) =
sdim(S). A classical theorem of Moran [40] and Falconer [14] says that, for any
self-similar fractal F ,

(1.13) dimH(F ) = DimP(F ) = sdim(F ),

i.e., the Hausdorff and packing dimensions of F coincide with its similarity dimension.
In addition to its theoretical interest, the Moran–Falconer theorem has the pragmatic
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consequence that the Hausdorff and packing dimensions of a self-similar fractal are
easily computed from the contraction ratios by solving (1.12).

Our main theorem concerns the dimensions of points in fractals that are com-
putably self-similar , meaning that they are attractors of computable IFSs satisfying
the open set condition. (We note that most self-similar fractals occurring in practice—
including the four famous examples mentioned above—are, in fact, computably self-
similar.) Our main theorem says that, if F is any fractal that is computably self-
similar with the IFS S as witness, then, for every point x ∈ F and every coding
sequence T for x, the dimension and strong dimension of the point x are given by the
dimension formulas

(1.14) dim(x) = sdim(F )dimπS (T )

and

(1.15) Dim(x) = sdim(F )DimπS (T ),

where dimπS (T ) and DimπS (T ) are the dimension and strong dimension of T with
respect to the probability measure πS on the alphabet Σk defined by

(1.16) πS(i) = c
sdim(F )
i

for all i ∈ Σk. (We note that dimπS (T ) is the constructive analogue of Billingsley
dimension [3, 9].) This theorem gives a complete analysis of the dimensions of points
in computably self-similar fractals and the manner in which the dimensions of these
points arise from the dimensions of their coding sequences.

Although our main theorem applies directly only to computably self-similar frac-
tals, we use relativization to show that the Moran–Falconer theorem (1.13) for arbi-
trary self-similar fractals is an easy consequence of our main theorem. Hence, as is
often the case, a theorem of computable analysis (i.e., the theoretical foundations of
scientific computing [6]) has an immediate corollary in classical analysis.

The proof of our main theorem has some geometric and combinatorial similarities
with the classical proofs of Moran [40] and Falconer [14], but the argument here is
information-theoretic. Specifically, our proof uses Kolmogorov complexity character-
izations of dimensions with respect to probability measures. These characterizations
(proven in section 4 below) say that, if ν is a suitable probability measure on a se-
quence space Σ∞, then, for every sequence S ∈ Σ∞,

(1.17) dimν(S) = lim inf
j→∞

K(S[0..j − 1])

Iν(S[0..j − 1])

and

(1.18) Dimν(S) = lim sup
j→∞

K(S[0..j − 1])

Iν(S[0..j − 1])
,

where

Iν(w) = log
1

ν(w)

is the Shannon self-information of the string w with respect to the probability measure
ν [10]. The older characterizations (1.5) and (1.6) are the special cases of (1.17) and
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(1.18) in which ν(w) = |Σ|−|w| for all w in Σ∗. The characterizations (1.17) and
(1.18) say that dimν(S) and Dimν(S) are asymptotic measures of the algorithmic
information density of S, but the “density” here is now an information-to-cost ratio. In
this ratio, the “information” is algorithmic information, i.e., Kolmogorov complexity,
and the “cost” is the Shannon self-information. To see why this makes sense, consider
the case of interest in our main theorem. In this case, (1.16) says that

ν(w) =

|w|−1∏
j=0

c
sdim(F )
w[j] ,

whence the cost of a string w ∈ Σ∗
k is

Iν(w) = sdim(F )

|w|−1∑
j=0

log
1

cw[j]
,

i.e., the sum of the costs of the symbols in w, where the cost of a symbol i ∈ Σk

is sdim(F ) log(1/ci). These symbol costs are computational and realistic. A symbol
i with high cost invokes a similarity Si with a small contraction ratio ci, thereby
necessitating a high-precision computation.

We briefly mention some other recent research on fractals in theoretical com-
puter science. Braverman and Cook [5, 6] have used computability and complexity
of various fractals to explore the relationships between the two main models of real
computation. Rettinger and Weihrauch [42], Hertling [23], and Braverman and Yam-
polsky [7] have investigated computability and complexity properties of Mandelbrot
and Julia sets. Gupta, Krauthgamer, and Lee [21] have used fractal geometry to
prove lower bounds on the distortions of certain embeddings of metric spaces. Most
of the fractals involved in these papers are more exotic than the self-similar fractals
that we investigate here. Cai and Hartmanis [8] and Fernau and Staiger [17] have
investigated Hausdorff dimension in self-similar fractals and their coding spaces. This
work is more closely related to the present paper, but the motivations and results are
different. Our focus here is on a pointwise analysis of dimensions.

Some of the most difficult open problems in geometric measure theory involve
establishing lower bounds on the fractal dimensions of various sets. Kolmogorov
complexity has proven to be a powerful tool for lower-bound arguments, leading to
the solution of many long-standing open problems in discrete mathematics [33]. There
is thus reason to hope that our pointwise approach to fractal dimension, coupled with
the introduction of Kolmogorov complexity techniques, will lead to progress in this
classical area. In any case, our results extend computable analysis [41, 28, 54] in a
new, geometric direction.

The rest of this paper is organized as follows. Section 2 summarizes basic termi-
nology and notation. Section 3 develops the basic theory of constructive dimensions
with respect to probability measures. Section 4 establishes the Kolmogorov complex-
ity characterizations of these dimensions. Section 5 is a brief exposition of self-similar
fractals for readers who are not familiar with IFSs. Section 6 proves our main theorem
and derives the Moran–Falconer theorem from it.

2. Preliminaries. Given a finite alphabet Σ, we write Σ∗ for the set of all (finite)
strings over Σ and Σ∞ for the set of all (infinite) sequences over Σ. If ψ ∈ Σ∗ ∪ Σ∞

and 0 ≤ i ≤ j < |ψ|, where |ψ| is the length of ψ, then ψ[i] is the ith symbol in ψ
(where ψ[0] is the leftmost symbol in ψ), and ψ[i..j] is the string consisting of the ith
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through the jth symbols in ψ. If w ∈ Σ∗ and ψ ∈ Σ∗ ∪ Σ∞, then w is a prefix of ψ,
and we write w � ψ if there exists i ∈ N such that w = ψ[0..i − 1]. If A ⊆ Σ∗, then
A=n = {x |x ∈ A ∧ |x| = n}.

For functions on Euclidean space, we use the computability notion formulated by
Grzegorczyk [19] and Lacombe [29, 30, 31] in the 1950’s and exposited in the mono-
graphs by Pour-El and Richards [41], Ko [28], and Weihrauch [54] and in the recent
survey paper by Braverman and Cook [6]. A function f : Rn → Rn is computable
if there is an oracle Turing machine M with the following property. For all x ∈ Rn

and r ∈ N, if M is given a function oracle ϕx : N → Qn such that, for all k ∈ N,
|ϕx(k) − x| ≤ 2−k, then M , with oracle ϕx and input r, outputs a rational point
Mϕx(r) ∈ Qn such that |Mϕx(r) − f(x)| ≤ 2−r.

A point x ∈ Rn is computable if there is a computable function ψx : N → Qn such
that, for all r ∈ N, |ψx(r) − x| ≤ 2−r.

For subsets of Euclidean space, we use the computability notion introduced by
Brattka and Weihrauch [4] (see also [54, 6]). A set X ⊆ Rn is computable if there is a
computable function fX : Qn × N → {0, 1} that satisfies the following two conditions
for all q ∈ Qn and r ∈ N.

(i) If there exists x ∈ X such that |x− q| ≤ 2−r, then fX(q, r) = 1.
(ii) If there is no x ∈ X such that |x− q| ≤ 21−r, then fX(q, r) = 0.
The following two observations are well known and easy to verify.
Observation 2.1. A nonempty set X ⊆ Rn is computable if and only if the

associated distance function

ρX : Rn → [0,∞),

ρX(y) = inf
x∈X

|x− y|

is computable.
Observation 2.2. If X ⊆ Rn is both computable and closed, then X is a com-

putably closed, i.e., Π0
1, set.

All logarithms in this paper are base-2.

3. Dimensions relative to probability measures. Here we develop the basic
theory of constructive fractal dimension on a sequence space Σ∞ with respect to a
suitable probability measure on Σ∞. We first review the classical Hausdorff and
packing dimensions.

Let ρ be a metric on a set X . We use the following standard terminology. The
diameter of a set X ⊆ X is

diam(X) = sup {ρ(x, y) | x, y ∈ X }

(which may be ∞). For each x ∈ X and r ∈ R, the closed ball of radius r about x is
the set

B(x, r) = {y ∈ X | ρ(y, x) ≤ r} ,

and the open ball of radius r about x is the set

Bo(x, r) = {y ∈ X | ρ(y, x) < r} .

A ball is any set of the form B(x, r) or Bo(x, r). A ball B is centered in a set X ⊆ X
if B = B(x, r) or B = Bo(x, r) for some x ∈ X and r ≥ 0.
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For each δ > 0, we let Cδ be the set of all countable collections B of balls such
that diam(B) ≤ δ for all B ∈ B, and we let Dδ be the set of all B ∈ Cδ such that the
balls in B are pairwise disjoint. For each X ⊆ X and δ > 0, we define the sets

Hδ(X) =

{
B ∈ Cδ

∣∣∣∣∣ X ⊆
⋃
B∈B

B

}
,

Pδ(X) = {B ∈ Dδ | (∀B ∈ B)B is centered in X } .

If B ∈ Hδ(X), then we call B a δ-cover of X. If B ∈ Pδ(X), then we call B a δ-packing
of X. For X ⊆ X , δ > 0, and s ≥ 0, we define the quantities

Hs
δ (X) = inf

B∈Hδ(X)

∑
B∈B

diam(B)s,

P s
δ (X) = sup

B∈Pδ(X)

∑
B∈B

diam(B)s.

Since Hs
δ (X) and P s

δ (X) are monotone as δ → 0, the limits

Hs(X) = lim
δ→0

Hs
δ (X),

P s
0 (X) = lim

δ→0
P s
δ (X)

exist, though they may be infinite. Let

(3.1) P s(X) = inf

{ ∞∑
i=0

P s
0 (Xi)

∣∣∣∣∣ X ⊆
∞⋃
i=0

Xi

}
.

It is routine to verify that the set functions Hs and P s are outer measures [15]. The
quantities Hs(X) and P s(X)—which may be infinite—are called the s-dimensional
Hausdorff (outer) ball measure and the s-dimensional packing (outer) ball measure of
X, respectively. The optimization (3.1) over all countable partitions of X is needed
because the set function P s

0 is not an outer measure.
Definition 3.1. Let ρ be a metric on a set X , and let X ⊆ X .
1. (Hausdorff [22]). The Hausdorff dimension of X with respect to ρ is

dim
(ρ)
H (X) = inf {s ∈ [0,∞) | Hs(X) = 0} .

2. (Tricot [50], Sullivan [49]). The packing dimension of X with respect to ρ is

Dim
(ρ)
P (X) = inf {s ∈ [0,∞) | P s(X) = 0} .

When X is a Euclidean space Rn and ρ is the usual Euclidean metric on Rn,

dim
(ρ)
H and Dim

(ρ)
P are the ordinary Hausdorff and packing dimensions, also denoted

by dimH and DimP, respectively.
We now focus our attention on sequence spaces. Let Σ be a finite alphabet with

|Σ| ≥ 2. A (Borel) probability measure on Σ∞ is a function ν : Σ∗ → [0, 1] such that
ν(λ) = 1 and ν(w) =

∑
a∈Σ ν(wa) for all w ∈ Σ∗. Intuitively, ν(w) is the probability

that w � S when a sequence S ∈ Σ∞ is chosen according to the probability measure
ν. A probability measure ν on Σ∞ is strongly positive if there exists δ > 0 such that,
for all w ∈ Σ∗ and a ∈ Σ, ν(wa) > δν(w).
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The following type of probability measure is used in our main theorem.
Example 3.2. Let π be a probability measure on the alphabet Σ, i.e., a function

π : Σ → [0, 1] such that
∑

a∈Σ π(a) = 1. Then π induces the product probability
measure π on Σ∞ defined by

π(w) =

|w|−1∏
i=0

π(w[i])

for all w ∈ Σ∗. If π is positive on Σ, i.e., π(a) > 0 for all a ∈ Σ, then the probability
measure π on Σ∞ is strongly positive.

Example 3.3. We reserve the symbol μ for the uniform probability measure on
Σ∞, which is the function μ : Σ∗ → [0,∞) defined by

μ(w) = |Σ|−|w|

for all w ∈ Σ∗. Note that this is the special case of Example 3.2 in which π(a) = 1/|Σ|
for each a ∈ Σ.

Definition 3.4. The metric induced by a strongly positive probability measure
ν on Σ∞ is the function ρν : Σ∞ × Σ∞ → [0, 1] defined by

ρν(S, T ) = inf {ν(w) | w � S and w � T }

for all S, T ∈ Σ∞.
The following fact is easily verified.
Observation 3.5. For every strongly positive probability measure ν on Σ∞, the

function ρν is a metric on Σ∞.
Hausdorff and packing dimensions with respect to probability measures on se-

quence spaces are defined as follows.
Definition 3.6. Let Σ be a finite alphabet with |Σ| ≥ 2, let ν be a strongly

positive probability measure on Σ∞, and let X ⊆ Σ∞.
1. The Hausdorff dimension of X with respect to ν (also called the Billingsley

dimension of X with respect to ν [3, 9]) is

dimν
H(X) = dim

(ρν)
H (X).

2. The packing dimension of X with respect to ν is

Dimν
P(X) = Dim

(ρν)
P (X).

Note. We have assumed strong positivity here for clarity of presentation, but this
assumption can be weakened in various ways for various results.

When ν is the probability measure μ, it is generally omitted from the terminol-
ogy. Thus, the Hausdorff dimension of X is dimH(X) = dimμ

H(X), and the packing
dimension of X is DimP(X) = Dimμ

P(X).
It was apparently Wegmann [53] who first noticed that the metric ρν could be

used to make Billingsley dimension a special case of Hausdorff dimension. Fernau and
Staiger [17] have also investigated this notion.

We now develop gale characterizations of dimν
H and Dimν

P.
Definition 3.7. Let Σ be a finite alphabet with |Σ| ≥ 2, let ν be a probability

measure on Σ∞, and let s ∈ [0,∞).
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1. A ν-s-supergale is a function d : Σ∗ → [0,∞) that satisfies the condition

(3.2) d(w)ν(w)s ≥
∑
a∈Σ

d(wa)ν(wa)s

for all w ∈ Σ∗.
2. A ν-s-gale is a ν-s-supergale that satisfies (3.2) with equality for all w ∈ Σ∗.
3. A ν-supermartingale is a ν-1-supergale.
4. A ν-martingale is a ν-1-gale.
5. An s-supergale is a μ-s-supergale.
6. An s-gale is a μ-s-gale.
7. A supermartingale is a 1-supergale.
8. A martingale is a 1-gale.

The following observation shows how gales and supergales are affected by variation
of the parameter s.

Observation 3.8 (see[37]). Let ν be a probability measure on Σ∞, let s, s′ ∈
[0,∞), and let d, d′ : Σ∗ → [0,∞). Assume that

d(w)ν(w)s = d′(w)ν(w)s
′

holds for all w ∈ Σ∗.
1. d is a ν-s-supergale if and only if d′ is a ν-s′-supergale.
2. d is a ν-s-gale if and only if d′ is a ν-s′-gale.

For example, if the probability measure ν is positive, then a function d : Σ∗ →
[0,∞) is a ν-s-gale if and only if the function d′ : Σ∗ → [0,∞) defined by d′(w) =
ν(w)s−1d(w) is a ν-martingale.

Martingales were introduced by Lévy [32] and Ville [52]. They have been used
extensively by Schnorr [43, 44, 45] and others in investigations of randomness and
by Lutz [34, 35] and others in the development of resource-bounded measure. Gales
are a convenient generalization of martingales introduced by Lutz [36, 37] in the
development of effective fractal dimensions.

The following generalization of Kraft’s inequality [10] is often useful.
Lemma 3.9 (see [37]). Let d be a ν-s-supergale, where ν is a probability measure

on Σ∞ and s ∈ [0,∞). Then, for all w ∈ Σ∗ and all prefix sets B ⊆ Σ∗,

∑
u∈B

d(wu)ν(wu)s ≤ d(w)ν(w)s.

Intuitively, a ν-s-gale d is a strategy for betting on the successive symbols in a
sequence S ∈ Σ∞. We regard the value d(w) as the amount of money that a gambler
using the strategy d will have after betting on the symbols in w if w is a prefix of S.
If s = 1, then the ν-s-gale identity

(3.3) d(w)ν(w)s =
∑
a∈Σ

d(wa)ν(wa)s

ensures that the payoffs are fair in the sense that the conditional ν-expected value
of the gambler’s capital after the symbol following w, given that w has occurred, is
precisely d(w), the gambler’s capital after w. If s < 1, then (3.3) says that the payoffs
are less than fair. If s > 1, then (3.3) says that the payoffs are more than fair. Clearly,
the smaller s is, the more hostile the betting environment is.
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There are two important notions of success for a supergale.
Definition 3.10. Let d be a ν-s-supergale, where ν is a probability measure on

Σ∞ and s ∈ [0,∞), and let S ∈ Σ∞.
1. We say that d succeeds on S, and we write S ∈ S∞[d] if

lim supt→∞ d(S[0..t− 1]) = ∞.
2. We say that d succeeds strongly on S and we write S ∈ S∞

str[d] if

lim inf
t→∞

d(S[0..t− 1]) = ∞.

Notation. Let ν be a probability measure on Σ∞, and let X ⊆ Σ∞.
1. Gν(X) is the set of all s ∈ [0,∞) such that there is a ν-s-gale d for which

X ⊆ S∞[d].
2. Gν,str(X) is the set of all s ∈ [0,∞) such that there is a ν-s-gale d for which

X ⊆ S∞
str[d].

3. Ĝν(X) is the set of all s ∈ [0,∞) such that there is a ν-s-supergale d for which
X ⊆ S∞[d].

4. Ĝν,str(X) is the set of all s ∈ [0,∞) such that there is a ν-s-supergale d for
which X ⊆ S∞

str[d].
The following theorem gives useful characterizations of the classical Hausdorff

and packing dimensions with respect to probability measures on sequence spaces.
Theorem 3.11 (gale characterizations of dimν

H(X) and Dimν
P(X)). If ν is a

strongly positive probability measure on Σ∞, then, for all X ⊆ Σ∞,

(3.4) dimν
H(X) = inf Gν(X) = inf Ĝν(X)

and

(3.5) Dimν
P(X) = inf Gν,str(X) = inf Ĝν,str(X).

Proof. In this proof we will use the following notation for each w ∈ Σ∗, Cw =
{S ∈ Σ∞ | w � S }.

Notice that for each S ∈ Σ∞, r > 0, the balls B(S, r) = Cv, B
o(S, r) = Cw for

some v, w ∈ Σ∗. Therefore, either two balls Cw, Cw′ are disjoint or one is contained
in the other.

In order to prove (3.4) it suffices to show that for all s ∈ [0,∞),

Hs(X) = 0 =⇒ s ∈ Gν(X) =⇒ s ∈ Ĝν(X) =⇒ Hs(X) = 0.

First, assume that Hs(X) = 0. Then Hs
1(X) = 0, which implies that for each

r ∈ N there is a disjoint cover B ∈ C1 such that
∑

B∈B diam(B)s < 2−r. Let Ar =
{w ∈ Σ∗ | Cw ∈ B}.

We define a function d : Σ∗ → [0,∞) as follows. Let w ∈ Σ∗. If there exists v � w
such that v ∈ Ar, then

dr(w) =

(
ν(w)

ν(v)

)1−s

.

Otherwise,

dr(w) =
∑
u,

wu∈Ar

(
ν(wu)

ν(w)

)s

.

It is routine to verify that the following conditions hold for all r ∈ N.
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(i) dr is a ν-s-gale.
(ii) dr(λ) < 2−r.
(iii) For all w ∈ Ar, dr(w) = 1.

Let d =
∑∞

r=0 2rd2r. Notice that d is a ν-s-gale. To see that X ⊆ S∞[d], let T ∈ X,
and let r ∈ N be arbitrary. Since B covers X, there exists w ∈ A2r such that w � T .
Then by (iii) above, d(w) ≥ 2rd2r(w) = 2r. Since r ∈ N is arbitrary, this shows that
T ∈ S∞[d], confirming that X ⊆ S∞[d].

We have now shown that d is a ν-s-gale such that X ⊆ S∞[d], whence s ∈ Gν(X).

Conversely, assume that s ∈ Ĝν(X). To see that Hs(X) = 0, let δ > 0, r ∈ N. It
suffices to show that Hs(X) ≤ 2−r. If X = ∅, this is trivial, so assume that X �= ∅.

Since s ∈ Ĝν(X), there is a ν-s-supergale d such that X ⊆ S∞[d]. Note that
d(λ) > 0 because X �= ∅. Let

A = {w ∈ Σ∗ | ν(w) < δ, d(w) ≥ 2rd(λ) and (∀v)[v � w =⇒ v �∈ A]} .

It is clear that A is a prefix set. It is also clear that B = {Cw | w ∈ A} is a δ-cover
of S∞[d], and since X ⊆ S∞[d], B is also a δ-cover of X. By Lemma 3.9 and the
definition of A, we have

d(λ) ≥
∑
w∈A

ν(w)sd(w) ≥ 2rd(λ)
∑
w∈A

ν(w)s.

Since B ∈ Cδ(X) and d(λ) > 0, it follows that

Hs
δ (X) ≤

∑
w∈A

ν(w)s ≤ 2−r.

This completes the proof of (3.4).
The proof of (3.5) is based on the following three claims.
Claim 1. For each family Xi ⊆ Σ∞, i ∈ N, inf Gν,str(∪iXi) = supi inf Gν,str(Xi).
Claim 2. For each X ⊆ Σ∞, if P s

0 (X) < ∞, then inf Gν,str(X) ≤ s.

Claim 3. For each X ⊆ Σ∞, if s > inf Ĝν,str(X), then P s(X) = 0.
Proof of Claim 1. The ≥ inequality follows from the definition of Gν,str(). To

prove that inf Gν,str(∪iXi) ≤ supi inf Gν,str(Xi), let s > supi inf Gν,str(Xi). Assume
that Xi �= ∅ for every i, since otherwise the proof is similar taking only nonempty
Xi’s. Then for each i ∈ N there is a ν-s-gale di such that Xi ⊆ S∞

str[di]. We define a
ν-s-gale d by

d(w) =
∑
i

2−i

di(λ)
di(w)

for all w ∈ Σ∗. Then for each i, for any S ∈ Xi, we have

d(S[0..n− 1]) ≥ 2−i

di(λ)
di(S[0..n− 1])

for all n, so S ∈ S∞
str[d]. Therefore, ∪iXi ⊆ S∞

str[d] and the claim follows.
Proof of Claim 2. Assume that P s

0 (X) < ∞. Let ε > 0. Let

A = {w | w ∈ Σ∗ and Cw ∩X �= ∅} .

Notice that there is a constant c such that for every n,
∑

w∈A=n ν(w)s < c and that for
each T ∈ X, for every n, T [0..n− 1] ∈ A. For each n ∈ N we define dn : Σ∗ → [0,∞)
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similarly to the first part of this proof; that is, we let w ∈ Σ∗. If there exists v � w
such that v ∈ A=n, then

dn(w) =

(
ν(w)

ν(v)

)1−s

.

Otherwise,

dn(w) =
∑
u,

wu∈A=n

(
ν(wu)

ν(w)

)s

.

dn is a ν-s-gale, dn(λ) =
∑

u∈A=n ν(u)s, and for all w ∈ A=n, dn(w) = 1.
Let d(w) =

∑∞
n=0 ν(w)−εdn(w). Notice that d is a ν-(s + ε)-gale. To see that

X ⊆ S∞
str[d], let T ∈ X and let n be arbitrary. Since T [0..n− 1] ∈ A,

d(T [0..n− 1]) ≥ ν(T [0..n− 1])−εdn(T [0..n− 1]) ≥ ν(T [0..n− 1])−ε.

Since ν(T [0..n − 1])
n→∞−→ 0, this shows that T ∈ S∞

str[d]. Therefore, X ⊆ S∞
str[d] and

inf Gν,str(X) ≤ s + ε for arbitrary ε, so the claim follows.

Proof of Claim 3. Let s > t > inf Ĝν,str(X). To see that P s(X) = 0, let d be a
ν-t-supergale such that X ⊆ S∞

str[d]. Let i ∈ N and

Xi = {T | ∀n ≥ i, d(T [0..n− 1]) > d(λ)} .

Then X ⊆ ∪iXi. For each i ∈ N we prove that P s
0 (Xi) = 0.

Let δi = min|w|≤i ν(w). Let δ < δi and B be a δ-packing of Xi; then B ⊆
{w | d(w) > d(λ)} and

∑
w∈B ν(w)t ≤ 1. Therefore, P t

0(Xi) ≤ 1 and P s
0 (Xi) = 0

(since
∑

w∈B ν(w)s ≤ δs−t δ→0−→ 0). Therefore P s(X) = 0 and the claim follows.
We next prove (3.5). inf Gν,str(X) ≤ Dimν

P(X) follows from Claims 1 and 2, and

Dimν
P(X) ≤ Ĝν,str(X) from Claim 3.
We note that the case ν = μ of (3.4) was proven by Lutz [36], and the case ν = μ

of (3.5) was proven by Athreya et al. [1].
Guided by Theorem 3.11, we now develop the constructive fractal ν-dimensions.
Definition 3.12. A ν-s-supergale d is constructive if it is lower semicomputable,

i.e., if there is an exactly computable function d̂ : Σ∗ × N → Q with the following two
properties.

(i) For all w ∈ Σ∗ and t ∈ N, d̂(w, t) ≤ d̂(w, t + 1) < d(w).

(ii) For all w ∈ Σ∗, limt→∞ d̂(w, t) = d(w).
Notation. For each probability measure ν on Σ∞ and each set X ⊆ Σ∞, we define

the sets Gν
constr(X), Gν,str

constr(X), Ĝν
constr(X), and Ĝν,str

constr(X) exactly like the sets Gν(X),

Gν,str(X), Ĝν(X), and Ĝν,str(X), respectively, except that the gales and supergales d
are now required to be constructive.

Definition 3.13. Let ν be a probability measure on Σ∞, and let X ⊆ Σ∞.
1. The constructive ν-dimension of X is cdimν(X) = inf Ĝν

constr(X).

2. The constructive strong ν-dimension of X is cDimν(X) = inf Ĝν,str
constr(X).

3. The constructive dimension of X is cdim(X) = cdimμ(X).
4. The constructive strong dimension of X is cDim(X) = cDimμ(X).

The fact that the “unhatted” G-classes can be used in place of the “hatted” Ĝ-
classes is not as obvious in the constructive case as in the classical case. Nevertheless,
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Fenner [16] proved that this is the case for constructive ν-dimension. (Hitchcock [25]
proved this independently for the case ν = μ.) The case of strong ν-dimension also
holds with a more careful argument [1].

Theorem 3.14 (Fenner [16]). If ν is a strongly positive, computable probability
measure on Σ∞, then, for all X ⊆ Σ∞,

cdimν(X) = inf Gν
constr(X)

and

cDimν(X) = inf Gν,str
constr(X).

A correspondence principle for an effective dimension is a theorem stating that
the effective dimension coincides with its classical counterpart on sufficiently “simple”
sets. The following such principle, proven by Hitchcock [26], extended a correspon-
dence principle for computable dimension that was implicit in results of Staiger [46].

Theorem 3.15 (correspondence principle for constructive dimension [26]). If
X ⊆ Σ∞ is any union (not necessarily effective) of computably closed, i.e., Π0

1, sets,
then cdim(X) = dimH(X).

We now define the constructive dimensions of individual sequences.
Definition 3.16. Let ν be a probability measure on Σ∞, and let S ∈ Σ∞. Then

the ν-dimension of S is

dimν(S) = cdimν({S}),

and the strong ν-dimension of S is

Dimν(S) = cDimν({S}).

4. Kolmogorov complexity characterizations. In this section we prove char-
acterizations of constructive ν-dimension and constructive strong ν-dimension in terms
of Kolmogorov complexity. These characterizations are used in the proof of our main
theorem in section 6.

Let Σ be a finite alphabet, with |Σ| ≥ 2. The Kolmogorov complexity of a string
w ∈ Σ∗ is the natural number

K(w) = min {|π| | π ∈ {0, 1}∗ and U(π) = w} ,

where U is a fixed optimal universal prefix Turing machine. This is a standard no-
tion of (prefix) Kolmogorov complexity. The reader is referred to the standard text
by Li and Vitányi [33] for background on prefix Turing machines and Kolmogorov
complexity.

If ν is a probability measure on Σ∞, then the Shannon self information of a string
w ∈ Σ∗ with respect to ν is

Iν(w) = log
1

ν(w)
.

Note that 0 ≤ Iν(w) ≤ ∞. Equality holds on the left here if and only if ν(w) = 1,
and equality holds on the right if and only if ν(w) = 0. Since our results here concern
strongly positive probability measures, we will have 0 < Iν(w) < ∞ for all w ∈ Σ+.

The following result is the main theorem of this section. It gives characterizations
of the ν-dimensions and the strong ν-dimensions of sequences in terms of Kolmogorov
complexity.
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Theorem 4.1. If ν is a strongly positive, computable probability measure on Σ∞,
then, for all S ∈ Σ∞,

(4.1) dimν(S) = lim inf
m→∞

K(S[0..m− 1])

Iν(S[0..m− 1])

and

(4.2) Dimν(S) = lim sup
m→∞

K(S[0..m− 1])

Iν(S[0..m− 1])
.

Proof. Let S ∈ Σ∞. Let s > s′ > lim infm
K(S[0..m−1])
Iν(S[0..m−1]) . For infinitely many m,

K(S[0..m− 1]) < s′ Iν(S[0..m− 1]), and so ν(S[0..m− 1])s
′
< 2−K(S[0..m−1]).

Let m ∈ N. We define the computably enumerable (c.e.) set

A = {w | K(w) < s′ Iν(w)}

and the ν-s-constructive supergale dm as follows. If there exists v � w such that
v ∈ A=m, then

dm(w) =

(
ν(w)

ν(v)

)1−s

.

Otherwise,

dm(w) =
∑
u,

wu∈A=m

(
ν(wu)

ν(w)

)s

.

First, notice that dm is well defined since dm(λ) < ∞ and dm is a supergale,

dm(λ) =
∑

u∈A=m

ν(u)s ≤
∑

u∈A=m

2−K(u)(1 − δ)m(s−s′) ≤ (1 − δ)m(s−s′),

for δ ∈ (0, 1) a constant testifying that ν is strongly positive.
We define the ν-s-constructive supergale

d(w) =
∑
m

(1 − δ)−m(s−s′)d2m(w) +
∑
m

(1 − δ)−m(s−s′)d2m+1(w).

Notice that the fact that A is c.e. is necessary for the constructivity of d. Since for
w ∈ A, d|w|(w) = 1, we have that d(w) ≥ (1 − δ)−|w|(s−s′)/2 for w ∈ A. Since for
infinitely many m, S[0..m− 1] ∈ A, we have that S ∈ S∞[d] and dimν(S) ≤ s. This
finishes the proof of the first inequality of (4.1).

For the other direction, let s > dimν(S). Let d be a ν-s-constructive gale suc-
ceeding on S. Let c ≥ d(λ) be a rational number.

Let B = {w | d(w) > c}, and notice that B is c.e. For every m,

∑
w∈B=m

ν(w)s ≤ 1.

Let θm : B=m → {0, 1}∗ be the Shannon–Fano–Elias code given by the probability
submeasure p defined as p(w) = ν(w)s for w ∈ B=m (this code assigns shorter code
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words θm(w) to words with a larger probability p(w); see, for example, [10]). Specifi-
cally, for each w ∈ B=m, θm(w) is defined as the most significant 1 + �log 1

p(w)� bits

of the real number

∑
|v|=m,
v<B w

p(v) +
1

2
p(w),

where <B corresponds to the words in B ordered according to their appearance in the
computable enumeration of B.

Then

|θm(w)| = 1 +

⌈
log

1

p(w)

⌉
= 1 + �s Iν(w)�

for w ∈ B=m.
Since B is c.e., codification and decodification can be computed given the length;

that is, every w ∈ B can be computed from |w| and θ|w|(w). Therefore, if w ∈ B,
K(w) ≤ 2 + s Iν(w) + 2 log(|w|).

Notice that since ν is strongly positive, Iν(w) = Ω(|w|), and since there exist
infinitely many m for which S[0..m− 1] ∈ B,

lim inf
m→∞

K(S[0..m− 1])

Iν(S[0..m− 1])
≤ s.

The proof of (4.2) is analogous.
If ν is a strongly positive probability measure on Σ∞, then there is a real constant

α > 0 such that, for all w ∈ Σ∗, Iν(w) ≥ α|w|. Since other notions of Kolmogorov
complexity, such as the plain complexity C(w) and the monotone complexity Km(w)
[33], differ from K(w) by at most O(log |w|), it follows that Theorem 4.1 also holds
with K(S[0..m− 1]) replaced by C(S[0..m− 1]), Km(S[0..m− 1]), etc.

The following known characterizations of dimension and strong dimension are
simply the special case of Theorem 4.1 in which Σ = {0, 1} and ν = μ.

Corollary 4.2 (see [39, 1]). For all S ∈ {0, 1}∞,

dim(S) = lim inf
m→∞

K(S[0..m− 1])

m

and

Dim(S) = lim sup
m→∞

K(S[0..m− 1])

m
.

Later, alternative proofs of Corollary 4.2 appear in [37, 48].
We define the dimension and strong dimension of a point x in Euclidean space

as in (1.7) and (1.8). It is convenient to characterize these dimensions in terms of
Kolmogorov complexity of rational approximations in Euclidean space. Specifically,
for each x ∈ Rn and r ∈ N, we define the Kolmogorov complexity of x at precision r
to be the natural number

Kr(x) = min
{
K(q)

∣∣ q ∈ Qn and |q − x| ≤ 2−r
}
.

That is, Kr(x) is the minimum length of any program π ∈ {0, 1}∗ for which U(π) ∈
Qn∩B(x, 2−r). (Related notions of approximate Kolmogorov complexity have recently
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been considered by Vereshchagin and Vitányi [51] and Fortnow, Lee, and Vereshchagin
[18].) We also mention the quantity

Kr(r, x) = min
{
K(r, q)

∣∣ q ∈ Qn and |q − x| ≤ 2−r
}
,

in which the program π must specify the precision parameter r as well as a rational
approximation q of x to within 2−r. The following relationship between these two
quantities is easily verified by standard techniques.

Observation 4.3. There exist constants a, b ∈ N such that, for all x ∈ Rn and
r ∈ N,

Kr(x) − a ≤ Kr(r, x) ≤ Kr(x) + K(r) + b.

We now show that the quantity Kr(r, x) is within a constant of the Kolmogorov
complexity of the first nr bits of an interleaved binary expansion of the fractional part
of the coordinates of x, which was defined in section 1, together with the integer part
of x.

Lemma 4.4. There is a constant c ∈ N such that, for all x = (x1, . . . , xn) ∈ Rn,
all interleaved binary expansions S of the fractional parts of x1, . . . , xn, and all r ∈ N,

(4.3) |Kr(r, x) − K(�x�, S[0..nr − 1])| ≤ c,

where �x� is the interleaved binary expansion of (�x1�, . . . , �xn�).
Proof. We first consider the case x ∈ [0, 1]n. For convenience, let l = � log n

2 �
(notice that both n and l are constants). Let M be a prefix Turing machine such
that, if π ∈ {0, 1}∗ is a program such that U(π) = w ∈ {0, 1}∗ and |w| is divisible by

n, and if v ∈ {0, 1}nl, then M(πv) = (|w|/n, q), where q ∈ Qn is the dyadic rational
point whose interleaved binary expansion is wv. Let c1 = nl + cM , where cM is an
optimality constant for M . Let x ∈ Rn, let S be an interleaved binary expansion of
x, and let r ∈ N. Let π ∈ {0, 1}∗ be a witness to the value of Kr(S[0..nr − 1]), and
let v = S[nr..n(r + l)− 1]. Then M(πv) = (r, q), where q is the dyadic rational point
whose interleaved binary expansion is S[0..n(l + r) − 1]. Since

|q − x| =
√

n(2−(r+l))2 = 2−(r+l)
√
n ≤ 2−r,

it follows that

(4.4) Kr(r, x) ≤ |πv| + cM = K(S[0..nr − 1]) + c1,

which is one of the inequalities we need to get (4.3).
We now turn to the reverse inequality. For each r ∈ N and q ∈ Qn, let Ar,q be

the set of all r-dyadic points within 2l−r +2r of q. That is, Ar,q is the set of all points
q′ = (q′1, . . . , q

′
n) ∈ Qn such that |q − q′| ≤ 2l−r + 2r and each q′i is of the form 2−ra′i

for some integer a′i.
Let q′, q′′ ∈ Ar,q. For each 1 ≤ i ≤ n, let q′i = 2−ra′i and q′′i = 2−ra′′i be the ith

coordinates of q′ and q′′, respectively. Then, for each 1 ≤ i ≤ n, we have

|a′i − a′′i | = 2r|q′i − q′′i |
≤ 2r(|q′ − q| + |q′′ − q|)
≤ 2r+1(2l−r + 2−r)

= 2l+1 + 2.
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This shows that there are at most 2l+1 + 3 possible values of a′i. It follows that

(4.5) |Ar,q| ≤ (2l+1 + 3)n.

Let M ′ be a prefix Turing machine such that, if π ∈ {0, 1}∗ is a program such that
U(π) = (r, q) ∈ N × Qn, 0 ≤ m < |Ar,q|, and sm is the mth string in the standard
enumeration s0, s1, s2, . . . of {0, 1}∗, then M ′(π0|sm|1sm) is the nr-bit interleaved
binary expansion of the fractional points of the coordinates of the mth element of a
canonical enumeration of Ar,q. Let c2 = n(2l′ + 1) + cM ′ , where l′ = �log(2l+1 + 3)�
and cM ′ is an optimality constant for M ′.

Let x ∈ Rn, let S be an interleaved binary expansion of x, and let r ∈ N. Let
q′ be the r-dyadic point whose interleaved binary expansion is S[0..nr − 1], and let
π ∈ {0, 1}∗ be a witness to the value of Kr(r, x). Then U(π) = (r, q) for some
q ∈ Qn ∩B(x, 2−r). Since

|q′ − q| ≤ |q′ − x| + |q − x|
≤ 2−r

√
n + 2−r

≤ 2l−r + 2−r,

we have q′ ∈ Aq,r. It follows that there exists 0 ≤ m < |Ar,q| such that M ′(π0|sm|1sm) =
S[0..nr − 1]. This implies that

K(S[0..nr − 1]) ≤ |π0|sm|1sm| + cM ′

= Kr(r, x) + 2|sm| + cM ′ + 1

≤ Kr(r, x) + 2|s|Ar,q|−1| + cM ′ + 1(4.6)

= Kr(r, x) + 2�log |Ar,q|� + cM ′ + 1

≤ Kr(r, x) + 2�n log(2l+1 + 3)� + cM ′ + 1

≤ Kr(r, x) + c2.

If we let c = max{c1, c2}, then (4.4) and (4.6) imply (4.3).

For the general case, notice that Kr(r, �x�) = K(�x�) + O(1).

We now have the following characterizations of the dimensions and strong dimen-
sions of points in Euclidean space.

Theorem 4.5. For all x ∈ Rn,

(4.7) dim(x) = lim inf
r→∞

Kr(x)

r
,

and

(4.8) Dim(x) = lim sup
r→∞

Kr(x)

r
.

Proof. Let x ∈ Rn, and let S be an interleaved binary expansion of the fractional
parts of the coordinates of x. By (1.7) and Corollary 4.2, we have

dim(x) = n dim(S)

= n lim inf
m→∞

K(S[0..m− 1])

m
.



1098 JACK H. LUTZ AND ELVIRA MAYORDOMO

Since all values of K(S[0..m− 1]) with nr ≤ m < n(r + 1) are within a constant
(that depends on the constant n) of one another, it follows that

dim(x) = n lim inf
r→∞

K(S[0..nr − 1])

nr

= lim inf
r→∞

K(S[0..nr − 1])

r
.

Since K(r) = O(log r) [33], it follows by Observation 4.3 and Lemma 4.4 that (4.7)
holds. The proof that (4.8) holds is analogous.

5. Self-similar fractals. This expository section reviews a fragment of the the-
ory of self-similar fractals that is adequate for understanding our main theorem and
its proof. Our treatment is self-contained but of course far from complete. The inter-
ested reader is referred to any of the standard texts [2, 12, 13, 15] for more extensive
discussion.

Definition 5.1. A contracting similarity on a set D ⊆ Rn is a function S :
D → D for which there exists a real number c ∈ (0, 1), called a contraction ratio of
S, satisfying |S(x) − S(y)| = c|x− y| for all x, y ∈ D.

Definition 5.2. An iterated function system (IFS) is a finite sequence S =
(S0, . . . , Sk−1) of two or more contracting similarities on a nonempty, closed set D ⊆
Rn. We call D the domain of S, writing D = dom(S).

We note that IFSs are often defined more generally. For example, IFSs consisting
of contractions, which merely satisfy inequalities of the form |S(x)−S(y)| ≤ c|x−y| for
some c ∈ (0, 1), are often considered. Since our results here are confined to self-similar
fractals, we have used the more restrictive definition.

We use the standard notation K(D) for the set of all nonempty compact (i.e.,
closed and unbounded) subsets of a nonempty closed set D ⊆ Rn. For each IFS S,
we write K(S) = K(dom(S)).

With each IFS S = (S0, . . . , Sk−1), we define the transformation S : K(S) → K(S)
by

S(A) =

k−1⋃
i=0

Si(A)

for all A ∈ K(S), where Si(A) is the image of A under the contracting similarity Si.
Observation 5.3. For each IFS S, there exists A ∈ K(S) such that S(A) ⊆ A.
Proof. Assume the hypothesis, with S = (S0, . . . , Sk−1) and dom(S) = D,

and let c0, . . . , ck−1 be contraction ratios of S0, . . . , Sk−1, respectively. Let c =
min{c0, . . . , ck−1}, noting that c ∈ (0, 1), and fix z ∈ D. Let

r =
1

1 − c
max
0≤i<k

|Si(z) − z|,

and let A = D ∩ Br(z). Then A is a closed subset of the compact set Br(z), and
z ∈ A, so A ∈ K(S). For all x ∈ A and 0 ≤ i < k, we have

|Si(x) − z| ≤ |Si(x) − Si(z)| + |Si(z) − z|
= c|x− z| + |Si(z) − z|
≤ cr + (1 − c)r

= r,
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so each Si(A) ⊆ A, and so S(A) ⊆ A.
For each IFS S = (S0, . . . , Sk−1) and each set A ∈ K(S) satisfying S(A) ⊆ A, we

define the function SA : Σ∗
k → K(S) by the recursion

SA(λ) = A,

SA(iw) = Si(SA(w))

for all w ∈ Σ∗
k and i ∈ Σk.

If c = max{c0, . . . , ck−1}, where c0, . . . , ck−1 are contraction ratios of S0, . . . , Sk−1,
respectively, then routine inductions establish that, for all w ∈ Σ∗

k and i ∈ Σk,

(5.1) SA(iw) ⊆ SA(w)

and

(5.2) diam(SA(w)) ≤ c|w|diam(A).

Since c ∈ (0, 1), it follows that, for each sequence T ∈ Σ∞
k , there is a unique point

SA(T ) ∈ Rn such that

(5.3)
⋂
w	T

SA(w) = {SA(T )}.

In this manner, we have defined a function SA : Σ∞
k → Rn. The following observation

shows that this function does not really depend on the choice of A.
Observation 5.4. Let S be an IFS. If A,B ∈ K(S) satisfy S(A) ⊆ A and

S(B) ⊆ B, then SA = SB.
Our proof of Observation 5.4 uses the Hausdorff metric on K(Rn), which is the

function ρH : K(Rn) ×K(Rn) → [0,∞) defined by

ρH(A,B) = max{sup
x∈A

inf
y∈B

|x− y|, sup
y∈B

inf
x∈A

|x− y|}

for all A,B ∈ K(Rn). It is easy to see that ρH is a metric on K(Rn). It follows that
ρH is a metric on K(S) for every IFS S.

Proof of Observation 5.4. Assume the hypothesis, with S = (S0, . . . , Sk−1), and
let c0, . . . , ck−1 be contraction ratios of S0, . . . , Sk−1, respectively. The definition of
ρH implies immediately that, for all E,F ∈ K(S) and 0 ≤ i < k, ρH(Si(E), Si(F )) =
ciρH(E,F ). It follows by an easy induction that, if we let c = max{c0, . . . , ck−1},
then, for all w ∈ Σ∗

k,

(5.4) ρH(SA(w), SB(w)) ≤ c|w|ρH(A,B).

To see that SA = SB , let T ∈ Σ∞
k , and let ε > 0. For each w � T , (5.1), (5.2),

and (5.3) tell us that

(5.5) ρH({SA(T )}, SA(w)) ≤ diam(SA(w)) ≤ c|w|diam(A)

and

(5.6) ρH({SA(T )}, SB(w)) ≤ diam(SB(w)) ≤ c|w|diam(B).
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Since c ∈ (0, 1), (5.4), (5.5), and (5.6) tell us that there is a prefix w � T such that

ρH({SA(T )}, {SB(T )})
≤ ρH({SA(T )}, SA(w)) + ρH(SA(w), SB(w)) + ρH({SB(T )}, SB(w))

< ε/3 + ε/3 + ε/3

= ε.

Since this holds for all ε > 0, it follows that ρH({SA(T )}, {SB(T )}) = 0, i.e., that
SA(T ) = SB(T ).

For each IFS S, we define the induced function S : Σ∞
k → Rn by setting S = SA,

where A is any element of K(S) satisfying S(A) ⊆ A. By Observations 5.3 and 5.4,
this induced function S is well defined.

We now have the machinery to define a rich collection of fractals in Rn.
Definition 5.5. The attractor (or invariant set) of an IFS S = (S0, . . . , Sk−1)

is the set

F (S) = S(Σ∞
k ),

i.e., the range of the induced function S : Σ∞
k → Rn.

It is well known that the attractor F (S) is the unique fixed point of the induced
transformation S : K(S) → K(S), but we do not use this fact here.

For each T ∈ Σ∞
k , we call T a coding sequence, or an S-code, of the point S(T ) ∈

F (S).
Example 5.6 (generalized Sierpinski triangles S in R2

). Let D be the set consist-

ing of the triangle in R2 with vertices v0 = (0, 0), v1 = (1, 0), and v2 = ( 1
2 ,

√
3

2 ), to-
gether with this triangle’s interior. Given c0, c1, c2 ∈ (0, 1), define S0, S1, S2 : D → D
by

Si(p) = vi + ci(p− vi)

for i ∈ {0, 1, 2} and p ∈ D. Then S0, S1, and S2 are contracting similarities with
contraction ratios c0, c1, and c2, respectively, and so S = (S0, S1, S2) is an IFS with
domain D. Intuitively, a coding sequence T ∈ {0, 1, 2}∞ can be regarded as an
abbreviation of the procedure

Δ0 := D;
for j := 0 to ∞ do

Δj+1 := the cT [j] − reduced copy of Δj lying in corner T [j] of Δj .

The point S(T ) of F (S) is then the unique point of R2 lying in all the triangles
Δ0,Δ1,Δ2, . . . . The attractor F (S) is thus a generalized Sierpinski triangle. Figure
2(a,b) illustrates this construction in the case where c0 = 1

2 , c1 = 1
4 , and c2 = 1

3 . If
c0 = c1 = c2 = 1/2, then F (S) is the familiar Sierpinski triangle of Figure 2(c).

In general, the attractor of an IFS S = (S0, . . . , Sk−1) is easiest to analyze when
the sets S0(dom(S)), . . . , Sk−1(dom(S)) are “nearly disjoint.” (Intuitively, this pre-
vents each point x ∈ F (S) from having “too many” coding sequences T ∈ Σ∞

k .) The
following definition makes this notion precise.

Definition 5.7. An IFS S = (S0, . . . , Sk−1) with domain D satisfies the open set
condition if there exists a nonempty, bounded, open set G ⊆ D such that S0(G), . . . ,
Sk−1(G) are disjoint subsets of G.
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(a) (b)

(c)

Fig. 2. (a) The IFS S of Example 5.6, with c0 = 1
2
, c1 = 1

4
, and c2 = 1

3
. (b) The attractor

F (S) of this IFS. (c) The attractor F (S) when c0 = c1 = c2 = 1
2
.

We now define the most widely known type of fractal.
Definition 5.8. A self-similar fractal is a set F ⊆ Rn that is the attractor of an

IFS that satisfies the open set condition.
Example 5.9 (Example 5.6 continued). If c0 +c1 ≤ 1, c0 +c2 ≤ 1, and c1 +c2 ≤ 1,

then the set G = Do (the topological interior of D) testifies that S satisfies the open
set condition, whence F (S) is a self-similar fractal. If c0 + c1 > 1 or c0 + c2 > 1 or
c1 + c2 > 1, then S does not satisfy the open set condition.

The following quantity plays a central role in the theory of self-similar fractals.
Definition 5.10. The similarity dimension of an IFS S = (S0, . . . , Sk−1) with

contraction ratios c0, . . . , ck−1 is the (unique) solution sdim(S) = s ∈ [0,∞) of the
equation

k−1∑
i=0

csi = 1.

If F = F (S) is a self-similar fractal, where S is an IFS satisfying the open set
condition, then the classical Hausdorff and packing dimensions of F are known to
coincide with the similarity dimension of S. (The fact that this holds for Hausdorff
dimension was proven by Moran [40]. The fact that it holds for packing dimension was
proven by Falconer [14]. As we shall see, both facts follow from our main theorem.)
In particular, this implies that the following definition is unambiguous.
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Definition 5.11. The similarity dimension of a self-similar fractal F is the
number

sdim(F ) = sdim(S),

where S is an IFS satisfying F (S) = F and the open set condition.
It should be noted that some authors define a fractal to be self-similar if it is

the attractor of any IFS S. With this terminology, i.e., in the absence of the open
set condition, the Hausdorff and packing dimensions may be less than the similarity
dimension.

6. Pointwise analysis of dimensions. In this section we prove our main the-
orem, which gives a precise analysis of the dimensions of individual points in com-
putably self-similar fractals. We first recall the known fact that such fractals are
computable.

Definition 6.1. An IFS S = (S0, . . . , Sk−1) is computable if dom(S) is a com-
putable set and the functions S0, . . . , Sk−1 are computable.

Theorem 6.2 (Kamo and Kawamura [27]). For every computable IFS S, the
attractor F (S) is a computable set.

One consequence of Theorem 6.2 is the following.
Corollary 6.3. For every computable IFS S, cdim(F (S)) = dimH(F (S)).
Proof. Let S be a computable IFS. Then F (S) is compact, hence closed, and is

computable by Theorem 6.2, so F (S) is computably closed by Observation 2.2. It
follows by the correspondence principle for constructive dimension (Theorem 3.15)
that cdim(F (S)) = dimH(F (S)).

We next present three lemmas that we use in the proof of our main theorem. The
first is a well-known geometric fact (e.g., it is Lemma 9.2 in [15]) whose proof is short
enough to repeat here.

Lemma 6.4. Let G be a collection of disjoint open sets in Rn, and let r, a, b ∈
(0,∞). If every element of G contains a ball of radius ar and is contained in a ball
of radius br, then no ball of radius r meets more than

(
1+2b
a

)n
of the closures of the

elements of G.
Proof. Assume the hypothesis, and let B be a ball of radius r. Let

M =
{
G ∈ G

∣∣ B ∩G �= ∅
}
,

and let m = |M|. Let B′ be a closed ball that is concentric with B and has radius
(1 + 2b)r. Then B′ contains G for every G ∈ M. Since each G ∈ M contains a ball
BG of radius ar, and since these balls are disjoint, it follows that

volume(B′) ≥
∑
G∈M

volume(BG).

This implies that

[(1 + 2b)r]n ≥ m(ar)n,

whence m ≤
(

1+2b
a

)n
.

Our second lemma gives a computable means of assigning rational “hubs” to the
various open sets arising from a computable IFS satisfying the open set condition.

Definition 6.5. A hub function for an IFS S = (S0, . . . , Sk−1) satisfying the
open set condition with G as witness is a function h : Σ∗

k → Rn such that h(w) ∈
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SG(w) for all w ∈ Σ∗
k. In this case, we call h(w) the hub that h assigns to the set

SG(w).
Lemma 6.6. If S = (S0, . . . , Sk−1) is a computable IFS satisfying the open set

condition with G as witness, then there is an exactly computable, rational-valued hub
function h : Σ∗

k → Qn for S and G.
Proof. Assume the hypothesis. From oracle Turing machines computing S0, . . . ,

Sk−1, it is routine to construct an oracle Turing machine M computing the function

S̃ : dom(S) × Σ∗
k → dom(S)

defined by the recursion

S̃(x, λ) = x,

S̃(x, iw) = Si(S̃(x,w))

for all x ∈ dom(S), w ∈ Σ∗
k, and i ∈ Σk. Fix a rational point q ∈ G ∩ Qn, and let Cq

be the oracle that returns the value q on all queries, noting that

(6.1) |MCq (w, r) − S̃(q, w)| ≤ 2−r

holds for all w ∈ Σ∗
k and r ∈ N. Fix l ∈ Z+ large enough to satisfy the following

conditions.
(i) G contains the closed ball of radius 2−l about q.
(ii) For each i ∈ Σk, 2−l ≤ ci, where ci is the contraction ratio of Si.

Then a routine induction shows that, for each w ∈ Σ∗
k, SG(w) contains the closed ball

of radius 2−l(1+|w|) about S̃(q, w). It follows by (6.1) that the function h : Σ∗
k → Qn

defined by

h(w) = MCq (w, l(1 + |w|))

is a hub function for S and G. It is clear that h is rational-valued and exactly
computable.

Iterated function systems induce probability measures on alphabets in the follow-
ing manner.

Definition 6.7. The similarity probability measure of an IFS S = (S0, . . . , Sk−1)
with contraction ratios c0, . . . , ck−1 is the probability measure πS on the alphabet Σk

defined by

πS(i) = c
sdim(S)
i

for all i ∈ Σk. For w ∈ Σ∗
k, we use the abbreviation IS(w) = IπS

(w).
Our third lemma provides a decidable set of well-behaved “canonical prefixes” of

sequences in Σ∞
k .

Lemma 6.8. Let S = (S0, . . . , Sk−1) be a computable IFS, and let cmin be the
minimum of the contraction ratios of S = (S0, . . . , Sk−1). For any real number

(6.2) α > sdim(S) log
1

cmin
,

there exists a decidable set A ⊆ N × Σ∗
k such that, for each r ∈ N, the set

Ar = {w ∈ Σ∗
k | (r, w) ∈ A}

has the following three properties.
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(i) No element of Ar is a proper prefix of any element of Ar′ for any r′ ≤ r.
(ii) Each sequence in Σ∞

k has a (unique) prefix in Ar.
(iii) For all w ∈ Ar,

(6.3) r · sdim(S) < IS(w) < r · sdim(S) + α.

Proof. Let S, cmin, and α be as given, and let c0, . . . , ck−1 be the contrac-
tion ratios of S0, . . . , Sk−1, respectively. Let cmax = max{c0, . . . , ck−1}, and let
δ = 1

2 min{cmin, 1 − cmax}, noting that δ ∈ (0, 1
2k ]. Since S is computable, there

is, for each i ∈ Σk, an exactly computable function

ĉi : N → Q ∩ [δ, 1 − δ]

such that, for all t ∈ N,

(6.4) |ĉi(t) − ci| ≤ 2−t.

For all T ∈ Σ∞
k and l, t ∈ N, we have

l−1∏
i=0

ĉT [i](t + i) −
l−1∏
i=0

cT [i]

=

l−1∑
i=0

⎡
⎣
⎛
⎝i−1∏

j=0

cT [j]

⎞
⎠

⎛
⎝l−1∏

j=i

ĉT [j](t + j)

⎞
⎠

−

⎛
⎝ i∏

j=0

cT [j]

⎞
⎠

⎛
⎝ l−1∏

j=i+1

ĉT [j](t + j)

⎞
⎠
⎤
⎦

=
l−1∑
i=0

(ĉT [i](t + i) − cT [i])pi,

where

pi =

⎛
⎝i−1∏

j=0

cT [j]

⎞
⎠

⎛
⎝ l−1∏

j=i+1

ĉT [j](t + j)

⎞
⎠ .

Since each |pi| ≤ 1, it follows by (6.4) that

(6.5)

∣∣∣∣∣
l−1∏
i=0

ĉT [i](t + i) −
l−1∏
i=0

cT [i]

∣∣∣∣∣ < 21−t

holds for all T ∈ Σ∞
k and l, t ∈ N.

By (6.2), we have 2−α/sdim(S)/cmin < 1, so we can fix m ∈ Z+ such that

(6.6) 21−m < 1 − 2−α/sdim(S)/cmin.

For each T ∈ Σ∞
k and r ∈ N, let

lr(T ) = min

{
l ∈ N

∣∣∣∣∣
l−1∏
i=0

ĉT [i](r + m + i + 1) ≤ 2−r − 2−(r+m)

}
,
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and let

A = {(r, T [0..lr(T )]) | T ∈ Σ∞
k and r ∈ N} .

Since the functions ĉ0, . . . , ĉk−1 are rational-valued and exactly computable, the set
A is decidable. It is clear that each Ar has properties (i) and (ii).

Let r ∈ N. To see that Ar has property (iii), let w ∈ Ar. Let l = |w|, and fix
T ∈ Σ∞

k such that l = lr(T ) and w = T [0..l− 1]. By the definition of lr(T ) and (6.5),
we have

l−1∏
i=0

cw[i] < 2−r,

which implies that

(6.7) IS(w) > r · sdim(S).

If l > 0, then the minimality of lr(T ) tells us that

l−2∏
i=0

ĉw[i](r + m + i + 1) > 2−r − 2−(r+m).

It follows by (6.5) and (6.6) that

l−2∏
i=0

cw[i] > 2−r − 21−(r+m)

= 2−r(1 − 21−m)

> 2−(r+α/sdim(S))/cmin,

whence

l−1∏
i=0

cw[i] >
cw[l−1]

cmin
2−(r+α/sdim(S))

≥ 2−(r+α/sdim(S)).

This implies that

(6.8) πS(w) > 2−(r·sdim(S)+α).

If l = 0, then πS(w) = 1, so (6.8) again holds. Hence, in any case, we have

(6.9) IS(w) < r · sdim(S) + α.

By (6.7) and (6.9), Ar has property (iii).
Our main theorem concerns the following type of fractal.
Definition 6.9. A computably self-similar fractal is a set F ⊆ Rn that is the

attractor of an IFS that is computable and satisfies the open set condition.
Most self-similar fractals occurring in the literature are, in fact, computably self-

similar. For instance, let F be a generalized Sierpinski triangle with contraction ratios
c0, c1, c2 ∈ (0, 1), defined as in Example 5.6. As we have noted, F is self-similar if
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c0 + c1 ≤ 1, c0 + c2 ≤ 1, and c1 + c2 ≤ 1. It is easy to see that F is computably
self-similar if c0, c1, and c2 are also computable real numbers.

We now have the machinery to give a complete analysis of the dimensions of
points in computably self-similar fractals.

Theorem 6.10 (main theorem). If F ⊆ Rn is a computably self-similar fractal
and S is an IFS testifying this fact, then, for all points x ∈ F and all S-codes T of x,

(6.10) dim(x) = sdim(F )dimπS (T )

and

(6.11) Dim(x) = sdim(F )DimπS (T ).

Proof. Assume the hypothesis, with S = (S0, . . . , Sk−1). Let c0, . . . , ck−1 be the
contraction ratios of S0, . . . , Sk−1, respectively, let G be a witness to the fact that S
satisfies the open set condition, and let l = max{0, �log diam(G)�}. Let h : Σ∗

k → Qn

be an exactly computable, rational-valued hub function for S and G as given by
Lemma 6.6. Let α = 1 + sdim(F ) log 1

cmin
for cmin = min{c0, . . . , ck−1}, and choose a

decidable set A for S and α as in Lemma 6.8.
For all w ∈ Σ∗

k, we have

diam(SG(w)) = diam(G)

|w|−1∏
i=0

cw[i]

= diam(G)πS(w)
1

sdim(F ) .

It follows by (6.3) that, for all r ∈ N and w ∈ Ar+l,

(6.12) 2−ra1 ≤ diam(SG(w)) ≤ 2−r,

where a1 = 2−(l+ α
sdim(F ) )diam(G).

Let x ∈ F , and let T ∈ Σ∞
k be an S-code of x, i.e., S(T ) = x. For each r ∈ N,

let wr be the unique element of Ar+l that is a prefix of T . Much of this proof is
devoted to deriving a close relationship between the Kolmogorov complexities Kr(x)
and K(wr). Once we have this relationship, we will use it to prove (6.10) and (6.11).

Since the hub function h is computable, there is a constant a2 such that, for all
w ∈ Σ∗

k,

(6.13) K(h(w)) ≤ K(w) + a2.

Since h(wr) ∈ SG(wr) and x = S(T ) ∈ SG(wr) = SG(wr), (6.12) tells us that

|h(wr) − x| ≤ diam(SG(wr)) ≤ 2−r,

whence

Kr(x) ≤ K(h(wr))

for all r ∈ N. It follows by (6.13) that

(6.14) Kr(x) ≤ K(wr) + a2
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for all r ∈ N. Combining (6.14) and the right-hand inequality in (6.3) gives

(6.15)
Kr(x)

r · sdim(F )
≤ K(wr) + a2

IS(wr) − α

for all r ∈ N.
Let E be the set of all triples (q, r, w) such that q ∈ Qn, r ∈ N, w ∈ Ar+l, and

(6.16) |q − h(w)| ≤ 21−r.

Since the set A and the condition (6.16) are decidable, the set E is decidable.
For each q ∈ Qn and r ∈ N, let

Eq,r = {w ∈ Σ∗
k | (q, r, w) ∈ E } .

We prove two key properties of the sets Eq,r. First, for all q ∈ Qn and r ∈ N,

(6.17) |q − x| ≤ 2−r ⇒ wr ∈ Eq,r.

To see that this holds, assume that |q−x| ≤ 2−r. Since x = S(T ) ∈ SG(wr) = SG(wr),
the right-hand inequality in (6.12) tells us that

|q − h(wr)| ≤ |q − x| + |x− h(wr)| ≤ 2−r + diam(SG(wr)) ≤ 21−r,

confirming (6.17).
The second key property of the sets Eq,r is that they are small, namely, that

(6.18) |Eq,r| ≤ γ

holds for all q ∈ Qn and r ∈ N, where γ is a constant that does not depend on
q or r. To see this, let w ∈ Eq,r. Then w ∈ Ar+l and |q − h(w)| ≤ 21−r, so
h(w) ∈ SG(w) ∩B(q, 21−r). This argument establishes that

(6.19) w ∈ Eq,r ⇒ B(q, 21−r) meets SG(w).

Now let

Gr = {SG(w) | w ∈ Ar+l } .

By our choice of G, Gr is a collection of disjoint open sets in Rn. By the right-hand
inequality in (6.12), each element of Gr is contained in a closed ball of radius 2−r.
Since G is open, it contains a closed ball of some radius a3 > 0. It follows by the left-
hand inequality in (6.12) that SG(w), being a contraction of G, contains a closed ball
of radius 21−ra4, where a4 = a1a3

2diam(G) . By Lemma 6.4, this implies that B(q, 21−r)

meets no more than γ of the (closures of the) elements of Gr, where γ = ( 2
a4

)n. By
(6.19), this confirms (6.18).

Now let M be a prefix Turing machine with the following property. If U(π) =
q ∈ Qn (where U is the universal prefix Turing machine), sr is the rth string in a
standard enumeration s0, s1, . . . of {0, 1}∗, and 0 ≤ m < |Eq,r|, then M(π0|sr|1sr0

m1)
is the mth element of Eq,r. There is a constant a5 such that, for all w ∈ Σ∗

k,

(6.20) K(w) ≤ KM (w) + a5.
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Taking π to be a program testifying to the value of Kr(x) and applying (6.17) and
(6.18) shows that

KM (wr) ≤ |π0|sr|1sr0
m1|

= Kr(x) + 2|sr| + m + 2

≤ Kr(x) + 2 log(r + 1) + |Eq,r| + 1

≤ Kr(x) + 2 log(r + 1) + γ + 1,

whence (6.20) tells us that

(6.21) K(wr) ≤ Kr(x) + ε(r)

for all r ∈ N, where ε(r) = 2 log(r+1)+a5+γ+1. Combining (6.21) and the left-hand
inequality in (6.3) gives

(6.22)
Kr(x)

r · sdim(F )
≥ K(wr) − ε(r)

IS(wr)

for all r ∈ N. Note that ε(r) = o(IS(wr)) as r → ∞.
By (6.15) and (6.22), we now have

(6.23)
K(wr) − ε(r)

IS(wr)
≤ Kr(x)

r · sdim(F )
≤ K(wr) + a2

IS(wr) − α

for all r ∈ N. In order to use this relationship between Kr(x) and K(wr), we need to

know that the asymptotic behavior of K(wr)
IS(wr) for r ∈ N is the same as the asymptotic

behavior of K(w)
IS(w) for arbitrary prefixes w of T . Our verification of this fact makes

repeated use of the additivity of IS , by which we mean that

(6.24) IS(uv) = IS(u) + IS(v)

holds for all u, v ∈ Σ∗
k.

Let r ∈ N, and let wr � w � wr+1, writing w = wru and wr+1 = wv. Then
(6.24) tells us that

IS(wr) ≤ IS(w) ≤ IS(wr+1),

and (6.3) tells us that

IS(wr+1) − IS(wr) ≤ sdim(F ) + α,

so we have

(6.25) IS(wr) ≤ IS(w) ≤ IS(wr) + a6,

where a6 = sdim(F ) + α. We also have

a6 ≥ IS(wr+1) − IS(wr)

= IS(uv)

= log
1

πS(uv)

≥ log c
−sdim(F )|uv|
min

= |uv|sdim(F ) log
1

cmin
,
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i.e.,

(6.26) |wr+1| − |wr| ≤ a7,

where a7 = a6

sdim(F ) log 1
cmin

.

Since (6.26) holds for all r ∈ N and a7 does not depend on r, there is a constant
a8 such that, for all r ∈ N and wr � w � wr+1,

(6.27) |K(w) − K(wr)| ≤ a8.

It follows by (6.25) that

(6.28)
K(wr) − a8

IS(wr) + a6
≤ K(w)

IS(w)
≤ K(wr) + a8

IS(wr)

holds for all r ∈ N and wr � w � wr+1.

By (6.23), (6.28), Theorem 4.5, and Theorem 4.1, we now have

dim(x) = lim inf
r→∞

Kr(x)

r

= sdim(F ) lim inf
r→∞

K(wr)

IS(wr)

= sdim(F ) lim inf
j→∞

K(T [0..j − 1])

IS(T [0..j − 1])

= sdim(F )dimπS (T )

and

Dim(x) = lim sup
r→∞

Kr(x)

r

= sdim(F ) lim sup
r→∞

K(wr)

IS(wr)

= sdim(F ) lim sup
j→∞

K(T [0..j − 1])

IS(T [0..j − 1])

= sdim(F )DimπS (T );

i.e., (6.10) and (6.11) hold.

Finally, we use relativization to derive the following well-known classical theorem
from our main theorem.

Corollary 6.11 (Moran [40], Falconer [14]). For every self-similar fractal F ⊆
Rn,

dimH(F ) = DimP(F ) = sdim(F ).

Proof. Let F ⊆ Rn be self-similar. Then there is an IFS S satisfying F (S) = F
and the open set condition. For any such S, there is an oracle A ⊆ {0, 1}∗ relative to
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which S is computable. We then have

dimH(F ) ≤ DimP(F )

= DimA
P(F )

≤ cDimA(F )

= sup
x∈F

DimA(x)

= (a) sdim(F ) sup
T∈Σ∞

k

DimπS ,A(T )

= sdim(F )

= sdim(F ) sup
T∈Σ∞

k

dimπS ,A(T )

= (b) sup
x∈F

dimA(x)

= cdimA(F )

= (c) dimA
H(F )

= dimH(F ),

which implies the corollary. Equalities (a) and (b) hold by Theorem 6.10, relativized
to A. Equality (c) holds by Corollary 6.3, relativized to A.

7. Conclusion. Our main theorem gives a complete analysis of the dimensions
of points in computably self-similar fractals. It will be interesting to see whether
larger classes of fractals are also amenable to such pointwise analyses of dimensions.
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1. Introduction. The solvability of monadic second-order unification problems
considered in this paper is a decision problem with many natural relationships with
other well-known decision problems (higher-order unification, word unification, con-
text unification and specializations thereof). For various members of this family, the
exact complexity is still not known. In this paper we show that solvability of monadic
second-order unification problems is NP-complete, thus adding a new piece to the
larger puzzle. The techniques we use in our proof turned out to be relevant for other
problems as well. Before we describe the organization of the paper we illuminate
in more detail the relationship of monadic second-order unification with the above
problems, give a brief survey on the techniques used in our proof, and indicate further
contributions obtained from our method.

1.1. Monadic second-order unification from a higher-order perspective.
Higher-order unification (HOU) is unification in the simply typed λ-calculus, i.e., the
problem of, given two λ-terms with the same type, deciding if there is a substitution
(of free variables by equally typed terms) that, applied to both terms, makes them
equivalent w.r.t. αβη-equality (see chapter about HOU in [1]).

Second-order unification (SOU) is a restriction of HOU where all variables are at
most second-order typed and constants are at most third-order typed. Some authors
restrict constants in SOU to also be second-order typed, and it is also common to con-
sider just one base type. Here, we will also make these assumptions. It is well known
that the problem of deciding if an SOU problem has a solution is undecidable [5], even
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if we impose additional restrictions on the number of second-order variables (just one),
their number of occurrences (just four), and their arity (just one) [3, 9, 13]. All these
undecidability proofs require a language with at least a binary or higher arity constant.
In fact, one single binary constant is enough [3, 14].

Monadic second-order unification (MSOU) is a restriction of SOU where all func-
tion constants occurring in the problem are at most unary. Contrary to general SOU,
MSOU is decidable [6, 24, 2]. In [23], it is proved that the problem is NP-hard. In
this paper, our main contribution is to prove that MSOU is in NP.

Assuming that second-order variables, like constants, are also unary does not
affect the decidability of MSOU or its complexity (see Proposition 3.1). Also, the use
of a unique first-order constant does not affect the complexity of MSOU. Here we will
use a single one called �. Thus, in instantiations λy . t for variables X of the problem,
the variable y can occur at most once in t. This leads to the specialization where
every equation is of the form f1(f2(. . . fn(�) . . .)) ?= g1(g2(. . . gn(�) . . .)), where fi, gi
are unary function symbols or unary variables, and which is rather similar to a word
equation.

Example 1. The equation X(a(X(�))) ?= a(Y (Y (�))) has, among others, the
solutions [X �→ λx . a(a(a(x))), Y �→ λx . a(a(a(x)))] and [X �→ λx . a(a(a(�))), Y �→
λx . a(x)]. In the second solution the instantiation of X does not use its argument.

Since all terms are monadic, we will avoid the use of parenthesis in all cases where
this is possible and write the terms as words.

1.2. Monadic second-order unification from a word unification perspec-
tive. Word unification (WU) is the problem of solving equations on strings. Given
a finite alphabet of constants Σ and variables X , a word equation s ?= t is defined
by a pair of words s, t ∈ (Σ ∪ X )+. A solution of s ?= t is a substitution of vari-
ables by words in Σ∗ such that, after replacing, the words obtained from s and t are
equal.

In MSOU, apart from Σ and X , we also have a special symbol denoted by �. A
basic MSOU equation s ?= t is defined by a pair of words s, t ∈ (Σ∪X )+ �. A solution
of s ?= t is a substitution of variables by either λx .w x or λx .w �, where w ∈ Σ∗

and where we use β-reduction after the substitution. In the first case we say that
the instantiation uses its argument. The substitution of a variable X by λx .w x in
w1 X w2, where w1, w2 do not contain X, results in w1 ww2, as in word unification,
whereas the substitution of X by λx .w � in w1 X w2 results in w1 w �. Therefore,
compared to WU in MSOU some part of the original equation can be removed after
instantiation. Moreover, the set of solutions of an MSOU equation is wider than the
set of solutions of the corresponding WU equation.

Example 2. All solutions of the word equation X aX ?= a Y Y have the form
[X �→ an, Y �→ an]. The monadic equation X aX � ?= a Y Y � has, apart from solu-
tions of the form [X �→ λx . an x, Y �→ λx . an x], other solutions of the form [X �→
λx . aww �, Y �→ λx .w x], [X �→ λx . aw x, Y �→ λx .w a aw �], [X �→ λx . x, Y �→
λx . �], and [X �→ λx . aw �, Y �→ λx .w �], for any w ∈ Σ∗.

MSOU problems can be decided by guessing for every variable whether it uses its
argument or not, modifying the equation by dropping symbols to the right of variables
that do not use their arguments, and then calling WU (see also Proposition 2.5).

Example 3. The solutions of the MSOU equation X aX � ?= a Y Y � can be
found by solving the disjunction of the word equations X aX ?= a Y Y , X ?= a Y Y ,
X aX ?= a Y , and X ?= a Y .

This simple reduction shows that MSOU is decidable, since WU is decidable [16],
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and also that MSOU is in PSPACE, since the reduction is in NP and by using the
result that WU is in PSPACE [20]. Since this is the best currently known upper bound
for WU, our result that MSOU is NP-complete gives a sharp bound that (currently)
cannot be obtained from results on WU.

1.3. Techniques. To prove that MSOU is in NP, we first show for any solvable
set of equations how we can represent (at least) one of the solutions (unifiers) in poly-
nomial space. Then, we prove that we can check in polynomial time if a substitution
(written in such a representation) is a solution.

We combine two key results to obtain this sharp bound: One is the result on the
exponential upper bound on the exponent of periodicity of size-minimal unifiers [16,
8, 23] (see Lemma 2.4). This upper bound allows us to represent exponents in linear
space. The other key is a result of Plandowski [17, 18] (see Theorem 4.2). He proves
that, given two context-free recursion-free grammars with just one rule for every
nonterminal symbol (here called singleton grammars), we can check if they define the
same (singleton) language in polynomial time (in the size of the grammars). This
result is used to check that applying a substitution (represented using this kind of
grammar) to both sides of an equation will result in the same term. The successful
combination requires us to prove a polynomial upper bound for the size increase of
the singleton grammars obtained after a series of extensions (see section 4).

1.4. Further contributions. The method presented in this paper appears to
be new and powerful for obtaining sharp complexity bounds and efficient algorithms
for unification problems.

WU can be seen as a restriction of MSOU with the extra condition that every
variable must be instantiated with a λ-term λx . t, where t has exactly one occurrence
of the bound variable x. Our results suggests that MSOU is an easier problem—from
the complexity point of view—than WU. Moreover, all naive attempts to encode
WU as MSOU have failed. The direct application of our method to WU fails, since
Lemma 6.8 does not hold for WU; i.e., if all equations are of the form X . . . ?= Y . . . ,
then there is a trivial solution as MSOU equations, but this syntactic form does not
imply any easy solution method for the equations interpreted as word equations.

Context unification (CU) is a variant of SOU where instantiations of second-order
variables use their arguments exactly once. Hence, WU is monadic CU. Decidability
of CU is currently unknown. During revision of this paper we were able to apply
variants of this technique to determine the complexity of a fragment of CU: stratified
context unification [12].

Bounded second-order unification (BSOU) is another variant of SOU where, given
a positive integer k, instantiations of second-order variables can use their arguments
at most k times. Hence, MSOU is also a subproblem of BSOU, because in MSOU
instantiations of variables can use their arguments at most once. It is also known that
BSOU is decidable [22], which provides another proof of decidability of MSOU, but
no tight upper complexity bound. On the other hand, our proof and results suggest
an application to BSOU, which has recently (during revision of this paper) resulted
in proving a precise upper complexity bound for BSOU [11].

1.5. Paper organization. This paper proceeds as follows. In section 2 we define
a basic version of the MSOU problem and give some complexity bounds. We will prove
in the rest of the paper that this problem is in NP. Then, in section 3 we define the
MSOU problem in its most general form as a specialization of SOU, and we prove
that it can be NP-reduced to the basic version. We prove some properties of singleton
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context-free grammars in section 4, and in section 5 we use them to compact the
representation of equations and solutions. We use a graph in order to describe the
instantiation of some variable w.r.t. a given solution (section 6). Sometimes, we need
to rewrite such graphs (section 7). Based on this graph, we prove that for any size-
minimal solution we can represent the values of all variable instantiations using a
polynomial-sized singleton grammar (Theorem 7.7). In section 8, we conclude the
NP-completeness of MSOU and also of the corresponding matching problem.

2. Basic monadic second-order unification. In this section we present a
simplification of the MSOU problem, called the basic MSOU problem. As we will
see in section 3 (Proposition 3.1), general MSOU can be NP-reduced to this basic
case; therefore this will not cause a loss of generality. The simplification consists
in (1) considering only unary free variables (notice that, in the general case, the
“monadic” restriction affects constants only, not variables) and (2) considering only
the function symbols occurring in the equations and a unique (zero-ary) constant,
called �. In this presentation we will limit the use of concepts and notation of the
λ-calculus as much as possible. Moreover, we will use words to represent monadic
second-order terms. This will make the use of context-free grammars in section 4
more comprehensible.

Let Σ be a finite set of unary function symbols, denoted by lowercase letters
f, g, . . . , and let X be an infinite and denumerable set of unary variables, denoted by
uppercase letters X,Y, . . . . Apart from these sets, we also consider a unique constant �.

Words of (Σ∪X )∗ are denoted by lowercase letters w, u, v, . . . , and ε is the empty
word. The length of a word w is denoted by |w|. Concatenation is juxtaposition. The
notation v � w means that the word v is a prefix of the word w.

Monadic terms, denoted by letters s, t, . . . , are defined by the grammar t ::=
� | f(t) |X(t), where f ∈ Σ and X ∈ X . We remove parentheses and represent monadic
terms, e.g., f(X(g(Y (�)))), as words, e.g., f X g Y �. Therefore, terms are redefined
as words of (Σ ∪ X )∗ �. The size of a term t = w �, noted |t|, is defined by |t| = |w|.

Monadic functions, denoted by Greek letters ϕ, . . . , may be of the form λx .w �
or λx .w x, where w ∈ (Σ ∪ X )∗. In the first case we say that the function does not
use the argument. In both cases, the size of the function is |w|, and x is said to be a
bound variable, i.e., not free.

A monadic substitution, denoted by Greek letters σ, ρ, τ, . . . , is a mapping from
a finite subset of variables to monadic functions. We represent these mappings as
σ = [X1 �→ ϕ1, . . . , Xn �→ ϕn], where Dom(σ) = {X1, . . . , Xn} is the domain of the
substitution. We extend substitutions to functions from monadic terms to monadic
terms recursively as follows:

σ(�) = �,

σ(f w1) = f σ(w1),

σ(X w1) = w2 � if σ(X) = λx .w2 �,

σ(X w1) = w2 σ(w1) if σ(X) = λx .w2 x.

The size of a substitution is defined as |σ| =
∑

X∈Dom(σ) |σ(X)|. Given two substitu-

tions σ and ρ, their composition is defined by (σ ◦ρ)(t) = σ(ρ(t)), for any term t, and
is also a substitution; hence Dom(σ ◦ ρ) is finite. Given a set of variables V and a
substitution σ, the restriction of σ to the domain V is denoted by σ|V . Given a set of
variables V , we say that a substitution σ is more general w.r.t. V than another sub-
stitution ρ, denoted σ �V ρ, if there exists a substitution τ such that ρ(X) = τ(σ(X))
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for all variables X ∈ V , i.e., ρ = (τ ◦ σ)|V . (Usually, V will be the set of variables
occurring in a set of equations; in this case, we do not mention V if it is clear from the
context). This defines a preorder relation on substitutions. An equivalence relation
can also be defined as σ ≈V ρ if σ �V ρ and ρ �V σ. A substitution σ is said to be
ground if σ(X) does not contain (free occurrences of) variables for all X ∈ Dom(σ).
Notice that if σ and τ are ground, then σ ≈V τ is equivalent to σ|V = τ |V (otherwise
they are only equivalent modulo variable renaming). We say that a substitution σ
introduces a constant a (or a variable X) if, for some Y ∈ Dom(σ), σ(Y ) has an
occurrence of a (or X).

Definition 2.1. A basic monadic second-order unification problem (basic MSOU
problem) E is a finite set of pairs of monadic terms a.k.a. monadic equations, repre-
sented as E = {s1

?= t1, . . . , sn
?= tn}.

The set of variables occurring in E is denoted as FV (E). The size of E is the
sum of the sizes of its terms si and ti and is denoted as |E|. We denote the number
of equations of E as #Eq(E).

Definition 2.2. A unifier of E is a monadic substitution σ, mapping variables of
FV (E) to monadic functions and solving all equations: σ(si) = σ(ti) for i = 1, . . . , n.
It is said to be ground if σ(si) and σ(ti) do not contain free occurrences of variables
for i = 1, . . . , n. Most general unifiers are unifiers that are minimal w.r.t. �FV (E).

A solution of E is a ground unifier. A solution σ of E is said to be size-minimal if
Dom(σ) = FV (E) and has minimal size among all solutions of E; i.e., it minimizes∑

X∈FV (E) |σ(X)|.
The problem E is said to be unifiable if it has a unifier, and solvable if it has a

ground unifier or solution.
Example 4. Let f and g be unary function symbols and X and Y unary variables.

Consider the following basic MSOU problem:

{f g Y X � ?= X f g Y �}.

It has infinitely many solutions, for instance, σ1 = [X �→ λx . (f g)n x, Y �→
λx . (f g)mx] for any n,m ≥ 0 or σ2 = [X �→ λx . (f g)n+1 �, Y �→ λx . (f g)n �]
for any n ≥ 0. Obviously σ1 with n = m = 0 is a size-minimal solution. Observe also
that, interpreting the problem as a WU equation, we can use σ1 to get the correspond-
ing solution for the word equation because the monadic functions of the solutions use
their argument, whereas this is not the case for σ2.

2.1. The exponent of periodicity bound. The following lemma will provide
us with an upper bound on the number of iterations of subwords within solutions.

Definition 2.3. For a ground substitution σ, its exponent of periodicity, denoted
as eop(σ), is the maximal number n ∈ N, such that for words u, v, and w over
Σ∗, where v is not empty, σ(X) = λy . u vn w y or σ(X) = λy . u vn w � for some
X ∈ Dom(σ).

We know that any size-minimal ground unifier (i.e., solution) of a set of MSOU
equations satisfies the following exponent of periodicity lemma [16, 8, 23, 22].

Lemma 2.4 (see [22, Lemma 4.1]). There exists a constant α ∈ R+ such that
for every basic MSOU problem 〈Σ, E〉 and every size-minimal solution σ we have
eop(σ) ≤ 2α|E|.

2.2. Some upper and lower complexity bounds. We show the relation of
MSOU problems to WU. The NP-reduction of MSOU to WU (and its NP-hardness)
allows us to translate any upper bound from WU to MSOU. It does not appear to be
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possible to encode WU as an MSOU problem, which provides evidence that MSOU
may be an easier problem than WU.

Proposition 2.5. MSOU is in PSPACE.
Proof. MSOU is NP-reducible to solvability of basic MSOU problems (Proposi-

tion 3.1), and this in turn to WU: Given a basic MSOU problem E, we solve it using
WU as follows. It is only necessary to search solutions where σ(X), for X ∈ FV (E),
is of the form λx . a1 . . . an x or of the form λx . a1 . . . an �. Thus, the first step is
guessing, for every variable occurring in E, whether it uses its argument or not, i.e.,
whether it is of the first or second form. Then, we translate E into a set of word
equations by first replacing every occurrence of X s by X �, when σ(X) does not use
its argument, and then removing � at the end of the terms and interpreting them as
words. Now, we can apply an algorithm solving WU.

This nondeterministic reduction is correct, since if E is solvable as a basic MSOU
problem, then the resulting word equations are solvable (for the convenient guessing).
It is easy to see that the converse is also true.

A theorem of Plandowski [20] showing that WU is in PSPACE now implies that
MSOU is in PSPACE.

It is well known that MSOU is NP-hard [23]. We show that this also holds for
monadic second-order matching. The proof gives a good feeling of what one can
express in MSOU.

Theorem 2.6. Basic monadic second-order matching is NP-hard.
Proof. We use the ONE-IN-THREE-SAT problem, which is known to be NP-

complete [4]. An instance of the ONE-IN-THREE-SAT problem consists of the fol-
lowing: a set of propositional variables p1, . . . , pn and m clauses Ci = {qi,1, qi,2, qi,3},
where qi,j ∈ {p1, . . . , pn} for every i = 1, . . . ,m and j = 1, 2, 3. A solution is an
assignment of the truth values true and false to the propositional variables, such that
in every clause exactly one variable is assigned the value true.

We construct a basic MSOU problem where equations have ground right-hand
sides and where Σ = {a, b, c}. For every i = 1, . . . , n let Xi, Yi be unary second-order
variables. For i = 1, . . . , n, we use the equations

Xi Yi b �
?= a b �,

Xi Yi c �
?= a c �.

These equations enforce that for all i either Xi is instantiated by λx . x or by
λx . a x, and similarly for Yi, and that there are at most two possibilities for the
instantiation of the pair Xi, Yi for every i: The assignment [Xi �→ λx . a x, Yi �→ λx . x]
is interpreted as true, and the assignment [Xi �→ λx . x, Yi �→ λx . a x] as false. Every
clause C = {pi, pj , pk} is encoded as an equation

Xi Xj Xk b �
?= a b �.

Now it is obvious that the set of constructed equations has a unifier, if and only
if the instance of ONE-IN-THREE-SAT is solvable. The equations form a monadic
second-order matching problem and can be generated in linear time. Hence, the claim
follows.

3. General monadic second-order unification. In the rest of this paper we
will prove the complexity estimation for basic MSOU problems. In this section we
will argue that the restriction to “basic” does not compromise generality. The main
claim is that there is a nondeterministic reduction from (general) MSOU problems to
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basic MSOU problems that can be done in nondeterministic polynomial time. As a
subcase of HOU, the definition of the problem in all its generality requires the use of
the λ-calculus. However, we will limit its use to this section, which can be skipped
by those readers not familiar with the λ-calculus.

We will use the standard notation and definitions of the simply typed λ-calculus,
and we inherit the definitions of the previous section, unless we explicitly overwrite
them here.

We consider only one (first-order) base type o and all the second-order types con-
structed from it, i.e., the ones described by the syntax τ ::= o → o | o → τ , with the
usual convention that → is associative to the right. Hence, every type is o which has
order one, or it is of the form o → o → · · · → o and has order two.1

We consider a signature Σ = Σ0 ∪ Σ1 of constants, denoted by a, b, c, . . . , where
constants of Σ0 have type o and constants of Σ1 have type o → o. There is also
a set of variables X =

⋃
i≥0 Xi, denoted by x, y, z, . . . , where every set Xi contains

infinitely and denumerable many variables with type o → · · · → o︸ ︷︷ ︸
i+1

. Constants of Σ0

and variables of X0 are first-order typed and are said to have arity zero, whereas those
of Σi and Xi, for i > 0, are second-order typed and have arity i.

Well-typed terms over the signature Σ and the set of variables X are built as
usual in the simply typed λ-calculus:

(i) any constant a ∈ Σi and any variable x ∈ Xi is a well-typed term of type

o →i+1· · ·→ o,
(ii) if t is a well-typed term of type τ , and x ∈ X0, then (λx . t) is also a well-

typed term of type o → τ , and
(iii) if s of type o → τ and t of type o are well-typed terms, then (s t) is also a

well-typed term of type τ .
General second-order terms are defined using a signature Σ =

⋃
i≥0 Σi and a set of

variables X =
⋃

i≥0 Xi, where constants of Σi and variables of Xi have arity i. There-
fore, monadic terms are second-order terms built without using constants of arity
greater than one. Notice that there is no restriction on the arity of variables, whereas
in basic MSOU we consider only unary variables.

Any term of type o → · · · → o︸ ︷︷ ︸
n+1

is said to have arity n. It is called of first-order

type when n = 0, and of second-order type when n > 0. Hence, the arity of a term
or of a symbol determines its type, and we will usually specify the arity instead of
the type. When we say normal form we mean η-long β-reduced normal form, defined
as usual. Since we do not consider third- or higher-order constants, first-order typed
terms in normal form do not contain λ-abstractions, and second-order typed terms
contain λ-abstractions only in outermost positions. The set of free variables of a
term t is denoted by FV (t). A term without occurrences of free variables is said to
be closed. The size of a term t is denoted |t| and defined as its number of symbols
(variables and constants), when written in normal form.

Second-order substitutions are functions from terms to terms, defined as usual.
The application of a substitution σ to a term t is written as σ(t), where we implicitly
assume that σ(t) (after some β-reductions) is written in normal form. For any sub-
stitution σ, the set of variables x, such that σ(x) =βη x, is finite and is called the
domain of the substitution and denoted Dom(σ). A substitution σ can be represented

1This also means that we do not allow symbols or expressions of third- or a higher-order type.
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as [x1 �→ t1, . . . , xn �→ tn], where xi ∈ Dom(σ) and ti has the same type as xi and
satisfies ti = σ(xi).

An instance of the (general) MSOU problem is a pair 〈Σ, E〉, where Σ = Σ0 ∪Σ1

is a monadic signature and E is a set of equations E = {s1
?= t1, . . . , sn

?= tn},
where si and ti are normalized first-order terms over Σ, i.e., terms not containing
λ-abstractions.

Note that, in monadic signatures, closed second-order terms are of two forms:
λx1 . · · · .λxn . (a1 (. . . (am xi) . . .)) or λx1 . · · · .λxn . (a1 (. . . (am b) . . .)) for unary con-
stants ai and a zero-ary constant b. Since solutions σ map variables to closed terms,
in the first case we say that σ(x) uses one of its arguments, and if x is unary, we say
that σ(x) uses its argument, and in the second case we say that σ(x) is constant or
that it ignores its argument.

Unifiability of MSOU problems does not depend on the signature, as long as
the symbols of the equations are in the signature. However, its solvability has some
dependence on the signature; more precisely it depends on the existence of at least
one first-order constant.

In MSOU, as in general SOU, we can prove that for every unifiable set of equations
E, and every most general unifier σ, all constants occurring in σ also occur in E.
The proof is by contradiction. If there is a most general unifier using constants not
occurring in the equations, we can replace these constants by fresh variables, obtaining
a more general unifier. The statement does not hold for variable occurrences in
unifiers. Even if the set of equations is built from unary variables and unary constants,
most general unifiers may introduce fresh n-ary variables with n ≥ 2. For instance,
the set of equations {(x a) ?= (y b)} has only one most general second-order unifier
[x �→ λx . ((z x) b), y �→ λx . ((z a)x)] that introduces a binary variable z.

Proposition 3.1. Unifiability of MSOU problems is NP-reducible to solvability
of basic MSOU problems.

Proof. The reduction is done in three steps.
(i) First, we reduce unifiability of MSOU problems to solvability, provided that

Σ0 contains at least one constant. In other words, for any signature Σ, any
set of equations E over Σ, and first-order constant b, 〈Σ, E〉 is unifiable, if
and only if 〈Σ ∪ {b}, E〉 is solvable.

For the if direction, assume given a solution σ. If b ∈ Σ, then b ∈ E and
we can replace b by a fresh first-order variable xb everywhere in σ and obtain a
(maybe nonground) unifier of 〈Σ, E〉. For the only if part, assume given a unifier
σ. Then we can define a substitution ρ such that, for every n ≥ 0, every n-ary
variable x ∈ FV (σ(E)) is instantiated by λx1 . · · · . λxn . b. Then ρ ◦σ is a solution of
〈Σ ∪ {b}, E〉.

(ii) Second, we prove that solvability of MSOU problems is reducible in polyno-
mial time to solvability of MSOU problems with just one first-order constant.

Assume given an MSOU problem 〈Σ, E〉. If Σ0 = ∅, then the problem is unsolv-
able. Otherwise, we reduce the problem as follows. We transform the signature Σ
into a new signature Σ′ = Σ′

1 ∪Σ′
0, where the set of unary constants is Σ′

1 = Σ1 ∪Σ0;
i.e., the former zero-ary constants are unary ones in the new signature, and the set
of zero-ary constants is Σ′

0 = {�}. We replace every first-order constant occurrence
a in the equations E by (a �), obtaining a set of equations E′ over Σ′. We will see
that any solution σ of 〈Σ, E〉 can be translated into a solution σ′ of 〈Σ′, E′〉, and vice
versa.

Any solution σ of 〈Σ, E〉 can be translated into a solution of 〈Σ′, E′〉 using the
same transformation as for the equations. To show the other direction, let σ′ be
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a solution of 〈Σ′, E′〉. Before retranslating σ′ we transform it into σ′′ as follows:
For every x in Dom(σ′), we remove every occurrence of symbols a ∈ Σ0 in σ′(x)
which is not of the form (a �); i.e., we replace (a s) by s when s = �, until this
replacement is no longer applicable. The translation from E to E′ ensures that in
E′ every occurrence of all x is in subterms of the form ((. . . (x s1) . . .) sn), where
si = �. Looking at the different cases, the removal of symbols takes place only within
instantiations of variables and does not conflict with the constants occurring in E.
Hence, σ′′ is a solution of 〈Σ′, E′〉 and can be immediately retranslated to a solution
of 〈Σ, E〉.

The translations of signature, set of equations, and solutions in either direction
are polynomial.

(iii) Third, we prove that we can go a step further, assuming that all variables
are unary: We show that solvability of MSOU, where Σ0 = {�}, is nonde-
terministically reducible in polynomial time to solvability of MSOU with the
same signature, and where all variables occurring in the equations are unary:
Xn = ∅ for all n = 1.

Given an MSOU problem 〈Σ, E〉, where Σ0 = {�}, we consider substitutions
ρ that instantiate every first-order variable x ∈ FV (E) by (x′ �), where x′ is a
fresh unary variable, and every n-ary variable y ∈ FV (E) (with n ≥ 2) by either
λx1 . · · · . λxn . (y

′ xi), where 1 ≤ i ≤ n, or λx1 . · · · . λxn . (y
′ �), where y′ is a fresh

unary variable, and the selection is nondeterministic. Obviously, if for some ρ as given
above, 〈Σ, ρ(E)〉 is solvable, so is 〈Σ, E〉.

Conversely, if 〈Σ, E〉 is solvable, we prove that for some ρ satisfying the specified
conditions, 〈Σ, ρ(E)〉 is also solvable. Mainly, we prove that there is some ρ as specified
above and a substitution τ with σ(x) = τ ◦ ρ(x) for all x ∈ FV (E); thus τ solves
〈Σ, ρ(E)〉.

Since all constants have arity at most one and solutions are ground, instantiations
σ(x) of n-ary variables, for n ≥ 2, use at most one of their arguments: σ(x) =
λx1 . · · · . λxn . t, where t has a unique occurrence of some xi, or none. Therefore, we
can take ρ(x) = λx1 . · · · . λxn . (x

′ xi) or ρ(x) = λx1 . · · · . λxn . (x
′ �). Instantiations

of first-order variables use at least the first-order constant �; therefore they can also
be replaced by a fresh unary variable applied to this constant. It is obvious how to
construct the solution τ of 〈Σ, ρ(E)〉 from σ.

Finally, note that we can compute the substitution ρ in nondeterministic polyno-
mial time on the size of E because for any nonunary variable x, we can guess whether
x uses one of its arguments and, in the positive case, which argument ρ(x) uses.

The following lemma states that if there is just one zero-ary constant in the sig-
nature, the set of size-minimal solutions is independent from the rest of the signature.
Therefore, since we are dealing with size-minimal solutions of basic MSOU problems,
in the next sections, we will not specify the signature.

Lemma 3.2. For any MSOU problem 〈Σ, E〉, where Σ0 = {�}, every size-minimal
solution σ contains only constants that also occur in E or are equal to �.

Proof. Suppose that a size-minimal solution of 〈Σ, E〉 introduces a constant a that
does not occur in E. Then, we could generate a solution with a strictly smaller size by
replacing all subterms of the form (a s) by �. This would contradict minimality.

4. Singleton context-free grammars. In this section we prove some proper-
ties of context-free grammars. They will be used to compactly represent solutions
of MSOU problems. In particular, we will use singleton context-free grammars that
define languages with just one word.
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A context-free grammar (CFG) is a 4-tuple (Σ, N, P, s), where Σ is an alphabet of
terminal symbols, N is an alphabet of nonterminal symbols (contrary to the standard
conventions and in order to avoid confusion between free variables (unknowns) and
nonterminal symbols, all terminal and nonterminal symbols are denoted by lowercase
letters), P is a finite set of rules, and s ∈ N is the start symbol. In fact, we will not
distinguish any particular start symbol, and we will represent a CFG as a 3-tuple
(Σ, N, P ). Moreover, we will use Chomsky grammars with at most two symbols on
the right-hand sides of the rules.

Definition 4.1. We say that a CFG G = (Σ, N, P ) generates a word v ∈ Σ∗ if
there exists a nonterminal symbol a ∈ N such that v belongs to the language defined
by (Σ, N, P, a). In such a case, we also say that a generates v.

We say that a CFG is singleton if it is in Chomsky normal form, i.e., the right-
hand sides of the productions consist of words of length at most 2, it is not recursive,
and there exists just one production for each nonterminal symbol. Then, every nonter-
minal symbol a ∈ N generates just one word, denoted wa, and we say that a generates
wa. In general, for any sequence α ∈ (Σ ∪N)∗, wα ∈ Σ∗ denotes the word generated
by α.

Plandowski [17, 18] defines singleton grammars, but he calls them grammars
defining set of words. Note that so-called straight-line programs are an equivalent
device [7]. Plandowski proves the following result.

Theorem 4.2 (see [18, Theorem 33]). The word equivalence problem for singleton
CFGs is defined as follows: Given a singleton grammar and two nonterminal symbols
a and b, decide whether wa = wb. This problem can be solved in polynomial worst-case
time in the size of the grammar.

Recent work [15] claims that this can be done in cubic time.
For nonrecursive grammars we define their depth as follows. The usage of both

size and depth of the grammar is necessary for a good estimation, since they reflect
balancing conditions for a singleton grammar seen as a tree. Using only a single
measure leads to unsatisfactory upper bounds (see Remark 1 in section 8).

Definition 4.3. Let G = (Σ, N, P ) be a nonrecursive CFG. For any terminal
symbol a ∈ Σ we define depth(a) = 0, and for any nonterminal symbol a ∈ N we
define

depth(a) = max{depth(b) + 1 | a → α ∈ P, b occurs in α}.

We define the depth of G as depth(G) = max{depth(a) | a ∈ N}.
Given a Chomsky CFG G, we define the size of G, noted |G|, as the number of

its rules.
We say that G′ = (Σ′, N ′, P ′) is an extension of G = (Σ, N, P ), denoted as

G′ ⊇ G, if and only if Σ′ ⊇ Σ, N ′ ⊇ N , and P ′ ⊇ P , where we require only
Σ′ = Σ. We can extend a singleton grammar in order to generate concatenation,
exponentiation, and prefixes and suffixes of words already generated by the grammar.
We use these extension operations in the next sections to build the grammar defining
some solution of the unification problem. The following three lemmas state how the
size and the depth of the grammar are increased with these transformations. Since in
the final step of this paper a grammar of polynomial size is guessed and checked in
polynomial time, we only need the existence of polynomial-sized grammars. Thus we
do not care about the algorithmic complexity of constructing these grammars.

Lemma 4.4 (concatenation). Let G be a singleton grammar generating the words
v1, . . . , vn for n ≥ 1. Then there exists a singleton grammar G′ ⊇ G that generates
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the word v1 . . . vn and satisfies

|G′| ≤ |G| + n− 1,

depth(G′) ≤ depth(G) + �log n�.

Proof. Let ai be the nonterminal symbol generating vi, for any i = 1, . . . , n. We
define G′ by adding a set of rules to G of the form

bi,j → bi, � i+j
2 � b� i+j

2 �+1, j ,

where 1 ≤ i ≤ j ≤ n and bi,i is ai. Then, b1,n generates v1 . . . vn, and to generate it we
need only to add n− 1 of such rules. The depth is increased by at most �log n�.

Lemma 4.5 (exponentiation). Let G be a singleton grammar generating the
word v. For any n ≥ 1, there exists a singleton grammar G′ ⊇ G that generates
the word vn and satisfies

|G′| ≤ |G| + 2 �log n�,
depth(G′) ≤ depth(G) + �log n� + 1.

Proof. Let a be the nonterminal symbol generating v, m = �log n�, and let
n = k02

0 + k12
1 + · · · + km2m be a binary representation satisfying ki ∈ {0, 1}. We

add the following set of rules to G:

a1 → a a,
a2 → a1 a1,

· · ·
am → am−1 am−1,

b0 →
{

a if k0 = 1,
ε if k0 = 0,

b1 →
{

a1 b0 if k1 = 1,
b0 if k1 = 0,

· · ·

bm →
{

am bm−1 if km = 1,
bm−1 if km = 0.

Then, the nonterminal symbol bm generates vn, and it is easy to see that this
grammar satisfies the bounds stated by the lemma.

Lemma 4.6 (prefixes and suffixes). Let G be a singleton grammar generating the
word v. For any prefix or suffix v′ of v, there exists a singleton grammar G′ ⊇ G that
generates v′ and satisfies

|G′| ≤ |G| + depth(G),

depth(G′) = depth(G).

Proof. Let a be the nonterminal symbol generating v. By induction on depth(a),
we will prove a stronger result: For any prefix v′ of wa, there exists a grammar G′

generating v′ and satisfying |G′| ≤ |G| + depth(a) and depth(G′) = depth(G).
The base case is trivial since depth(a) = 0 implies that a is a terminal symbol,

and v′ = v or v′ is empty. For the induction case, assume that v′ = v; otherwise
we are done. Let a → α be the rule for a. Note that |α| ≤ 2. There exists a prefix
β b of α, where b is a nonterminal, such that wβ is a prefix of v′ and v′ is a prefix
of wβ b; i.e., v′ = wβ v

′′, where v′′ is a prefix of wb. By induction hypothesis, there
exists a grammar G′′ ⊇ G deriving v′′ from some b′ with the same depth as G and size
|G′′| ≤ |G|+ depth(b) ≤ |G|+ depth(a)− 1. We add a′ → β b′ to get the grammar G′
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from G′′ such that wa′ = v′. Notice that |G′| = |G′′|+ 1, and depth(G′) = depth(G′′)
because depth(b′) ≤ depth(b) implies depth(a′) ≤ depth(a).

For suffixes the proof is very similar.
We illustrate Lemmas 4.4, 4.5, and 4.6 by means of Example 5.
Example 5. Let G be the grammar defined by the productions {c1 → c2 c3,

c2 → c3 c4, c3 → ff , c4 → gg}. The words generated by the nonterminals c1, c2, c3,
and c4 of G are v1 = ffggff, v2 = ffgg, v3 = ff , and v4 = gg, respectively.

(i) Concatenation. We first show how to build the word

v1v2v3v4 = ffggffffggffgg

using the techniques of the proof of Lemma 4.4. Following the definitions of bi,j →
bi, � i+j

2 � b� i+j
2 �+1, j , and bi,i = ci, we extend G with the following rules:

b1,4 → b1,2 b3,4,
b1,2 → c1 c2,
b3,4 → c3 c4.

Then, b1,4 generates v1v2v3v4.
(ii) Exponentiation. Now we show how to build the word (v1)

5 according to the
techniques of the proof of Lemma 4.5. We have 5 = 1 · 22 + 0 · 21 + 1 · 20; hence we
extend G with the following rules:

a1 → c1 c1,
a2 → a1 a1,

b0 → c1,
b1 → b0,
b2 → a2 b1.

Then b2 generates (v1)
5.

(iii) Prefix. Finally we show how to build the word prefix v′ = ffg of v1 using
the techniques of the proof of Lemma 4.6. We extend G with the following rules:

c′1 → c′2,

c′2 → c3 c
′
4,

c′4 → g.

Then c′1 generates v′.

5. Compact representations. In this section we use singleton grammars to
compact the representation of solutions of basic MSOU problems. We go a step further
and also compact the representation of equations, allowing the use of nonterminal
symbols of a singleton grammar to represent large words also in the equations.

Definition 5.1. Let Σ be a signature of unary symbols, and let X be a set of
unary variables.

A compact representation of a basic MSOU problem E is a pair 〈E′, G〉, where
G = 〈Σ, N, P 〉 is a singleton CFG and E′ is a set of equations of the form {s1

?=
t1, . . . , sn

?= tn}, where si, ti ∈ (Σ ∪ X ∪ N)∗ �, for i = 1, . . . , n, such that when
replacing in E′ every nonterminal symbol a by the word wa that it generates, it results
in the set of equations E.

A compact representation of a monadic substitution σ is a pair 〈σ′, G〉, where
G = 〈Σ, N, P 〉 is a singleton CFG and σ′ is a mapping from variables X to terms
of the form λx . α � or λx . α x, where α ∈ (Σ ∪N)∗, such that, after replacing every
nonterminal symbol by the word it represents, we obtain σ.
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We say that 〈τ,G′〉 is a compacted solution of 〈E,G〉 if the substitution repre-
sented by 〈τ,G′〉 is a solution of the set of equations represented by 〈E,G〉, where G′

is an extension of G.
Notice that nonterminal symbols derive into sequences of unary function symbols,

that we do not consider first-order variables, and that � is the only constant. Words
of (Σ ∪ X ∪N)∗ are denoted by Greek letters α, β, . . . .

Example 6. Let Σ = {f} and N := {a, c, d}. Consider the compacted equations
〈E,G〉 defined by

E = {aX X f � ?= Y Y Y �},
G = {a → c c, c → f f}.

Then, the pairs 〈σ1, G1〉 and 〈σ2, G2〉, defined by

σ1 = [X �→ λx . c x, Y �→ λx . d x],
G1 = {a → c c, c → f f, d → c f} and

σ2 = [X �→ λx . e �, Y �→ λx . a �],
G2 = {a → c c, c → f f, e → ε},

are compacted representations of solutions of 〈E,G〉. The first solution is not size-
minimal. The second solution is size-minimal, but it is not a most general unifier. In
fact, the second is an instantiation of the most general unifiers [X �→ λx . Z x, Y �→
λx . aZ Z f �] and [X �→ λx . Z aZ aZ �, Y �→ λx . aZ x].

We generalize the basic MSOU problem in the sense that, given some compacted
equations 〈E,G〉, we will try to find a compacted solution 〈σ,G′〉. Moreover, the
grammar G′ used to represent the solution will be an extension of the grammar G
given to represent the equations.

Notice that solvability of a set of monadic equations and solvability of compact
equations are, w.r.t. decidability, equivalent problems. With respect to their complex-
ity, we will prove that solvability of compact equations can be decided in NP-time.
This implies that solvability of MSOU is also in NP (since 〈E, ∅〉 is a trivial compact
representation of E).

Notice that the straightforward translation of a compacted set of equations into
the set of monadic equations that they represent may exponentially increase the size
of the equations. Using another translation, we can show that solvability of MSOU
problems and solvability of compacted MSOU problems are polynomially equivalent.

Proposition 5.2. Given a compacted set of equations 〈E,G〉, there is a P-time
translation into a basic MSOU problem E′, such that 〈E,G〉 is solvable if and only if
E′ is solvable.

Proof. For every nonterminal a in G, define a fresh unary variable Xa. For every
production a → b c of the grammar, where a, b, c ∈ N , define a set of two equations
Ea = {Xa �

?= Xb Xc �, Xa f � ?= Xb Xc f �}, where f ∈ Σ and Xa, Xb, . . . are fresh
variables. This is similar for the other kinds of rules, where the right-hand sides are
shorter. The terminal symbols are not translated. For instance, for a → b c, where
a ∈ N and b, c ∈ Σ, Ea = {Xa �

?= b c �,Xa f � ?= b c f �}. Then, E′ = Ê ∪
⋃

a∈N Ea,

where Ê is the translation of the equations E by replacing nonterminals a with the
corresponding unary variable Xa. The size of E′ is smaller than |E| + 12 |G|, and it
can be constructed in polynomial time.

The equations in
⋃

a∈N Ea enforce that, for every nonterminal a, σ(Xa) uses its
argument, and therefore σ(Xa) = λx .wa x. Now it is easy to see that 〈E,G〉 is
solvable if and only if E′ is solvable.
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6. The graph of surface dependencies. In this section we define graphs of
surface dependencies. The purpose of these graphs is to support constructing the
compact representation of a minimal solution σ of a compacted set of equations and
estimating the size of this representation. Later on this will be used to show that
only a polynomial-sized representation has to be guessed in order to check solvability.
Observe that we only impose a bound on the size of the representation and do not care
about the complexity of finding such a representation. In our proof, we start from the
compact representation 〈E,G〉 of some basic MSOU problem and a given solution σ.
Then, we find a variable X whose instantiation can be compactly represented. This is
done by extending the grammar to G′ ⊇ G. Then, we repeat the process starting from
the same equation with the variable already instantiated. Observe that G′ (apart from
the instantiation of the X) is able to generate all the words represented by G. This
iteration describes a proof by induction, not the unification algorithm. It could be
interpreted as a nondeterministic unification procedure, however, with the restriction
of finding a size-minimal solution, and moreover, without a guarantee of being in NP.

There are cases in which for some variable X of the problem, its instantiation
σ(X) is immediately given or immediately constructible from the “surface” of the
equations. We identify two such cases: when σ has a small component (Lemma 6.6)
and when the graph contains a cycle (Lemma 6.12). We also identify three situations
which ensure that any size-minimal solution has small components: when the graph
has a constant equation (Lemma 6.7), when the graph has no edges (Lemma 6.8), and
when there are strong divergences (Lemma 6.10). In the rest of the cases, it becomes
necessary to rewrite the graph to obtain a new graph that describes the instantiation
of some variable. This graph rewriting process will be described in section 7.

The graph of surface dependencies is defined only for simplified equations, where
a simplified equation is defined as follows.

Definition 6.1. Given a compacted set of equations 〈E,G〉, we say that they
are simplified if E does not contain equations of the following forms (symmetric cases
omitted):

(i) a s ?= b t, where a, b ∈ Σ ∪N ,
(ii) s ?= a b t, where a, b ∈ Σ ∪N , or
(iii) s ?= a t, where a ∈ N and wa = ε.
Note that simplified equations are of the forms (symmetric cases omitted) X s ?=

a �, X s ?= a Y t, X s ?= � (flexible-rigid), or X s ?= Y t (flexible-flexible), where a is
a nonterminal. Note also that solvable equations without variables have the form
α � ?= β �, where α, β are in (Σ ∪N)∗, satisfy wα = wβ , and are not simplified.

We describe a simplification algorithm in the proof of the following lemma. This
algorithm will be used as a subroutine in the proof of Theorem 7.7. Notice that it
can increase the size of the associated grammar as stated in the lemma.

Lemma 6.2 (simplification). Given the solvable and compacted set of equations
〈E,G〉, there exists a simplified and compacted set of equations 〈E′, G′〉 with the same
solutions, such that

|G′| = |G| + O(|E|(depth(G) + log |E|)),
depth(G′) = depth(G) + O(log |E|),

and the number of equations, number of variables, and number of occurrences of vari-
ables in E′ are not greater than the corresponding numbers for E.

Proof. For all equations si
?= ti of E, let αi, βi be the longest prefixes of si and ti,

respectively, that do not contain variables or �; i.e., si = αi s
′
i, and ti = βi t

′
i, where
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s′i and t′i have a variable or � in the head. Let vi be the word satisfying wαi
= wβi

vi
or wαi

vi = wβi
.

Using Lemma 4.4, construct an extension of the grammar with a nonterminal for
the word α1 β1 . . . αnβn. For every i = 1, . . . , n, since vi is a suffix of some prefix of this
word, use Lemma 4.6 to prove that there exists another extension of the grammar
that generates vi. This last process will be repeated at most 2 #Eq(E) times to
obtain a new grammar G′. This ensures that depth(G′) ≤ depth(G) + �log |E|� and
|G′| ≤ |G|+ |E|+2 #Eq(E) (depth(G)+�log |E|�). This implies the estimations given
in the lemma.

Now, we construct E′ from E as follows. For every i = 1, . . . , n,
(i) if s′i = t′i = �, then remove the equation from E;
(ii) if wαi

= wβi
, then replace si

?= ti in E by s′i
?= t′i;

(iii) if wαi is a prefix of wβi , then replace s ?= t in E by s′i
?= b t′i, where b is the

nonterminal of G′ generating vi; and
(iv) proceed similarly if wβi is a prefix of wαi .
Notice that the case where neither wαi

is a prefix of wβi
nor wβi

is a prefix of wαi

is not possible for solvable equations. Notice also that, if we simplify equations one
by one, generating a suffix of a prefix of αi or of βi each time, we would get a worse
estimation.

Definition 6.3. A constant equation is a simplified and compacted equation of
the form X t ?= a � or X t ?= �, where t ∈ (Σ ∪ X ∪ N)∗ � is a compacted term and
a ∈ N is a nonterminal symbol.

We define the graph of surface dependencies only for solvable, simplified, and
compacted sets of equations.

Definition 6.4. Let 〈E,G〉 be a solvable, simplified, and compacted set of equa-
tions. Let ≈ be the minimal equivalence relation satisfying X ≈ Y whenever E con-
tains an equation of the form X s ?= Y t. This defines a partition on FV (E).

The graph of surface dependencies of 〈E,G〉 is a labeled directed multigraph2

defined as follows:
Nodes: The nodes are the ≈-equivalence classes of variables and the empty set ∅.
Edges: There are two cases:

(i) For every equation of the form X s ?= a Y t, where X,Y ∈ X are variables
and a ∈ N is a nonterminal symbol, there is an edge

Simplification yields that wa = ε for the edge label a.
(ii) For every constant equation X s ?= a �, where X ∈ X and a ∈ N , there is an

edge

In the case of a constant equation X s ?= �, we use ε as the label of the edge.
The size of a graph of surface dependencies D, denoted as |D|, is defined as its number
of edges.

Note that the node ∅ has no outgoing edges.

2There may be several edges, even labeled differently between two nodes.
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6.1. Small components of solutions. We say that a solution of 〈E,G〉 has
a small component if there exists a variable whose value is “small” enough to be
described just as the prefix of some word defined by G. This will be helpful in
the construction of a compact representation of a size-minimal solution for several
reasons: It is a case where the instantiation of a variable is completely known, it can
be constructed with only a small increase of the grammar, and it eases the definition
and argumentation for the remaining cases.

We identify some classes of compacted equations that have a solution with a small
component.

Definition 6.5. Given the simplified and compacted set of equations 〈E,G〉, a
variable X occurring in E, and a solution σ, we say that X is a small component of
σ if σ(X) = λx . v x, or σ(X) = λx . v � and either v = ε or there is a nonterminal a
in G such that v is a prefix of wa.

Lemma 6.6 (small component). Let 〈E,G〉 be a simplified and compacted set
of equations, and let σ be a solution of 〈E,G〉 with a small component X such that
σ(X) = λx . v x or σ(X) = λx . v �. Then, there exists a singleton CFG G′ ⊇ G
generating v and satisfying

|G′| ≤ |G| + depth(G),

depth(G′) = depth(G).

Proof. The inequalities follow from Definition 6.5 and Lemma 4.6.
This lemma is helpful in two ways: It allows us to eliminate variables from the

problem and it restricts the cases where this elimination does not work (and it is
necessary to rewrite the equations) to cases in which solutions do not have small com-
ponents; i.e., they have only “large” instantiations. This will simplify the reasoning.

Lemma 6.7. All solutions of simplified and compacted sets of equations containing
constant equations have at least one small component.

Proof. Let 〈E,G〉 be a simplified and compacted set of equations, and let σ be a
solution. Since σ solves a constant equation of the form X s ?= a �, it must instantiate
X either with λx . v x or with λx . v � for some prefix v of wa. Similar arguments hold
for equations of the form X s ?= �.

The following lemma describes the situation that reflects the difference between
basic MSOU problems and WU when all equations are flexible-flexible. While in
MSOU we can instantiate variables by terms not using their arguments, such as
λx . �, this is not possible when considering WU; hence the lemma does not hold for
WU. This is the point that shows that our result is not straightforwardly transferable
to WU.

Lemma 6.8. Let 〈E,G〉 be a simplified and compacted set of equations such that
the graph of surface dependencies does not contain edges and such that FV (E) = ∅,
and let σ be a size-minimal solution of 〈E,G〉. Then, for every variable X ∈ FV (E),
either σ(X) = λx . � or σ(X) = λx . x. This also means that there is at least one small
component in σ.

Proof. If there are not edges, then all equations are of the form X s ?= Y t.
The substitution σ, with σ(X) = λx . � for every variable X ∈ FV (E), is a size-
minimal solution; hence for every other size-minimal solution σ′ and for every variable
X ∈ FV (E), only σ′(X) = λx . � or σ′(X) = λx . x is possible.3

3We could make the solution with σ′(X) = λx . �, for all variables, be the only size-minimal
solution by changing the term size measure to make λx . � smaller than λx . x. However, then the
exponent of periodicity bound (see Lemma 2.4) must be adapted.



THE COMPLEXITY OF MONADIC SECOND-ORDER UNIFICATION 1129

Definition 6.9. A dependence graph D is said to contain a divergence L2
a←

L1
b→ L3 if it contains a subgraph of the following form (where L1, L2, and L3 are

not necessarily distinct nodes):

If neither wa is a prefix of wb nor wb is a prefix of wa, then it is called a strong
divergence and otherwise a weak divergence.

Strong divergences are easy to eliminate, whereas weak divergences require a more
complex treatment, which will be done by rewriting the graph.

Lemma 6.10. Given a simplified and compacted set of equations, if its graph
of surface dependencies contains a strong divergence, then every solution has small
components.

Proof. Given 〈E,G〉, let D be its graph of surface dependencies, and let σ be

any of its solutions. Assume that D contains a strong divergence L2
a← L1

b→ L3.
For every variable X ∈ L1, let vX ∈ Σ∗ be a word such that either σ(X) = λy . vX y
or σ(X) = λy . vX �. By definition of D, we have a pair of equations in E of the
form X1 · · · ?= a t1 and X2 · · · ?= b t2, where X1, X2 ∈ L1. Therefore, vX1 is a prefix
of σ(wa t1), and vX2 is a prefix of σ(wb t2). Now, let Y ∈ L1 be the variable such
that vY is the shortest word of {vX | X ∈ L1}. By the equivalence relation and
the dependence graph definitions, we have that vY is a prefix of both vX1

and vX2
,

and thus a prefix of σ(wa t1) and of σ(wb t2). Since wa is not a prefix of wb, and
vice versa, we have that vY is a proper prefix of both wa and wb. (Notice that vY
is not necessarily the longest common prefix of wa and wb). Therefore, Y is a small
component of σ.

6.2. Cycles in the graph of dependencies. The cycles in the graph of surface
dependencies describe the base of some exponentiation occurring in the instantiation
of some variables. For instance, the solutions of the equation X f � ?= f X � have the
form [X �→ λy . fn y] for some n ≥ 0. The base of this power is described by a cycle
in its graph of surface dependencies:

Lemma 6.11. Let E be a (noncompacted) set of equations with a cycle of the
form

X1 · · · ?= w1 X2 · · ·
X2 · · · ?= w2 X3 · · ·

· · ·
Xm · · · ?= wm X1 · · · ,

where wi ∈ Σ∗, for every i = 1, . . . ,m, and w1 . . . wm = ε.
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Then, for every solution σ of E, there is some variable Xk, with 1 ≤ k ≤ m, such
that σ(Xk) = λx . u x, where u is a prefix of (wk . . . wm w1 . . . wk−1)

n for sufficiently
large n.

Proof. The proof is by induction on the size of σ.
For any i = 1, . . . ,m, if σ solves Xi · · · ?= wi Xi+1 · · · , then either σ(Xi) = λx . ui x

for some proper prefix ui of wi, or we have σ(Xi) = λx .wi vi x or σ(Xi) = λx .wi vi �,
for some word vi. Therefore, there are two cases:

If, for some k = 1, . . . ,m, we have the first situation that there is some Xk such
that σ(Xk) = λx . uk x, where uk is a prefix of wk, then the claim of the lemma holds.

Otherwise, for every i = 1, . . . ,m, we have σ(Xi) = λx .wi vi x or σ(Xi) =
λx.wi vi �. In this case we generate a new system by instantiating Xi by λx .wi X

′
i x,

where X ′
i are fresh and different unary second-order variables. Then, the equations

in the cycle become

w1 X
′
1 · · ·

?= w1 w2 X
′
2 · · · ,

w2 X
′
2 · · ·

?= w2 w3 X
′
3 · · · ,

· · ·
wm X ′

m · · · ?= wm w1 X
′
1 · · · .

Simplifying the equations, we obtain a new system of equations,

X ′
1 · · ·

?= w2 X
′
2 · · · ,

X ′
2 · · ·

?= w3 X
′
3 · · · ,

· · ·
X ′

m · · · ?= w1 X
′
1 · · · .

From the original solution σ we get a solution σ′ of the new equations satisfying
σ′(X ′

i) = λx . vi x or σ(X ′
i) = λx . vi �, for all i = 1, . . . ,m. Now the induction

hypothesis applies since σ′ is smaller than σ; hence there is a variable X ′
k such that

σ′(X ′
k) = λx . vk x, where vk is a prefix of (wk+1 . . . wm w1 . . . wk)

n, for large enough
n. Hence σ(Xk) = λx.wk vk x, and the claim holds.

Lemma 6.12 (cycles). Let 〈E,G〉 be a solvable, simplified, and compacted set of
equations, with a graph of surface dependencies D with some cycle. Then, for every
solution σ without small components, there exists a variable X such that σ(X) =
λy .w y and w is generated by some grammar G′ ⊇ G satisfying

|G′| = |G| + O(depth(G) + #Eq(E) + log eop(σ)),

depth(G′) = depth(G) + O(log #Eq(E) + log eop(σ)).

More precisely, the corresponding node [X] is inside the cycle, and, for some
0 ≤ n ≤ eop(σ) and some prefix v of wα, we have σ(X) = λy . (wα)n v y, where
α ∈ N∗ is the sequence of labels of the edges completing the cycle from [X].

Proof. Select a cycle in the graph D:
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Therefore, there is a subset of equations in E of the form

Y1,m1
. . . ?= a1 Y2,1 . . . ; Y2,1 . . .

?= Y2,2 . . . ; · · · Y2,m2−1 . . .
?= Y2,m2

. . . ;

Y2,m2 . . .
?= a2 Y3,1 . . . ; Y3,1 . . .

?= Y3,2 . . . ; · · · Y3,m3−1 . . .
?= Y3,m3 . . . ;

· · ·
Yn,mn

. . . ?= an Y1,1 . . . ; Y1,1 . . .
?= Y1,2 . . . ; · · · Y1,m1−1 . . .

?= Y1,m1 . . . ,

where {Yi,1, . . . , Yi,mi
} ⊆ [Yi] for i = 1, . . . , n. Note that wai

= ε for all i, since E is
simplified.

Now, fix a solution σ and proceed as follows. Let E′ be the set of equations
represented by the compacted equations above. Notice that wa1 · · ·wan = ε, and
E′ fulfills the conditions of Lemma 6.11. The substitution σ also solves E′, and
applying Lemma 6.11, we get a variable Yk,l such that σ(Yk,l) = λx.wn

α v x, where
α = ak · · · am a1 · · · ak−1 and v is a prefix of wα. Moreover, we have n ≤ eop(σ).

To prove the existence of G′, we proceed by adding new rules to G. Note that all
symbols labeling the edges of D are nonterminals in G. We construct a sequence of
grammars G ⊆ G1 ⊆ G2 ⊆ G3 ⊆ G′ such that G1, apart from the words generated
by G, also generates wα, G2 also generates v, G3 also generates (wα)n, and G′ also
generates (wα)n v.

Since the length of α is at most |D|, by Lemma 4.4, we have

|G1| ≤ |G| + |D| − 1,

depth(G1) ≤ depth(G) + �log |D|�.

By Lemma 4.6, we can define v with

|G2| ≤ |G1| + depth(G1),
depth(G2) = depth(G1).

By Lemma 4.5, we can define (wα)n with

|G3| ≤ |G2| + 2 �log eop(σ)�,
depth(G3) ≤ depth(G2) + �log eop(σ)�

and, since we still need another rule to define (wα)n v,

|G′| ≤ |G3| + 1,

depth(G′) ≤ depth(G3) + 1.

The composition of all these inequalities results in the inequalities

|G′| ≤ |G| + depth(G) + |D| + �log |D|� + 2 �log eop(σ)�,
depth(G′) ≤ depth(G) + �log |D|� + �log eop(σ)� + 1.

In terms of O-notation, this reduces to

|G′| = |G| + O(depth(G) + |D| + log eop(σ)),

depth(G′) = depth(G) + O(log |D| + log eop(σ)).

And, since |D| ≤ #Eq(E),

|G′| = |G| + O(depth(G) + #Eq(E) + log eop(σ)),

depth(G′) = depth(G) + O(log #Eq(E) + log eop(σ)),

as stated in the lemma.



1132 J. LEVY, M. SCHMIDT-SCHAUß, AND M. VILLARET

7. Rewriting the graph of dependencies. In the previous section we saw
that Lemmas 6.6 and 6.12 both describe the instantiation σ(X) of some variable and
allow us to eliminate it during the construction of a compact representation of the
solution σ. In other words, they describe parts of the solution, i.e., a substitution
ρ = [X �→ σ(X)] satisfying ρ �FV (E) σ.

In this section we will see that, when these two lemmas are not applicable, we
can rewrite the set of equations (and its corresponding graph of dependencies) until
one of the two lemmas becomes applicable. This rewriting process is done by partially
instantiating some variables, i.e., applying a substitution ρ also satisfying ρ �FV (E) σ.
The substitution has the form ρ = [X �→ λy .wX ′ y], where X ′ is a fresh variable and
w ∈ Σ∗. Substitutions of such form, as well as the total instantiations of the form
ρ = [X �→ λy .w y] and ρ = [X �→ λy .w �] described in Lemmas 6.6 and 6.12,
are all called partial instantiations. Formally, we define partial instantiations as
follows.

Definition 7.1. We say that a substitution ρ is a partial instantiation if it can
be decomposed as ρ = (ρ1 ◦ · · · ◦ ρn)|Dom(ρ), where each ρi either has the form ρi =
[Xi �→ λy .wi X

′
i y], ρi = [Xi �→ λy . y], or ρi = [Xi �→ λy . �], for some Xi, X

′
i ∈ X1

and some wi ∈ Σ∗.
The following lemma states the preservation of some properties of partial instan-

tiations of equations. Notice that some of these properties do not hold for arbitrary
substitutions satisfying ρ �FV (E) σ.

Lemma 7.2 (preservation). For any (noncompacted) set of equations E, any
solution σ, and any partial instantiation ρ, satisfying ρ �FV (E) σ, there exists a
substitution σ′ satisfying

(i) σ = (σ′ ◦ ρ)|FV (E),
(ii) σ′ is a solution of ρ(E),
(iii) if σ is a size-minimal solution of E, then σ′ is also a size-minimal solution

of ρ(E),
(iv) eop(σ) ≥ eop(σ′),
(v) |FV (E)| ≥ |FV (ρ(E))|, and
(vi) the number of occurrences of variables in E is greater than or equal to the

number of occurrences of variables in ρ(E).
Proof. The requirement ρ �FV (E) σ ensures that there exists a substitution σ′

such that σ(X) = σ′ ◦ ρ(X) for any X ∈ FV (E). The restriction of σ′ to the domain
FV (ρ(E)) also satisfies this property. Therefore, the required σ′ always exists.

Since σ is a solution of E, for any variable X ∈ FV (E), σ(X) is a closed term.
Moreover, since σ = (σ′ ◦ ρ)|FV (E), for any variable X ∈ FV (E), σ(X) = σ′ ◦ ρ(X).
The same applies to any term containing only variables of E, hence to any side
of any equation of E. Therefore, for any equation ρ(s) ?= ρ(t) of ρ(E), we have
σ′(ρ(s)) = σ(s) = σ(t) = σ′(ρ(t)). Hence, σ′ solves ρ(E).

Minimality is proved by contradiction. Assume that σ′ is not size-minimal. Let
τ ′ be a size-minimal solution of ρ(E). Obviously, τ ′ ◦ ρ is a solution of E. Since τ ′

is size-smaller than σ′, we have
∑

X∈FV (ρ(E)) |τ ′(X)| <
∑

X∈FV (ρ(E)) |σ′(X)|. Now,
since ρ is a partial instantiation, we have

∑
X∈FV (E)

|τ ′(ρ(X))| =
∑

X∈FV (E)

|ρ(X)| +
∑

Y ∈FV (ρ(E))

(|τ ′(Y )| − 1) and

∑
X∈FV (E)

|σ′(ρ(X))| =
∑

X∈FV (E)

|ρ(X)| +
∑

Y ∈FV (ρ(E))

(|σ′(Y )| − 1).
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Therefore,
∑

X∈FV (E) |τ ′(ρ(X))| <
∑

X∈FV (E) |σ′(ρ(X))| =
∑

X∈FV (E) σ(X), which
contradicts the assumption that σ is size-minimal.

Let X ′ ∈ Dom(σ′) be a variable, and let v be a nonempty word, such that
σ′(X ′) = λy . u veop(σ′) w � (or similarly replacing � by y). Since Dom(σ′) = FV (ρ(E)),
either X ′ ∈ FV (E) or, for some variable Y ∈ FV (E), ρ(Y ) contains X. Hence, in
both cases, there exists a variable X ∈ FV (E) ⊆ Dom(σ) such that σ(X) contains
veop(σ′). Therefore eop(σ) is at least eop(σ′).

The requirement that ρ is a partial instantiation ensures that after applying this
substitution the number of variables and the number of occurrences of variables in E
do not increase.

Now we deal with the following case: There are compacted sets of equations whose
graph of surface dependencies does not have any cycle, and the focused solution does
not have any small component; i.e., we deal with the case not covered by Lemmas 6.6
and 6.12. Since there are no cycles, the edges define a partial order � on the nodes,
with N � N ′ if and only if N → N ′ is an edge. Hence we can speak of �-maximal
nodes. Since there are size-minimal solutions without small components, Lemma 6.8
shows that these graphs contain at least one edge, Lemma 6.10 states that they
do not contain strong divergences, and Lemma 6.7 shows that they do not contain
any edge to the node labeled with ∅. There is a �-maximal node with at least one
outgoing edge to other nodes and without any strong divergence. We will transform
the equations, whose graph of dependencies contains such maximal nodes, in order
to obtain a description of some variable instantiation. In fact, this transformation
on the equations carries over to a graph transformation. An example of this graph
transformation (or rewriting) is shown in Example 7.

Definition 7.3. Let 〈E,G〉 with FV (E) = ∅ be a simplified and compacted set
of equations without cycles such that there is a solution without small components.
Then the transformation rule 〈E,G〉 ⇒ 〈E′, G′〉 is defined as follows.

Let D be the graph of surface dependencies of 〈E,G〉. Let [X] be a �-maximal
node in D with at least one outgoing edge. Let {a1, . . . , am} be the set of all labels of
the outgoing edges of [X], where wa1 is a prefix of wai , for all i = 1, . . . ,m. For every
Y ∈ [X], let Y ′ be a fresh unary variable, and let ρ be the substitution that maps each
Y ∈ [X] to λy .wa1 Y

′ y. Then let 〈E′, G′〉 be the simplification of 〈ρ(E), G〉.
If D′ is the graph of surface dependencies of 〈E′, G′〉, we write D ⇒ D′.
Notice that in the previous definition, since there are not any cycles and there

are solutions without small components, by Lemma 6.8 there are edges, and hence
there is a �-maximal node with some outgoing edge; by Lemmas 6.7 and 6.10 there
are neither constant equations nor strong divergences. This allows us to assume that
wa1 is a prefix of wai for i = 1, . . . ,m. Notice also that for all equations of the form
Y s ?= aZ t, where Y ∈ [X], the symbol a is the label of some outgoing edge of [X].
Finally, notice that the substitution ρ is a partial instantiation; hence Lemma 7.2
applies.

The transformation of 〈E,G〉 results in the compacted equations 〈E′, G′〉 satisfy-
ing the following:

(i) The grammar G′ is an extension of G such that for i = 1, . . . ,m, the non-
terminal bi generates the word vi, which is defined by wai = wa1 vi.

(ii) The set of equations E′ is obtained from E by replacing all equations of the
form Y s ?= Z t, where Y,Z ∈ [X], by the equation Y ′ ρ(s) ?= Z ′ ρ(t), and replacing
every equation of the form Y s ?= ai Z t, where Y ∈ [X], by Y ′ ρ(s) ?= bi Z ρ(t).

Every solution σ without small components of E can be transformed into a
solution of E′ by defining it on the fresh variables Y ′ (see Lemma 7.5).
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In the special case that m = 2, wa1
= wa2

, and wa1
≺ wa2

, the transformation
on the graph of surface dependencies can be represented as a graph rewriting rule

where b2 is a new nonterminal of the grammar G′, that generates a word satisfying
wa2

= wa1
wb2 .

Notice that in this rewriting process at least one arrow and also the node [X] are
removed. Note also that in the case wa1

= wa2 , the three nodes are merged into one
node [X ′] ∪ [Z1] ∪ [Z2], thus removing more than one edge.

Example 7. Consider the following simplified and compacted set of equations and
their set of solution components for n ≥ 0:

Σ = {a, b, c, d, e},
N = {f, g},
X1 c �

?= f X2 c �,

X1 d �
?= g X3 a b d �,

X2 e �
?= g X3 e �,

G-rules: {f → a b, g → a}.

X1 �→ λx . (a b)n+2 x,
X2 �→ λx . (a b)n+1 x,
X3 �→ λx . b (a b)n x,

The graph of surface dependencies is

Applying the transformation rule to the only �-maximal node [X1], we get the fol-
lowing simplified and compacted set of equations E′:

Σ = {a, b, c, d, e},
N ′ = {f, g, h},
X ′

1 c �
?= hX2 c �,

X ′
1 d �

?= X3 a b d �,

X2 e �
?= g X3 e �,

G′-rules: {f → a b, g → a, h → b}.

The modified graph is as follows:

Lemma 7.4 (rewriting). Let 〈E,G〉 be a simplified and compacted set of equations,
and let 〈E,G〉 ⇒ 〈E′, G′〉; then

|G′| ≤ |G| + #Eq(E) depth(G),
depth(G′) = depth(G).
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Moreover, |E′| ≤ |E| + m, where m is the number of variable occurrences of E.
Proof. Let m be the number of outgoing edges of the removed node. The new

grammar G′ extends G by defining m− 1 suffixes of words defined by G. Therefore,
according to Lemma 4.6, we can obtain such a grammar G′ satisfying the upper
bounds:

|G′| ≤ |G| + (m− 1) depth(G),
depth(G′) = depth(G).

It is easy to check that m ≤ #Eq(E).
Finally E′ is obtained by replacing in E the variable occurrences of some variables

Y (belonging to [X]) by b Y ′ and then simplifying. This simplification only has to
remove the same nonterminal symbol from the head of both sides of some equations;
hence it does not increase the size of the grammar. Therefore, the rewriting increases
the size of E at most by 1 for each variable occurrence in E.

Lemma 7.5. For any simplified and compacted set of equations 〈E,G〉 without
cycles in its graph of surface dependencies, any solution σ without small components,
and any transformation 〈E,G〉 ⇒ 〈E′, G′〉 defined by the substitution ρ, there exists
a substitution σ′ such that

(i) σ′ is a solution of 〈E′, G′〉,
(ii) σ′ satisfies σ = (σ′ ◦ ρ)|FV (E).

Proof. If there are not any small components, then the substitution ρ satisfies
ρ �FV (E) σ. Then the lemma is a direct consequence of Lemma 7.2.

The previous lemma may be iterated: If σ′ does not contain small components,
and the graph of surface dependencies of 〈E′, G′〉 does not contain cycles, we use it
again to obtain a new solution σ′′ of a new 〈E′′, G′′〉 and so on. By Lemma 7.6, this
process cannot be repeated more than #Eq(E) times.

Lemma 7.6. Any graph rewriting sequence D ⇒∗ D′ has length at most |D|.
Proof. This is clear, since in every transformation step at least one edge is re-

moved.
In Figure 7.1 we define an algorithm that, given the compacted set of equations

〈E,G〉 and a size-minimal solution σ, computes a polynomial-sized compacted solution
〈ρ,G′〉 representing σ. Note that the complexity of this algorithm is irrelevant; only
the polynomial size of the obtained representation will be needed.

Theorem 7.7 (compacted solution). Given the initial compacted set of equations
〈E0, G0〉 and the size-minimal solution σ0, the algorithm of Figure 7.1 computes a
compacted solution 〈ρ,G′〉 representing σ0.

Moreover, the following inequalities hold:

|G′| ≤ |G0| + O(|E0|4 depth(G0) + |E0|6),
depth(G′) ≤ depth(G0) + O(|E0|2),
|ρ| = O(|E0|3).

Proof. The algorithm performs a sequence of transformations on the compacted
equations 〈E,G〉, the compacted substitution 〈ρ,G〉, and the solution σ. These trans-
formations are of four types: simplification (step 6), small components (step 9), cycles
(step 16), and rewriting (step 23). First we show how many transformations of each
type are performed and then how they modify some of the measures of the represen-
tations (number of equations, their size, etc.).

(i) Termination: Cycle and small component transformations remove a vari-
able from E; therefore they cannot be executed more than |E0| times. According
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Input: σ0, 〈E0, G0〉
Output: ρ,G′

1. ρ := Id
2. 〈E,G〉 := 〈E0, G0〉
3. σ := σ0

4. while FV (E) = ∅ do
5. if 〈E,G〉 is not simplified then
6. let 〈E′, G′〉 be the simplification of 〈E,G〉
7. 〈E,G〉 := 〈E′, G′〉
8. elseif σ has a small component X then
9. let G′ be the grammar described in Lemma 6.6, and

10. let a be the nonterminal of G′ generating v
11. if σ(X) = λx . v x then ρ := [X �→ λx . a x] ◦ ρ
12. if σ(X) = λx . v � then ρ := [X �→ λx . a �] ◦ ρ
13. 〈E,G〉 := 〈ρ(E), G′〉
14. σ = σ|FV (E)

15. elseif D contains a cycle then
16. let G′ be the grammar,
17. let X be the variable in the cycle described in Lemma 6.12, and
18. let a be the nonterminal generating (wα)n v,

where σ(X) = λy . (wα)n v y
19. ρ := [X �→ λx . a x] ◦ ρ
20. 〈E,G〉 := 〈ρ(E), G′〉
21. σ = σ|FV (E)

22. else
23. compute 〈E,G〉 ⇒ 〈E′, G′〉
24. let [X] be the �-maximal class transformed by this rewriting, and
25. let a1 be the label of the outgoing edge of [X] generating the

shortest word
26. τ := Id
27. for all Y ∈ [X]
28. τ := [Y �→ λy . a1 Y

′ y] ◦ τ
29. let σ′ be the solution of 〈E′, G′〉 satisfying σ = (σ′ ◦ τ)|FV (E) given

by Lemma 7.5
30. ρ = τ ◦ ρ
31. 〈E,G〉 := 〈E′, G′〉
32. σ := σ′

33. endwhile
34. ρ := ρ|FV (E0)

Fig. 7.1. Pseudocode of the algorithm to compute a representation ρ of a solution.

to Lemma 7.6, rewriting sequences cannot be longer than |D|. The size |D| of the
graph of surface dependencies is bounded by the number of equations (we will see in
the following that this measure is decreasing), hence by |E0|. After every rewriting
sequence we get a set of equations E with a cycle, or a solution σ with a small com-
ponent. Therefore, there is a total number of at most |E0|2 rewriting steps. Finally,
after every rewriting step we get a simplified set of equations. Therefore, we can-
not perform more simplification steps than cycle elimination plus small component
elimination steps, hence not more than |E0|.
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(ii) Number of equations, variables, and occurrences of variables: Simplifications
preserve or decrease all these parameters, as well as the partial instantiations per-
formed by the cycle and small component transformations, according to Lemma 7.2.
Rewritings are composed by a partial instantiation followed by a simplification; there-
fore they also preserve or decrease these parameters.

(iii) Size of the equations, |E|: The size of E is preserved or decreases with
simplifications, cycles, and small component steps. However, it can be increased in
the number of occurrences of variables at every rewriting step (see Lemma 7.4). Since
there are no more than |E0|2 rewriting steps and the increase is bounded by |E0|, we
have |E| ≤ |E0| + |E0|3 along the execution of the algorithm.

(iv) Exponent of periodicity, eop(σ): According to Lemma 7.2, the exponent of
periodicity of the solution, after a partial instantiation like the ones we perform in
the cycle, small component and rewriting steps, is preserved or decreases. Since by
Lemma 2.4, eop(σ0) ≤ 2α |E0| for the initial minimal solution σ0, this bound holds
along the execution of the algorithm.

(v) Depth of the grammar, depth(G): There are the following possibilities:

depth(G′) = depth(G) +O(log |E|) (simplification, Lemma 6.2),
depth(G′) = depth(G) (small component, Lemma 6.6),
depth(G′) = depth(G) +O(log #Eq(E)

+ log eop(σ)) (cycle, Lemma 6.12),
depth(G′) = depth(G) (rewriting, Lemma 7.4).

Since log eop(σ) = O(|E0|) and the number of cycle steps as well as of simplifications
is at most |E0|, an upper bound is depth(G) = depth(G0) + O(|E0|2).

(vi) Size of the grammar, |G|: There are the following possibilities:

|G′| = |G| +O(|E|(depth(G) + log |E|)) (simplification, Lemma 6.2),
|G′| ≤ |G| + depth(G) (small component, Lemma 6.6),
|G′| = |G| +O(depth(G) + #Eq(E)

+ log eop(σ)) (cycles, Lemma 6.12),
|G′| ≤ |G| + #Eq(E) depth(G) (rewriting, Lemma 7.4).

We know that the maximal number of rewriting steps is |E0|2 and the maximal number
of small component, simplification, and cycle steps is at most |E0|. We also have
log eop(σ) = O(|E0|), |E| = O(|E0|3), and #Eq(E) = O(|E0|). Together with the
upper bound on depth(G), this gives an upper bound (simplification is responsible for
the dominating terms):

|G′| = |G0| + |E0| O(|E0|3(depth(G) + log |E0|3)),
+ |E0| depth(G),
+ |E0| O(depth(G) + |E0|),
+ 6|E0|2 |E0| depth(G),

= |G0| + O(|E0|4 depth(G0) + |E0|6).

(vii) Size of the compacted solution, |ρ|: We have to represent the instantiation of
at most |E0| variables, where the size of each instantiation is bounded by the number
of rewriting steps. This gives O(|E0|3).

All the transformations are sound according to Lemma 7.2. Now, if the compacted
equations are not simplified, we can always simplify them. If they are simplified,
either there is a cycle, or a solution with small components, or we can rewrite the
equations.
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8. Main results and some remarks. Theorem 7.7 states that, given a compact
representation 〈E,G〉 of a set of equations, we can build a new singleton grammar G′

of polynomial size defining all components of the compact representation of a size-
minimal solution. The final step is to use Plandowski’s theorem (Theorem 4.2) to
check that the polynomial-sized guessed substitution is really a unifier.

Main Theorem 8.1. Solvability of compact representations of basic MSOU prob-
lems is NP-complete.

Proof. Theorem 7.7 shows that for every compact representation 〈E,G〉 of a basic
MSOU problem and every size-minimal solution σ, there is compacted solution 〈ρ,G′〉
that represents σ, where G′ is a singleton grammar of polynomial size in |E| + |G|
and |ρ| is also polynomial in |E|.

Thus we can guess a polynomial-sized singleton grammar G′ and a compacted
solution ρ as above, and then test whether 〈ρ,G′〉 is a solution of 〈E,G〉. We can
replace every variable occurrence in E by its instantiation in ρ, then normalize both
sides of each equation si

?= ti, to obtain s′i
?= t′i, and, finally, extend G′ to obtain G′′

by Lemma 4.4, generating s′1 # · · · # s′n and t′1 # · · · # t′n, where # is a new constant
symbol. Then, the test for solvability is an equality test w.r.t. the singleton grammar
G′′, which can be performed in polynomial time by Plandowski’s theorem (see The-
orem 4.2). This shows that the problem is in NP. Together with the NP-hardness of
the problem, which was proved in [22], this leads us to conclude that the problem is
NP-complete.

Corollary 8.2. Monadic second-order unification is NP-complete.
Proof. The proof follows from Theorem 8.1 and Proposition 3.1.
Corollary 8.3. Monadic second-order matching is NP-complete.
Proof. The proof follows from Theorems 2.6 and 8.1.
Remark 1. Theorem 7.7 clarifies the increase of the size of the grammar rep-

resenting a size-minimal solution of some compacted equations, after instantiating
N variables. This theorem fixes the increase w.r.t. the size of the equations, the
logarithm of the upper bound on the exponent of periodicity, and the depth of the
grammar. The question is then, Could we avoid the use of the depth of the grammar?
The answer is no. For instance, Lemma 4.6 says that, if we want to define a prefix
of some word defined by a grammar G, in the worst case, we can keep the depth,
but we may need to increase the size of G′ as |G′| ≤ |G| + depth(G). If we use
only the size of the grammar to characterize it, then in the worst case we may be
forced to duplicate the size of the grammar |G′| ≤ 2 |G|. Each time that we instan-
tiate a variable, it can be necessary to define a new prefix; therefore, in the worst
case, the size of the resulting grammar would be 2N , being N ≤ |E| the number of
variables.

The combined use of size and depth allows us to keep track of balancing conditions
of singleton grammars as trees and also to provide tighter measures.

Remark 2. Our method computes a compact representation of a size-minimal
solution. This means that every solvable MSOU problem has at least one solution
that can be represented by a polynomial-sized grammar. Our method can easily be
extended to compute a compact representation of any solution; however, there is no
longer any size-bound. If one is interested in representing all solutions, then our
method does not help, since singleton grammars do not support the representation of
infinite sets of words; e.g., the representation of {(a b)n |n ∈ N} is not possible. Note
that there is already an investigation of a representation of sets of solutions using
words with exponents for MSOU (see [2]).
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9. Conclusions. In this paper we proved in Corollary 8.2 that monadic second-
order unification (MSOU) is in NP using a result of Plandowski about context-
free grammars [17, 18] and the exponential bound on the exponent of periodicity
[23, 22]. These results, together with the NP-hardness of the problem [22], prove
its NP-completeness. As we mention in the introduction, MSOU is a specialization
of bounded second-order unification (BSOU) [22], a variant of second-order unifica-
tion, where instantiations of second-order variables can use their argument a bounded
number of times. During revision of this paper we were able to apply variants of
this method to prove that BSOU [11] and stratified context unification [12] are also
NP-complete.

Acknowledgment. We acknowledge the meticulous reading and helpful com-
ments of the anonymous referees, which helped us to improve the presentation of the
paper.
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[8] A. Kościelski and L. Pacholski, Complexity of Makanin’s algorithm, J. ACM, 43 (1996),
pp. 670–684.

[9] J. Levy, Decidable and undecidable second-order unification problems, in Proceedings of the
9th Annual International Conference on Rewriting Techniques and Applications (RTA’98),
Lecture Notes in Comput. Sci. 1379, Springer-Verlag, Berlin, 1998, pp. 47–60.

[10] J. Levy, M. Schmidt-Schauß, and M. Villaret, Monadic second-order unification is NP-
complete, in Proceedings of the 15th Annual International Conference on Rewriting Tech-
niques and Applications (RTA’04), Lecture Notes in Comput. Sci. 3091, Springer-Verlag,
Berlin, 2004, pp. 55–69.

[11] J. Levy, M. Schmidt-Schauß, and M. Villaret, Bounded second-order unification is NP-
complete, in Proceedings of the 17th Annual International Conference on Rewriting Tech-
niques and Applications (RTA’06), Lecture Notes in Comput. Sci. 4098, Springer-Verlag,
Berlin, 2006, pp. 400–414.

[12] J. Levy, M. Schmidt-Schauß, and M. Villaret, Stratified context unification is NP-complete,
in Proceedings of the 3rd Annual International Joint Conference on Automated Reasoning
(IJCAR’06), Lecture Notes in Comput. Sci. 4130, Springer-Verlag, Berlin, 2006, pp. 82–96.

[13] J. Levy and M. Veanes, On the undecidability of second-order unification, Inform. and Com-
put., 159 (2000), pp. 125–150.

[14] J. Levy and M. Villaret, Currying second-order unification problems, in Proceedings of the
13th Annual International Conference on Rewriting Techniques and Applications (RTA’02),
Lecture Notes in Comput. Sci. 2378, Springer-Verlag, Berlin, 2002, pp. 326–339.

[15] Y. Lifshits, Solving Classical String Problems on Compressed Texts, The Computing Research
Repository (CoRR); available online from http://www.avxiv.orgabs/cs/0604058 (2006).

[16] G. S. Makanin, The problem of solvability of equations in a free semigroup, Sb. Math. USSR,
32 (1977), pp. 129–198.

[17] W. Plandowski, Testing equivalence of morphisms on context-free languages, in Proceedings
of the Second Annual European Symposium on Algorithms (ESA’94), Lecture Notes in
Comput. Sci. 855, Springer-Verlag, London, 1994, pp. 460–470.



1140 J. LEVY, M. SCHMIDT-SCHAUß, AND M. VILLARET

[18] W. Plandowski, The Complexity of the Morphism Equivalence Problem for Context-Free
Languages, Ph.D. thesis, Department of Mathematics, Informatics and Mechanics, Warsaw
University, Warsaw, Poland, 1995.

[19] W. Plandowski, Satisfiability of word equations with constants is in PSPACE, in Proceedings
of the 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS’99),
pp. 495–500.

[20] W. Plandowski, Satisfiability of word equations with constants is in PSPACE, J. ACM, 51
(2004), pp. 483–496.

[21] M. Schmidt-Schauß, Stratified context unification is in PSPACE, in Proceedings of the 15th
International Workshop in Computer Science Logic (CSL’01), Lecture Notes in Comput.
Sci. 2142, Springer-Verlag, Berlin, 2001, pp. 498–512.

[22] M. Schmidt-Schauß, Decidability of bounded second order unification, Inform. and Comput.,
188 (2004), pp. 143–178.

[23] M. Schmidt-Schauß and K. U. Schulz, On the exponent of periodicity of minimal solutions of
context equations, in Proceedings of the 9th Annual International Conference on Rewriting
Techniques and Applications (RTA’98), Lecture Notes in Comput. Sci. 1379, Springer-
Verlag, Berlin, 1998, pp. 61–75.

[24] A. P. Zhezherun, Decidability of the unification problem for second-order languages with unary
function symbols, Kibernetika (Kiev), 5 (1979), pp. 120–125 (in Russian); Cybernetics, 15
(1980), pp. 735–741 (in English).



SIAM J. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 38, No. 3, pp. 1141–1156

THE SPECTRAL METHOD FOR GENERAL MIXTURE MODELS∗
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Abstract. We present an algorithm for learning a mixture of distributions based on spectral
projection. We prove a general property of spectral projection for arbitrary mixtures and show that
the resulting algorithm is efficient when the components of the mixture are logconcave distributions in
�n whose means are separated. The separation required grows with k, the number of components, and
logn. This is the first result demonstrating the benefit of spectral projection for general Gaussians
and widens the scope of this method. It improves substantially on previous results, which focus
either on the special case of spherical Gaussians or require a separation that has a considerably
larger dependence on n.
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value decomposition
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1. Introduction. Mixture models are widely used for statistical estimation,
unsupervised concept learning, and text and image classification [12, 17]. Roughly
speaking, a finite mixture model is a weighted combination of a finite number of
distributions of a known type. More precisely, the problem of learning or estimat-
ing a mixture model is formulated as follows. We assume that we get samples from
a distribution F on �n which is a mixture (convex combination) of unknown dis-
tributions F1, F2, . . . , Fk, with (unknown) mixing weights w1, w2, . . . , wk > 0, i.e.,

F =
∑k

i=1 wiFi, where
∑k

i=1 wi = 1. The goal is to (a) classify the sample points
according to the underlying distributions and (b) estimate essential parameters of the
components such as the mean and covariance matrix of each component. This problem
has been widely studied, particularly for the special case when each Fi is a Gaussian.

One algorithm that is often used is the expectation-maximization (EM) algorithm
[5, 21]. It is quite general but does not have guarantees on efficiency and could even
converge to an incorrect or suboptimal classification. A second known technique, from
statistics, projects the sample points to a random low-dimensional subspace and then
tries to find the right classification by exploiting the low dimensionality and exhaus-
tively examining all possible classifications. The trouble is that two different densities
may overlap after projection—the means of the projected densities may coincide (or
get closer), making it hard to separate the samples.

In this paper, we investigate a learning method which is based on principal com-
ponent analysis (PCA). The idea of this method is known as spectral projection, i.e.,
representation of data in the subspace spanned by its top k principal components. We
present our results following a discussion of the relevant literature.
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1.1. Recent theoretical work. There has been progress in recent years in
finding algorithms with rigorous theoretical guarantees [3, 2, 4, 19], mostly for the
important special case of learning mixtures of Gaussians. These algorithms assume a
separation between the means of each pair of component distributions which depends
on the variances of the two distributions and also on n and k. For a component Fi of
the mixture let μi denote its mean and σi denote the maximum standard deviation
along any direction in �n (see section 1.3). In order for the classification problem to
have a well-defined (unique) solution with high probability, any two components i, j
must be separated by σi + σj times a logarithmic factor; if the separation is smaller
than this, then the distributions may “overlap” significantly; namely, some of the
samples have a good chance of coming from more than one component. Dasgupta [3]
showed that if each mixing weight is Ω(1/k) and the variances are within a bounded
range, then a separation of (the Ω∗ notation suppresses logarithmic terms and error
parameters)

|μi − μj | = (σi + σj)Ω
∗(n1/2)

is enough to efficiently learn the mixture.
Shortly thereafter, this result was improved by Dasgupta and Schulman [4] and

Arora and Kannan [2], who reduced the separation required to

|μi − μj | = (σi + σj)Ω
∗(n1/4).

In [4], the algorithm used is a variant of EM (and requires some technical assumptions
on the variances), while the result of [2] works for general Gaussians using distance-
based classification. The idea is that at this separation, it is possible to examine just
the pairwise distances of the sample points and infer the right classification with high
probability.

The dependence on n is critical; typically n represents the number of attributes
and is much larger than k, the size of the model. Further, the underlying method used
in these papers, namely, distance-based classification, inherently needs such a large
separation that grows with n [2].

In [19], a spectral algorithm was used for the special case of spherical Gaussians,
and the separation required was reduced to

|μi − μj | = (σi + σj)Ω
∗(k1/4).

Since in several applications k is a constant which is much less than n, this result is a
substantial improvement for the spherical case. The algorithm uses a projection of the
sample onto the subspace spanned by the top k singular vectors of the distribution
(i.e., the singular vectors of a matrix, each of whose rows is one of the independent
and identically distributed (i.i.d) samples drawn according to the mixture), also called
the SVD subspace. The idea there is that the SVD subspace of a mixture of spherical
Gaussians contains the means of the k components. Hence, after projection onto this
subspace the separation between the means is preserved. On the other hand, each
component is still a Gaussian and the dimension is only k, and so the separation
required is only a function of k. Further, the SVD subspace computed from a random
sample is “close” to the means, and this is used in the algorithm.

1.2. New results. Given the success of the spectral method for spherical Gaus-
sians, a natural question is whether it can be used for more general distributions, in
particular for nonspherical Gaussians. At first sight, the method does not seem to
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be applicable. The property that the SVD subspace of the distribution contains the
means is clearly false for nonspherical Gaussians; e.g., see Figure 1. In fact, the SVD
subspace can be orthogonal to the one spanned by the means, and so using spectral
methods might seem hopeless.

W

Fig. 1. The SVD subspace W ; the plane that minimizes the average squared distance and is
represented by the horizontal line might miss the means of the components.

The key insight of this paper is that while according to this (misleading) example
the SVD subspace may not contain the means, it is always close (in an average sense)
to the means of the distributions (Theorem 1). As a result, upon projection onto
this subspace, the intermean distances are approximately preserved “on average.”
Moreover, this property is true for a mixture of arbitrary distributions.

It is then a reasonable idea to project the sample to the SVD subspace to reduce
the dimensionality. To identify individual components in this subspace, we need them
to remain nonoverlapping. If the mixture is arbitrary, then even though the means
are separated on average, the samples could intermingle. To overcome this, we assume
that the component distributions are logconcave.

A function f : �n → �+ is logconcave if its logarithm is concave; i.e., for any two
points x, y ∈ �n and any λ ∈ [0, 1],

f(λx + (1 − λ)y) ≥ f(x)λf(y)1−λ.

These functions have many useful properties; e.g., the product, minimum, and convo-
lution of two logconcave functions are also logconcave [6, 11, 15]. Logconcave densities
are a powerful generalization of Gaussians. Besides Gaussians, many other common
probability measures, such as exponential families and the uniform measure over a
convex set, are logconcave. So, for example, one component of the mixture could
be a Gaussian while another is the uniform distribution over a cube. The following
properties make these distributions suitable for our purpose: (a) the projection of a
logconcave distribution remains logconcave; (b) the distance of a random point from
the mean has an exponentially decreasing distribution.

In section 3, we give an iterative spectral algorithm that identifies one component
of the mixture in each iteration. It should be emphasized that there are many possible
alternatives for identifying the components after projection (e.g., the EM algorithm),
and we expect they will also benefit from the enhancement provided by projection.
For the postprojection algorithm presented here, we assume that each mixing weight
is at least ε and the pairwise separation satisfies

|μi − μj | = (σi + σj)Ω
∗(k

3
2 /ε2).
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More precisely, our algorithm requires only a lower bound ε, a probability of error
δ, an upper bound k, and a sample set from an n-dimensional mixture distribution
of size Ω(nkε3 log5(nk/δ)) which satisfies the given separation, and it classifies all but
a fixed number with probability at least 1 − δ. For a precise statement of our main
result together with the exact form of the required separation, see Theorem 3. It is
easy to see that it requires time polynomial in n, ε, log( 1

δ ). After classification, the
means and covariance matrices of the components can be estimated efficiently. For
the special case of Gaussians, O(n log3(n/δ)/ε2) samples suffice. Table 1 presents a
comparison of algorithms for learning mixtures (logarithmic terms are suppressed).

Table 1

Comparison.

Authors Separation Assumptions Method

Dasgupta [3] n
1
2 Gaussians, bounded variances, random projection

and wi = Ω(1/k)

Dasgupta and Schulman [4] n
1
4 spherical Gaussians EM + distances

Arora and Kannan [2] n
1
4 Gaussians distances

Vempala and Wang [19] k
1
4 spherical Gaussians spectral projection

This paper k
3
2

ε2
logconcave distributions spectral projection

1.3. Notation. This section introduces the notation used throughout the paper.
For readers’ convenience, in Table 2 we provide a quick reference to some of our
notation. A mixture F has k components F1, . . . , Fk. We denote their mixing weights
by w1, . . . , wk and their means by μ1, . . . μk. The maximum variance of Fi in any
direction is denoted by σ2

i . For any subspace W , we denote the maximum variance of
Fi along any direction in W by σ2

i,W . Namely, we set

σ2
i = max

v∈�n,||v||=1

{∫
�n

|(x− μi) · v|2Fi(x)dx

}

and

σ2
i,W = max

v∈W,||v||=1

{∫
�n

|(x− μi) · v|2Fi(x)dx

}
.

Let S be a set of i.i.d. samples from F . One can think of S as being picked
as follows: first, i is picked from {1, 2, . . . , k} with probability wi (unknown to the
algorithm); then a sample is picked from Fi. We can partition S as

S = S1 ∪ S2 ∪ · · · ∪ Sk,

where each Si is from Fi (note: this partition of S is unknown to the algorithm). For
each i, we denote by μS

i the sample mean, i.e.,

μS
i =

1

|Si|
∑
x∈Si

x.

For a subspace V and a vector x, we write d(x, V ) for the orthogonal distance of
x from V .
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Table 2

Notation.

Symbol Appears for the first time in:

d(x,W ) section 1.3

μi, μ
S
i section 1.3

μ̂i, μ̂
S
i section 4.3

σ2
i , σ̂

2
i section 1.3

σ̂2
i,W , σ̂2

i,W (S) section 1.3

σ(p)2 section 3

T (p) Algorithm

Ai, A
′
i, A

′′
i section 3

For any set of points S, we can form a matrix A whose rows are the points in S.
The subspace spanned by the top k right singular vectors of A will be called the SVD
subspace of S. The SVD subspace can be found efficiently (i.e., in polynomial time).
For more on properties and applications of SVD subspaces, see [8].

For any subspace W , we denote the maximum variance of a set of sample points
in S = S1∪· · ·∪Sk which belong to Si along any direction in W by σ̂2

i,W (S). Namely,
we set

σ̂2
i,W (S) = max

v∈�n,||v||=1

{
1

|Si|
∑
x∈Si

|(x− μS
i ) · v|2

}
.

If there is no ambiguity about the set S or the space W , we use a simplified notation
such as σ̂2

i,W or σ̂2
i .

2. The SVD subspace. In this section, we prove an important property of
spectral projection. The theorem says that the SVD subspace of a sample is close to
the means of the samples from each component of the mixture, where “close” is in
terms of the sample variances. Note that the theorem holds for any mixture, but in the
analysis of our algorithm, we will apply it only to mixtures of logconcave distributions.
We prove that

(1)
k∑

i=1

wid(μi,W )2 ≤ k

k∑
i=1

wiσ
2
i .

Here W is the SVD subspace of the entire distribution (subspace spanned by the
top k principal components of the distribution). In Theorem 1 we state and prove a
variation of this inequality for samples, but it can also be proved in a similar fashion.

Theorem 1. Let S = S1 ∪ S2 ∪ · · · ∪ Sk be a sample from a mixture F with
k components such that Si is from the ith component Fi, and let W be the SVD
subspace of S (see section 1.3). For each i, let μS

i be the mean of Si and σ̂2
i,W (S) be

the maximum variance of Si along any direction in W . Then

k∑
i=1

|Si|d(μS
i ,W )2 ≤ k

k∑
i=1

|Si|σ̂2
i,W (S).
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Proof. We begin by stating a general lemma which follows immediately from the
Pythagorean theorem.

Lemma 2. Given p, p1, . . . , pK ∈ �n, if μP = 1
K

∑K
i=1 pi, then

K∑
i=1

|pi − p|2 = K|p− μP |2 +

K∑
i=1

|pi − μP |2.

Lemma 2 is used in the proof of the following theorem.
Let M be the span of μS

1 , μ
S
2 , . . . , μ

S
k . For x ∈ �n, write πM (x) for the projection

of x onto M and πW (x) for the projection of x onto W .
Using Lemma 2 and the facts that μS

i is the average of x ∈ Si and μS
i ∈ M , we

write

∑
x∈S

|πM (x)|2 =

k∑
i=1

∑
x∈Si

|πM (x) − μS
i |2 +

k∑
i=1

|Si||μS
i |2

≥
k∑

i=1

|Si||μS
i |2

=

k∑
i=1

|Si||πW (μS
i )|2 +

k∑
i=1

|Si|d(μS
i ,W )2.(2)

Let �e1, . . . , �ek be an orthonormal basis for W . Using Lemma 2 and the fact that the
variance of Si along any direction in the k-dimensional subspace W is at most σ̂2

i,W (S),
we have

∑
x∈S

|πW (x)|2 =

k∑
i=1

∑
x∈Si

|πW (x− μS
i )|2 +

k∑
i=1

|Si||πW (μS
i )|2

≤
k∑

i=1

k∑
j=1

∑
x∈Si

|πW (x− μS
i ) · �ej |2 +

k∑
i=1

|Si||πW (μS
i )|2

≤ k

k∑
i=1

|Si|σ̂2
i,W (S) +

k∑
i=1

|Si||πW (μS
i )|2.(3)

It is well known that the SVD subspace maximizes the sum of squared projections
among all subspaces of rank at most k (alternatively, it minimizes the sum of squared
distances to the subspace; see, e.g., [8]). From this, we get∑

x∈S

|πW (x)|2 ≥
∑
x∈S

|πM (x)|2.

Using this, the right-hand side (RHS) of (3) is at least the RHS of (2), and the theorem
follows.

Although we will apply Theorem 1 only for logconcave component distributions,
it suggests a benefit for spectral projection more generally. Inequality (1) puts a lower
bound on the average squared distance between component means after projection; if
the means are well separated to begin with, they continue to be, in an average sense.
On the other hand, the distance of a point from the mean of its distribution can
shrink only upon projection, thus magnifying the ratio of intercomponent distance to
intracomponent distance. This aspect is studied further along with empirical results
in [20].
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3. An iterative spectral algorithm. In this section, we describe the algo-
rithm. It follows the method suggested by Theorem 1, namely, to project onto the
SVD subspace and to try to identify components in that subspace. However, since
pairwise distances are preserved only in an average sense, it is possible that some
means are very close to each other in the projected subspace and we cannot separate
the corresponding samples. To get around this, we will show that all “large” compo-
nents remain well separated from the rest and there is at least one large component.
We identify this component, filter it from the sample, and repeat. For technical rea-
sons (see below), the samples used to compute the SVD are discarded. The input to
the algorithm below is a set of N i.i.d. samples, a weight lower bound 0 < ε < 1, a
maximum probability of error δ, a lower bound k for the number of distributions, and
a parameter N0 < N .

Algorithm.

Repeat while there are samples left:

1. For a subset S of size N0, find the k-dimensional SVD

subspace W.

2. Discard S and project the rest, T, to the subspace W.

3. For each projected point p:
--- Find the closest εN/2 points. Let this set be T (p)
with mean μ(p).
--- Form the matrix A(p) whose rows are x-μ(p) for each

x in T (p). Compute the largest singular value σ(p) of

A(p) (note: this is the maximum standard deviation of

T (p) over all directions in W).

4. Find a point p0 for which σ(p0) is maximum. Let T0 be

the set of all points of T whose projection to W is

within distance
28

√
k log(Nk

δ )

ε σ(p) of p0.

5. Label T0 as one component; estimate its mean and

covariance matrix.

6. Delete T0 from T.

In step 3 of the algorithm, for any point p, the top singular value σ(p) of A(p)
can also be expressed as follows:

σ(p)2 = max
v∈W,|v|=1

1

|T (p)|
∑

q∈T (p)

|q · v|2 −

⎛
⎝ 1

|T (p)|
∑

q∈T (p)

q · v

⎞
⎠

2

.

This value is an estimate of the maximum variance of the entire subsample of the
component to which p belongs.

There is a technical issue concerning independence. If we use the entire sample
to compute the SVD subspace W , then the sample is not independent from W . So
we use a subset S to compute the SVD subspace in each iteration and discard it. The
rest of the sample, i.e., the part not used for SVD computation, is classified correctly
with high probability. The size of the subset S in each iteration is N0, where

N0 = 100
n

ε2
log5 nk

δ
.

Let 0 < ε, δ < 1. Our main result is the following guarantee for the proposed algorithm.



1148 R. KANNAN, H. SALMASIAN, AND S. VEMPALA

Theorem 3. Suppose we have N i.i.d. samples from a mixture F of k logconcave
distributions with mixing weights at least ε and the means of the components separated
as follows:

∀ i, j |μi − μj | ≥ 211(σi + σj)

(
k

3
2

ε2

)
log2

(
Nk

δ

)
.

There exists an absolute constant C such that if N > C kN0

ε , then the iterative spectral
algorithm correctly classifies N − kN0 samples with probability at least 1− δ (a subset
of kN0 samples is used by the algorithm and discarded).

Remark. A crude upper bound of C < 106 can be obtained quite easily by tracing
through the proof of Theorem 3. More careful estimates should yield a much smaller
upper bound.

We will prove Theorem 3 in the next section. The following corollary of Theorem
3 provides a second guarantee for the algorithm in terms of estimating the means and
covariances of the distributions.

Corollary 4. Let 0 < η < 1, and suppose we are given N i.i.d. samples from
a mixture F of k logconcave distributions in �n, with mixing weights at least ε and
the means separated as stated in Theorem 3. For any 1 ≤ i ≤ k, let μi be the mean

and Ai = EFi

(
(x− μi)(x− μi)

T
)

be the covariance matrix of Fi. If N = Ω∗( nk2

δ2η2ε3 ),

then using the iterative spectral algorithm we can find approximations μ′
1, . . . , μ

′
k to

the means and A′
1, . . . , A

′
k to the covariance matrices of the components F1, . . . , Fk of

the sample such that with probability at least 1 − δ, for 1 ≤ i ≤ k,

|μi − μ′
i| ≤ ησi and ||Ai −A′

i|| ≤ ησ2
i ,

where || · || is the spectral norm of the matrix.
The proof of Corollary 4 is given in section 4.4.

4. Analysis.

4.1. Preliminaries. We begin with some properties of logconcave distributions,
paraphrased from [13]. The proof of the first uses a theorem from [16] (see also Propo-
sition 2.11 of [7]).

Lemma 5. Let 0 < η < 1 and y1, . . . , ym be i.i.d. samples from a logconcave
distribution G in �n whose mean is the origin. There is an absolute constant C such
that for

m > C
n

η2
log5

(
n

ηδ

)

with probability at least 1 − δ, for any vector v ∈ Rn,

(1 − η)EG((vT y)2) ≤ 1

m

m∑
i=1

(vT yi)
2 ≤ (1 + η)EG((vT y)2).

The next lemma is an adaptation of Lemma 5.7 of [13].
Lemma 6. Let F be any logconcave distribution in �n with mean μ and second

moment EF (|X −μ|2) = R2. There is an absolute constant c such that, for any t > 1,

Pr(|X − μ| > tR) < e1−t.
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Lemma 5.5 of [13] implies the following lemma.
Lemma 7. Let f : � → �+ be a logconcave density function with variance σ2.

Then

max
�

f(x) ≤ 1

σ
.

4.2. Sample properties. Assume that m > N0 and T is a set of m elements
consisting of i.i.d. samples generated by the mixture F . Then there is a partition T
as T = T1 ∪ T2 ∪ · · · ∪ Tk, where Ti is the set of samples from Fi.

Lemma 8. With probability at least 1 − δ/4k, for every i ∈ {1, 2, . . . , k} we have
the following:

(a) wi|T | − ε
4 |T | ≤ |Ti| ≤ wi|T | + ε

4 |T |.
(b) |μi − μT

i | ≤ σi

4 .
(c) For any subspace W , 7

8σi,W ≤ σ̂2
i,W (T ) ≤ 8

7σ
2
i,W .

Proof.
(a) A point x ∈ T belongs to Ti with probability wi. If T = {x1, . . . , xm}, define

a random variable Yj , 1 ≤ j ≤ m, as follows:

Yj =

{
1 if xj ∈ Ti,
0 otherwise.

The Yj ’s are Bernoulli variables and E(Yj) = wi. Therefore by Chernoff’s
bound (see Theorem 4.1 of [14]) we have

(4) Pr

(
Y1 + · · · + Ym

m
− wi >

ε

4

)
<

(
e

ε
4wi

(1 + ε
4wi

)
(1+ ε

4wi
)

)mwi

.

Since wi ≥ ε, ε = 4twi for some t ≤ 1
4 . The RHS of (4) equals ( et

(1+t)(1+t) )
mwi ,

and one can check that for t ≤ 1
4 we have et

(1+t)(1+t) < e−
t2

4 . Similarly we have

Pr

(
Y1 + · · · + Ym

m
− wi < −ε

4

)
< (e−

t2

4 )mwi .

It follows that Lemma 8(a) fails for distribution Fi with probability at most

2e−
t2

4 mwi , which is equal to 2e
− mε2

64wi . Now Lemma 8(a) follows immediately
from m ≥ N0.

(b) For any fixed |Ti|, the random variable μT
i = 1

|Ti|
∑

x∈Ti
x is a convolution of

logconcave distributions and hence is also logconcave. Its variance is bounded
from above by nσ2

i /|Ti|. We apply Lemma 6 to the random variable μT
i . Now

Lemma 8(b) follows from Lemma 8(a).
(c) The proof follows immediately from Lemma 5.
In our proof, we would like to apply Theorem 1. However, the theorem holds for

the sample S that is used to compute the SVD subspace. The next lemma derives a
similar bound for an independent sample T that is not used in the SVD computation.

Lemma 9. Let W be the SVD subspace obtained in the algorithm, and suppose
T = T1 ∪ · · · ∪Tk is the set of sample points not used for the SVD computation in the
algorithm. Then we have

(5)

k∑
i=1

|Ti|d(μS
i ,W )2 ≤ 2k

k∑
i=1

|Ti|σ̂2
i ,
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where σ̂2
i = σ̂2

i,W (T ) is the maximum variance of Ti along any direction in W .
Proof. First, we apply Theorem 1 to S. Then, using Lemma 8(a), we can relate

|Ti| to |Si|, and we have

k∑
i=1

|Ti|d(μS
i ,W ) ≤ 3

2
k

k∑
i=1

|Ti|σ̂2
i,W (S).

Next, Lemma 5 implies that

σ̂2
i,W (S) ≤ 7

6
σ2
i,W .

Finally, we use the lower bound in Lemma 8(c) to get the desired inequality.

4.3. Proof of Theorem 3. We will prove the following claim: With probability
at least 1 − δ

2k , the algorithm identifies one component exactly in any one iteration.
We will prove the claim for the first iteration, and it will follow inductively for all
subsequent iterations. From now on, we assume that Lemma 8 holds. Note that this
happens with probability at least 1 − δ

4k .
Let T = T1 ∪ T2 ∪ · · · ∪ Tk be the partition of the current sample T according to

the components Fi. For each i, recall that μT
i is the sample mean, and define μ̂T

i to
be the projection of μT

i onto the subspace spanned by W . Similarly, μ̂S
i and μ̂i are

the projections of μS
i and μi. For convenience, we write σ̂i,W (T )2 as σ̂2

i . Let

α = 211 k
3
2

ε2
log2

(
Nk

δ

)
and β =

ε3

214k log2(Nk
δ )

.

We say that a component Fr is large if the following condition holds:

(6) |Tr|σ̂2
r ≥ β max

i
|Ti|σ̂2

i .

Recall that |T | > N0. The proof of Theorem 3 is based on the next two lemmas.
Lemma 10. For any large component Fr, for every i 	= r,

|μ̂T
i − μ̂T

r | >
α

5
(σi + σr).

Proof. For any 1 ≤ j ≤ r, let dj = d(μS
j ,W ). By (5),

(7) |Tr|d2
r ≤ 2k

∑
i

|Ti|σ̂2
i ≤ 2k2

β
|Tr|σ̂2

r .

Thus,

(8) d2
r ≤ 2k2

β
σ̂2
r ≤ α2

16
σ̂2
r .

Next, let

R =
{
i 	= r : |μ̂S

i − μ̂S
r | ≤

α

4
(σi + σr)

}
.

Then we have

di = d(μS
i ,W ) = |μS

i − μ̂S
i |

= |(μS
i − μi) + (μi − μr) + (μr − μS

r ) + (μS
r − μ̂S

r ) + (μ̂S
r − μ̂S

i )|
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and, by the triangle inequality,

di ≥ |μi − μr| − |(μS
i − μi) + (μr − μS

r ) + (μS
r − μ̂S

r ) + (μ̂S
r − μ̂S

i )|
≥ |μi − μr| − |μi − μS

i | − |μr − μS
r | − dr − |μ̂S

i − μ̂S
r |.

Next, we use the inequality above to show that

(9) di ≥
α

3
σr.

To this end, we need inequalities given in (10), (11), and (12). By the separation
assumed in Theorem 3, we have

(10) |μi − μr| ≥ α(σi + σr).

From Lemma 8(b) we have

(11) |μi − μS
i | ≤

σi

4
and |μr − μS

r | ≤
σr

4
.

Moreover, from (8) and Lemma 8(c) it follows that

(12) dr ≤ α

4
σ̂r ≤ 2α

7
σr,W ≤ 2α

7
σr.

From these facts (9) follows immediately.
Next, from Lemma 8(c) and (9) it follows that

di ≥
α

4
σ̂r.

Therefore, using (7) and Lemma 9,

2k2

β
|Tr|σ̂2

r ≥ 2k

k∑
i=1

|Ti|σ̂2
i ≥

k∑
i=1

|Ti|d2
i

≥
∑
i∈R

|Ti|d2
i ≥

∑
i∈R

|Ti|
α2

16
σ̂2
r .

As a result,

∑
i∈R

|Ti| ≤
32k2

α2β
|Tr| <

ε

2
|T |.

However, since each |Ti| ≥ ε
2 |T | (by Lemma 8(a)), this implies that R is empty.

Consequently, for any i 	= r we have

(13) |μ̂S
i − μ̂S

r | >
α

4
(σi + σr).

To complete the proof of the lemma, we note that by Lemma 8(b), for any 1 ≤
j ≤ r,

|μ̂T
j − μ̂S

j | ≤ |μT
j − μS

j | ≤ |μT
j − μj | + |μj − μS

j | ≤
σj

2
.
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Therefore, by (13) and the triangle inequality,

|μ̂T
i − μ̂T

r | = |(μ̂T
i − μ̂S

i ) + (μ̂S
i − μ̂S

r ) + (μ̂S
r − μ̂T

r )|
≥ |μ̂S

i − μ̂S
r | − |μ̂S

r − μ̂T
r | − |μ̂S

i − μ̂T
i |

≥ α

4
(σi + σr) −

σi

2
− σr

2

>
α

5
(σi + σr).

Lemma 11. Let p ∈ Ti. With probability at least 1 − δ
4k ,

σ(p)2 ≤ 16kσ̂2
i log2

(
Nk

δ

)
.

Further, if i is a large component, then

σ(p)2 ≥ w2
i

512
σ̂2
i .

Proof. Consider the samples in Ti after projection onto W . These points are i.i.d.
samples from a logconcave distribution with maximum variance at most kσ2

i . Fix a
(projected) sample point p. By Lemma 6,

(14) Pr

(
|p− μ̂i| >

3

2

√
kσi,W log

(
Nk

δ

))
<

δ

8kN
.

Therefore, with probability at least 1− δ
8k , every projected sample point from any Fi

lies within distance at most 3
2

√
kσi,W log(Nk

δ ) of μ̂i. Consequently, with probability

at least 1− δ
8k , any pair of projected samples from Ti are within 3

√
kσi,W log(Nk

δ ) of

each other. Since by Lemma 8(a) |Ti| > Nε
2 , it follows that elements of T (p) lie within

a ball of radius at most 3
√
kσi,W log(Nk

δ ) centered at p. From the definition of σ(p),
Lemma 2, and Lemma 8(c) it follows that

σ(p)2 ≤ 1

|T (p)|
∑

x∈T (p)

|x− p|2 ≤ 9kσ2
i,W log2

(
Nk

δ

)
≤ 16kσ̂2

i log2

(
Nk

δ

)
.

For the second inequality, note that by Lemma 10 the set T (p) of samples used
to compute σ(p) are all from Ti. If v is the direction in W for which the distribution
Fi has maximum variance, then Lemma 7 implies that for

H =
{
x ∈ �n : μT (p) · v − ε

8
σi,W ≤ v.x ≤ μT (p) · v +

ε

8
σi,W

}

we have Fi(H) ≤ 1
σi,W

× 2
εσi,W

8 = ε
4 .

Now we apply a result which follows from VC-dimension techniques (see [10]). To
make the paper self-contained, we will give a proof of this result in section 4.5. For
any interval I along the direction v, let HI = {x ∈ �n : x · v ∈ I}.

Lemma 12. Suppose T = T1 ∪ T2 ∪ · · · ∪ Tk is a set of i.i.d. samples generated
from the mixture F such that |T | > N0. Fix i ∈ {1, . . . , r}, and let I be any interval
along the direction of v such that Fi(HI) ≤ ε

4 . With probability at least 1 − δ
8k , we

have ∣∣∣∣ |Ti ∩HI |
|Ti|

− Fi(HI)

∣∣∣∣ ≤ ε

8
.
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We now complete the proof of Lemma 11. From Lemma 12 we have

|T (p) ∩H| ≤ 3ε

8
|Ti| ≤

3

4
× ε|Ti|

2
≤ 3|T (p)|

4
.

This means that at least |T (p)|
4 samples in T (p) are out of the strip H; i.e., they are

at least as far as ε
8σi,W apart from μT (p) in the direction of v. Hence, using Lemma

8(c),

σ(p)2 ≥ 1

|T (p)|

⎛
⎝ 1

||v||2
∑

x∈T (p)

(x · v − μT (p) · v)2
⎞
⎠

≥ 1

|T (p)| ×
|T (p)|

4
×
(ε

8
σi,W

)2

≥ ε2

256
σ2
i,W ≥ ε2σ̂2

i

512
,

which completes the proof.
We continue with the proof of Theorem 3. First, note that from Lemma 8(a)

it follows that in each iteration the size of the set of samples is at least 2N0. The
algorithm uses N0 samples for SVD computation, and the rest are classified. Since
there are at least N0 samples left, all of the necessary lemmas will be valid.

Suppose the point p0 which maximizes σ(p) in step 4 of the algorithm is actually
from a large component Fr (i.e., one which satisfies (6)). By Lemma 6 and the first
part of Lemma 11, we have

(15)
α

8
σr > 28

√
k

ε
σ(p) log

(
Nk

δ

)
> 3

√
kσr,W log

(
Nk

δ

)
.

It was shown that from (14) it follows that with probability 1− δ
8k , any pair of projected

samples onto W from Fi are within 3
√
kσi,W log(Nk

δ ) of each other. This, together
with (15), means that the output of an iteration contains Tr entirely. Moreover, from
Lemma 10 and the above consequence of (14) it follows that the distance between
any projected samples of Fr and Fi, i 	= r, is at least α

8 σr. This, together with
(15), implies that the output of the iteration does not contain any samples from any
Fi, i 	= r. Therefore the output of the iteration exactly classifies samples from one
distribution.

Next, we will show that the point p0 in step 4 of the algorithm must indeed be
from a large component. Let r be the component for which |Tr|σ̂2

r is maximum. Take
any p ∈ Ti for an i which is not large, i.e.,

(16) |Ti|σ̂2
i < β|Tr|σ̂2

r .

Therefore,

σ̂2
i ≤ β

|Tr|
|Ti|

σ̂2
r ≤ 2β

ε
σ̂2
r .

By Lemma 11,

σ(p)2 < 16kσ̂2
i log2

(
Nk

δ

)
≤ 32kβ

ε
σ̂2
r log2

(
Nk

δ

)
=

ε2

512
σ̂2
r .
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On the other hand, for any point q ∈ Tr,

σ(q)2 ≥ ε2

512
σ̂2
r > σ(p)2.

Hence the point p0 chosen in step 4 of the algorithm will be from a large component.
This completes the proof of Theorem 3.

4.4. Proof of Corollary 4. Assume N > C′k2

ε3η2δ2 log5(nkδη ), where C ′ is a large
enough constant. We use our spectral algorithm to obtain a classification of N − kN0

samples such as T = T1 ∪ · · · ∪ Tk. By Theorem 3, with probability at least 1 − δ the
algorithm classifies the samples correctly. For any 1 ≤ i ≤ k, set

μ′
i = μT

i =
1

|Ti|
∑
x∈Ti

x and A′
i =

1

|Ti|
∑
x∈Ti

(x− μ′
i)(x− μ′

i)
T .

From Lemma 8(a) it follows that with probability at least 1 − δ, for every 1 ≤ i ≤ k
we have |Ti| > 4n

η2 log2( 2k
δ ) . Now the samples in Ti are i.i.d. and all generated from

Fi. With a method analogous to the proof of Lemma 8(b) given below, we can prove
that for any 1 ≤ i ≤ k, with probability at least 1 − δ

2k we have |μi − μ′
i| < η

2σi.
Finally, let Gi be the shifted logconcave distribution given by

Gi(x) = Fi(x + μi).

Clearly the mean of Gi is located at the origin. Set

A′′
i =

1

|Ti|
∑
x∈Ti

(x− μi)(x− μi)
T .

Since |Ti| = Ω
(

n

( δ2η2

4k2 )
log5( n

( δ2η2

4k2 )
)
)
, Lemma 5 implies that for any 1 ≤ i ≤ k, with

probability at least 1 − δ
2k for any vector v ∈ �n we have

|vTA′′
i v| =

∣∣∣∣∣∣
⎛
⎝ 1

|Ti|
∑

y∈Ti−μi

(vT y)2

⎞
⎠− EGi((v

T y)2)

∣∣∣∣∣∣
≤ η

2
EGi((v

T y)2) =
η

2
vTAiv,

which implies that ||
∑

x∈Ti
(x − μi)(x − μi)

T )|| ≤ η
2 ||Ai|| ≤ η

2σ
2
i . Next, a simple

calculation shows that

A′
i = A′′

i − (μi − μ′
i)(μi − μ′

i)
T ,

which, together with |μi − μ′
i| < η

2σi, implies that ||A′
i −Ai|| < ησ2

i .

4.5. Proof of Lemma 12. In this section we prove Lemma 12. Our notation
will be the same as in the statement of the lemma. Let Lv be the line in the direction
of v. Let t = � 30

ε . Choose a sequence of closed intervals I1, . . . , It on Lv such that
the following hold:

• For any 1 ≤ j ≤ t, we have F (HIj ) = 1
t .

• Lv = I1 ∪ · · · ∪ It.
• The interiors of I1, . . . , It are disjoint.
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For any 1 ≤ j ≤ t, let rj be the number of samples in Ti which belong to HIj . Using
Chernoff’s inequality one can see that

Pr

(∣∣∣∣ rj
|Ti|

− 1

t

∣∣∣∣ > 1

100t

)
< 2e−

|Ti|
104t .

From Lemma 8(a) it follows that with probability at least 1 − δ
8k , for any j we have

| rj
|Ti| −

1
t | <

1
100t . Next, we show that when this holds, the inequality of the statement

of the lemma holds as well.

Let I be an interval such that Fi(HI) = l ≤ ε
4 . Suppose a, b are chosen such that

Ia+1 ∪ · · ·∪ Ib−1 ⊂ I ⊂ Ia∪ · · ·∪ Ib. Then (b−a+1) > lt and b−a−1 < lt. Therefore

|Ti ∩HI |
|Ti|

<
ra + · · · + rb

|Ti|
< (b− a + 1)

(
1

t
+

1

100t

)
< (lt + 2)

(
101

100t

)

= l +
l

100
+

101

50t
< l +

ε

8

and, similarly,

|Ti ∩HI |
|Ti|

>
ra+1 + · · · + rb−1

|Ti|
> (b− a− 1)

(
1

t
− 1

100t

)
> (lt− 2)

(
99

100t

)

= l − 1

100t
− 99

50t
> l − ε

8
.

5. Concluding remarks. In this paper we showed that assuming a mild sepa-
ration for the means a PCA-based learning algorithm provably classifies samples from
a mixture of logconcave distributions.

From the example in Figure 1, it is not hard to see that spectral projection re-
quires a separation between means that grows with the largest variance of individual
components. Following the preliminary version of our results [18, 9], Achlioptas and
McSherry [1] have improved the polynomial dependence on k and ε using a more so-
phisticated algorithm after projection. It remains an open problem to learn (nonspher-
ical) Gaussians at smaller separation. The near disjointness of Gaussian components
(e.g., total variation distance nearly 1 for two Gaussians), and thus their learnability,
is implied by the assumption that the distance between two means is of the order of
the variance in the direction of the line joining the means. Spectral projection fails at
such a small separation, and a different technique will have to be used.

On the other hand, the main technique used in this paper is fairly easy to im-
plement and commonly used in practice for many applications. In [20], Vempala and
Wang present empirical evidence and propose an explanation for why the method is
effective for real data where the assumption that the components are Gaussian (or
logconcave) might not be valid.

Finally, most guarantees for spectral methods assume that the data is gener-
ated from some restricted model such as a random model. Our algorithm is also for
“random” data, but the distributions considered are more general. Spectral projec-
tion seem to be well suited for such models, and our result can be viewed as further
evidence of this.

Acknowledgment. We thank the referees for patiently reading the original ver-
sion of the paper and making several useful suggestions.
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IMPROVED APPROXIMATION ALGORITHMS FOR BROADCAST
SCHEDULING∗

NIKHIL BANSAL† , DON COPPERSMITH‡ , AND MAXIM SVIRIDENKO†

Abstract. We consider scheduling policies in a client-server system where the server delivers
data by broadcasting it to the users. In thesimplest model of the problem, there is a single server
that holds n pages of unit size. Multiple requests for these pages arrive over time. At each time
slot the server broadcasts exactly one page which satisfies all of the outstanding requests for this
page at that time. We consider the problem of minimizing the average response time of requests,
where the response time of the request is the duration since the request is placed until the time
it is satisfied. For the offline version of this problem we give an algorithm with an approximation
ratio of O(log2(n)/ log log(n)). More generally, for any ε > 0, the algorithm achieves an average
response time of (2 + ε) · OPT + O(logn · log(1+ε) n), which is useful when the optimum value is

large. This substantially improves the previously best known approximation factor of O(
√
n) for

the problem [N. Bansal, M. Charikar, S. Khanna, and J. Naor, Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, Vancouver, British Columbia, ACM, New York,
SIAM, Philadelphia, 2005, pp. 215–221]. Our result is based on iteratively relaxing and rounding an
auxiliary linear program derived from a natural linear programming relaxation of the problem.

Key words. LP rounding, approximation algorithm, broadcast scheduling

AMS subject classifications. 68W25, 68M20, 68Q25, 68W40, 90B35, 90C59
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1. Introduction. In a broadcast data dissemination system, we have a collection
of data items at a broadcast server (typically a satellite). Users submit requests for
these data items at various times and the server continuously transmits the data
items. Whenever the server broadcasts a data item, it simultaneously satisfies all users
waiting for that item. Broadcast systems have received a lot of attention recently.
These systems exploit the fact that most requests are for a small common set of
objects and they scale very well with increasing demand and number of users. Data
broadcasting is actually being used in many commercial systems such as Intel Intercast
system, Hughes DirecPC system [10], and the Airmedia system [1] to increase the
bandwidth of the system. In fact broadcast is not unique to computer systems. There
are several radio music channels where listeners submit the requests for songs, and
then these songs eventually get played.

There has been a lot of research interest in various aspects of broadcast systems.
In this paper we consider scheduling algorithms to improve the quality of service
perceived by the users of the system. We focus on the average response time, which is
one of the most commonly used measures of quality of service, defined as the average
time a user waits until his request is satisfied.

Problem formulation. The setting and problem we study in this paper is formal-
ized as follows: There is a collection of pages P = {1, . . . , n}. Time is slotted and
any page can be broadcast in a single time slot. At any time t, the broadcast server
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receives np(t) requests for page p ∈ P . We say that a request ρ for page p that arrives
at time t is satisfied at time cp(t), if cp(t) is the first time after t when page p is
transmitted by the broadcast server. The response time of the request ρ is defined to
be the time that elapses from its arrival till the time it is satisfied, i.e., cp(t) − t. We
assume that request ρ arrives in the end of the time slot t and, therefore, cannot be
satisfied in the time slot in which it arrived; i.e., the response time for any request is
at least 1. Let T denote the last time when any request arrives.

We consider the average response time minimization problem, where we want to
find a broadcast schedule that minimizes the average response time, defined to be
(
∑

p∈P

∑T
t=1 np(t)(cp(t) − t))/(

∑
p∈P

∑T
t=1 np(t)). In this paper we study the offline

problem, where the request sequence is known in advance to the scheduling algorithm.
The problem can also be viewed as the response time minimization version of the

minimum latency problem (aka traveling repairman problem) on a uniform metric
space. In the classical minimum latency problem [5, 8, 16], we wish to find a tour
on n points in a metric space which minimizes the average time a vertex is visited.
This can be viewed as a request arriving at each vertex at time 0, and the goal is to
satisfy the average response time of the requests. One can consider a stronger variant
of the minimum latency problem when requests at vertices arrive over time, and,
moreover, several requests might arrive at a vertex at different times. By associating
each vertex with a page, and viewing every visit to a vertex as a transmission of
the corresponding page, it can be seen that the problem considered in this paper is
identical to the response time version of the latency problem for the uniform metric
space.

Previous work. The average response time problem was shown to be NP hard
by Erlebach and Hall [13]. Most of the previous algorithmic work has focused on
resource augmentation where the server is given extra speed compared to the opti-
mal algorithm. These results compare k-speed approximation algorithm against the
performance of an optimal 1-speed algorithm, where a k-speed algorithm is one that
allows a server to broadcast k pages in each time slot. Kalyanasundaram, Pruhs,
and Velauthapillai [17] gave the first 1

α -speed, 1
1−2α -approximation algorithm for any

fixed α, for 0 ≤ α ≤ 1/3. This guarantee was improved in a sequence of papers
[14, 13, 15]. Gandhi et al. [14] gave a 1

α -speed, 1
1−α -approximation algorithm for any

α ∈ (0, 1/2]. Erlebach and Hall [13] gave a 6-speed 1-approximation algorithm for the
problem, which was improved to a 4-speed, 1-approximation algorithm by [14]. Then,
Gandhi et al. [15] gave a 2-speed, 1-approximation. Subsequently, Bansal et al. [2]
gave an algorithm that achieves a constant approximation ratio for arbitrarily small
extra speed up factor. Their algorithm achieves an additive approximation ratio of
O(1/ε) with (1 + ε)-speed.1

When no extra speed is allowed, the problem seems to be considerably harder.
Note that repeatedly transmitting the pages in the cyclic order 1, . . . , n is an O(n)
approximation, as every request has a response time of at most n in the schedule above,
and at least 1 in any schedule. Prior to our work, the only result with a guarantee
better than the naive O(n) was due to Bansal et al. [2]. Their algorithm produces a
solution with an average response time of OPT+O(

√
n), where OPT is the optimum

average response time. We note that this is an additive O(
√
n) approximation, hence

it directly implies an O(
√
n) multiplicative approximation (since OPT is at least

1). Alternately, the result can be viewed as an O(max(1,
√
n/OPT)) multiplicative

1Here (1 + ε)-speed means that the algorithm is allowed to transmit one extra page every 1/ε
time steps.
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approximation. Furthermore, for any ε > 0, the same algorithm achieves the (1 + ε)-
speed, O(1/ε)-additive approximation guarantee mentioned earlier.

In the online setting, a lower bound of Ω(
√
n) without speedup and a lower

bound of Ω(1/ε) with a speedup factor of (1 + ε) on the competitive ratio of any
randomized online algorithm is known [2]. In [17, Lemma 7], an Ω(n) lower bound on
the competitive ratio of deterministic algorithms is given. Edmonds and Pruhs [11]
gave a (4+ε)-speed, O(1+1/ε)-competitive online algorithm. Later, they [12] showed
that a natural algorithm, Longest Wait First, is 6-speed, O(1)-competitive. Recently,
Robert and Schabanel have extended these results to the setting where jobs can have
dependencies [19].

Other measures have also been studied in the broadcast setting. Bartal and
Muthukrishnan [4] considered the problem of minimizing the maximum response time
of a request and gave an O(1)-competitive algorithm. Charikar and Khuller [7] con-
sider a generalization of the above problem where the goal is to minimize the maximum
response time of a certain fraction of the requests. The profit maximization version of
the problem has also been studied. Here each request also has a deadline and a profit
which is obtained if this request is satisfied before its deadline. This problem was first
studied by Bar-Noy et al. [3] (in a more general setting), who gave a 1/2-approximation
algorithm for it. Later, Gandhi et al. [15] designed a 3/4-approximation algorithm
for the problem by using the dependent randomized rounding technique. Recently,
Chang et al. [6] showed that this problem is NP-hard even in the special case when
all profits are equal to 1 (referred to as the throughput maximization problem).

Our results. Our main result is an O(log2 n/ log log n)-approximation algorithm
for minimizing average response time in the absence of extra speed. In fact the bound
above follows from a more general guarantee of (2 + γ) · OPT + O(log1+γ n · log n),
where γ > 0 is an arbitrary positive parameter and OPT denotes the value of the
optimum solution. The bound O(log2 n/ log log n) follows by choosing γ = Θ(logn).
Setting γ arbitrarily close to 0 implies a guarantee of (2+γ)OPT+O(log2 n/γ), which
could be more useful in cases when OPT is large. For example, this implies an O(1)
approximation when OPT is Ω(log2 n).

Organization. We begin by defining a natural integer programming formulation
in section 1 and discuss some properties of its linear programming (LP) relaxation.
Section 2 describes the high level idea of our algorithm, and we present the algorithm
and its analysis in section 3. The analysis is split into two parts. For simplicity, we
first show a guarantee of 3 · OPT + O(log2(T + n)), where T is the time horizon.
Then, in section 3.5 we show how to remove the dependence on T , and show how to
refine the guarantee further to obtain an O(log2 n/ log log n) approximation. Finally,
in section 4 we give an example of a solution to the LP relaxation where every local
rounding procedure (defined below) incurs a large gap. This essentially implies that
techniques used prior to our work are unlikely to yield an approximation ratio better
than Θ(

√
n).

Preliminaries. We begin by considering an LP relaxation of a natural time-
indexed integer linear program (ILP) for the response time minimization problem.
This formulation is also the starting point of all previously known approximation
algorithms for this problem [17, 14, 15, 2].2

Consider the following time-indexed integer programming formulation: For each
page p = 1, . . . , n and each time t′, there is a variable ypt′ which indicates whether

2Strictly speaking, [17] considered a different LP formulation. However, it is equivalent [18] to
the one considered in this paper.
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page p was transmitted at time t′. In particular, ypt′ is 1 if p is broadcast at time t′

and 0 otherwise. We have another set of variables xptt′ indexed by a page p and two
times t and t′ such that t′ > t. These are used to model the response of a request. In
particular, xptt′ = 1 if a request for page p that arrived at time t is satisfied at time
t′ > t and 0 otherwise. Let npt denote the number of requests for page p that arrive
at time t. The following integer program is an exact formulation of the problem:

min
∑
p

∑
t

T+n∑
t′=t+1

(t′ − t) · npt · xptt′(1)

subject to
∑
p

ypt′ ≤ 1 ∀t′,(2)

T+n∑
t′=t+1

xptt′ ≥ 1 ∀p, t,(3)

xptt′ ≤ ypt′ ∀p, t, t′ > t,(4)

xptt′ ∈ {0, 1} ∀p, t, t′,(5)

ypt′ ∈ {0, 1} ∀p, t′.(6)

Here T denotes the last time when any request arrives. Observe that it suffices
to define variables only until time t = T + n, as all of the requests can be satisfied
by transmitting page p at time T + p for p = 1, . . . , n. The set of constraints (2)
ensures that at most one page is transmitted in each time slot. The set of constraints
(3) ensures that each request must be satisfied and, finally, the set of constraints (4)
ensures that a request for page p can be satisfied at time t only if p is transmitted at
time t. A request that arrives at time t and is satisfied at time t′ contributes (t′ − t)
to the objective function. Without loss of generality, it can be assumed that in any
optimum solution the constraints (2) are satisfied with an equality and that for every
p and t, the variable xptt′ is equal to 1 at the earliest time t′ > t such that ypt′ = 1.

As stated the size of the formulation is polynomial in the time horizon T which
could be arbitrarily large. However, we can assume that the input size of the problem
is at least T/n, since if there is a period of n consecutive time units when no page is
requested, then we can split the problem into two disjoint instances.

Consider the linear program obtained by relaxing the integrality constraints on
xptt′ and ypt. This fractional relaxation may be viewed as broadcasting pages frac-
tionally at each unit of time such that total fraction of all the pages broadcast in any
unit of time is 1. A request for a page p arriving at a time t is considered completely
satisfied at time t′ if t′ is the earliest time such that the total amount of page p
broadcast during the interval (t, t′] is at least 1.

Let (x∗, y∗) be some optimum solution to the fractional relaxation of the program
(1)–(6). It is easily seen that the value of variables (x∗) are completely determined
by the values of variables (y∗). Since each page needs one unit of transmissions to
be satisfied, we can assume that for each p and t, the variable x∗

ptt′ is greedily set
equal to y∗pt′ starting from t′ = t + 1 until one unit of page p has been transmitted.
Equivalently, for each page p, time t, and any time τ > t,

(7)

∞∑
t′=τ

xptt′ = max

{
0,

(
1 −

τ−1∑
t′′=t+1

ypt′′

)}
.
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For each page p and time t, the solution (x∗, y∗) determines a (fractional) response
time r(p, t) for the request for p that arrives at time t. In particular, r(p, t) =∑

t′>t(t
′ − t)x∗

ptt′ . As (t′ − t) can be written as
∑t′

τ=t+1 1, we can rewrite r(p, t) =∑
t′>t

∑t′

τ=t+1 x
∗
ptt′ . By interchanging the order of summation, we get that r(p, t) =∑

τ>t

∑
t′≥τ x

∗
ptt′ . By (7), it follows that for each page p and time t we have

(8) r(p, t) =
∑
τ>t

max

{
0, 1 −

τ−1∑
t′′=t+1

ypt′′

}
.

The following is an extremely useful view of response times that we will use
repeatedly.

Lemma 1. Consider a request for a page p that arrives at time t. For α ∈ (0, 1],
let t(α, p) denote the earliest time after t such that the cumulative amount of page p
broadcast by the LP during the interval [t + 1, t(α, p)] is at least α. Then r(p, t) =∫ 1

0
(t(α, p) − t)dα.
Equivalently, if we choose α uniformly at random in (0, 1] and transmit page p at

time t(α, p), then the expected response time for this request is equal to the LP cost
for this request.

Proof. Consider some time τ > t. Since α is chosen uniformly at random in
(0, 1], the probability that t(α, p) ≥ τ is exactly equal to the probability that α >∑τ−1

t′′=t+1 ypt′′ , which is exactly equal to max{0, 1 −
∑τ−1

t′′=t+1 ypt′′}. Now,

∫ 1

0

(t(α, p) − t)dα = Eα[t(α, p) − t]

=
∑
τ>t

Pr[t(α, p) ≥ τ ]

=
∑
τ>t

max

{
0, 1 −

τ−1∑
t′′=t+1

ypt′′

}

which is exactly equal to r(p, t) by (8), and hence the result follows.

2. Algorithm overview and techniques. The algorithm begins by solving the
LP relaxation of (1)–(6). Our high level approach is the same as the one introduced
in [2]. We first produce a tentative schedule which has a good response time, but can
violate the “capacity” constraints (2), by transmitting more than one page during
certain time slots. However, this violation will be bounded as explained in condition 2
below. In particular, suppose this tentative schedule satisfies the following properties:

1. The total response time for this schedule is at most c = O(1) times the cost
of the LP relaxation.

2. The capacity constraints are satisfied approximately in the following sense.
For any interval of time (t, t′], the total number of pages broadcast by the
tentative schedule during (t, t′] is at most t′ − t + b, for some b independent
on the time interval (t, t′]. We refer to this b as the backlog of the schedule.

In this case, the tentative schedule can be transformed into a valid schedule as follows:
We transmit pages in the same order as the tentative schedule while ensuring that no
page is transmitted at an earlier time than in the tentative schedule. It is not hard to
see that the backlog property ensures that no page is transmitted more than b steps
later than in the tentative schedule (see Lemma 8 for a formal proof). Thus, this



1162 N. BANSAL, D. COPPERSMITH, AND M. SVIRIDENKO

produces an integral solution with average response time c · OPT + b. The O(
√
n)-

approximation algorithm of [2] was based on obtaining a tentative solution with cost
equal to the LP cost (i.e., c = 1) and backlog O(

√
n).

In this paper we will give a procedure to obtain a tentative schedule with c = 2+γ
and b = O(log1+γ(T + n) · log(T + n)), for any arbitrary γ > 0. By Lemma 11, this
will imply the desired approximation guarantee of (2 + γ)OPT + O(log1+γ n · log n).
Our improved approximation is based on two new ideas: First, we relax a locality
requirement (explained below) in the rounding procedure. Prior to our work, all
algorithms were local in the following sense: Given a solution to the LP formulation,
they produced a schedule (or a tentative schedule) that ensured that for every interval,
if the LP solution transmits more than one unit of page p during this interval, then
the rounded solution has at least one transmission of p during this interval. The main
reason for enforcing this locality was that the response time for each request can be
charged directly to its cost in the LP solution, which makes the analysis relatively
simple. Interestingly, in section 4 we show that relaxing this locality requirement
seems necessary to obtain approximation ratios better than Θ(

√
n). In particular,

we show that there exist LP solutions such that any rounding procedure that is local
must have backlog at least Ω(

√
n).

In our rounding procedure we relax the locality requirement so that it does not
necessarily hold for all time intervals. In particular, for each page p we partition the
time horizon, 1, . . . , T + n, into intervals B(p, i) called blocks, where B(p, i) refers to
the ith block for page p. These intervals are small in the sense that the cumulative
amount of page p transmitted by the LP during B(p, i) is O(log (T + n)). We require
only that the rounding be local within each block B(p, i). While this could lead to
some requests (that lie at the interface of two blocks) to pay much more than their
LP costs, our technique for constructing B(p, i) ensures that the response times of
these requests are not too much more.

The second part of the algorithm is to give a scheme to choose local schedules for
each block B(p, i) such that when the tentative schedule is constructed by merging
these local schedules for all the pages, it satisfies the following two properties. First,
the cost of the tentative schedule is bounded by a constant times the optimum, and
second, the backlog of the tentative schedule is bounded by O(log2(T+n)). To do this,
we solve a sequence of linear programs iteratively. We begin by defining a (different)
linear program (LP’) where the variables correspond to the possible local schedules
that can be chosen for each block B(p, i). LP’ has the property that there is a feasible
fractional solution where the backlog is 0 and the response time is only O(1) times
the optimum cost. Observe that a solution to LP’ can be viewed as assigning a linear
combination of local schedules to each block. Our novel step is to show that the
number of constraints in LP’ can be reduced in such a way that in any basic solution
to this reduced linear program, at least a constant fraction of blocks gets assigned
exactly one local schedule, and yet the backlog increases only by O(log(T +n)). Since
this linear program has fewer constraints, the objective function can only be better.
Since at least a constant fraction of blocks gets assigned exactly one schedule, we
can remove these blocks to obtain a smaller problem instance. This allows us to
apply this procedure iteratively, where we successively relax the constraints. At each
iteration, the problem size decreases geometrically, the backlog increases additively
by O(log(T + n)), and the objective function does not worsen. After O(log(T + n))
iterations the procedure terminates and we obtain a tentative schedule with backlog
O(log2(T +n)), and cost equal to O(1) times the optimum cost. We now describe the
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details.

3. Minimizing average response time. Our algorithm begins by solving the
LP (1)–(6). Fix an optimum solution (x∗, y∗) to this LP, and let r(p, t) denote the
response time according to the LP solution for a request for page p at time t, that
is r(p, t) =

∑
t′>t(t

′ − t)x∗
ptt′ . Let c(p, t, t′) denote the cumulative amount of page

p transmitted by the LP solution during the time interval (t, t′], that is c(p, t, t′) =∑t′

t′′=t+1 y
∗
pt′′ . In the rest of this paper we refer to the time interval (t− 1, t] for t ≥ 1

as the time slot t. We now define the key concept of p-good time slots which will be
used to form the blocks for each page.

3.1. Blocks and p-good time slots.
Definition 2 (p-good time slot). Let r(p, t) denote the response times as deter-

mined by the solution to the LP (1)–(6). For a page p we say a time slot t is p-good
if r(p, t) ≤ 2r(p, τ) for all τ < t such that c(p, τ, t) ≤ 1.

Intuitively, the LP response time for page p at a p-good time t is not much more
than that at any other time τ , where τ is sufficiently close to t in the sense defined
above. The following lemma shows that a p-good slots can be found in any interval
of time that broadcasts a sufficient amount of page p.

Lemma 3. Any time interval (t, t′] such that c(p, t, t′) > log (T + n) contains a
p-good slot.

Proof. For the sake of contradiction, suppose that none of the slots in the interval
(t, t′] are p-good. Since t′ is not p-good, there exists a t1 < t′ such that c(p, t1, t

′) ≤ 1
and r(p, t1) > 2r(p, t′). Note that t1 lies in the interval (t, t′) and, hence, is not p-
good by our assumption. Thus there exists t2 such that c(p, t2, t1) ≤ 1 and r(p, t2) >
2r(p, t1). Repeating the argument for k = log (T + n) steps, we obtain a sequence of
slots t < tk < · · · < t2 < t1 < t′ such that c(p, tk, t

′) ≤ log (T + n) and r(p, tk) >
2kr(p, t′) = (T + n) · r(p, t′), which is impossible as the response time for any request
is bounded between 1 and (T + n).

Lemma 3 implies that if t is a p-good slot, and such that c(p, t, T+n) > log (T + n),
then there is another p-good slot t′ > t such that c(p, t, t′) ≤ log (T + n). Thus, for
each p we can form a collection

G(p) = {0 = t(p, 0), t(p, 1), t(p, 2), . . . , t(p, bp) = (T + n)}

of time slots such that the t(p, i) is p-good for 1 ≤ i ≤ bp − 1 and 1 ≤ c(p, t(p, i −
1), t(p, i)) ≤ 1+ log (T + n) for all 1 ≤ i ≤ bp− 1. The last interval must be such that
1 ≤ c(p, t(p, bp − 1), t(p, bp)) ≤ 2 + log (T + n), and such a collection of slots can be
formed by a simple iterative greedy strategy.

Indeed, let t(p, s) be the current p-good point. Let t(p, s, 1) be the next p-good
point. By Lemma 3 c(p, t(p, s), t(p, s, 1)) ≤ log (T + n). If c(p, t(p, s), t(p, s, 1)) ≥ 1,
then t(p, s + 1) = t(p, s, 1). Otherwise, let t(p, s, 2) be the next p-good point. By
Lemma 3 c(p, t(p, s, 1), t(p, s, 2)) ≤ log (T + n) and therefore c(p, t(p, s), t(p, s, 2)) ≤
1 + log (T + n). If c(p, t(p, s), t(p, s, 2)) ≥ 1, then t(p, s + 1) = t(p, s, 2). Otherwise,
we define t(p, s, 3) and continue until we either define t(p, s + 1) or hit the end of
the planning horizon. If the last interval produced by this greedy strategy has length
smaller than 1, then we merge this interval and the second-last interval (this is why
we have slack for the size of the last interval).

We call the time intervals (0 = t(p, 0), t(p, 1)], (t(p, 1), t(p, 2)], . . . , (t(p, bp − 1),
t(p, bp)], blocks for page p. Note that there are bp blocks for page p. We will use
B(p, i) = (t(p, i− 1), t(p, i)] to denote the ith block for page p. Let Bp denote the set
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of all blocks for page p, and let B = ∪pBp denote the set of all blocks. For a block
B(p, i), we define its tail to be the time slots t such that c(p, t, t(p, i)) < 1. That is,
the cumulative amount of page p transmitted after time t until the end of the block
in which t lies is less than 1. Obviously, there is a tail for each block B(p, i) since
c(p, t(p, i− 1), t(p, i)) ≥ 1. Note that if a request for page p arrives during the tail of
a block, then it is not satisfied completely within that block by the LP solution.

Let us focus on a particular block, say B(p, i). For α ∈ (0, 1], l = 0, 1, 2, . . . , and
block B(p, i), let t(p, i, l, α) denote the earliest time in B(p, i) when an l + α amount
of page p has been broadcast since the start of B(p, i); i.e., an (l+α) amount of page
p has been broadcast during (t(p, i−1), t(p, i, l, α)] (the time t(p, i, l, α) is defined only
if block B(p, i) transmits at least l + α amount of page p). For a given block B(p, i)
and α ∈ (0, 1], let C(p, i, α) denote the set of all time slots t(p, i, l, α) for l = 0, 1, 2, . . ..

Note that if we transmit page p at slots in C(p, i, α) for some α ∈ (0, 1], then this
is a local schedule for B(p, i) (since we transmit page p whenever the LP transmits one
unit of page p during any time interval contained in B(p, i)). We say that this local
schedule is formed by choosing the offset α for block B(p, i). We will only be interested
in local schedules for blocks that are obtained by choosing some offset α(p, i) for each
block B(p, i) and transmitting page p at all time slots in C(p, i, α(p, i)). Suppose
we arbitrarily choose some offset α(p, i) for each block B(p, i). We claim that the
tentative schedule thus obtained satisfies each request. To see this, observe that each
request for page p that arrives in B(p, i) for 1 ≤ i ≤ bp − 1 (i.e., except for the last
block for page p) is served within B(p, i) or in B(p, i+ 1). Finally, as there is at least
one unit of page p broadcast in the LP solution after the arrival of the last request for
page p (see comment after the definition of LP (1)–(6), all requests for page p that
arrive during the last block B(p, bp) are served within B(p, bp).

The following lemma shows that if we construct a tentative schedule by choosing
an offset independently at random for each block, then the expected total response
time is not too high and all of the capacity constraints are satisfied at each time step
in expectation.

Lemma 4. Suppose for each block B(p, i) ∈ B, we choose the offset α(p, i) inde-
pendently and uniformly at random in [0, 1]. Then the tentative schedule thus obtained
satisfies the following properties:

1. The expected number of pages transmitted at any time step t is exactly 1.
2. For each request, its expected response time is at most 3 times the cost incurred

by it in the LP solution of (1)–(6).

Proof. Consider a time t and suppose that t ∈ B(p, i). Since we choose the offset
α(p, i) uniformly at random in (0, 1], the probability that page p is transmitted at
time t is exactly y∗pt.

For any p, the blocks B(p, i) partition the entire time interval (0, T + n], and
hence for each time t there is exactly one block for page p that contains t. Thus, the
probability that page p is transmitted at time t in the tentative schedule is exactly
y∗pt. Summing up over all of the pages, we have that the expected number of pages
transmitted at time t is exactly

∑
p y

∗
pt which is exactly 1 by constraints (2) in the

LP. This proves the first part of the lemma.

Consider a particular block B(p, i), and let ρ be a request for page p that arrives
during B(p, i). We say that request ρ is early if it does not arrive in the tail of B(p, i),
or, equivalently, that c(p, tρ, t(p, i)) ≥ 1. Note that ρ is always served within B(p, i)
irrespective of the choice of α(p, i). Since α(p, i) is chosen uniformly at random in
(0, 1], by Lemma 1 the expected response time for an early request is exactly r(p, t).



BROADCAST SCHEDULING 1165

Thus it suffices to focus on the contribution of requests that are not early. Con-
sider a request ρ for page p that arrives at time tρ ∈ B(p, i) such that c(p, tρ, t(p, i)) <
1. Since α(p, i) is chosen uniformly at random, with probability c(p, tρ, t(p, i)) this
request is served in B(p, i) and with probability 1 − c(p, tρ, t(p, i)) it is served in
B(p, i + 1). Since α(p, i + 1) is chosen uniformly at random in (0, 1] and is indepen-
dent of α(p, i), it follows that conditioned on the event that ρ is served in B(p, i+ 1),
by Lemma 1 its expected response time is (t(p, i)− tρ)+ r(p, t(p, i)). Thus the overall
expected response time of ρ is

⎛
⎝ t(p,i)∑

t′′=tρ+1

(t′′ − tρ) · x∗
ptρt′′

⎞
⎠ + (1 − c(p, tρ, t(p, i))) · (t(p, i) − tρ + r(p, t(p, i)))

=

⎛
⎝ t(p,i)∑

t′′=tρ+1

(t′′ − tρ) · x∗
ptρt′′

⎞
⎠ +

⎛
⎝ ∞∑

t′′=t(p,i)+1

(t(p, i) − tρ) · x∗
ptρt′′

⎞
⎠

+(1 − c(p, tρ, t(p, i))) · r(p, t(p, i))

≤

⎛
⎝ t(p,i)∑

t′′=tρ+1

(t′′ − tρ) · x∗
ptρt′′

⎞
⎠ +

⎛
⎝ ∞∑

t′′=t(p,i)+1

(t′′ − tρ) · x∗
ptρt′′

⎞
⎠

+(1 − c(p, tρ, t(p, i))) · r(p, t(p, i))

≤

⎛
⎝ ∞∑

t′′=tρ+1

(t′′ − tρ)

⎞
⎠ · x∗

ptρt′′ + r(p, t(p, i)) ≤ r(p, tρ) + 2r(p, tρ) = 3r(p, tρ).

The first equality follows by observing that

⎛
⎝ ∞∑

t′′=t(p,i)+1

x∗
ptρt′′

⎞
⎠ = 1 − c(p, tρ, t(p, i)).

The final step follows as t(p, i) is a p-good time slot; hence by definition r(p, t(p, i)) ≤
2r(p, tρ).

The following lemma will allow us to consider discrete choices for the offsets
α(p, i).

Lemma 5. Let ε > 0 be an arbitrary precision parameter. We can assume that
xptt′ and ypt are integral multiples of δ = ε/(T + n)2. This adds at most ε to the
response time of each request.

Proof. Given an arbitrary LP solution, we simply round down the values of ypt to
the closest multiple of δ and modify xptt′ accordingly. We also transmit δ · T ≤ 1/n
units of each page p at time T +n+1 to ensure that each request remains completely
satisfied.

Observe that each xptt′ is reduced by at most δ. As the response time for a request
for page p at time t is

∑
t′>t(t

′ − t)xptt′ , the rounding adds at most T · T · δ ≤ ε to
the response time of each request.

Thus we can assume that all of the offsets α(p, i) are integral multiples of δ
for δ = ε/(T + n)2. Henceforth, we will use B(p, i, j) to denote the time slots in
C(p, i, α = δj) (i.e., those obtained by choosing α(p, i) = δj), where j = 0, . . . , 1/δ−1.
We will call the set of time slots B(p, i, j) a block-offset.
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3.2. Auxiliary LP. Recall that our goal is to choose exactly one offset for each
block in such a way that the total response time of the tentative schedule thus obtained
is not too high, and the backlog is small. For this purpose we define the LP (9)–(12).

We have variables zpij that correspond to choosing the offset j for block B(p, i),
or equivalently transmitting the page p at times in B(p, i, j) during B(p, i). The
parameters R(B(p, i, j)) and w(B(p, i, j), t) are defined below.

min
∑
p

∑
i

∑
j

R(B(p, i, j)) · zpij(9)

subject to
∑
j

zpij = 1 ∀p, i,(10)

∑
p

∑
i

∑
j

w(B(p, i, j), t) · zpij = 1 ∀t,(11)

zpij ≥ 0 ∀p, i, j.(12)

Here w(B(p, i, j), t) is an indicator function: w(B(p, i, j), t) is 1 if t ∈ B(p, i, j)
and 0 otherwise. Observe that the constraints (10) require that there is exactly one
unit of offsets chosen for each block B(p, i), and the constraints (11) require that for
each time slot t the total amount of pages transmitted is exactly 1. Thus, this LP can
be viewed as choosing a convex combination of local schedules for each block B(p, i)
such that certain global constraints are satisfied.

The objective function of minimizing the total response time is expressed in terms
of the variables zpij as follows: For each block B(p, i) we associate a block-offset
response time R(B(p, i, j)) which essentially accounts for the contribution of the block-
offset B(p, i, j) to the total response time. Observe that choosing an offset for block
B(p, i) can affect the response time of requests for page p that arrive in B(p, i) and
possibly the requests that arrive during the tail of B(p, i−1). The block-offset response
time R(B(p, i, j)) is computed as follows:

1. Let t′ denote the earliest time in B(p, i, j). Each request for page p in the tail
of the previous block B(p, i − 1) contributes t′ − t(p, i − 1) to R(B(p, i, j)).
Note that this is the amount of time (restricted to time slots in B(p, i)) that
any request in B(p, i− 1) might possibly have to wait until it is satisfied.

2. For a request ρ for page p that arrives at time t where t ∈ B(p, i), we do the
following. Let t′ denote the earliest time such that t′ > t and t′ ∈ B(p, i, j). If
such a t′ does not exist, then we set t′ = t(p, i). Then the request ρ contributes
exactly t′ − t to R(B(p, i, j)). Note that this quantity is the contribution to
the response time of ρ restricted to the time slots in B(p, i).

This definition of R(B(p, i, j)) ensures that for any tentative schedule obtained
by choosing one offset for each block, i.e., for any setting of zpij to 0 or 1 subject to
the constraints (10), the total response time of this tentative schedule is no more than∑

p,i,j R(B(p, i, j)) · zpij .
We next observe that the linear program above has a good fractional solution. In

particular, Lemma 4 implies the following about the linear program defined by LP
(9)–(12).

Lemma 6. There is a feasible solution to the LP (9)–(12) with cost no more than
3 times the cost of the optimum value of the LP (1)–(6).

Proof. Consider the solution where zpij = δ for all p, i and 0 ≤ j ≤ 1/δ − 1. This
corresponds to choosing an offset uniformly at random for each block B(p, i). Lemma
4 (part 1) implies that the constraints (11) are satisfied.
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We now show that the cost of this solution is no more than 3 times the cost of LP
(1)–(6). Consider an early request in B(p, i). Since this request is completely served
within B(p, i) by Lemma 1, the contribution of this request to the objective function
is exactly its response time. For a request for page p that arrives at time t in the tail
of B(p, i− 1), its contribution to the objective function corresponding to

∑
j zp,i−1,j ·

R(B(p, i−1, j)) is exactly
∑t(p,i)

t′′=t+1(t
′′− t)x∗

ptt′′ +(1−c(p, t, t(p, i))) ·(t(p, i)− t) which
is at most r(p, t). Similarly, the contribution to

∑
j zp,i,j · R(B(p, i, j)) is exactly

r(p, t(p, i− 1)) (by Lemma 1), which is at most 2r(p, t) by the definition of a p-good
point and as t lies in tail of B(p, i− 1).

Observe that a solution to the LP (9)–(12) satisfies the capacity constraints (11)
exactly. Hence if this LP had an integral optimum solution, then the backlog of
the tentative schedule implied by this solution would be 0; we would then have an
exact schedule with cost at most 3 times the optimum. However, this LP in general
could have a fractional optimum solutions. The rest of the algorithm will deal with
obtaining an integral solution to the above LP by successively relaxing the capacity
constraints (11) but still ensuring that the quality of the solution remains reasonably
good.

3.3. The algorithm. The idea for our algorithm is the following: Suppose we
relax the capacity constraints (11) in the auxiliary LP such that we require them only
to hold for time intervals of integer size b′ rather than for each time unit. That is, we
require only that intervals of size b′ contain exactly b′ pages, but we do not care how
these pages are transmitted during an interval. An important observation is that if
this relaxed LP had an integral optimum solution, it would give a tentative schedule
with backlog 2b′ and cost at most 3 times the optimum (and we would obtain an
approximation guarantee of 3 · OPT + 2b′). Since this is too strong to hope for, we
will show something weaker. We will show that for b′ = O(log(T + n)), there is an
optimum solution to this LP where more than half of the blocks B(p, i) have some zpij
set integrally to 1. Armed with this result, we will define a smaller problem instance
by removing the blocks B(p, i) that have some zpij = 1. We then apply this procedure
to this smaller problem by redefining the intervals and the LP suitably and relaxing
the capacity constraints of the type (11). We repeat this for O(log (T + n)) steps,
until we obtain a problem where only a constant number of blocks remain which can
be easily solved by trying all possibilities. At a high level, we add O(log(T + n))
to the backlog at each iteration of this process, which will imply that in the end we
obtain a tentative schedule with cost at most 3 times the optimum and backlog of
O(log2(T + n)). We now make these arguments precise.

Before we can describe the algorithm to compute the tentative schedule formally,
we need some notation. Let I = (t1, t2] be a collection of time slots t1 + 1, . . . , t2. We
refer to I as an interval. The size of I denoted by Size(I) is defined as t2 − t1. The
weight of an interval with respect to B(p, i, j), which we denote by w(B(p, i, j), I), is
the cardinality of the set B(p, i, j) ∩ I. That is, w(B(p, i, j), I) is the number of time
slots in the interval I that belong to B(p, i, j).

Our algorithm will solve a sequence of LP’s. At step k, some variables zpij
that were fractional (not 0 or 1) at the end of step k − 1 get assigned to 1. A
partial solution is an assignment where some zpij are set to 1. For a partial solution
obtained at the end of step k, and an interval I, let Used(I, k) denote the number
of time slots in this interval used up by zpij that are assigned integrally to 1, i.e.,
Used(I, k) =

∑
p,i,j w(B(p, i, j), I) such that zpij = 1. We will use Free(I, k) to

denote Size(I) − Used(I, k).
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We now describe the algorithm to compute the tentative schedule.
1. Initialize: We divide the time horizon from 1, . . . , T + n into consecutive

intervals of size 5 log (T + n). We call this collection of intervals I0. For all
I ∈ I0, we define Used(I, 0) = 0 and Free(I, 0) = Size(I) − Used(I, 0) =
Size(I). Let B̃0 be the set of all blocks B(p, i), and let S0 = ∅.

2. Repeat the following for k = 1, . . . ,.
• Consider the following linear program defined iteratively based on B̃k−1,
Ik−1, and Free(I, k − 1):

(13)

min
∑

B(p,i)∈B̃k−1

1/δ−1∑
j=0

R(B(p, i, j)) · zpij

subject to

1/δ−1∑
j=0

zpij = 1 ∀p, i : B(p, i) ∈ B̃k−1,(14)

∑
p∈P

bp∑
i=1

1/δ−1∑
j=0

w(B(p, i, j), I) · zpij = Free(I, k − 1) ∀I ∈ Ik−1,(15)

zpij ≥ 0 ∀p, i, j.(16)

Note that for k = 1 this LP is similar to the LP defined by (9)–(12)
except that the constraints in (11) are relaxed to hold only for intervals
of size 5 log(T + n) rather than for each time unit.

• Solve this LP and consider some basic solution. Let P denote the set
of blocks B(p, i) such that zpij = 1 for some j. Let S denote the set of
block-offset pairs B(p, i, j) such that zpij = 1.

• Set B̃k = B̃k−1 \ P. These are precisely the blocks B(p, i) for which zpij
is not equal to 1 for any j at the end of step k. Set Sk = Sk−1 ∪ S.
These are precisely the variables zpij that are integrally set to 1 thus far
by the end of step k. For each interval I ∈ Ik−1, recompute

Used(I, k) = Used(I, k − 1) +
∑

p,i,j:B(p,i,j)∈S
w(B(p, i, j), I).

Note that
∑

p,i,j:B(p,i,j)∈S w(B(p, i, j), I) is exactly the number of pages
that are assigned to be transmitted during interval I in step k. Set
Free(I, k) = Size(I) − Used(I, k). Essentially, Free(I, k) denotes the
number of free time slots in interval I at the end of step k.

• Finally, we compute the set of intervals Ik by merging the intervals in
Ik−1 as follows: Initially Ik = ∅. Starting from the leftmost interval
in Ik−1, merge intervals I1, I2, . . . , Il ∈ Ik−1 greedily to form I until
Free(I1, k)+Free(I2, k)+ · · ·+,Free(Il, k) first exceeds 5 log (T + n). We
set Free(I, k) = Free(I1, k)+Free(I2, k)+· · ·+,Free(Il, k) and Used(I, k)
= Used(I1, k)+Used(I2, k)+· · ·+,Used(Il, k). By construction, we have
that 5 log (T + n) ≤ Free(I, k) ≤ 10 log (T + n). Add I to Ik and remove
I1, . . . , Il from Ik−1 and repeat the process until the total free space in
the intervals in Ik−1 is less than 5 log (T + n); hence, we cannot form
new intervals. In this case we just merge all of the remaining intervals
in Ik−1 into one interval and add this final interval to Ik.
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• If |Ik| = 1, then the algorithm makes one more iteration and then stops.
On this last iteration there is just one constraint of type (15) in the
relaxed auxiliary LP. The optimal solution is integral and very easy to
define. We choose the best offset for every remaining block; i.e., we
define zpij = 1 if R(B(p, i, j)) = mins R(B(p, i, s)) for block B(p, i).

3.4. Analysis.
Lemma 7. At each iteration of step 2 in the previous algorithm, the number of

blocks B(p, i) that do not have any zpij set to 1 decreases by a constant factor. In
particular

|B̃k| ≤ 0.6 · |B̃k−1| + 1.

Proof. The total number of nontrivial constraints (of types (14) and (15)) in the
LP at step k is |Ik−1|+ |B̃k−1|. Consider a basic optimal solution of the LP at stage k.
Let fk be the number of nonzero variables that are set fractionally (strictly between 0
and 1), and let gk denote the number of variables set to 1. Then, since we have a basic
solution, we have that fk+gk ≤ |Ik−1|+ |B̃k−1|. Now, consider the constraints of type
(14); if in some block B(p, i) there is no zpij that is set to 1, then there must be at least

2 variables zpij set fractionally, which implies that fk/2 + gk ≥ |B̃k−1|. Combining

these two facts implies that gk ≥ |B̃k−1|− |Ik−1|. By definition, as |B̃k| = |B̃k−1|−gk,
this implies that |B̃k| ≤ |Ik−1|.

We now upper bound |Ik−1|. Let Freek−1 denote the total free space at the
end of iteration k − 1, that is,

∑
I∈Ik−1

Free(I, k − 1). Since each interval, except

probably the last one, has at least 5 log (T + n) free spaces, we have that |Ik−1| ≤

Freek−1/(5 log (T + n))�. As for any block-offset B(p, i, j) and interval I, the number
of time slots w(B(p, i, j), I) is at most log (T + n) + 2, it follows from the constraints
(14) and (15) that Freek−1 ≤ (log (T + n) + 2)|B̃k−1| ≤ 3 log (T + n)|B̃k−1|. This
implies that

|Ik−1| ≤ 
0.6 · |B̃k−1|� ≤ 0.6 · |B̃k−1| + 1.

As |B̃0| ≤ T +n, by Lemma 7 we have that the algorithm stops after log (T + n)+
Θ(1) iterations. When our algorithm ends we obtain an assignment of zero-one values
to variables zpij . Since in every step of our algorithm we relaxed the LP from the
previous step, the cost of this final integral solution is upper bounded by the optimal
value of LP (9)–(12), which is at most 3 times the optimal value of LP (1)–(6) by
Lemma 6. This solution also provides us with an integral tentative schedule since it
gives us an assignment of pages to the time slots.

To actually obtain a proper schedule from this tentative schedule, we look at the
pages transmitted in the tentative schedule at time 0 and greedily assign it to the next
free slot after time t. Formally, we can view the process of constructing the feasible
schedule from the tentative schedule as follows: There is a queue Q. Whenever a page
p is tentatively scheduled at time t, we add p to the tail of Q at time t. At every time
step, if Q is nonempty, we broadcast the page at the head of Q.

To complete the proof, we show that no page is delayed more than O(log2(T +n))
than its position in the tentative schedule. Thus it suffices to show that the queue
length Q(t) at time t in the above description is always bounded by O(log2(T + n))
at all times t.

Lemma 8. Let Used(t1, t2) denote the pages transmitted during (t1, t2] in the
tentative schedule. The maximum queue length at any time is bounded by maxt1<t2

(Used(t1, t2) − (t2 − t1)).
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Proof. Let t2 be the time when the backlog in the queue is maximum, and let
b denote this backlog. Consider the last time t1 was before t2 the queue was empty.
Since t1 was the last time when the queue was empty, it must be the case that exactly
t2 − t1 pages were transmitted during the interval (t1, t2], and hence b is exactly
Used(t1, t2) + t2 − t1. This implies the desired result.

Lemma 9. For every t1, t2, Used(t1, t2)−(t2−t1) ≤ 20 log2(T+n)+O(log(T+n)).

Proof. Consider the time interval (t1, t2]. If Λ ≤ log (T + n)+Θ(1) is the number
of iterations of our algorithm, then there are at most 2Λ intervals [a, b] generated by
the algorithm which strictly overlap with t1, i.e., either a < t1 < b or strictly overlap
t2, i.e., a < t2 < b. The total number of pages assigned to these intervals by the
tentative schedule is at most 2Λ · 10 log n ≤ 20 log2(T + n) + O(log(T + n)).

All other intervals generated by our algorithm do not strictly overlap with t1 and
t2. They are either completely inside (t1, t2] or else lie completely outside (t1, t2]. We
claim that by the constraints (15), the total number of pages assigned to the intervals
completely contained in (t1, t2] is upper bounded by t2−t1. This follows from the fact
that on each iteration we are allowed to use only time slots which were not occupied
by the integral assignments from previous iterations and the total number of pages
transmitted in every interval on each iteration is exactly the length of this interval
minus the amount of free space which could be used on the next iteration. The lemma
thus follows.

Thus we have the following theorem.

Theorem 10. The above algorithm produces a broadcast schedule with average
response time at most 3 · OPT + O(log2(T + n)), where OPT denotes the average
response time of the optimum schedule.

3.5. Improving the approximation guarantee further. We first remove
the dependence on T in the approximation ratio. We do this by showing that at the
expense of a small loss (a factor of (1 + o(1))) in the approximation ratio, the time
horizon T can be assumed to be polynomially bounded in n.

Lemma 11. We are given an instance I of the broadcast scheduling problem with
planning horizon of length T and n pages. Then we can define instances I1, . . . , Is
such that each Ii has a time horizon of length at most 2n5, and the solutions to these
satisfy the following properties:

1. Let LP ∗ and LPi denote the optimal value to the LP (1)–(6) for I and Ii,
respectively. Then,

∑s
i=1 LPi ≤ (1 + o(1))LP ∗.

2. Given any integral solutions IP1, . . . , IPs for I1, . . . , Is, respectively, we can
obtain another solution for I with cost (1 + o(1))(

∑s
i=1 IPi).

It is easily seen that this lemma allows us to assume that T = poly(n). In
particular, we can apply this decomposition to the original instance I, obtain an
O(log n) approximation to each of these instances, and then use the second property
to obtain an integral solution to I.

Proof of Lemma 11. We describe a randomized decomposition procedure which
satisfies the properties in expectation. Once we describe this procedure it will be
immediately clear how this can be derandomized in polynomial time. We first split
the original time interval [1, T ] into time intervals T1, . . . , Ts as follows. Choose an
integer k = 1, . . . , n5 uniformly at random, and let T1 = [1, k+n5], and Ti = (k+(i−
1)n5, k + in5] for i = 2, . . . , s. Let Vi ⊆ Ti denote the interval consisting of the last n
time steps of Ti for i = 1, . . . , s. The instance Ii consists of two types of requests in I:
those that arrive during Ti \Vi and those that arrive during Vi. We keep the requests
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that arrive during Ti \ Vi unchanged and move those that arrive during Vi to Ii+1

by changing their arrival time to the beginning of Ti+1 (thus Ii contains the requests
that arrive during Vi−1). This completes the description of the instances. Note that
there are only O(n5) possible decompositions, and hence the procedure can be easily
derandomized by trying out all choices of k.

Consider an optimal solution (x, y) to LP (1)–(6) for I. Suppose we choose this
solution for each Ii. Then response times for requests that arrive during Ti\Vi remain
unchanged and it can only increase for those that arrive during Vi. To handle this,
we modify the solution (x, y) as follows. Consider the first n2 time slots of Ti+1, since
there are n pages there must be at least some page pi+1 such that the amount of
pi+1 transmitted by the LP during these slots is at least n. We remove n− 1 units of
page pi+1 from these slots and, for every page other than pi+1, arbitrarily assign one
unit of this page fractionally to the free space in the first n2 slots. This can increase
the response time of requests that arrive during Ti+1 by at most n2. Moreover, the
response time of requests that arrive during Vi is at most n2 + n. Since a request has
a probability of at most n/n5 = 1/n4, over the random choices of k, of arriving in
some Vi, the expected increase in the total response time of requests in Vi is at most
(n2 +n)m/n4 = o(m), where m is the total number of requests in the instance. Thus
the average response time increases by at most o(1). Similarly, for requests in the
first n2 slots of Ti+1 the average response time increases by at most n2m/n3 = o(m)
in expectation. This implies the first part of the lemma.

We now prove the second part of the lemma. Assume we are given an integral
solution for each Ii. Since all requests in Ii arrive during Ti \ Vi and |Vi| = n, we can
assume that all the requests in Ii are satisfied during Ti. Consider the integral solution
for I obtained by concatenating all of the schedules for Ii. When we consider this
schedule for the instance I, the only difference is that the response time for requests
that arrived during Vi can have an additional response time of n, since these requests
were moved at most n steps in the future to obtain the instances Ii. Again, over the
random choices of k, the probability that a request lies in some Vi is 1/n4 and hence
the expected increase in the average response time is at most n/n4 = 1/n3. This
proves the desired result.

We next show how to obtain a more refined balance between the multiplicative
and additive term in Theorem 10.

Lemma 12. For any γ > 0, there is algorithm that achieves an approximation
guarantee of (2 + γ)OPT +O(log1+γ(T + n) · log(T + n)) for minimizing the average

response time. Choosing γ close to 0 implies a guarantee of (2+γ) ·OPT+O(log2(T +
n)/γ).

Proof. For a fixed γ > 0, we modify the definition (see Definition 2) of a p-
good point such that we call a time t to be p-good if r(p, t) ≤ (1 + γ)r(p, τ) for
all τ, t such that c(p, τ, t) < 1. With this modification, imitating Lemma 3, we can
form blocks B(p, i), where the amount of page p transmitted in a block is at most
log1+γ(T +n) + 2. Moreover, Lemma 4 now gives us that the expected response time
of the tentative schedule obtained is at most (2 + γ) times the optimum cost. Now
repeat the algorithm in section 3.3 with intervals of size 5 log1+γ(T + n) (instead of
intervals of size 5 log(T + n)). Again we have that the number of blocks reduces by
more than a factor of half at each iteration while adding O(log1+γ(T + n)) to the
backlog. Thus, there are O(log (T + n)) iterations of step 2 of the algorithm, and it
follows directly that the backlog of the tentative schedule thus constructed is at most
O(log1+γ(T + n) · log (T + n), which implies the desired guarantee.
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By Theorem 10, Lemma 11, and setting γ = log(T + n) in Lemma 12, we have
the following theorem.

Theorem 13. There is a polynomial time algorithm that produces a broadcast
schedule with average response time at most O((log2 n/ log log n)OPT), where OPT
denotes the average response time of the optimum schedule.

4. Bad instance for local rounding procedures. We show that any way
of rounding the ILP (1)–(6) that gives a tentative schedule that is local is unlikely
to achieve an approximation ratio better than O(

√
n). Recall that a local rounding

procedure ensures that there is a transmission of page p in every time interval [t1, t2],
where the LP transmits at least one unit of page p. One consequence of having a local
schedule is that if a page p is broadcast at time t, then the next broadcast of page p
must be at some time t′ such that the cumulative amount of page p transmitted by
the LP solution during (t, t′] is no more than 1. We give an example of an LP solution
for which every tentative schedule that is local has a backlog of Ω(

√
n) at some time.

This will imply that algorithmic techniques based on local tentative schedules are
unlikely to yield an approximation guarantee better than Θ(

√
n).

We construct a half integral LP solution as follows: Let H be the Hadamard
matrix of order n, and J be the matrix of order n with all entries equal to 1. Consider
the matrix A = 1

2 (H+J). The matrix A is a {0, 1} matrix where each row Ai (except
for the one with all 1’s) contains exactly n/2 1’s. A well-known property (see, for
example, [9, p. 17]) of A is that for any vector x ∈ {−1,+1}n, there is a row with a
discrepancy of at least

√
n/2. That is, for each vector x ∈ {−1,+1}n, |Aix| ≥

√
n/2

for some 1 ≤ i ≤ n.

We view these Ai as subsets of {1, . . . , n}. We also assume that n is a multiple
of 4. Let ni denote the number of 1′s in Ai. Let Si = n1 + · · · + ni, and let S0 = 0.
The LP schedule is constructed as follows: The schedule transmits, in any particular
order, 1/2 unit of each page in Ai during the interval (Si−1, Si−1 + ni/2], and again
during the interval (Si−1 + ni/2, Si]. For j ∈ Ai, we denote the time when it is
transmitted (half unit) during (Si−1, Si−1 + ni/2] its odd slot and its transmission
during (Si−1 + ni/2, Si] its even slot.

Now, any local tentative schedule requires that if a page is transmitted in its odd
slot at some time t, then the next transmission of this page must be no later than
next odd slot for this page, and similarly for even slots. We first note that it suffices
to consider strictly local schedules where each page in transmitted in the tentative
schedule only during the odd slots or only during the even slots. Indeed, if some page
is transmitted in both an odd slot and the adjacent even slot, then the number of
transmissions of the page in the integral solution will be strictly more than those in
the LP solution, leading to a backlog of at least 1. Repeating the instance k times
(with completely disjoint set of pages) will imply a backlog of k. Thus it suffices to
consider strictly local schedules.

A strict local schedule associates a vector x ∈ {−1,+1}n, where the ith entry is
−1 if page i is transmitted during odd slots and is 1 otherwise. As the number of
pages transmitted by the tentative schedule during (Si−1, Si] is exactly ni, it is easy
to see that |Aix| is exactly equal to the backlog at time Si−1 + ni/2 or Si, which
implies the desired claim for strict tentative schedules.

5. Concluding remarks. In the offline setting, nothing more than NP-complete-
ness is known for the problem. It would also be very interesting to construct nontrivial
integrality gaps for the LP relaxation considered in this paper. Currently, the best
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known integrality gap for the LP relaxation is 1.027 [2], and hence it is possible that
an O(1) approximation for the problem can be obtained using this LP.

Another very interesting problem would be to give an O(1 + ε)-speed, O(1)-
competitive algorithm for the online version of the problem. Currently, no O(1)
competitive algorithm is known for the problem that uses a speed up of less than 4.
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Abstract. In [K. D. Mulmuley and M. Sohoni, SIAM J. Comput., 31 (2001), pp. 496–526],
henceforth referred to as Part I, we suggested an approach to the P vs. NP and related lower bound
problems in complexity theory through geometric invariant theory. In particular, it reduces the
arithmetic (characteristic zero) version of the NP �⊆ P conjecture to the problem of showing that a
variety associated with the complexity class NP cannot be embedded in a variety associated with
the complexity class P . We shall call these class varieties associated with the complexity classes P
and NP . This paper develops this approach further, reducing these lower bound problems—which
are all nonexistence problems—to some existence problems: specifically to proving the existence
of obstructions to such embeddings among class varieties. It gives two results towards explicit
construction of such obstructions. The first result is a generalization of the Borel–Weil theorem
to a class of orbit closures, which include class varieties. The second result is a weaker form of a
conjectured analogue of the second fundamental theorem of invariant theory for the class variety
associated with the complexity class NC. These results indicate that the fundamental lower bound
problems in complexity theory are, in turn, intimately linked with explicit construction problems in
algebraic geometry and representation theory. The results here were announced in [K. D. Mulmuley
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1. Main results. We shall now state the results precisely. For the sake of
completeness, we recall in section 2 the main results from Part I of this paper [26].
The rest of this paper is self-contained. All groups in this paper are algebraic, and
the base field is C.

Let G be a connected, reductive group, V its (finite dimensional) linear represen-
tation, and P (V ) the corresponding projective space. Let ΔV [v] denote the projective
closure of the G-orbit of v in P (V ). It is an almost-homogeneous space in the ter-
minology of [1]. Let RV [v] be its homogeneous coordinate ring, IV [v] its ideal, and
RV [v]d the degree d component of RV [v].

In Part I, we reduced arithmetic (characteristic zero) implications of the lower
bound problems in complexity theory, such as P vs. NP and NC vs. P#P , to instances
of the following problem (section 2).

Problem 1.1 (the orbit closure problem). Given explicit points f, g ∈ P (V ),
does f ∈ ΔV [g]? Equivalently, is ΔV [f ] ⊆ ΔV [g]?
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The goal is to show that this is not the case in the problems under consideration.

The f ’s and g’s here depend on the complexity classes in the lower bound prob-
lem under consideration. In the context of the P vs. NP problem, the point g will
correspond to a judiciously chosen P -complete problem, and f to a judiciously chosen
NP -complete problem. We call ΔV [g] and ΔV [f ] the class varieties associated with
the complexity classes P and NP (this terminology was not used in Part I). The orbit
closure problem in this context is to show that the class variety associated with NP
cannot be embedded in a class variety associated with P . We have oversimplified
the story here. There is not just one class variety associated with a given complexity
class, but a sequence of class varieties depending on the parameters of the lower bound
problem under consideration. In the context of the P vs. NP problem, the goal is to
show that a class variety for NP associated with a given set of parameters cannot be
embedded in the class variety for P associated with the same set of parameters. This
would imply that P �= NP in characteristic zero.

Class variety for the complexity class NC. We give an example of a class
variety associated with the complexity class NC, the class of problems with efficient
parallel algorithms. This occurs in the context of the NC vs. P#P problem (sec-
tion 2.1). Here we let g be the determinant function, which is a complete function
for this class. Specifically, let Y be an m × m variable matrix, which can also be
thought of as a variable l-vector, l = m2. Let V = Symm(Y ) be the space of homo-
geneous forms of degree m in the l variable entries of Y , with the natural action of
G = SL(Y ) = SLl(C). Let g = det(Y ) ∈ P (V ) be the determinant form, considered
as a point in the projective space. Then ΔV [g], the orbit closure of the determinant
function, is the class variety associated with NC. This is a basic example of a class
variety, which the reader may wish to keep in mind throughout this paper.

For arbitrary f and g, Problem 1.1 is hopeless. But f and g in the preceding
lower bound problems can be chosen judiciously, like the determinant function, to
have some special properties (cf. section 2 and Part I). To state these properties, we
need a few definitions.

Given a point v ∈ P (V ), let v̂ ∈ V denote a nonzero point on the line representing
v; the exact choice of v̂ will not matter. Let Gv, Gv̂ ⊆ G denote the stabilizers of v
and v̂, respectively. We say that v is characterized by its stabilizer if V Gv̂ , the set of
points in V stabilized by Gv̂, is equal to Cv, the line in V corresponding to v.

Following Mumford, Fogarty, and Kirwan [27] and Kempf [10], we say that v is
stable if the orbit Gv̂ ⊆ V is closed, and semistable if the closure of this orbit does not
contain zero. We say v belongs to the null cone if all homogeneous G-invariants of
positive degree vanish at v̂. We also define a more general notion of partial stability
which also applies to points in the null cone. A stable point is also partially stable
by definition. Now suppose v is not stable. Let S be any closed G-invariant subset of
V not containing v̂ and meeting the boundary of the orbit Gv̂. Kempf [10] associates
with v and S a canonical parabolic subgroup P = P [S, v] ⊆ G, called its canonical
destabilizing flag. Let L be its semisimple Levi subgroup. We say that v is partially
stable with defect zero or, more specifically, (L,P )-stable if (1) the unipotent radical
U of P is contained in Gv and (2) v is stable with respect to the restricted action of
L on V . A more general notion of partial stability allowing nonzero defect is given
later (Definition 7.1).

We say that v is excellent if

1. it is stable or partially stable with defect zero, and
2. it is characterized by its stabilizer.
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If V is an irreducible representation Vλ(G) of G, corresponding to a dominant weight
λ, then the point in P (V ) corresponding to the highest weight vector of G is excellent.
This is the simplest example of an excellent point. In this case, the stabilizer Gv is
a parabolic subgroup P = Pλ of G, and the orbit Gv ∼= G/P is closed. Hence
ΔV [v] ∼= G/P . The algebraic geometry of G/P has been intensively studied in the
literature and is well understood by now; cf. [5, 13] for surveys.

For the lower bound problems under consideration, the points f and g can be
chosen so that they are either excellent or almost excellent; the meaning of almost
excellent is stated in section 2. For example, the determinant function above is ex-
cellent. In this paper, we shall develop an approach to the orbit closure problem
specifically for such f and g. The goal is to understand the orbit closure problem
by systematically extending the results for G/P to the (almost) excellent points that
arise in this approach.

A natural approach to the orbit closure problem is the following. If f lies in
ΔV [g], then the embedding ΔV [f ] ↪→ ΔV [g] is G-equivariant. This gives a degree
preserving G-equivariant surjection from RV [g] to RV [f ]. Hence, if S is any irreducible
representation of G, its multiplicity in RV [g]d is greater than or equal to its multiplicity
in RV [f ]d, for all d.

Definition 1.2. We say that S is an obstruction for the pair (f, g) if, for some
d,

1. it occurs in (a complete G-decomposition of) RV [f ]d,
2. but not in RV [g]d.

Existence of such an S implies that f cannot lie in ΔV [g]. In a lower bound
problem, this S can be considered to be a “witness” to the computational hardness
of f .

If S occurs in RV [g]d, then it is easy to show (Proposition 4.2) that its dual S∗

contains a Gg-module isomorphic to (Cg)d, the dth tensor power of Cg. Hence we are
led to the following definition.

Definition 1.3. We say that S is a strong obstruction if, for some d,

1. it occurs in RV [f ]d,
2. but its dual S∗ does not contain a Gg-module isomorphic to (Cg)d.

A strong obstruction is also an obstruction.

For the (f, g)’s in the lower bound problems under consideration, strong obstruc-
tions are conjectured to exist in plenty (section 3). But to prove their existence it
is necessary to construct them more or less explicitly. Otherwise, the proof tech-
nique cannot cross the natural proof barrier formulated in [28] that any technique
for proving the P �= NP conjecture must cross. Explicit constructions have been
used in the theory of computing earlier in different contexts. For example, explicit
expanders, needed for efficient pseudorandom generation, have been constructed by
Margulis [20], and Lubotzky, Phillips, and Sarnak [16]. The essential difference from
the situation here is that proving existence of expanders is easy, whereas proving
existence of obstructions is itself the main problem.

Hence, we are led to the following problem.

Problem 1.4 (explicit construction of obstructions). Given f and g as in Prob-
lem 1.1, explicitly construct a (strong) obstruction for the embedding ΔV [f ] ↪→ ΔV [g].

In the orbit closure problems under consideration, H = Gg turns out to be a
reductive subgroup of G. Hence, to solve Problem 1.4, we have to solve the following
problems first.

Problem 1.5 (subgroup restriction problem). Let H be a reductive subgroup of
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a connected, reductive group G. Find an explicit decomposition of a given irreducible
G-representation S as an H-module.

This arises in the context of the second condition in Definition 1.3 (with S∗ in
place of S).

Problem 1.5, with H equal to the stabilizer of the determinant function consid-
ered earlier, turns out to be equivalent to the Kronecker problem of finding an explicit
decomposition of the tensor product of two irreducible representations of the symmet-
ric group; cf. section 2. This is an outstanding problem in the representation theory
of the symmetric group [19, 5]. Other specific instances of Problem 1.5 that arise in
the lower bound problems under consideration (cf. section 2) include the well-known
plethysm problem [19, 5], which is an outstanding problem in the representation the-
ory of GLn(C).

Problem 1.6 (problem in geometric invariant theory). Let v ∈ P (V ) be an
(almost) excellent point. Find an explicit decomposition of RV [v]d, for a given d, as
a G-module.

This is needed in the context of both conditions in Definition 1.2. For this, it is
desirable to solve the following problem first.

Problem 1.7 (SFT problem). Let v ∈ P (V ) be an (almost) excellent point.
Find an explicit set of generators for the ideal IV [v] of ΔV [v] with good representation
theoretic properties. (The short form SFT is explained below.)

Problems 1.6 and 1.7 are intractable for general v’s. Hence, specialization to
almost excellent v’s is necessary. Some additional reasonable restrictions may be
necessary in these problems.

When V = Vλ(G), v is the point corresponding to the highest weight vector
of Vλ(G), and ΔV [v] ∼= G/P , the second fundamental theorem (SFT) of invariant
theory for G/P [13] answers Problem 1.7. By the Borel–Weil theorem for G/P [5],
RV [v]d = Vdλ(G)∗. This answers Problem 1.6.

What is desired is a generalization of these results for G/P to the class varieties
ΔV [v], for the (almost) excellent v’s under consideration. Before we go any further,
let us point out the main difference between G/P and the class varieties:

1. Luna and Vust [18] have assigned a complexity to orbit closures, which mea-
sures the complexity of their algebraic geometry. All orbit closures whose alge-
braic geometry has been well understood have low Luna–Vust complexity—
close to zero. For example, the Luna–Vust complexity of G/P is zero. In
contrast, the Luna–Vust complexity of a class variety can be polynomial in
the number of parameters in the lower bound problem under consideration.

2. The analogue of the subgroup restriction problem (Problem 1.5), with H
being the parabolic stabilizer P of the highest weight vector in Vλ(G), is
trivial. In contrast, the instances of Problem 1.5 in the context of the class
varieties include the nontrivial Kronecker and plethysm problems.

This indicates that the algebraic geometry of class varieties is substantially more
complex than that of G/P . For this reason, we cannot expect a full solution to
Problems 1.6 and 1.7 until the outstanding Problem 1.5 in representation theory is
resolved. Rather, our goal is to connect Problems 1.6 and 1.7 with the “easier”
Problem 1.5 for the almost excellent v’s under consideration. We prove two results in
this direction.

Let us begin by considering a weaker form of Problem 1.6; i.e., we only ask which
G-modules can occur in RV [v], without worrying about RV [v]d for a specific d. This
is addressed by the following result.
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We call a G-module Vλ(G) Gv̂-admissible if it contains a Gv̂-invariant (cf. Defi-
nition 4.1).

Theorem 1.1 (Borel–Weil for orbit closures of partially stable points). Let V be
a (finite dimensional) linear representation of a connected, reductive G.

(a) If v ∈ P (V ) is stable, an irreducible G-module Vλ(G) with weight λ can occur
in RV [v] iff Vλ(G) is Gv̂-admissible.

(b) Suppose v is partially stable with defect zero, specifically (L,P )-stable, as de-
fined above. Let SV [v] be the homogeneous coordinate ring of the projective closure in
P (V ) of the L orbit of v. Then the G-module structure of RV [v] is completely deter-
mined by the L-module structure of SV [v]. A weaker statement holds for a partially
stable point of nonzero defect as defined in section 7.

A precise statement of (b) is given in section 8. We actually prove a stronger result
(Theorem 8.2) that specializes to the Borel–Weil theorem [11] when v corresponds to
the highest weight vector of an irreducible representation V = Vλ(G) of a semisimple
G.

When the defect is nonzero, Theorem 1.1(b) does not tell precisely which irre-
ducible G-modules occur in RV [v] if we only know which irreducible L-modules occur
in SV [v] as a whole. But it gives good information on this and also on which irre-
ducible G-modules occur in RV [v]d, for a given d, provided we know precisely which
irreducible L-modules occur in every degree d-component SV [v]d; this is Problem 1.6
for a stable v, with L playing the role of G.

Now we turn to the actual Problem 1.6. For this, we have to understand Prob-
lem 1.7 first. We turn to this problem next.

Let v be an excellent point. We associate with it a representation-theoretic data
Πv = ∪dΠv(d) (cf. Definitions 6.1 and 10.1). If v is stable, Πv(d) is just the set of
all irreducible G-submodules of C[V ] whose duals do not contain a Gv-submodule
isomorphic (Cv)d.

Then the ideal IV [v] contains all modules in Πv (Proposition 4.2). Let X(Πv) be
the variety (scheme) defined by the ideal generated by the modules in Πv. It follows
that ΔV [v] ⊆ X(Πv).

Now we ask the following question.

Question 1.8. Suppose v is excellent. Is X(Πv) = ΔV [v] as a variety or, more
strongly, as a scheme?

The scheme theoretic equality means that the ideal IV [v] of ΔV [v] is generated
by the modules in Πv.

If v is stable, then Gv is reductive [2, 24]. Hence, the G-modules contained in
Πv are precisely determined once we know the answer to Problem 1.5, with H =
Gv. This turns out to be so even for the partially stable v’s that arise in the lower
bound problems, by letting H be the reductive part of Gv. Hence, if the answer
to Question 1.8 is yes, the algebraic geometry of ΔV [v] is completely determined by
the representation theory of the pair (Gv, G), and hence, Problems 1.6 and 1.7 are
intimately related to Problem 1.5. Clearly, this can happen only for very special v’s.
The answer need not be yes even for a general excellent v.

When v corresponds to the highest weight vector of Vλ(G), so that ΔV [v] =
G/P , the answer to Question 1.8 is yes. This follows from the SFT for G/P [13]
(cf. section 10.1).

We conjecture that the situation is similar for the class variety associated with
the complexity class NC.

Conjecture 1.9 (SFT for the orbit closure of the determinant). Let ΔV [v] be
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the class variety associated with the complexity class NC—the orbit closure of the
determinant function.

Then X(Πv) = ΔV [v] as a variety. (It would be interesting to know if this is so
even as a scheme.)

This conjecture is expected because of the very special nature of the determinant
function. We have already remarked that it is excellent. Furthermore, its stabilizer
has an additional conjectural property called G-separability (Definition 6.3). For
analogous conjectures for other almost excellent class varieties, one has to address
complications caused by almost excellence instead of full excellence. This is possible
and will be done elsewhere.

The following general result implies a weaker form of Conjecture 1.9 when v is
the determinant function.

Theorem 1.2 (SFT for the orbit of an excellent point). Suppose V is a linear
representation of a connected, reductive group G, and v ∈ P (V ) is an excellent point.

(a) Suppose v is stable. Furthermore, assume that the stabilizer Gv̂ is G-separable
(cf. Definition 6.3). Then the orbit Gv ⊆ P (V ) is determined by the representation-
theoretic data Πv within some G-invariant neighborhood U , i.e.,

Gv = ΔV [v] ∩ U = X(Πv) ∩ U,

as schemes.

(b) A generalized result also holds for the G-orbit of a partially stable, excellent
point with defect zero.

This follows from a stronger result proved in section 6 (stable case) and section 11
(partially stable case).

When v corresponds to the highest weight vector in Vλ(G), Theorem 1.2(b), after
some strengthening (cf. section 10.1), becomes the second fundamental theorem for
G/P [13]—hence the terminology.

The rest of this paper is organized as follows. In section 2, we describe how the
orbit closure problem arises in complexity theory, and we summarize the relevant
results from Part I. In section 3 we describe why obstructions should exist in the
context of the orbit closure problems under consideration. In section 4 we prove some
basic propositions based on the notion of admissibility. The stable case of Theorem 1.1
is proved in section 5. The stable case of Theorem 1.2 is proved in section 6. The
stable cases illustrate the main ideas in this paper. The notion of partial stability
is introduced in section 7. The partially stable case of Theorem 1.1 is proved in
section 8. Its specialization in the context of complexity theory is given in section 9.
The partially stable case of Theorem 1.2 is proved in section 11. Conjectural G-
separability of the stabilizer of the determinant is proved in section 12 for a special
case.

Notation. We let G denote a connected reductive group. An irreducible G-
representation with highest weight λ will be denoted by Vλ(G). We say that Vλ(G)
occurs in a G-module M , or that M contains Vλ(G), if a complete decomposition of
M into G-irreducibles contains a copy of Vλ(G). We denote the dual of M by M∗.
We always denote a Levi-decomposition of a parabolic subgroup P ⊆ G in the form
P = TLU = KU , where T is a torus, L is a semisimple Levi subgroup, K = TL is
a reductive Levi subgroup, and U is the unipotent radical. The root system of K is
a subsystem of that of G. Hence a dominant weight of G can be assumed to be a
dominant weight of K by restriction.
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2. The orbit closure problem. In this section we describe the orbit closure
problem that arises in complexity theory and the related results; cf. Part I for details
and proofs.

Let Y = [y0, · · · , yl−1] denote a variable l-vector. For k < l, let X = [y1, · · · , yk]
and X̄ = [y0, · · · , yk] be its subvectors of size k and k + 1. Let V = Symm(Y ) =
Symm((Cl)∗) be the space of homogeneous forms of degree m in the l variable-entries
of Y , with the natural action of G = SL(Y ) = SLl(C), and Ĝ = GL(Y ) = GLl(C).

Let W = Symn(X), n < m, be the representation of GL(X) = GLk(C). We have
a natural embedding φ : W → V , which maps any w ∈ W to ym−nw, where y = y0 is
used as the homogenizing variable. The image φ(W ) is contained in W̄ = Symm(X̄),
a representation of GL(X̄) = GLk+1(C).

Definition 2.1. We say that f = φ(h) is partially stable with respect to the
action of G (and also Ĝ) if h ∈ P (W ) is stable with respect to the action of SLk(C).

These are the only kinds of partially stable points that arise in the context of
complexity theory. If the reader wishes, he may confine himself to only these kinds.
When we introduce a more general definition of partial stability (section 7), it will
turn out that f is partially stable with defect one. In contrast, the (L,P )-stable
points in the introduction will turn out to be partially stable points with defect zero.
Note that f in Definition 2.1 belongs to the null cone of the G-action—this follows
easily from the Hilbert–Mumford criterion [27].

The orbit closure problems (Problem 1.1) that arise in complexity theory (cf. Part
I) have the following form.

Problem 2.2. Given fixed forms g ∈ P (V ) and h ∈ P (W )
φ
↪→ P (V ), does

f = φ(h) belong to ΔV [g]? That is, is ΔV [f ] ⊆ ΔV [g]?

The goal is to show that the specific f does not belong to ΔV [g]. The specific
f and g depend on the lower bound problem under consideration and will be either
excellent (cf. section 1) or almost excellent. The latter means that (1) the defect of
partial stability may not be zero, but will be small, and (2) the point may not be fully
characterized by the stabilizer, but almost (as explained in Part I).

The following are two instances of the orbit closure problem that arise in com-
plexity theory.

2.1. Arithmetic version of the NC vs. P #P conjecture. In concrete terms,
this says that the permanent of an n× n matrix cannot be computed by an integral
circuit of depth logc n, for any constant c > 0 [31].

The class varieties in this context are as follows. Let Y be an m × m variable
matrix, which can also be thought of as a variable l-vector, l = m2. Let X be its,
say, principal bottom-right n × n submatrix, n < m, which can be thought of as a
variable k-vector, k = n2. We use any entry y of Y not in X as the homogenizing
variable for embedding W = Symn(X) in V = Symm(Y ). Let g = det(Y ) ∈ P (V )
be the determinant form (which will also be considered as a point in the projective
space), and f = φ(h), where h = perm(X) ∈ P (W ). Then ΔV [g] is the class variety
associated with NC, and ΔV [f ] is the class variety associated with P#P . These
depend on the lower bound parameters n and m. If we wish to make these implicit,
we should write ΔV [f, n,m] and ΔV [g,m] instead of ΔV [f ] and ΔV [g].

It is conjectured in Part I that, if m = 2O(polylogn) and n → ∞, then f �∈ ΔV [g];
i.e., the class variety ΔV [f, n,m] cannot be embedded in the class variety ΔV [g,m].
This implies the arithmetic form of the NC �= P#P conjecture.

The following result provides the connection with geometric invariant theory.
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Theorem 2.1 (cf. Part I). The point h = perm(X) ∈ P (W ) is stable with respect
to the action of SL(X) = SLk(C) on P (W ) (thinking of X as a k-vector). Hence the
point f = φ(h) ∈ P (V ) is partially stable (Definition 2.1) with respect to the action
of G = SL(Y ) = SLl(C), as well as Ĝ = GL(Y ) = GLl(C).

Similarly, g = det(Y ) ∈ P (V ) is stable with respect to the action of G on P (V ),
thinking of Y as an l-vector on which SLl(C) acts in the usual way.

Moreover, both perm(X) ∈ P (W ) and det(Y ) ∈ P (V ) are characterized by their
stabilizers. Hence, both h and g are excellent. But, in contrast, f = φ(h) is only
almost excellent—because its defect of partial stability is one.

The stabilizer of det(Y ) in G = SLm2(C) consists of linear transformations of the
form Y → AY ∗B−1, thinking of Y as an m×m matrix, where Y ∗ is either Y or Y T ,
A,B ∈ GLm(C). The stabilizer of perm(X) in SLn2(C) is generated [22] by linear
transformations of the form X → λXμ−1, thinking of X as an n×n matrix, where λ
and μ are either diagonal or permutation matrices.

Let H ⊆ G = SLm2(C) be the stabilizer of det(Y ). Since SLm(C) × SLm(C)
is a subgroup of H, the subgroup restriction problem (Problem 1.5) in this context
becomes the following problem.

Problem 2.3 (Kronecker problem). Given a partition λ of height at most m2,
find an explicit decomposition of Vλ(G) as an SLm(C) × SLm(C)-module:

Vλ(G) = ⊕α,βk
λ
α,βVα(SLm(C)) ⊗ Vβ(SLm(C)),

where α, β range over partitions of height at most m.

The coefficients kλα,β ’s here are the same as the Kronecker coefficients that arise
in the internal product of Schur functions. The problem of decomposing the tensor
product of two irreducible representations of the symmetric group Sm can be reduced
to this problem [5]. This is one of the outstanding problems in the representation
theory of symmetric groups.

2.2. Arithmetic (nonuniform) version of the P �= NP conjecture. This
is a version of the usual P �= NP conjecture (the nonuniform version), which does
not involve problems of positive characteristic and, hence, is addressed first.

Now h, g in the orbit closure problem (Problem 2.2) correspond to some integral
functions that are NP -complete and P -complete, respectively. These functions have
to be chosen judiciously, because most functions that arise in complexity theory, e.g.,
the one associated with the travelling salesman problem, do not have a nice stabilizer,
as required in our approach. For a detailed definition of h and g, see Part I. We
shall call ΔV [f ], f = φ(h), and Δ[g] for the specific h and g here the class varieties
associated with the complexity classes NP and P . The conjecture that NP �⊆ P in
characteristic zero is then reduced to the problem of showing that the class variety
ΔV [f ] associated with NP cannot be embedded in the class variety ΔV [g] associated
with P , for the parameters of the lower bound problem under consideration.

The following is an analogue of Theorem 2.1 in this context.

Theorem 2.2. The point h ∈ P (W ), for a suitable W , which corresponds to an
NP -complete function as in [26], is stable with respect to the action of SL(W ) on
P (W ). Hence, the point f = φ(h) is partially stable.

The h here is not completely characterized by its stabilizer, but almost so; cf. Part
I. Hence it is almost excellent. The subgroup restriction problem, Problem 1.5, that
arises for the stabilizer of h is essentially the well-known plethysm problem [5] in the
theory of symmetric functions.
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3. Why should obstructions exist?. Before we go any further, we have to
argue why obstructions should exist for the pairs (f, g) that arise in the lower bound
problems under consideration.

Let us begin with an observation that for an orbit closure problem that arises
in complexity theory, an obstruction for the pair (f, g) cannot exist if l is sufficiently
larger than k. For example, let (f, g) = (φ(h), g), where h = perm(X) and g = det(Y ),
as in section 2.1. Then there cannot be any obstruction for m > n! or, for that matter,
m > 2cn for a large enough constant c. This is because perm(X) has a formula of
size 2cn for a large enough c > 0 [22] (the usual formula is of size n!), and hence
f ∈ ΔV [g], for m > 2cn (cf. Part I).

At the other extreme, when l = k, so that f is a stable point of V , it follows from
the étale slice theorem [27, 17] that, if f ∈ ΔV [g], then some conjugate of the stabilizer
of f must be contained in the stabilizer of g (cf. Part I). This will not happen for our
judiciously chosen f and g. For example, when f and g are the permanent and the
determinant and m = n—in fact, in this case there are infinitely many obstructions
to this containment (cf. Part I).

The goal is to understand the transition between these two extremes.
First, let us consider the arithmetic implication of the P#P �= NC conjecture.

Let g = det(Y ), f = φ(h), and h = perm(X) as in section 2.1.
Proposition 3.1. Suppose h = perm(X) cannot be approximated infinitesimally

closely by a circuit of depth O(logc n), where c > 0 is a constant, and n → ∞.
Suppose X(Πg) = ΔV [g] as varieties (cf. Conjecture 1.9). Then there exists a strong

obstruction for the pair (f, g), for m ≤ 2logc/2 n.
Proof. It is proved in Part I that the hypothesis implies that f �∈ ΔV [g] if

m ≤ 2logc/2 n. Assuming X(Πg) = ΔV [g], this means f �∈ X(Πg). Hence there exists
a G-module S ∈ Πg which does not vanish on f , and hence on its orbit. So S occurs in
RV [f ]. By the definition of Πg, the dual S∗ does not contain a Gg-module isomorphic
to (Cg)d. Hence S is a strong obstruction for the pair (f, g).

Since perm(X) is #P -complete [31], it is not expected to have infinitesimally
close approximations by circuits of O(logc(n)) depth, for any constant c > 0. Hence,
Proposition 3.1 leads to the following conjecture.

Conjecture 3.2. There exist (infinitely many) strong obstructions for (f, g) =
(φ(h), g), g = det(Y ), h = perm(X) if m = 2logc n, c is a constant, and n → ∞.

In turn, this conjecture implies f �∈ ΔV [g] and, hence, the arithmetic implication
of the P#P �= NC conjecture (section 2.1).

In the same vein, we also make the next conjecture.
Conjecture 3.3. There exist (infinitely many) obstructions for (f, g) = (φ(h), g)

that occur in the context of the P vs. NP problem if m = poly(n) and n → ∞, where
n denotes the input size parameter and m denotes the circuit size parameter in the
nonuniform version of the P vs. NP problem.

This would imply f �∈ ΔV [g] and, hence, the arithmetic implication of the P �=
NP conjecture in section 2.2. This conjecture is motivated by similar considerations
as in Proposition 3.1. The g that occurs in the context of the P vs. NP problem is
not fully characterized by its stabilizer. But it is still determined by its stabilizer to
a large extent. Hence, similar considerations apply.

4. Admissibility. In this section, we introduce a basic notion of admissibility
and study how it influences which G-modules may appear in the homogeneous co-
ordinate ring RV [v] of the projective-orbit closure of a point v ∈ P (V ). The basic
propositions proved here will be useful in the proofs of the main results.
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Definition 4.1. Given a reductive subgroup H ⊆ G and an H-module W , we
say that a G-module M is (H,W )-admissible if some irreducible H-submodule of M
occurs in W .

We say that M is H-admissible if it is (H, 1H)-admissible, where 1H is the trivial
H-module, i.e., if it contains a (nonzero) H-invariant.

For general H, not necessarily reductive, we say that M is H-admissible if M∗

contains an H-invariant.
If H is reductive, M contains an H-invariant iff M∗ does—this follows from Weyl’s

result on complete reducibility of a reductive group representation—and hence, the
second and third statements are then equivalent.

Given a G-module S and a subgroup H ⊆ G, not necessarily reductive, we shall
say that S has an H-coinvariant if S is H-admissible; i.e., the dual module S∗ has an
H-invariant (cf. Definition 4.1).

Let h ∈ P (V ) be any point, not necessarily stable. Let Ch be the corresponding
line in V . It is one-dimensional, i.e., a character, as a Gh-module, and trivial as a
Gĥ-module. Let Δ̌[h] = Δ̌V [h] ⊆ V denote the affine cone of the projective-orbit

closure Δ[h]. Its coordinate ring C[Δ̌[h]] coincides with the homogeneous coordinate
ring R[h] = RV [h] of Δ[h]. Since the G-action is degree preserving, each homogeneous
component R[h]d is a finite dimensional G-module.

Proposition 4.2. Let V be a linear representation of a reductive group G. Let
h ∈ P (V ) be any point, not necessarily stable, with stabilizer Gh ⊆ G. Let S be
any irreducible G-module occurring in R[h]—that is, in R[h]d for some d. Then the
dual module S∗ must contain a Gh-submodule isomorphic to (Ch)d, and hence both S
and S∗ are Gĥ-admissible. In particular, a G-module S ⊆ C[V ]d not satisfying this
constraint belongs to the ideal IV [h].

Similarly, given an algebraic subgroup H ⊆ G and an H-module M , let B =
G×H M be the induced bundle [27] with base space G/H and fiber M . Let N be any
irreducible G-submodule of Γ(G/H,B), the space of global sections of B. Then the
G-module Hom(N,M) must contain a nonzero H-invariant.

Proof. Not all functions in S can vanish at ĥ: Otherwise, they will vanish iden-
tically on the G-orbit of ĥ in V , and so also on its cone, since the functions in S are
homogeneous. But the cone of the affine G-orbit of h is dense in Δ̌[h]. Hence, it
would follow that the functions in S vanish on Δ̌[h] identically, a contradiction.

Consider the Gh-equivariant map φ : S → ((Ch)∗)d = (Chd)∗ that maps every
function in S to its restriction on the line Ch. It follows that this evaluation map is
nonzero. Hence the dual map φ injects the Gh-module Chd into S∗.

The argument extends to the vector bundle B by considering instead the eval-
uation map φ : N → M at the base point e ∈ G/H, which must be nonzero and
H-equivariant; i.e., φ ∈ Hom(N,M)H .

5. Admissibility and stability. In this section we shall prove the first state-
ment of Theorem 1.1 concerning stable points.

Proposition 5.1. Let h ∈ P (V ) be a point such that the stabilizer H = Gĥ

of ĥ ∈ V is reductive. Then every irreducible G-module occurring in R[h] must be
H-admissible; i.e., it must contain a nonzero H-invariant.

If Gĥ is not reductive, this still holds if H is any reductive subgroup of Gĥ.
Proof. If H is reductive, then Weyl’s theorem on complete decomposibility of

H-modules into irreducibles implies that the existence of an H-invariant is equivalent
to the existence of an H-coinvariant. Hence this follows from Proposition 4.2.

Conversely, we have the following proposition.
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Proposition 5.2. Suppose h ∈ P (V ) is stable. Then every H-admissible, irre-
ducible G-module occurs in R[h].

Proof. Since h is stable, the stabilizer H = Gĥ is reductive [3, 24], and the

orbit Gĥ ⊆ V is affine and isomorphic to G/H [27]. Moreover, an explicit G-module

decomposition of the coordinate ring C[Gĥ] = C[G/H] can be computed as follows.
First, we recall (cf. [30, p. 48]) the algebraic version of the Peter–Weyl theorem:

(1) C[G] = ⊕SS ⊗ S∗,

where S ranges over all irreducible G-modules and S∗ is the dual module. From this
it follows that

(2) C[G/H] = ⊕SS ⊗ (S∗)H ,

where (S∗)H denotes the subspace of H-invariants in S∗. Since h is stable, the affine

orbit Gĥ is closed in V . So it is a closed G-subvariety of the cone Δ̌[h] ⊆ V , which
is also a G-variety. It follows that there is a G-equivariant surjection from R[h] to

C[Gĥ] = C[G/H]. Both R[h] and C[G/H] have direct sum decompositions into finite
dimensional G-modules. It follows that every irreducible G-module that occurs in
C[G/H] must occur in R[h]. But by the Peter–Weyl theorem, i.e., (2), the irreducible
G-modules that appear within C[G/H] are precisely the H-admissible ones.

Proof of Theorem 1.1(a). Since v ∈ P (V ) is stable, Gv̂ is reductive [3, 24]. Hence
this follows from Propositions 5.1 and 5.2.

6. SFT for the orbit of a stable, excellent point. In this section we prove
Theorem 1.2 for stable points. To give its precise statement, we need a few definitions.

We associate with a stable point v representation-theoretic data Πv and Σv ⊆ Πv

as follows.
Definition 6.1. Suppose v ∈ P (V ) is stable.
Let Σv be the set of all non–Gv̂-admissible G-submodules of C[V ]—here Gv̂ is

necessarily reductive [3, 24].
Let Πv = ∪dΠv(d), where Πv(d) is the set of all irreducible G-submodules of C[V ]

whose duals do not contain a Gv-submodule isomorphic (Cv)d—the dth tensor power
of Cv.

Clearly Σv ⊆ Πv. Basis elements (suitably chosen) of the G-submodules of Σv

will be called nonadmissible basis elements.
Proposition 6.2. If v is stable, the G-modules in the representation-theoretic

data Πv, and hence Σv, associated with v are contained in IV [v].
This follows from Proposition 4.2.
Definition 6.3. Given a reductive H ⊆ G, we say that a nontrivial, irre-

ducible H-module L which occurs in some G-module is G-separable (from the trivial
H-module) if there exists an irreducible non–H-admissible G-module M that contains
L; we say it is strongly G-separable if there exist infinitely many such G-modules.
We shall say that a subgroup H ⊆ G is G-separable (strongly G-separable) if every
nontrivial irreducible H-module which occurs in some G-module is G-separable (resp.,
strongly G-separable).

For example, SLk(C) ⊆ SLn(C), k > n/2, and a semisimple H ⊆ H×H (diagonal
embedding) are separable (Proposition 12.1). We conjecture that SLn(C)×SLn(C) ⊆
SL(Cn ⊗ Cn) = SLn2(C) is separable and prove this for n = 2 (Proposition 12.6).
We also conjecture that the stabilizers of the permanent, the determinant, and other
functions that arise in our lower bound applications are G-separable; the stabilizer of
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the determinant is very similar to the subgroup SLn(C) × SLn(C) ⊆ SLn2(C) above
(cf. section 2.1).

A precise statement of Theorem 1.2 now reads as follows.

Theorem 6.1. Suppose V is a linear representation of a connected, reductive
group G. Let v ∈ P (V ) be a stable point such that stabilizer Gv̂ is G-separable
(cf. Definition 6.3) and characterizes v.

Then there exists a homogeneous G-invariant β ∈ C[V ] not vanishing at v such
that the ideal of Gv as a closed subvariety of the open neighborhood U = P (V )β =
P (V ) \ {β = 0} is generated by the nonadmissible basis elements in Σv—in fact, it is
generated by the bases of less than codim(Gv, P (V )) irreducible, non–Gv̂-admissible
G-submodules of C[V ].

Remark. Since Σv ⊆ Πv, this statement is slightly stronger than Theorem 1.2.

Theorem 6.1, in turn, follows from the following stronger result.

Let X be a nonsingular, affine G-variety, G a connected reductive group. Given
a point x ∈ X, we shall denote by [x] ⊆ X the subvariety consisting of all points in X
whose stabilizers contain H = Gx, the stabilizer of x. Assume that x is a nonsingular
point of G · [x]; when the orbit Gx ⊆ X is closed, this is automatically so, because
of the étale slice theorem [17] (cf. the proof of Lemma 6.3). We shall denote by Nx

(resp., N[x]) the H-module that is an H-complement of the tangent space of G · x
(resp., G · [x]) at x in the total tangent space to X at x; it can be thought of as the
“normal” space to G ·x (resp., G · [x]) at x. N[x] is the H-submodule of Nx consisting
of all nontrivial H-submodules of Nx.

Given a G-invariant β ∈ C[X], we shall denote by X(β) the G-variety obtained
from X by removing the divisor {β = 0}.

We shall denote the codimension of a subvariety Y ⊆ X by codim(Y,X). We say
that an open subset U ⊆ X is saturated if it is of the form ψ−1(U ′), where ψ is the
projection from X to the quotient X/G and U ′ is an open subset of X/G.

Theorem 6.1 for stable points in P (V ) follows from the following result by letting
X = V and x = v̂. When v ∈ P (V ) is characterized by the stabilizer Gv̂, [x] = Cv.
Passage from V to P (V ) is possible because the nonadmissible basis elements are
homogeneous.

Theorem 6.2. Assume that G is a connected, reductive group, and X an affine,
nonsingular, irreducible G-variety X. Let x ∈ X be a point, with stabilizer H = Gx,
whose orbit Gx is closed. Suppose every H-module L that appears in N∗

[x] is G-

separable (Definition 6.3). Then, for some G-invariant β ∈ C[X] not vanishing at
x, and non–H-admissible, irreducible G-submodules Pi ⊆ C[X], 1 ≤ i ≤ r, with
r < codim(G · [x], X), Spec(C[X]/J) ∩ X(β) = G · [x] ∩ X(β), where J denotes the
ideal generated by the Pi’s.

(Here we are identifying a variety with the corresponding reduced scheme sup-
ported by it.)

Proof. By Proposition 4.2, or rather its proof, the functions in every non–H-
admissible P within C[X] must vanish on G · [x]. We need to show that, for some
G-invariant β not vanishing at x, the zero set of J within X(β) equals G · [x] ∩X(β)
scheme-theoretically.

Étale slice theorem (see [27, p. 198], [17]). Let x be a point of an affine, smooth,
irreducible G-variety X, whose orbit Gx ⊆ X is closed. Then there exists a smooth,
affine H-variety Y ⊆ X passing through x and a strongly étale map ψ from G×H Y
to a G-invariant neighborhood of G · x in X of the form X(α), for some G-invariant
α ∈ C[X].
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Here Z = G ×H Y denotes the induced G-equivariant fiber bundle, with base
G/H and fiber isomorphic to Y [27]. Strong étaleness of ψ means that the map ψ/G
from the quotient Z/G to X/G is étale and that the induced natural map from Z to
X ×X/G Z/G, the G-variety obtained from X by base extension, is a G-isomorphism.

The slice theorem suggests that we prove our theorem in two steps. First, consider
the case when X is a fiber bundle of the form G ×H Y , where Y is a smooth affine
variety, and then make a transition to the general case. Note that H = Gx is reductive
since Gx ⊆ X is closed and hence affine [24].

We shall need the following proposition.
Proposition 6.4. Let V be a finite-dimensional irreducible G-module, G con-

nected and reductive, with basis coordinate functions V1, . . . , Vs. Let g ∈ V be a point
with closed, affine orbit Gg ⊆ V . Further, let I(g) be the ideal of Gg. Let J be an
ideal of C[V ] such that the following hold:

(i) The variety of J is precisely the orbit O = Gg.
(ii) The ideal J is itself G-invariant.
(iii) There are elements w1, . . . , wk ∈ J such that the tangent space TOg of the

orbit O at g consists of precisely the tangent vectors in TVg annihilated by the differ-
ential forms dwi’s.

Then J = I(g); i.e., Spec(C[V ]/J) = O.
Suppose (i) is replaced by the weaker condition:
(i)′ the variety of J contains the orbit O = G · g.
Then there exists a G-invariant neighborhood Ug of the orbit Gg such that the

zero set of J restricted to Ug coincides with Gg scheme-theoretically.
Proof. The G-invariance of J and the connectedness of G imply that all associated

primes of J must themselves be G-invariant. Since there are no proper G-invariant
subsets of O, we conclude that there are no associated primes of J other than I(g).
Now (iii) may be used to apply the “Jacobian criterion” (Matsumura [21, Theorem
30.4]) locally. The G-invariance of J shows that (iii) holds at every point y ∈ O. The
global assertion then follows.

Given an H-module M , we denote by C[M ] the H-module
∑

i≥0 Symi(M∗), i.e.,
the space of polynomial functions on M . Let N denote the tangent space to Y at x;
it is an H-module. Now we prove the theorem for the variety G×H N .

Lemma 6.3. The theorem holds when X = G×H N and x = (1G, 0N ) is the base
point on its null section G/H, with stabilizer Gx = H.

Proof. In this case N can be identified with the normal space Nx at x to the orbit
G · x = G/H. Let N =

∑
R R be an H-module decomposition of N into irreducibles.

Then we can write Nx = N[x] + Mx, where N̄ = N[x] is the sum of all nontrivial H-
submodules R in this decomposition and Mx is the sum of all trivial H-submodules.
The subvariety G · [x] = G ·Mx, and the codimension of G · [x] is just the dimension
of N[x].

For any H-submodule L of Nx, consider the induced bundle F (L∗) : G×H L∗ →
G/H. Let OF (L∗) be the sheaf of germs of sections of this bundle. Let H0(G/H,OF (L∗))
be the G-module of its global sections. These global sections are regular func-
tions on G ×H L that are linear on each fiber. Clearly H0(G/H,OF (N∗

[x])
) is a

G-submodule of H0(G/H,OF (N∗
x )), whose elements are regular functions on X linear

on each fiber. Since G is connected, we can apply the Jacobian criterion (Proposi-
tion 6.4) and the transitivity of G-action. Hence it suffices to show that the sections
in the non–H-admissible G-submodules of H0(G/H,OF (N∗

[x])
), when restricted to the

fiber N∗
[x] at x, span N∗

[x]; clearly the number r of such submodules is less than

dim(N[x]) = codim(G · [x], X).
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Let N[x] = ⊕RR be an H-module direct sum decomposition of N[x], where each
R is an irreducible, nontrivial H-submodule. Then N∗

[x] = ⊕RR
∗, as an H-module,

so we get a natural G-module decomposition

H0(G/H,OF (N∗
[x])

) = ⊕RH
0(G/H,OF (R∗)).

Hence, it suffices to show that for each R in this decomposition, there exists a non–
H-admissible G-submodule of H0(G/H,OF (R∗)), whose sections, when restricted to
the fiber R∗ at x, span R∗.

Thus, let R be any such nontrivial, irreducible H-submodule in this decomposition
and let L = R∗ be its dual. By the Peter–Weyl theorem (1)

(3) H0(G/H,OF (L)) = ⊕QQ⊗Hom(Q,L)H ,

where Q ranges over all finite dimensional irreducible G-modules, and Hom(Q,L)H

denotes the vector space of H-equivariant linear maps from Q to L. Thus the G-
modules Q that appear in H0(G/H,OF (L)) are precisely the ones that contain L. By
our G-separability assumption, there exists a nonadmissible, irreducible G-module QL

containing L. By (3), H0(G/H,OF (L)) contains a copy of QL. Fix one such copy; we
denote it by QL again. The restriction of QL to the fiber L of F (L) at x is precisely
L. Hence the basis elements of QL, when restricted to L, span L.

For every R that appears in the H-module decomposition of N[x], let QL ⊆
H0(G/H,OF (N∗

[x])
), L = R∗, be a fixed copy as in the proof above. Let Φ be the set

of such finitely many QLs, each a non–H-admissible, irreducible G-module of regular
functions on G×H N . The number r of QL’s in Φ is less than codim(G · [x], X). Since
many R’s in the H-module decomposition may be isomorphic, many QLs in Φ may
be isomorphic as G-modules. The proof above shows that the following lemma holds.

Lemma 6.4. The differentials of the basis elements of the non–H-admissible G-
modules QL in Φ, when restricted to N[x], span the whole of N[x], and the zero set of
the ideal generated by them coincides with G · [x] = G ·Mx scheme-theoretically. The
number r of modules in Φ is less than codim(G · [x], G×H N).

Now we turn to the general case. By the étale slice theorem, there exists an affine
H-variety Y ⊆ X passing through x and a strongly étale map ψ from G ×H Y to
a G-invariant neighborhood of G · x in X of the form X(α), for some G-invariant
α ∈ C[X] not vanishing at x. Since C[X(α)] = C[X]α, the ideal generated by non–
H-admissible, irreducible G-submodules of C[X] within C[X(α)] coincides with the
one generated by non–H-admissible, irreducible G-submodules of C[X(α)]. Hence,
in the statement of the theorem, we can replace X by X(α). Strong étaleness of ψ
implies [27] that there is an analytic neighborhood Yan ⊆ Nx of x in Nx—called
an analytic slice through x—such that G ×H Yan is G-isomorphic to an analytic G-
invariant neighborhood U of the orbit of x. However, there may not be an algebraic
slice with this property, and this forces us into the analytic category in what follows.
Since U  G ×H Yan ⊆ G ×H N , each QL corresponds to, and can be identified
with, a G-module QL(U) of analytic functions on U . By Lemma 6.4, the zero set of
the QL(U)’s in Φ within U coincides, as a complex space [8], with G · [x] ∩ U . Our
goal is to show that each QL(U) can be approximated very closely within U by an
isomorphic G-submodule of C[X]. For this, we shall need the following results from
complex function theory.

Cartan–Oka theorem (see [8]). Let A be a Stein space, and let B be its closed
analytic subspace. Then every holomorphic function on B extends to a holomorphic
function on A.
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Let OA, OB be the sheaves of germs of holomorphic functions on A and B,
respectively, and let IB be the sheaf of ideals of B. Then by Oka’s theorem IB is
coherent, and since A is Stein, its higher cohomology Hi(A, IB), i > 0, vanishes
(Cartan’s theorem B). Hence, this result follows from the long exact cohomology
sequence associated with the exact sequence of sheaves

0 → IB → OA → OB → 0,

where we consider OB as a sheaf on A via extension by zero.
We shall denote the ring of holomorphic functions on an analytic variety W by

O(W ).
Lemma 6.5. Let A be a Stein G-space, and let B be its closed analytic G-subspace,

with G a connected reductive group. Let M be a finite dimensional G-submodule of
O(B). Then there exists a G-equivariant extension map φ : M → O(A).

Here, we say that φ is an extension map if, for any s ∈ M , the restriction of φ(s)
to B coincides with s.

Proof. Fix a basis s1, . . . , sl of M . By the Cartan–Oka theorem, each si can be
extended to a holomorphic function ŝi on A. Let ρ : M → O(A) be a linear map
defined by setting ρ(

∑
i bisi) =

∑
i biŝi. Though ρ need not be G-equivariant, it may

be converted into a G-equivariant map by Weyl’s unitary trick [5]. Specifically, regard
Hom(M,O(A)) as a G-module in the natural way. Fix a maximal compact subgroup
E ⊆ G. Let de denote the left-invariant Haar measure on E, and let

φ =

∫
E

e(ρ)de.

Then φ is an E-equivariant extension. Since M is finite dimensional, it follows from
the unitary trick that φ is G-equivariant as well.

Lemma 6.6. Let W be a linear representation of connected, reductive G, V a
linear space with trivial G action, and D ⊆ V a ball around the origin. Let A = W×D.
Then the following hold:

(1) Any holomorphic function a on A has a unique power series expansion of the
form

(4) a(w, v) =
∑
i,j

ajiw
jvi.

Here i = (i1, · · · , ir), r = dim(V ), and j = (j1, · · · , jq), q = dim(W ), are tuples of

nonnegative integers, and vi = vi11 · · · virr and wj = wj1
1 · · ·wjq

q , where v1, . . . , vr are
the coordinates of V and w1, . . . , wq are the coordinates of W .

(2) For any k = (i, d), the map δk : O(A) → C[W × V ] = C[W ] ⊗ C[V ], which
maps a to

∑
j:j1+···+jq=d a

j
iw

jvi, is G-equivariant.
Proof. The first statement follows because A is a proper Reinhardt domain in

W × V (cf. [6, p. 20]).

Each wj1
1 · · ·wjq

q is a polynomial (regular) function on W and is contained in the
finite dimensional G-submodule in C[W ] of homogeneous forms of degree d = j1+· · ·+
jq. Since the G-action on D is trivial, it follows that each δk is G-equivariant.

Let X be an affine, smooth G-variety, with G a connected reductive group. Let
ψ be the projection from X to its quotient X/G. Let x be a point in X with closed
orbit Gx ⊆ X and x̄ = ψ(x) its projection. Embed the affine variety X/G in a linear
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space V , with x̄ at its origin. Suppose Ux̄ is a Stein neighborhood of x̄ in X/G such
that Ux̄ = D ∩X/G, where D ⊆ V is a ball around x̄. Let U = ψ−1(Ux̄).

Lemma 6.7. Let Q be a finite dimensional G-submodule of O(U). Then there
exist G-equivariant linear maps ρk : Q → C[X] such that any s ∈ Q admits a power
series expansion s =

∑∞
k=0 ρk(s) that converges everywhere in U .

Proof. We can embed X G-equivariantly as a closed affine G-subvariety of some
linear representation W of G [10, Lemma 1.1]. Let A = W × D, which is Stein. It
has a G-action, the action on D being trivial. Let B ⊆ A be the closed analytic
G-subspace consisting of points (x, u), with x ∈ X, u ∈ Ux̄, and ψ(x) = u. It is
isomorphic to U . So s corresponds to a holomorphic function on B, which we shall
denote by s again. Thus we can regard Q ⊆ O(B).

By Lemma 6.5, there exists a G-equivariant extension map φ : Q → O(A). Let
δk be the G-equivariant map of Lemma 6.6 applied to A. Finally, let α : C[W ×
V ] → C[X] be the G-equivariant restriction map corresponding to the G-equivariant
embedding X → W × V , which maps x ∈ X to (x, ψ(x)). Let ρk = α ◦ δk ◦ φ. Then
s ∈ Q has a G-equivariant power series expansion

s =
∑
k

ρk(s)

that converges everywhere in U .
Now we return to the proof of Theorem 6.2. Let ψ be the strongly étale map

from G×H Yan to a G-invariant neighborhood U of the orbit G · x. Here Yan ⊆ Nx is
an analytic slice, and U is of the form ψ−1Ux̄, where Ux̄ is an analytic neighborhood
of x̄ = ψ(x). We can assume that Ux̄ is Stein, of the form D ∩X/G as in Lemma 6.7,
for a small enough ball D around x̄ in V ⊇ X/G. Let QL ∈ Φ be the finitely
many, irreducible, non–H-admissible G-submodules of the ring of regular functions
on G ×H N as in Lemma 6.4; their number r is less than codim(G · [x], G ×H N) =
codim(G · [x], X). We shall denote the restriction of QL to G ×H Yan by QL again.
It corresponds to a G-module of analytic functions on U , which we shall denote by
QL(U); the analytic functions in QL(U), though, may not extend to the whole of X.

Now we come to the crux of the proof. The G-module QL(U) is isomorphic to QL

and, hence, finite dimensional. Hence we may apply Lemma 6.7. Let ρk(L) denote
the G-equivariant projection from QL(U) to C[X] therein. Let ρ̃k(L) =

∑
j≤k ρj(L).

When k is large enough, ρ̃k(L)(QL(U)) will be a good approximation to QL(U). Let
Qk

L ⊆ C[X] be the G-module that is the image of this G-equivariant projection ρ̃k.
Since QL(U)  QL is irreducible, Qk

L is either zero or isomorphic to QL. When k is
large enough, Qk

L is isomorphic to QL—hence it is non–H-admissible and vanishes on
G · [x].

Since U is G-isomorphic to G ×H Yan ⊆ G ×H N , it follows from Lemma 6.4
that the differentials of the basis functions in all the QL(U)’s in Φ, when restricted to
N[x], span the whole of N∗

[x]. We approximate each QL(U) by Qk
L ⊆ C[X] for a large

enough k. When k is large enough, the differentials of the basis functions in Qk
L, when

restricted to N[x], will also span the whole of N∗
[x]. But each Qk

L is a non–H-admissible,

irreducible G-submodule of C[X]. Thus it follows that the differentials of the basis
functions of the non–H-admissible, irreducible G-submodules Qk

L of C[X], for k large
enough, span N∗

[x]. Because of the transitivity of the G-action, the same holds for all
points in the orbit of x. Since G is connected, and all QL’s are G-modules, it now
follows from the Jacobian criterion (Proposition 6.4, or rather its proof) and the fact
that U  G ×H Yan, that the zero set of the basis functions of these Qk

L’s within U
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coincides with G · [x] ∩ U scheme-theoretically (i.e., as a complex space [8]). Since
Qk

L’s are G-submodules of C[X], there exists a Zariski-open G-invariant neighborhood
U ′ ⊇ U such that the zero set of Qk

L’s within U ′ coincides with G · [x] ∩ U ′ scheme-
theoretically. It remains to show that U ′ can be chosen to be of the form X(β), for
some G-invariant β. The projection ψ(U ′) into X/G is a constructible [9] set that
contains Ux̄. Hence ψ(U ′) contains a Zariski-open affine neighborhood of the form
(X/G)α for some G-invariant α not vanishing at x. Its inverse ψ−1(X/G)α is of the
form X(α) and has the required properties.

Remark. Suppose every H-module that appears in N∗
[x] is not G-separable, as as-

sumed in Theorem 6.2. Then one can similarly prove a weaker assertion that, for some
G-invariant analytic neighborhood U (as in the proof above) of Gx, Spec(C[X]/J)∩U ,
as a complex space [7], is a subspace of G×H Spec(I), where Spec(I) is a subscheme
of N[x] and I ⊆ C[N[x]] is the ideal generated by the G-separable H-submodules of
C[N[x]].

7. Partial stability. Let V be a linear representation of G. Let P = KU be a
parabolic subgroup of G, and let R be a reductive subgroup of K.

Definition 7.1. We say that v ∈ P (V ) is (R,P )-stable (partially stable) if (1)
it is stable with respect to the restricted action of R on V , and (2) U ⊆ Gv ⊆ P .

Here U ⊆ Gv implies that U ⊆ Gv̂. The defect δ(v) of v is defined to be the
difference between the ranks of the root systems of R and K. In our applications,
the defect will be small—in fact, just one—and R will always be a semisimple Levi
subgroup of a parabolic subgroup of K—so that the root system of R will always be
a subsystem of that of K.

A stable point of V is (G,G)-stable. A point v ∈ P (V ) is (R,P )-stable iff it is an
(R,K)-stable point of P (Y ), where Y = V U is the K-module of U -invariants in V .

Example 1. The simplest example of a partially stable point with defect zero is the
point v = vλ ∈ P (V ) that corresponds to the highest weight vector of an irreducible
G-representation V = Vλ(G). The stabilizer P = Gv is parabolic, and v is clearly
(L,P )-stable, where L is a semisimple Levi subgroup of P .

Example 2. Let f = φ(h) be as in Definition 2.1, with h stable. Then f is (R,P )-
stable, with defect one, with respect to the action of G (as well as Ĝ), where: P
is a parabolic subgroup of G (resp., Ĝ), whose elements transforms the variables in
X̄ to their linear combinations, thus preserving an appropriate flag Ck+1 ⊆ Cl, and
R  SLk(C)× SLl−k−1 is naturally embedded in the semisimple Levi subgroup of P
isomorphic to SLk+1(C) × SLl−k−1(C).

Definition 7.2. Given dominant weights α and β of R and K, we shall say that
α �K

R β, or β �K
R α, if Vα(R) occurs in Vβ(K), dropping the superscript or subscript

whenever possible.
In the definition of (R,P )-stability the group R will usually be such that

(5) L̃ ⊆ R ⊆ K̃ ⊆ K,

for some parabolic subgroup P̃ = T̃ L̃Ũ = K̃Ũ of K, as in Example 2. Then, using
Littelmann’s restriction rule [14], one can determine how any irreducible representa-
tion Vβ(K) explicitly decomposes as a K̃-module (and hence as an R-module). This,
in turn, gives an explicit relationship between α and β in Definition 7.2.

In Example 2 above, K  GL1+k(C)×GLl−1−k and R  SLk(C)×SLl−1−k(C).
In this case, Littelmann’s restriction rule reduces to a variant of the well-known
Pieri’s branching rule [5], which gives an explicit decomposition of Vμ(GL1+k(C))
as a GLk(C)-module.
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For a connected reductive group D, we shall denote by iD the canonical involution
of its dominant weights so that Vλ(D)∗ = ViDλ(D). Let v ∈ P (V ) be an (R,P )-stable
point as above. Let W and Y be, respectively, the smallest K-submodule and R-
submodule of V containing v̂.

Definition 7.3. We say that a dominant weight β of G lies over a weight μ of
R at v and degree d if

1. Vμ(R) and Vβ′(K) occur in RY [v]d and RW [v]d, respectively, where β′ =
iK(iGβ), and

2. μ �K
R β′.

We say that a dominant weight β of G lies over a weight μ of R at v if this is so at
some d.

This definition does not depend on the choice of a Levi subgroup K ⊇ R of P ,
because U ⊆ Gv. When the defect is zero and R satisfies (5), condition 2 just says
that the weight β′, restricted to R, is equal to μ. The number of β’s lying over μ at
a fixed d depends on the defect; it is small if the defect is small.

8. Borel–Weil for a partially stable point. In this section we shall prove
Theorem 1.1(b) for partially stable points. Its precise statement is as follows.

Theorem 8.1. Suppose v is (R,P )-stable (cf. Definition 7.1). Then Vλ(G) can
occur in RV [v] only if λ lies over some Rv̂-admissible dominant weight μ of R at v
(cf. Definition 7.3). Conversely, for every Rv̂-admissible dominant weight μ of R,
RV [v] contains Vλ(G) for some dominant weight λ of G lying over μ at v.

This will follow from the following stronger result.
Suppose v ∈ P (V ) is partially stable, specifically (R,P )-stable, where P =

TLU = KU and R ⊆ K.
Let W and Y be, respectively, the smallest K-submodule and R-submodule

of V containing v̂. Let O(d) be the twisting sheaf on P (V ), and let OΔV [v](d),
OΔW [v](d) be the corresponding invertible sheaves on ΔV [v] and ΔW [v], respectively.
Let Γ(ΔV [v],OΔV [v](d)) and Γ(ΔW [v],OΔW [v](d)) be the G- and K-modules of their
global sections. Clearly RV [v]d ⊆ Γ(ΔV [v],OΔV [v](d)) for all d ≥ 0. We have an
equality for all d ≥ 0 iff ΔV [v] is projectively normal (cf. Hartshorne [9, p. 126]).
Similarly, RW [v]d ⊆ Γ(ΔW [v],OΔW [v](d)) for all d ≥ 0, with equality if ΔW [v] is
projectively normal.

The following result shows that the G-module structure of RV [v] is ultimately
related to the R-module structure of RY [v]. In turn, we already know which R-
modules can occur in RY [v] since v ∈ P (Y ) is stable with respect to the action of R
(Theorem 1.1(a)).

Theorem 8.2 (Borel–Weil for partially stable points). Suppose v ∈ P (V ) is
(R,P )-stable as above. Then

1. The G-module structure of RV [v] is equivalent to the K-module structure of
RW [v]: Specifically, the multiplicity of a G-module Vλ(G) in RV [v]∗d is equal
to the multiplicity of the K-module Vλ(K) in RW [v]∗d, where λ is regarded as
a dominant weight of K by restriction. Moreover, a K-module Vα(K) can
occur in RW [v]∗d only if α is also a dominant weight of G.

2. The multiplicity of Vλ(G) in the module Γ(ΔV [v],OΔV [v](d))
∗ of global sec-

tions of OΔV [v](d) is less than or equal to the multiplicity of Vλ(K) in Γ(ΔW [v],
OΔW [v](d))

∗. If ΔW [v] is projectively normal, then the two multiplicities are
equal, for all λ and d ≥ 0, and ΔV [v] is also projectively normal.

3. A K-module Vβ(K) can occur in RW [v]d only if, for some dominant weight
α�K

R β of R, Vα(R) occurs in RY [v]d. Conversely, for every R-module Vα(R)
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occurring in RY [v]d, there exists a dominant weight β �K
R α of K such that

Vβ(K) occurs in RW [v]d.
4. Finally, an R-module Vμ(R) occurs in RY [v], i.e., in some RY [v]d, iff it is

Rv̂-admissible.

Remark 1. In the third statement, it is desirable that we have an explicit criterion
for deciding if α�K

R β. When R satisfies (5), such a criterion is given by Littlemann’s
rule as pointed out there.

Remark 2. When G is semisimple and simply connected and v corresponds to
the highest weight vector in V = Vλ(G), ΔV [v] = G/P and ΔW [v] is just the point
v. Hence Γ(ΔW [v],OΔW [v](d))

∗ = Vdλ(K), for d ≥ 0. The second statement now
implies that Γ(ΔV [v],OΔV [v](d))

∗ = Γ(G/P,OG/P (d))∗ = Vdλ(G) for d ≥ 0, which is
the Borel–Weil theorem [11].

We will first prove two propositions. For that we need the following lemma from
representation theory.

Lemma 8.3 (cf. [11, Theorem 5.104]). Let Vλ(G) be an irreducible represen-
tation of a connected reductive group G with highest weight λ. Let P = KU ⊆ G
be a parabolic subgroup. Then Vλ(G)U = Vλ(K); here Vλ(G)U is the subspace of
U -invariants in Vλ(G).

Let z ∈ P (V ) be a point whose stabilizer Gz ⊆ G contains U , so that the stabilizer
Gẑ ⊆ G of ẑ ∈ V also contains U . Let Z be the smallest K-submodule of V containing
ẑ. Let i denote the embedding of Z in V . The following result shows that RZ [z] and
RV [z] are closely related.

Proposition 8.1. (a) The multiplicity of an irreducible module Vλ(G) in RV [z]∗d
is equal to the multiplicity of Vλ(K) in RZ [z]∗d. Moreover, Vα(K) can occur in RZ [z]∗d
only if α is also a dominant weight of G.

(b) The multiplicity of Vλ(G) in Γ(ΔV [z],OΔV [z](d))
∗ is less than or equal to the

multiplicity of Vλ(K) in Γ(ΔZ [z],OΔZ [z](d))
∗. If ΔZ [z] is projectively normal, then

the two multiplicities are equal for all λ and d ≥ 0, and ΔV [z] is also projectively
normal.

Proof. Since the stabilizer Gẑ contains U , and U is normalized by K, the stabilizer
of every point in Z contains U ; in other words, the action of U on Z is trivial. Thus Z
can be considered a P -module. The embedding map i : Z → V is then P -equivariant.
By restriction, we get a P -equivariant, closed embedding i : Δ̌Z [z] → Δ̌V [z], where
Δ̌V [z] ⊆ V and Δ̌Z [z] ⊆ Z denote the affine cones of ΔV [z] and ΔZ [z]. Hence,
the corresponding surjection i∗ : RV [z] → RZ [z] is P -equivariant. Since it is degree
preserving, by restriction, we get a P -equivariant surjection i∗ : RV [z]d → RZ [z]d for
every d. Since the action of U on Z is trivial, we get the dual injection i : (RZ [z]d)

∗ →
(RV [z]∗d)

U .

Let M be any irreducible G-submodule of RV [z]d. Not all functions in M can
vanish at z—otherwise, arguing as in the proof of Proposition 4.2, we can conclude
that the functions in M vanish identically on the affine cone Δ̌V [z], which is not
possible. It follows that the restriction map i∗ is nonzero on M . Thus N = i∗(M) is
a nonzero K-module, with trivial U -action. Dually, this means i(N∗) is a nonzero K-
submodule of (M∗)U . If M∗ = Vλ(G), then (M∗)U = Vλ(K) (Lemma 8.3), and hence
is irreducible. So (M∗)U  i(N∗). Thus the injection i : (RZ [z]d)

∗ → (RV [z]∗d)
U is an

isomorphism. Hence the multiplicity of Vλ(G) in RV [z]∗d is equal to the multiplicity
of Vλ(K) in RZ [z]∗d, and, moreover, Vα(K) can occur in RZ [z]∗d only if α is also a
dominant weight of G. This proves (a).

The proof of (b) is similar. The embedding map i : Z → V induces a P -equivariant
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map i∗ : Γ(ΔV [z],OΔV [z](d))
∗ → Γ(ΔZ [z],OΔZ [z](d))

∗, which need not be a surjection
in general. Let M be any irreducible G-submodule of Γ(ΔV [z],OΔV [z](d)). One shows
similarly that N = i∗(M) is a nonzero K-submodule of Γ(ΔZ [z],OΔZ [z](d)), with
trivial U -action, and (M∗)U  i(N∗). This proves the first statement of (b).

If ΔZ [z] is projectively normal, i.e., its homogeneous coordinate ring is integrally
closed, then Γ(ΔZ [z],OΔZ [z](d)) = RZ [z]d, for d ≥ 0 (cf. Hartshorne [9, p. 126]).
Hence i∗ is a surjection, for d ≥ 0, since the restriction i∗ : RV [z]d → RZ [z]d is
surjective, and RV [z]d ⊆ Γ(ΔV [z],OΔV [z](d)). Now we prove equality of multiplicities
as in (a). Since the multiplicity of every Vλ(G) in Γ(ΔV [z],OΔV [z](d)) or RV [z]d is
now the same, both being equal to the multiplicity of Vλ(K) in Γ(ΔZ [z],OΔZ [z](d))

∗,
it now follows that Γ(ΔV [z],OΔV [z](d)) = RV [z]d, for all d ≥ 0. Hence RV [z] is
integrally closed and ΔV [z] is projectively normal (cf. Hartshorne [9, p. 126]).

Now let W be any linear representation of a connected, reductive group K, and
let R ⊆ K be a reductive subgroup. Fix a point y ∈ P (W ). Let Y be the smallest
R-submodule of W containing ŷ.

Proposition 8.2. An irreducible K-module Vβ(K) can occur within RW [y]d
only if an R-module Vα(R), with α �K

R β, occurs within RY [y]d. Conversely, if an
R-module Vα(R) occurs in RY [y]d, then there exists a K-module Vβ(K), with βK

R �α,
in RW [y]d.

Proof. The embedding r : Y → W is R-equivariant. Hence, we have an R-
equivariant, closed embedding r : Δ̌Y [y] → Δ̌W [y] of the affine cone of ΔY [y], and
the corresponding R-equivariant surjection r∗ : RW [y] → RY [y]. Since this surjection
is degree preserving, by restriction, we get an R-equivariant surjection r∗ : RW [y]d →
RY [y]d for each d.

Let Vβ(K) be any irreducible K-module in RW [y]d. Arguing as in the proof of
Proposition 8.1, we can conclude that its image under r∗ is nontrivial. The image can
thus be identified with an R-submodule of Vβ(K). If an R-module Vα(R) occurs in
this image, then by definition (cf. section 7), α � β. Conversely, for every R-module
Vα(R) that appears in RY [y]d, there is a K-module Vβ(K) in RW [y]d whose image
contains Vα(K), and hence we must have β � α.

Proof of Theorem 8.2. The first and second statements follow from Proposi-
tion 8.1, letting z = v, Z = W . The third statement follows from Proposition 8.2.
The fourth statement follows statement (a) of Theorem 1.1, since, by definition of
partial stability, v is a stable point of Y with respect to the action of R.

Proof of Theorem 8.1. Suppose Vλ(G) occurs in RV [v]d; i.e., ViGλ(G) occurs in
RV [v]∗d. Then by the first statement of Theorem 8.2, ViGλ(K) occurs in RW [v]∗d. That
is, ViK(iGλ)(K) occurs in RW [v]. It now follows from the third and fourth statements
of Theorem 8.2 that λ lies over some Rv̂-admissible weight μ of R.

Conversely, it follows from Theorem 8.2 similarly that, for every Rv̂-admissible
dominant weight μ of R, RV [v] contains Vλ(G) for some dominant weight λ of G lying
over μ at v.

9. Application in complexity theory. We now specialize the Borel–Weil
theorem for partially stable points (section 8) to the orbit closure problem that
arises in complexity theory (section 2). We follow the notation of section 2. Now
V = Symm(Y ) is a linear representation of G = SL(Y ) = SLl(C), and W = Symn(X)
is a representation of SL(X) = SLk(C). Let Ĝ = GLl(C). Let il denote the involu-
tion on the weights of GLl(C) so that Vλ(GLl(C))∗ = Vilλ(GLl(C)), for a weight λ.
Recall that every weight λ of GLl(C) or its dual il(λ) corresponds to a Young dia-
gram of height at most l. Every weight of GLl(C) that occurs in C[V ]∗d = Symd(V ) =
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Symd(Symm(Y )) corresponds to a Young diagram of size md—this will be used im-
plicitly in what follows.

Theorem 9.1. (a) Suppose g ∈ P (V ) is stable with respect to the action of G.
Then a Weyl module Vλ(G) occurs in ΔV [g] iff it is Gĝ-admissible.

(b) Suppose f ∈ P (V ) is of the form φ(h), h ∈ P (W ). Then Vλ(Ĝ) can occur in
RV [f ]d only if (1) the weight il(λ) corresponds to a Young diagram with md boxes and
height at most k + 1, and (2) Vλ′(GLk+1(C)), with λ′ = ik+1 ◦ il(λ), contains some
SLk(C)ĥ-admissible module Vμ(SLk(C)), where we consider SLk(C) as a subgroup of
GLk+1(C) in a natural way. This means μ and λ′ are related by (a variant of) Pieri’s
branching rule.

Conversely, for every SLk(C)ĥ-admissible module Vμ(SLk(C)), there exist a d

and λ satisfying (1) and (2) above such that Vλ(Ĝ) occurs in RV [g]d.

Proof. (a) follows from Theorem 1.1(a).

(b) The point f ∈ P (V ) is partially stable with defect one with respect to the
action of Ĝ = GLl(C) on P (V ), specifically, (R,P )-stable, with R and P as specificed
in section 2. Now we apply Theorem 8.2 for the action of Ĝ on P (V ). We will only
clarify why the height of il(λ) is at most k + 1. The reductive Levi subgroup of P
under consideration is K  GLk+1×GLl−k−1, and the subgroup 1×GLl−k−1, where 1
denotes the identity in GLk+1, is contained in the stabilizer Kf̂ . Suppose Vλ(G) occurs

in RV [f ]d. The irreducible K-submodule of V containing f is just W̄ = Symm(X̄)
defined in section 2. Hence, by Theorem 8.2, ViK◦ilλ(K) is a nonzero K-submodule
of RW̄ [f ]d, where iK is the involution on the weights of K. By Proposition 5.1,
ViK◦ilλ(K) and, hence, Vilλ(K) must be Kf̂ -admissible and, hence, 1 × GLl−k−1-

admissible. For any Vα(GLl(C)), where α is a Young diagram of height ≤ l, the K-
module Vα(K), with the same weight, is equal to Vα1(GLk+1)⊗Vα2

(GLl−k−1), where
α1 consists of the first k+1 rows of α and α2 consists of the remaining l−k−1 rows; here
an empty row is treated as a row with zero length. Let α = il(λ). Then Vα2(GLl−k−1)
must be trivial since Vα(K) is 1 ×GLl−k−1-admissible; thus α2 = 0, and α1 = α. It
follows that the length of α is at most k + 1. The number of boxes in il(λ) must be
md since every irreducible Ĝ-representation occurring in C[V ]∗d = Symd(Symm(Y ))
has degree md.

The rest follows from Theorems 8.2 and 8.1; details are left to the reader.

10. Representation theoretic data associated with a partially stable
point. We extend the definition of the representation theoretic data (Definition 6.1)
to the partially stable case and illustrate its significance with an application to G/P .

Definition 10.1. Suppose v ∈ P (V ) is (R,P ) stable, P = KU . We say that
a G-submodule M ⊆ C[V ]d is admissible, with respect to v and d, if (M∗)U is (1)
(K,Symd(W ))-admissible, where W is the smallest K-submodule of V containing v̂,
and (2) it is also Rv̂-admissible. Let Σv be the set of all nonadmissible G-submodules
of ⊕dC[V ]d = C[V ].

Let Σv(d) ⊆ C[V ]d be the union of nonadmissible G-submodules of C[V ]d.

Basis elements of the G-submodules in Σv will be called nonadmissible basis ele-
ments. The following is a generalization of Proposition 6.2.

Proposition 10.2. Suppose v is (R,P )-stable. Then the G-modules in the
representation-theoretic data Σv associated with v are contained in IV [v].

Proof. Let P = KU . Fix any irreducible G-submodule S ⊆ RV [v]d. The result
will follow if we show that every such S is admissible with respect to v and d (Defini-
tion 10.1). It follows from the first statement of Proposition 4.2 that S∗ must contain
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a Gv̂-invariant. Since U ⊆ Gv̂, this implies that (S∗)U contains an Rv̂-invariant.
Let W be the smallest K-submodule of V containing v̂. It remains to show that

(S∗)U is (K,Symd(W ))-admissible. Since v, and hence v̂, is stabilized by U , and U is
normalized by K, W is also a P -module with trivial U -action. Let Φ = G ·W ⊆ V .
Consider the induced vector bundle G ×P W [27] with base space G/P and fiber
W . Then Φ is the image of the natural G-equivariant map φ : G ×P W → V
that maps (g, x), g ∈ G, x ∈ W , to gx ∈ V . We also have the associated map
φ̃ : G ×P P (W ) → P (V ). Since φ̃ is proper, its image Φ̃ is closed. The G-variety Φ
is just the affine cone of Φ̃, and is closed. ΔV [v] is a closed G-subvariety of Φ̃, and
its affine cone Δ̌V [v] is a closed G-subvariety of Φ. Hence, RV [v] is a G-summand
of the homogeneous coordinate ring R[Φ̃] of Φ̃. So every irreducible G-submodule
of RV [v] can be thought of as an irreducible G-submodule of R[Φ̃]. An element
of R[Φ̃]d is a regular function on Φ of degree d. Its pull-back via φ is a global
section of the bundle B = G×P (SymdW )∗. Hence, an irreducible G-submodule S of
RV [v]d corresponds to a nonzero irreducible G-submodule of Γ(G/P,B). The second
statement of Proposition 4.2 applied to B, in conjunction with Schur’s lemma, implies
that, given any such S, S∗ must contain a P -submodule isomorphic to a P -submodule
of Symd(W ); i.e., (S∗)U must be (K,Symd(W ))-admissible.

10.1. Example: G/P . Proposition 10.2 suggests we study to what extent the
data Σv determines the ideal IV [v]. In this section we shall show that for G/P the data
Σv determines Iv[v] completely. This observation was a starting point for Theorem 1.2
and Conjecture 1.9.

Let G be a simply connected, semisimple group G, and let P ⊆ G be its parabolic
subgroup, with Levi decomposition P = KU . Consider any embedding of G/P in
P (V ), where V = Vλ(G) is an irreducible G-representation and λ is a dominant weight
lying in the interior of the face of the dominant Weyl chamber in correspondence [5]
with P . Let v ∈ P (V ) correspond to its highest weight vector. Then G/P must
actually be the orbit of v in P (V ) [5]; i.e., ΔV [v]  G/P . Recall that v is (L,P )-
stable, with defect zero, where L is the semisimple Levi subgroup of P (Example 1 in
section 7).

Basis elements of Σv(2) are equivalent to the Grassman–Plücker syzygies in the
case of Grassmanian and, more generally, the quadratic straightening relations of the
standard monomial theory [13] in the ideal of G/P .

Proposition 10.3.

1. C[V ]d = Vdλ(G)∗ ⊕ Σv(d).
2. RV [v]d = Vdλ(G)∗.
3. IV [v] is generated by the basis elements of Σv(2), the nonadmissibility data

of degree two.
Remark. The second statement is one part of the Borel–Weil theorem (cf. sec-

tion 8). Compare its proof here with the one based on Bruhat decomposition [11].
Proof. 1. Since C[V ]∗d  Symd(Vλ) contains a unique highest weight vector with

weight dλ, its G-module decomposition is of the form

(6) C[V ]∗d = Vdλ +
∑
μ

Vμ,

where each μ is some dominant weight smaller than dλ, in the usual ordering on
the weights. Let W = Cλ be the one-dimensional representation (character) of P
corresponding to the weight λ, so that Symd(W ) = Cdλ. We want to show (cf. Def-
inition 10.1) that each Vμ = Vμ(G), μ �= dλ, is not admissible at v, i.e., V U

μ is not
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(K,Cdλ)-admissible, or, in other words, that Vμ, as a P -module, cannot contain Cdλ

as a P -submodule (with trivial U -action): Otherwise let w ∈ Vμ be a basis vector of
this one-dimensional module. Since w is invariant under the unipotent subgroup of
P , it must be the highest weight vector of Vμ, and μ must belong to the interior of
the face of the dominant Weyl chamber that corresponds to P [5]. Moreover, as a P -
module, the line Cw corresponding to w cannot be isomorphic to Cdλ unless μ = dλ.
Hence V ∗

μ ⊆ Σv(d) (Definition 10.1). This proves Statement 1.

2. By Proposition 10.2, Σv(d) ⊆ IV [v], for all d. Hence, this follows from State-
ment 1 since RV [v]d is clearly nonzero.

3. This is now a consequence of the second fundamental theorem for G/P in the
standard monomial theory (cf. Theorem 7.5 in [13]), which states that the ideal IV [v]
is generated by the functions in C[V ]2 that vanish on ΔV [v]. By Statement 1, these
are contained in Σv(2) ⊆ IV [v].

11. SFT for the orbit of a partially stable, excellent point. Now we shall
prove Theorem 1.2 for partially stable points with defect zero, by reducing it to the
stable case that we have already proved. Let V be a linear representation of G. Let
P ⊆ G be a parabolic subgroup with Levi decomposition P = KU = TLU . We shall
assume that the group R in the definition of (R,P )-stability satisfies the restriction
in (5), as it does in our applications (cf. section 2).

A precise statement of Theorem 1.2 in the partially stable case is as follows.

Theorem 11.1. Let V = Vλ(G). Let v ∈ P (V ) be an (R,P )-stable point with
defect zero. Let W be the smallest K-submodule of V containing v̂. Assume that
(1) L ⊆ R ⊆ K, and (2) Rv̂ ⊆ R is R-separable and characterizes v, considered as
a point in P (W ). Then the orbit Gv ⊆ P (V ) is determined by the representation-
theoretic data Σv (Definition 10.1) within some G-invariant neighborhood of the orbit.
Specifically, there exists a G-invariant neighborhood Z ⊆ P (V ) such that Gv is a closed
subvariety of Z and the zero set (scheme) in Z of the basis elements of the G-modules
in Σv coincides with Gv.

For example, suppose W = Symn(X) is embedded via φ in V = Symm(Y ), as in
section 2. Suppose that (1) f is a stable point in P (W ) with respect to the action of
R = SL(X) = SLn2(C), and (2) Rf̂ characterizes f and is R-separable. Then φ(f) is
a partially stable point of the type above.

Let Φ = G ·W ⊆ V as in the proof of Proposition 10.2. As we observed there, it is
the image of the natural G-equivariant map φ : G×P W → V that maps (g, x), g ∈ G,
x ∈ W , to gx ∈ V , and we also have the associated map φ̃ : G ×P P (W ) → P (V ).
Since φ̃ is proper, its image Φ̃ is closed. The G-variety Φ is just the affine cone of Φ̃.
Let R[Φ̃] be the homogeneous coordinate ring of Φ̃.

Our goal is to show that the orbit Gv of v is determined scheme-theoretically by
the representation theoretic data within some G-invariant neighborhood of the orbit.
Since Gv is contained in Φ̃, our first goal is to understand the geometry of Φ̃. Once
this is done, we shall be able to reduce the present case to the stable case that has
already been analyzed.

When v corresponds to the highest weight vector of V = Vλ(G), Φ̃ = ΔV [v] =
G/P . Hence we wish to generalize the results in section 10.1.

The geometry of Φ̃. We say that Vα(G) is (K,U,W, d)-admissible if (Vα(G)∗)U

contains an irreducible K-submodule that also occurs in Symd(W ), and that it is non–
(K,U,W, d)-admissible otherwise.
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Proposition 11.1. Every G-submodule in R[Φ̃]d is (K,U,W, d)-admissible.
Hence, every non–(K,U,W, d)-admissible G-submodule of C[V ]d belongs to the ho-
mogeneous ideal of Φ̃.

The proof is an easy modification of the proof of Proposition 10.2.
The following is a generalization of Proposition 10.3. Recall that W is a P -module

with trivial U -action (cf. proof of Proposition 10.2).
Proposition 11.2. (1) As a G-module, R[Φ̃]d is isomorphic to the space Γd =

Γ(G/P,Symd(W ∗)) of global sections of the vector bundle G×P Symd(W ∗).
(2) C[V ]d = Γd ⊕ (⊕βVβ(G)), where Vβ(G)∗, for any β, cannot contain an ir-

reducible K-submodule that also occurs in Symd(W ). In particular, each Vβ(G) is

non–(K,U,W, d)-admissible and hence belongs to the ideal of Φ̃.
(3) The ideal of Φ̃ is generated (actually spanned) by non–(K,U,W, d)-admissible

G-submodules of C[V ]d.
For the proof of this proposition we shall need a lemma. Let P = KU = TLU be

the Levi decomposition as above. We think of the root system of K as a subsystem
of that of G. Let l be any linear functional l on the weight space of G with respect
to which the usual ordering of the roots of G is defined; here it is assumed that l is
irrational with respect to the weight lattice. Let

(7) Vλ(G) = Vλ(K) ⊕
⊕
μ

Vμ(K)

be a decomposition of Vλ(G) as a K-module. Let vβ be the highest weight vector of
Vβ(K) occurring in this decomposition with respect to l. Let wT (β) = wT (vβ) denote
its T -weight, i.e., the weight with respect to the central torus T ⊆ K.

The following is a complement to Lemma 8.3. Let φ be the projection of the
dominant weights of G onto the largest face F of the dominant Weyl chamber that is
orthogonal (in the Killing norm) to the simple roots of K, the Lie algebra of K. Note
that (1) wT (α) = wT (φ(α)), for any dominant weight, since wT (γ) = 0 for any simple
root γ of K, and (2) wT (φ(α)) �= wT (φ(β)) if φ(α) �= φ(β). Order the projected
weights in F according to the restriction of l to F . This induces an order on the
T -weights wT (α)’s.

Lemma 11.2. For every μ in (7), wT (μ) = wT (vμ) is less than wT (λ) = wT (vλ)
for an appropriate l.

Proof. Let W denote the Weyl group of G. For a simple root g, let Wg be the
reflection in the hyperplane perpendicular to g.

The weights of Vλ(G) are contained in the convex hull C of the conjugates of λ
under the Weyl group elements [5]. Let A be the affine space, perpendicular to F ,
spanned by λ and Wg(λ)’s, where g ranges over the simple roots of K. Its intersection
with C is a face of C—call it L; it is the smallest face of C containing λ and Wg(λ),
for each simple root g of K.

Claim 11.3. The weight vectors of Vλ(G), whose weights are contained in L,
span the irreducible K-submodule Vλ(K) ⊆ Vλ(G) with weight λ.

Proof of the claim. Let G,K denote the Lie algebras of G and K, and U(G), U(K)
the corresponding universal enveloping algebras. We know that Vλ(G) is spanned
by αvλ, where vλ is the highest weight vector of Vλ(G) and α ∈ U(G) ranges over
all monomials in the negative roots of G. If we order the roots appropriately, the
Poincare–Birkoff–Witt theorem implies that α is of the form α1α2, where α2 ∈ U(K)
is a monomial in the negative roots of K and α1 is a monomial in the remaining
negative roots of G. Then αvλ is nonzero with weight in L iff α1 = 1. But α2vλ, as
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α2 ranges over all monomials in the negative roots of K, clearly span Vλ(K) ⊆ Vλ(G).
This proves the claim.

It follows from the claim that no μ �= λ in (7) can belong to L. We shall choose
an irrational l such that the weights of Vλ(G) within L have higher l-coordinates than
the remaining weights of Vλ(G); it clearly exists.

Consider the restriction of the linear function l to F . Then l(φ(α)) is higher than
l(φ(β)) for any weight β of Vλ(G) not contained in L. Since no μ �= λ in (7) can
belong to L, the result follows.

Proof of Proposition 11.2. Since w is P -stable, its stabilizer contains U . Since
U is normalized by K, it follows that every point in W is also stabilized by U . By
Lemma 8.3, W = Wλ = Vλ(G)U = Vλ(K).

The decomposition of V = Vλ as a K-module is of the form

V = Vλ = Wλ ⊕
⊕
μ

Wμ,

where, for each μ, wT (vμ) < wT (vλ) (Lemma 11.2). Let W ′ =
⊕

μ Wμ. By induction,
and using the formula

C[V ]∗d = Symd(V ) = Symd(Wλ ⊕W ′) =
∑

i+j=d

Symi(Wλ) ⊗ Symj(W ′),

it follows that C[V ]∗d has a K-module decomposition of the form

(8) C[V ]∗d = Symd(V ) = Symd(W ) ⊕Wd,

where the T -weight of the highest-weight-vector of each K-submodule of Wd is strictly
smaller than the T -weight of the highest-weight-vector of each K-submodule in Symd(W ).
Hence no irreducible K-module can occur in both Symd(W ) and Wd, considered as
abstract K-modules; i.e., Hom(Symd(W ),Wd)

K = 0.
Now consider a G-module decomposition

(9) C[V ]∗d  Symd(Vλ(G)) =
∑
μ

cλμVμ(G),

where all cλμ ≥ 0 and μ ranges over all dominant weights of G less than or equal to
dλ. We do not know this decomposition explicitly; finding an explicit decomposition
is a special case of the unsolved plethysm problem [5]. It follows from (9) that

(10) C[V ]∗Ud  Symd(Vλ(G))U =
∑
μ

cλμVμ(G)U =
∑
μ

cλμVμ(K),

where the last step follows from Lemma 8.3. Since W = V U , Symd(W ) is a U -
submodule of Symd(V ). Hence it follows from (10) that each weight β of K that occurs
in Symd(W ) with nonzero multiplicity dβ also occurs as a weight of G in Symd(V )
with multiplicity at least dβ . On the other hand, by the Borel–Weil theorem and
Lemma 8.3 (cf. also Frobenius reciprocity [4]),

(11) (Γ∗
d)

U = Symd(W ).

It follows that as a G-module,

(12) C[V ]∗d = Γ∗
d ⊕

⊕
μ

cμVμ(G),
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for suitable μ’s. On the other hand, comparing this equation with (8), it follows that
no Vμ(G) here can contain an irreducible K-submodule that also occurs in Symd(W ).
This proves the second statement of the proposition.

It remains to show that Γd is a G-submodule of R[Φ]d. By (11), ΓU
d = Symd(W ∗).

Hence by the second statement, in conjunction with Lemma 8.3, this is equivalent to
showing that Symd(W ∗) is a K-submodule of R[Φ]Ud . This is clear, since we have
the canonical U -equivariant embedding of W within Φ, the U -action on W being
trivial.

When Φ̃ = G/P , by the standard monomial theory, we know that nonadmissible
basis elements of degree two generate the ideal of G/P (section 10.1). Analogously, in
the context of Proposition 11.2, one can ask for a degree bound c such that the basis
elements of non–(K,U,W, d)-admissible G-submodules of C[V ]d, d ≤ c, generate the
ideal of Φ̃. This seeks an extension of the standard monomial theory to Φ̃ = GW .

Reduction to the stable case. Now we are ready to prove Theorem 11.1. Let
V = Vλ(G). Let v be an (R,P )-stable point with defect zero, as hypothesized, and
let W = Vλ(K) be the smallest K-submodule of V containing v̂. Since L ⊆ R ⊆ K,
K and R are both products of the form LT (K) and LT (R), respectively, where T (K)
and T (R) are tori. Hence an irreducible K-module is also an irreducible R-module.
In particular, W is an irreducible R-module with the action of the torus T (R) being
determined by a character; i.e., the action of T (R) on P (W ) is trivial. Hence, any
R-invariant subset of P (W ) is also K-invariant, and, in particular, Rv = Kv ⊆ P (W ).

The orbit Gv ⊆ P (V ) is contained in Φ̃. By Proposition 11.2, the ideal of Φ̃
is generated (actually spanned) by the non–(K,U,W, d)-admissible G-submodules of
C[V ]d. These submodules are contained in the nonadmissibility data Σv associated
with v (cf. Definition 10.1). Let Σ̂v be the set of remaining G-submodules of C[V ] in
Σv. A G-submodule M ⊆ C[V ]d belongs to Σ̂v iff (M∗)U is not Rv̂-admissible. We
shall show that there exists a G-invariant neighborhood Z of Gv in Φ̃ such that Gv is
a closed subvariety of Z and Gv is determined within Z by the data Σ̂v; i.e., the zero
set of the (basis elements of) the G-modules in Σ̂v, restricted to Z, coincides with Gv
scheme-theoretically.

Consider the G-equivariant map φ̃ : G×P P (W ) → Φ̃.
Claim 11.4. φ̃−1(v) is a point.
Proof of the claim. Suppose to the contrary. Then there exists g �∈ P and a

w ∈ P (W ) such that φ(g, w) = v, i.e., gw = v, and hence, w = g−1(v). Since v is
(R,P )-stable, U ⊆ Gv ⊆ P (Definition 7.1). Since w ∈ P (W ), and the U -action on
W is trivial,

U ⊆ Gw = (Gv)
g−1 ⊆ P g−1

.

Thus both P and P g−1

contain U . This implies that P = P g−1

(by Lemma 5.2.5(ii)
in [30] and Corollary 11.17(iii) in [2]). Thus g−1 normalizes P . Since the normalizer
of P is P itself (Theorem 11.16 in [2]), it follows that g ∈ P , a contradiction.

Let us denote the point φ−1(v) by ṽ. Since φ̃ is surjective, to show that Gv is
scheme-theoretically determined within a G-invariant neighborhood by the data Σ̂v, it
suffices to show that φ̃−1(Gv) = G·φ̃−1(v) = Gṽ ⊆ G×P P (W ) is determined scheme-
theoretically within some G-invariant neighborhood by the set φ̃−1(Σ̂v) of the pull-
backs of the G-modules in Σ̂v. But since Gṽ = Gv ⊆ P , the normal space to Gṽ can
be identified with the normal space to its restriction to the slice φ̃−1(P (W ))  P (W ),
which in turn, corresponds to the normal space to the orbit Rv = Kv ⊆ P (W ). By the
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Jacobian criterion (Proposition 6.4), it now suffices to show that the set φ̃−1(Σ̂v)P (W )

of the restrictions of the modules in φ̃−1(Σ̂v) to the fixed slice φ̃−1(P (W ))  P (W )
of the bundle G ×P (W ) determines the orbit of Rv = Kv ⊆ P (W ) within some
K-invariant neighborhood of this orbit.

By Proposition 11.2, R[Φ]d is isomorphic to the space Γd = Γ(G/P,Symd(W ∗))
of global sections of the bundle G ×P Symd(W ∗). By the Borel–Weil theorem and
Lemma 8.3 (see also the Frobenius reciprocity in [4]), the set of restrictions of the
modules in Γd to the slice P (W ) can be identified with ΓU

d : If M ∈ R[Φ] and is

isomorphic to Vλ(G), then the restriction of φ̃−1(M) to P (W ) corresponds to MU ,
which is isomorphic to Vλ(K) (Lemma 8.3). Hence, the restrictions of the modules
in φ̃−1(Σ̂v) to the slice P (W ) consists of precisely the K-modules in C[W ] that do
not contain any Rv̂-invariant. Since K and R are of the form LT (K), LT (R), an
irreducible K-module is also an irreducible R-module, and the subspace of C[W ]
spanned by non–Rv̂-admisible K-submodules coincides with the subspace spanned by
non–Rv̂-admisible R-submodules. Thus, φ̃−1(Σ̂v)P (W ) consists of precisely the non–
Rv̂-admisible R-modules in C[W ]. Since v ∈ P (W ) is stable with respect to the action
of R on P (W ), we can now apply Theorem 6.1 for the stable case. It implies that
Rv ⊆ P (W ) has an R-invariant, and hence, K-invariant, neighborhood Y such that
Rv as a subvariety of Y is determined scheme-theoretically by φ̃−1(Σ̂v)P (W ).

This shows that φ̃−1(Σ̂v)P (W ) determines the orbit of Rv = Kv ⊆ P (W ) within
a K-invariant neighborhood of the orbit.

This proves Theorem 11.1.

12. G-separability. We now study the notion of G-separability (Definition 6.3),
which is of interest in the context of Theorem 1.2.

Proposition 12.1.

1. A semisimple group H, embedded in G = H × H diagonally, is strongly G-
separable.

2. H = SLk(C) is a strongly G-separable subgroup of G = SLn(C) if k >
(n + 1)/2.

3. H = SLk(C) × SLl(C) ⊆ G = SLk+l(C), with natural embedding, is strongly
G-separable.

Remark. The last statement can be generalized to semisimple Levi subgroups
of maximal parabolic subgroups of classical simple groups if one uses, instead of the
decomposition formula in (13), Littelmann’s restriction rule [14].

Proof. (1) By Schur’s lemma, a G-module Vα(H) ⊗ Vβ(H), where ⊗ denotes
the external tensor product here, is H-admissible iff Vβ(H)  Vα(H)∗; i.e., β =
iH(α), where iH is the involution on dominant H-weights (section 7). Any nontrivial
representation Vλ(H) occurs in the non–H-admissible G-module Vλ(H) ⊗ 1H , where
1H denotes the trivial H-module. So H is clearly G-separable.

Strong G-separation follows from the following more general fact.
Claim 12.2. Vλ(H) occurs in the non–H-admissible G-module Vδ(H) ⊗ Vρ(H),

δ = λ + β ρ = iH(β), for any dominant H-weight β.
Proof of the claim. By Schur’s lemma, this is equivalent to showing that

Hom(Vδ(H) ⊗ Vρ(H), Vλ(H)) = Vλ+β(H)∗ ⊗ Vρ(H)∗ ⊗ Vλ(H)
= Vλ+β(H)∗ ⊗ Vβ(H) ⊗ Vλ(H)

contains an H-invariant. By Schur’s lemma again, this is equivalent to showing that
Vλ+β(H) occurs in Vβ(H) ⊗ Vλ(H), which is clear.
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(2) Consider a nontrivial Vλ(SLk(C)), where λ is a Young diagram of height h
less than k. We shall exhibit a non–H-admissible Vμ(SLn(C)) containing it. If h is
greater than n − k, we let μ = λ. Otherwise, let μ be a Young diagram obtained by
adding n − k − h + 1 boxes to the first column of λ. Its height is n − k + 1 < k.
By Pieri’s branching rule, it is easy to see that Vμ(SLn(C)) contains Vλ(SLk(C)) but
not the trivial representation of SLk(C). More generally, if μ′ is a Young diagram
obtained by appropriately extending, i.e., adding boxes to the first n − k rows of μ,
then Vμ′(SLn(C)) contains Vλ(SLk(C)) but not the trivial representation of SLk(C).
There are infinitely many such μ′s. So SLk(C) is strongly separable.

(3) Assume that k ≥ l, the other case being similar. Consider a nontrivial H-
module L = Vα(SLk(C))⊗Vβ(SLl(C)), where α and β correspond to Young diagrams
of height less than k and l, respectively. We shall exhibit a non–H-admissible G-
module Vλ(G) containing it. We identify α and β with the partitions: α = (α1, α2, . . .),
where αi denotes the length of the ith row of the corresponding Young diagram, and
β = (β1, β2, . . .). We proceed by cases.

Case 1. Either α does not correspond to a rectangular Young diagram of height
l, or β is not trivial.

Let λ = α+ β = (α1 + β1, . . .). Note that the height of λ is less than k. We have
[5]

(13) Vλ(GLl+k(C)) =
∑
ρ,δ

Nλ
ρ,δVρ(GLk(C)) ⊗ Vδ(GLl(C)),

where Nλ
ρ,δ denotes the Littlewood–Richardson coefficient. From this it easily follows

that Vλ(SLk+l(C)) contains the representation Vα(SLk(C))⊗Vβ(SLl(C)) of SLk(C)×
SLl(C). But it cannot contain the trivial H-representation: If ρ �= 0 and δ (possibly
zero) correspond to rectangular Young diagrams with height k and l, respectively—
so that Vρ(SLk(C)) and Vδ(SLl(C)) are trivial—then Nλ

ρ,δ is easily seen to be zero;
otherwise the height of λ will be at least k. On the other hand, if ρ = 0, then λ = δ.
Since the height of β is less than l, the definition of λ then implies that α = δ and
β = 0; a contradiction.

More generally, let α′ be any Young diagram obtained from α by adding columns
of length k. Let λ′ = α′ + β. Then Vλ′(SLk+l(C)) also contains Vα(SLk(C)) ⊗
Vβ(SLl(C)) but not the trivial representation of SLk(C) × SLl(C). Moreover, there
are infinitely many such λ′s.

Case 2. α is rectangular of height l and width w, and β = 0.

We can assume that k > l; otherwise Vα(SLk(C)) too will be trivial. For any
integer r ≥ 0, let λ be the Young diagram whose first r columns are of height k, the
(r+1)st column is of length l+1, the columns numbered r+2, . . . , r+w are of height
l, and the column numbered r + w + 1 is of height l − 1. Then it follows from (13)
that Vλ(GLl+k(C)) contains Vρ(GLk(C)) ⊗ Vδ(GLl(C)), where ρ is obtained from α
by adding to its left r columns of length k, and δ consists of a single column of height
l. Clearly Vρ(GLk(C)) ⊗ Vδ(GLl(C)) is isomorphic to Vα(SLk(C)) ⊗ Vβ(SLl(C)) as
an SLk(C) × SLl(C)-module. But it does not contain the trivial SLk(C) × SLl(C)-
module; this too follows from (13). Moreover, there are infinitely many such λ.

This proves strong G-separability of H.

For us, it is important to know if the stabilizers of the points that arise in the
context of complexity theory are separable (cf. section 2). The connected component
of the stabilizer of det(Y ) in SLn2(C), where Y is an n×n matrix, contains SLn(C)×
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SLn(C) ⊆ SL(Y ) = SLn2(C) (section 2.1). Regarding this subgroup we make the
following conjecture.

Conjecture 12.3. SLn(C)×SLn(C) is a strongly separable subgroup of SLn2(C).
Here the embedding corresponds to the natural embedding SL(V ) ⊗ SL(V ) ⊆

SL(V ⊗ V ), V = Cn. Specifically, letting Vλ(n) denote Vλ(SLn(C)) in what follows,
the conjecture can be reformulated as follows.

Conjecture 12.4. For every nontrivial Weyl module Vλ(n)⊗Vμ(n) of SLn(C)×
SLn(C), such that |λ| = |μ| (mod n), there exist (infinitely many) Weyl modules
Vρ(n

2) of SLn2(C) whose decomposition as an SLn(C) × SLn(C)-module contains
Vλ(n) ⊗ Vμ(n) but not the trivial SLn(C) × SLn(C)-module.

The restriction |λ| = |μ| (mod n) is required to ensure (cf. Definition 6.3) that
Vλ(n) ⊗ Vμ(n) occurs in some representation of SLn2(C); cf. (14) below.

The conjecture can be reformulated in terms of the symmetric group as follows.
Let V̂γ(n2) be a Weyl module of GLn2(C). Embed GLn(C) × GLn(C) = GL(Cn) ×
GL(Cn) in GL(Cn ⊗ Cn) = GLn2(C). The decomposition of V̂γ(n2) as a GLn(C) ×
GLn(C)-module is of the form

(14) V̂γ(n2) =
∑
α,β

cα,β,γ V̂α(n) ⊗ V̂β(n);

here cα,β,γ can be nonzero only if |α| = |β| = |γ|. To get the decomposition of V̂γ as
an SLn(C)× SLn(C)-module, we reduce the Young diagrams occurring on the right-
hand side by removing columns of length n. This does not change their sizes modulo
n; this explains the restriction |λ| = |μ| (mod n) in the conjecture. By Littlewood’s
symmetry conditions [5], the coefficients cα,β,γ do not depend on the ordering of α, β,
and γ.

Given a Young diagram δ, |δ| = m, let Wδ denote the corresponding irreducible
representation, the Specht module, of the symmetric group Sm. Then the coefficient
cα,β,γ occurring in the preceding decomposition is the same as the one occurring in
the decomposition of the tensor product Wα ⊗Wβ as an Sm-module,

Wα ⊗Wβ =
∑
γ

cα,β,γWγ ,

where m = |α| = |β|; cf. [5].
For any λ of height less than n and m = |λ|(mod n), let λ(m) be the unique

Young diagram of size m obtained by adding to α columns of length n. Then the
preceding conjecture is equivalent to saying the following:

For every nontrivial pair of Young diagrams (λ, μ) of height less than n, and such
that |λ| = |μ| (mod n), there exist an m = |λ| = |μ| (mod n), m ≥ n, and a ρ of size
m such that Wρ occurs in the decomposition of Wλ(m) ⊗ Wμ(m) as an Sm-module,
but not in the decomposition of Wδ ⊗Wδ, where δ is the rectangular Young diagram
of height n and size m.

If |λ| = |μ| �= 0 (mod n), the last restriction is vacuous, because no such δ exists,
and hence we have the following proposition.

Proposition 12.5. If |λ| = |μ| �= 0 (mod n), Conjecture 12.4 holds.
So, let us assume that |λ| = |μ| = 0 (mod n) in what follows.
Proposition 12.6. Conjecture 12.4 holds for n = 2.
The main difficulty in extending the proof below to n > 2 is that an explicit

decomposition of the tensor product of two arbitrary Specht modules is not yet known.
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Proof. We need to show that for every nontrivial pair of (λ, μ) of row-shaped
Young diagrams, with |λ| and |μ| even, there exist an even m and a ρ of size m such
that Wρ occurs in the decomposition of Wλ(m) ⊗Wμ(m) as an Sm-module, but not in
the decomposition of Wδ ⊗Wδ, where δ is the rectangular Young diagram of height
2 and width m/2. We shall show that there exists such a ρ for every large enough
m ≥ 4(|λ| + |μ|). Fix such an m.

Given a Young diagram γ, we shall let γi denote the number of boxes in its ith
row from the top. We assume that the topmost row has the highest length in the
diagram. We shall denote λ(m) and μ(m) by λ̄ and μ̄, respectively. Since λ and μ
are row shaped, we shall let λ and μ denote the lengths of their row as well. Since
|λ̄| = |μ̄| = m, λ̄2 − λ̄1 = λ, and μ̄2 − μ̄1 = μ, we have λ̄2 = m/2 − λ/2 and
μ̄2 = m/2 − μ/2. Since λ̄, μ̄, and δ have two rows, we can use the decomposition
formula of Remmel and Whitehead [29].

First, we shall try to find a required ρ with two rows. Let (a, b), a ≥ b, denote
the two-row Young diagram with the top row of length a and the bottom row of
length b. Suppose we are given Young diagrams (k, h), (r, l), (d, c) of size m. Because
of Littlewood’s symmetry conditions we can assume that l ≤ h ≤ c. With this
condition, the formula in [29, Theorem 3.3] says that

(15) c(r,l),(k,h),(d,c) = (1 + w − v)χ(w ≥ v),

where w = �(l+ h− c)/2�, v = max(0, �(l+ h+ c−m)/2�), and the function χ is one
if w ≥ v and zero otherwise.

By Littlewood’s symmetry condition, cδ,δ,ρ = cρ,δ,δ. Applying the preceding for-
mula with (r, l) = ρ and (k, h) = (d, c) = δ = (m/2,m/2), we conclude that this
coefficient is nonzero iff �ρ2/2� ≥ �ρ2/2�. That is, iff ρ2 is even. So we need to find
a ρ, with ρ2 odd, such that cλ̄,μ̄,ρ is nonzero. Because of symmetry, we can assume

that λ̄2 ≤ μ̄2. We will try to find ρ such that

(16) ρ2 ≤ λ̄2.

Then setting (k, h) = ρ, (r, l) = λ̄, and (d, c) = μ̄ in (15), we conclude that cλ̄,μ̄,ρ =
cρ,λ̄,μ̄ is nonzero iff

(17) �(ρ2 + λ̄2 − μ̄2)/2� ≥ max(0, �(ρ2 + λ̄2 + μ̄2 −m)/2�),

i.e., iff

(18) �(ρ2 − λ/2 + μ/2)/2� ≥ max(0, �(ρ2 − λ/2 − μ/2)/2�).

We now proceed by cases.
Case 1. μ �= 0.
In this case the condition in (18) can be satisfied if

(19) ρ2 ≥ (λ + μ)/2

and μ ≥ 2, which holds since μ is nonzero and even. But there are many odd ρ2’s
such that (16) and (19) are satisfied if, say, m ≥ 4(λ + μ).

Case 2. μ = 0, and λ/2 is odd.
In this case, (18) is satisfied if we let ρ2 = λ/2, which is nonzero—otherwise (λ, μ)

will be trivial—and odd, as required. Since m is large enough, (16) is also satisfied.
It remains to consider the following case.
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Case 3. μ = 0, and λ/2 is even.
In this case, the required two-row ρ does not exist. So we shall find an appropriate

ρ = (ρ1, ρ2, ρ3, ρ4) with four rows such that ρ3 = ρ4.
Given Young diagrams (k, h), (m, l), (d, c, a, a) (entries in nonincreasing order)

with m boxes such that a > 0 and �(h + 1)/2� ≤ h − c, the Remmel–Whitehead
formula [29, Theorem 3.1] says that

(20) c(k,h),(m,l),(d,c,a,a) =

min(l,	 l−a+h−c
2 
)∑

r=h−c

1 −
min(l,	h−1

2 
,	 l+h+a+c−m−1
2 
)∑

r=max(a,l+h+a−m−1)

1.

We will set (k, h) = (m, l) = δ = (m/2,m/2) and (d, c, a, a) = ρ = (ρ1, ρ2, ρ3, ρ4) in
this formula. For the formula to be applicable, we need to ensure that

(21) ��(h + 1)/2� = (m/2 + 1)/2� ≤ h− c = m/2 − ρ2.

If, in addition,

(22) ρ2 + ρ3 < m/2,

we get that

cδ,δ,ρ =

	 (m−ρ3−ρ2)
2 
∑

m
2 −ρ2

1 −
	 ρ3+ρ2−1

2 
∑
r=ρ3

1

=

⌊
(m− ρ3 − ρ2)

2

⌋
−
(m

2
− ρ2

)
+ ρ3 −

⌊
ρ3 + ρ2 − 1

2

⌋
,

=

⌊
ρ2 − ρ3

2

⌋
−
⌊
ρ2 − ρ3 − 1

2

⌋
,

which is 1 if ρ2 − ρ3 is even, and zero otherwise.
So we need to find a ρ with ρ2 − ρ3 odd, satisfying (21) and (22), such that cμ̄,λ̄,ρ

is nonzero. Since μ = 0, we have μ̄1 = μ̄2 = m/2. Also, recall that λ̄2 = m/2 − λ/2.
Set (k, h) = μ̄ = (m/2,m/2), (m, l) = λ̄, and (d, c, a, a) = ρ in (20). We shall choose a
four-row ρ, with nonzero ρ3, such that ρ2 − ρ3 is odd, ρ2 and ρ3 are sufficiently larger
than λ, and also such that the difference between m/2 and ρ2 + ρ3 is sufficiently
larger than λ. This is possible if m is large enough compared to λ. In this case, the

upper index of the first sum in (20) becomes � λ̄2−ρ3+m/2−ρ2

2 �, and the lower index is

m/2 − ρ2. So the contribution of the first term is �ρ2−ρ3−λ/2
2 �. Since λ is nonzero,

the lower index of the second sum in (20) is equal to λ
2 − 1 + ρ3. The upper index,

assuming that m is large enough and m/2 − ρ2 − ρ3 is sufficiently larger than λ,

becomes �−λ/2+ρ2+ρ3−1
2 �. Assuming that ρ2 and ρ3 are sufficiently larger than λ, it

is larger than the lower index. Hence the second term becomes

λ

2
− 1 + ρ3 −

⌊
−λ/2 + ρ2 + ρ3 − 1

2

⌋
=

λ

2
− 1 +

⌊
λ/2 − ρ2 + ρ3 + 1

2

⌋
.

Thus

cμ̄,λ̄,ρ =

⌊
ρ2 − ρ3 − λ/2

2

⌋
+

λ

2
− 1 +

⌊
λ/2 − ρ2 + ρ3 + 1

2

⌋
=

λ

2
− 1.

This is nonzero, since λ/2, being nonzero and even, is at least two. So we can choose
a ρ, with ρ2 − ρ3 odd, and subject to the preceding conditions, as required.
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Abstract. This paper shows that quantum computation can be made fault-tolerant against
errors and inaccuracies when η, the probability for an error in a qubit or a gate, is smaller than a
constant threshold ηc. This result improves on Shor’s result [Proceedings of the 37th Symposium on
the Foundations of Computer Science, IEEE, Los Alamitos, CA, 1996, pp. 56–65], which shows how
to perform fault-tolerant quantum computation when the error rate η decays polylogarithmically with
the size of the computation, an assumption which is physically unreasonable. The cost of making the
quantum circuit fault-tolerant in our construction is polylogarithmic in time and space. Our result
holds for a very general local noise model, which includes probabilistic errors, decoherence, amplitude
damping, depolarization, and systematic inaccuracies in the gates. Moreover, we allow exponentially
decaying correlations between the errors both in space and in time. Fault-tolerant computation
can be performed with any universal set of gates. The result also holds for quantum particles with
p > 2 states, namely, p-qudits, and is also generalized to one-dimensional quantum computers with
only nearest-neighbor interactions. No measurements, or classical operations, are required during
the quantum computation. We estimate the threshold of our construction to be ηc � 10−6, in the
best case. By this we show that local noise is in principle not an obstacle for scalable quantum
computation. The main ingredient of our proof is the computation on states encoded by a quantum
error correcting code (QECC). To this end we introduce a special class of Calderbank–Shor–Steane
(CSS) codes, called polynomial codes (the quantum analogue of Reed–Solomon codes). Their nice
algebraic structure allows all of the encoded gates to be transversal. We also provide another version
of the proof which uses more general CSS codes, but its encoded gates are slightly less elegant.
To achieve fault tolerance, we encode the quantum circuit by another circuit by using one of these
QECCs. This step is repeated polyloglog many times, each step slightly improving the effective error
rate, to achieve the desired reliability. The resulting circuit exhibits a hierarchical structure, and for
the analysis of its robustness we borrow terminology from Khalfin and Tsirelson [Found. Phys., 22
(1992), pp. 879–948] and Gács [Advances in Computing Research: A Research Annual: Randomness
and Computation, JAI Press, Greenwich, CT, 1989]. The paper is to a large extent self-contained.
In particular, we provide simpler proofs for many of the known results we use, such as the fact that
it suffices to correct for bit-flips and phase-flips, the correctness of CSS codes, and the fact that
two-qubit gates are universal, together with their extensions to higher-dimensional particles. We
also provide full proofs of the universality of the sets of gates we use (the proof of universality was
missing in Shor’s paper). This paper thus provides a self-contained and complete proof of universal
fault-tolerant quantum computation in the presence of local noise.

Key words. quantum computation, quantum fault tolerance, noise and decoherence, quantum
error correction, concatenated codes, density matrices, polynomial codes, quantum Reed–Solomon
codes, universal set of gates

AMS subject classifications. 81P68, 68Q01

DOI. 10.1137/S0097539799359385

∗Received by the editors July 21, 1999; accepted for publication (in revised form) October 28,
2007; published electronically July 23, 2008. A preliminary version of this paper, under the name
“Fault-Tolerant Quantum Computation with Constant Error,” was published in Proceedings of the
29th Annual ACM Symposium on Theory of Computing (STOC), El Paso, TX, 1997, pp. 176–188.
An extended version quite similar to the current version is posted online at http://arxiv.org/abs/
quant-ph/9906129. This research was supported by The Israel Science Foundation, grant 69/96, and
the Minerva Leibniz Center at the Hebrew University in Jerusalem.

http://www.siam.org/journals/sicomp/38-4/35938.html
†School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel (doria@

cs.huji.ac.il, benor@cs.huji.ac.il). The second author is the incumbent of the Jean and Helena Alfassa
Chair in Computer Science.

1207



1208 DORIT AHARONOV AND MICHAEL BEN-OR

1. Introduction. The area of quantum algorithms has witnessed remarkable
discoveries over the past decade, the most remarkable of which is Shor’s groundbreaking
discovery of a polynomial quantum algorithm for factoring [82]. These results indi-
cate a possibility that quantum computers exhibit exponential speedups over classical
computers. It is yet unclear whether and how large scale quantum computers will be
physically realizable (see [68] for possible implementation schemes). However, as in
any physical system, quantum computers will in principle be subjected to noise, such
as decoherence [103, 93, 94], and inaccuracies. Without error corrections, the effect of
noise will accumulate and ruin the entire computation [97, 30, 71, 65, 66, 20]. Thus,
the question of whether quantum computation can be protected against noise cannot
be separated from the subject of quantum computational complexity.

One cannot hope to achieve fault tolerance of any computational model, be it
quantum or classical, unless the noise model is restricted in some way. In this paper
we adopt the assumption that the noise is local. Roughly, it means that the noise
is independent between the different components of the system. This seems to be
a fairly natural assumption to work with from a physical point of view and is often
assumed in the classical case. We characterize the amount of noise by a parameter η
which we call the error rate. The most basic variant of local noise with error rate η
is called independent probabilistic noise and is defined as the following process: Each
gate undergoes an arbitrary error with independent probability η, and in addition, for
every time step, the qubits that do not participate in any gate undergo errors, too,
each with independent probability η. Local noise can be defined much more generally,
to include decoherence, systematic errors, and other kinds of physical processes. We
will deal with these later in this paper, but for a first reading it is best to keep in
mind the simplest local noise model of independent probabilistic noise.

This paper settles the question of whether quantum computation preserves its
computational power in the presence of local noise. We give a positive answer to this
question, for a very wide variety of cases under the title of local noise. To do this, we
show how to simulate an unreliable quantum circuit by one that is robust to local noise
of error rate η, as long as η is below a certain (constant) threshold. The overhead is
only polylogarithmic in both space and time. By this we show that, in principle, local
noise is not an obstacle against the physical realization of quantum computers. We do
not attempt here to optimize the threshold value but rather to achieve a systematic
and simple mathematical structure and as general a proof as possible. In the rest of
the introduction, we state and explain the result in more detail, describe its context
and limitations, and provide an outline of the proof.

1.1. Background on quantum error correction and fault tolerance. The
analogue question of protecting classical computation from errors was already studied
by von Neumann in 1956, when he showed that classical computation can be made
robust to noise with constant error probability per gate [67]. This was done by using
computation on redundant information, encoded by a repetition code.

The similar question for quantum computation, however, is far more complicated.
Even the simpler question of transmitting quantum information reliably over a noisy
channel poses a lot of conceptual obstacles in comparison with its classical analogue,
and, in fact, scientists were skeptical about this possibility [97, 62]. There were
several valid reasons for these concerns. First, the fact that quantum states cannot be
cloned [99] implies that straightforward redundancy techniques cannot help. Second,
Hilbert space is continuous, and this implies that it may be difficult to distinguish
between bona fide quantum information and a state with a small error. Third, and
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possibly the most difficult problem, is the fact that quantum noise can cause occasional
measurements of the quantum state by the environment which lead to a collapse of the
quantum state—a process which seems to cause irreversible damage to the quantum
information. Finally, it seems that, in order to correct the error, one must measure
the state to figure out what error had occurred. It seems impossible to perform such
a measurement without collapsing the state and losing the quantum information.

These pessimistic beliefs were disputed and replaced with cautious optimism with
the discoveries of the first examples of quantum error correcting codes (QECCs),
encoding one qubit by nine [83] or seven [88] qubits and allowing for the correction of
one faulty qubit. The main ingredients that allowed this discovery are as follows: (1)
Despite the seemingly infinitely versatile set of possible quantum errors, all quantum
errors on one qubit can actually be written as combinations of two errors (called bit-flip
and phase-flip). It is thus sufficient to correct for these two errors. This discretization
of the errors allowed turning to classical techniques of error correction. (2) In order
to discover the error that had occurred, it suffices to perform a partial measurement
on the state, which does not necessarily collapse the part of the state carrying the
important information.

Immediately after this discovery, Calderbank and Shor [28], and independently
Steane [89], presented a general construction of a large class of good quantum error
correcting codes,1 now called Calderbank–Shor–Steane (CSS) codes, which are based
on known classical error correcting codes. These results were followed by the develop-
ment of a whole theory for quantum error correction, including the important defini-
tion of stabilizer codes, and with many examples of QECCs (see, e.g., [68, 87] for more
information and references). The theory of QECCs shows that, in principle, quantum
information can be transmitted over a noisy channel in a reliable and efficient way.

The existence of QECCs is not in itself sufficient to ensure the possibility of quan-
tum computation in the presence of noise. The reason is as follows. To compute in
the presence of noise, one might try to encode the quantum state by using a QECC.
In order to prevent the accumulation of errors, one must perform error corrections
frequently, in between the computational steps. However, when dealing with noisy
computation we are faced with several new problems that do not exist when dealing
with the problem of transmitting information over noisy channels. First, in the infor-
mation transmission setting, one assumes that the encoding and decoding processes
are error-free. In the case of noisy computation, on the other hand, the error correc-
tion procedure itself is done in the presence of noise. It can thus introduce additional
errors into the state and quite possibly cause more harm than help. A second problem
is that the process of computation involves interactions between different qubits. If a
gate is applied on two qubits, where one of them is faulty, it is likely that at the end
of the operation the two qubits are faulty, or, in other words, the gate has caused the
propagation of the error from a faulty qubit to an error-free qubit. One must there-
fore be able to compute on encoded states by using procedures and error corrections
which do not allow the errors to propagate too much. Such procedures which limit
the propagation of errors are called fault-tolerant.

In [84], Shor showed how to design fault-tolerant procedures for a universal set
of quantum gates.2 These procedures are applied to states encoded by a code from

1Good codes are codes which have a nonzero asymptotic transmission rate, in the presence of a
constant error rate per bit.

2A set of gates is universal if an arbitrary unitary transformation can be constructed by using
only gates from the set.
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a certain class of CSS codes. In order to use these fault-tolerant constructions so as
to improve the reliability of the quantum circuit, one would first encode the qubits in
the original circuit by using the CSS quantum error correcting code and then apply
fault-tolerant computation and fault-tolerant error corrections on these encoded states
alternately. Shor showed that the resulting quantum circuit performs the desired
computation reliably when the error rate, or the fault probability at each time step,
per qubit or gate, decays polylogarithmically with the size of the quantum circuit.
This result is a major improvement over the performances of quantum circuits without
error corrections, in which the error probability is required to decay as one over the
size of the circuit in order for the computation to succeed [21].

Nevertheless, the assumption that Shor used, namely, that the error probability
decays polylogarithmically with the size of the computer, is a physically unrealistic
assumption. We would like to assume that the resources required for applying one
elementary operation are fixed and independent of the input size and, in particular,
that the probability for a fault in each computer element, as well as the inaccu-
racy in each gate, is a constant number independent on the number of computer
components.

1.2. Results. In this paper we improve on Shor’s result and show how to perform
fault-tolerant quantum computation in a more realistic model of computation, in
which the error rate η is a fixed parameter, independent of the size of the computation.

Theorem 1 (the threshold result, roughly). There exists a threshold η0 > 0 such
that the following holds. Let ε > 0. If Q is a quantum circuit operating on n input
qubits for t time steps using s two- and one-qubit gates, there exists a quantum circuit
Q′ with depth, size, and width overheads which are polylogarithmic in n, s, t, and 1/ε
such that, in the presence of local noise of error rate η < η0, Q

′ computes a function
which is within ε total variation distance from the function computed by Q.

The locality assumption is at the core of our threshold result. Our methods cannot
handle errors which hit large sets of qubits chosen by an adversary. Within this realm
of local noise, our fault tolerance result holds for a very general noise model. Our
first threshold theorem (Theorem 12) is devoted to proving the threshold result for
the independent probabilistic noise model. We use it as a basis to prove several other
versions of the threshold theorem. Section 8 extends the result to work with what we
call general local noise (Theorem 13). This version allows us to include in the noise
model also decoherence, amplitude and phase damping, depolarization, systematic
inaccuracies in the gates, leakage errors (of some sort—not disappearance of particles),
and more. In fact, our result seems to apply to almost any conceivable quantum
process as long as it is local. Later on, we generalize Theorem 12 in another direction
(section 10) and show that our construction is reliable even when the probabilistic
noise model allows correlations in space and time, as long as these correlations decay
exponentially in some well defined sense.

We further generalize the threshold result by considering not only generalizations
of the noise model but also different constraints to which the quantum system may
be subjected. In particular, Theorem 14 shows that fault tolerance against general
local noise can be achieved with any universal set of gates (not necessarily with the
set of gates that we show how to encode fault tolerantly). This may be important
in the likely scenario in which the set of gates implementable in the laboratory is
different than the one we use in our constructions. Furthermore, in various imple-
mentation schemes only nearest-neighbor gates are available. Theorem 15 shows that
fault tolerance can be achieved even when the particles of the quantum computer are



FAULT-TOLERANT QUANTUM COMPUTATION 1211

set on a one-, two-, or three-dimensional grid, and only nearest-neighbor interactions
are allowed.

The various versions of the threshold theorem lead to different values of the
threshold.

1.3. Assumptions on the architecture of the quantum system. It might
be helpful to make explicit various issues related to the requirements from the physical
realization of the quantum computer in order for our fault tolerance scheme to work.

• Redundancy in the input. We always assume that the input is given to the
quantum circuit in many copies. This redundancy requirement is unavoidable
if we want to achieve robustness to noise, because otherwise we would have
negligible probability that we even start the computation correctly. This is
also assumed in the classical scenario [67].

• Redundancy in the output. The output of the circuit is also given in a redun-
dant way. In order to interpret the output string, one needs to calculate a
certain majority function of the many output bits, which are all equal in the
ideal case but not in the presence of errors.

• Noise on wires vs. noise on gates. In some quantum systems, the noise and
decoherence on the wires are negligible. In other words, errors occur only
while the qubits participate in a gate. In this paper we do not make such an
assumption, and we assume that the wires are noisy, too. If one is dealing
with a quantum system with noisy wires, then one must bear in mind that,
in order to achieve fault tolerance, the quantum system must satisfy two
important requirements.

1. Parallelism. It is required that gates on different qubits can be applied in
parallel, so that many gates can be applied at the same time step. It can
be shown that, without parallelism, fault tolerance is impossible when
wires are noisy, since error corrections cannot be applied fast enough to
prevent accumulation of errors [5].

2. A supply of fresh qubits. Another requirement is that fresh or clean
qubits namely, qubits in the state |0〉, are available at any time and not
just in the beginning. In other words, it must be possible to restart a
qubit, namely, initialize it to the state |0〉, in the middle of the compu-
tation. Once again, without this assumption, reliable quantum compu-
tation is impossible because there is no way to discard entropy which
accumulates rapidly in the circuit due to noise [7].

• Intermediate measurements. One might imagine cases in which measurements
can be applied during the quantum computation, and so parts of the interme-
diate computation (e.g., computations inside the error correction procedure)
can be performed by a classical computer. Moreover, in some cases it is also
reasonable to assume that classical computations can be performed infinitely
fast. This would be the case if the time it takes to perform a classical oper-
ation is negligible in comparison to the time it takes to perform a quantum
gate. Of course, such cases are significantly simpler to handle than the gen-
eral case. The reason is that, to a very large accuracy, classical computation
can be assumed to be error-free, and so intermediate computations, such as
parts of the error correction, can then be assumed to be error-free. In this
paper we do not require this assumption. Measurements in the middle of the
computation are not necessary in order to achieve fault tolerance. Though
allowing intermediate measurements simplifies the situation considerably, we
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make an effort to show that fault tolerance can be achieved without using
classical operations or measurements. We do this because of two reasons.
One is purely theoretical: One would like to know that measurements and
classical operations are not essential and that the quantum model is complete
in the sense that it can be made fault-tolerant within itself. Even more im-
portantly, the assumption on the infinitely fast classical computation breaks
down at some point and does not scale with the size of the input. One should
certainly try to avoid such an assumption when attempting to prove a thresh-
old theorem that holds asymptotically. The other reason we make an effort to
avoid intermediate measurements is practical: In some suggestions for phys-
ical realizations of quantum computers (such as the NMR-based quantum
computation—see [68]), it is very difficult to perform intermediate measure-
ments during the quantum computation, and therefore everything should be
done within the quantum computation model, without the help of classical
computers.

• Different sets of gates. Our main fault-tolerant construction (Theorem 12)
uses very specific universal sets of gates (see subsections 4.2 and 5.2 for the
definitions). Nevertheless, one can actually convert the fault-tolerant circuit
into one that uses any universal set of gates. This is proved and explained
in section 9. Again, this is important for practical purposes, because the set
of gates that is implementable in the laboratory might be entirely different
than the ones that are easy to implement fault-tolerantly.

• Nearest-neighbor interactions. In some implementation schemes, interaction
is limited to nearest-neighbor particles. We show that this is not a restriction
in terms of fault tolerance: Resilience to noise can be achieved even under
very restricted geometrical conditions, namely, that qubits are arranged in a
one-dimensional lattice and gates are allowed only between nearest neighbors.

We summarize the division of our threshold theorems with respect to their as-
sumptions on the architecture of the system. All of our theorems allow noise on the
wires and thus assume parallelism and a constant supply of fresh qubits. Also, all
of our theorems work without the assumption of intermediate measurements. Our
first two versions of the threshold result, Theorems 12 and 13, and also section 10,
are concerned with quantum systems subject to the following two assumptions on
their architecture: First, a gate can be applied on any set of particles, regardless of
their physical location. In other words, qubits that participate in a gate need not be
nearest neighbors. Second, the final realization of the quantum circuit may consist
of gates taken out of two particular sets, which we call G1 or G2. The other versions
of our theorem release these assumptions. Theorem 15 shows that nearest-neighbor
interactions suffice, and Theorem 14 allows the use of arbitrary universal sets of gates,
including sets that contain only two-qubit gates.

1.4. Proof overview. We outline here the proof of our first threshold result,
Theorem 12, which holds for the simplest noise model of independent probabilistic
errors. The extensions to other cases build upon this case and do not require much
more innovation.

1.4.1. Ingredients for the construction. There are several ingredients that
are required in the proof.

1. A quantum error correcting code. To this end we define a new type of a
quantum error correcting code (QECC) called polynomial quantum error cor-
recting code. This is the quantum analogue of the Reed–Solomon code [64],
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and it is a special case of CSS codes over large fields. We draw intuition
here from Ben-Or, Goldwasser, and Wigderson [24], who used Reed–Solomon
codes to achieve classical fault-tolerant distributed computation. An alterna-
tive version of the proof uses the general class of CSS code that Shor used in
[84].

2. To compute on states encoded by QECCs, we need fault-tolerant mainte-
nance procedures. First, we require a fault-tolerant way to perform error
correction, which would allow us to correct errors in encoded states without
introducing too many new errors. Second, we need a zero-state preparation
procedure, namely, a procedure which prepares a state that encodes |0〉 (and
uses fresh qubits for this purpose). These encoded zero states will be used
as ancilla states for error correction as well as for computation. Both of
these procedures can be performed in many different ways (e.g., [4]). Here
we choose to work with the nice idea used by Steane for error correction [89].
Finally, we need a fault-tolerant decoding procedure which would allow us to
read the logical value of the encoded state. This is not difficult to design.

3. To perform the actual computation, we need a universal set of gates which
can be performed fault-tolerantly on encoded states. Each gate g needs to be
replaced by an encoded gate, which takes the encoding of a state |α〉 to the
encoding of g|α〉. Most importantly, the encoded gates need to be applied
fault-tolerantly, i.e., without letting the errors propagate too much. Here is
where the reason we chose to work with polynomial codes becomes apparent.
Due to their algebraic structure, these codes exhibit the following very nice
property: The entire universal set of quantum gates can be performed in
a manner which is called transversal, or bitwise. This term refers to the
application of the encoded gate g simply by applying g on each of the qubits
in the code word individually (see Figure 1.1).
This means that the set of encoded gates is extremely simple. Unfortu-
nately, some complication cannot be avoided. The transversal operations in
the case of polynomial codes indeed perform the desired computation, but in
some cases they cause the degree of the polynomials involved in the code to
increase (to see why this might happen, consider the case in which two poly-
nomials are multiplied). To avoid accumulation of this effect, we perform a
fairly simple procedure called degree reduction. This procedure, too, can be
applied transversally, except it requires the help of ancilla zero states. Over-
all, we get a set of fault-tolerant procedures which possesses a nice algebraic
structure. We also provide fault-tolerant procedures for the alternative codes
we use, namely, the more general CSS codes that are used in Shor’s scheme.
Our constructions are based on those used by Shor [84], adapted to our re-

Fig. 1.1. Encoded CNOT gate on two logical qubits encoded by five qubits each. Five CNOT
gates are applied, where the ith gate is applied from the ith qubit in the first block to the ith qubit
in the second block.
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quirement of no measurements during the computation. The fault-tolerant
application of the Toffoli gate in this case does not possess as nice an algebraic
structure as the procedures we design for polynomial codes.

4. We next need to show that the set of gates which we use is indeed universal,
so that arbitrary quantum computations can be performed using our scheme.
A known result due to Solovay [85] and Kitaev [50, 52] implies that it suffices
for this purpose to show that the set of gates in question generates a dense
subset in the group of unitary matrices. We use algebraic and field theoretical
tools, and employ a few known group theoretical results, to prove that both
sets of gates we use indeed satisfy this density requirement. In the case of
polynomial codes, the proof is fairly involved. We note that a proof of the
universality of the set of gates used by Shor was missing in [84].

1.4.2. The fault-tolerant circuit. We now want to combine all of the above
ingredients to construct a fault-tolerant circuit from a given circuit M0 which is not
protected against errors. We want to make the circuit reliable against a constant error
rate η, independent of the size of the computer n.

The first step of the idea is already present in Shor’s original fault-tolerant result
(except for using different codes and fault-tolerant procedures): Compute on states
encoded by a QECC. We use a QECC that encodes one qubit into, say, m qubits.
The circuit M1 which computes on encoded states is defined as a simulation of M0. A
qubit in M0 transforms to a block of m qubits in M1, and each gate in M0 transforms
to a fault-tolerant procedure in M1 applied on the corresponding blocks. Note that
procedures might take more than one time step to perform. Thus, a time step in M0 is
mapped to a time interval in M1, which is called a working period. In order to prevent
accumulation of errors, at the beginning of each working period an error correction is
applied on each block. The working period now consists of two stages: a correction
stage and a computation stage. To be precise, the initialization and output stages in
M1 require some special attention, in order to encode the redundant input, and also
decode the output states into a redundant classical output. We do not elaborate on
this part here.

The idea is therefore to apply alternately computation stages and correction
stages, hoping that during the computation stage the damage that accumulated is
still small enough so that the corrections are able to handle it. We will soon argue
that if the error rate is below a certain threshold, the reliability of M1 is better than
that of M0. Let us assume this for the moment. In any case, we need to reduce the
effective error rate of the final circuit to something which is inverse polynomially
small, which would guarantee that with high probability there is effectively no error
in the entire computation. Some thought would lead the reader to the conclusion
that, regardless of how we choose the QECC in the above scheme, it seems impossible
to achieve an improvement from a constant error rate to an effective error rate that
is inverse polynomial.

Our solution is fairly simple to state. The crucial point here is that the new
circuit M1 might not be reliable enough for our purposes, but it suffices that it is even
slightly more reliable than the original circuit. If this is the case, we can continue to
improve the reliability by repeating the same process as we did for the original circuit,
but starting from the new, more reliable circuit M1. We do this for several levels; let
us denote the number of levels by r, so the final circuit is Mr. How many levels are
needed? It turns out that the improvement in the error rate is doubly exponential
in the number of levels, and so it suffices that r is taken to be polyloglog in the
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Fig. 1.2. This figure shows the two-level simulation of a two-gate circuit. When looking at it
at the coarsest resolution, we see the circuit on the left. The gates we see are those gates which
M0 consists of, namely, a CNOT followed by a one-qubit gate. By increasing the resolution a bit,
we see the next level circuit M1. The figure shows only part of it, namely, the second gate in M0

transformed in M1 to its encoded version. This includes an error correction of that block (with the
help of an ancilla), followed by a transversal application of the one-qubit gate. By increasing the
resolution yet one last time, we get to see the actual physical circuit, namely, M2. Here we show
only the encoding of one one-qubit gate in M1.

parameters of M0.
The resulting circuit Mr exhibits a hierarchical structure resembling the one in

Figure 1.2.
Each qubit in the original circuit transforms to a block of qubits in the next level,

and they in their turn transform to a block of blocks in the second simulation, and so
on. A gate in the original circuit transforms to a procedure in the next level, which
transforms to a larger procedure containing smaller procedures in the next level,
and so on. The final circuit computes in all of the levels: The largest procedures,
computing on the largest (highest-level) blocks, correspond to operations on qubits in
the original circuit. The smaller procedures, operating on smaller blocks, correspond
to computation in lower levels. Note that each level simulates the error corrections
in the previous level and adds error corrections in the current level. The final circuit,
thus, includes error corrections of all of the levels, where during the computation of
error corrections of larger blocks, smaller blocks of lower levels are being corrected.
The lower the level, the more often error corrections of this level are applied, which
is in correspondence with the fact that smaller blocks are more likely to be quickly
damaged. This is the source of the advantage of using recursive simulations, rather
than one step of simulation, as is done in Shor’s scheme [84].

One other way to understand this is that the hierarchical structure takes advan-
tage of a very important fact, namely, that the errors are located randomly. It is easy
to see that the resulting QECC, namely, a concatenation of the QECC for r levels,
can correct very few (less than a fraction of n) errors if their locations are chosen by
an adversary, but as long as their locations are random, all is fine.

We note that the final circuit in one of our constructions (the one that uses
polynomial codes) is made of p-qudits rather than qubits. This circuit can be easily
converted to one that works with qubits by replacing each qudit by the appropriate
number of qubits and each gate by a sequence of gates on these qubits. The analysis
of robustness of this final circuit follows exactly the lines of section 9.

1.4.3. New reliability and the threshold value. We now want to argue that
the reliability of the simulating circuit M1 is larger than that of the original circuit
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M0, as long as the error rate is below a certain threshold. In other words, we want to
explain why, below a certain threshold error rate, we should expect some improvement
in reliability from one level of simulation to the next.

In the original circuit, the occurrence of one fault may cause the failure of the
computation. In contrast, suppose that one fault occurs in each procedure of the sim-
ulating circuit. If the fault-tolerant procedures allow this fault to propagate to, say, at
most one error in each block, then these faults would have no effect on the correctness
of the simulation since they would be corrected during the error correcting stages. In
other words, if in each encoded gate and the preceding error correction procedure the
number of faults is such that they can cause only less than the correctable number
of errors, then the error corrections will prevent the errors from accumulating. (In
fact, this argument needs to be made much more carefully (see Lemma 9), but for
the sake of the introduction here it suffices.) The effective error rate of M1 is thus,
roughly, the probability for more than the correctable number of faults to occur in
one procedure.

Just for the sake of illustration, let us consider an example in which our QECC
corrects one error but not two and a fault-tolerant procedure allows one fault to
propagate to at most one error in each of the final blocks. We now estimate the
effective error rate in a slightly incorrect way, but which demonstrates the idea. In
this case, the effective error rate is the probability for more than one fault to occur
in one procedure. In other words, we need to consider all ways in which two or more
faults can occur in one procedure. This is a combinatorial calculation, which behaves
approximately like

ηeff ≈
(

A
2

)
η2,

where A is the number of locations an error can possibly occur during the application
of one procedure. Now observe that, for ηeff to be strictly smaller than η, we get
the requirement η < 1

(A2)
. Thus, if η is below a certain threshold that depends on

A, we gain an improvement in the reliability of the circuit. This is the origin for the
threshold in the threshold theorem. See section 12 for estimations of the values in our
construction.

1.4.4. The proof. The analysis of the scheme turns out to be quite complicated.
To do this, we borrow terminology used by Khalfin and Tsirelson [49] and Gács [42]
to analyze self-correcting classical cellular automata. First, we distinguish between
two notions which we have been using so far as if they are the same: the error in
the state of the qubits, i.e., the set of qubits which have errors, and the actual faults,
namely, the occasions where noise operators were applied. We use the term fault path
to denote the list of locations, namely, points in time and space, where faults had
occurred (in a specific run of the computation).

We then define the notion of sparse errors and sparse fault paths. Naturally, due
to the hierarchical structure of this scheme, these notions are defined recursively. A
block in the lowest level is said to be k-close to its correct state if it does not have
more than k errors, and a higher level block is “k-close” to its correct state if it does
not contain more than k blocks of the previous level which are far from their correct
state. If all of the blocks of the highest level are k-close to being correct, we say that
the set of errors, or the deviation, is k-sparse.

Which set of faults does not cause the state to be too far from correct in the above
metric? The answer is recursive, too: A computation of the lowest-level procedure



FAULT-TOLERANT QUANTUM COMPUTATION 1217

is said to be undamaged if not too many faults occurred in it. Computations of
higher-level procedures are not damaged if they do not contain too many lower-level
procedures which are damaged. A fault path will be called sparse if the computations
of all of the highest-level procedures are not damaged.

The proof of the threshold result is done by showing that the probability for “bad”
faults, i.e., the probability for the set of faults not to be sparse, decays as a double
exponential with the number of levels r. Thus, bad faults are negligible, if the error
rate is below the threshold. This is the easy part. The more complicated task is to
show that the “good” faults are indeed good; i.e., if the set of faults is sparse enough,
then the set of errors is also kept sparse until the end of the computation. This part
is done by using a double induction on the number of levels r.

1.5. Related work and the state of the art in quantum fault tolerance.
A preliminary version of the threshold result (for independent probabilistic errors)
was published in the proceedings version of this paper [3]. Different variants of the
threshold result for probabilistic noise were independently discovered at about the
same time (1996) by Knill, Laflamme, and Zurek [56, 57, 58], who used Steane’s
seven-qubit QECC, and by Kitaev [50], who used toric codes. All of these works
are based on the same idea of applying one scheme recursively to get a hierarchical
structure and achieve approximately the same estimated threshold value of 10−6.

An important unique contribution of our work is that our proof does not require
intermediate measurements and classical operations during the quantum computation:
Our fault-tolerant circuits use only quantum gates and, thus, work entirely within the
framework of the quantum model. All works on fault tolerance we are aware of (other
than the current paper) work under the assumption that intermediate measurements
are allowed, and, moreover, classical computation can be performed infinitely fast.
This makes the problem significantly easier, because under these assumptions large
parts of the computation can be assumed to be error-free.

Our proof, as well as the proof of Kitaev [50], requires using a QECC that corrects
two errors. It turns out that our construction works for a QECC that corrects one
error, but a different analysis is required. An idea of how to perform this analysis
was suggested in [56, 57, 58], by using the notion of overlapping rectangles. This idea
was recently made into a proof by Aliferis, Gottesman, and Preskill [14]. A different
proof was independently given by Reichardt [78].

Since the discovery of the threshold result mentioned above, intensive scientific
effort was put into generalizing, simplifying, and improving the fault-tolerant net-
works. This effort started with the important work by Gottesman [45, 44] showing
that fault tolerance can be achieved with any stabilizer code and with the works of
Preskill [73, 74] and of Steane [90, 91]; it continued with a long line of works which
we will not attempt to survey here for lack of space. The main goal of this line of
work is practical: that of improving the threshold and making it realistic.

We mention a few main lines of developments. The first is that of developing
the usage of ancilla state distillation, also known as ancilla factories. In the basic
fault-tolerant schemes, one initiates the computation with states encoding 0, and the
preparation of these states can be thought of as a separate process. Steane [90],
Gottesman and Chuang [48], and finally Bravyi and Kitaev [27] have each shown how
to use more and more cleverly designed ancillary states to significantly simplify the
main computational process and improve the threshold.

The creation of ancilla states of high fidelity is the bottleneck in the threshold
calculations in the above-mentioned schemes. In a breakthrough work, Knill [54] has
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suggested to use concatenation of quantum error detection (rather than correction)
codes, for the distillation of ancilla states. If an error is detected, the ancilla state can
be discarded, without affecting the ongoing computation. The overhead in the number
of qubits is large, but numerical estimations [54] of the threshold of this scheme
revealed a value of up to several percent. Reichardt [76] and independently Aliferis,
Gottesman, and Preskill [15] provide a rigorous proof of a much worse threshold than
the estimated one, but still the best rigorously proven today: 10−3. It is left open to
close the gap between the numerics and the theoretical work.

Completely different methods to achieve fault tolerance were also explored. The
first idea in this context is the beautiful idea of Kitaev, of achieving fault tolerance
in the different model of topological quantum computation with anyons [51]. In this
model of computation, the information is protected by topological means, and no
concatenation is required.

Another interesting development along nonstandard lines is that of using subsys-
tem codes [59]. These are a generalization of quantum error correcting codes. Aliferis
and Cross [13] recently showed how to use subsystem codes due to Bacon [16], to get
a threshold of 1.9 · 10−4.

So far, we have discussed only methods which did not take into consideration
geometrical restrictions on the system. Another issue which is explored in this paper
is that of fault-tolerant quantum computation with nearest-neighbor interactions be-
tween qubits in one-, two, or three-dimensional systems. We prove a threshold result
under such assumptions in section 11. This was proved independently also by Gottes-
man in [47]. In contrast to [47], our proof of generalization to low dimensions is very
simple (see section 11), since one only has to keep track of the error propagation in
one level, and the general threshold theorem (section 7) takes care of the rest. Both
results provide very small values of the threshold. The lower bound on the threshold
value in the case of 1D was improved recently to 10−6 in [92]. In two dimensions,
better results are known. Svore, Divincenzo, and Terhal [95] have proved a threshold
in 2D which is of the order of 10−5, and Raussendorf and Harrington [75] have pro-
vided a scheme in which topological codes are used, in which the simulated threshold
is of the order of 10−3.

All of the above works consider the case of probabilistic noise only. Yet another
different line of work in the area of fault tolerance is the study of the limitations
and applicability of the threshold result in the presence of more general noise models.
This direction is explored quite thoroughly in the current paper, where we prove the
threshold result for a general local noise model (section 8) and, moreover, (slightly)
relax the locality requirement to allow exponentially decaying correlations in the noise
process (section 10). Following the preliminary version of this work [4], and based
on similar methods, Terhal and Burkard [96], and recently Aliferis, Gottesman, and
Preskill [14], proved threshold results in the presence of non-Markovian noise. The
most recent development in this context [9] shows that fault tolerance can be achieved
even in the presence of correlations which decay polynomially in space.

We also mention here an alternative approach to fault tolerance which has at-
tracted interest, namely, “decoherence-free subspaces” (DFSs) [41, 102, 63, 101, 55].
A DFS is a subspace of the Hilbert space, which, under certain assumptions on the
noise, is completely unaffected by the noise process. The computation is then per-
formed entirely within this subspace [17, 18]. The DFS method might indeed be very
useful in the presence of special types of noise, such as collective decoherence (see
references above), and can thus deal with various correlated noise processes. How-
ever, we note that the assumptions on the noise made in the DFS model are quite
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restrictive and, in particular, do not allow local noise. If one wants to correct for local
noise, these methods must be combined with the standard methods of fault tolerance
presented in this paper.

Finally, since the publication of the preliminary version of this paper [3], polyno-
mial codes have found several applications in other areas of quantum computation such
as secure multiparty computation [36] and quantum secret sharing [33]. Nonbinary
codes were defined independently also by Chuang, Leung, and Yamamoto [31] and
Knill [53]. Fault tolerance with higher-dimensional particles was discussed also in [46].

1.6. Conclusions and open problems. This paper implies that quantum com-
putation can in theory be carried out in the presence of noise, as long as the noise
satisfies a fairly reasonable assumption, namely, locality, and as long as the error rate
in the system can be decreased below a certain constant value. Within this locality as-
sumption, our results holds for a very general noise model. Moreover, our result holds
for quantum systems with fairly limited constraints, such as no classical computation
and subject to geometrical restrictions. Thus, this paper provides a thorough and gen-
eral solution to the problem of quantum computation in the presence of local noise.

The value of the threshold is of utmost importance to the practicality of the
theorem. We did not attempt to optimize the threshold value in our fault tolerance
scheme, and our estimated threshold of ≈ 10−6 (see section 12) is far from being
practical, according to the state of the art in experimental systems. As mentioned in
subsection 1.5, since the preliminary publication of this work there have been many
improvements. The best current rigorous results give a threshold value of approx-
imately 10−3, whereas computer simulations of the best constructions say that the
threshold value is of the order of one to several percent. Providing rigorous proofs for
the latter is a challenge. Any improvement in the threshold value is significant, as it
brings quantum computation closer to being practical. We note that one should be
careful in interpreting these numbers, since the threshold depends on many parame-
ters; see section 12 and subsection 1.3 for further discussion of this matter.

Another parameter which is crucial for practical purposes is the space efficiency
of the fault-tolerant construction, namely, the overhead in the number of qubits.
Once again, we have not attempted to optimize this parameter. This parameter has
achieved significantly less attention in the literature than the threshold value. See
[77, 54] for some discussion of this matter.

It is of course desirable to save time as well. Our scheme requires a polylogarithmic
blowup in the depth of the circuit. In the original version of this paper [3, 4] we
conjectured that it might be possible to use a quantum analogue of multilinear codes
[86], to reduce the multiplicative factor of O(log(n)) to a factor of O(log(log(n)).
Recently, Ahn [10] indeed achieved fault tolerance with this improved depth overhead,
by using clever combinatorial considerations for toric codes. An open question is
whether it is possible to reduce the time cost to a constant, as in the classical case.
We conjecture that the answer is negative.

Another important open problem is to further relax the assumptions on the noise
model and to make them as realistic as possible. This is a natural continuation of the
work presented in sections 8 and 10 of the current paper and in several papers of the
past few years [96, 14, 9].

The results achieved in this work shed light on a very interesting question, re-
garding the transition from quantum to classical physics [103]. Traditionally, this
transition is viewed as a gradual transition (but see [49]). The threshold result sug-
gests that in some cases this transition can actually be viewed as a phase transition,
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occurring at a critical error rate, above which the system abruptly loses its ability to
entangle large sets of particles. This is supported by the result of this paper, showing
that at a very small error rate quantum systems can maintain their quantum nature,
together with another result of ours [5], showing that at very high error rates quan-
tum computers can be simulated efficiently by a classical Turing machine. In [2] one
of us formalized this phase transition idea and provided a physical explanation for
this computational difference between high and low error rates, by showing that in
fault-tolerant circuits a phase transition in a certain property of entanglement called
entanglement length occurs at a critical error rate. This draws a natural connection
between the transition from quantum to classical and the notion of entanglement.
The connection between the quantum-classical transition, entanglement, and quan-
tum phase transitions has since become an active field of research (see, e.g., [69, 70]).
We believe that the physical realization of fault-tolerant quantum computers might
enable far better understanding of this fundamental question.

1.7. Organization of paper and instructions as to how to read it. Sec-
tion 2 starts with a rigorous definition of the model of quantum circuits which we
use, namely, quantum circuits with mixed states. We define the basic noise model, of
independent probabilistic errors, and its various generalizations. Section 3 provides
the definitions of quantum error correcting codes in general and the particular QECC
codes we use in this paper. Section 4 describes how to apply fault-tolerant procedures
for polynomial codes. Section 5 describes how to apply fault-tolerant gates on states
encoded by CSS QECC. Section 6 proves the universality of the sets of gates defined
in the previous two sections. Section 7 proves the threshold result for independent
probabilistic noise. This is the main result of the paper. Section 8 generalizes the
threshold result to general local noise. In section 9 we generalize our result to circuits
which use any universal set of gates and not necessarily the set of gates for which
we have constructed fault-tolerant procedures. In section 10 we relax the assumption
of independence and explain how to deal with exponentially decaying correlations
in the noise. Section 11 proves the threshold result for quantum circuits with re-
stricted geometry, i.e., one-dimensional quantum circuits. In section 12 we discuss
the estimation of the threshold values in various cases.

Many readers would be satisfied with understanding the main ingredients of the
proof of the threshold result, for the simplest noise model of independent probabilistic
noise, and for one type of QECC, either general CSS codes or polynomial codes. Such
readers might also be less interested in the details of the proof that the set of gates
we use is universal. The relevant chapters for those readers are sections 2.8, 2.9, 3, 4
(or 5), and 7. In general, the paper is written in a very modular way, so the readers
can skip to the interesting parts.

Each section starts with a short overview. A reader who is interested in a more
detailed overview than the one provided in the introduction, but still not in all of the
details, can read only these overviews.

2. The model of noisy quantum circuits.

2.1. Overview. This section provides the necessary definitions for this paper.
For more details on the quantum computation model consult [68]; for more on quan-
tum mechanics consult [34, 79, 72].

The standard model [38, 39, 100] of quantum circuits with unitary gates allows
only unitary operations on qubits. However, noisy quantum systems are not isolated
from other quantum systems, usually referred to as the environment. Their inter-
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actions with the environment are unitary, but, when restricting the system to the
quantum computer alone, the operation on the system is no longer unitary, and the
state of the quantum circuit is no longer a vector in the Hilbert space. It is indeed
possible to stay within the unitary model with pure states, by keeping track of the
state of the environment. However, this environment is not part of the computer,
and it is assumed that we have no control or information on its state. We find it
more elegant to follow the framework of the physicists and to work within the model
of quantum circuits with mixed states defined by Aharonov, Kitaev, and Nisan [6].
In this model, the state of the set of qubits is always defined: It is a probability
distribution over pure states, i.e., a mixed state. It is described by a density matrix
(see below). The quantum gates in this model are not necessarily unitary: Any phys-
ically allowed operator on qubits is a quantum gate. In particular, this model allows
an operation which adds a blank qubit to the system, discards a qubit, or applies
a measurement in some basis. The model of quantum circuits with mixed states is
equivalent in computational power to the standard model of quantum circuits [6] but
seems more adequate for the study of noisy quantum computation. Since noise is a
dynamical process which depends on time, the circuits we consider are leveled; i.e.,
gates are applied at discrete time steps.

To include noise in our model, we add noise operators which act in between the
time steps of the circuit. The simplest model for noise is the independent probabilistic
noise. After every time step, we consider the sets of qubits that interacted in the
previous time step. Each such set undergoes a fault (i.e., an arbitrary quantum
operation) with independent probability η, and η is referred to as the error rate. A
qubit that did not participate in a gate undergoes the same process on its own.

The probabilistic noise process can be generalized to a more realistic model of
noise, which is the following process. After each time step, each set of qubits partici-
pating in the same gate goes through a physical operator which is at most η-far from
the identity (in some operator metric discussed below). This model includes, apart
from probabilistic errors, also decoherence, amplitude and phase damping, systematic
inaccuracies in the gates, and more (see [68] for an explanation of these terms). Two
important assumptions were made in this definition: independence between different
faults in space, i.e., locality, and independence in time, which is called the Markovian
assumption. We remain within this framework until the end of the paper, and only
in section 10 do we relax it to allow also exponentially decaying correlations in both
time and space.

We note that all definitions here use qubits, namely, two-state particles, but can
trivially be extended to any finite-dimensional particles, namely, to qudits.

2.2. Pure states. A quantum physical system in a pure state is described by
a unit vector in a Hilbert space, i.e., a vector space with an inner product. In the
Dirac notation a pure state is denoted by |α〉. The physical system which corresponds
to a quantum circuit consists of n quantum two-state particles, called qubits. The
Hilbert space of a qubit is a two-dimensional complex space and is denoted by H2. We
choose an orthonormal basis for this space and denote its vectors by |0〉 and |1〉. The
Hilbert space of n qubits is the n-fold tensor product of H2, namely, H2 ⊗ · · · ⊗ H2,
its dimension is 2n, and it is isomorphic to C2n

. As a basis for this space we choose
all possible tensor products of the basis vectors of the individual qubits |i1〉 ⊗ |i2〉
⊗· · ·⊗|in〉, where ij is either 0 or 1. We often use the notation |i1, i2, . . . , in〉 or |i〉 for

brevity. A pure state |α〉 ∈ Hn
2 is a superposition of the basis states: |α〉 =

∑2n

i=1 ci|i〉,
with

∑2n

i=1 |ci|2 = 1. The transposed-complex conjugate of |α〉 is denoted by 〈α|. The
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inner product between |α〉 and |β〉 is denoted by 〈α|β〉.
2.3. Mixed states and density matrices. In general, a quantum system is

not in a pure state but in a mixed state, namely, a probability distribution, or a
mixture of pure states, denoted by {α} = {pk, |αk〉}. This means that the system is
with probability pk in the pure state |αk〉. This description is not unique, as different
mixtures might represent the same physical system. An equivalent unique description
uses density matrices. A density matrix ρ on Hn

2 is an Hermitian (i.e., ρ = ρ†)
semipositive-definite matrix, of dimension 2n × 2n, with trace Tr(ρ) = 1. A pure
state |α〉 =

∑
i ci|i〉 is represented by the density matrix ρ|α〉 = |α〉〈α| (by definition,

ρ(i, j) = 〈i|ρ|j〉). A mixture {α} = {ps, |αs〉} is associated with the density matrix
ρ{α} =

∑
s ps|αs〉〈αs|. This association is not one-to-one, but it is onto the density

matrices, because any density matrix describes the mixture of its eigenvectors, with
the probabilities being the corresponding eigenvalues.

Given a density matrix of n qubits, one can assign a density matrix to a subsystem
A of m < n qubits. We say that the rest of the system, represented by the Hilbert

space G = C2n−m

, is traced out and denote the new matrix by ρ|A. We have ρ|A(i, j) =∑2n−m

k=1 ρ(ik, jk), and k runs over a basis for G. In words, this means averaging over G.
The new density matrix ρ|A is called the reduced density matrix to A. If the state
of the qubits which are traced out is in tensor product with the state of the other
qubits, then discarding the qubits means simply erasing their state. However, if the
state of the discarded qubits is not in tensor product with the rest, the reduced density
matrix is always a mixed state.

2.4. Measurements. A quantum system can be measured, or observed. The
measurement is a probabilistic process which, given a density matrix, yields a pair:
a classical output and the associated density matrix. In this paper we will use only
a measurement of one qubit in the computational basis. Let P0 (P1) be a projection
on the subspace spanned by all states in which the measured qubit is 0 (1). For a
given density matrix ρ, the classical output is m ∈ {0, 1} with probability Pr(m) =
Tr(Pmρ). Given the outcome m, the resulting state of the quantum system after the
measurement is equal to Pr(m)−1PmρPm (this has the same meaning as a conditional
probability distribution). Any measurement thus defines a probability distribution
over the possible outputs.

2.5. Quantum operators and quantum gates. To define the possible
transformations on density matrices, we consider linear operators on operators
(sometimes called superoperators). A superoperator is called positive if it sends
positive-semidefinite Hermitian matrices to positive-semidefinite Hermitian matrices.
Superoperators can be extended to operate on larger spaces by taking a tensor prod-
uct with the identity operator. A superoperator is a completely positive map if all of
its extensions are positive. For a superoperator to be physically permissible, it must
take density matrices to density matrices. Thus, it must be a completely positive map
which is trace-preserving. It turns out that any superoperator which satisfies these
conditions is indeed physically permissible, as it takes density matrices to density
matrices [60, 61]. Thus quantum superoperators are defined as follows.

Definition 1. A permissible superoperator T from k to � qubits is a trace-
preserving, completely positive, linear map from density matrices on k qubits to density
matrices on � qubits. Its action on a density matrix ρ is denoted as follows: ρ �−→
T ◦ ρ.

Linear operations on mixed states preserve the probabilistic interpretation of the
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mixture: T ◦ ρ = T ◦ (
∑

s ps|αs〉〈αs|) =
∑

s psT ◦ (|αs〉〈αs|).
A very important example of a quantum superoperator is the superoperator corre-

sponding to the standard unitary transformation |α〉 �→ U |α〉, which sends a quantum
state ρ = |α〉〈α| to the state UρU†.

Another important superoperator is to discard a set of qubits. This operation
corresponds to tracing out the discarded qubits. In this paper, a discarding qubit
gate will always be applied to qubits which ideally (if no error occurred) are in tensor
product with the rest of the system.

One more useful quantum superoperator is the one which adds a blank qubit to
the system V0 : |ξ〉 �→ |ξ〉⊗|0〉 : C2n → C2n+1

. This is described by the superoperator
T : ρ �→ ρ⊗ |0〉〈0|.

A lemma by Choi [29] and Hellwig and Kraus [60, 61] asserts that any permissible
superoperator from k to l qubits can be described as a combination of the above three
operations: Add k + l blank qubits, apply a unitary transformation on the 2k + l
qubits, and then trace out 2k qubits. One can think of this as the definition of a
permissible superoperator. We define a quantum gate to be the most general quantum
operator.

Definition 2. A quantum gate from k to � qubits is a permissible superoperator
from k to � qubits.

In this paper we will use only three types of quantum gates: discard or add
qubits and, of course, unitary gates. However, quantum noise will be allowed to be
an arbitrary permissible superoperator (with the required restrictions as explained
below).

We mention here that it is possible to describe a measurement as a superoperator.
For this, we replace the classical result of a measurement m ∈ {0, 1} by the density
matrix |m〉〈m| in an appropriate Hilbert space M. We then present the measurement
as a superoperator T :

(2.1) Tρ =
∑
m

(PmρPm) ⊗
(
|m〉〈m|

)
.

2.6. The trace metric on density operators. A useful metric on density
matrices is the trace metric. It is induced from the trace norm for general Hermitian
operators. The trace norm on Hermitian matrices is half the sum of the absolute
values of the eigenvalues. ‖ρ‖ = 1

2

∑
i |λi|. We thus have that 0 ≤ ‖ρ1 − ρ2‖ ≤ 1. It

was shown in [6] that the trace distance between two matrices equals the measurable
distance between them in the following sense. Consider the two probability distribu-
tions D1, D2 which one gets when applying the same measurement to the two density
matrices. Each such measurement thus induces some statistical difference between the
outcomes, quantified by the total variation distance between the two distributions.3

The trace distance is exactly the maximum over all possible measurements of half the
total variation distance.

2.7. Quantum circuits with mixed states. We now define a quantum circuit.
Definition 3. Let G be a family of quantum gates. A quantum circuit that uses

gates from G is a directed acyclic graph. Each node v in the graph is labeled by a gate
gv ∈ G from kv to �v qubits. The in-degree and out-degree of v are equal kv and �v,
respectively.

3The total variation distance between two probability distributions D1, D2 is defined to be∑
j |D1(j) −D2(j)|.
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Here is a schematic example of such a circuit.
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The circuit operates on a density matrix as follows.
Definition 4 (final density matrix). Let Q be a quantum circuit. Choose a

topological sort for Q: gt, . . . , g1, where gj are the gates used in the circuit. The final
density matrix for an initial density matrix ρ is Q ◦ ρ = gt ◦ · · · ◦ g2 ◦ g1 ◦ ρ.

It is easy to see that Q ◦ ρ is well defined and does not depend on the topological
sort of the circuit (see [6] for a detailed proof). At the end of the computation, the r
output qubits are measured, and the classical outcome, which is a string of r bits, is
the output of the circuit. For an input string i, the probability for an output string
j is 〈j|(Q ◦ |i〉〈i|)|j〉.

2.8. Quantum circuits with independent probabilistic noise. To intro-
duce noise to the quantum circuits, we consider leveled quantum circuits, where each
level corresponds to one time step. Let us denote by T the number of time steps in
the quantum circuit. The gates are then applied at integer times from 1 to T . We
recall that, due to the input gate, qubits can be input to the circuit at different time
steps. Faults occur in between time steps. We define a location (namely, a possible
place where a fault can occur) as follows.

Definition 5. A set (b1, b2, . . . , b�, t) is a location in the quantum circuit Q if
the qubits b1, . . . , b� participate in the same gate in Q at time step t, and no other
qubit participates in that gate. For this matter, the absence of a gate is viewed as the
identity gate on one qubit, so if a qubit b does not participate in any gate at time t,
then (b, t) is a location in Q as well.

We will need the following terminology for our analysis of fault tolerance.
Definition 6 (fault path). The list of locations where faults had occurred (in a

specific run of the computation) is called a fault path.
Definition 7 (error rate). In the independent probabilistic noise model, each

location is faulty with independent probability η, and this probability is called the error
rate of the circuit.

Each fault path F is thus assigned a probability Pr(F), which is a function of the
number of locations in F , the total number of locations in the circuit, and η.

The fault path does not determine the exact faults that occur in the circuit. In our
model, once the fault path is chosen, an adversary chooses the exact noise superopera-
tors applied on the faulty locations. That is, given a fault path, the adversary chooses
T permissible superoperators; each one is applied on the faulty locations of time t in
the fault path. We denote this choice of superoperators by E(F) = (ET , . . . , E2, E1),
where Et is a permissible superoperator applied by the noise process on the faulty
locations of time step t.
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We can now define the model precisely.
Definition 8 (the independent probabilistic noise model). Let Q be a leveled

quantum circuit of T time steps. Let E(F) be a function from fault paths on Q to
T -tuples of superoperators (as above). The noisy quantum circuit is denoted by QE

and is defined as follows. We first define the final density matrix for a given choice of
a fault path to be the result of applying the noise superoperators in between the time
steps: QE(F) ◦ ρ = Et ◦ gt ◦ · · · ◦ E2 ◦ g2 ◦ E1 ◦ g1 ◦ ρ. The final density matrix of the
circuit QE ◦ ρ is defined as a weighted average over the final density matrices for each
fault path:

(2.2) QE ◦ ρ =
∑
F

Pr(F)QE(F) ◦ ρ.

We say that a noisy quantum computer computes a function f with error ε in the
presence of error rate η if QE defined above computes the function f with an error
probability at most ε for any adversarial choice of faults E .

This model includes, for example, probabilistic measurements of individual qubits,
as well as the depolarization model in which each qubit is randomly replaced by a
completely random qubit, i.e., a qubit in the identity density matrix.

2.9. Quantum circuits with general local noise. Most of the paper uses
only the independent probabilistic noise model defined above. However, in section 8
we extend the threshold result to hold for a much more general noise model. In the
general noise model, we replace the probabilistic faults which occur with probability
η in each location with a different noise operator which is applied at each and every
location in the quantum circuit, after every time step. The only restriction on the
noise operator applied at a specific location is that it is within η distance to the
identity. Thus, in between time steps, a noise operator of the following form operates
on all of the qubits (here we give an example for the noise operator after time step t):

(2.3) E(t) = EA1,t(t) ⊗ EA2,t(t) ⊗ · · · ⊗ EAlt,t
(t).

Ai,t runs over all possible locations at time t, and for each one of them,

(2.4) ‖EAi,t(t) − I‖ ≤ η.

The norm we use here is the diamond norm on superoperators [50, 6]. The exact
definition of the diamond norm is not needed in this paper. We merely use the
following properties (see [6]):

1. ‖Tρ‖ ≤ ‖T‖‖ρ‖.
2. ‖TR‖ ≤ ‖T‖‖R‖.
3. ‖T ⊗R‖ = ‖T‖‖R‖.
4. The norm of any permissible superoperator T is equal to 1.

This defines the general local noise model with error rate η.
An interesting example of such a noise process is a restricted version of the inde-

pendent probabilistic noise model. Suppose for each one of the superoperators in the
product (2.3) we write

(2.5) EAi,t(t) =

(
1 − η

2

)
IAi,t +

η

2
E ′

Ai,t(t),
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where E ′
Ai,t

(t) is some permissible superoperator. This operator is within η distance
from the identity, and so this satisfies the conditions of local noise (2.3), (2.4) with
error rate η. It is easy to see that this gives a restricted version of the independent
noise model with error rate η/2, because the operator EAi,t can be interpreted as if
the operator E ′

Ai,t(t) is applied with probability η/2, and otherwise nothing is done
to the qubit. Note that we do not get the independent probabilistic model in its full
generality because (2.3) implies that the noise operator on the faulty locations of each
time step is a tensor product of operators, one on each location.

This gives a very general error model, under the locality restriction. The model
includes many physical sources for noise and errors, such as decoherence, systematic
inaccuracies in the gates, amplitude and phase damping, and more (for explanations
of these terms, see [43, 68]). As for leakage errors, this is a term that can mean
one of two things. The first is that the state of the particle, due to noise, leaves
the subspace spanned by computational states. This can be easily taken care of by
defining the computational space to include all possible states of the particle, and so
this is included implicitly in our discussion (allowing, as we do, higher-dimensional
particles). The other meaning of leakage errors is the disappearance of a particle. We
do not deal with this source of errors in this paper.

The general local noise model can be further relaxed to allow exponentially de-
caying correlations in time and space, but we delay the exact definition to section 10
where we deal with such correlations.

3. Quantum error correcting codes.

3.1. Overview of QECC, CSS codes, and polynomial codes. We will use
here only QECCs which encode one qubit into, say, m qubits, and we call the set of m
qubits a block. By linearity, if |0〉 is encoded by |S0〉 and |1〉 by |S1〉, then a|0〉 + b|1〉
is encoded by a|S0〉+ b|S0〉. It follows that such a quantum code is a two-dimensional
subspace in the Hilbert space of m qubits. We note that we slightly abuse language
here, confusing between the code space and the map encoding the states into this
subspace. The exact meaning should be clear from the context. The state of the
encoded qubit is sometimes called the logical state. The code is said to correct q
errors if the logical state is recoverable given that not more than q errors occurred
in the block. Roughly speaking, we say that no more than q errors occurred if the
density matrix of the remaining m− q qubits did not change.

There is a big difference between classical ECCs and QECCs, in that, for QECCs,
not only basis states but also quantum superpositions should be recoverable after an
error occurred. The codes we use here are CSS codes [28], and their construction is
based on two ideas that enable the protection of superpositions.

1. Despite the fact that quantum operations are extremely versatile and can be
continuous, the most general fault or quantum operation on a qubit can be
described as (loosely speaking) a linear combination of four simple operations:
the identity, i.e., no error at all, a bit-flip (|0〉 ↔ |1〉), a phase-flip (|0〉 �−→
|0〉, |1〉 �−→ −|1〉), or both a bit-flip and a phase-flip. Thus correcting for these
three errors suffice. This important fact was first proved by Bennett et al.
[22], by using a beautiful group symmetry argument and a notion called twirl.
We give here a simple proof based on an idea by Steane [89].

2. In order to correct bit-flips, one can use the analogue of classical error correct-
ing codes. To correct phase-flips, one observes that phase-flips are actually
bit-flips in the Fourier basis. One can therefore correct bit-flips in the Fourier
transform basis, and this will translate to correcting phase-flips in the correct
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basis. To correct general errors, one would first correct bit-flips and then
correct bit-flips in the Fourier transformed basis, which translates to correct-
ing phase-flips in the original basis.

CSS codes [28, 89] were first presented for qubits, that is, over the field F2. We give
here a proof for the fact that CSS codes are quantum codes, which is simpler than
the original proof [28], and generalize it to the field Fp for any prime4 p > 2.

Next, we define a new class of quantum codes, which are called polynomial codes.
The idea underlying their construction is based on a theorem by Schumacher and
Nielsen [80] which asserts that a quantum state can be corrected only if no information
about the state has leaked to the environment through the noise process. More
precisely, if the reduced density matrix on any t qubits does not depend on the logical
qubit, then there exists a unitary operation which recovers the original state even if
the environment interacted with t qubits, i.e., t errors occurred. This is reminiscent
of the situation in classical secret-sharing schemes [81] and hints at the following
possibility: We should divide the “secret,” i.e., the logical qudit, among many parties
(i.e., physical qudits) such that no t parties share any information about the secret. We
adopt Shamir’s secret-sharing scheme [81] which suggested to use random polynomials,
evaluated at different points in a field of p elements, as a way to divide a secret among
m parties. A random polynomial of degree d is chosen, and then each party gets the
evaluation of the polynomial at a different point in the field Fp. The secret is the
value of the polynomial at 0. To adopt this scheme to the quantum setting, we simply
replace the random polynomial by a superposition of all polynomials of the appropriate
degree to get a QECC. The result is the quantum analogue of Reed–Solomon codes
[64]. It turns out that polynomial codes are a special case of CSS codes over a large
field Fp.

The remainder of the section assumes basic knowledge in classical error correcting
codes, which can be found in [64].

3.2. Quantum codes. A quantum code is a subspace of some dimension, say,
k, in the Hilbert space of m > k qubits. A word in the code is any vector in the
subspace or, more generally, any density matrix ρ supported on the subspace. We say
that a density matrix ρ′ on m qubits is a word with q errors in the qubits b1, . . . , bq,
if ρ′ can be written as E(b1, . . . , bq) ◦ ρ, where ρ a word in the code, and E(b1, . . . , bq)
is some permissible superoperator on the q qubits. A quantum circuit R is said to
correct an error E(b1, . . . , bq) on ρ if

(3.1) R ◦ E(b1, . . . , bq) ◦ ρ = ρ.

We can now define a quantum error correcting code which corrects q errors.
Definition 9 (QECC). An [[m, k, q]] quantum error correcting code is a subspace

of dimension 2k in the Hilbert space of m qubits such that the following holds. Let
{|αi〉}ki=1 be a basis for C. There exists a quantum circuit R, called an error correction
procedure, such that for any i, j and E(b1, . . . , bq)

R ◦ E(b1, . . . bq) ◦ |αi〉〈αj | = |αi〉〈αj |.

Note that, from linearity, the last requirement implies the correction of any word
in the code and not just the basis states. Note that R may (and, in fact, has to) use
extra qubits during its application, but at the end all ancillary qubits are discarded,
and the original state should be recovered.

4In fact, the results in this paper can be extended to work over any field, but we do not provide
the details here.
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3.3. From general errors to bit-flips and phase-flips. We now prove that
it suffices to correct bit-flips and phase-flips in order to correct for general errors. To
do this, we use the linearity of quantum operators. We recall the definition of the
Pauli operators (slightly modified for simplicity here):

(3.2) I =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 1
−1 0

)
, σz =

(
1 0
0 −1

)
.

σx is called a bit-flip, since it takes |0〉 to |1〉 and |1〉 to |0〉. σz is called a phase-flip,
as it multiplies |1〉 by a minus sign, while leaving |0〉 as is. σy is a combination of the
two, since σy = σzσx. Let us define a Pauli error on a qubit as the application of one
of the nontrivial Pauli matrices on that qubit. We note that the Pauli operators form
a basis for the matrices on one qubit.

We proceed to many qubits. Consider all possible strings e of length m in the
alphabet I, X, Y, Z. The set of 4m matrices:

(3.3) σe = σem ⊗ · · ·σe1 , e ∈ {I, X, Y, Z}m,

form a basis for the linear operators on the Hilbert space of m qubits. We call it the
Pauli basis. It is easy to check that this is an orthonormal basis with respect to the
inner product (V,U) = 1

2m tr(V U†) for 2m × 2m matrices.
Definition 10. We say that σe, for e ∈ {I, X, Y, Z}m, is a Pauli error of length

q, if the string e has at most q coordinates that are not the identity.
Before we show that it suffices to correct Pauli errors, we need two definitions.
Definition 11. We say that R corrects Pauli errors of length q in C if for any

two basis states in the code, |α〉 and |α′〉, and any Pauli error of length q, σe, we have

(3.4) R ◦ σe|α〉〈α′|σ†
e = |α〉〈α′|.

Definition 12. We say that R detects Pauli errors of length q in C if for any
two basis states of the code, |α〉 and |α′〉, and any two different Pauli errors of length
q, σe = σe′ ,

(3.5) R ◦ σe|α〉〈α′|σ†
e′ = 0.

The reason for the fact that such R is said to detect errors is the following. Suppose
R first writes down e on an ancilla R◦σe|α〉 = |α〉⊗ |e〉. Then for two different errors
the two ancilla states are orthogonal, and thus when discarding the ancilla qubits we
get zero. If R does not write e on an ancillary register, but instead e can be discovered
from the extra information written on the ancilla qubits, then discarding the ancilla
register would result similarly in 0 for two different errors. In this paper we use error
correcting procedures which not only correct but also detect the errors. We can now
prove the following.

Theorem 2. Let C be a quantum code, and let R correct and detect any Pauli
error of length q in C. Then R corrects any general error on any q qubits in C.

Proof. We recall (section 2) that any permissible noise operator E on q qubits can
be written as a combination of three operators: adding 2q blank qubits, applying a
unitary transformation on the 3q qubits, and then discarding 2q qubits. We write the
error operator as E = T ◦ L, where T is the discarding qubits operator. In the most
general case, L is the following operation on q qubits. For all 0 ≤ i ≤ 2q − 1,

(3.6) L : |i〉 �−→ |02q〉|i〉 �−→
2q−1∑
j=0

|Ai,j〉 ⊗ |j〉,
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where all of the coefficients are put into the vectors |Aj
i 〉 which are states of 2q qubits

(these vectors are not necessarily unit vectors). Observe that L can be presented as
a multiplication of the state of the right register of q qubits by

(3.7)
∑
i,j

|Ai,j〉 ⊗ |j〉〈i|.

The above object can be viewed as a 2q×2q matrix, whose entries are not real numbers
but operators. In particular, each entry is a tensor product with a 22q-dimensional
vector |Ai,j〉.

We would like to present this object in terms of the Pauli basis. This is easy to
do by recalling that the Pauli basis is orthonormal. Define A to be the matrix whose
entries are the vectors |Ai,j〉. We get that the object in (3.7) is equal to

∑
e∈{I,X,Y,Z}q

|Ae〉 ⊗ σe,

where |Ae〉 = (A, σe) = 1
2q tr(Aσ†

e) (Aσ†
e is a matrix of vectors, the trace of which is a

vector).
We thus have that

(3.8) L =
∑
e,e′

|Ae〉〈Ae′ | ⊗ σe · σ†
e′ .

We can now see that R indeed corrects for the error E = T ◦ L, by the following:

R ◦ E ◦ |α〉〈α′| = R ◦ T ◦
∑
e,e′

|Ae〉〈Ae′ | ⊗ σe|α〉〈α′|σ†
e′

=

(
T ◦

∑
e

|Ae〉〈Ae|
)
⊗ |α〉〈α′| = |α〉〈α′|,

(3.9)

where in the second equality we have used the fact that T commutes with R because
they operate on different qubits and that R corrects and detects errors. In the last
equality we used the fact that T ◦

∑
e |Ae〉〈Ae| = c does not depend on |α〉, |α′〉. By

choosing |α〉 = |α′〉, we have that Tr(R ◦ E ◦ |α〉〈α|) = Tr(c|α〉〈α|) = c, but on the
other hand R ◦ E is trace-preserving, so c = 1.

3.4. Calderbank–Shor–Steane codes. We give here the definition of CSS
codes, which is a slight modification (and simplification) of the definition from [28]
but gives the same codes. A linear code of length m and dimension k is a subspace of
dimension k in Fm

2 , where Fm
2 is the m-dimensional vector space over the field F2 of

two elements. Let C1, C2 be two linear codes of length m such that {0} ⊂ C2 ⊂ C1 ⊂
Fm

2 , and let us define a quantum code by taking the superpositions of all words in a
coset of C2 in C1 to be one basis word in the code. We have

(3.10) ∀a ∈ C1/C2 : |Sa〉 =
1√

2dim(C2)

∑
w∈C2

|w + a〉.

Note that |Sa〉 is well defined and does not depend on the representative of the coset
since if (a1 − a2) ∈ C2, then |Sa1〉 = |Sa2〉. Also, for different cosets the vectors are
orthogonal. Thus, this defines a basis for a subspace of dimension 2dim(C1)−dim(C2).
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This is our quantum code. Note that the support of |Sa〉 are words in the code C1.
We see that bit-flips can be corrected by using classical error correction techniques
for the code C1 (that is, the classical error correction is performed unitarily, adding
ancillary qubits).

Before we discuss how to correct phase-flips, let us define a very important quan-
tum gate on one qubit, called the Hadamard gate, or the Fourier transform over F2:

(3.11) H = H−1 =

(
1√
2

1√
2

1√
2

− 1√
2

)
.

Observe that

(3.12) HσzH
−1 = σx.

This means that a phase-flip transforms to a bit-flip in the Fourier transform basis.
By applying the Hadamard gate on each qubit in |Sa〉, we get the state:

|Ca〉 = H ⊗H ⊗ · · · ⊗H|Sa〉 =
1√

2m+dim(C2)

2m−1∑
b=0

∑
w∈C2

(−1)(w+a)·b|b〉

=
1√

2m−dim(C2)

∑
b∈C⊥

2

(−1)a·b|b〉,(3.13)

which is a superposition of words in the perpendicular subspace C⊥
2 . Thus, to correct

phase-flips, one transforms to the Fourier basis and corrects bit-flips in the code C⊥
2 .

These observations led to the following theorem due to Calderbank and Shor [28]. We
give here a simple proof of this theorem, based on Theorem 2.

Theorem 3 (CSS codes). Let C1 and C⊥
2 be linear codes over F2, of length

m, such that 0 ⊂ C2 ⊂ C1 ⊂ Fm
2 , and such that C⊥

2 , C1 correct q errors. Then
the subspace spanned by |Sa〉 for all a ∈ C1/C2 is a [[m, 2dim(c1)−dim(C2), q]] QECC.
The error correction procedure R is constructed by correcting bit-flips with respect to
C1 in the S-basis, rotating to the C-basis by applying Hadamard on each coordinate,
correcting with respect to C⊥

2 , and rotating back to the S-basis.
Proof. We define the procedure RC1

to be a unitary embedding of m qubits into
the space of 2m qubits, by

(3.14) RC1 |i〉 = |w(i)〉 ⊗ |e(i)〉

for each i ∈ Fm
2 , where w(i) ∈ C1 is a string of minimal distance to i, and e(i) ∈

{0, 1}m satisfies w(i) + e(i) = i. Since this is a one-to-one transformation, it is a
unitary embedding, and therefore it is a permissible superoperator. Let eb ∈ {0, 1}m
have at most q 1′s in it. Let Eb be an error operator which is the corresponding tensor
product of bit-flips (σx) and identities. In the coordinates where eb is 0, Eb has the
identity, and in the coordinates where it is 1, Eb has a bit-flip. Then for any |α〉, |α′〉
supported on C1, we have

(3.15) RC1
◦ Eb ◦ |α〉〈α′| = |α〉〈α′| ⊗ |eb〉〈eb|.

RC⊥
2

is defined similarly:

(3.16) RC⊥
2
|j〉 = |w(j)〉 ⊗ |e(j)〉,
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where w(j) ∈ C⊥
2 is a string of minimal distance to j, and e(j) ∈ {0, 1}m satisfies

w(j) + e(j) = j. Let ef ∈ {0, 1}m have at most q 1′s. Let Ef be the error operator
which is the corresponding tensor product of phase-flips (σz) and identities. Then for
any |β〉, |β′〉 supported on C⊥

2 , we have

(3.17) RC⊥
2
◦ Ef ◦ |β〉〈β′| = |β〉〈β′| ⊗ |ef 〉〈ef |.

Denote by H the operator that applies the Hadamard gate H on every qubit: H =
H ⊗H ⊗ · · · ⊗H. We claim that the operator

(3.18) R = Tf ◦ Tb ◦ H ◦ RC⊥
2
◦ H ◦ RC1

is the desired error correcting procedures. Tf , Tb are the operators discarding the
qubits added for RC⊥

2
,RC1

, respectively.
By Theorem 2, it is enough to show that this procedure corrects and detects q

Pauli errors. To show that it corrects q Pauli errors, write the error vector e in two
parts eb and ef as follows: eb is 1 in the coordinates where σx or σy occurred and 0
elsewhere. ef is 1 in the coordinates where σz or σy occurred and 0 elsewhere. We
can therefore write the error operator E as a product of two operators E = Ef ◦ Eb, by
using the fact that σy = σzσx. We now have

(3.19) R ◦ E ◦ |α〉〈α′| = Tf ◦ Tb ◦ H ◦ RC⊥
2
◦ H ◦ RC1

◦ Ef ◦ Eb ◦ |α〉〈α′|.

We would like to start developing the expression above by applying RC1 , but the
phase errors stand in the way. For this, note that for any string |i〉 we have

RC1
Ef |i〉 = EfRC1

|w(i)〉 ⊗ Ef |e(i)〉.

This means that

(3.20) RC1Ef = (Ef ⊗ Ef )RC1
.

We apply (3.20) as well as (3.15), to the right-hand side of (3.19). We get

(3.21) R ◦ E ◦ |α〉〈α′| = Tf ◦ H ◦ RC⊥
2
◦ H ◦ Ef ◦ |α〉〈α′| ⊗ Tb ◦ Ef ◦ |eb〉〈eb|,

where we have used the fact that Tb commutes with all operators except RC1
. Since

Ef is trace-preserving, we can now apply Tb and get a scalar which is exactly 1. We
proceed with

Tf ◦ H ◦ RC⊥
2
◦ H ◦ Ef ◦ |α〉〈α′|(3.22)

= Tf ◦ H ◦ RC⊥
2
◦ (H ◦ Ef ◦ H) ◦ (H ◦ |α〉〈α′|)

= Tf ◦ H ◦ (H ◦ |α〉〈α′|) ⊗ |ef 〉〈ef | = |α〉〈α′|.

We thus see that R indeed corrects q Pauli errors. It is left to show that R also
detects q Pauli errors. To show that

R ◦ σe|α〉〈α′|σ†
e′ = 0,

we observe that if e = e′, then either eb = e′b or ef = e′f . We can repeat the previous
argument. If eb = e′b, we get zero due to Tb ◦ |eb〉〈e′b| = 0. Otherwise, we have ef = e′f ,
and we get zero because Tf ◦ |ef 〉〈e′f | = 0.
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3.5. CSS codes over Fp. The theory of quantum error corrections can be
generalized to quantum computers which are composed of quantum particles of p > 2
states, called qudits. If we want to stress the dimensionality of the particles, we call
them p-qudits. To generalize the notion of bit-flips and phase-flips to p-qudits, define
the following two matrices:

• B : B|a〉 = |(a + 1)mod p〉,
• P : P |a〉 = wa|a〉,

where w = e
2πi
p . The analogue of Pauli matrices are combinations of powers of these

matrices, i.e., the p2 matrices:

(3.23) BcP c′ ∀c, c′ ∈ Fp.

Just as we did in the case of Pauli matrices, we can consider the p2m m-fold tensor
products of such matrices and show that they form a basis for matrices on m p-qudits.
This basis is orthonormal, with respect to the inner product (U, V ) = 1

pm tr(UB†).
Like in the case of qubits, errors of type B transform to errors of type P and vice

versa, via the analogue of the Hadamard, namely, the appropriate Fourier transform.
In fact, there are several possible analogues of the Hadamard matrix for the case of
Fp. Let w = e2πi/p and wl = wl. Then we define the lth Fourier transform over Fp

to be

(3.24) W (wl) : |a〉 �−→ 1
√
p

∑
b∈F

wlab|b〉.

It can be easily checked that

(3.25) ∀c ∈ Fp, W (wl)P
cW (wl)

−1 = Bc�−1

, W (wl)B
cW (wl)

−1 = P c�.

We can now define CSS codes over Fp in a very similar way as it is done for F2.
We first fix a choice of inner product over Fm

p with which we work: We choose the

coefficients ci in the bilinear form �a ·�b =
∑m

i=1 ciaibi. This fixes what we mean by the
orthogonal code C⊥

2 . The statements and proofs of Theorems 2 and 3 are generalized
to Fp by using the above definition of the generalized bit-flip B and the generalized
phase-flip P , where Fm

2 is replaced by Fm
p and the Hadamard gate on the ith qubit

is replaced by the Fourier transform W (wci) over the ith qudit.

3.6. Polynomial quantum codes. We define polynomial codes over the field
Fp, for p a prime. We set d to be an upper bound on the degree of the polynomials
used in the code and m to be the length of the code. Let m < p be the number
of elements in the field Fp with which we will be working. Set α1, . . . , αm to be m
distinct nonzero elements of the field Fp. We consider the set of polynomials over Fp

of degree at most d:

(3.26) Vd = {f(·) ∈ Fp[x],deg(f) ≤ d},

where Fp[x] is the field of polynomials with coefficients in Fp. Define the following
classical codes:

C1 = {(f(α1), . . . , f(αm))|f(·) ∈ Vd} ⊂ Fm
p ,(3.27)

C2 = {(f(α1), . . . , f(αm))|f(·) ∈ Vd, f(0) = 0} ⊂ C1.
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We can now define the quantum code:

(3.28) ∀a ∈ Fp, |Sa〉 =
1√
pd

∑
f(·)∈Vd,f(0)=a

|f(α1), . . . , f(αm)〉 =
1√
pd

∑
w∈C2

|w + �a〉,

where �a is the vector of length m with a at each coordinate. Since C2 has p different
cosets in C1, the dimension of the code is p, and the code encodes exactly one p-qudit.
We prove the following theorem.

Theorem 4. A polynomial code of degree d with length m over Fp is a
[[m, p,min{�m−d−1

2 �, �d
2�}]] QECC.

Proof. Two different words in C1 agree on at most d coordinates, and thus C1 is
a linear code of distance m− d. It can thus correct and detect �(m− d− 1)/2� errors.
C⊥

2 (under any choice of the inner product in which the coefficients are nonzero) is
a linear code of minimal distance ≥ d + 1. This is true since the projection on any
d coordinates of the code C2 contains all possible strings of length d, and therefore
the only vector of length d orthogonal to all of the vectors is the 0 vector. Thus, C⊥

2

corrects and detects �d/2� errors. Theorem 4 follows from Theorem 3 for Fp.
We call the polynomial code which uses polynomials of degree m − d − 1 (the

codegree of d) the dual code of the code which uses polynomials of degree d. By the
above lemma, the two codes correct the same number of errors.

4. Fault-tolerant gates for polynomial codes.

4.1. Overview. In this section we define G1 (subsection 4.2), the universal set of
gates with which we work when computing with polynomial codes. We note that our
set of gates involves only one- and two-qudit gates. We show how to apply the gates
in G1 on encoded states, in a fault-tolerant manner. Our fault-tolerant procedures
will all have what we call spread 1. This notion will be defined shortly (subsubsection
4.3.4), but roughly it means that one fault in a procedure can cause at most one
error in the final state of the procedure. We augment the fault-tolerant gates by
fault-tolerant procedures for error correction, zero-state preparation and decoding
(a zero-state preparation procedure prepares a state |S0〉, and a decoding procedure
takes |Sa〉 to m copies of a). These procedures also have spread 1. This section thus
proves the following theorem.

Theorem 5. For any gate in G1, there exists a fault-tolerant procedure with
spread 1 that computes the gate on states encoded by a quantum polynomial code.
There exist also fault-tolerant error correction, decoding, and zero-state preparation
procedures for this code, which all have spread 1. Moreover, all of these procedures
use only gates from G1 and in particular do not use measurements.

The requirement that the procedures use only gates from G1 is imposed so that
the scheme can be applied recursively, as we will do in section 7.

In an ideal situation, all gates can be applied transversally, as in Figure 1.1, in
which case it is clear that one fault can propagate to at most one error in each block.
Unfortunately, we do not know of any universal set of gates and any code in which
all gates can be applied transversally in the simple way depicted by Figure 1.1. It is
here that the advantage of polynomial codes comes into play. Due to the algebraic
properties of polynomials, all of the gates in G1 can be applied essentially transversally:
The gates are applied either transversally or by first preparing some states of the form
|S0〉 and then applying some operations transversally on the computational blocks and
the ancilla blocks together.
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To achieve this nice property, we observe that in the case of polynomial codes
the transversal application of the gates always achieves the correct result, except for
one problem: Instead of getting the final state as a superposition of polynomials with
degree d, for some gates we end up with the correct logical dit, except that it is en-
coded with polynomials of a different degree. This can be illustrated if one considers
gates which involve multiplication of polynomials, such as the generalized Toffoli gate,
where the degree d becomes 2d. Likewise, the Fourier transform gate takes d to the
codegree m− d− 1. To get back into the code that uses polynomials of degree d, we
make use of a procedure called degree reduction. In the classical case, degree reduc-
tion was used by Ben-Or, Goldwasser, and Wigderson [24] to achieve fault-tolerant
classical distributed computation. These techniques can be adapted to the quan-
tum case, as was done in the original version of this paper [3, 4]. Here, however,
we present a much simpler construction that reduces the degree by teleportation be-
tween states of different degrees. This technique, which was used in [8, 36], is based on
ideas in [48].

In order for the above ideas to work, it must be that, even after the degree has
changed, the state is still inside a QECC so that errors can be corrected. For this
reason we work with codes of length m = 3d + 1 such that the quantum polynomial
code of twice the degree (which is equal to the codegree) corrects the same number
of errors (see Theorem 4).

It is therefore the case that, for polynomial codes, all fault-tolerant procedures
can be applied in a remarkably simple manner, namely, transversally with the help of
ancilla zero states.

We start with the definition of the set of gates G1 and continue to general defini-
tions related to encoded gates and to fault-tolerant procedures, such as transversal and
semitransversal operations and the spread of errors inside an encoded gate. We then
proceed to the description of fault-tolerant encoded gates and finally to fault-tolerant
error correction, zero-state preparation, and decoding procedures. We note that much
work is put into making these final three procedures measurement-free. At the end
of this section we remark about how to simplify procedures when measurements and
classical computations can be used.

4.2. The set of gates for polynomial codes G1. We fix m = 3d + 1 in the
polynomial codes we use. We work with the following set of gates, which we denote
by G1:

1. NOTp(c): ∀ c ∈ Fp, |a〉 �−→ |a + c〉 (also denoted Bc).
2. CNOTp: |a, b〉 �−→ |a, a + b〉.
3. CNOT−1

p : |a, b〉 �−→ |a, a− b〉.
4. SWAP: |a〉|b〉 �−→ |b〉|a〉.
5. Multiplication by a constant: 0 = c ∈ Fp: |a〉 �−→ |ac〉.
6. P c (generalized phase): ∀c ∈ Fp |a〉 �−→ wca|a〉, for w = e2πi/p.
7. Generalized controlled phase of order c: ∀c ∈ Fp |a〉|b〉 �−→ (w)abc|a〉|b〉.
8. W (c) (generalized Fourier transform (of order c)): |a〉 �−→ 1√

p

∑
b∈Fp

wabc|b〉∀0

< l < p.
9. Generalized Toffoli: |a〉|b〉|c〉 �−→ |a〉|b〉|c + ab〉.

10. Adding a qudit in the state |0〉.
11. Discarding a qudit.
All of the additions and multiplications are in Fp (i.e., modulo p). We will often

denote NOTp(1) simply by NOTp. We note that, if the characteristic of the field we
work with is not 2, we can replace the generalized Toffoli gate in the above construction
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with the following gate:
• Squaring gate: |a〉|b〉 �−→ |a〉|b + a2/2〉.

We get a set of gates which consists of two-qudit gates without any three-qudit gate
involved. In either case, the set is proved to be universal in section 6. This set is by no
means a minimal set for universality, but the fault-tolerant procedures become simpler
and shorter if we have a larger repertoire of fault-tolerant gates that we can use.

4.3. Fault-tolerant procedures—general definitions.

4.3.1. Encoded gates. Say we have a unitary gate g which is applied on the
state |α〉 in the original circuit. We now want to apply the corresponding gate to the
state encoding |α〉. We denote the encoding of |α〉 by φ(|α〉).

Definition 13. A sequence of gates Q is said to encode a gate g for the code C,
and is denoted by Φ(g), if, for any superposition |α〉,

Φ(g)φ(|α〉) = φ(g|α〉).

4.3.2. Transversal and semitransversal gates. The way to apply a gate
which is the simplest and which allows the least propagation of errors is the transversal
application.

Definition 14. Consider a gate g on, say, k qudits (k is between 1 and 3 in
this paper’s case). Consider k blocks of m qudits each. Let us label the qudits in each
block from 1 to m (from left to right). We say that the gate g is applied transversally
on 1, 2, or 3 encoded blocks if, in order to apply Φ(g) on k encoded blocks, it suffices
to apply the gate g m times, each time on all qudits labeled by the same label.

We will sometimes need to modify the above transversal construction by just a
little bit. Instead of applying the same gate on the set of ith qudits, independent of
i, we allow ourselves to apply a gate which depends on the index i. The structure of
the circuit remains the same, as in Figure 1.1. We call this way of encoding a gate
semitransversal. In both cases, it is clear that one fault of a gate during the procedure
can affect at most one qubit in each block at the end of the procedure. We now make
these notions slightly more precise.

4.3.3. Errors versus faults. To analyze the propagation of errors in our fault-
tolerant procedures, we need to make an important distinction between errors, which
are the actual deviations of the quantum state from being correct, and faults, which
are the events that occur that cause the qubits to have errors. Let us start by defining
what we mean by errors. This requires some definition since the state of one qudit is
not well defined in the quantum model, and so we cannot consider one qudit and say
that it is “correct” or not.

Definition 15 (deviation). Consider a density matrix ρ′ of a set of qudits B.
We say that ρ′ is deviated from the correct matrix ρ on the set of qudits A ⊆ B if
ρ′|B−A = ρ|B−A.

This definition coincides with the more operative notion of errors which we used
in the discussion about error correction in section 3.

Claim 1. Let ρ be a (correct) density matrix of a pure state on a set of qudits
B. The matrix ρ′ is deviated from ρ on a set of qudits A if and only if there exists a
permissible quantum operator on the set A which takes ρ to ρ′.

Proof. For one direction, suppose that the deviation in ρ′ is confined to the set of
qudits A. Consider a purification of ρ′, namely, a state |ψ′〉 of the set of qudits B plus
extra qudits C, such that |ψ′〉〈ψ′||B = ρ′. Such a state exists by, e.g., [68, page 110].
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Note that reducing the matrices |ψ〉〈ψ| ⊗ |0〉C〈0|C , |ψ′〉〈ψ′| to the set of qudits B−A
results in the same matrix. By standard results (see, e.g., [68, page 111, Exercise
2.81]), there is a unitary matrix U acting on C ∪ A which takes |ψ〉 ⊗ |0〉C to |ψ′〉.
Thus, to get from ρ to ρ′, we add the qudits in C in the state |0〉C , apply U on A∪C,
and discard C. We have designed a permissible operator on A that takes ρ to ρ′. The
other direction of the claim is trivial.

The above claim relates the notions of deviation and error operators. Thus, if
ρ is the density matrix of the correct state (which is always a pure state in our
construction), we can loosely say that the set of qudits A are the faulty qudits or
that the errors occurred on the qudits in A. We note that the set A is not uniquely
defined. In the rest of the paper, however, in every place where we assume something
about the deviation set A, it suffices to choose an arbitrary set of qudits that satisfies
the relevant assumption and continue from there.

We will use the above correspondence between error operators and deviations
many times in the paper. The way we do this is that we prove, say, that the deviation
from the correct state at some stage in our construction is confined to some set of
qudits. This implies, by Claim 1, that one can view the density matrix as if an error
operator was applied on the deviated qudits, and so all of the results about quantum
error correction apply. From now on, therefore, we can talk only about deviation.

The notion of a fault is completely different from the notion of error or deviation.
To understand this difference, recall subsection 2.8, where the notions of “locations”
and “fault paths” were defined. A fault in the circuit is thus the noise operator which
is applied at a certain location that appears in the fault path.

We will analyze the effect of faults occurring at certain locations, on the resulting
errors in the final states.

4.3.4. Spread. In order to analyze how faults in the circuit affect the errors in
the final state, we define the notion of a “spread” of a circuit or a procedure. In most
cases, a very simple consideration is required: It is clear that a fault in a location
(q1, . . . , ql, t) can affect a qubit q′ at time t′ > t only if there is a path in the circuit
from (q1, . . . , ql, t) to (q′, t′). In other words, if we know the correct propagation of
some density matrix in the circuit, an additional fault at a certain location can cause
a deviation from that correct propagation only in locations affected by the location of
the fault via such a path in the circuit. For transversal procedures, it is thus easy to
see that one fault can affect at most one qudit in each block. We say that the spread
of the procedure is 1.

Unfortunately, for the error correction, zero-state preparation, and decoding pro-
cedures, a more careful analysis is required, because the circuit itself is far from being
transversal. In such a case one needs to actually take into account the computation
performed by the circuit, in order to bound the propagation of errors. It is sufficient
for our purposes that the error propagation is limited only when the total number
of errors is small. For example, we cannot hope to control the number of errors in
the output if the number of errors in the input to an error correction procedure is
large.

Definition 16. We consider procedures that compute on states encoded by a
QECC which can correct q errors. We say that the procedure has spread 1 if the
following holds. Consider a fault path with k faulty locations in this procedure. Suppose
that the input state to the procedure is deviated on a set of qudits which has at most f
qudits in each of the blocks on which the procedure works. We require that, as long as
f +k ≤ q−1, adding one additional faulty location to the fault path increases the final
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deviation in each one of the relevant blocks by at most 1 (while leaving the number of
errors in the other blocks unchanged).

Except for sections 9 and 11, all of our procedures have spread equal to 1. How-
ever, there are cases in which more complicated situations arise, where the propagation
of errors is confined to a small number of qudits but larger than 1. For example, such
is the case when we introduce geometrical constraints to the system, which cause more
propagation of errors. The above definition can be generalized to spread equal to �.

Definition 17. We consider procedures that compute on states encoded by a
QECC which can correct q errors. We say that the procedure has spread � if the
following holds. Consider a fault path with k faulty locations in this procedure. Suppose
that the input state to the procedure is deviated on a set of qudits which has at most
f qudits in each of the blocks on which the procedure works. We require that, as long
as (f + k)� ≤ q − �, adding one additional faulty location to the fault path increases
the final deviation in each one of the relevant blocks by at most � (while leaving the
number of errors in the other blocks unchanged).

The proofs of section 7, showing that our general hierarchical scheme (without
exact specification of the code being used) is fault-tolerant, are done for the more
general case of spread �. This does not impose any additional difficulty in the proof.
For a first reading, it is perhaps simpler to keep the definition of spread 1 in mind.

4.3.5. Issues related to ancillas. In some of the procedures, we will use ancilla
qudits as extra working space. At the end of the procedure these qudits will be
discarded, in order to get exactly the state we need. As was explained in subsection
2.5, we will always discard qudits which are (in an ideal noiseless situation) in tensor
product with the rest of the system. In this case the operation of discarding qudits
means simply erasing their state, and the resulting state is a pure state. This is
necessary if we want to apply unitary operations on the encoded states. We will
describe a procedure by specifying what it does to basic states of the code. It is easy
to see that if for any input basis state the ancilla qubits at the end of the procedure
are in a tensor product with the rest of the qubits, and their state does not depend
on the input basis state, i.e.,

(4.1) |Sa〉 �−→ |Sg(a)〉 ⊗ |A〉,

where A is independent of a, then for any input superposition for the procedure the
ancilla qubits are in tensor product with the rest of the qudits, and thus they can be
discarded simply by erasing them.

4.4. Transversal and semitransversal gates for polynomial codes. We
begin with the simplest cases.

Lemma 1. The first seven gates: NOTp(c),CNOTp,CNOT−1
p ,SWAP, multipli-

cation by a constant, generalized phase, and generalized controlled phase, can all be
applied in a transversal or semitransversal manner.

Proof. It is easy to check that the first five gates, namely, NOTp(c), CNOTp,
CNOT−1

p , SWAP, and multiplication by a constant different than zero, can be applied
transversally by applying the gate on corresponding qudits from the different blocks.
We give here just one example, for the NOTp(c) gate:
(4.2)

|Sa〉 =
∑
w∈C2

|a+w1〉⊗· · ·⊗|a+wm〉 �−→
∑
w∈C2

|a+c+w1〉⊗· · ·⊗|a+c+wm〉 = |Sa+c〉.
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The other four gates are similar. The generalized phase is just slightly more compli-
cated. It can be applied semitransversally. Define cl as the interpolation coefficients
such that

(4.3) ∀ f ∈ F [x], deg(f) ≤ m− 1, f(0) =

m∑
i=1

cif(αi).

We apply on the lth qudit the gate |a〉 �−→ wcla|a〉. This achieves the desired operation
because

|Sa〉 =
1√
pd

∑
f∈V,f(0)=a

|f(α1), . . . , f(αm)〉(4.4)

�−→ 1√
pd

∑
f∈V,f(0)=a

Πm
i=1w

clf(αl)|f(α1), . . . , f(αm)〉

=
1√
pd

∑
f∈V,f(0)=a

wa|f(α1), . . . , f(αm)〉 = wa|Sa〉.

Finally, the generalized controlled phase of order c can also be applied semitransver-
sally, by using the same idea. On the lth coordinate we apply the generalized con-
trolled phase of order c · cl. We get

(4.5)

|Sa〉|Sb〉 =
1

pd

∑
f∈V,f(0)=a

|f(α1), . . . , f(αm)〉
∑

g∈V,g(0)=b

|g(α1), . . . , g(αm)〉

�−→ 1

pd

∑
f,g∈V,f(0)=a,g(0)=b

Πm
i=1w

cclf(αl)g(αl)|f(α1), . . . , f(αm)〉|g(α1), . . . , g(αm)〉.

Since f, g are both of degree at most d, the product of the two polynomials is
of degree at most 2d, and the interpolation applies. If we denote f · g = h, we get
Πm

i=1w
cclf(αl)g(αl) = wc

∑
l clh(αl) = wch(0) = wcf(0)g(0) = wabc, as we wanted.

4.5. Rotation to the dual code. The remaining two gates, namely, the gen-
eralized Fourier transform and the generalized Toffoli (or the squaring gate), are not
as simple, since the transversal application changes the degree of the polynomials
involved. To this end we add a superscript d or 2d denoting the degree of the poly-
nomials used in the code, as in |Sd

a〉 or |S2d
b 〉. We start by showing the effect of a

semitransversal Fourier transform on a state encoded by using degree d′ polynomials.
Denote by wl = wcl , l = 1, . . . ,m, for cl the interpolation coefficients, as in the proof
of Lemma 1. Recall that in our notation

(4.6) W (cl) : |a〉 �−→ 1
√
p

∑
b∈Fp

wab
l |b〉.

We apply W (cl) to the lth qudit for all 1 ≤ l ≤ m.

(4.7) |Sd′

a 〉 �−→ W (c1) ⊗W (c2) ⊗ · · · ⊗W (cm)|Sd′

a 〉.

Claim 2 (rotation to the dual code). The transformation of (4.7) performs the
generalized Fourier transform, except it moves the word to the dual code, namely, the
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polynomial code with the codegree m− d′ − 1:

|Sd′

a 〉 �−→ 1
√
p

∑
b∈Fp

wab|Sm−d′−1
b 〉.

Proof. Let us denote the final state of the transformation by |α〉:

|Sd′

a 〉 =
1√
pd

∑
f∈V,f(0)=a

|f(α1), . . . , f(αm)〉(4.8)

�−→ |α〉 =
1√
pd+m

∑
b1,b2,...,bm∈F

∑
f∈V,f(0)=a

w
∑m

l=1 clf(αl)bl |b1, . . . , bm〉.

For each string b1, . . . , bm ∈ Fp, associate the unique polynomial b(x) which sat-
isfies b(αl) = bl and has degree deg(b) ≤ m − 1. The exponent of w in (4.8) can be
written in a much simpler form when b(x) is of degree deg(b) ≤ m− d′ − 1. For such
b(x), the polynomial h(x) = b(x)f(x) is of degree deg(h) ≤ m− 1 so

(4.9)
m∑
l=1

clf(αl)b(αl) =

m∑
l=1

clh(αl) = h(0) = f(0)b(0).

Hence, the sum over all b with deg(b) ≤ m− d− 1 in (4.8) gives

1√
pd+m

∑
b1,b2,...,bm∈F,deg b(x)≤m−d−1

∑
f∈V,f(0)=a

wb(0)f(0)|b1, . . . , bm〉(4.10)

=
1√
pm−d

∑
b1,b2,...,bm∈F,deg b(x)≤m−d−1

wb(0)a|b1, . . . , bm〉

=
1
√
p

∑
b∈Fp

wab 1√
pm−d−1

∑
b1,b2,...,bm∈F,deg b(x)≤m−d−1,b(0)=b

|b1, . . . , bm〉

=
1
√
p

∑
b∈Fp

wab|Sm−d′−1
b 〉.

Now we claim that the sum over the rest of the b’s must vanish. The reason is that
the norm of the above vector is 1. Now |α〉 can be written as a sum of two vectors:
the contribution from b’s with deg(b) ≤ m − d − 1 and that from the rest of the b’s.
The two are orthogonal, since different |b〉’s are orthogonal. Hence, the squared norm
of |α〉, which is 1 (because the operation is unitary and we started with a norm one
vector), is the sum of the squared norms of the contribution of deg(b) ≤ m − d − 1,
which is also 1, and the norm of the orthogonal vector. Thus, the norm of the sum
over b’s with deg(b) > m− d′ − 1 must vanish.

4.6. Degree reduction and degree increase.
Definition 18. A degree reduction is a procedure which takes a state |Sd′

a 〉 and
returns the state |Sd

a〉, for d′ > d. Degree increase is defined similarly, except we
require that d′ < d.

To construct these procedures, we need to have at our disposal a zero-state prepa-
ration procedure, namely, a fault-tolerant procedure which generates the state |Sd

0 〉.
In fact, we will need a zero-state preparation procedure also for the polynomial code
of degree 2d = m − d − 1, so that we have the states |Sm−d−1

0 〉 available, too. We
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Fig. 4.1. Teleportation of a general state of the topmost p-qudit to the bottommost one.

will see how to perform these procedures in subsection 4.13, and for now we merely
assume that we have them at our disposal.

The degree increase is derived by using teleportation. The idea is to apply tele-
portation from a state encoded with polynomials of degree d to a state encoded with
polynomials of degree 2d. We first recall how teleportation works for p-qudits (see
Figure 4.1) and then consider its encoded version.

The first qudit is in a general state
∑

a∈Fp
ca|a〉, and the other two qudits are in

the state |0〉. The first step is transforming the last two qudits to the analogue of an
EPR pair for Fp: We apply the generalized Fourier transform W on the second qudit
and then a CNOT−1

p from the second qudit to the third one. This gives the state

1
√
p

∑
a,b∈Fp

ca|a〉|b〉| − b〉.

We then apply CNOTp from the first qudit to the second, which gives

1
√
p

∑
a,b∈Fp

ca|a〉|b + a〉| − b〉.

Next, we apply a generalized Fourier transform on the first qudit to get

1

p

∑
a,b,c∈Fp

caw
ac|c〉|b + a〉| − b〉.

We then apply CNOTp from the second qudit to the third:

1

p

∑
a,b,c∈Fp

caw
ac|c〉|b + a〉|a〉.

Finally, we apply a generalized controlled phase of order −1 from the first qudit to
the third, to get

1

p

∑
a,b,c∈Fp

ca|c〉|b+a〉|a〉 =
1

p

∑
a,e,c∈Fp

ca|c〉|e〉|a〉 =
1
√
p

∑
c∈Fp

⊗ 1
√
p

∑
e∈Fp

⊗|c〉|e〉⊗
∑
a

ca|a〉,

which is the desired teleportation.
The degree increase is basically an encoding of the above circuit, by using the

correct choice of degrees for each block. We work on three blocks of qudits. The first
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block is a general state of one qudit encoded by using polynomial codes of degree
d. The second block is initially in the state |Sd

0 〉, and the last block is in the state
|S2d

0 〉. All of the gates in the teleportation are now applied transversally, except
for the generalized Fourier transform which is applied semitransversally, as in Claim
2. We thus see that, after applying the first two gates in the teleportation circuit
transversally, we get that the last two blocks are in the state

1
√
p

∑
b

|S2d
b 〉|S2d

−b〉.

The next gate, which is the encoded CNOTp, is now applied from a word in the code
of degree d to that of degree 2d. It is easy to check that this does not matter to the
correctness of this gate. After the next step, namely, the semitransversal generalized
Fourier transform, Claim 2 implies that all blocks are encoded by using degree 2d
polynomials, and so the correctness follows from the correctness of the teleportation
circuit.

The construction we have shown for degree increase does not work for degree
reduction, since, for example, the first CNOTp does not work correctly if the target
state is of a smaller degree than that of the control state. To bypass this problem, we
can instead perform a degree increase in the dual code. This is done as follows. We
start with a state of degree 2d. We first apply the semitransversal generalized Fourier
transform (4.7). This takes us to the dual code (of degree d), by Claim 2. We now
apply a degree increase, to get the same state encoded by using polynomials of degree
2d. Finally, we apply the reverse of the transformation in (4.7), which achieves the
desired result, again, by Claim 2.

4.7. Fault-tolerant Fourier transform. To achieve the generalized Fourier
transform of order 1, we simply apply the transformation of (4.7). By Claim 2, this
yields the desired state but in the wrong degree. Applying a degree reduction solves
the problem. To achieve a generalized Fourier transform W (c) of order c = 1, we use
wc instead of w everywhere in subsection 4.5.

4.8. Fault-tolerant generalized Toffoli and squaring. To apply the gener-
alized Toffoli gate on |Sa〉|Sb〉|Sc〉, we first increase the degree of the third register to
2d. We now apply the general Toffoli gate transversally on the m coordinates, which
gives |Sa〉|Sb〉|S2d

ab+c〉, as is easy to check. We now apply a degree reduction on the
third register, and this achieves the desired result. The squaring gate is applied in
exactly the same manner.

4.9. Remaining gates. The fault-tolerant version of the gate that adds a qubit
in the state |0〉 is simply the zero-state preparation procedure. We will see how to
perform this procedure in subsection 4.13. The fault-tolerant gate that discards a
qudit can obviously be done transversally by discarding all of the qudits in the block.
This completes our description of fault-tolerant procedures for the set G1.

4.10. Fault-tolerant error correction. Our construction of the error correc-
tion procedure is based on the simplest known quantum error correcting technique,
namely, Steane’s error correction [90]. Once again, we assume here that we have at our
disposal a fault-tolerant zero-state preparation procedure, which we will show later.

The error correction procedure is composed of two stages: The first stage detects
and corrects dit-flips (faults of type B), by using classical error correction techniques
for the code C1. The second stage applies on each coordinate the generalized Fourier
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transform (4.7). We then correct dit-flips by using classical error correction techniques
for the code C2. Finally, we rotate back by applying the inverse of the generalized
Fourier transform on each coordinate. By subsections 3.5 and 3.6 this achieves the
desired error correction. It is therefore sufficient to describe how to correct dit-flips
fault-tolerantly.

Let us first describe one part of the error correction procedure. Generate an
ancilla block in the state |S2d

0 〉, by using the fault-tolerant zero-state preparation
procedure. Apply a generalized Fourier transform semitransversally, as in (4.7), on
the ancilla block. Its state is now 1√

p

∑
a∈Fp

|Sd
a〉. Then apply CNOTp transversally

from the block we would like to correct to the ancilla blocks. Now observe that there
is a classical circuit that, given any string from the ancilla block, can output the value
of ei, the ith dit of the error vector on the original block, as long as the number of
faults is at most q, the number of errors that C1 corrects. To see this, note that, for
any w ∈ C2, w

′ ∈ C1, and e a word in Fm
p , the transversal CNOTp takes

|w + e〉|w′〉 �→ |w + e〉|w′ + e〉,

and we can find e by finding the closest word in C1 to the string w′ + e.
To correct dit-flips, we repeat the above procedure m times: Generate m ancilla

states, rotate them to the dual code, apply CNOTp transversally from the compu-
tational block to each one of the ancilla blocks, and then apply on the ith ancilla
block a circuit that outputs p − r, where Br is the dit-flip that occurred on the ith
coordinate. Finally, apply a CNOTp from this output dit into the ith coordinate of
the computation block.

By ignoring the zero-state preparation procedures in the above construction for
now, it is easy to see that one fault in the above procedure can affect only one qudit
in the final block.

4.11. Error correction which projects any word into the code. We would
like to insert here one important modification, which is not necessary for the fault-
tolerant error correction but will become crucial when applying the error corrections in
the recursive scheme. This is the requirement that the error correction takes any word
to some word in the code, regardless of the number of faults in the original state. This
requirement applies, of course, only if during the error correction there are no faults.

Roughly, this is done by checking whether too many errors occurred and, if so,
replacing the entire block by another block which is initialized in the state |S0〉.
However, we should be careful to keep the procedure fault-tolerant. We do this in the
following way: Before starting the correction procedure, we generate another ancilla
state |S0〉, by using the state preparation procedure. When computing the value of ei
in the error correction procedure, we also compute whether the total number of faults
is at most q and write the answer on another qudit. Let us call this an indication
bit. The CNOT which checks if the ith dit is wrong and if so applies NOT on the ith
qubit is replaced by a generalized Toffoli gate which takes as an input also the ith
indication bit and also checks if the number of faults is at most q. We then swap the
ith qudit with the ith qudit of the state |S0〉, conditioned that the ith indication bit
indicates that the number of faults is larger than q. Such a conditional swap can be
achieved by a small circuit which uses only the classical gates from G1.

To see that this procedure indeed takes any word to some word in the code,
observe that this is true if no fault occurs during the procedure itself. Since the
procedure is performed fault-tolerantly, the final state will differ from a word in the
code only in the qubits affected by an error.



FAULT-TOLERANT QUANTUM COMPUTATION 1243

4.12. More issues regarding ancillas. In subsection 4.3.5 we required that,
in all of our procedures, the state of the ancilla qudits that are discarded at the end
of a procedure is in tensor product with and independent of the state of the computer
(in a noiseless situation). This requirement was imposed so that the ancilla states are
in tensor product with the state of the computer even if this state is a superposition
of the basis states and not only in a basis state like in our analysis. This requirement
can be released in two cases: the zero-state preparation and the decoding procedures.

The zero-state preparation procedure is supposed to get as an output one basis
state. Thus, we can release the above requirement about ancilla qudits and demand
only that the ancilla state is in tensor product with the computational qubits at the
end of the procedure. This requirement can also be released in the decoding procedure,
since once we decode a state in our scheme, we do not use it any more. Hence, we
should check only that it gives the correct answer when measured.

4.13. Fault-tolerant zero-state preparation. We need to show how to gen-
erate |S0〉 with spread 1. By Definition 16, we need to check the propagation of errors
only under the assumption that the total number of errors in the input string, plus
the number of faults during the procedure, is at most q, the number of errors that the
codes can correct. In this case, we can assume that the number of faults is at most q,
since the zero-state preparation has no input. The construction is based on one basic
design, which is essentially concatenated with itself, up to some modifications.

4.13.1. Zero-state preparation resilient to one fault. Assume for a moment
that q = 1, so that we only have to make sure that the spread of the state preparation
procedure is 1 if there is one fault in the procedure. In this situation, our state
preparation procedure is the following construction. Let Q be some quantum circuit
that generates |S0〉 from |0m〉, without any fault-tolerant requirement. We start with
5m blank qubits and apply Q on the first, second, third, fourth, and fifth m-tuples
of qubits. We now apply a circuit that is very similar to the error correction circuit:
It attempts to detect errors with respect to the code containing one word, namely,
|S0〉. To detect dit-flips in the first block, we apply CNOTp transversally from the
first block to the second one and then perform some computation on the qudits of
the second block to assess the number of dit-flips. This time, we do not attempt to
infer the exact error vector, or to correct the state, but just to decide whether we
accept the state or not. To do this, we copy each dit in the block to m different dits.
The circuit we apply on the second block gets as an input the ith copy of these dits,
namely, a string in Fm

p , and outputs whether its distance from the code C2 is more
than 1 or not. The output bit is called the dit-flips indication bit. We perform m
independent calculations to get m such indication bits.

We use the third block to detect phase-flips. We would like to follow a similar
construction as for the detection of dit-flips. The difference is that we first rotate both
the first block and the third block to the dual code, as in (4.7). After we apply CNOTp

from the first to the third block, we detect errors by using the third block, except
that the error detection is done with respect to the code C1 for polynomials with
the codegree. Unfortunately, this scheme requires some modification. The problem
is that if one fault occurred in the generation of the third block, such that after its
rotation this block contains many phase-flips, these phase-flips will propagate through
the CNOTp gates to the first block but will not be detected. To prevent this, before
we apply the above construction, we use the fourth block to detect for dit-flips of the
third block. This is done just as the above dit-flip detection with the first and second
blocks. This initial check creates m additional indication bits. We condition each of
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the CNOTp gates from the first to the third block on the relevant additional indication
bit—hence instead of applying a transversal CNOTp, we in fact apply generalized
Toffoli gates transversally. After the application of the Toffoli gates, we rotate the
first block back to the dual of the dual code, namely, to the original code. We now
compute from the third block m phase-flip indication bits, independently, exactly as
we have computed the dit-flip indication bits before.

In fact, we need to insert one last modification in this construction. We would
like to be able to bound the total number of dit-flips and phase-flips, and not just
each of them separately, so that we can bound the deviation. Hence, instead of
the two separate indication bits, we actually calculate one indication bit, as follows.
The circuit gets as an input two strings in Fm

p . It checks whether there exists one
coordinate such that it suffices to change this coordinate in both strings, in some way
(including leaving it as is), to put the first string in C2 and the second string in C1

(with the codegree). If there is no such coordinate, this bit is turned to 1.
Finally, we apply transversally the following three-qudit transformation, on the

ith dit of the first block, the ith indication bit, and the ith dit of the fifth block.
The transformation swaps the ith dits of the first and fifth blocks, conditioned that
the indication bit is 1 (namely, more than one error was detected). This three-qudit
transformation can be constructed from classical gates in G1.

Claim 3. If exactly one fault in the above construction occurred, then the final
state has at most one error.

Proof. By subsections 3.5 and 3.3 we can treat the error as if it is a linear
combination of dit-flips and phase-flips. Let us first consider the case of a fault
occurring in one of the non-fault-tolerant circuits preparing the states |S0〉. If the
fault occurs in the fifth circuit, nothing happens, since no swap occurs. If the fault
occurs in the first circuit, it could be that this fault propagated to more than one qudit
in |S0〉. If there is more than one coordinate in which either a dit-flip or a phase-flip
occurred, the remainder of the circuit, which is fault-free, will detect it. Hence, all
indication bits would indicate that the first and fifth blocks should be swapped. If
the fault propagated to at most one qudit, this would not cause a swap, but this is
OK since there will only be one error in the final state.

A similar argument applies if the fault occurs in the second block. If there is more
than one faulty qudit in the |S0〉 state of this block, this will result in swapping the
first block with the correct state (the fifth block). If there is one error, this will not
cause a swap but can only cause one error in the final state.

What about the third block? If the |S0〉 state of the third block has more than
one dit-flip, these will be detected in the dit-flip preliminary detection of the third
block, and the conditioning on the additional indication dits will prevent them from
propagating. Hence, we can assume that there is at most one dit-flip in this state.
One such dit-flip can propagate from the third block to the first block through the
CNOTp gates, after the rotation, but can cause at most one error. Now let us add
phase-flips. After the rotation of the third block, these transform to dit-flips. If there
are at least 2 of them, a swap will occur and no error will be caused in the final block.
If there is at most one such dit-flip, it has no affect at all since it does not propagate
through the CNOTp gates. Overall, we have seen that one fault of any kind in the
third block can cause at most one error in the final block.

Similar arguments apply to show that one fault in the fourth block can cause
at most one error. If the fourth |S0〉 state has more than one dit-flip, nothing will
happen due to the additional indication bits. But even if it has at most one dit-flip,
this does not propagate through the CNOTp gates from the third to the fourth block,
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and so the dit-flips have no effect. As for the phase-flips, these can propagate to the
third block, and the argument proceeds as in the case of the third block.

The next case is a fault that occurs during the CNOTp and rotation gates. Since
these are applied transversally, one fault can affect only exactly one qudit in each
block. Let us see how these errors propagate through the remaining fault-free circuit.
As for the propagation of a dit-flip, since one dit-flip cannot cause the indication bits
to turn into 1, we have that all indications bits will be zero. As for a phase-flip, this
does not propagate at all through the remaining gates. Hence, as no swap will occur,
the final state will have at most one error.

A more subtle case is the case in which the fault occurred during the copying
of the bits of the second (or third, or fourth) block. Suppose a fault occurred while
copying the ith bit. It could be that the ith indication dit is flipped and/or had a
phase flip, and, possibly, the ith dit in the second block is flipped, too, and/or suffers
from a phase-flip. Let us first consider just the dit-flips and concentrate on a dit-flip
in the copied dit itself. The problem is that in this case the remaining copied dits
will all be wrong! Fortunately, this does not pose a problem. This affects exactly
one dit in the input string of each circuit that computes an indication bit. Because
of the fact that the indication bits turn to 1 only if they see more than one error,
all indication dits (except, possibly, for the one in which the fault actually occurred)
will still be 0. So in this case no swap occurs, except for possibly in one qudit, and
the state, which was error-free to begin with, will have at most one error. An extra
phase-flip in the same location of the dit-flip, if one occurred, does not change this
analysis. A phase-flip in the copied qudit itself does not propagate via the CNOTp

gates to the target dit. Hence, by the end of the copying stage, the error will still be
confined to the qudits where the fault had occurred, namely, one qudit in the second
or third or fourth block, and one indication bit. So once again, at most one qudit will
be swapped. Note that if just a phase-flip occurred in the indication bit, this does not
affect the final state at all because it does not propagate through the SWAP gates.

Finally, a fault in the circuit calculating one of the indication bits, or a fault in
one of the three-qudit circuits, can cause only one error since the remainder of the
circuit is transversal.

4.13.2. Zero-state preparation resilient to q faults. Let us now consider
the case of q > 1. The above construction does not work any more, even for q = 2,
since two faults can ruin completely both the first and the last block, which are
constructed in a non-fault-tolerant way. Instead, we apply the above construction in
a way that is sort of concatenated. For q = 2, we concatenate it once with itself, in
the following way: We first apply the above construction five times, to get five |S0〉
states—we call these states the first-level states. We then apply the above construction
once more, except for two changes. The first change is that, instead of applying the
original non-fault-tolerant circuit to construct the five |S0〉 states, we use the five first-
level states that we have generated. The second change is that we set the threshold
of the indication bits in the second-level construction to be 2 instead of 1; namely, we
only flip the indication bit to 1 if more than two errors were detected.

To increase q to any value, we simply apply the above concatenation q times, each
time by using as input states the final states from the previous level of concatenation
and increasing the threshold for the indication bits by 1. Overall, the scheme that
allows for q faults, denoted by Qq, uses 5q |S0〉 states.

Claim 4. If k ≤ q faults occur during the application of Qq, the final output block
will have at most k errors.
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Proof. We prove this by induction. The case of q = 1 was essentially given in
Claim 3, where it was shown that if k = 1, then the final block will have at most one
error. It is obvious that if k = 0, the state will have no error. Now assume for q, and
prove for q + 1. We divide this proof into two cases.

In the first case, in each one of the five q-level blocks that are used to generate
the final block, there are at most q faults. In this case we can apply the induction.
Let x1, . . . , x5 be the number of faults occurring in the five circuits generating the
q-level blocks, respectively. By induction, the number of errors in the final states is at
most x1, . . . , x5, respectively. If x is the number of faults occurring in the final part
of the circuit, we have that x1 + · · ·+x5 +x = k. The next step in the circuit involves
CNOTp gates, which do not increase the number of errors in each block beyond k. The
next step is the copying of each dit m times and computation of the indication bits.
Recall that, at this step, the threshold for the indication bit to flip is for the number
of errors it sees to be larger than q + 1. However, the calculation of each indication
bit gets as an input two strings, such that the union of their errors is confined to
at most k ≤ q + 1 qudits, and so, unless the calculation itself involves a fault, the
indication bit will remain 0. Hence, in this stage, too, one fault can propagate only
to one error. The remainder of the circuit is transversal. This means that the total
number of faults in the final q + 1-level block is at most k.

In the other case, q + 1 faults occurred during the generation of one of the five
q-level blocks which are input to the final (q + 1) level. In this case, the remainder
of the circuit is fault-free. We consider five subcases: The faulty block is the first,
second, third, fourth, or fifth |S0〉s. Suppose first that it is the first block. Then either
the final state of the faulty block has more than q+1 errors, and then the entire block
will be swapped with the fifth block and the final state will be error-free, or the final
state of the first block has q + 1 errors or less, in which case it will not be swapped,
but still the number of errors is at most k = q + 1. A similar argument works if the
faulty block is the second block. Suppose that there are x dit-flips, and suppose that
y phase-flips have propagated to the first block. If x+y > q+1, there will be a swap.
Otherwise, this will cause at most k = q + 1 errors. Suppose that the faulty block
is either the third or the fourth block. Observe that phase-flips before the rotation
become dit-flips, and these do not propagate from the third block to the first block.
Either there are more than q+1 of these phase-flips, and they cause a SWAP, or they
do not affect the final state. Hence, we need consider only the effect of the at most
q + 1 dit-flips, which after the rotation become phase-flips, and can propagate to at
most q + 1 errors in the final state. Finally, if the faulty block is the fifth block, the
final state will not be swapped, so there will not be errors at all.

This implies that the zero-state preparation procedure has spread 1.

4.14. A fault-tolerant decoding procedure. A decoding procedure applies

(4.11) |Sa〉 �−→ |Aa〉|�a〉,

where the state |Aa〉 is an ancillary state which depends on a. (We can discard this
state at the end of the procedure; we will see that, whenever the decoding procedure is
applied, the state encodes a well-defined logical bit a.) To apply this transformation,
we compute a independently m times from the state |Sa〉. To do this, we add m2

blank qubits and copy each qudit from |Sa〉 m times to m different blank qudits, by
using m CNOTp gates. We get m “copies” of |Sa〉. These are, of course, not real
copies of |Sa〉, since they are entangled. However, each word in the classical code is
copied m times. On each copy of the word we apply the quantum analogue of the
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classical computation that computes what is the logical bit that the word encodes.
The answer, which is a if no error occurred, is written on another blank qubit. For
this computation we use the classical gates in G1. We might need some extra blank
qudits as working space. The computation of a is done in the shortest way possible,
regardless of whether it is fault-tolerant. An error in this computation can affect
only the one copy of a which it computes. A fault in the first stage of copying the
qubits m times can affect only one qubit in each of the copies, and, if the number of
errors in Sa plus the number of faults in the first stage is smaller than the number
of errors correctable by the code, these faults have no effect. One fault in the second
stage of the procedure, during the computation of one of the a’s, can affect only the
correctness of that a.

Remark 1. We remark regarding the significantly simpler version of the error
correction, decoding, and zero-state preparation procedures, in case measurements
and classical computation are allowed.

In the error correction procedure, no repetition is required, and one ancilla state is
needed for either dit-flips or phase-flips. This saved a factor of m in the construction.

The simplification is most notable in the case of the zero-state preparation pro-
cedure. In this case, we can omit the entire concatenated construction. We use the
circuit as in the case of q = 1 and simplify it further as follows. Observe that, after the
CNOTp gates from the computational block to the ancilla blocks it suffices to measure
every qudit in the ancilla blocks and perform the calculation of the error vector clas-
sically, without copying the dits first. Hence, the construction is transversal except
for the classical computation which does not introduce errors, and the spread is 1.

Finally, in the decoding procedure we can omit the copying of the dits.

5. Fault-tolerant gates for CSS codes over F2. In this section we give an
alternative construction to the one using polynomial codes. Here we use a restricted
class of CSS codes, which were used by Shor in [84]. Shor showed how to apply a
universal set of gates (which we denote by G2) on states encoded by such codes. It
turns out that almost all of the gates in G2 can be applied transversally. The only
complicated procedure is the Toffoli gate. We repeat the constructions of Shor for
the simple gates for completeness. As for the Toffoli gate, we essentially use Shor’s
construction, except that we adopt it to our framework in which no measurements
are allowed, which requires some extra work.

5.1. Some restrictions on the CSS codes. In the following, we will put
some restrictions on the CSS codes which we will use. This is done in order to be
able to apply several gates transversally, as will be seen shortly. We start with C1,
a punctured doubly even self-dual code, and set C2 = C⊥

1 . A punctured self-dual
code is a code which is obtained from a self-dual code C ′ (namely, a code for which
C ′ = C ′⊥) by deleting one coordinate. We also require that C ′ is a doubly even code;
i.e., the weight of each word in the code is divisible by 4. To see that in this case
C2 = C⊥

1 ⊂ C1, as in the definitions of CSS codes, observe that if v ⊥ C1, then
v0 ⊥ C ′, so v0 ∈ C ′⊥ = C ′, so v ∈ C1. We will denote that C1 = C and C2 = C⊥.

We now claim that there are only two cosets of C⊥ in C. If the length of C
is m, then dim(C ′⊥) = dim(C ′) = (m + 1)/2. Hence dim(C) = (m + 1)/2 as well,
since |C| = |C ′|, because no two words in C ′ are mapped to the same word in C by
the punctuation. Hence, dim(C⊥) = m − (m + 1)/2 = (m − 1)/2, and so dim(C) −
dim(C⊥) = 1. Observe that C includes the all-one vector: �1 ∈ C. This is true
since 1m+1 ∈ C ′⊥, because C ′ is even, and since C ′ is self-dual, 1m+1 ∈ C ′. Hence
1m ∈ C. Observe also that the length m must be odd due to the above considerations.
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This implies that �1 ∈ C⊥. The two code words in our quantum code can thus be
written as

|S�0〉 =
∑

w∈C⊥

|w〉,(5.1)

|S�1〉 =
∑

w∈C⊥

|w +�1〉.

|S�0〉 and |S�1〉 can be thought of as encoding |0〉 and |1〉, respectively. We will

make use of the fact that �a · �b mod 2 = ab, for a, b ∈ 0, 1, and that �a + �b =
−−−→
a + b.

This fact allows us to shift easily between operations on vectors and operations on
the bits they represent. We will therefore usually omit the vectors in the notations of
|S�0〉 and |S�1〉, unless there is ambiguity.

5.2. The set of gates for CSS codes G2. We work with the following set of
gates, which we denote by G2:

1. NOT: |a〉 �−→ |1 − a〉.
2. CNOT: |a, b〉 �−→ |a, a + b〉.
3. Phase: |a〉 �−→ ia|a〉.
4. SWAP: |a〉|b〉 �−→ |b〉|a〉.
5. Controlled phase: |a〉|b〉 �−→ (−1)ab|a〉|b〉.
6. Hadamard: |a〉 �−→ 1√

2

∑
b(−1)ab|b〉.

7. Toffoli gate: |a, b, c〉 �−→ |a, b, c + ab〉.
8. Adding a qubit in the state |0〉.
9. Discarding a qubit.

All of the additions and multiplications above are in F2 (i.e., modulo 2). Section 6
shows that this set of gates is universal. We remark here once again that, like the set
G1, the set G2 is by no means a minimal universal set of gates, but the fault-tolerant
procedures become simpler and shorter if we have a larger repertoire of fault-tolerant
gates that we can use. The following theorem shows how to perform gates from G2

on encoded states fault-tolerantly.
Theorem 6. Fix a CSS code that satisfies the restrictions of subsection 5.1. For

any gate in G2, there exists a fault-tolerant procedure with spread 1 that computes the
gate on states encoded by the code. There exist also fault-tolerant error correction,
decoding, and zero-state preparation procedures for this code, which all have spread 1.
Moreover, all of these procedures use only gates from G2 and in particular do not use
measurements.

The constructions of the error correcting, decoding, and zero-state preparation
procedures follows exactly the construction of section 4. It remains to show the
constructions of the computational gates.

5.3. Transversal gates. In the following we omit overall normalization factors,
since all vectors are known to be unit vectors. We also set a, b ∈ C/C⊥. We start
with the NOT gate:

|Sa〉 =
∑

w∈C⊥

|a1 + w1〉 ⊗ · · · ⊗ |am + wm〉

�−→
∑

w∈C⊥

|a1 + 1 + w1〉 ⊗ · · · ⊗ |am + 1 + wm〉 = |Sa+�1〉.(5.2)
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For CNOT,

|Sa〉|Sb〉 =
∑

w∈C⊥

|a1 + w1〉 ⊗ · · · ⊗ |am + wm〉
∑

w′∈C⊥

|b1 + w′
1〉 ⊗ · · · ⊗ |bm + w′

m〉
(5.3)

�−→
∑

w∈C⊥

|a1 + w1〉 ⊗ · · · ⊗ |am + wm〉
∑

w′∈C⊥

|a1 + b1 + w1 + w′
1〉 ⊗ · · ·

⊗ |am + bm + wm + w′
m〉

= |Sa〉|Sa+b〉,

where the last equality follows from the fact that C⊥ is a linear subspace, and therefore
summing over w +w′ for a fixed w in the code is equivalent to summing over w′. For
the phase gate, apply the gate |a〉 �−→ ia|a〉 three times on each coordinate. This gives

(5.4)

|Sa〉 =
∑

w∈C⊥

|a1+w1〉⊗· · ·⊗|am+wm〉 �−→
∑

w∈C⊥

i3(
∑

k ak+wk)|a1+w1〉⊗· · ·⊗|am+wm〉.

This is the desired result, because of the following fact. Since C is obtained from a
doubly even self-dual code C ′ by deleting one coordinate, it is easy to see that C⊥ ⊂ C
are exactly those words in which the deleted coordinate was 0. Thus, all words in C⊥

have weight which is divisible by 4, and all words in C but not in C⊥ have weight
which is 3 mod 4.

For the encoded controlled phase gate,

(5.5) |S�a〉|S�b〉 =
∑

w,w′∈C⊥

|�a+w〉|�b+w′〉 �−→
∑

w,w′∈C⊥

(−1)(�a+w)·(�b+w′)|�a+w〉|�b+w′〉.

Now (�a + w) · (�b + w′) = �a ·�b mod 2. This is true since �a ∈ C and w′ ∈ C⊥ so

�a·w′ = 0 mod 2, and likewise w ·�b = w ·w′ = 0 mod 2. Moreover, �a·�b mod 2 is equal to
ab, and so the final state is indeed the desired state. Finally, for the Hadamard gate,

|Sa〉 =
∑

w∈C⊥

|a1 + w1〉 ⊗ · · · ⊗ |am + wm〉 �−→
∑

x∈Fm
2

∑
w∈C⊥

(−1)(a+w)·x|x〉(5.6)

=
∑
x∈C

(−1)a·x|x〉 =
∑

b∈C/C⊥

∑
w∈C⊥

(−1)a·(b+w)|b + w〉 =
∑
b

(−1)a·b|Sb〉.

It remains to show how to apply the Toffoli gate on encoded states.

5.4. The fault-tolerant Toffoli gate. To apply the Toffoli gate, we roughly
follow Shor’s scheme, where we construct an ancillary state denoted by |A0〉 and
use it to obtain the Toffoli gate. The main difference from Shor’s scheme is in the
construction of the ancillary state, which is not completely straightforward if one
wants to avoid using measurements.

Our constructions of encoded gates for polynomial codes, which we discussed in
section 4, is much simpler than the construction we get for the Toffoli gate. First,
for the Toffoli gate we need not only zero-state preparations but also the preparation
of a three-block ancilla state. Second, the subsequent operations given the ancilla
state are not transversal as in the case of the polynomial codes. The work of [48]
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shows how to encode a universal set of gates by procedures which consist of ancilla
state preparation followed by transversal operations (namely, teleportation). This,
however, is done by assuming measurements and classical computation.

5.4.1. Construction of the ancilla state |A0〉. Define the ancilla state

(5.7) |A0〉 =
1

2

∑
a,b

|SaSbSab〉.

We also define

(5.8) |A1〉 =
1

2

∑
a,b

|SaSbS1−ab〉,

which is easily convertible to |A0〉 by applying NOT on the third block. Note that the
state

(5.9)
1√
2
(|A0〉 + |A1〉) =

1

2
√

2
(|S0〉 + |S1〉)(|S0〉 + |S1〉)(|S0〉 + |S1〉)

is easy to construct by preparing three zero states |S0〉 and then applying an encoded
Hadamard on each block. In order to convert this state to |A0〉, we use states of the
form

(5.10) |Scat〉 =
1√
2
(|S0〉m + |S1〉m),

which we call encoded cat states. An encoded cat state can be achieved by applying
m zero-state preparation procedures to get |S0〉m, followed by an encoded Hadamard
on the first block, and then CNOT gates from the first block to all other blocks.

We will also make use of the transformation

(5.11) |Sa〉m|Ab〉 �−→ (−1)ab|Sa〉m|Ab〉

for bits a, b. The transformation (5.11) is performed by applying

(5.12) |Sa〉|b〉|c〉|d〉 �−→ (−1)a(bc+d)|Sa〉|b〉|c〉|d〉

on the ith block in the encoded cat state and the ith bit in each of the three blocks
of |A0〉 + |A1〉. By applying this transformation for 1 ≤ i ≤ m we get

(5.13) |Sa〉m|Sb〉|Sc〉|Sd〉 �−→ (−1)a(bc+d)|Sa〉m|Sb〉|Sc〉|Sd〉,

which is exactly the desired transformation of (5.11). Note that transformation (5.12)
need not be fault-tolerant. We do not care if one fault ruins the entire block |Sa〉.

Let us start with the state

(5.14)
1√
2r+1

(|S0〉m + |S1〉m)r(|A0〉 + |A1〉),

where r will be chosen soon. Now apply transformation (5.11) between each one of
the r encoded cat states and the last register, and between every two subsequent
applications of transformation (5.11), perform an error correction on the last register.
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The reason for the error corrections will become clear shortly. The resulting state
would then be

(5.15)
1√
2r+1

(|S0〉m + |S1〉m)r|A0〉 +
1√
2r+1

(|S0〉m − |S1〉m)r|A1〉.

We would now like to “measure” (without any measurement) the r cat states,
in order to decide (essentially, by taking majority over the r “measurement” results)
whether the cat states are in their plus or minus states. If the answer is “plus,” we
would know that the state of the final three registers is |A0〉, the desired state, and if
“minus,” we would know it is |A1〉, in which case we could apply NOT on the third
block to get |A0〉.

We can now explain why the error corrections were added in between the different
applications of transformation (5.11) that led to the state of (5.15): Transformation
(5.11) is derived by m applications of transformation (5.13). Hence, a single error
in the last register can cause a flip of sign in the encoded cat state, from “plus” to
“minus” or vice versa. If this single error is not corrected, the signs will be wrong in
all of the remaining cat states, too.

To apply the measurement of the sign of one encoded cat state in a fault-tolerant
manner, we observe that applying encoded Hadamard gates on all m blocks in one
encoded cat state results in

1√
2
(|S0〉m + |S1〉m) �−→ 1√

2m−1

2m∑
i=0,i·�1=0

|Si1〉|Si2〉 . . . |Sim〉,(5.16)

1√
2
(|S0〉m − |S1〉m) �−→ 1√

2m−1

2m∑
i=0,i·�1=1

|Si1〉|Si2〉 . . . |Sim〉.

This means that the answer plus or minus is determined by the parity of the strings in
the sum. To compute the parity fault-tolerantly, we apply a fault-tolerant decoding
procedure on each block, to get a string of m (ideally equal) bits. We then compute
the parity transversally: We consider all of the first bits in the blocks (there are m of
them) and compute their parity, by using a quantum circuit made of Toffoli, CNOT,
and NOT gates. Likewise, we consider all of the second bits and compute their parity,
and so on. For each encoded cat state, we therefore get m parity bits. We compare the
parity bits of the different encoded cat states transversally by applying m majority
votes of the form:

(5.17) |a1, a2, . . . , ar, b〉 �−→ |a1, a2, . . . , ar, b + maj(ai)〉.

Each such majority vote can be constructed once again from Toffoli, CNOT, and NOT
gates, since they are universal for classical computations. Finally, we apply CNOT
transversally from the result of the majority vote to the qubits in the third block of
|A0〉.

It is left to see that the spread of this procedure is 1. We will consider errors at
different stages of the procedure. The construction of an encoded cat state allows one
fault to propagate to one error since it is composed of the state preparation procedure
and CNOTs applied transversally. This is true also for the construction of the state
1√
2
(|A0〉 + |A1〉) because we used only the fault-tolerant state preparation procedure

and the transversal Hadamard gate. A more subtle consideration is required for
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transformation (5.11). An error during this transformation can cause a whole block
in one of the cat states in the state (5.13) to be affected, together with one qubit in
each one of the last three blocks. However, one such block can ruin the parity bits
of only one encoded cat state. As long as the number of faulty parity bits is less
than r/2, the majority vote will still give the correct parity. An error in the parity
computations or in the majority vote cannot affect more than one qubit in |A0〉, since
they are done transversally.

We choose r to be 2k0 +1, where k0 = �q/2�. The reason is that, in our proof, we
will distinguish between cases with at most k0 faults in a rectangle, which we treat
as the good case, and other cases which will be shown to be rare. Hence, we would
like to be able to tolerate �q/2� faults in a rectangle. Choosing r = 2k0 + 1 will do
the trick.

5.4.2. Construction of Toffoli gate given |A0〉. The construction of the
Toffoli gate given |A〉 follows Shor’s scheme almost exactly, with minor changes due
to the fact that measurements are replaced by CNOT gates to additional blank qubits.
Also, classical conditioning on the results of the measurements is replaced by unitary
gates on the computation qubits and extra blank qubits carrying the results of the
measurements. Here is how this is done. We will first generate “half” a Toffoli gate:

(5.18) |Sa〉|Sb〉|S0〉 �−→ |Sa〉|Sb〉|Sab〉.

A Toffoli gate can be generated from transformation (5.18) in the following way. We
start with the three blocks on which we want to apply Toffoli: |Sa〉|Sb〉|Sc〉. Then
we generate |S0〉 on an extra block, by using the zero-state preparation procedure.
We then apply transformation (5.18) on the first two blocks and the newly generated
|S0〉. Then we apply an encoded CNOT from our original third block |Sc〉 to the new
block. We finally apply an encoded Hadamard on the original third block. This gives
the overall transformation:

(5.19) |Sa〉|Sb〉|Sc〉|S0〉 �−→
1√
2
|SaSbSc+ab〉(|S0〉 + (−1)c|S1〉).

Note that if the fourth block was not there, we would be done, because the
operation on the first three blocks is exactly the Toffoli gate. We next decode the
fourth block. Hence, we would like to apply the operation

(5.20) |Sa〉|Sb〉|Sc〉 �−→ (−1)ab+c|Sa〉|Sb〉|Sc〉

on the first three blocks, conditioned that the decoded qubits are 1.
This can be applied transversally, in the following way. First, apply a controlled

phase on |Sc〉 and the decoded qubits, in a transversal manner. This will give the factor
(−1)c. To apply |Sa〉|Sb〉 �−→ (−1)ab|Sa〉|Sb〉 conditioned on the decoded qubits, apply
transversally the operation: |a〉|b〉|d〉 �−→ (−1)abd|a〉|b〉|d〉, where |d〉 is a decoded
qubit. This achieves the correct transformation since we know that the controlled
phase can be applied transversally. This operation can be applied by adding a blank
qubit |a〉|b〉|0〉|d〉 and applying a Toffoli gate on the first three qubits, followed by a
controlled phase on the last two qubits, and then by a Toffoli gate again on the first
three qubits.

It is left to show how to construct transformation (5.18) on two blocks B1 and B2.
This is done by generating the ancilla state |A0〉 as before. Now apply an encoded
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CNOT from the first block of |A0〉 to the first block B1 and from the second block of
|A〉 to the second block B2. This achieves the transformation

(5.21) |Sc〉|Sd〉|A0〉 �−→
∑
a,b

|Sa+c〉|Sb+d〉|Sa〉|Sb〉|Sab〉.

We note that the last three blocks have a strong connection to the Toffoli gate. More
precisely, we note that projecting the above sum on the subspace where the first two
blocks are |S0〉|S0〉 implies that a = c, b = d, and the gate which is achieved on
the last three blocks is exactly the desired Toffoli gate. If the first two blocks are the
state |S0〉|S1〉, this implies that a = c, b = ¬d, and so the gate which is achieved is the
encoded version of |c, d〉 �→ |c,¬d, c¬d〉. Similarly for the two other possibilities we get
the encoded versions of |c, d〉 �→ |¬c, d,¬cd〉 and |c, d〉 �→ |¬c,¬d,¬c¬d〉, respectively.

To adjust for these deviations from the Toffoli gate, we apply decoding procedures
to the first two blocks and then apply the following corrections transversally on the
five blocks:

|0, 0〉|a, b, c〉 �−→ |0, 0〉|a, b, c〉,(5.22)

|0, 1〉|a, b, c〉 �−→ |0, 1〉NOT(2)CNOT(1, 3)|a, b, c〉,
|1, 0〉|a, b, c〉 �−→ |1, 0〉NOT(1)CNOT(2, 3)|a, b, c〉,
|1, 1〉|a, b, c〉 �−→ |1, 1〉NOT(1)NOT(2)NOT(3)CNOT(1, 3)CNOT(2, 3)|a, b, c〉.

It is easy to check that this achieves the desired corrections. The transformation in
(5.22) is a reversible transformation on five qubits and can therefore be constructed
by a constant number of classical gates from the set G2.

The spread of this procedure is 1, since we use the decoding procedure which has
spread 1 and everything else is done transversally.

6. Universality of the sets of gates G1 and G2. In this section we prove
the universality of the sets of gates we use. Roughly, a set of gates is said to be
universal if the subgroup generated by the set of gates is dense in the group of unitary
operations on n qubits U(2n) (for p-qudits the group is U(pn)). A beautiful theorem
by Kitaev [50, 52] and Solovay and Yao [85] implies that if a set G is universal, then
any quantum circuit that uses arbitrary gates with constant fan-in can be replaced
by one that uses only gates from G, such that the overhead in time and space of the
new circuit is only polylogarithmic. This theorem gives meaning to the notion of
universality, since it implies that restricting the computation to a universal gate set
implies only polylogarithmic overhead, and thus one can regard such a set as sufficient
for quantum computation.

Our proof of universality of the set G2, used for CSS codes, is a simple reduction
to a set of gates shown to be universal by Kitaev [50]. A similar result was achieved
independently by Boykin et al. [26]. The proof that the set of gates G1 used for
polynomial codes is universal is much more complicated. It is based on geometrical
arguments on the special unitary group SU(n), together with some basic facts from
the theory of finite fields.

We start with a detailed discussion of the notion of universality. We then proceed
to prove some geometrical lemmas that we will use in our universality proofs, and,
finally, we prove the universality of the gate sets G1 and G2.
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6.1. Universal sets of gates—basic results.
Definition 19. Let p ≥ 2. A set of gates G on k ≥ 2 p-qudits is said to

be universal if it is closed under inversion and G ∪ {ei2πθI}real θ generates a dense
subset in U(pk).

The inclusion of the scalars of the form e2πiθ (which are of absolute value 1 and
are sometimes called phases) does not have any physical effect, since multiplying a
gate by such a phase does not change the resulting density matrix.

The fact that this definition indeed captures the notion of universality is summa-
rized by the following theorem.

Theorem 7. Consider ε > 0, a quantum circuit Q that uses arbitrary gates (of
constant fan-in), and a universal set of gates G. The circuit Q can be translated to a
circuit Qε that uses only gates from G such that the following three conditions hold:

1. Qε computes a function that approximates the function computed by Q to
within total variation distance ε.

2. Qε is only polylogarithmically larger and deeper than Q.
3. The description of Qε can be efficiently computed given the description of Q.

The proof of this theorem is well known for the case of qubits, and we extend
it here for the case of p-qudits. The proof is based on two results. The first result,
known as the Solovay–Kitaev theorem, states that “density implies efficiency”: If a
set operating on some Hilbert space is universal, then it can be used to approximate
any unitary matrix on the same space exponentially rapidly. Moreover, the sequence
of gates from G that achieves the approximation can be found efficiently.

Theorem 8 (see Kitaev [50, 52] and Solovay [85]). Let G be a universal set of
gates over U(pk) for some integers p, k ≥ 2. Then there exists a Turing machine A
that, given a matrix M ∈ U(pk) and ε > 0, outputs a sequence of gates g1, . . . , g� ∈ G
such that ‖M−g�·g�−1 . . . g1‖ < ε, and both � and the running time of A are polynomial
in log(1/ε).

The proof of this beautiful and fundamental theorem uses Lie groups and Lie
algebras and is beyond the scope of this paper.

To complete the proof of Theorem 7 we need another fact: An operation on any
number of qubits (qudits) can be achieved by using gates that operate on only two
qubits (qudits). This was proved for the case of qubits by DiVincenzo [40], a proof
which was simplified by Barenco et al. [19]. We give here a proof for the general case
of qudits, by using similar ideas to those used by Deutsch [39] and Barenco et al. [19].

Theorem 9. Let G be a universal set of gates on k ≥ 2 p-qudits. Consider the
Hilbert space of m > k p-qudits. Then the set of gates achieved by extending the gates
in G to operate on m p-qudits generates a dense subset of U(pm).

Proof. We define a generalized Toffoli gate on m qudits Tm(Q) to be a gate which
applies Q on the mth qudit conditioned that the first m−1 qudits are in the state p−1
(see Figure 6.1).

The conditioned Q can be applied on the rth qudit, instead of the mth one, in
which case we denote the gate by Tm,r(Q).

Claim 5. The set of gates Tm,r(Q) can be approximated to within an arbitrary
accuracy by using the extensions of gates from G to m qudits.

Proof. We first show in Figure 6.2 an explicit sequence of generalized Toffoli gates
on m− 1 qudits, Tm−1(Q)’s, which achieves Tm(Q).

We denote that V = Q
1
p , and ⊕ denotes here the NOTp = NOTp(1) operation.

It is easy to check that the above circuit indeed gives the desired controlled Q, by
considering what happens to the basis states, in two cases: All first m − 2 qudits
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m

Q

Fig. 6.1. The controlled operation in F2 is replaced here by conditioning the application of Q
on the fact that the first m − 1 qudits are in the state p − 1. Note the difference from the usual
conditioning, which for the case of m = 2 would give CNOTp. To distinguish it from the standard
kind of conditioning, we denote this controlling operation by an empty circle.

Q V
P−1 + V

m

p−1

VV
+ +

V

Fig. 6.2. The gate Tm(Q) can be written as a sequence of gates of the form Tm−1(Q). After
the first controlled V p−1, we apply Tm−1(NOTp), followed by a controlled V †, and repeat this pair
of gates p− 1 times. At the end we apply V controlled on the first p− 2 qudits.

are equal to p − 1, or not. By using the above scheme recursively we can construct
a circuit which uses k-qudit gates of the form of Tk(Q) and achieves Tm(Q) for any
m > k and any one-qudit Q. Since the set G is universal, the gates of the form Tk(Q)
can be approximated. Note that the recursion starts with two-qudit gates, which is
the reason why we require k ≥ 2. The construction is similar for Tm,r(Q).

The gate Tm(Q) can be seen as applying Q on the subspace spanned by the last
p basis vectors while applying identity on the rest. The next step is to construct a
generalization of the above gate, i.e., a gate which applies Q ∈ U(p) on the subspace
spanned by any p basis vectors |i1〉, . . . , |ip〉 while applying identity on the rest of
the basis vectors. Denote this matrix by Tm(Q, i1, . . . , ip). We note that since G is
universal, it can be used to approximate any one-qudit gate, so we are also allowed
to use in our construction NOTp gates.

Claim 6. The gate Tm(Q, i1, . . . , ip) can be constructed by using gates of the form
Tm,r(Q) together with NOTp gates.

Proof. Consider the set of gates {Tm,r(Q)}, where Q runs over all permutation
matrices on the Hilbert space of one qudit and r runs over all m qudits. We first
prove that this set, augmented with NOTp gates, generates all permutation matrices
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on m qudits. To prove this, it suffices to construct all matrices of the form τi,j for two
strings i, j ∈ {0, p− 1}m that differ in only one coordinate. The matrix τi,j is defined
to be the transformation that switches the two basis vectors |i〉, |j〉 and τi,j |k〉 = |k〉
for any k = i, j. Let the coordinate on which i, j disagree be the rth coordinate, and
let this coordinate be equal to a in the string i and to b in the string j. To construct
τi,j , apply NOTp gates on all of the coordinates except the rth coordinate, so that
all of these coordinates in both strings become equal to p − 1. Now apply Tm,r(Q),
with Q on the rth coordinate being the matrix which permutes |a〉 and |b〉, leaving
the rest of the basis vectors untouched. Then reverse all of the NOTp gates on all
of the coordinates but the rth one. This gives τi,j and therefore all permutations on
basis vectors. The general Tm(Q, i1, . . . , ip) for any Q can now be achieved by first
permuting the basis vectors i1, . . . , ip to the last p vectors, applying Tm(Q), and then
permuting back.

The last step is to use Tm(Q, i1, . . . , ip) to construct a general pm×pm unitary ma-
trix U . Let us denote the pm eigenvectors of U by |ψj〉 with corresponding eigenvalues
eiθj . U is specified by U |ψj〉 = eiθj |ψj〉. Define

(6.1) Uk|ψj〉 =

{
|ψj〉 if k = j,
eiθk |ψk〉 if k = j.

Then U = Πpm

k=1Uk. It is left to show how to construct Uk. For this we will show
how to construct a transformation R with the following properties: R takes |ψk〉 to
λ|(p − 1)m〉 for some complex number λ of absolute value 1. We don’t care what R
does to the rest of the vectors. Given such an R, we can use it to construct Uk as
follows. We first apply R. We then apply the generalized Toffoli gate which takes
|(p− 1)m〉 to eiθk |(p− 1)m〉 and does nothing to the rest of the basis states. Then we
apply R−1 which takes λ|(p− 1)m〉 to |ψk〉. This indeed achieves Uk, as can be easily
checked.

To construct R, and similarly R−1, we do the following. We start with |ψk〉, and
we first make the coefficient in front of |0m〉 zero, by a rotation in the plane spanned
by |0m〉 and |(p− 1)m〉. This is a special case of the Tm(Q, i1, . . . , ip) which we have
constructed before. Thus, the weight of |0m〉 has been shifted to |(p − 1)m〉. In the
same way, the weights in front of all basis vectors, one by one, can be shifted to
|(p− 1)m〉, and this achieves R.

6.2. Useful lemmas for proving universality. We proceed to state two geo-
metrical lemmas. These will be used in the proofs of universality of the sets of gates
G1 and G2. These lemmas are due to Kitaev, who used them for proving universality
of the set of gates in [50].

Lemma 2. Let n ≥ 3. Let |α〉 ∈ Cn. Let H be the subgroup in SU(n) which fixes
|α〉, and let V ∈ U(n) be a matrix which does not leave the subspace spanned by |α〉
invariant. Then the subgroup generated by the subgroups H and V −1HV is dense in
SU(n).

The proof of this lemma can be found in the solution of Problem 8.11 in [52].
Lemma 3. Let U1 and U2 be two noncommuting matrices in SU(2) such that

their eigenvalues are not integer roots of unity. The subgroup generated by U1, U2 is
dense in SU(2).

Proof. If x is an element of SU(2) not of finite order, then the closed subgroup
generated by x is connected and of dimension 1. The closed group generated by both
U1 and U2 is thus connected and is noncommutative. Any connected noncommutative
subgroup of SU(2) is all of SU(2).
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6.3. Universality of the set of gates G1 for polynomial codes. We would
now like to show that the set of gates for polynomial codes G1 is universal.

Theorem 10. Consider p-qudits for a prime p > 3. The set of gates G1 together
with all phase factors is universal for U(p5).

Let us first show that we have at our disposal all classical gates on two qudits.
Let F be a finite field of characteristic p for some prime p and size q = pr for some r.
Consider the basic classical reversible gates on F -valued registers, including addition
and multiplication by a nonzero constant, reversible addition, [a, b] → [a, a + b], and
Toffoli [a, b, c] → [a, b, c + ab]. For a characteristic different than 2, we also consider
the second basic set, which is the above set of gates but with the Toffoli gate replaced
by the squaring gate: [a, b] → [a, b + a2/2]. We claim the following.

Lemma 4 (folklore). Both sets of basic reversible gates, applied on k ≥ 3 qudits,
generate the full permutation group Sqk . In both cases an ancillary register in the
state 0 is added to the system.

Proof. We start with the first set of basic gates. Denote by Gk the group gen-
erated by the basic gates on k registers. For a function g : F k−1 → F we define the
permutation πg : F k → F k by

πg([a1, . . . , ak]) = [a1 + g(a2, . . . , ak), a2, . . . , ak].

The coordinate to which g is added is called the target coordinate. The main result
of Ben-Or and Cleve [23] is that, for k ≥ 3 and any such function g, πg ∈ Gk.

We now use functions of the form πg to generate all of Sqk . First, recall that any
permutation on Sqk can be written as a product of transpositions of the form τi,j for
i, j ∈ F k such that the string i differs from the string j in only one coordinate (τi,j
leaves all other coordinates unchanged). It thus suffices to generate τi,j from functions
of the form πg. To do this, we add one ancillary dit in the state 0. Let us assume
that the coordinate in which the strings i, j differ is the rth one. Define g : F k → F
to be the function that takes a string s to the value of the rth coordinate in τi,j(s).
We have that πg([a0, a1, . . . , ak]) = [a0 + g(a1, . . . , ak), a1, . . . , ak], which operates on
an ancillary coordinate (a0) plus the k original coordinates, is at our disposal.

To achieve τi,j , we apply πg. This is followed by π′
g, which we define to be

π′
g([a0, a1, . . . , ak]) = [a0, a1, ar−1, ar − g(a1, . . . , ar−1, a0, ar+1, . . . , ak), ar+1, . . . , ak].

We note that

[a1, . . . , ak] → [a1 − g(a2, . . . , ak), a2, . . . , ak]

is in Gk, by applying πg q − 1 times. Hence, by renaming coordinates, π′
g is also at

our disposal. By the definition of g we have that π′
gπg[0, a1, . . . , ak] = [g[a1, . . . , ak],

a1, . . . , ar−1, 0, ar+1, . . . , ak] which is the desired transposition up to swapping the
coordinates.

The proof for the second set of basic reversible gates is similar by using the fact
that in this case πg ∈ Gk for any k ≥ 2, which was also proved in [23].

Remark 2. In fact, the same result can be proved without the ancillary qudit, by
using results from Coppersmith and Grossman [35]. We do not give details here.

Since G1 contains all basic gates, this implies that we have at our disposal all
classical gates on three (and therefore also on two) qudits. Next, we prove an analogue
for Fp of the well-known fact that one-qubit gates and classical two-qubit gates are
universal for qubits [19].

Lemma 5. The group G generated by the set of gates consisting of all one-qudit
gates SU(Cp) and all classical two-qudit gates is the special unitary group on two

qudits SU(Cp2

).
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Proof. We will use the fact that the lemma we are trying to prove is already
known for the case of p = 2. Let S be the two-dimensional subspace in Cp spanned
by the first two basis vectors |0〉 and |1〉. Clearly, SU(S) is in U(Cp). Let S� be the
two-dimensional subspace in the Hilbert space of the �th qudit, for � ∈ {0, 1}, and
let A = S1 ⊗ S2. Since we have at our disposal all classical gates, we also have all
permutations of basis vectors of A. We can use the fact that A is isomorphic to the
Hilbert space of two qubits, and Lemma 5 for the case of qubits, and so this implies
that SU(A) can be generated. We now augment A by one computational basis state
at a time to get the entire space.

Consider |i1〉, . . . , |ip2−2〉 to be a sequence of computational basis vectors which

completes the basis of A, |00〉, |10〉, |01〉, |11〉, to a basis for Cp2

. Define Aj = A ⊕
|i1〉 ⊕ · · · ⊕ |ij〉. We prove by induction on j that we can generate SU(Aj). Suppose
that we can generate SU(Aj−1). The classical gate which permutes |ij〉 and |ij−1〉,
leaving all other states unchanged, is at our disposal. This gate is in SU(Aj) and
does not leave the subspace spanned by |ij〉 invariant. Hence, we can apply Lemma
2 to get all of SU(Aj).

Lemma 5 implies that it would suffice to show that all one-qudit gates are at our
disposal. Denote by Q the one-qudit matrix of the form

(6.2) Q =

⎛
⎜⎜⎜⎝

w
1

. . .

1

⎞
⎟⎟⎟⎠ ,

which applies a phase factor of w on the state |0〉.
Lemma 6. Q and Q−1 are in the subgroup generated by G1 on three qudits.
Proof. We will generate Q⊗ I ⊗ I, which applies the following transformation:

|0〉|a〉|b〉 �−→ w|0〉|a〉|b〉,(6.3)

|j〉|a〉|b〉 �−→ |j〉|a〉|b〉, j = 0.

To achieve this transformation, we view this gate as applying multiplication by w of
the second qudit, conditioned that the first qudit is 0. Recall that in our notation P
is a one-qudit gate that applies a phase shift P |a〉 = wa|a〉, and B is a one-qudit gate
that applies a bit shift B|a〉 = |a + 1 mod p〉. Both B and P are in our repertoire.
Denote by Λ(B) the controlled B, which applies B on the second qudit, conditioned
that the first qudit is 0, and applies the identity on the second qudit if the state of the
first qudit is anything but 0. Λ(B) is also at our disposal by Lemma 4. Now consider
the commutator

(6.4) P−1 · Λ(B)−1 · P · Λ(B),

where the P ’s are applied to the second qudit. This is exactly the gate we want, since,
if the first qudit is 0, the matrix which is applied on the second qudit is P−1 · B−1 ·
P ·B = wI. If the first qudit is in a basic state which is not |0〉, the matrix which is
applied on the second qudit is the identity.

We now consider the two commutator matrices in 〈G1〉, the group generated by G1:

(6.5) X = HQH−1Q−1, Y = HQ−1H−1Q,
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where H is the generalized Fourier transform. We also define the two-dimensional
subspace S:

(6.6) S = span

{
|0〉,

∑
b∈Fp,b 
=0

|b〉
}
.

The claim is that X and Y operate as the identity on the orthogonal subspace to S.
Lemma 7. X and Y operate as the identity on S⊥

i .
Proof. It is easy to write down explicitly the matrix elements of X = HQH−1Q−1

and Y = HQ−1H−1Q:

Xab =

{
δab + 1

p (w − 1) if b = 0,

(δab + 1
p (w − 1))w−1 if b = 0,

(6.7)

Yab =

{
δab + 1

p (w−1 − 1) if b = 0,

(δab + 1
p (w−1 − 1))w if b = 0.

To see that X and Y operate as the identity on the subspace orthogonal to S, consider
the matrices X − I and Y − I, which satisfy (6.7) if we subtract δab from each term.
We show that the orthogonal vectors to S are all in the kernel of X − I and Y − I. A
vector v orthogonal to S satisfies

(6.8) v0 = 0,
∑
b,b 
=0

vb = 0,

and thus ∑
b∈Fp

(X − I)abvb =
1

p
(w − 1)

∑
b 
=0

vb = 0,(6.9)

∑
b∈Fp

(Y − I)abvb =
1

p
(w−1 − 1)

∑
b 
=0

vb = 0.

We denote by X ′ and Y ′ the two matrices confined to S. We claim that these
matrices generate a dense subgroup in the group of 2 × 2 unitary matrices U(2)
operating on S. We will want to use Lemma 3, and the main effort is to prove that
the eigenvalues of X ′ and Y ′ are not integer roots of unity. The proof of this fact is
based on some basic results regarding cyclotomic fields and Galois fields, which can
be found in [98].

Lemma 8. For p > 3, the eigenvalues of X ′ and Y ′ are not integer roots of
unity.

Proof. The subspace S is spanned by the orthonormal basis vectors |0〉 and
|α〉 = 1√

p−1

∑
b∈Fp,b 
=0 |b〉. By (6.7) and a little algebra we get

X ′|0〉 =

(
1 +

1

p
(w − 1)

)
w−1|0〉 +

√
p− 1

p
(w − 1)|α〉,(6.10)

X ′|α〉 =

√
p− 1

p
(w − 1)w−1|0〉 +

(
1 +

p− 1

p
(w − 1)

)
|α〉,

and for Y we get the transformation

Y ′|0〉 =

(
1 +

1

p
(w−1 − 1)

)
w|0〉 +

√
p− 1

p
(w−1 − 1)|α〉,(6.11)

Y ′|α〉 =

√
p− 1

p
(w−1 − 1)w|0〉 +

(
1 +

p− 1

p
(w−1 − 1)

)
|α〉.
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It is easy to verify that X ′, and similarly Y ′, have determinant 1. The character-
istic polynomial for X ′ is λ2 − Tr(X ′)λ + Det(X ′), which amounts to

(6.12) f(λ) = λ2 − 2 + (p− 1)(w + w−1)

p
λ + 1.

Y ′ has exactly the same characteristic polynomial. We want to show that the roots
of this polynomial are not integer roots of unity. Let us assume that one of the roots
of the above polynomial is a primitive nth root of unity, denoted by ζn, for some
integer n. The other solution is the complex conjugate of ζn, and we have

(6.13)
2 + (p− 1)(w + w−1)

p
= ζn + ζ−1

n .

We will first prove that n = p or 2p. Denote by Q(w) and Q(ζn) the Galois extensions
of the field of rationals obtained by adjoining w and ζn, respectively, to the field of
rationals Q. Also, denote by Q(w)+ the maximal real subfield of Q(w) obtained by
extending Q by w +w−1, and similarly denote the maximal real subfield of Q(ζn) by
Q(ζn)+. By (6.13), Q(ζn)+ = Q(w)+.

The degree of the extension deg(Q(w)/Q(w)+) is exactly 2, since w is a root
of the minimal two degree polynomial x2 − (w + w−1)x + 1 over the field Q(w)+.
Similarly, deg(Q(ζn)/Q(ζn)+) = 2. On the other hand, deg(Q(w)/Q) = p − 1 and
deg(Q(ζn)/Q) = φ(n), by Theorem 2.5 in [98]. Now, for three fields, F1, F2, and
F3 such that F3 extends F2 which extends F1, we have deg(F3/F1) = deg(F3/F2)
deg(F2/F1). It follows that

(6.14) deg(Q(w)+/Q) =
p− 1

2
, deg(Q(ζn)+/Q) =

φ(n)

2
.

But Q(w)+ = Q(ζn)+, which implies that the degrees of extensions are equal, so
φ(n) = p− 1.

Now if p > 3, then w + w−1 ∈ Q, since deg(Q(w + w−1)/Q) = (p − 1)/2 > 1.
Since w+w−1 ∈ Q(w)∩Q(ζn), we have Q = Q(w)∩Q(ζn). If p and n were relatively
prime, we would have Q = Q(w) ∩Q(ζn) (by Proposition 2.4 in [98]), and so p must
divide n, say, n = prm, with m coprime to p. This implies that

(6.15) φ(n) = pr−1(p− 1)φ(m).

Since, as we have seen before, φ(n) = p− 1, we have pr−1φ(m) = 1. We deduce that
r = 1 and φ(m) = 1. This can be satisfied only if m = 1 or m = 2, namely, n = p or
n = 2p.

In the first case of p = n we get

(6.16)
1 + (p− 1) cos(2π/p)

p
= cos(2kπ/p),

where we have set ξn = e2πik/n. If p > 3, (6.16) is not satisfied by any integer k, since
the left-hand side is a convex combination of cos(2π/p) and 1, and no real part of a
pth root of unity lies between these two points.

In the second case of p = 2n, we get

(6.17)
1 + (p− 1) cos(2π/p)

p
= cos(kπ/p).

Ruling this out is similar to ruling out (6.16), except that we have to show that

the case of k = 1 does not hold, namely, 1+(p−1) cos(2π/p)
p = cos(π/p). This is true

because the cosine function is a concave function. The lemma follows.
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We can now show that we have at our disposal all one-qudit gates.
Claim 7. For p > 3, the set G1 operating on three qudits generates all one-qudit

gates.
Proof. Since we are allowed to operate on three qudits, we can generate Q by

Lemma 6. We can thus generate X and Y . It is easy to see that, if w = ±1 or,
equivalently, p = 2, the off-diagonal terms of X ′Y ′ − Y ′X ′ are not zero, and so X ′

and Y ′ do not commute. We can therefore apply Lemma 3, by using the fact that
the eigenvalues are not roots of unity, by Lemma 8. We thus have a dense subset of
the special unitary group SU(2) on all subspaces S. We now want to augment the
subspace S by one basis vector at a time, to get the entire SU(p) group. To do this,
we define S0 = S and, for p > j ≥ 1, Sj = S ⊕ |1〉 ⊕ · · · ⊕ |j〉. We have seen that we
can generate SU(S0). Assume by induction that we can generate SU(Sj−1), and let
us see that we can generate SU(Sj). Let |γ〉 be the state orthogonal to Sj−1 inside

Sj . If we set |δ〉 = sump−1
k=j+1|k〉, then it is easy to check that |γ〉 is a nontrivial

combination of |δ〉 and |j〉. We have at our disposal a classical gate which exchanges
|0〉 and |j〉. Moreover, this gate is in SU(Sj). This gate does not leave the subspace
spanned by |γ〉 invariant. Hence we can apply Lemma 2 and get all of SU(Sj). Since
SU(Sp−1) = SU(p), the claim is proved.

The proof of Theorem 10 now follows easily.
Proof of Theorem 10. We have shown that we have at our disposal all one-qudit

gates. Lemma 4 shows that, by working on five qudits, we also have in our repertoire
all classical gates on three qudits and, in particular, all classical gates on two qudits
which act trivially on the third qudit. Lemma 5 implies that we can generate all two-
qudit gates. The theorem follows from Theorem 9, which shows that these matrices
can be used to construct all matrices on five qudits U(p5).

6.4. Universality of the set of gates G2 used for CSS codes. The set of
gates used for CSS codes is shown here to be universal. The theorem is based on an
argument by Kitaev [50] which is given here for completeness.

Theorem 11. The set of gates G2 together with all phase factors is universal for
U(25).

Proof. We denote by P the gate that takes |1〉 to i|1〉 and does nothing to |0〉.
Λ(P ) is the controlled P , namely, the gate which applies P on a second qubit only
if the first qubit is |1〉 and does nothing otherwise. The proof is based on a result
by Kitaev [50], which asserts that the set of gates {Λ(P ), H} is universal. Since the
Hadamard gate H is already in our set G∈, we need only to show how to construct
Λ(P ) from our set of gates. We will denote by Ta1,...,ak

a generalized Toffoli on the k
qubits a1, . . . , ak. This gate applies NOT on the kth qubit conditioned that the first
k − 1 qubits are in the state |1〉. We first construct T1,2,4,5 out of five qubits. This
can be done by using three-qubit Toffoli gates as follows:

a, b, c, d, e
T1,2,3�−→(6.18)

a, b, c + ab, d, e
T3,4,5�−→

a, b, c + ab, d, e + cd + abd
T1,2,3�−→

a, b, c, d, e + cd + abd
T3,4,5�−→

a, b, c, d, e + abd,

which is exactly T1,2,4,5. Define X = P 3
4 T1,2,3,4P4T1,2,3,4, where P4 applies the gate P

to the fourth qubit. X takes |1110〉 �−→ i|1110〉, |1111〉 �−→ −i|1111〉 and does nothing
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to the other basis states. X2 is the three-qubit gate which gives |111〉 �−→ −|111〉
and identity on the rest of the basis vectors, tensored with identity on the fourth
qubit. Now, to construct Λ(P ), we apply P 3

3 T1,2,3P3T1,2,3 followed by X2. The first
sequence of gates gives |110〉 �−→ i|110〉, |111〉 �−→ −i|111〉 and identity on the rest.
By applying X2 we get Λ(P ) tensored with identity on the third qubit. The theorem
now follows from Kitaev [50].

We now provide Kitaev’s argument which uses Lemmas 2 and 3 to show that
Λ(P ) and the Hadamard gate are universal. Denote that

X1 = H1Λ(P )1,2H1,(6.19)

X2 = H2Λ(P )−1
2,1H2.

Define Y1 = X1X
−1
2 and Y2 = X2X

−1
1 . Note that Y1 and Y2 both operate as the

identity on the two states |00〉 and |η〉 = |01〉+ |10〉+ |11〉. Denote by L the subspace
orthogonal to |00〉 and |η〉. Then Y1 Y2 ∈ SU(L). Y1, and Y2 do not commute, and
their eigenvalues are 1

4 (1±
√

15). Hence, by Lemma 3 they generate a dense subgroup
in SU(L). Now add to Y1, Y2 also the gate Λ(P ) itself. This gate fixes |00〉 but does
not stabilize the space |η〉. We can use Lemma 2 to show that the set {Y1, Y2,Λ(P )}
generates a dense subgroup in SU(L⊕|η〉). Finally, add H1 to the set Y1, Y2,Λ(P ). We
have seen that Y1, Y2,Λ(P ) generates a dense set in the subgroup that fixes |00〉, while
H1 is not in this subgroup. Hence, H1, Y1, Y2,Λ(P ) (which are all gates generated by
H and Λ(P )) generate a dense subgroup of SU(L ⊕ |η〉 ⊕ |00〉) = SU(4). Together
with all phase factors, we get the unitary group on two qubits.

7. Fault tolerance for independent probabilistic noise. In this section we
prove our main result: the threshold theorem for fault tolerance in the presence of
probabilistic noise with a constant error rate. To do this we use the ingredients we
have developed in the previous sections: quantum error correcting codes and fault-
tolerant procedures on states encoded by these codes. The construction is based on
a simulation of an unreliable circuit M0 by another circuit M1, which computes the
same function. The new circuit M1 is deeper and requires more space than M0 but
only by a constant factor. The advantage is that, under certain conditions on the error
rate, M1 is more reliable than the original circuit M0. In such a case, the simulation
can be applied recursively, each time achieving further improvement in the effective
error rate. The final quantum circuit Mr, which is only polylogarithmically larger
and deeper than M0, can be shown to be fault-tolerant against a constant error rate.
To analyze the propagation of errors in Mr, we define the notion of sparse errors and
sparse fault paths, by using hierarchical definitions that fit the hierarchical structure
of the construction. The threshold theorem is proved in two parts. First, we show
that sparse fault paths are good, meaning that they cause sparse errors which do not
affect the final result. Second, we show that nonsparse fault paths are rare, as long
as the error rate is below a certain threshold.

For this section, we use the terminology of qubits. Everything works in exactly
the same way if the particles are qudits instead, as is required in the scheme which
uses the polynomial codes. In this case, the final circuit will of course consist of
p-qudits, where p is some finite dimension.5

5One can of course apply our construction, which uses polynomial codes, such that the final
circuit is implemented with qubits. For this, we simply replace each p-qudit in the final circuit with
�log(p)� qubits. The proof that the new circuit is fault-tolerant follows similar ideas as in section 9.
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7.1. Quantum computation codes. In order to compute on encoded states,
we need a quantum code accompanied with a universal set of gates which can be
applied fault-tolerantly (namely, with small spread) on states encoded by C. The
code should also be accompanied with fault-tolerant decoding, zero-state preparation,
and error correction procedures. We define the following.

Definition 20. A quantum code is called a quantum computation code with
spread 1 if it is accompanied with a universal set of gates G with fault-tolerant pro-
cedures and with fault-tolerant zero-state preparation, decoding, and correction proce-
dures, all with spread 1. Moreover, we require that

(1) all procedures use only gates from G, and
(2) the correction procedure takes any density matrix to some word in the code.
The first restriction in the definition of a quantum computation code allows us

to use this code in a recursive construction. The second restriction is required for a
more subtle reason, as will become clear in the proof of Lemma 9.

Theorem 5 implies that the polynomial QECC accompanied by the set of gates
G1 is a quantum computation code with spread 1. Theorem 6 implies the same for
CSS codes over F2 restricted as in section 5.1, with the set of gates G2.

In our proof of fault tolerance, we will be interested not in the spread of one
procedure but in the spread of a sequence of two procedures, namely, an encoded
gate preceded by an error correction (this will be referred to as a rectangle). For the
case of procedures of spread 1, this does not matter, since by augmenting two such
procedures one after the other, the resulting circuit consisting of the pair of procedures
also has spread 1.

Unfortunately, this does not hold for the case in which the spread of the procedures
we augment is larger than 1. In fact, if the spread of the procedures is �′, the spread
of a circuit consisting of two of them one after the other might be �′2. We take this
into account in our definition of a quantum computation code which uses procedures
of spread larger than 1. A quantum computation code with spread � is defined as in
Definition 20, except that we require that the spread of the decoding and zero-state
preparation procedure, as well as the spread of a sequence of an encoded gate preceded
by an error correction procedure, be �.

Obviously, we must require that the number of errors that the code can correct q
be larger than the spread of the code, so that we can tolerate at least one fault in a
rectangle. In fact, we require more than that for our proof to work: We need 2� ≤ q,
as will be seen in Lemma 9.

7.2. Recursive simulations. From now on, fix a quantum computation code
C. It encodes one qubit on m qubits, it corrects q errors, and it is accompanied with a
universal set of gates G which can be performed fault-tolerantly. We will fix m to be a
constant which does not grow with n. Let M0 be a quantum circuit using gates from
G. We simulate M0 by a more reliable circuit M1, as follows. Each qubit is replaced by
a block of qubits. Each time step in M0 transforms in M1 to a working period, which
consists of two stages. In the first stage, an error correction procedure is applied on
each block. At the second stage, each gate which operated in the simulated time step
in M0 is replaced in M1 by its procedure, operating on the corresponding blocks.

The input of M1 is the input to M0, where each input bit is duplicated m times.
Before any computation is done on this input, we apply in M1 a zero-state preparation
procedure, then apply CNOTp transversally from the given input string |am〉 to the
encoded state |S0〉, and discard the m initial dits. At the end of the computation
we will again use redundancy: For each block, we apply a decoding procedure which
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decodes the state to m copies of the logical bit, and the output of M1 is defined as
the majority of the bits in each block.

The above mapping, denoted by M1 = φ(M0), constitutes one level of the sim-
ulation. The mapping φ is then applied once again, this time on M1, to give M2.
We repeat this r levels to get Mr = φr(M0), an r-simulating circuit of M0. The
number of levels r is O(polyloglog(V (M0))), where V (M0) is the volume of M0, i.e.,
the number of locations in M0 (see Definition 5 of the term location). The output
of Mr is defined by taking recursive majority on the outputs. This means that first
we take the majority in each block of size m, then we take the majority, of m such
majority bits, and so on for r levels, to give one output bit.

7.3. Blocks and rectangles. The recursive simulations induce a definition of s-
blocks: Every qubit transforms to a block of m qubits in the next level, and this block
transforms to m blocks of m qubits, and so on. One qubit in Mr−s thus transforms to
ms qubits in Mr. This set of qubits in Mr is called an s-block. This induces a division
of the qubits in Mr to s-blocks, and this division is a refinement of the division to
s + 1-blocks. A 0-block in Mr is simply a qubit. In the same way, one can define
s-working periods. Each time step in M0 transforms to w time steps in M1, and an
s-working period is the time interval in Mr which corresponds to one time step in
Mr−s.

The recursive simulation induces a partition of the set of locations in Mr to
generalized rectangles. An r-rectangle in Mr is the set of locations which originated
from one location in M0. This is best explained by an example: Consider a CNOT
gate which is applied in M0 at time t on qubits q1, q2. The location ((q1, q2), t) in
M0 transforms in M1 to error correction procedures on both blocks, followed by the
procedure of the CNOT gate. The set of locations in these three procedures is the 1-
rectangle in M1 which originated from the location ((q1, q2), t) in M0. More generally,
an s-rectangle in Mr is the set of points in Mr which originated from one location
in Mr−s. Note that the partition to s-rectangles is a refinement of the partition to
(s + 1)-rectangles. A 0-rectangle in Mr is just one location.

7.4. Sparse errors and sparse faults. In a noiseless scenario, the state of
Mr at the end of each r-working period encodes the state of M0 at the end of the
corresponding time step. However, we assume that errors occur in Mr, and we want
to analyze those. In order to analyze the propagation of errors in Mr, we need to
distinguish between the actual faults that occur during the computation and the
errors that are caused in the state. First, we focus on the errors in the states and
define a distance between encoded states. The hierarchy of blocks requires a recursive
definition.

Definition 21. Let B be the set of qubits in n r-blocks. An (r, k)-sparse set of
qubits A in B is a set of qubits in which, for every r-block in B, there are at most k
(r−1)-blocks such that the set A in these blocks is not (r−1, k) sparse. A (0, k)-sparse
set of qubits A is an empty set of qubits.

Two density matrices ρ1 and ρ2 of the set of qubits B are said to be (r, k)-
deviated if there exists an (r, k)-sparse set of qubits A ⊆ B, with ρ1|B−A = ρ2|B−A.
The deviation satisfies the triangle inequality since the union of two sets which are
(r, l1)- and (r, l2)-sparse, respectively, is (r, l1 + l2)-sparse, by induction on r.

We will see that a computation is successful if the error at the end of each r-
working period is sparse enough. The question is which fault paths keep the errors
sparse. We will show in Lemma 9 that this is guaranteed if the fault path is sparse.
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Definition 22. A set of locations in an r-rectangle is said to be (r, k)-sparse if
there are no more than k (r−1)-rectangles in which the set is not (r−1, k)-sparse. A
(0, k)-sparse set in a 0-rectangle is an empty set. A fault path in Mr is (r, k)-sparse
if, in each r-rectangle, the set is (r, k)-sparse.

7.5. The good part: Sparse fault paths keep the error sparse. We claim
that if the fault path is sparse enough, then the error corrections keep the deviation
small. The number of effective errors at any given level is thus constantly maintained
below the dangerous zone. This is true at all levels, and indeed we prove it by
induction on the level index r.

Lemma 9. Let C be a computation code that corrects q errors, with spread �.
Let Mr be the r-simulation of M0 by C. Consider a computation subjected to an
(r, k)-sparse fault path with 2k� ≤ q. At the end of each r-working period the error is
(r, q/2)-sparse.

A condition of the form k� ≤ q is natural, since k faults can indeed propagate
to k� errors if the spread is �, and so we have to require that k� ≤ q for the error
correction to work. Our condition is in fact more restrictive, having the additional
factor of 2, for technical reasons that will become apparent in the proof.

Proof. It is instructive to first prove this lemma for r = 1. This is done by
induction on the time step t. For t = 0 the deviation is zero. Suppose that the
density matrix at the end of the tth working period is (1, q/2)-deviated from the
correct density matrix. If no errors occur during the tth working period, the error
corrections would have corrected the state to φ(ρ(t)), and the procedures would have
taken it to the correct state φ(ρ(t+1)). However, k faults did occur in each rectangle.
We will use the fact that the rectangle has spread �. Let us add the k faults to
the fault path in the rectangle one by one. While adding the ith fault, we have
(q/2 + (i − 1))� ≤ q − �, because i ≤ k, and 2k� ≤ q. Hence, this satisfies the
requirement in Definition 17, and so we can deduce that each of the faults we add
increases the deviation in the state at the end of the rectangle by at most � qubits in
each block. Thus, we have in each block at most k� qubits which are affected by the
faults, and the final deviation is at most k� ≤ q/2. This proves the theorem for r = 1.

For general r, we prove two assertions together, by using induction on r. The
first assertion implies the desired result.

1. Consider n r-blocks, in a density matrix ρr which is (r, q/2)-deviated from
φr(ρ0), where ρ0 is a density matrix of n qubits. At the end of an r-working
period which r-simulates the operation of g0 on ρ0, with an (r, k)-sparse set
of faults, the density matrix is (r, q/2)-deviated from φr(g0 ◦ ρ0).

2. Consider n r-blocks in the state ρr such that x of the blocks are in an arbitrary
density matrix and y of them are in a density matrix which is (r, q/2)-deviated
from some word in the code φr(ρ0). Consider an r-working period which r-
simulates the operation g0 with an (r, k)-sparse set of faults, applied on ρr.
We claim that at the end of the r-working period the state is the same as if we
started with the y blocks as they are and the x blocks corrected to some word
in the code. More precisely, at the end of the r-working period the density
matrix is (r, q/2)-deviated from φr(g0 ◦ ρ′0), where ρ′0 is a density matrix of n
qubits which when reduced to the qubits corresponding to the y good blocks
is equal to ρ0.

For r = 1 the proof of the first assertion is as before. The second assertion is
true because of a similar argument, using the second requirement in the definition
of a quantum computation code (Definition 20), namely, that the error correction
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procedure takes any density matrix to a word in the code. Let us now assume both
claims for r and prove each of the claims for r + 1.

Proof of Assertion 1. We consider an (r + 1)-working period operating on ρr+1,
(r + 1)-simulating the procedure encoding g0 on ρ0. The (r + 1)-simulation working
period can be seen as an r-simulation of one working period in M1 which 1-simulates
some computation in M1, consisting of an error correction procedure followed by an
encoded gate.

Consider for a moment the 1-simulation circuit. We know that this circuit has
spread �. By using the fact that k� + q/2 ≤ q, we know that if at most k faults
occurred in this 1-simulation, and if the input state is (1, q/2)-deviated from being
correct, then the output state is at most (1, q/2)-deviated from the correct state,
namely, from φ(g0(ρ0)).

We now turn back to the r-simulation of this circuit, namely, to our (r + 1)-
working period. We now assume a wrong assumption: The state at the end of each
r-working period (in our (r + 1)-working period) is (r, q/2)-deviated from some word
in the code. This means that the q/2 problematic input blocks are (r, q/2)-deviated
from some word in the code and, moreover, that at the end of each of the problematic
r-rectangles the state of these blocks is (r, q/2)-deviated from some word in the code.
In this case the proof of the first assertion follows easily from our first induction
assumption, as follows.

Let w be the number of r-working periods in the (r + 1)-working period. By the
induction assumption on the first assertion, we have that at the end of each one of
the r-working periods the matrix is (r, q/2)-deviated from what it is supposed to be
by the computation we are r-simulating, namely, by the 1-simulation with spread �.
After w applications of this induction assumption, we get that the matrix at the end
is (r, q/2)-deviated from a matrix φr(ρ1), where ρ1 is (1, q/2)-deviated from g0(ρ0).
This implies that the final density matrix is (r + 1, q/2)-deviated from the correct
matrix φr+1(g0(ρ0)).

To release the wrong assumption, we use the induction hypothesis on the second
assertion. We claim that nothing changes in the above argument if we apply, before
each r-working period, an error correction procedure on each r-block, which has an
(r, k)-sparse set of faults. By the induction assumption on the first assertion, for
blocks which are (r, q/2)-deviated from some word in the code, this will remain the
case after this error correction. Consider a block which is not (r, q/2)-deviated from
some word in the code. Then the error correction will indeed change it to a block
which is (r, q/2)-deviated from some word in the code. If the next r-rectangle that
operates on that block is bad (namely, the fault path in this r-rectangle is not (r, k)-
sparse), then the fact that we have added the correction does not change anything in
the argument, since the faults can be chosen adversarially to ruin the entire block. If
the next r-rectangle is good (namely, the fault path in it is (r, k)-sparse), then by the
induction assumption on the second assertion this correction will happen in any case,
and thus does not matter. Hence, the above argument goes through.

Proof of Assertion 2. The proof follows almost exactly the same argument as
for the first assertion. We consider again an r-simulation of a 1-simulation. The first
stage of the 1-simulation we consider here is a 1-error correction which takes any word
to some word in the code, and so it is supposed to take the 1-blocks corresponding
to the y-blocks to their state φ(ρ0) and the x-blocks to some state. Hence, the 1-
simulation is supposed to take the state to φ(ρ′0) as in the assertion. The remainder
of the procedure is supposed to apply φ(g0) to this state. Once again impose the
wrong assumption as in the proof of the first assertion, and use the fact that the
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spread of the 1-circuit is �. By the induction assumption on the first assertion, we
have that, at the end of each one of the r-working periods in the r-simulation of the
above 1-simulation, the matrix is (r, q/2)-deviated from what it is supposed to be.
We get that, under this assumption, the final matrix would be (r, q/2)-deviated from
a matrix φr(ρ1), where ρ1 is (1, q/2)-deviated from φ(ρ′). This implies that the final
matrix is (r + 1, q/2)-deviated from φr(ρ′0). The relaxation of the wrong assumption
is done exactly as before.

This lemma implies that, if the faults are sufficiently sparse, the level of deviation
can be kept below a certain value for the entire computation, and so at the end of
the computation the set of errors is sparse. We need to show that in this case the
recursive majority of the output bits indeed gives the correct answer.

Lemma 10. Let 2q+1 ≤ m. Let the final density matrix of Mr be (r, q/2)-deviated
from the correct one. Consider the distribution on n bit strings which is obtained by
measuring the output and taking recursive majority on each r-block. This distribution
is equal to the output distribution of M0.

Proof. Let ρr be the correct final density matrix of Mr. Let ρ′r be the final
density matrix which is (r, q/2)-deviated from ρr. This remains true if we apply a
measurement of all of the qubits and also if we discard certain r-blocks which do not
correspond to the output of the computation. We can thus assume that ρr and ρ′r are
the density matrices of the output qubits, that they are mixtures of basis states, and
that ρ′r is (r, q/2)-deviated from ρr.

Note that, due to the reading procedure, the correct density matrix ρr is in the
subspace which is spanned by basis states in which all of the coordinates in one r-block
are equal, i.e., are of the form |imr

1 , im
r

2 , . . . , im
r

n 〉. We have to show that, when we
measure the qubits as a density matrix which is (r, q/2)-deviated from such a matrix,
and we take the recursive majority, we get the correct distribution.

The matrix ρr can be written as {pi, |αi〉}, where |αi〉 = |imr

1 , im
r

2 , . . . , im
r

n 〉. All
qubits in an r-block are equal, since the matrix is correct. The probability that the
recursive majority string is i is exactly pi. ρ′r can be written as {qj , |βj〉}, where |βj〉
are basis vectors. Let A be a subset of qubits such that ρr|A = ρ′r|A and A contains
all of the qubits on which ρr operates, except an (r, q/2)-sparse set. We know that the
reduced density matrix of ρ′r to A is the same as that of ρr, and so we have that ρ′r
is supported only by |βj〉 such that their restrictions to qubits in A are strings which
agree on all qubits in each r-block. Moreover, we have

(7.1)
∑

j,βj |A=αi|A

qj = pi.

It is easy to see that the recursive majority string for |βj〉 in the above sum is the
same as that of |αi〉 and therefore is equal to i. Hence, we have that the probability
for the recursive majority to be i in ρ′r is pi, and this completes the proof.

7.6. The bad part: Nonsparse fault paths are rare below the threshold.
Let us first analyze the improvement in the effective error rate when going from M0

to M1. By Lemma 9 we know that, as long as the number of faults k in each rectangle
in M1 satisfies k ≤ q/2� (where q is the number of errors the code corrects and �
is the spread of the code), then the computation at the end is correct. Therefore,
the probability for more faults than q/2� in one rectangle is a good definition of the
effective error rate: If no such event happened, than there is no error. We can easily
upper bound this probability from above. We set k0 = �q/2�� and denote by A the
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number of locations in the largest rectangle in any simulation using C. Then

(7.2) ηeff =

(
A

k0 + 1

)
ηk0+1

is an upper bound on the probability for more than k0 faults in one rectangle. We
refer to this bound as the effective error rate of the new circuit M1 (we have obviously
overestimated the effective error rate in this definition, but we do not attempt to
optimize our analysis here).

Definition 23 (the threshold). We define the threshold ηc to be the error rate
for which ηeff = η:

(7.3) ηc =
1(

A
k0 + 1

)1/k0
.

The following claim justifies the term threshold.
Claim 8. Suppose that k0 ≥ 1. For any η below the threshold η < ηc, we have

that the effective error rate is strictly smaller than the actual error rate: ηeff < η.
Proof. Note that x = η/ηc < 1.

ηeff =

(
A

k0 + 1

)
ηk0+1 =

(
A

k0 + 1

)
ηk0+1
c xk0+1 = ηcx

k0+1 = ηxk0 < η.

We now show that, below the threshold, bad (namely, nonsparse) fault paths are
rare.

Lemma 11. If η < ηc, ∃δ > 0 such that the probability P (r) for the fault path
restricted to an r-rectangle to be (r, k0)-sparse is larger than 1 − η(1+δ)r .

Proof. Let δ be such that

(7.4)

(
A

k0 + 1

)
ηk0+1 < η1+δ.

Such a δ exists for η below the threshold, by Claim 8.
The proof of the lemma follows by induction on r. The probability for a 0-

rectangle, i.e., one location, to have faults which are (0, k0)-sparse, namely, the prob-
ability that in this location a fault did not occur, is 1 − η.

Assume for r, and let us prove for r+1. For the faults in an (r+1)-rectangle not
to be (r + 1, k0)-sparse, there must be at least k0 + 1 r-rectangles in which the fault
path is not (r, k0)-sparse. So

P (r + 1) ≥ 1 −
(

A
k0 + 1

)
(1 − P (r))k0+1 > 1 − η(1+δ)r+1

,

by using the induction assumption and the fact that η(1+δ)r < η < ηc, and hence (7.4)
can be applied with η(1+δ)r instead of η.

We can now prove the threshold theorem.
Theorem 12 (the threshold theorem for probabilistic noise). Let ε > 0. Let C

be a computation code using a set of gates G. There exist a constant threshold ηc > 0
and constants c1, c2, c3 such that the following holds. Let Q be a quantum circuit, with
n input qubits (qudits), which operates t time steps, uses s gates from G, and has v
locations. There exists a quantum circuit Q′ which operates on n ·O(logc1(v

ε )) qubits
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(qudits), for time t · O(logc2(v
ε )), and uses v · O(logc3(v

ε )) gates from G such that,
in the presence of probabilistic noise with error rate η < ηc, Q

′ computes a function
which is within ε total variation distance to that computed by Q.

Proof. We set M0 to be equal to Q. Let k0 = �q/2�� as before. We set δ to be as
in (7.4). We choose r such that vη(1+δ)r < ε. We then define Q′ to be Mr generated
according to the above scheme. By Lemma 11, we have that the probability for a fault
path to be bad, i.e., not (r, k0)-sparse, is smaller than ε. By Lemmas 9 and 10, the
(r, k0)-sparse fault paths give correct outputs. The resulting function (or distribution)
is thus within ε total variation distance from correct.

As for the overhead, the number of qubits in Q′ is nmr, the number of time steps
is twr, where w is the largest number of time steps in one rectangle, and the number
of gates is vAr. The proof follows from our choice of r, which turns out to be some
constant times log log(ε/v).

8. The threshold result for general noise. So far, we have dealt only with
probabilistic faults. Actually, the circuit generated by the above recursive scheme
is robust also against general local noise. This makes the applicability of the result
much wider.

We prove this by writing the noise operator on each qubit as the identity plus a
small error term. By expanding the error terms in powers of η, we get a sum of terms,
each corresponding to a different fault path. The threshold result for general noise is
again proved by dividing the faults into good and bad parts. First, we show that the
bad part is negligible, i.e., that the norm of the sum of all terms which correspond to
nonsparse fault paths is small. The proof that the good faults are indeed good, i.e.,
that the error in the terms corresponding to sparse fault paths is sparse, is based on
the proof for probabilistic errors, together with some linearity considerations.

The threshold one gets in this case is slightly worse.

8.1. Fault paths in the case of general noise. The notion of fault paths is
less clear in the case of general noise. To define fault paths, write the final density
matrix of the noisy circuit as follows:

(8.1) ρ(t) = E(t) · L(t) · E(t− 1) · L(t− 1) . . . E(0) · L(0)ρ(0).

In the above equation, E(t) is the noise operator operating at time t, and L(t) is the
computation operator at time t. According to our noise model (2.3), E(t) can be
written as a tensor product of operators, operating on the possible locations of faults
at time t, Ai,t. Each such operator can be written as a sum of two operators, by using
(2.4):

(8.2) EAi,t
(t) = (1 − η)I + E ′

Ai,t
(t), ‖E ′

Ai,t
(t)‖ ≤ 2η.

We can replace all of the error operators in (8.1) by the products of operators of
the form (8.2). We get:

ρ(t) =
(
⊗Ai,t

((1 − η)I + E ′
Ai,t

)
)
· L(t) ·

(
⊗Ai,t−1

((1 − η)I + E ′
Ai,t−1

)
)
· L(t− 1)(8.3)

. . .
(
⊗Ai,0

((1 − η)I + E ′
Ai,t−1

)
)
L(0)ρ(0).

We can open up the brackets in the above expression. We get a sum of terms,
where in each term, for each set of qubits Ai,t at time t, we operate either (1 − η)I
or E ′

Ai,t
(t). Thus, each term in the sum corresponds to a certain fault path. More
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precisely, a fault path is a subset of the locations {Ai,t}i,t, and the term in the sum
which corresponds to this fault path is exactly the term in which we apply E ′

Ai,t
(t)

on all locations in the fault path and apply (1 − η)I on the rest. As was done in the
probabilistic case, we can now divide the above sum (8.3) into two parts: the sum
over the good fault paths and the sum over the bad fault paths. We define the good
fault paths to be those which are (r, k0)-sparse, and the bad ones are all of the rest.
We write

(8.4) ρ(t) = Lg · ρ(0) + Lb · ρ(0).

We will treat each part separately.

8.2. The bad part: Nonsparse fault paths are negligible below the
threshold. We show that the trace norm of the bad part is negligible, when η is
below the threshold for general noise.

Definition 24. The threshold for general noise η′c > 0 is defined to be the error
rate η such that

(8.5) e

(
A

k0 + 1

)
(2η)k0+1 = 2η,

where, as before, k0 = �q/2��, q is the number of errors which the code corrects, � is
the spread of the code, and A is the maximal number of locations in a rectangle. The
threshold for general noise for the code C is thus

(8.6) η′c =
1

2
e−k0

(
A

k0 + 1

)−k0

.

Note that there is a slight difference from the threshold in the case of probabilistic
noise. A factor of 2 is added to η, and the factor of e is added to the whole definition.
These differences are due to the fact that the norm of the good operators in the
general noise case is not smaller than 1 but can also be slightly larger than 1. η′c is
thus taken to be smaller than the threshold for probabilistic noise ηc.

We now prove that the contribution of the bad fault paths is indeed small.
Lemma 12. Let η〈η′c, ε〉0. Let M0 use v locations. Let r = polyloglog(v

ε ). Then
in Mr

‖Lb‖ ≤ ε, ‖Lg‖ ≤ 1 + ε.

Proof. We shall rewrite the sum over all fault paths, by collecting together all of
the operations according to in which r-rectangles they were done. In other words, we
order the r-rectangles in some topological order, and then apply all of the operators
that belong to one rectangle, before we start with a different rectangle. We now open
up the operators corresponding to one r-rectangle, by using (8.2). We denote by Lb(i)
the sum over all operators on the ith r-rectangle that correspond to errors on a bad
fault path in this rectangle. Similarly, Lg(i) is the sum over all operators on the ith
rectangle that correspond to good fault paths. If there are v procedures, we can write

(8.7) ρ(t) = (Lg(v) + Lb(v)) · (Lg(v − 1) + Lb(v − 1)) . . . (Lg(1) + Lb(1))ρ(0)

for ρ(0) being the initial density matrix. We first prove that

(8.8) ∀1 ≤ i ≤ v, ‖Lb(i)‖ ≤ (2η)(1+δ)r , ‖Lg(i)‖ ≤ 1 + (2η)(1+δ)r ,
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where δ is defined by

(8.9) e

(
A

k0 + 1

)
(2η)k0+1 < (2η)1+δ.

Such a δ exists because η is below the threshold defined in (8.6). The proof of
inequality (8.8) for η < η′c follows the lines of Lemma 11.

We use induction on r. It is useful to add the superscript r and denote by
Lr
b(i) the sum over all bad fault paths in an r-rectangle. For r = 0, a 0-rectangle is

simply one location. Hence L0
b(i), which is the sum over all bad fault paths in this

location, consists of only one term: the gate applied in this location (which could be
the identity) followed by one noise operator. By (8.2), and the properties of the norm
on superoperators in section 2.9, ‖L0

b(i)‖ ≤ 2η and ‖L0
g(i)‖ ≤ 1 + 2η.

We now assume for r and prove for r + 1. For the faults in an (r + 1)-rectangle
not to be (r + 1, k0)-sparse, there must be at least k0 + 1 r-rectangles in which the
fault is not (r, k0)-sparse. So by the induction assumption on both Lb(i) and Lg(i)

‖Lr+1
b (i)‖ ≤

(
A

k + 1

)
((2η)(1+δ)r )k+1(1 + (2η)(1+δ)r )A−k−1(8.10)

≤ e

(
A

k + 1

)
((2η)(1+δ)r )k+1,

where we have used the fact that (1+(2η)(1+δ)r )A−k−1 < e, since (2η)(1+δ)r < 2η and

2ηA ≤ 1. The right-hand side is ≤ (2η)(1+δ)r+1

by using the fact that (2η)(1+δ)r < 2η
and the fact that the threshold condition of (8.6) is satisfied for η < η′c. This proves
the induction step for Lb(i). By using ‖Lg(i)+Lb(i)‖ = 1 we can prove the induction
step also for Lg(i). To prove the statement, we consider bad fault paths, i.e., at least
one r-rectangle is bad. If there are v rectangles, we have

(8.11) ‖Lb‖ ≤ v · (1 + (2η)(1+δ)r )v−1(2η)(1+δ)r .

Setting r = polyloglog(v
ε ) gives the desired result.

8.3. The good part: Sparse fault paths give almost correct outputs.
Lemma 13. Let η < η′c, ε > 0. Let M0 have v locations. Let Pi be the probability

to measure the string i in M0 (operating without noise). Let r = polyloglog(v
ε ), as in

Lemma 12, and let Mr be defined as before. We consider the operator Lg as in (8.4),
and ρ(0) as the input density matrix of Mr. Then

∣∣∣∣
∑
j �→i

[Lg · ρ(0)]j,j − Pi

∣∣∣∣ ≤ ε,

where j �→ i means that taking recursive majority on the string j results in the string i.
Proof. The measurement of the output qubits of any density matrix of nmr

qubits induces some probability distribution over n-bit strings by taking the recursive
majority. For any density matrix ρ which is (r, q/2)-deviated from the correct final
density matrix of Mr, this probability distribution is the same one as the output
distribution of M0. In other words, the probability for each n-bit string is the same
as that of M0.

Since Lg corresponds to sparse fault paths, we would now like to apply Lemma
9 to show that Lgρ(0) is (r, q/2)-deviated from the correct final matrix. However,
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since we are dealing with general noise, the matrix Lgρ(0) is not necessarily a density
matrix or even a positive-semidefinite matrix. This is because the operators E ′

Ai,t
that

it involves are not necessarily completely positive.
To bypass this technical issue, we recall that

(8.12) E ′
Ai,t

= EAi,t − (1 − η)I,

which is a weighted sum of physically admissible operators (EAi,t and I). Hence, we
can write Lg as a weighted sum of (r, k0)-sparse fault paths that do correspond to
physically admissible operators:

(8.13) Lg · ρ(0) =
∑
f

λfLf · ρ(0),

where each term in the above sum Lf · ρ(0) corresponds to an evolution of the initial
density matrix subject to physically admissible faults operating in a set of locations
which is (r, k0)-sparse. Lemma 9 thus applies to each term in the sum. We get that
each density matrix Lf · ρ(0) is (r, q/2)-deviated from correct. This means that

(8.14)
∑
j �→i

[Lg · ρ(0)]j,j =
∑
f

λf

∑
j �→i

[Lf · ρ(0)]j,j =

(∑
f

λf

)
Pi.

However, by using (8.13), we have

(8.15)∣∣∣∣
∑
f

λf−1

∣∣∣∣ = |Tr(Lg·ρ(0))−1| = |Tr((Lg+Lb)·ρ(0))−1−Tr(Lb·ρ(0))| = |Tr(Lb·ρ(0))|.

By using Property 1 of the superoperator norm (section 2) and Lemma 12, we
have

(8.16) |Tr(Lb · ρ(0))| ≤ ‖Lb‖‖ρ(0)‖ ≤ ε,

which completes the proof.

8.4. The threshold theorem for general noise. We can now prove the
threshold result for general noise.

Theorem 13 (the threshold theorem for general noise). Let ε > 0. Let C be a
computation code with gates G. There exist a threshold η′c > 0 and constants c1, c2, c3
such that the following holds. Let Q be a quantum circuit, operating on n qubits for t
time steps, which uses s gates from G, and has v locations. There exists a quantum
circuit Q′ which operates on nlogc1(v

ε ) qubits, for time tlogc2(v
ε ), and uses vlogc3(v

ε )
gates from G such that, in the presence of general noise with error rate η < η′c, Q′

computes a function which is within ε total variation distance from that computed
by Q.

Proof. We construct Q′ to be the r-simulation of Q, where r is chosen such that
the requirements of Lemma 12 are satisfied with ε′ = ε/2. We now estimate the
total variation distance between the output distribution of Q′ (after taking recursive
majority) and that of Q. As before, we denote the probability to measure i at the
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output of Q by Pi. The total variation distance is then

1

2

∑
i

∣∣∣∣
∑
j �→i

ρ(t)j,j − Pi

∣∣∣∣ =
1

2

∑
i

∣∣∣∣
∑
j �→i

([Lb · ρ(0)]j,j + [Lg · ρ(0)]j,j) − Pi

∣∣∣∣
(8.17)

≤ 1

2

(∑
i

∣∣∣∣
∑
j �→i

[Lb · ρ(0)]j,j

∣∣∣∣ +
∑
i

∣∣∣∣
∑
j �→i

[Lg · ρ(0)]j,j − Pi

∣∣∣∣
)
.

Lemma 13 implies that the second term is at most ε′. The first term is bounded from
above by the trace norm of Lb · ρ(0) and hence, by Lemma 7.6, by ε′. The sum of the
two gives 2ε′ = ε.

9. Fault tolerance with any universal set of gates. So far, the reliable
circuits which we have constructed can use only universal set of gates associated with
a quantum computation code, such as the sets G1 and G2. This is an undesirable
situation, both theoretically and practically. Theoretically, we would like to be able
to show that the fault-tolerance result is robust, meaning that fault-tolerant quantum
computation can be performed regardless of the universal set of gates which we use.
Practically, it is likely that the sets of gates G1 or G2 are difficult to implement
in the laboratory. We would like to be able to implement fault-tolerant quantum
computation by using the gates that are most readily available to us. Indeed, in this
section we provide the desired generalization and show that the threshold result holds
for any universal set of gates G. In other words, starting from a quantum circuit
which uses an arbitrary universal set of gates K, we can implement it fault-tolerantly
with any universal set of gates G of our choice. We require only that G contains a
gate which discards a qubit (qudit) and a gate which adds a blank qubit (qudit) to
the circuit.

The idea of the proof is that we design the final circuit in three stages: We start
from the original circuit which uses gates from K and simulate it by a circuit which
uses one of the sets of gates for which a quantum computation code exists, e.g., G1.
We then apply our fault-tolerant construction and get a circuit Mr which uses once
again gates from the same set associated with the computation code, say, G1. Finally,
we replace every gate g in Mr by a sequence of gates from G which approximates the
gate g to within a constant μ. The final circuit is denoted M ′

r. We now prove that
this construction works, if μ is chosen correctly.

In the following, we assume that we use the fault-tolerant construction with the
set of gates G1. The discussion can be easily changed to use the gate set G2.

Definition 25. For any gate g in G1, consider the smallest circuit (in terms of
number of locations) that uses gates from G and approximates g to within accuracy
μ. Denote this circuit by Q(g, μ). Let S(μ) be the maximum number of locations in
Q(g, μ) taken over all g in G1.

Claim 9. Fix a gate g ∈ G1. Consider the superoperator Q′(g, μ) which corre-
sponds to applying the circuit Q(g, μ) in the presence of general noise of error rate η.
We claim that, if η < 1/2S(μ), ‖g −Q′(g, μ)‖ ≤ 3S(μ)η + μ.

Proof. By the definition of Q(g, μ), it suffices to prove that ‖Q(g, μ)−Q′(g, μ)‖ ≤
3S(μ)η. We write down the superoperator corresponding to Q′(g, μ), as is done in
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(8.3). By using the triangle inequality, and (2.4), we have

‖Q(g, μ) −Q′(g, μ)‖ ≤ S(μ)(2η)(1 − η)S(μ)−1

+

(
S(μ)

2

)
(2η)2(1 − η)S(μ)−2 + · · · + (2η)S(μ)(9.1)

= (1 + η)S(μ) − (1 − η)S(μ).

Simple combinatorics now implies the result, taking into account that S(μ)η ≤ 0.5.
We view the circuit M ′

r as composed of generalized locations, where each gener-
alized location corresponds to the set of locations arising from the approximation of
one gate in Mr. Let us compare M ′

r in the presence of noise, viewed in this resolution
of generalized locations, to the circuit Mr operating without noise. Claim 9 implies
that at each generalized location the error in M ′

r, compared to the correct gate in Mr,
is at most 3S(μ)η + μ. We would like to apply our result from section 8, and so we
need to require that 3S(μ)η + μ < η′c, the threshold for general noise. By optimizing
for μ we get the following definition for the threshold:

(9.2) η′′c = min

{
max
μ<η′

c

η′c − μ

3S(μ)
,

1

2S(μ)

}
.

If η is smaller than this threshold, then Claim 9 applies, and we get that the effective
error rate ηeff = 3S(μ)η + μ is indeed below the threshold for general noise. This
allows us to prove the threshold theorem by using any universal set of gates in the
presence of general noise.

Theorem 14 (the threshold result in full generality). Let ε > 0. Let K and G
be two universal sets of quantum gates. There exist a constant η′′c > 0 and constants
c1, c2, c3 such that the following holds. Given any quantum circuit Q with n input
qubits, which operates for t time steps, uses s gates from K, and has v locations, there
exists a corresponding quantum circuit Q′ which operates on nO(logc1(v

ε )) qubits, for
time tO(logc2(v

ε )), and uses vO(logc3(v
ε )) gates from G such that, in the presence of

general noise with error rate η < η′′c , Q′ computes a function which is within ε total
variation distance from the function computed by Q.

Proof. We first approximate Q by a circuit M0 which uses only gates from the
set of gates G1 of a computation code C. Our new circuit M0 computes the same
function as Q up to total variation distance ε/2. We do this by approximating every
one of the s gates in Q by a sequence of gates from G that approximates the gate to
within ε/s. Due to the Kitaev–Solovay theorem (see section 6), the number of gates
required to replace each gate in Q is polylog(s/ε).

We now construct Mr, the r-simulation of M0, which again uses gates from G1.
This is done as in section 7, except that the choice of r is taken to suit the error rate
ηeff = 3S(μ0)η + μ0.

To construct Q′, we replace each location in Mr by a circuit of S(μ0) locations,
by using gates from G that approximate the gate performed in the location to within
μ0.

We would now like to prove that the final circuit is fault-tolerant against general
noise of error rate η < η′′c by using essentially the same lines as in section 8. To be
able to apply this proof, we do the following. We group the locations in the final
circuit M ′

r to groups of S(μ0) locations, where each group corresponds to the location
from which it originated in Mr. Consider the superoperator L associated with the
application of the gates and noise operators in one generalized location corresponding



FAULT-TOLERANT QUANTUM COMPUTATION 1275

to the gate g. By Claim 9, ‖L−g‖ ≤ ηeff . Hence, ‖g−1L−I‖ ≤ ηeff . We can therefore
consider an equivalent circuit to M ′

r, where for each generalized location, described
by a superoperator L which consists of a sequence of gates and noise operators, we
instead put the gate g followed by a noise operator g−1L. The proof now follows from
the proof of Theorem 13, by using � = S(μ0) for the spread of the procedures.

The threshold value we get for arbitrary sets of gates (9.2) is of course worse than
the threshold values for the fault-tolerant constructions that use gates of computation
codes. The value of the threshold depends on the exact set of gates G, because it
depends on the number of gates required to approximate the gates of the computation
code.

10. Robustness against exponentially decaying correlations. We would
now like to show how the above results hold also in the case of exponentially decaying
correlations between the noise processes, in both space and time.

10.1. Adding correlations to the noise model. Two very important as-
sumptions were made when introducing our general model of noise.

• Locality: No correlations between environments of different qubits, except
through the gates.

• The Markovian assumption: The environment is renewed at each time step,
and hence no correlations between the environments at different time steps.

Both of these assumptions can be slightly released, to allow exponentially decaying
correlations in both space and time, while the results of this paper still hold.

To add exponentially decaying correlations to the probabilistic noise model, we
generalize it in the following way. Instead of considering independent probabilities for
error in each location, we require that the probability for a fault path which contains
k locations is bounded by some constant times the probability for the same fault path
in the independent errors model:

(10.1) Pr(fault path with k errors) ≤ cηk(1 − η)v−k,

where v is the number of locations in the circuit. Then an adversary chooses a noise
operator which operates on all of the qubits in the fault path, without any restrictions.
The most general case is as follows. The adversary adds some blank qubits, which are
called the environment, at the beginning of the computation. At each time step, the
adversary can operate a general operator on the environment and the set of qubits in
the fault path at that time step. This model allows correlations in space, since the
noise operator need not be of the form of a tensor product of operators on different
locations. Correlations in time appear because the environment that the adversary
added in is not renewed at each time step, so noise operators of different time steps
are correlated. Note that the independent probabilistic noise process is a special case
of this process.

10.2. Proof of the threshold theorem with exponentially decaying
correlations. We observe that all of the lemmas that we have used in order to
prove the threshold theorem for probabilistic noise hold in this case, except for one
step which fails. It is the step that shows that bad fault paths are rare, in the case of
probabilistic noise (Lemma 11). The proof of this lemma relies on the independence of
faults. We observe that the proof of Lemma 11 is actually a union bound. In this sec-
tion we show that the same threshold as is used for probabilistic noise (Definition 23)
guarantees that the bad fault paths are rare also in the presence of probabilistic noise
with exponentially decaying correlations.
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We use a union bound argument, as follows. Consider fault paths in v r-rectangles.
If a fault path is bad, there must be at least one r-rectangle in which it is bad, namely,
not (r, k0)-sparse. Let us concentrate on this r-rectangle. We first count the number
of bad fault paths in this r-rectangle that have a minimal number of faulty locations.
To do this, denote by Fj the number of minimal fault paths in a j-rectangle. We have

(10.2) F1 ≤
(

A
k0 + 1

)

and

(10.3) Fj+1 ≤
(

A
k0 + 1

)
F k0+1
j .

We can solve the recursion to get

(10.4) Fr ≤
(

A
k0 + 1

) (k0+1)r−1
k0

.

A minimal bad fault path contains exactly (k0+1)r locations. Now, v r-rectangles
contain vAr locations. We can bound the number of bad fault paths in v r-rectangles,
that consist of (k0 + 1)r + i locations, as follows. We first choose one r-rectangle
(this gives a factor of v). In this rectangle we pick one of the possible minimal bad
fault paths (this gives a factor of Fr). We can then choose the rest of the locations
arbitrarily. This gives that the number of bad fault paths in v r-rectangles consisting
of (k0 + 1)r + i locations is at most

(10.5) v

(
A

k0 + 1

) (k0+1)r−1
k0

(
vAr − (k0 + 1)r

i

)
.

By using (10.1), we have that the overall probability of the bad fault paths is at
most

(10.6)

vAr−(k0+1)r∑
i=0

v

(
A

k0 + 1

) (k0+1)r−1
k0

(
vAr − (k0 + 1)r

i

)
cη(k0+1)r+i(1 − η)vA

r−(k0+1)r−i

≤ cv

((
A

k0 + 1

) 1
k0

η

)(k0+1)r vAr−(k0+1)r∑
i=0

(
vAr − (k0 + 1)r

i

)
ηi(1 − η)vA

r−(k0+1)r−i

= cv

((
A

k0 + 1

) 1
k0

η

)(k0+1)r

.

The expression above decays exponentially fast to zero with r, if η is strictly below
the threshold for probabilistic noise (Definition 23). This completes the proof.

11. Fault tolerance in a d-dimensional quantum computer. We now pro-
ceed to our final generalization of the threshold theorem. So far, we allowed a gate
to operate on any set of qubits, regardless of the actual location of these qubits in
space. Here we consider quantum systems with geometrical constraints: The qubits
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are embedded in space, in a one-, two-, or three-dimensional grid, and gates can be
applied only to nearest-neighbor qubits. In the case of dimensionality higher than 1,
and gates of more than two qubits, we also require that all qubits in a gate lie on the
same line. We show that the threshold result holds in full generality for d-dimensional
quantum computers, for any d ≥ 1.

In physical systems with geometrical constraints, discarding and adding qubits
is a questionable process, unless we allow empty spots. To avoid this complication,
we replace these two operations by one gate called RESTART, which is constructed
by discarding a qubit and then adding a blank qubit instead of the discarded qubit.
This allows us to remove entropy out of the system while maintaining the geometrical
structure. Since the gates are restricted to operate on nearest neighbors, we also
need to require that the set of gates we use contains the SWAP gate, so that, when
we want to apply a gate on qubits that are not nearest neighbors, we can bring them
closer together.

Theorem 15 (threshold theorem for d-dimensional circuits). Let ε > 0. Let
d ≥ 1. Let G′ and G′′ be two universal sets of quantum gates. There exist a threshold
η′′′c > 0 and constants c1, c2, c3 such that the following holds. Let Q′ be a d-dimensional
quantum circuit, with n input qubits, which operates t time steps, uses s gates from
G′, and has v locations. There exists a d-dimensional quantum circuit Q′′ which
operates on nO(logc1(v

ε )) qubits, for time tO(logc2(v
ε )), and uses vO(logc3(v

ε )) gates
from G′′ ∪ {SWAP,RESTART} such that, in the presence of general noise with error
rate η < η′′′c , Q′′ computes a function which is ε-close to that computed by Q′.

Proof. To prove the theorem, we need to modify the fault-tolerant procedures so
that they apply gates on nearest neighbors only and also all of the qubits remain in
the circuit throughout the computation.

Here is how one level of the simulation is done. We first pick a preferred direction,
and each qubit will be extended to an array of qubits lying in that direction. The
simulation will “stretch” the simulated circuit only in the preferred direction, by a
constant factor. Let a be the maximal number of ancilla qubits used in any of the
procedures of the computation code G. Let m be the size of the block. A qubit in Q′

will be replaced by m + a qubits, placed in a line along the preferred direction. The
ancilla qubits will serve as a working space, but we will also SWAP computational
qubits with ancilla qubits, in order to bring computation qubits closer and operate
gates on them.

The fault-tolerant procedures are thus modified as follows. First, instead of adding
ancilla qubits during the procedure, we use only the ancilla qubits that are already
there and apply a RESTART gate on an ancilla qubit one step before we use it in the
procedure. Also, any gate g in the original procedure that operates on qubits that
are far apart is replaced by a sequence of SWAP gates which bring the qubits that g
operates on to nearest neighbor sites, followed by g, followed by another sequence of
SWAP gates which bring the qubits back to their original sites. Since the simulated
circuit Q′ applies gates only on nearest neighbors, say, on s ∈ {1, 2, 3} qubits in a
row, the number of SWAP gates used in the above modification per gate g is at most
2(s − 1)(m + a), i.e., a constant. This means that the modified procedure is larger
than the original one by a constant factor (both in time and in space).

The claim is that the procedure is still fault-tolerant. This might seem strange
since the SWAP gates operate on many qubits and seem to help in the propagation
of errors. However, note that a SWAP gate which operates on a faulty qubit and an
unaffected qubit does not propagate the error to the two qubits but keeps it confined
to the original qubit, which is now in a new site. Hence, a SWAP gate which is not



1278 DORIT AHARONOV AND MICHAEL BEN-OR

faulty does not cause a propagation of error. If a fault does occur in a SWAP gate,
then the two qubits participating in it are contaminated. If the fault occurred before
the application of the gate g, then one of the qubits the gate g operates on is faulty,
and hence this also causes the contamination of all of the qubits on which g operates
(in the worst case). So an error in a SWAP gate is equivalent to an error in all of the
original sites of the qubits participating in the gate and also the final site of the other
qubit participating in the SWAP gate. This adds a factor of 2 at most to the original
spread of the procedure. All other aspects of the theorem remain the same.

12. Threshold estimations. Finally, it is left to estimate the exact threshold
value for fault-tolerant quantum computation. However, there is not one such value:
This value depends on many things such as which variants of the threshold theo-
rem we use (probabilistic noise, general local noise, d-dimensional circuits) as well
as the choice of the computation code and, mainly, the exact assumptions we make
on the quantum system, most importantly, whether we allow classical computation
in the middle of the quantum process or not. Since our results are mainly proofs of
existence, where we have not attempted to optimize the threshold, we do not attempt
to provide exact values of the threshold in all of these cases. Nevertheless, we give
here a rough estimation of the threshold value in one of the simpler cases: the case of
probabilistic independent noise, with no geometrical constraints on the system, and
under the assumption that infinitely fast classical operations are allowed during the
computation.

To estimate this threshold, we examine the formula for the threshold value in the
case of independent probabilistic noise with no geometrical constraints, which is given
by Definition 23. The threshold value depends on two parameters: A, the number of
locations in the biggest rectangle in the simulation, and k0 = �q/2��, where we recall
that q is the number of errors that the code can correct, and � is its spread, which
is 1 in both our constructions. We use polynomial codes of degree d = 4, i.e., length

m = 13, so that q = 2, and so k0 = 1. The threshold in our case is thus
(
A
2

)−1
.

The parameter A, the size of the largest rectangle, is estimated by counting
the number of locations where quantum (rather than classical) gates and qubits are
involved. The bottleneck in our construction using polynomial codes, namely, the
largest rectangle, is the one corresponding to applying transversal operation on two
blocks, preceded by error correction on both of these blocks. The reason for this is as
follows. First, we need to consider only two-qubit encoded gates because we use the
squaring gate instead of the Toffoli gate in the set G1 (see subsection 4.2). Second,
one might think that the largest rectangle involves the ancilla state preparation for
the degree reduction as well. However, to avoid such large rectangles, we consider
each step in the ancilla preparation as a rectangle of its own.

It remains to estimate the size of the above rectangle. For each error correc-
tion we need two zero-state preparations, and so altogether we need four zero-state
preparations plus transversal operations. Since we use q = 2, every zero-state prepa-
ration requires 25 preliminary zero-state preparations (not done fault-tolerantly) plus
transversal operations. We estimate the size of the rectangle in this case to be of the
order of 103 locations, which implies a threshold of the order of � 10−6.

The threshold value in other cases, and under different sets of assumptions on the
noise and on the constraints of the quantum system, can be estimated by using (8.6),
(9.2), and the definition of η′′′c as is defined in section 11, where the estimation of the
parameters involved should depend on the assumptions being used.
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1. Introduction. A well-known observation is that infinite sets can be split into
two parts of the same cardinality as the original set, while finite sets cannot be split
in such a way; for example, the integers can be split into the sets of the even and odd
numbers, while splitting a set of five elements would result in subsets of unequal sizes.
In this sense, infinite sets are better than finite ones. The corresponding question in
complexity and recursion theory is the following: Which sets can be split into two
sets of the same complexity as the original set [1, 9, 10, 15]?

Ambos-Spies [1] defined one of the variants of mitoticity using many-one reducibil-
ities. Here a set A is many-one reducible to a set B iff there is a recursive function f
such that A(x) = B(f(x)). That is, one translates every input x for A into an input
f(x) for B, takes the solution provided by B (in the set or in its complement), and
then copies this to obtain the solution for A. Similarly one also considers complexity-
theoretic counterparts of many-one reductions; for example, one can translate an
instance (G1, G2) of the graph-isomorphism problem into an instance φ of the satisfi-
ability problem in polynomial time, where G1 is isomorphic to G2 iff φ is satisfiable.
Here, one can choose the reduction such that one not only tests membership, but
can also translate a solution of φ into an isomorphism between G1 and G2 whenever
such a solution exists for φ. Indeed, NP-complete problems are characterized as those
into which every NP problem can be translated. This general method of reducing
problems and translating solutions (although here the translation of the solution is
just the identity) occurs quite frequently in other fields of mathematics. In inductive
inference, intrinsic complexity is based on the notion of reducing one learning problem
L to another problem H: First an operator translates a text T for a set L in L into
a text Θ(T ) for a set H in H, and then another operator translates a solution E,
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which is a sequence converging to an index e of H, into a solution for L given as a
sequence converging to an index e′ of L. Before explaining this in more detail, some
terminology is necessary to make it precise.

• A partial recursive function is a partial function computed by a Turing ma-
chine, where the machine does not halt on inputs on which the function
is undefined. A recursively enumerable set is the domain (or, equivalently,
the range) of a partial recursive function. There is an acceptable number-
ing W0,W1,W2, . . . of all recursively enumerable sets [16, section II.5]; this
numbering will be kept fixed from now on.

• A general recursive operator Θ is a mapping from total functions to total
functions such that there is a recursively enumerable set E of triples which
satisfies the following: For every total function f and every x, y, Θ(f)(x) = y
iff there is an n such that (f(0)f(1) . . . f(n), x, y) ∈ E.

• A language is a recursively enumerable subset of the natural numbers.
• A class L is a set of languages. A family L0, L1, L2, . . . is an indexing for L

iff {(e, x) : x ∈ Le} is recursively enumerable and L = {L0, L1, L2, . . .}.
• A text T (see [11]) is a mapping from the set N of natural numbers to N∪{#}.

Content of a text T , content(T ), is the set {T (n) | n ∈ N∧ T (n) ∈ N}. T is a
text for L iff content(T ) = L. T [n] denotes the first n elements of the sequence
T , that is, T [n] = T (0)T (1) . . . T (n−1). Furthermore, content(T [n]) denotes
the set of natural numbers occurring in T (0)T (1) . . . T (n−1). As an example,
T = # # 3 # # 8 # 8 # # 7 # 9 #∞ is a text for the set {3, 7, 8, 9}, T (0) = #,
T (2) = 3, and T [6] = # # 3 # # 8.

• A learner is a general recursive operator (see [22]) which translates T into
another sequence E. The learner converges on T iff there is a single e such
that E(n) = e for almost all n—in this case one says that the learner converges
on T to e. The learner explanatorily learns (see [5, 11]) T iff it converges on
T to some index e such that We = content(T ). A learner explanatorily
learns L iff it explanatorily learns every text for L. A learner explanatorily
learns L iff it explanatorily learns every L ∈ L. Note that, in some cases,
learning algorithms can also be described such that they use the indices from
a given indexing for L; such indices can always be translated into indices of
the acceptable numbering W0,W1, . . . of all recursively enumerable sets.

• A classifier [21] is a general recursive operator which translates texts to se-
quences over {0, 1}. A classifier C converges on a text T to a iff C(T [n]) = a
for almost all n.

• For the learning criteria considered in this paper, one can assume without
loss of generality [17] that the learner M computes E(n) from input T [n].
M(T [n]) denotes this hypothesis. A similar convention holds for classifiers.

As an example, the class D of all finite sets is explanatorily learnable. The following
learner explanatorily learns D: On every finite sequence σ it outputs a canonical index
for content(σ), so M(# # 3 # # 8 # 8) outputs an index for {3, 8}. Then it is easy
to see that M converges on every text for a finite set to the canonical index for this
set. An example for a nonexplanatorily learnable class was obtained by Gold [11]
who showed that D ∪ {L} is not explanatorily learnable for any infinite set L. Let
Deven and Dodd be the classes of finite sets with an even and odd number of elements,
respectively. Then one can easily construct a classifier which separates Dodd from
Deven by defining that M(σ) = 1 if content(σ) has an even number of elements and
M(σ) = 0 otherwise.

Freivalds, Kinber, and Smith [6] consider reductions between learnability prob-
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lems for function classes. Jain and Sharma [13] carried this idea over to the field of
learning languages from positive data and formalized the following two reducibilities
for learnability problems. The main difference between these two reducibilities is that
Θ can be one-to-many in the case of the weak reducibility, as different texts for the
same language can be mapped to texts for different languages, while for the strong
reducibility this is not allowed, at least for languages in the given class.

• A class L is weakly reducible to H iff there are general recursive operators Θ
and Ψ such that

- whenever T is a text for a language in L, Θ(T ) is a text for a language
in H;

- whenever E is a sequence which converges to an index e with We =
content(Θ(T )) for some text T of a language in L, Ψ(E) is a sequence
converging to an e′ with We′ = content(T ).

One writes L ≤weak H in this case.
• A class L is strongly reducible to H iff there are general recursive operators

Θ,Ψ as above with the following additional constraint. Whenever T, T ′ are
texts for the same language in L, Θ(T ),Θ(T ′) are texts for the same language
in H. One writes L ≤strong H in this case. Furthermore, Θ(L) denotes the
language content(Θ(T )), where T is a text for L.

For example, the class {{x} : x ∈ N} of all singleton sets is strongly reducible to
D, but D is not weakly reducible to the class of all singleton sets [13]. Furthermore,
Deven and Dodd are strongly reducible to each other by the same mapping (Θ,Ψ).
The operator Θ translates every text for a set D to a text for {0} ∪ {d + 1 : d ∈ D};
the operator Ψ translates an index e, in a sequence of hypotheses, to an index g(e) of
the set Wg(e) = {x : x + 1 ∈ We}.

Jain, Kinber, Sharma, and Wiehagen investigated these concepts in several pa-
pers [12, 13, 14]. They found that there are complete classes with respect to ≤weak

and ≤strong. Here a class H is complete with respect to ≤weak (≤strong) iff H can
be explanatorily learned and for every explanatorily learnable class L it holds that
L ≤weak H (L ≤strong H). If � is a recursive dense linear ordering on N without least
and greatest element (which makes N an order-isomorphic copy of the rationals), then

Q = { {y ∈ N | y � x} | x ∈ N}

is a class which is complete for both ≤weak and ≤strong (see [12]). The following
classes are complete for ≤weak but not for ≤strong (see [13]):

I = { {0, 1, . . . , x} | x ∈ N},
CS = {N − {x} | x ∈ N}.

If one looks at CS, one can easily see that it is the disjoint union of two classes of
equivalent intrinsic complexity, namely, the class {N−{x} | x is even} and {N−{x} | x
is odd}. All three classes can be translated into each other, and a classifier can witness
the splitting: If T is a text for a member of CS, then the classifier converges in the
limit to the remainder of x divided by 2 for the unique x /∈ content(T ). This type of
splitting can be formalized to the notion of a mitotic class.

Definition 1. Two infinite classes L0 and L1 are called a splitting of a class
L iff L0 ∪ L1 = L, L0 ∩ L1 = ∅, and there exists a classifier C such that, for all
a ∈ {0, 1} and for all texts T with content(T ) ∈ La, C converges on T to a.

A class L is strongly mitotic (weakly mitotic) iff there is a splitting L0,L1 of L
such that L ≡strong L0 ≡strong L1 (L ≡weak L0 ≡weak L1).
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The study of such notions is motivated by recursion theory [16, 22] where a
recursively enumerable set is called mitotic iff it is the disjoint union of two other
recursively enumerable sets which have the same Turing degree. The importance of
this notion is reflected by Ladner’s result that a recursively enumerable set is mitotic
iff it is autoreducible, that is, iff there is an oracle Turing machine M such that
A(x) = MA∪{x}(x) for all x [15]. Furthermore the notion had been carried over
to complexity theory where it is still an important research topic [1, 9, 10]. Thus,
we feel it is interesting to explore this notion in the context of inductive inference
too. The results show some interesting properties related to mitoticity. In particular,
classes complete for explanatory learning with respect to ≤strong (≤weak) are strongly
(weakly) mitotic. Thus, nonmitotic classes cannot be complete.

Although intrinsic complexity is not the exact counterpart of Turing degrees in
recursion theory, it is the only type of complexity which is defined via reducibilities
and not via measures such as counting mind changes or the size of long-term mem-
ory in inductive inference. Therefore, from the viewpoint of inductive inference, the
above defined version of mitotic classes is reasonable. Indeed, there are some obvious
parallels: In recursion theory, any recursively enumerable cylinder is mitotic, where
a cylinder A is a set of the form {(x, y) | x ∈ B, y ∈ N} for some set B ⊆ N. A
corresponding cylindrification of a class L would be the class

{ {(x, y) | y ∈ L} | x ∈ N, L ∈ L}.
It can easily be seen that this class is strongly mitotic and thus also weakly mitotic.
Indeed, two constraints are placed in Definition 1 in order to be as near to the original
definition of mitoticity in recursion theory as possible:

• In the recursion theoretic setting, if A is split into two recursively enumerable
sets A0, A1 with A0 ≡T A1, then A ≡T A0 ≡T A1. Thus, in the definition of
mitoticity for learning theory, it is required that all three classes, class L and
its two halves L1 and L2, have the same intrinsic complexity degree.

• If A is recursively enumerable and mitotic and split into A0, A1, then there is
a partial recursive function with domain A mapping the elements of Aa to a
for all a ∈ {0, 1}. For mitotic classes of languages, the corresponding function
is a classifier which works correctly on all texts for the languages in the class.
It is not required that the classifier converges on every text, as then many
naturally strongly mitotic classes, such as CS, would no longer be mitotic.
This has a parallel in recursion theory: if one splits a maximal set (as defined
in Remark 8 below) into two recursively enumerable sets A0 and A1, which
are both not recursive, then the sets A0 and A1 are recursively inseparable.

Besides the reducibilities ≤weak and ≤strong considered here, other reducibilities have
also been considered [12, 13]. This paper deals only with ≤weak and ≤strong, as these
two are the most natural and representative.

One emphasis of the current work is on the search for natural classes which split
or do not split. Therefore it is always required that the class under consideration
is learnable (under the criterion in consideration). Furthermore, one tries to show
properties for complete classes, recursively enumerable classes, and indexed families.
Angluin [2] defined that {L0, L1, L2, . . .} is an indexed family iff the function e, x �→
Le(x) is recursive. For indexed families {L0, L1, L2, . . .} one can assume, without loss
of generality, that Ln = Lm whenever n = m. A learner for this family is called exact
iff it converges on every text for Ln to n.

In this paper, it is shown that classes complete for explanatory learning with re-
spect to ≤strong (≤weak) are strongly (weakly) mitotic. Furthermore, there are classes
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complete for explanatory learning with respect to ≤weak which are not strongly mi-
totic. Similar phenomena are studied for behaviorally correct learning. A counterpart
to the Sacks splitting theorem is that every infinite recursively enumerable explana-
tory learnable class has a splitting into two incomparable subclasses. The relations
between autoreducibility and mitoticity are also investigated. However, in contrast
to the situation in complexity theory, these two notions turn out to be different.

The following remark is important for several proofs.

Remark 2. One says that a learner M or a classifier C converges on T to a value
a iff M(T [n]) = a or C(T [n]) = a for almost all n, respectively. But it does not
matter—in the framework of inductive inference—how fast this convergence is; the
machine can be slowed down by starting with an arbitrary guess and later repeating
hypotheses, if needed. Similarly, if one translates one text of a language L into a
text of a language H, it is not important how fast the symbols of H show up in the
translated text; it is only important that they show up eventually. Therefore the
translator can put into the translated text a pause symbol, #, until more data are
available or certain simulated computations have terminated.

Therefore, learners, operators translating texts, and classifiers can be made primi-
tive recursive by the just mentioned delaying techniques. Thus one can have recursive
enumerations Θ0,Θ1,Θ2, . . . of translators from texts to texts, M0,M1,M2, . . . of
learners, and C0, C1, C2, . . . of classifiers such that, for every given translator, learner
or classifier, this list contains an equivalent one. These lists can be used in proofs
where diagonalizations are needed.

Given a text T and a number n, one denotes by Θ(T [n]) the initial part Θ(T )[m]
for the largest m ≤ n such that Θ(T )[m] is produced without accessing any datum in
T beyond the nth position. Note that, for every m, there is an n such that Θ(T [n])
extends Θ(T )[m] and Θ(T [n]) can be computed from T [n].

2. Complete classes. The two main results are that classes which are complete
for ≤strong are strongly mitotic and classes which are complete for ≤weak are weakly
mitotic. This stands in contrast to the situation in recursion theory where some
Turing-complete recursively enumerable sets are not mitotic [15]. Note that certain
classes which are complete only for ≤weak fail to be strongly mitotic; thus the main
results cannot be improved.

Theorem 3. Every class which is complete for ≤strong is also strongly mitotic.

Proof. Let L and H be any classes which are complete for ≤strong. Then the
class K consisting of the sets I = {1, 3, 5, 7, . . .}, J = {0} ∪ I, {2x + 3 : x ∈ H}, and
J ∪{2x+2 : x ∈ H} for every H ∈ H is also complete for ≤strong. Since L is complete
for ≤strong, there is a translation Θ which maps languages in K to languages in L
such that proper inclusion is preserved [14]. Thus there is some e ∈ Θ(J) − Θ(I).
As H is complete for ≤strong, the subclasses {Θ({2x + 3 : x ∈ H}) : H ∈ H}
and {Θ(J ∪ {2x + 2 : x ∈ H}) : H ∈ H} of L are also complete for ≤strong. All
members of the first class do not contain e, while all members of the second class
contain e as an element. It follows that the subclasses L0 = {L ∈ L : e /∈ L} and
L1 = {L ∈ L : e ∈ L} are disjoint and complete for ≤strong. Thus L can be classified
by a classifier C, which conjectures 1 if e has shown up in the text so far and 0
otherwise. Therefore, L is strongly mitotic.

The following notion is used to formulate Proposition 6 which is a central ingre-
dient of Theorem 7. Furthermore, learners with certain properties are needed.

Definition 4. For any sequence T of symbols, let all(T ) be the length of the
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shortest prefix of T containing all symbols which show up in T ; that is, let

all(T ) = sup{n + 1 : content(T [n]) ⊂ content(T )}.

Note that all(T ) < ∞ iff content(T ) is a finite set.
The following remark combines some ideas of Blum and Blum [4] and Fulk [8].
Remark 5. Let L be an explanatorily learnable class. Then there is an explanatory

learner M for L with the following properties:
• M is prudent [17]; that is, whenever M outputs an index e on some input

data, then M explanatorily learns We.
• M is order independent [4]; that is, for every set L, either M diverges on all

texts for L or M converges on all texts for L to the same index.
• For every text T and index e, if M(T [n]) = e for infinitely many n, then
M(T [n]) = e for almost all n.

Proposition 6. Suppose I ≤weak L and M is a explanatory learner for L which
satisfies the conditions in Remark 5. Then there is a reduction (Θ,Ψ) from I to
L such that, for all texts T for a language in I, M converges on Θ(T ) to an index
e > all(T ).

Proof. Assume that (Θ′′,Ψ′′) witnesses that I ≤weak L. Now a reduction (Θ′,Ψ′)
from I to I is constructed such that Θ can be taken to be the composition of Θ′ and
Θ′′.

The key idea for this is the following: One constructs (Θ′,Ψ′) from I to I such
that, for every text T of a set in I, M converges on Θ′′(Θ′(T )) to an index e > all(T ).
Note that all(T ) is finite for all texts for members of I. By Remark 2, assume without
loss of generality that Θ′′ is primitive recursive. The idea is that Θ′ translates a text
T for In = {0, 1, . . . , n} to a text for I2n(1+2m) for some m; Ψ′ translates any sequence
converging to an index of the set I2n(1+2m) into a sequence converging to an index of
In.

Given a sequence E of indices, Ψ′(E)(s) is computed as follows. Let k be the least
number such that WE(s),s ⊆ Ik. Choose m,n such that 2n(1 + 2m) = k and output
the canonical index for In. It is easy to see that this translation works whenever E
converges to an index of some set in I.

Construction of Θ′
. The construction of Θ′ is more involved. For the con-

struction, the special properties of M from Remark 5 are important. The most ade-
quate way to describe Θ′(T ) is to build longer and longer finite prefixes τ0, τ1, τ2, . . .
of this target Θ′(T ). The construction starts with τ0 = 0#, and, in stage s, the
extension τs+1 of τs is defined according to the first case which applies:

Case 1. M(Θ′′(τs)) ≤ all(T [s]). Then let τs+1 be the first extension of τs found
such that M(Θ′′(τs+1)) = M(Θ′′(τs)).

Case 2. Case 1 does not hold, but content(τs) = I2n(1+2m) for all m, where n is
the least number with content(T [s]) ⊆ In. Then let τs+1 = τsa for the least
nonelement a of content(τs).

Case 3. Cases 1 and 2 do not hold. Then τs+1 = τs#.
Here Θ′′(τs) and Θ′′(τs+1) are defined as in Remark 2 and can be computed from τs
and τs+1, respectively.

Verification. For the verification, assume that a set In = {0, 1, 2, . . . , n} ∈ I
and a text T for In are given.

First note that, in Case 1 of the construction, the extension τs+1 of τs can always
be found. To see this, note that there are two texts T1, T2 extending τs for different
sets in I. It follows that Θ′′(T1) and Θ′′(T2) are texts of different sets and thus M
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converges on them to different indices. Thus one can take a sufficiently long prefix of
one of T1, T2 in order to get the desired τs+1.

Second, it can be shown by induction that |τs| > s at all stages s; this guarantees
that Θ′ is indeed a general recursive operator.

Third, one shows that M does not converge on Θ′′(Θ′(T )) to any index less than
or equal to all(T ). By Case 1 in the construction, M cannot converge on Θ′′(Θ′(T ))
to an index e ≤ all(T ). Thus, by Remark 5, there is a stage s0 such that Case 1 of
the construction is never taken after stage s0 and content(T [s0]) = In.

Fourth, one shows that Θ′(T ) is a text for some language in I. There is a least m
such that content(τs0) ⊆ I2n(1+2m). For all stages s > s0, if content(τs) ⊂ I2n(1+2m),
then τs+1 is chosen by Case 2; else τs+1 is chosen by Case 3. One can easily see that
the resulting text Θ′(T ) = lims→∞ τs is a text for I2n(1+2m). Indeed, Θ′(T ) = τs1#

∞

for s1 = s0 + 2n(1 + 2m) + 2.
Thus it follows that Θ′ maps every text of a set In to a text for some set I2n(1+2m),

as desired. So, for all texts T of sets in I, M converges on Θ′′(Θ′(T )) to some index
e > all(T ).

Theorem 7. Let L be an explanatorily learnable class which is complete for
≤weak. Then L is weakly mitotic.

Proof. Let In = {0, 1, . . . , n}. By Proposition 6 there is a reduction (Θ,Ψ) from
I to L and a learner M such that M satisfies the conditions outlined in Remark 5
and, for every text T of a member of I, M converges on Θ(T ) to an index e > all(T ).
For this reason, using oracle K for the halting problem, one can check, for every index
e, whether there is a text T for a language in I such that M on Θ(T ) converges to e.
This can be seen as follows: One can assume, without loss of generality, that, besides
#, no data item in a text is repeated. Also, among the texts for sets in I, only the
texts of the sets {0}, {0, 1}, {0, 1, 2}, . . . , {0, 1, 2, . . . , e} can satisfy all(T ) ≤ e. Thus,
one has just to check the behavior of the given explanatory learner M for the class L
on the texts Θ(T ′), for T ′ in the class

Te = {T ′ | T ′ ∈ {0, 1, . . . , e,#}e · #∞ ∧ content(T ) ∈ I}.

Now, define a classifier C such that on a text T , the nth guess of C is 1 iff there is an
odd number m ≤ M(T [n]) and a text T ′′ ∈ TM(T [n]) for Im such that M(Θ(T ′′)[n]) =
M(T [n]).

For the verification that C is a classifier, assume that M converges on T to some
index e. Then C converges on T to 1 iff there is an odd number m and a text T ′ for Im
in Te such that M converges on the texts T and Θ(T ′) to the same number. Otherwise
C converges on T to 0. If M does not converge on T , then T is not a text for a set in
L, and the behavior of C on T is irrelevant. Thus C is a classifier which splits L into
two classes L0 and L1. These classes L0 and L1 contain the images of repetition-free
texts of sets in the classes {I0, I2, I4, . . .} and {I1, I3, I5, . . .}, respectively. Thus both
classes are complete for ≤weak, and the splitting of L into L0 and L1 witnesses that
L is weakly mitotic.

As several proofs use known properties of the maximal sets, the following remark
summarizes some of these properties.

Remark 8. A set A is maximal (see [16]) iff (a) A is recursively enumerable, (b) A
has an infinite complement, and (c) every recursively enumerable set B satisfies that
either B −A is finite or the complement of A ∪B is finite.

A maximal set is dense simple; that is, if a0, a1, a2, . . . gives the complement in
the ascending order and f is a recursive function, then f(an) < an+1 for almost all n.
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For any partial recursive function ψ and any maximal set A, the following state-
ments hold.

• ψ(x) is defined either for almost all x ∈ A or for only finitely many x ∈ A.
• The set {x /∈ A | ψ(x) ∈ A} either is finite or contains almost all elements of
A.

• If, for every x, there is some y > x such that y /∈ A, ψ(y) is defined, ψ(y) > x,
and ψ(y) /∈ A, then ψ(z) is defined and ψ(z) = z for almost all z ∈ A.

These basic facts about the maximal sets will be used in several proofs. Odifreddi
[16, pp. 288–294] provides more information on the maximal sets including the proof
of their existence by Friedberg [7].

Theorem 9. There exists an indexed family {L0, L1, L2, . . .} which is weakly
mitotic and complete for ≤weak, but not strongly mitotic.

Proof. Let A be a maximal set with complement {a0, a1, . . .}, where an < an+1

for all n. Now let L consist of the sets
• {x, x + 1, x + 2, . . . , x + y} for all x ∈ A and y ∈ N,
• {x, x + 1, x + 2, . . .} for all x /∈ A.

As A is recursively enumerable, L can be represented as an indexed family. Ex-
planatory learnability is also clear as the learner, on input σ, first determines x =
min(content(σ)) and then conjectures content(σ) if x ∈ A|σ|, and conjectures {x, x +
1, x+2, . . .} otherwise. Without loss of generality, it can be assumed that a0 > 0 and
thus L is a superclass of I and therefore complete for ≤weak. By Theorem 7, L is
weakly mitotic.

Let L0 and L1 be two disjoint classes with union L. Without loss of generality,
{a0, a0 + 1, a0 + 2, . . .} ∈ L1. Assume now by way of contradiction that L ≤strong L0

as witnessed by (Θ,Ψ). As Θ has to preserve the proper subset relation on the
content of the texts while translating, every text of a set of the form {an, an + 1,
an+2, . . .} has to be translated into a text for a set of the form {am, am+1, am+2, . . .}
(to preserve the property that translation of {an, an+1, an+2, . . .} has infinitely many
subsets in the class).

Now consider the function f which outputs, on input x, the first element found
to be in the range of the image Θ(σ) for some σ with x = min(content(σ)). The
function f is recursive, but by Remark 8 and A being a maximal set, the relation
f(an) < an+1 holds for almost all n. It follows that, if n is sufficiently large, then
some text of {an, an+1, an+2, . . .} is translated to a text of one of the sets {ak, ak+1,
ak + 2, . . .} with k ≤ n. Now fix a text T for {an, an + 1, an + 2, . . .}. One can
then inductively define a sequence of strings σn, σn−1, . . . , σ0 such that each sequence
σnσn−1 . . . σmT is a text for {am, am + 1, am + 2, . . .} and

content(Θ(σnσn−1 . . . σmσm−1)) ⊆ content(Θ(σnσn−1 . . . σmT ))

for each m ≤ n. As Θ maps texts of infinite sets in L to texts of infinite sets in L,
one can conclude that

content(Θ(σnσn−1 . . . σmT )) = {am, am + 1, am + 2, . . .}.

Thus, for every m, some text of the set {am, am+1, am+2, . . .} is mapped to a text for
the same set, contradicting the assumption that Θ does not have {a0, a0+1, a0+2, . . .}
in its range. Therefore L is not strongly mitotic.

3. Incomplete learnable classes. Finite classes are not mitotic, and thus every
nonempty class has a subclass which is not mitotic. For infinite classes, one can get
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that the corresponding subclass is also infinite. The proof is a standard application
of Ramsey’s theorem: Given classifiers C0, C1, C2, . . . , one selects a subclass {H0, H1,
H2, . . .} of {L0, L1, L2, . . .} such that each classifier Cn classifies Hn, Hn+1, Hn+2, . . .
in the same way. The class {H0, H1, H2, . . .} may not be an indexed family but may be
a very thin class in the sense that the indices of Hn with respect to L0, L1, L2, . . . are
growing very fast. Alternatively, one can also take the H0, H1, H2, . . . such that, for a
given enumeration of primitive recursive operators, the text Θn(Tm) of the ascending
text Tm of Hm is not a text for any Hk with k > max({n,m}). The latter method
gives the following result.

Theorem 10. Every infinite class L has an infinite subclass H such that H is not
weakly reducible to any proper subclass of H. In particular, H is not weakly mitotic.

There is an easier example of a class which is not weakly mitotic. It is even an
indexed family consisting only of finite sets.

Example 11. Assume that {L0, L1, L2, . . .} is given as L0 = {0, 1} and Ln = {n}
for all n ∈ N − {0}. Then {L0, L1, L2, . . .} is not weakly mitotic.

Proof. Given any splitting L0,L1 of {L0, L1, L2, . . .}, one of these classes, say L0,
contains at most one of the sets L0, L1. Then, for any given reduction (Θ,Ψ) from {L0,
L1, L2, . . .} to L0, Θ(σ) produces some string of nonempty content for some σ ∈ 1#∗.
Thus there are texts T0, T1 extending σ for L0 and L1, respectively, such that Θ(T0)
and Θ(T1) are texts for different sets in L0 with a nonempty intersection. However,
such sets do not exist, by choice of L0.

Note that the class

{{0, 1, 2}, {1, 2}, {2}, {3}, {4}, {5}, . . . , {n}, . . .}

compared with the class from Example 11 has the following slight improvement. For
any splitting L0,L1 of the class, one half of the splitting contains an ascending chain
of two or three sets, while the other half contains only disjoint sets. Thus the two
halves are not equivalent with respect to ≤weak.

As these two examples show, it is more adequate to study the splitting of more
restrictive classes like the inclusion-free classes. A special case of such classes are the
finitely learnable classes. Here a class is finitely learnable [11] iff there is a learner
which, on every text for a language to be learned, outputs only one hypothesis, which
must be correct. For technical reasons, the learner keeps outputting a special symbol
denoting the absence of a reasonable conjecture until it outputs its only hypothesis.

Theorem 12. {L0, L1, L2, . . .} ≡strong {H0, H1, H2, . . .} whenever both classes
are infinite indexed families which are finitely learnable. In particular, every such
class is strongly mitotic.

Proof. As {L0, L1, L2, . . .} and {H0, H1, H2, . . .} are infinite, one can without loss
of generality assume that the underlying enumerations are one-to-one. Furthermore,
they have exact finite learners M and N , respectively, which use the corresponding
indexing. Now one translates {L0, L1, L2, . . .} to {H0, H1, H2, . . .} by mapping Ln to
Hn; thus Ψ is the identity mapping, where in the domain the n stands for Hn and
in the range the n stands for Ln. Θ(T ) = #kTn, where k is the least number such
that M outputs a hypothesis n on input T [k] (that is, the first position where M
conjectures a hypothesis) and Tn is the ascending text of Hn. This completes the
proof of the first statement.

Given now an infinite finitely learnable class {L0, L1, L2, . . .}, one can split it into
{L0, L2, L4, . . .} and {L1, L3, L5, . . .}, which are the subclasses of languages with even
and odd index, respectively. Both classes are also infinite indexed families which are
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finitely learnable. Thus they are all equivalent by the above result. Furthermore, a
classifier for splitting can be obtained by simulating the exact finite learner M for {L0,
L1, L2, . . .} on the input text, and then converging to 0 if the (only) grammar output
by M on the input text is even and to 1 if the (only) grammar output by M on the
input text is odd.

4. Further splitting theorems. Another question is whether classes can be
split into incomparable classes. So one would ask whether there is a parallel result
to the Sacks splitting theorem [20]: Every recursively enumerable but nonrecursive
set A is the disjoint union of two recursively enumerable sets A0 and A1 such that
the Turing degrees of A0 and A1 are incomparable and strictly below that of A. The
next example shows that there are classes where every splitting is of this form; thus
these classes are not weakly mitotic. Furthermore, splittings exist, so the result is not
making use of a pathological diagonalization against all classifiers.

Example 13. Let A be a maximal set. If a /∈ A, then let La = {a}; else let
La = A. Then {L0, L1, L2, . . .} is recursively enumerable and finitely learnable, but
any splitting L0,L1 of {L0, L1, L2, . . .} satisfies L0 ≤weak L1 and L1 ≤weak L0.

Proof. Let T0, T1, T2, . . . be a recursive enumeration of recursive texts for L0, L1,
L2, . . . , respectively. Let F (a) be the cardinality of {b < a | b /∈ A}. It is easy
to see that one can split {L0, L1, L2, . . .} into {La | a ∈ A ∨ F (a) is even} and
{La | a /∈ A∧F (a) is odd}. Thus this class has a splitting; in fact there are infinitely
many of them. Furthermore, {L0, L1, L2, . . .} is finitely learnable by outputting an
index for La for the first a occurring in a given text.

Assume now by way of contradiction that there is a splitting L0,L1 with L0 ≤weak

L1 via a reduction (Θ,Ψ). Now one defines the partial recursive function f which
outputs on input a the first number occurring in Θ(Ta); if there occurs no number,
then f(a) is undefined. As L0 is infinite, there are infinitely many a /∈ A with La ∈ L0.
For all but one of these, Θ(Ta) has to be a text for some set Lb = A in L1. Then
Lb = {b} and f(a) = b /∈ A for these a’s. It follows that, for every x, there is an
a > x with a /∈ A∧ f(a) /∈ A∧ f(a) > x. Then, by Remark 8, f(a) = a for almost all
a /∈ A. As infinitely many of these a’s belong to an La ∈ L0, one has that Θ(Ta) is a
text for La and Θ translates some text for a set in L0 into a text for a set in L0 and
not into a text for a set in L1. Thus L0 ≤weak L1. By symmetry of the argument,
L1 ≤weak L0.

While Example 13 showed that there are classes for which every splitting is a
Sacks splitting, the next result shows that every explanatorily learnable recursively
enumerable class has a Sacks splitting; but it might also have other splittings.

Theorem 14. Every infinite recursively enumerable and explanatorily learn-
able class {L0, L1, L2, . . .} has a splitting into two infinite subclasses L0,L1 such that
L0 ≤weak L1 and L1 ≤weak L0.

Proof. Let M be a explanatory learner for {L0, L1, L2, . . .} which satisfies the
three conditions from Remark 5. Now one defines the following function F from N to
{0, 1}, inductively using the oracle K for the halting problem.

Let Θ0,Θ1,Θ2, . . . be the enumeration of operators as given in Remark 2. Let
Tn be a text for Ln, constructed effectively from n (as {L0, L1, L2, . . .} is recursively
enumerable, this can be done). Let U be the set of all minimal indices of languages in
{L0, L1, L2, . . .}; that is, n ∈ U iff for all m < n, Lm = Ln. Note that one can decide
U relative to K, since Lm = Ln iff M converges to the same index on both Tm and
Tn. Let F ∗(n, a) be the number of k ∈ U satisfying k < n and F (k) = a. Note that
F ∗(n, a) can be computed using oracle K (assuming F can be computed relative to
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K, as will be shown later).

The value of F (n) is defined by using the case below, with higher priority (reflected
by the least number), for which the corresponding condition is true.

• Case with priority 0: n /∈ U . Then there is an m < n such that Lm = Ln.
Let F (n) = F (m) for the least such m.

• Case with priority 4e + 1: There is an m < n such that (a) M converges on
Θe(Tm) and Tn to the same value; (b) F (m) = 0; and (c) there are no i, j < n
such that F (i) = 0, F (j) = 0, and M converges on Θe(Ti) to the same value
as on Tj . Then let F (n) = 0.

• Case with priority 4e + 2: There is an m < n such that (a) M converges on
Θe(Tm) and Tn to the same value; (b) F (m) = 1; and (c) there are no i, j < n
such that F (i) = 1, F (j) = 1, and M converges on Θe(Ti) to the same value
as on Tj . Then let F (n) = 1.

• Case with priority 4e + 3: F ∗(m, 0) < F ∗(m, 1) + e for all m ≤ n. Then let
F (n) = 0.

• Case with priority 4e + 4: F ∗(m, 1) < F ∗(m, 0) + e for all m ≤ n. Then let
F (n) = 1.

More precisely, when defining F (n) one searches for the least number k such that the
case with priority k applies, and then defines F as described in that case. Note that
the conditions for the cases with priorities 4e + 3 and 4e + 4 apply for all e > n, and
thus there is always some case which applies.

Next it is shown that F ≤T K. As M converges on Tm, for every m, the test
whether the condition of the case with priority 0 applies for computing F (n) (and
the corresponding computation of F (n)) can be done relative to K: Lm = Ln iff M
converges to the same value on both Tm and Tn. For the test whether the condition
of the case with priority 4e + 1 applies, it needs to be checked whether M converges
to the same value on both Θe(Tm) and Tn. This can be done using oracle K as
follows. First compute the value d to which M converges on Tn. Then, as M satisfies
the constraints in Remark 5, M on Θe(Tm) either converges to d or outputs d only
finitely often. Thus one can check, using the oracle K, whether M converges on
Θe(Tm) to d. Similarly, one can check, for any two numbers i and j < n, whether
M converges to the same value on Θe(Ti) and Tj . Thus, one can test, using oracle
K, whether the case with priority 4e + 1 applies. Similarly, one can test whether the
case with priority 4e + 2 applies. The tests for the cases with priorities 4e + 3 and
4e+ 4 are obviously doable relative to K as U ≤T K and the conditions refer only to
statistics of previous values of F at places where the argument is in U .

So F can be computed in the limit. Having an approximation Fs to F , one defines
a classifier C as C(σ) = F|σ|(m) for the least m such that m = |σ| ∨ M(Tm[|σ|]) =
M(σ). Assume now that a text T of a language in {L0, L1, L2, . . .} is given and
n is the least index such that Ln = content(T ). Then, for all sufficiently large s,
C(T [s]) = Fs(n) (as M converges on T and Tn to the same index of Ln, but, for
m < n, M converges on Tm to an index for the language Lm which is not equal to
Ln). Thus C converges on T to F (n).

Clearly the case with priority 0 is applied for computing F (n) iff n /∈ U (this
happens for infinitely many n). Now it is shown by induction that the case with
priority 4e + c > 0 (where c ∈ {1, 2, 3, 4}) applies for computing only finitely many
F (n). Assume by induction that, for some �, all cases with priorities k strictly between
0 and 4e+ c do not apply for computation of F (n), n ≥ �, and the case with priority
4e + c applies for computing F (�). Now one makes a case-distinction depending on
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which of the priorities 4e + c is applied for computing F (�).

In the case of priority 4e+1, for n = �, there is an m < n such that (a) F (m) = 0,
(b) F (n) = 0, and (c) M converges on Θe(Tm) and Tn to the same value. Now let
i = m and j = �. Then, for n > �, these values i, j are below n and ensure that the
case with priority 4e + 1 does not apply. So n = � is the maximal n where F (n) is
defined according to this case.

In the case of priority 4e+3, consider the set {n0, n1, n2, . . . , nk} of the least k+1
elements of U ∩ {�, � + 1, � + 2, . . .}, where k = e + F ∗(�, 1) − F ∗(�, 0). One can now
prove by induction for u = 0, 1, 2, . . . that

• for nu with u < k, the case with priority 4e + 3 applies and F (nu) = 0;
• for nu with u ≤ k, F ∗(nu, 0) = F ∗(�, 0) + u and F ∗(nu, 1) = F ∗(�, 1).

Thus, F ∗(nk, 0) = F ∗(nk, 1) + e, and for n ≥ nk the case with priority 4e + 3 does
not apply for computing F (n).

The other two cases of priority 4e+2 and 4e+4 are symmetric to the two previous
cases. Thus, one can conclude that there are only finitely many n where the case with
priority 4e+ c applies in the computation of F (n). This completes the inductive step.

Let {L0, L1, L2, . . .} be split into two classes as La = {Li : F (i) = a}. Now
assume by way of contradiction that there is a reduction (Θe,Ψ) witnessing that
L0 ≤weak L1. Let � be so large that the cases with priorities 1, 2, . . . , 4e are not used
to define any F (n) with n ≥ �. Due to the case with priority 4� + 7, there is an
�′ ∈ U with F ∗(�′, 0) ≥ F ∗(�′, 1) + � + 1; note that �′ > �. So more sets in L0 than
in L1 have an index below �′. Thus, there is an m ≤ �′ such that Lm ∈ L0 and
Θe(Tm) is not the text of any of the sets L0, L1, . . . , L�′ . Let n be the minimal index
of content(Θe(Tm)); this index exists as Θe maps texts of languages in L0 to texts of
languages in L1. It follows from the construction that either F (n) = F (m) = 0 and
Ln ∈ L0 or there are i, j < n with F (i) = F (j) = 0, Li, Lj ∈ L0, and Θe(Ti) being a
text for Lj . This contradicts the assumption that (Θe,Ψ) reduces L0 to L1. Hence
L0 ≤weak L1. Similarly one can show that L1 ≤weak L0.

For this reason, one cannot give a recursively enumerable class where all split-
tings L0,L1 satisfy either L0 ≤strong L1 or L1 ≤strong L0. Furthermore, complete
classes have comparable splittings like before as they are mitotic and have even equiv-
alent splittings. The next example gives a class where halves of some splittings are
comparable but are never equivalent.

Example 15. Let A be a maximal set. For all a ∈ N and b ∈ {0, 1, 2}, let
L3a+b = {3a + b} if a /∈ A and L3a+b = {3c + b | c ∈ A} if a ∈ A. Then {L0, L1,
L2, . . .} is not weakly mitotic as no halves of any splitting are equivalent with respect
to ≤weak, but {L0, L1, L2, . . .} has a splitting L0,L1 with L0 ≤strong L1.

Proof. If one takes the splitting L0 = {L0, L3, L6, . . .} and L1 = {L1, L2, L4,
L5, L7, L8, . . .}, then it is easy to see that L0 ≤strong L1 via (Θ,Ψ) such that Θ is
based on translating every datum 3x to 3x+ 1 and Ψ is based on transforming every
index e into an index for {3x | 3x + 1 ∈ We}. The details are left to the reader.

Given now a further splitting L2,L3 of {L0, L1, L2, . . .}, one of these two classes,
say L2, must contain at least two of the sets L3a, L3a+1, L3a+2 for infinitely many
a /∈ A. Assume by way of contradiction that (Θ,Ψ) would witness L2 ≤weak L3. Now
one defines the following functions fb for b = 0, 1, 2 by letting fb(a) be the number
x such that 3x or 3x + 1 or 3x + 2 occurs earliest in the text Θ((3a + b)∞). Now
choose two different b, b′ ∈ {0, 1, 2} such that there are infinitely many a ∈ N − A
with L3a+b, L3a+b′ ∈ L2. Then one knows that, for every bound c, there are infinitely
many a ∈ N−A such that L3a+b ∈ L2 and Θ((3a+b)∞) is a text for some language in
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L3 −{L0, L1, L2, . . . , Lc}. It follows by Remark 8 that fb(a) = a for almost all a /∈ A.
The same applies to fb′ . So there is an a /∈ A such that L3a+b, L3a+b′ are both in L2

and that Θ maps texts of both languages to texts of the sets L3a, L3a+1, or L3a+2.
As only one of these sets can be in L3, Θ has to map texts of different languages to
texts of the same language, a contradiction. Thus L2 ≤weak L3 and the class cannot
be weakly mitotic.

While in recursion theory a splitting A0, A1 of a recursively enumerable set A
satisfies A0 ≡T A1 ⇒ A0 ≡T A, the next example shows that the corresponding con-
nection does not hold in inductive inference. The proof is very similar to Example 15
and is thus omitted.

Example 16. Let A be a maximal set. For all a ∈ N and b ∈ {0, 1}, let L2a+b =
{2a + b} if a /∈ A and L2a+b = {2c + b | c ∈ A} if a ∈ A. Then {L0, L1, L2, . . .} is
not weakly mitotic, but the halves of the splitting {L0, L2, L4, . . .}, {L1, L3, L5, . . .}
are equivalent with respect to ≤strong.

5. Beyond explanatory learning. One could, besides classes which are com-
plete for explanatory learning, also consider classes which are complete for behavior-
ally correct learning [3, 5, 18] with respect to ≤strong. Note that such a class L may
no longer be explanatorily learnable, but L satisfies the following two properties:

• The class L is behaviorally correct learnable; that is, there is a learner which
outputs, on every text T for a language in L, an infinite sequence e0, e1, e2, . . .
of hypotheses such that Wen = content(T ) for almost all n.

• Every behaviorally correct learnable class H satisfies H ≤strong L.

Note that the reduction ≤strong considered in this paper is always the same as defined
for explanatory learning; reducibilities more adapted to behaviorally correct learning
have also been studied [12, 13]. Completeness with respect to ≤weak is not considered
in this section, so “complete” means “complete for ≤strong” in this section.

It is easy to show that such complete classes exist. Consider as an example the
class L of all sets {x}∪{x+y+1 | y ∈ L}, where the xth learner behaviorally correct
learns the set L. So given any behaviorally correct learnable class and an index x of
its learner, the translation L �→ {x} ∪ {x + y + 1 | y ∈ L} would translate all the sets
behaviorally correct learned by this learner into sets in L.

In the following let L be any class which is complete for behaviorally correct
learning with respect to ≤strong. Note that methods similar to those in Theorem 3
show that L is strongly mitotic. The next result shows that for any splitting L0,L1

of L, one of these two classes is complete for behaviorally correct learning as well and
therefore this class cannot be split into two incomparable subclasses.

Theorem 17. If L0,L1 are a splitting of a class which is complete for behaviorally
correct learning with respect to ≤strong, then either L0 ≡strong L0 ∪L1 or L1 ≡strong

L0 ∪ L1.

Proof. First the theorem is shown for a special class S defined below. Let H be
a class which is complete for behaviorally correct learning with respect to ≤strong.
Furthermore, let C0, C1, . . . be a list of all primitive recursive classifiers. One builds,
for each x, a sequence τx,0, τx,1, . . . starting with τx,0 = x as follows. If τx,y has been
defined, then one takes τx,y+1 to be the first extension of τx,y found, if any, such that

{x, x + 1, x + 2, . . . , x + y} ⊆ content(τx,y+1) ⊆ {x, x + 1, x + 2, . . .}

and Cx(τx,y+1) = Cx(τx,y).
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In the case that the above process terminates at some y, that is, if τx,y+1 does
not exist, then let z = max(content(τx,y)) and place in S the set

{x, x + 1, x + 2, . . . , z} ∪ {z + u + 1 | u ∈ H},

for each H ∈ H.
On the other hand, if the process does not terminate at any y, then T = limy∈N τx,y

is a text for {x, x + 1, x + 2, . . .} on which Cx does not converge; in this case, one
places the set

{x, x + 1, x + 2, . . .}

into S. Note that, in this case, Cx does not split S into two subclasses, as it diverges
on a text for {x, x + 1, x + 2, . . .}.

Now it is shown that S is behaviorally correct learnable. Suppose M is a beha-
viorally correct learner for H. The new learner N for S works as follows. On input
T [n], it determines xn = min(content(T [n])), yn = largest value of y such that τxn,y

is defined within n steps in the process given above, and zn = max(content(τxn,yn)).
The learner N then constructs a new string η, where it replaces every u in T [n] by
u− zn − 1 if u > zn, and by # if u < zn. Then N conjectures the following set:

WN(σ) =

⎧⎪⎨
⎪⎩
{xn, xn + 1, xn + 2, . . . , zn}
∪ {u + zn + 1 | u ∈ WM(η)} if τxn,yn+1 does not get defined;

{xn, xn + 1, xn + 2, . . .} if τxn,yn+1 is defined.

Note that the definition above is valid, as {xn, xn+1, xn+2, . . . , zn} ∪ {u+zn+1 | u ∈
WM(η)} ⊆ {xn, xn+1, xn+2, . . .}, and thus one can always switch to the second case
when τxn,yn+1 is defined. The verification that N indeed behaviorally correct learns
S is straightforward; therefore the verification is omitted.

Now consider any classifier Cx which converges on every text for a language in
S. Then there is a maximal y such that τx,y is defined (since otherwise Cx does
not converge on T =

⋃
y∈N

τx,y, which is a text for the language in S). Let z =
max(content(τx,y)). Therefore, the class H is strongly reducible to the subclass

{ {x, x + 1, x + 2, . . . , z} ∪ {z + u + 1 | u ∈ H} | H ∈ H}

of S. Furthermore, every set in this subclass has a text starting with τx,y and Cx

converges on all such texts to Cx(τx,y). Therefore this complete class is contained
in one member of the splitting of S defined by Cx. Thus, one of these members is
complete for behaviorally correct learning with respect to ≤strong.

After dealing with this special class S, consider any splitting L0,L1 of a class L
which is complete for behaviorally correct learning with respect to ≤strong. There is
a reduction (Θ,Γ) from S to L0 ∪ L1 due to completeness. Let C be the classifier
which splits L into L0,L1. Let Sa consist of those L in S which are mapped to La

by Θ. Note that this splitting of S can be effectively obtained by using Θ and C. As
one of S0, S1 is complete for behaviorally correct learning (by the proof above), one
of L0, L1 is complete for behaviorally correct learning with respect to ≤strong.

As just seen, any splitting L0,L1 of a class which is complete for behaviorally
correct learning satisfies either L0 ≡strong L1 or L0 <strong L1 or L1 <strong L0.
As the class is strongly mitotic, it can happen that the two halves of a splitting are
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equivalent (although this is not always the case). The next result gives a class where
the two halves of a splitting are always comparable but never equivalent.

Theorem 18. There is a recursively enumerable and behaviorally correct learn-
able class, which is not weakly mitotic, such that every splitting L0,L1 of the class
satisfies either L0 ≤strong L1 or L1 ≤strong L0, but not L0 ≡weak L1.

Proof. A minor modification of the construction of Post’s simple set [19] gives
the following: There is a recursive partition of the odd natural numbers into sets
I0, I1, I2, . . . and a recursively enumerable set L1 of odd natural numbers such that
(a) 1 ∈ L1, (b) In ⊆ L1 for all n, and (c) L1 intersects every recursively enumerable
set which contains infinitely many odd natural numbers.

For n = 1, if n is even, then let Ln = {n}; else let Ln = L1 ∪ {n}.
Clearly {L0, L1, L2, . . .} is behaviorally correct learnable: On input σ, the learner

conjectures content(σ) if σ does not contain an odd number; otherwise it conjectures
content(σ) ∪ L1.

Let L0,L1 be a splitting of {L0, L1, L2, . . .}. L1 is in one of these classes, say in
L1. Let C be the classifier witnessing the split. Then there is a stabilizing sequence
σ for C on L1, such that content(σ) ⊆ L1 and C(τ) = 1 for all extensions τ of σ
with content(τ) ⊆ L1. Let T be a text of L1. Now for every a ∈ L1 and every n,
C(σaT [n]) = 1. Since L1 is simple, it follows that the set

D = {a | a is odd and ∃n [M(σaT [n]) = 0]}

is finite and thus La ∈ L1 for all odd a /∈ D. Let n be such that D ∩ Im = ∅ for
all m ≥ n. Let a0, a1, a2, . . . be an ascending enumeration of all even numbers plus
members of D. Note that L0 ⊆ {La0 , La1 , La2 , . . .}.

Let bm = min(In+m − L1)—note that bm is well defined since In+m ⊆ L1 for
all m. Note that L1 ∪ {bm} is in L1 for all m.

Now it is shown that L0 ≤strong L1. Let Θ be an operator which maps texts
for Lam to texts for L1 ∪ {bm}. Note that such a Θ can easily be constructed. For
Ψ, given a sequence E, one can determine, in the limit, the grammar e to which E
converges (if any), and then determine, in the limit, the m such that e is a grammar
for L1 ∪ {bm} (if there is any such m). Thus, one can construct a sequence which
converges to a grammar for Lam

, whenever such an m as above exists.
On the other hand, if an operator translates texts of sets in L1 into texts of sets

in L0, then it has to map some text T of L1 to some text of some Lam
. There is an

initial segment σ of T such that am appears on the output when σ is fed into the
operator. There is only the set Lam in L0 containing am, but infinitely many sets in
L1 that have a text starting with σ. Therefore the translation maps some texts of
different sets in L1 to texts of Lam . Thus, the translation cannot be used for a weak
reduction from L1 to L0. Hence L1 ≤weak L0.

6. Autoreducibility. Trakhtenbrot [23] defined that a set A is autoreducible
iff one can reduce A to A such that A(x) is obtained by accessing A only at places
different from x. Ladner [15] showed that a recursively enumerable set is mitotic iff
it is autoreducible. Ambos-Spies pointed out this result to the authors and asked
whether the same holds in the setting of inductive inference. Unfortunately, this
characterization fails for both of the major variants of autoreducibility. These variants
are the ones corresponding to strong and weak reducibility.

Definition 19. A class L is strongly (weakly) autoreducible iff there is a strong
(weak) reduction (Θ,Ψ) from L to L such that, for all sets L ∈ L and all texts T for
L, Θ(T ) is a text for a language in L − {L}.
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Example 20. Let A be a maximal set and let L contain the following sets:

• {3x}, {3x + 1}, {3x + 2} for all x /∈ A;
• {3y : y ∈ A}, {3y + 1 : y ∈ A}, {3y + 2 : y ∈ A}.

Then the class L is neither strongly mitotic nor weakly mitotic. But L is autoreducible
via some (Θ,Ψ) where Θ maps any text T to a text T ′ such that all elements of the
form 3y in T have the form 3y + 1 in T ′, all elements of the form 3y + 1 in T have
the form 3y + 2 in T ′, and all elements of the form 3y + 2 have the form 3y in T ′.

So even the implication “strongly autoreducible ⇒ weakly mitotic” fails. The
remaining question is whether at least the converse direction is true in inductive
inference. This is still unknown, but there is some preliminary result on sets which
are complete for ≤weak.

Theorem 21. If a class L is complete for ≤weak, then it is weakly autoreducible.

Proof. Let L be complete for ≤weak and let M be an explanatory learner for
L which satisfies the conditions from Remark 5. As L is complete for ≤weak, by
Proposition 6, there is a reduction (Θ,Ψ) from the class I to L such that, for any set
Ix = {0, 1, . . . , x} ∈ I and any text T for Ix, Θ(T ) is a text for a set on which M does
not converge to an index less than or equal to x. Now, an autoreduction (Θ′,Ψ′) is
constructed.

For this, one first defines Θ′′ as follows and then concatenates it with Θ. The
operator Θ′′ translates every text T for a set L into a text for I2n(1+2m), where m,n
are chosen such that n is the value to which M converges on T and m is so large that
all the elements put into Θ′′(T ), when following intermediate hypotheses of M on T ,
are contained in the set I2n(1+2m). It is easy to verify that this can be done. Then Θ′

is given as Θ′(T ) = Θ(Θ′′(T )). The sequence Θ′(T ) is a text for a set in L with the
additional property that M converges on it to an index larger than 2n(1 + 2m); this
index is therefore different from n and content(Θ′(T )) = content(T ).

The reverse operator Ψ′ can easily be generated from Ψ. If E converges to an
index for content(Θ′(T )), then Ψ(E) converges to some index for I2n(1+2m). The
number 2n(1 + 2m) can be determined in the limit from this index by enumerating
the corresponding finite set; thus Ψ′ can translate E via Ψ(E) to a sequence which
converges to n.

Example 22. The class L from Theorem 9 is complete for ≤weak and weakly
autoreducible but not strongly autoreducible.

Proof. Let L and a0, a1, a2, . . . be as in Theorem 9. Assume that (Θ,Ψ) witness
that L is strongly autoreducible. Then Θ has to preserve inclusions and therefore
map infinite sets in L to infinite sets. So, content(Θ(a0 (a0 + 1) (a0 + 2) . . .)) is an
infinite set in L different from {a0, a0 + 1, a0 + 2, . . .}. By induction, one can show
that

content(Θ(an (an + 1) (an + 2) . . .)) ⊆ {an+1, an+1 + 1, an+1 + 2, . . .} and

content(Θ(an (an + 1) (an + 2) . . .)) ⊂ {an, an + 1, an + 2, . . .}.

But in Theorem 9 it was shown that no recursive operator has these properties. That
L is complete for ≤weak was shown in Theorem 9, and that L is weakly autoreducible
follows from Theorem 21.
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Abstract. We investigate structural properties of interactive perfect zero-knowledge (PZK)
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1. Introduction. A zero-knowledge proof, as introduced by Goldwasser, Mi-
cali, and Rackoff [42], is a proof procedure with the remarkable property of yielding
nothing but the validity of the assertion. In [38] it was then shown that, under
the assumption that one-way functions exist, all NP statements have computational
zero-knowledge proofs, namely, proofs that are zero knowledge with respect to com-
putationally bounded adversaries. Perfect zero-knowledge (PZK) proofs [42] are those
proofs that are zero knowledge even with respect to a computationally unbounded ad-
versary. The notion is important from both a practical and a theoretical perspective.
We next review the practical and theoretical motivations of our work.

Practical motivations. PZK proof systems find their main application in the de-
sign of identification schemes, as first noted in [31]. An identification scheme is a
protocol for two parties, called the user and the system, by which the user identifies
himself to the system in a secure way; that is, a third party listening to the con-
versation cannot later impersonate the user. Typically, the user is trying to log into
a system and has to identify himself as a legitimate user before the system grants
him access. Identification schemes rely on the fact that certain PZK proofs are also
“proofs of possession of knowledge of a witness” [31, 54, 3, 28] (a notion alluded to in
[42, 32]).

In some applications it is desirable that the identity of the specific user trying to
get access be kept secret from the system. For example, an investment firm accessing a
stock market database would prefer not to reveal its identity to the database manager;
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§Google Inc. and Columbia University, New York, NY 10027 (moti@google.com, moti@cs.
columbia.edu).

1300



MONOTONE CLOSURE PROPERTIES FOR PZK 1301

knowing which firm is interested in the stock of a given company is usually valuable
information. At the same time, the system must make sure that the person trying
to get access is a legitimate user (i.e., a subscriber to the service). The following
“multifaceted identification scheme” is a possible solution to the above problem. As
a concrete example, consider a system where user i knows a square root of xi modulo
an integer n which is the product of two primes. A user can identify himself as
being a member of the group by proving that he knows a witness to the statement
(x1 ∈ QRn) ∨ (x2 ∈ QRn) ∨ · · · ∨ (xm ∈ QRn) without disclosing his identity which
is related to the specific xi for which he knows a square root (QRn is the set of
elements of Z∗

n that admit a square root modulo n). On the other hand, at some
other times user i can prove its individual (as opposed to group) identity by proving
possession of a witness (square root) to the specific disjunct (xi ∈ QRn) associated
with him. Other similar applications may employ a more complicated sharing of
witnesses according to some given structure (typically called an access structure [44]),
thus needing proof systems for general formulae (not just simply disjunction). In
[24], a communication-efficient multifaceted identification scheme based on quadratic
residuosity is presented.

Recently, the dual problem—consisting in hiding which record is accessed and not
the identity of the user—has also been studied (see, e.g., [19]).

Theoretical motivations. From a theoretical prospective, PZK (as well as the re-
lated, less stringent notion of statistical ZK (SZK)) has been the subject of a number
of early investigations. In [38] PZK proofs were given for the language of graph
isomorphism as well as of graph nonisomorphism (which was the first language not
known to be in NP shown to have an interactive proof). In [33, 2] it was proved that
a complement of any SZK language has a 2-round proof system, and in [2] it was
shown that any language with an SZK proof system also has a 2-round proof system.
The round complexity and prover-power for SZK and PZK were studied in [5, 6, 7].
The honest verifier versus dishonest verifier and the private coin versus public coin
problems have been studied, e.g., in [6, 49]. As PZK proofs do not depend on the prop-
erties of assumed hard problems (such as one-way functions) but only on the input
language, they constitute a clean context for studying the intrinsic structural proper-
ties of the notion of a zero-knowledge proof and knowledge complexity of languages
[42, 41, 40].

We remark that PZK/SZK proofs also motivated the useful notion of compu-
tationally sound proofs (in conjunction with the idea of zero-knowledge arguments)
[17, 18, 47] and inspired the recent work on program checking and testing [14, 11].

PZK proofs are also the basic schemes used as preprocessing of further zero-
knowledge proof systems; for example, in the noninteractive scenario [12, 13] and its
applications (e.g., [48, 29, 28, 4]).

Given its practical use, its influence, and the complexity-theoretic investigations
concerning PZK/SZK, we observe that relatively very few languages are known to
be PZK. This, in turn, implies that only very few general protocol techniques are
available for designing and utilizing the notion. Besides the proofs for quadratic
residuosity and quadratic nonresiduosity given in the original paper [42], PZK proofs
were given in [38, 34, 54, 37, 16, 25] and in [12, 22, 27] for the noninteractive zero-
knowledge case. In [54] it was noted that all these languages have certain relations
to random self-reducibility properties—either positively by claiming that the input is
randomly reducible (by a group action) to some structure (e.g., one graph isomorphic
to another), or negatively by claiming that the input is not reducible (e.g., a graph
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is not isomorphic to another). This corresponds to the membership problem of a
complement of an RSR language; see, e.g., [54]. All of their proof systems rely on
certain algebraic properties associated with the random self-reducibility property.

The results of this paper suggest new protocol construction techniques, prove that
a large class of logically constructible languages over atomic languages which are in
PZK are themselves in PZK, and show that PZK is a larger class than previously
known.

Summary of results. We prove that PZK for RSR languages (see [54]) is closed
under monotone formula composition, thus extending the work of [42, 38] on PZK.
More precisely, we present PZK proofs for all monotone boolean formulae whose atoms
are statements about membership in an RSR language.

Let us give a concrete example. Fix an RSR language L (say graph isomorphism)
and consider the following scenario. The prover and the verifier get as common input
a monotone formula φ on m variables and strings x1, . . . , xm. The prover wishes to
convince the verifier that φ(χ1, . . . , χm) is true where χi = 1 if xi ∈ L and χi = 0
otherwise. We show that this can be done in PZK (and the interaction takes time
polynomial in the size of φ and all the xi’s).

The above results are also shown for languages whose complement is RSR (such
as nonisomorphism, nonresiduosity). Moreover, we prove that threshold formulae
over membership statements for RSR languages and threshold formulae over negated
membership statements for RSR languages also have PZK proofs.

Finally, we also show closure properties for a specific class of nonmonotone for-
mulae.

Results in this paper for the special case of graph isomorphism and graph noni-
somorphism languages have appeared in [26].

2. Notation and terminology. Given a boolean formula φ(v1, . . . , vm), each
truth assignment t : {v1, . . . , vm} → {0, 1} naturally defines the validity tφ of the
formula φ under t. For convenience we assume that, scanning the formula from left
to right, the variables v1, . . . , vm appear in this order. A monotone formula φ over
the variables v1, . . . , vm is a boolean formula where each boolean operator is either
an OR or an AND with two inputs and one output. A threshold formula is a boolean
formula where each boolean operator computes a threshold function, where a threshold
function Tk,m takes m boolean values as input and outputs 1 if and only if at least k
out of the m boolean values are 1. In this paper we will consider the following classes
of boolean formulae: MON, the class of monotone formulae; T, the class of threshold
formulae; and OR, the class of formulae that can be written as ((φ) ∨ (¬ψ)), where
φ, ψ are monotone formulae.

Let L be a language, and let χL denote the indicator function for the language
L (i.e., χL(x) = 1 if and only if x ∈ L). Also, let Bm be a class of boolean formulae
over m variables, B = ∪m≥1Bm, and let �x = (x1, . . . , xm) be an m-tuple of binary
strings. We define the language

CL(B;L) = {(φ; �x) | for some m > 0, φ ∈ Bm;φ(χL(x1), . . . , χL(xm)) = 1}.

We define the size of (φ, �x) as the sum of the lengths of �x and φ, according to
their standard encoding (see, e.g., [35]).

Let us give a concrete example. Consider the language ISO of pairs of isomorphic
graphs. Let φ be the monotone formula (v1 ∧ v2) ∨ (v3 ∧ v4), and let G = ((G10,
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G11), . . . , (G40, G41)) be a quadruple of pairs of graphs. Then, the pair (φ,G) belongs
to the language CL(MON; ISO) if and only if the following statement is true:

((G10≈G11) ∧ (G20≈G21)) ∨ ((G30≈G31) ∧ (G40≈G41)),

where the symbol ≈ denotes graph isomorphism.
By L we denote the complement of a language L. The symbol ⊕ denotes the

(bitwise) xor logical operator. If �x = (x1, . . . , xl) and �y = (y1, . . . , ym) are sequences,
by �x◦�y we denote the sequence (x1, . . . , xl, y1, . . . , ym). If π1 and π2 are permutations,
by π1 ◦ π2 we denote the permutation obtained as a composition of π1 and π2, where
π2 is applied first.

Read-once formulae. Throughout this paper we will only consider read-once for-
mulae, that is, formulae where each variable appears at most once. This is, however,
without loss of generality, as we can always have a read-once formula which is still in
the language by a small change in the representation (and length extension). Suppose
that φ is a formula on m variables v1, . . . , vm and that vi appears li times. By giving
each variable a different name each time it appears, we construct a formula φ′ on
m′ =

∑m
i=1 li variables such that

φ(v1, . . . , vm) = φ′(v1, . . . , v1︸ ︷︷ ︸
l1

, . . . , vm, . . . , vm︸ ︷︷ ︸
lm

).

From this it follows that

(φ, (x1, . . . , xm)) ∈ CL(MON;L) if and only if (φ′, (x1, . . . , x1︸ ︷︷ ︸
l1

, . . . , xm, . . . , xm︸ ︷︷ ︸
lm

))

∈ CL(MON;L).

2.1. Zero-knowledge proof systems.
Definition 1. Let P, the prover, be a probabilistic Turing machine, and let

V, the verifier, be a probabilistic polynomial-time machine. P and V share the same
input and can communicate with each other. By P↔V(x) we denote V’s output after
interacting with P on input x. A pair (P,V) constitutes an interactive proof system
for the language L if the following hold:

1. (Completeness) If x ∈ L, then

Pr(P ↔ V(x) = ACCEPT) ≥ 2/3.

2. (Soundness) If x �∈ L, then for all probabilistic Turing machines P∗

Pr(P∗ ↔ V(x) = ACCEPT) ≤ 1/2.

For simplicity, the above definition considers a constant error in the completeness
and soundness requirements. Any protocol satisfying such definition can be easily
transformed into a protocol with exponentially small error by using the standard
technique of multiple independent repetitions. We define View V(x), V’s view of the
interaction with P on input x, as the random variable that assigns to pairs (R;Trans)
the probability that R is the portion of V’s random tape used during the execution
of the protocol and that Trans is the transcript of a conversation between P and V
on input x given that V uses random string R.



1304 A. DE SANTIS, G. DI CRESCENZO, G. PERSIANO, M. YUNG

Definition 2. An interactive proof system (P,V) for L is a PZK proof system
for L (in short, a PZK proof system) if for each probabilistic polynomial-time machine
V∗ there exists a probabilistic machine SV∗ (called the simulator) running in expected
polynomial time such that for all x ∈ L the probability spaces ViewV∗(x) and SV∗(x)
coincide.

We denote by PZK the class of languages that have a PZK proof system.

3. Random self-reducible languages. The class of random self-reducible lan-
guages was introduced in [54, 1] and has since been referred to as RSR.

Definition 3. A relation is a subset of {0, 1}∗ × {0, 1}∗.
Let N be a BPP language. A family of relations R = {Rx}x∈N is a polynomial-

time family of relations if for an instance z and a witness w it is possible to check in
time polynomial in |x| whether (z, w) ∈ Rx.

Definition 4. A family of sets {Sx}x∈N is efficiently samplable if and only if
there exists an algorithm running in expected polynomial time that, on input x ∈ N ,
outputs a uniformly randomly chosen element of Sx.

Definition 5 (RSR languages). Let N be a BPP language and {Sx}x∈N be
an efficiently samplable family of sets. Let {Rx}x∈N be a family of polynomial-time
relations and define the domain of Rx, domR(x), as the set {z | ∃w such that (z, w) ∈
Rx}. If (z, w) ∈ Rx, then we say that w is an x-witness for z. The language LR =
{(x, z)|x ∈ N and z ∈ domR(x)} is RSR if the following conditions hold:

1. There exists a polynomial-time algorithm SampleR that, on input (x, z) ∈ LR
and r ∈ Sx, outputs y ∈ domR(x), and, if r is chosen at random from Sx,
then y is uniformly distributed over domR(x).

2. There exists an algorithm that on input
2.1. x, z, y, r such that SampleR(x, z, r) = y and
2.2. an x-witness for y

outputs an x-witness for z.
3. There exists an algorithm GenerateR that, on input x, outputs in expected

polynomial time a pair (z, w) ∈ Rx with z uniformly distributed over the
domain of Rx and w uniformly distributed over all x-witnesses for z.

4. There exists a polynomial-time reconstructing algorithm AR that, on input
x, z, u, y and r′, r′′, satisfying y = SampleR(x, z, r′) and u = SampleR(x, z, r′′),
returns r such that y = SampleR(x, u, r). Moreover, if r′′ is uniformly dis-
tributed over Sx, then so is r.

Remark 1 (the properties for RSR languages). Conditions 1 and 2 in the above
definition for RSR languages are also contained in the definition given in [54]. Our
results in section 4 use only conditions 1–3. In section 5 we show a protocol for mono-
tone formulae over co-RSR languages that also uses condition 4 (which is, however,
satisfied by all known RSR languages), and then in Remark 4 we briefly discuss a
different construction that does not use this condition but results in a somewhat less
efficient protocol.

Remark 2 (expected polynomial time versus strict polynomial time). Notice that
we require only that the algorithm GenerateR and the algorithms to sample from
the families {Sx} stop in expected polynomial time. We can use any of the known
standard techniques and change the strategy of the verifier in order to keep the running
time strictly bounded by a polynomial. This comes at the expense of increasing the
soundness probability by a constant factor, and the zero-knowledge property of the
protocol is not affected because we do not modify the prover’s strategy.

We define the class co-RSR as the class of languages L such that L ∈ RSR.
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Let us now give a few examples of RSR languages.
Square roots. Let N be the set of all positive integers x, and let Sx be the set Z∗

x.
The relation Squarex is defined as Squarex = {(z, w)|w ∈ Z∗

x and w2 ≡ z mod x}. If
(z, w) ∈ Squarex, then we say that z is a square modulo x and w is a square root of
z modulo x. The language LSquare = {(x, z)|z is a square modulo x} is RSR. Indeed,
conditions 1–4 of Definition 5 are satisfied.

1. Consider algorithm Sample
Square

that on input (x, z, r) outputs y = zr2 mod x.
If z is a square modulo x and r is chosen at random in Z∗

x, then y is a random
square modulo x.

2. To see that condition 2 is met, we observe that, if x, y, z, and r are such that
y = zr2 mod x and s is a square root of y modulo x, then w = sr−1 mod x
is a square root of z modulo x.

3. Algorithm GenerateSquare on input x chooses s at random from Z∗
x, sets

y = s2 mod x, and outputs (y, s).
4. The reconstructing algorithm takes as input values x, z, u, y, r′, r′′ satisfying

y = z(r′)2 mod x and u = z(r′′)2 mod x, and returns r = r′ · (r′′)−1 mod x.
It is easily verified that y = ur2 mod x and that r is uniformly distributed in
Z∗
x if r′ and r′′ also are.

Graph isomorphism. We say that two graphs G and H on the same set V of
vertices are isomorphic if there exists a permutation π of V such that (u, v) is an edge
of G if and only if (π(u), π(v)) is an edge of H. In this case we write H = π(G).
Let N be the set of all graphs G. For a graph G = (V, E), let SG be the set of all
permutations of V. The relation ISOG is defined as ISOG = {(H,π)|π(G) = H}. We
next show that the language LISO = {(G,H)|G and H are isomorphic} is RSR.

1. Algorithm SampleISO(G,H, π) outputs the graph M = π(H). When π is
chosen uniformly over all permutations of V and G and H are isomorphic,
the graph M is uniformly distributed over the set of graphs isomorphic to G.

2. To see that condition 2 is met, we observe that if SampleISO(G,H, π) = M
and τ is such that M = τ(G) (that is, τ is a G-witness for M), then π−1 ◦ τ
is a G-witness for H.

3. Algorithm GenerateISO(G) randomly selects a permutation τ of the vertices
of G and outputs M = τ(G) and τ .

4. The reconstructing algorithm AR, on input G, H, M , L, π, and τ that satisfy
M = π(H) and L = τ(H), constructs the isomorphism μ such that M = μ(L)
as μ = π ◦ τ−1. It is easily verified that μ is uniformly distributed over the
set of all permutations of V if π and τ also are.

Discrete logarithm. Let N be the set of pairs (p, g), where p is a prime and g
is an element of Zp, and let S(p,g) be the set Zp−1. Define the relation SUB(p,g) as
SUB(p,g) = {(z, w)|z = gw mod p}. If (z, w) ∈ SUB(p,g), then we say that z belongs
to the subgroup of Zp generated by g and that w is the (p, g)-logarithm of z. The
language LSUB defined as LSUB = {((p, g), z)|∃w such that z = gw mod p} is RSR.

1. Algorithm Sample
SUB

on input ((p, g), z, r) outputs y = grz mod p. If z
belongs to the subgroup of Zp generated by g and r is a random element of
Zp−1, then y is a random element of the subgroup of Zp generated by g.

2. Condition 2 is seen to be satisfied by observing that if s is the (p, g)-logarithm
of y and ((p, g), z, r) are such that Sample

SUB
((p, g), z, r) = y, then z ≡

gs−r mod p and thus (s− r) mod (p− 1) is the (p, g)-logarithm of z.
3. Algorithm GenerateSUB on input (p, g) picks an element s at random from

Zp−1, sets y = gs mod p, and outputs the pair (y, s).
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4. The reconstructing algorithm AR is defined as follows. On input x, z, y, u, r′, r′′

such that y = zgr
′
mod p and u = zgr

′′
mod p, it outputs r = (r′−r′′) mod (p−

1). Simple algebra gives y = ugr mod p, and we note that r is uniformly dis-
tributed over Zp−1 if r′ and r′′ also are.

Decisional Diffie–Hellman. Using the same definitions for the discrete logarithm
problem, we define the relation DDH(p,g) as consisting of the pairs ((za, zb, zc), (a, b, c))

such that za = ga mod p, zb = gb mod p, zc = gc mod p, and c = ab mod (p − 1). If
((za, zb, zc), (a, b, c)) ∈ DDH(p,g), then we say that z = (za, zb, zc) is a Diffie–Hellman
triple with respect to (p, g). The language LDDH defined as LDDH = {((p, g), z)|z is a
Diffie–Hellman triple with respect to (p, g)} is RSR.

1. Algorithm Sample
DDH

on input ((p, g), (za, zb, zc), (r, s)) outputs the triple
y = (ya, yb, yc) defined as ya = grza mod p, yb = gszb mod p, and yc =
grszsaz

r
bzc mod p. If z is a Diffie–Hellman triple with respect to (p, g) and r, s

are random and independent elements of Zp−1, then y is a random Diffie–
Hellman triple with respect to (p, g).

2. Condition 2 is seen to be satisfied by observing that if a, b, c are the dis-
crete logarithms of za, zb, zc, respectively, with c = ab mod (p − 1), and
Sample

DDH
((p, g), (za, zb, zc), (r, s)) = (ya, yb, yc), then the discrete logarithms

of ya, yb, yc, respectively, are a + r mod (p − 1), b + s mod (p − 1), and
(a + r)(b + s) mod (p− 1).

3. Algorithm Generate
DDH on input (p, g) picks elements a, b at random from

Zp−1; sets ya = ga mod p, yb = gb mod p, and yc = gab mod p; and outputs
the triple (ya, yb, yc).

4. The reconstructing algorithm AR is defined as follows. On input p, g, z =
(za, zb, zc), y = (ya, yb, yc), u = (ua, ub, uc), (r′, s′), (r′′, s′′) such that ya =
gr

′
za mod p, yb = gs

′
zb mod p, yc = gr

′s′zs
′

a zr
′

b zc mod p, and ua = gr
′′
za mod p,

ub = gs
′′
zb mod p, uc = gr

′′s′′zs
′′

a zr
′′

b zc mod p, it returns r, s such that
r = (r′− r′′) mod (p− 1) and s = (s′− s′′) mod (p− 1). Simple algebra gives
ya = grua mod p, yb = gsub mod p, and yc = grsur

au
s
buc mod p, and we note

that r, s are uniformly distributed over Zp−1 if r′, s′ and r′′, s′′ also are.
The following lemma gives a useful property of algorithm Sample.
Lemma 6. Let LR be an RSR language and let (x, z) �∈ LR. Then, for all r ∈ Sx,

SampleR(x, z, r) �∈ domR(x).
Proof. Suppose there exists an r such that y = SampleR(x, z, r) ∈ domR(x),

and let w be such that (y, w) ∈ Rx. By property 2 of the RSR languages, knowing
x, z, y, r, and w, it is possible to compute an x-witness for z. This would imply that
(x, z) ∈ LR, a contradiction.

In [54], extending the protocol for quadratic residuosity of [42] and graph isomor-
phism of [38], it was proved that all RSR languages have PZK proof systems.

Theorem 7 (Tompa and Woll [54]). All RSR languages have a PZK proof
system.

4. Monotone formulae over RSR languages. In this section we prove that
the language of all true monotone formulae whose atoms are statements about mem-
bership in an RSR language have a PZK proof system.

Before describing the proof system in its full generality we sketch an example for
the simple cases of OR and AND of two statements about graph isomorphisms. These
two simple proof systems will constitute the building block of our proof systems for
general monotone formulae.
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OR of two graph isomorphisms. We now briefly describe a zero-knowledge
proof system for proving that at least one of two pairs of graphs (A0, A1) and (B0, B1)
consists of two isomorphic graphs.

The prover randomly picks bits c1 and c2 and permutations τA and τB , constructs
graphs A = τA(Ac1) and B = τB(Bc2), and sends the pair (A,B) to the verifier. The
verifier picks a random bit b and sends it to the prover. The prover responds by
sending random bits b1 and b2 such that b = b1 ⊕ b2 and isomorphisms πA and πB

such that A = πA(Ab1) and B = πB(Bb2).
For the completeness property, suppose that A0 and A1 are isomorphic. The

prover sets b1 = b⊕ c2, b2 = c2, and πB = τB . Isomorphism πA instead is computed
in the following way. If b1 is equal to c1, then isomorphism πA is set equal to τA. If b1
is not equal to c1, then, since A0 and A1 are isomorphic, there exists isomorphism μ
such that Ac1 = μ(Ab1). Therefore isomorphism πA = τA◦μ is such that A = πA(Ab1).

On the other hand, suppose A0 and A1 and B0 and B1 are not isomorphic. Then
no matter how graphs A and B are constructed there exists at most one b1 such that
A is isomorphic to Ab1 and at most one b2 such that B is isomorphic to Ab2 . Therefore
there exists at most one value of b (namely, b = b1 ⊕ b2) for which the prover can
convince the verifier.

For the zero-knowledge property we consider a simulator that picks c1 and c2 at
random and then simulates the exchange of messages until it happens that b = c1⊕c2.
Since the value c1 ⊕ c2 is independent from the pair of graphs (A,B), the simulator
has probability 1/2 of succeeding, and it can be verified that, when it succeeds, it
produces a perfect simulation. Thus, on average the simulation has to be repeated
two times.

AND of two graph isomorphisms. Suppose now that we wish to prove that
A0 is isomorphic to A1 and B0 is isomorphic to B1. Obviously, we could prove the
two statements sequentially using the proof system of [38]: first prove that A0 is
isomorphic to A1 and then prove that B0 is isomorphic to B1. Instead we propose to
perform the two proofs in parallel in the following way: the prover presents the verifier
with two graphs A and B; the verifier picks one random bit c; and the prover shows
isomorphism between A and Ac and B and Bc. As is immediately seen, completeness,
soundness, and zero knowledge continue to hold.

The general case. Let us introduce a bit of notation. For the rest of this sec-
tion, we let L be an RSR language. The value Val(c1, . . . , cm;φ) ∈ {0, 1,⊥} of a
formula φ with m variables with respect to the m-tuple (c1, . . . , cm) ∈ {0, 1}m is
defined recursively in the following way. (Recall that we consider only read-once for-
mulae.) If φ consists of a single variable v, then Val(a; v) = a. Else, suppose that
φ = φ1 ∧ φ2 and let v1, . . . , vm1 be the variables in φ1 and vm1+1, . . . , vm be the
variables in φ2. If Val(c1, . . . , cm1

;φ1) = Val(cm1+1, . . . , cm;φ2) = b ∈ {0, 1,⊥}, then
Val(c1, . . . , cm;φ) = b. If, instead, Val(c1, . . . , cm1

;φ1) �= Val(cm1+1, . . . , cm;φ2), then
Val(c1, . . . , cm;φ) is set equal to ⊥. On the other hand, suppose that φ = φ1 ∨ φ2.
If Val(c1, . . . , cm1 ;φ1) and Val(cm1+1, . . . , cm;φ2) are both different from ⊥, then
Val(c1, . . . , cm;φ) = Val(c1, . . . , cm1

;φ1) ⊕ Val(cm1+1, . . . , cm;φ2); otherwise we set
Val(c1, . . . , cm;φ) =⊥. For example, Val(c1, c2; v1 ∨ v2) = c1 ⊕ c2 for c1, c2 ∈ {0, 1}.
The above definition is depicted in Table 1.

If Val(c1, . . . , cm;φ) �=⊥, then we say that the sequence of bits (c1, . . . , cm) is well
formed with respect to φ. The following fact can be easily proved by induction on the
length of the sequences.

Fact 8. If �a = (a1, . . . , am) and �c = (c1, . . . , cm) are two well-formed sequences

with respect to φ, then so is sequence �b = (a1⊕c1, . . . , am⊕cm). Moreover, the number
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Table 1

Value of φ1 Value of φ2 Value of φ1 ∨ φ2 Value of φ1 ∧ φ2

0 0 0 0
0 1 1 ⊥
0 ⊥ ⊥ ⊥
1 0 1 ⊥
1 1 0 1
1 ⊥ ⊥ ⊥
⊥ 0 ⊥ ⊥
⊥ 1 ⊥ ⊥
⊥ ⊥ ⊥ ⊥

of sequences �a such that Val(�a;φ) = 0 is equal to the number of sequences �a such that
Val(�a;φ) = 1.

Definition 9 (opening). Let φ be a monotone formula, and let I = ((x1, z1), . . . ,
(xm, zm)) be an m-tuple of pairs. We say that the m-tuple of quadruples R =
((c1, r1, s1, t1), . . . , (cm, rm, sm, tm)) is a (φ, I)-opening as b ∈ {0, 1} with auxiliary
sequence S = ((s1, t1) . . . , (sm, tm)) of the m-tuple Y = (y1, . . . , ym) if and only if

1. ri ∈ Sxi
, ci ∈ {0, 1}, and (si, ti) ∈ Rxi

for i = 1, . . . ,m;
2. Val(c1, . . . , cm;φ) = b;
3. if ci = 0, then yi = SampleR(xi, zi, ri);
4. if ci = 1, then yi = SampleR(xi, si, ri).

Whenever φ and I are clear from the context we will simply say “opening” instead
of (φ, I)-opening.

The following two lemmas summarize the properties of the concept of an opening
that we will exploit for the construction of our proof system. If (φ, I) ∈ CL(MON;L),
then every m-tuple that can be opened as 0 can also be opened as 1 and vice versa.
If instead (φ, I) �∈ CL(MON;L), then if an m-tuple can be opened as 0, it cannot be
opened as 1 and vice versa.

Lemma 10. Let φ be a formula with m variables and I be an m-tuple of pairs
such that (φ, I) ∈ CL(MON;L). Let Y be an m-tuple, and let R be a (φ, I)-opening
of Y as b ∈ {0, 1}. Then, there exists a (φ, I)-opening R′ of Y as 1 − b.

Proof. The proof proceeds by induction on the number m of variables of φ.
Suppose that m = 1 and let Y = (y) and I = ((x, z)). As (φ, ((x, z))) ∈

CL(MON;L), it must be the case that z ∈ domR(x). By property 1 of the RSR
languages, it follows that, for any s, y ∈ domR(x), there exists r such that y =
SampleR(x, s, r). Therefore if y can be opened as 0 (i.e., y = SampleR(x, z, r) for
some r), then y ∈ domR(x), and, thus, it can also be opened as a 1: pick any
s ∈ domR(x) along with an x-witness t for s and r′ such that y = SampleR(x, s, r′)
and construct opening R′ = (1, r′, s, t). Similarly, if y can be opened as 1, then it can
also be opened as 0.

Suppose now that m ≥ 2 and φ = φ1 ∨ φ2 and let R be a (φ, I)-opening of Y as
0. We construct a (φ, I)-opening of Y as 1. Let m1 be the number of variables of φ1

and split I in I1 = ((x1, z1), . . . , (xm1 , zm1)) and I2 = ((xm1+1, zm1+1), . . . , (xm, zm))
and Y in Y1 = (y1, . . . , ym1) and Y2 = (ym1+1, . . . , ym). As (φ, I) ∈ CL(MON;L), it
must be the case that at least one of (φ1, I1) and (φ2, I2), say (φ1, I1), belongs to
CL(MON;L). Let a ∈ {0, 1} be such that Y2 can be (φ2, I2)-opened as a. (Such an a
exists, for otherwise Y cannot be (φ, I)-opened as 0.) Let R2 be such an opening and
let R1 be a (φ1, I1)-opening of Y1 as 1 ⊕ a. (Such an opening exists by the inductive
hypothesis.) Then, as can be readily verified, R1 ◦R2 is a (φ, I)-opening of Y as 1. If
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Y can be (φ, I)-opened as 1, a (φ, I)-opening of Y as 0 is constructed in a similar way.
The case where m ≥ 2 and φ = φ1 ∧ φ2 is proved similarly.
Lemma 11. Let φ be a formula with m variables and I be an m-tuple of pairs

such that (φ, I) �∈ CL(MON;L). Then for each m-tuple Y there is at most one bit
b ∈ {0, 1} for which there exists a (φ, I)-opening of Y as b.

Proof. We proceed by induction on m.
Suppose m = 1 and let Y = (y) and I = ((x, z)). Since (φ, I) �∈ CL(MON;L),

it follows that (x, z) �∈ LR. If Y can be opened as 1, then y ∈ domR(x). By
Lemma 6, for all r ∈ Sx, it holds that SampleR(x, z, r) �∈ domR(x), and thus Y
cannot be (φ, I)-opened as 0. If Y can be opened as 0, then there is r ∈ Sx such that
y = SampleR(x, z, r). Since (x, z) �∈ LR, by Lemma 6, y �∈ domR(x), and thus y
cannot be opened as 1.

Suppose now that m ≥ 2 and that φ = φ1 ∨ φ2. Moreover, let Y be an m-tuple
that can be (φ, I)-opened as 0. Let m1 be the number of variables of φ1 and split
I in I1 = ((x1, z1), . . . , (xm1

, zm1
)) and I2 = ((xm1+1, zm1+1), . . . , (xm, zm)) and Y

in Y1 = (y1, . . . , ym1
) and Y2 = (ym1+1, . . . , ym). As (φ, I) �∈ CL(MON;L), neither

(φ1, I1) nor (φ2, I2) belongs to CL(MON;L). Suppose now that Y can be (φ, I)-
opened as both 0 and 1. This implies that at least one of Y1 and Y2 can be opened
as both a 0 and a 1, which contradicts the inductive hypothesis.

The case φ = φ1 ∧ φ2 is similar.
The properties of the opening suggest the following simple interactive proof sys-

tem (P,V) for CL(MON;L) (a formal description is found in Figure 2). Let (φ, I) be
the input to the proof system. The prover chooses an m-tuple Y that can be (φ, I)-
opened as 0 and sends it to the verifier. The verifier picks a bit b at random and sends
it to the prover. The prover then shows an opening of Y as b and sends it to the
verifier. The verifier accepts if the prover complies with his request. Completeness
follows from Lemma 10 and soundness from Lemma 11. To guarantee zero knowledge,
we have the prover pick Y using the procedure Construct-Opening found in Figure 1.

The following lemma can be easily proved by induction on the length of Y .
Lemma 12. Let (Y,R) be a pair output by Construct-Opening on input (φ, I, a).

Then Y can be (φ, I)-opened as a, and R is a (φ, I)-opening of Y as a.
In Figure 2, we formally describe proof system (P,V).
Theorem 13. The pair (P,V) is an interactive proof system for CL(MON;L).
Proof. First observe that the verification step V.2 can be performed in polynomial

time because both SampleR and R are polynomial time.
Completeness. From Lemma 10, it follows that if (φ, I) ∈ CL(MON;L), then the

prover can always provide V with the requested opening of Y .
Soundness. Suppose that (φ, I) �∈ CL(MON;L). Let Y ′ be the m-tuple given to

the verifier by prover P∗ and suppose that Y ′ can be opened as b. (If Y ′ cannot be
opened at all, then the verifier will never accept.) With probability 1/2 the verifier
asks the prover to open Y as 1 − b, and the prover will not be able to satisfy the
verifier’s request. (See Lemma 11.) Therefore, the prover has probability at most 1/2
to make the verifier accept (φ, I).

4.1. The simulator for (P,V). In this section we exhibit a simulator for (P,V).
The simulator uses procedure Construct-Opening described in Figure 1 that on input
(φ, I, a) outputs a pair (Y,R) such that R is a (φ, I)-opening as a of Y .

In the next lemma we prove that for (Y,R) output by procedure Construct-Opening
on input (φ, I, a) we have that

1. Y is independent from a given φ and I;
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Procedure Construct-Opening(φ, I, a)
Input:

• φ is a monotone formula, and let m be the number of variables of φ;
• I = ((x1, z1), . . . , (xm, zm));
• a ∈ {0, 1}.

1. If φ consists of one variable v1, then
run GenerateR(x1) obtaining (s1, t1);
randomly choose r1 ∈ Sx1 ;
if a = 0, then set y1 = SampleR(x1, z1, r1);
if a = 1, then set y1 = SampleR(x1, s1, r1);
return((y1), (a, r1, s1, t1));

2. If φ = φ1 ∨ φ2, then
let m1 be the number of variables of φ1;
let I1 = ((x1, z1), . . . , (xm1

, zm1
)) and let I2 = ((xm1+1, zm1+1), . . . ,

(xm, zm));
randomly choose b ∈ {0, 1};
obtain (Y1, R1) by running Construct-Opening on input (φ1, I1, b);
obtain (Y2, R2) by running Construct-Opening on input (φ2, I2, a⊕ b);
return(Y1 ◦ Y2, R1 ◦R2).

3. If φ = φ1 ∧ φ2, then
let m1 be the number of variables of φ1;
let I1 = ((x1, z1), . . . , (xm1 , zm1)) and let I2 = ((xm1+1, zm1+1), . . . ,

(xm, zm));
obtain (Y1, R1) by running Construct-Opening on input (φ1, I1, a);
obtain (Y2, R2) by running Construct-Opening on input (φ2, I2, a);
return(Y1 ◦ Y2, R1 ◦R2).

Fig. 1. The procedure Construct-Opening.

The Proof System (P,V).
Input: (φ, I) ∈ CL(MON;L).

P.1 Obtain (Y,R) by running Construct-Opening on input (φ, I, 0) and let S
be the auxiliary sequence.
Send (Y, S) to V.

V.1 Randomly select b ∈ {0, 1}. Send b to P.
P.2 Select a (φ, I)-opening Rb of Y as b according to the distribution induced

on its second output by procedure Construct-Opening on input (φ, I, b)
conditioned on Y being the first element of the output pair and S being
the auxiliary sequence.
Send Rb to V.

V.2 Verify that Rb is a (φ, I)-opening of Y as b.

Fig. 2. The proof system (P,V) for CL(MON;L).
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2. the auxiliary sequence S is independent from a given φ, I, and Y .
Lemma 14. Let (φ, I) ∈ CL(MON;L) and denote by Prob(Y, S, φ, I, a) the prob-

ability that Construct-Opening(φ, I, a) outputs the sequence Y and a (φ, I)-opening R
of Y as a with auxiliary sequence S. Then, for each Y and S we have

Prob(Y, S, φ, I, 0) = Prob(Y, S, φ, I, 1).

Proof. The proof proceeds by induction on the number m of pairs of I.
Base case: m = 1. In this case we have I = ((x, z)), Y = (y), and S = (s, t).
First of all, observe that, independently of a, S is produced by running procedure

GenerateR. Moreover, since (φ, I) ∈ CL(MON;L), it must be the case that z ∈
domR(x).

If a = 0, then y is the output of SampleR on input x, z, and a random r ∈ Sx

and thus, by property 1 of RSR languages and since z ∈ domR(x), y is uniformly
distributed over domR(x).

Similarly, if a = 1, then y is the output of SampleR on input x, s, and a random
r ∈ Sx. By property 1 of RSR languages and since s ∈ domR(x), y is uniformly
distributed over domR(x). Therefore, independently from the values of a and s, y is
a random element of domR(x).

Finally, we observe that, by property 1 of RSR languages, given y, z, and s all
belonging to domR(x), there exist (the same number of) r′ and r′′ such that y =
Sample(x, z, r′) and y = Sample(x, s, r′′).

Induction step: m > 1. Suppose that φ = φ1 ∨ φ2 and denote by m1 the number
of variables of φ1 and let I1 = ((x1, z1), . . . , (xm1

, zm1
)) and I2 = ((xm1+1, zm1+1),

. . . , (xm, zm)). Write Y = (y1, . . . , ym) and S = ((s1, t1), . . . , (sm, tm)) and set
Y1 = (y1, . . . , ym1), S1 = ((s1, t1), . . . , (sm1 , tm1)), and Y2 = (ym1+1, . . . , ym), S2 =
((sm1+1, tm1+1), . . . , (sm, tm)). Then, we have

Prob(Y, S, φ, I, 0) = Prob(b = 0 at step 2 of Construct-Opening)
·Prob(Y1, S1, φ1, I1, 0) · Prob(Y2, S2, φ2, I2, 0)

+ Prob(b = 1 at step 2 of Construct-Opening)
·Prob(Y1, S1, φ1, I1, 1) · Prob(Y2, S2, φ2, I2, 1)

and

Prob(Y, S, φ, I, 1) = Prob(b = 0 at step 2 of Construct-Opening)
·Prob(Y1, S1, φ1, I1, 1) · Prob(Y2, S2, φ2, I2, 0)

+ Prob(b = 1 at step 2 of Construct-Opening)
·Prob(Y1, S1, φ1, I1, 0) · Prob(Y2, S2, φ2, I2, 1).

Since (φ, I) ∈ CL(MON;L) and φ = φ1 ∨ φ2, we can assume without loss of
generality that (φ1, I1) ∈ CL(MON;L). Therefore, by the inductive hypothesis we
have

Prob(Y1, S1, φ1, I1, 0) = Prob(Y1, S1, φ1, I1, 1)

from which the lemma follows.
The case φ = φ1 ∧ φ2 is proved similarly.
In Figure 3, we present a simulator SV∗ for each verifier V∗. In the formal

description of SV∗ , we say that a random tape of appropriate length is picked for V∗.
By this we mean that SV∗ picks p(n) random bits for an input of length n, where p(n)
is a polynomial that upper bounds the number of steps performed by V∗ on inputs of
length n.
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The simulator SV∗

Input: (φ, I) ∈ CL(MON;L).
1. Randomly choose a string Random of appropriate length and write it on

the random tape of the verifier V∗.
2. Randomly choose a ∈ {0, 1} and run procedure Construct-Opening on input

(φ, I, a) obtaining (Y,R). Let S be the auxiliary sequence of R.
Send (Y, S) to V∗.

3. Receive string σ from V∗, and let b be its first bit.
If a = b, then Output(Random;Y, S, b, R) and STOP; else Goto 1.

Fig. 3. The simulator SV∗

Lemma 15. Assume (φ, I) ∈ CL(MON;L) and let V∗ be a verifier. Then, the
simulator SV∗ runs in expected polynomial time. Moreover, the probability spaces
SV∗(φ, I) of the output by SV∗ on input (φ, I) and the probability space of V∗’s view,
ViewV∗(φ, I), on input (φ, I) are identical.

Proof. Since SampleR is polynomial time, GenerateR is expected polynomial
time, and Sx is efficiently samplable, Construct-Opening can be executed in expected
polynomial time.

Observe that since (φ, I) ∈ CL(MON;L), by Lemma 14, (Y, S) is independent
from a. Therefore the probability that b �= a is exactly 1/2; thus SV∗ runs in expected
polynomial time.

The simulator produces strings of the form (Random;Y, S, b, R), where Random
is a string of bits, Y is an m-tuple, S is the auxiliary sequence of R, b ∈ {0, 1}, and R
is a random opening of Y as b, conditioned on S. Obviously, Random has the same
distribution in both spaces.

In the output of SV∗ on input (φ, I), (Y, S) is picked according to the probabil-
ity induced by Construct-Opening on input (φ, I, 0) with probability 1/2, and with
probability 1/2 according to the probability induced by Construct-Opening on input
(φ, I, 1). Therefore, by Lemma 14, (Y, S) is picked according to the probability in-
duced by Construct-Opening on input (φ, I, 0) which is exactly the distribution of
(Y, S) in the view of V∗.

The bit b is, in both spaces, the output of V∗ on input (φ, I) and (Y, S) computed
using Random as source of random bits. Finally, R is in both spaces an opening of
Y as b picked according to the distribution induced on R by Construct-Opening on
input (φ, I, b) conditioned on Y being the first element of the output pair and S being
the auxiliary sequence.

Thus, we obtain the following theorem.
Theorem 16. Let L be an RSR language. Then CL(MON;L) ∈ PZK.
Remark 3 (the properties of RSR languages used). Notice that the results of this

section use only properties 1, 2, and 3 of the definition of RSR languages.

5. Monotone formulae over co-RSR languages. In this section we prove
that the language of all true monotone formulae whose atoms are statements about
membership in a co-RSR language has a PZK proof system.

We start from the following simple observation. De Morgan’s law specifies a
simple transformation DM by which it is possible to transform any monotone formula
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φ into a monotone formula ψ = DM(φ) of essentially the same size and such that φ
being evaluated with atoms (xi ∈ L̄) is equivalent to ¬ψ being evaluated with atoms
(xi ∈ L). In other words, proving that a monotone formula over a co-RSR language is
true is equivalent to proving that a monotone formula over an RSR language is false.
This can be done using the concept of opening in the following way.

Suppose the prover wants to prove that (φ, I) ∈ CL(MON; L̄), where L is an
RSR language. The verifier first constructs formula ψ = DM(φ), runs procedure
Construct-Opening on input ψ, I and a randomly selected bit c, obtains a pair (Y,R),
and sends Y to the prover. The prover then has to guess the value of c. Completeness
and soundness follow directly from Lemmas 11 and 14, and zero knowledge with
respect to a honest verifier can also be easily argued.

In the formal description of the proof system, we denote by co-Construct-Opening
the procedure that, on input (φ, I, a), first constructs ψ = DM(φ) and then runs
Construct-Opening on input (ψ, I, a). Also, we will say that the m-tuple of quadruples
R = ((c1, r1, s1, t1), . . . , (cm, rm, sm, tm)) is a (φ, I)-co-opening as b ∈ {0, 1} of the m-
tuple Y = (y1, . . . , ym) if and only if R is a (DM(φ), I)-opening as b of Y . From
the discussion above and from the properties of an opening, it follows that if (φ, I) ∈
CL(MON; L̄), then any tuple Y which can be opened as a 0 cannot be opened as a 1
and vice versa. On the other hand, if (φ, I) �∈ CL(MON; L̄), then any tuple Y which
can be opened as a 0 can also be opened as a 1 and vice versa.

Next we observe that, as a direct consequence of De Morgan’s law, the procedure
co-Construct-Opening can be obtained by swapping the roles of ∨ and ∧ in the defini-
tion of Construct-Opening. Similarly, we define the co-Val of a sequence (c1, . . . , cm)
with respect to a formula φ as the Val of (c1, . . . , cm) with respect to DM(φ). We also
say that (c1, . . . , cm) is co-well-formed with respect to φ if co-Val(c1, . . . , cm;φ) �=⊥,
and, analogously to Fact 8, we obtain the following fact.

Fact 17. If �a = (a1, . . . , am) and �c = (c1, . . . , cm) are two co-well-formed se-

quences with respect to φ, then so is sequence �b = (a1⊕c1, . . . , am⊕cm). Moreover, the
number of sequences �a such that co-Val(�a;φ) = 0 is equal to the number of sequences
�a such that co-Val(�a;φ) = 1.

5.1. Zero knowledge. Designing a zero-knowledge proof system (and not just
an honest-verifier zero-knowledge system) requires some extra care. Following the
suggestion of [42], we have the verifier give a “proof that he knows the value of c.”
Only after receiving such a “proof” does the prover give the verifier his guess for
c. At the base of our construction is the notion of similarity that can be informally
presented as follows. We say that the pair (u0, u1) is similar to the pair (x, z) if one
of the elements of (u0, u1) is obtained by running SampleR on input (x, s, r′), and the
other is obtained by running SampleR on input (x, z, r′′), where s ∈ domR(x) and
r′, r′′ ∈ Sx. The fact that pair (u0, u1) is similar to pair (x, z) can be proved by giving
s ∈ domR(x), an x-witness for s, and the random strings r′, r′′ used by SampleR
to generate (u0, u1). The following definition extends the concept of similarity to
m-tuples of pairs with respect to a formula.

Definition 18. Let φ be a formula with m variables. We say that the m-
tuple of pairs H = ((u10, u11), . . . , (um0, um1)) is similar to the m-tuple of pairs I =
((x1, z1), . . . , (xm, zm)) with respect to φ if and only if, for i = 1, . . . ,m, there exist
(si, ti) ∈ Rxi

, r′i, r
′′
i ∈ Sxi

, and ai ∈ {0, 1} such that
• if ai = 0, then ui0 = SampleR(xi, zi, r

′
i) and ui1 = SampleR(xi, si, r

′′
i );

• if ai = 1, then ui0 = SampleR(xi, si, r
′
i) and ui1 = SampleR(xi, zi, r

′′
i );

• co-Val(a1, . . . , am;φ) ∈ {0, 1}.
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If H is similar to I with respect to φ, we say that the vector W = (w1, . . . , wm), where
wi = (si, ti, r

′
i, r

′′
i , ai) for i = 1, . . . ,m, is a witness of the similarity of H to I.

In the following whenever the formula φ is clear from the context, we will simply
say “similar.”

In Figure 4, we present the procedure Construct-Similar that can be used to
construct similar tuples. We summarize the properties of Construct-Similar in the
following lemma, whose proof is simple.

Procedure Construct-Similar(φ, I, S, a).
Input:

• φ is a monotone formula on m variables;
• I = ((x1, z1), . . . , (xm, zm));
• S = ((s1, t1), . . . , (sm, tm));
• a ∈ {0, 1}.

1. If φ consists of one literal v1, then
randomly choose r′, r′′ ∈ Sx1

;
if a = 0, then set u0 = SampleR(x1, z1, r

′) and u1 = SampleR
(x1, s1, r

′′);
if a = 1, then set u0 = SampleR(x1, s1, r

′) and u1 = SampleR
(x1, z1, r

′′);
return((u0, u1), (s1, t1, r

′, r′′, a)).
2. If φ = φ1 ∧ φ2, then

let m1 be the number of variables of φ1;
let I1 = ((x1, z1), . . . , (xm1 , zm1)) and I2 = ((xm1+1, zm1+1), . . . ,

(xm, zm));
let S1 = ((s1, t1), . . . , (sm1

, tm1)) and S2 = ((sm1+1, tm1+1), . . . ,
(sm, tm));

randomly choose ã ∈ {0, 1};
obtain (H1,W1) by running Construct-Similar on input (φ1, I1, S1, ã);
obtain (H2,W2) by running Construct-Similar on input (φ2, I2, S2, ã⊕
a);

return(H1 ◦ H2,W1 ◦W2).
3. If φ = φ1 ∨ φ2, then

let m1 be the number of variables of φ1;
let I1 = ((x1, z1), . . . , (xm1

, zm1
)) and I2 = ((xm1+1, zm1+1), . . . ,

(xm, zm));
let S1 = ((s1, t1), . . . , (sm1 , tm1)) and S2 = ((sm1+1, tm1+1), . . . ,

(sm, tm));
obtain (H1,W1) by running Construct-Similar on input (φ1, I1, S1, a);
obtain (H2,W2) by running Construct-Similar on input (φ2, I2, S2, a);
return(H1 ◦ H2,W1 ◦W2).

Fig. 4. The procedure Construct-Similar.

Lemma 19. Let φ be a formula over m variables, let (si, ti) ∈ Rxi for
i = 1, . . . ,m, and let I = ((x1, z1), . . . , (xm, zm)) and S = ((s1, t1), . . . , (sm, tm)).
Procedure Construct-Similar on input φ, I, S and a ∈ {0, 1} outputs in expected poly-
nomial time an m-tuple H = ((u10, u11), . . . , (um0, um1)) similar to I along with
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a witness of similarity W = ((s1, t1, r
′
1, r

′′
1 , a1), . . . , (sm, tm, r′m, r′′m, am)) such that

co-Val(a1, . . . , am;φ) = a. Moreover, the ith pair (ui0, ui1) of the m-tuple H is con-
structed by running SampleR twice: on input xi, zi and r′i ∈ Sxi and on input xi, si
and r′′i ∈ Sxi .

An informal presentation. The zero-knowledge proof system for proving that
(φ, I) ∈ CL(MON; L) can be informally presented in the following way. The ver-
ifier V randomly selects a bit c, computes an m-tuple Y = (y1, . . . , ym) that can
be (φ, I)-co-opened as c, and sends it to the prover P. The prover has to guess the
value of c. By the definition of co-opening and the properties of an opening, we have
that if (φ, I) ∈ CL(MON;L), then the prover has a way of guessing what c is; if
instead (φ, I) �∈ CL(MON; L), then he can guess the value of c with probability at
most 1/2. However, to ensure the zero-knowledge property, before the prover sends
his guess for c, the prover and the verifier perform the following protocol l(|Y |) times
in parallel, where l(·) is a polynomial to be specified later. V computes an m-tuple
of pairs H = ((u10, u11), . . . , (um0, um1)) that is similar to I with respect to φ and
has the following additional property: there exists a sequence (b1, . . . , bm) such that
co-Val(b1, . . . , bm;φ) ∈ {0, 1}, and, for i = 1, . . . ,m, there exists ryi ∈ Sxi such that
yi = SampleR(xi, uibi , ryi

). The prover receives H and chooses at random to see ei-
ther a witness of similarity of H to I or the sequence (b1, . . . , bm, r1, . . . , rm). If his
request is satisfied by the verifier, the prover gives his guess for the bit c.

A formal description of the proof system (P,V) is found in Figure 5.
V runs in probabilistic polynomial time. Let us now show that the verifier’s pro-

gram can be executed in probabilistic polynomial time.
At step V.0 the verifier constructs the m-tuple Y by running the procedure

co-Construct-Opening. As seen from the description of Construct-Opening in Figure
1, by De Morgan’s law and by the discussion in Remark 2, procedure co-Construct-
Opening runs in polynomial time and returns the m-tuple Y and a (φ, I)-co-opening
R = ((c1, r1, s1, t1), . . . , (cm, rm, sm, tm)) of Y . The m-tuples Y and R are such that,
for each i = 1, . . . ,m, the element yi is obtained by running SampleR either on input
xi, zi and ri ∈ Sxi

or on input xi, si and ri ∈ Sxi
.

At step V.1, the verifier executes procedure Construct-Similar on input φ, I, the
m-tuple S = ((s1, r1), . . . , (sm, rm)), and a random bit a (see Figure 4 for a formal de-
scription of procedure Construct-Similar). By Lemma 19, procedure Construct-Similar
runs in polynomial time and outputs an m-tuple H similar to I along with a witness
of similarity

W = ((s1, t1, r
′
1, r

′′
1 , a1), . . . , (sm, tm, r′m, r′′m, am))

of H to I.
Step V.2 is the only nontrivial step of V’s program that remains to be specified.

If d = 0, then it is enough for V to send the witness of similarity W to P obtained
by running Construct-Similar at step V.1. Let us now examine the case d = 1.
In this case the verifier sets bi = ai ⊕ ci. Now observe that, since the sequences
(a1, . . . , am) and (c1, . . . , cm) are, by construction, co-well-formed with respect to φ,
by Fact 17 so is the sequence (b1, . . . , bm), and thus the first verification of step P.2
in the case d = 1 is always successfully passed. Moreover, this setting allows the
verifier to use algorithm AR to compute ryi such that yi = SampleR(xi, uibi , ryi),
for i = 1, . . . ,m, as follows. First, suppose that ai = 1 (the case ai = 0 is similar)
and thus ui0 = SampleR(xi, si, r

′
i) and ui1 = SampleR(xi, zi, r

′′
i ) (see step 1 in the

procedure Construct-Similar). If ci = 0, we have yi = SampleR(xi, zi, ri) and bi = 1.



1316 A. DE SANTIS, G. DI CRESCENZO, G. PERSIANO, M. YUNG

The Proof System (P,V).
Input: (φ, I) ∈ CL(MON; L)

V.0 Uniformly select c ∈ {0, 1};
run procedure co-Construct-Opening on input (φ, I, c) obtaining (Y,R);
write R as R = ((c1, r1, s1, t1), . . . , (cm, rm, sm, tm)) and Y as Y =
(y1, . . . , ym) and set S = ((s1, t1), . . . , (sm, tm));
send (Y, S) to P.

P↔V Perform l(|Y |) parallel and independent executions of the following proto-
col.
begin
V.1 Uniformly select a ∈ {0, 1};

run procedure Construct-Similar on input (φ, I, S, a) obtaining
(H,W );
write H as H = ((u10, u11), . . . , (um0, um1));
write W as W = ((s1, t1, r

′
1, r

′′
1 , a1), . . . , (sm, tm, r′m, r′′m, am));

send H to P.
P.1 Uniformly select d ∈ {0, 1} and send d to V.
V.2 If d = 0, then send W to P;

if d = 1, then
for i = 1, . . . ,m

set bi = ai ⊕ ci;
use algorithm AR to compute ryi

such that yi =
SampleR(xi, uibi , ryi);

send T = (b1, ry1
, . . . , bm, rym) to P.

P.2 If d = 0, then check that W is a witness of similarity of H to I;
if d = 1, then

check that co-Val(b1, . . . , bm;φ) ∈ {0, 1};
check that yi = SampleR(xi, uibi , ryi

) for i = 1, . . . ,m.
end

P.3 If any of the verifications of the l(|Y |) parallel executions is not satisfied,
then STOP;

else compute c′ ∈ {0, 1} such that Y can be (φ, I)-co-opened as c′.
Send c′ to V.

V.3 Verify that c = c′. If not, reject.

Fig. 5. The proof system (P,V) for CL(MON; L).

By the first part of property 4 of the RSR languages, the verifier can compute in
polynomial time ryi such that yi = SampleR(xi, ui1, ryi). On the other hand, if
ci = 1, we have yi = SampleR(xi, si, ri) (see step 1 of procedure Construct-Opening)
and bi = 0. Again, by property 4 of the RSR languages the verifier can compute ryi

such that yi = SampleR(xi, ui0, ryi).
Completeness and soundness. The completeness property is easily proved and

follows directly from Lemma 11 and from the discussion above.
For the soundness we assume that (φ, I) �∈ CL(MON; L). Under this assumption,

we prove that the distribution of all that the prover sees (that is, the pair (Y, S), the
H’s, and the verifier’s answers in the l(n) execution of the subprotocol) is independent
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from that of bit c. Thus, the probability that the prover correctly guesses the value
of c by seeing V’s answers to his challenges is at most 1/2.

We start with pair (Y, S); the following lemma directly implies that the distribu-
tion of such a pair is independent from that of bit c when (φ, I) �∈ CL(MON; L).

Lemma 20. Let (φ, I) �∈ CL(MON; L̄) and denote by Prob(S, Y, φ, I, a) the prob-
ability that co-Construct-Opening outputs the sequence Y and a (φ, I)-opening R of
Y as a with auxiliary sequence S. Then, for each Y and S we have

Prob(S, Y, φ, I, 0) = Prob(S, Y, φ, I, 1).

Proof. Observe that (φ, I) �∈ CL(MON; L̄) implies (DM(φ), I) ∈ CL(MON;L).
The lemma thus follows from Lemma 14.

For the jth parallel execution we denote by Hj the value sent by the verifier to
the prover at step V.1, by dj the bit sent by the prover to the verifier at step P.1, and
by Aj the answer sent by the verifier at step V.2 for j ∈ {1, . . . , l(|Y |)}.

We now see that when (φ, I) �∈ CL(MON;L), the distribution of tuple �H =
(H1, . . . ,Hl(|Y |)), conditioned by the value of pair (Y, S), is independent from that of
bit c.

Lemma 21. We let (φ, I) �∈ CL(MON; L̄) and denote by Prob( �H |S, Y, φ, I, c)
the probability that Construct-Similar outputs the sequence �H given that co-Construct-
Opening(φ, I, c) returns (Y, S) with S as the auxiliary sequence in R. Then, for each
�H we have that

Prob( �H |S, Y, φ, I, 0) = Prob( �H |S, Y, φ, I, 1).

Proof. Note that �H = H1, . . . ,Hl(|Y |). The lemma follows by observing that each
Hj is generated as the first component of a pair returned by an independent execution
of algorithm Construct-Similar on input φ, I, S and a random and independent bit
a, where we use the fact that the distribution of S is independent from that of c, as
implied by Lemma 20.

We now prove that, for j = 1, . . . , l(|Y |), the distribution of the answer Aj , con-

ditioned on the values Y, S, �H, �d = (d1, . . . , dl(|Y |)), and A1, . . . , Aj−1, is independent
from that of bit c. To this purpose, we distinguish two cases, according to the value
of bit dj .

First, consider the case dj = 0. In this case Aj is generated as the second com-
ponent W j of the pair returned by an independent execution of algorithm Construct-
Similar on input φ, I, S and a random bit a. Here we can again use the fact that the
distribution of S is independent from that of c, as implied by Lemma 20. Therefore, in
this case, the distribution of Aj , conditioned on the values of Y, S, �H, �d,A1, . . . , Aj−1,
is independent from that of c.

The rest of the proof for the soundness property refers only to the case dj = 1.
In this case Aj is equal to sequence T j = (bj1, ry1 , . . . , b

j
m, rym). We first note that,

even with further conditioning of the values of bj1, . . . , b
j
m, each ryi is, by property 4

of the RSR languages, distributed as a random and independent value r such that
yi = Sample(xi, uiq, r) for q = bji . Therefore, to conclude the proof for this case,

it is enough to prove that the distribution of sequence (bj1, . . . , b
j
m), conditioned on

Y, S, �H, �d,A1, . . . , Aj−1, is independent from c. We start the proof of this latter fact
with some definitions.
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Definition 22. Let c ∈ {0, 1}, and let (Y,R) be the output of co-Construct-
Opening on input (φ, I, c), where Y = (y1, . . . , ym), R = ((a1, r1, s1, t1), . . . , (am, rm,
sm, tm)), and S = ((s1, t1), . . . , (sm, tm)) denotes the auxiliary sequence. Also, let H =
((u01, u11), . . . , (u0m, u1m)) be the first component of the pair returned by algorithm
Construct-Similar on input (φ, I, S, a). Let sequence (e1, . . . , em) ∈ {0, 1}m be co-
well-formed with respect to φ; we say that (e1, . . . , em) is

• (φ, I, S, Y )-consistent if there exist e ∈ {0, 1} and ri ∈ Sxi
, for i = 1, . . . ,m,

such that the tuple ((e1, r1, s1, t1), . . . , (em, rm, sm, tm)) is a (φ, I)-co-opening
of Y as e;

• (φ, I, S,H)-consistent if there exist e ∈ {0, 1} and r′i, r
′′
i ∈ Sxi , for i =

1, . . . ,m, such that H is similar to I with respect to φ, and W is a witness
of the similarity of H to I, where W = (w1, . . . , wm), wi = (si, ti, r

′
i, r

′′
i , ei),

for i = 1, . . . ,m, and co-Val(e1, . . . , em) = e;
• (φ, I, S, Y,H)-consistent if there exists e ∈ {0, 1} such that co-Val(e1, . . . ,

em) = e, and, for i = 1, . . . ,m, there exists ryi
such that yi = SampleR(xi,

uiei , ryi).
For any formula φ, and given I, S, Y , we denote by Seq(φ, I, S, Y ) the set of sequences
(e1, . . . , em) that are (φ, I, S, Y )-consistent; moreover, for any j ∈ {1, . . . , l(|Y |)}, all
c ∈ {0, 1}, and given Hj, we denote by Seq(φ, I, S, Y,Hj) (resp., Seq(φ, I, S,Hj)) the
set of sequences (e1, . . . , em) that are (φ, I, S, Y,Hj)-consistent (resp., (φ, I, S,Hj)-
consistent).

We will use the above definitions for the following three facts. First, we note that
we can rephrase the analysis done while proving that V runs in polynomial time in
step V.2 (in the case dj = 1) as follows.

Fact 23. Let j ∈ {1, . . . , l(|Y |) be such that dj = 1. If (φ, I) �∈ CL(MON; L̄),

then for any m-tuple �b = (b1, . . . , bm) ∈ Seq(φ, I, S, Y,Hj), and any m-tuple �c =
(c1, . . . , cm) ∈ Seq(φ, I, S, Y ), there exists an m-tuple �a = (a1, . . . , am) ∈ Seq(φ, I, S,
Hj) such that ai = bi ⊕ ci for i = 1, . . . ,m.

Recall that by �c = (c1, . . . , cm) we denote the sequence of bits obtained from the
output R returned by the execution of algorithm co-Construct-Opening in step V.0.
We then note that, by definition of co-Construct-Opening, �c is co-well-formed with
respect to φ, and, by definition of step V.0, �c ∈ Seq(φ, I, S, Y ). For c = 0, 1, define
Seq(φ, I, S, Y, c) = {�c |�c ∈ Seq(φ, I, S, Y ), co-Val(�c) = c}. Moreover, for r = 0, 1, 2,
define Probr[�e | tr, c, . . . ] as the probability that tuple �e is computed by V during

round V.r of the protocol, conditioned on the values tr = (Y, S, �H, �d,A1, . . . , Aj−1),
and by bit c chosen by V in step V.0. We now prove a useful fact about the distribution
of sequence �c with respect to the value of bit c chosen by V in step V.0.

Fact 24. If (φ, I) �∈ CL(MON; L̄), then∑
�c∈Seq(φ,I,S,Y,0)

Prob0[�c | tr, 0 ] =
∑

�c∈Seq(φ,I,S,Y,1)

Prob0[�c | tr, 1 ].

Proof. As a first claim, we note that each tuple �c co-well-formed with respect to
φ has the same probability of being returned by algorithm co-Construct-Opening on
input φ and a randomly chosen bit c. (This can be proved by simple induction over
formula φ.) Using Fact 17, we note a second claim, stating that for any formula φ,
the number of tuples �c that can be returned by algorithm co-Construct-Opening, on
input formula φ and c, is the same for both values of bit c.

Now, assume (φ, I) �∈ CL(MON; L̄). By induction over formula φ, we can extend
the above second claim to prove a third claim, saying that the number of tuples �c
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belonging to set Seq(φ, I, S, Y, c) is the same for both values of bit c.
Specifically, the base case directly follows as an application of Lemma 10.
For the induction case, first consider the case φ = φ1 ∨ φ2, where φ1 has m1

variables. Then the claim follows by observing that the number of sequences �c in
Seq(φ, I, S, Y, c) is the product of the number of sequences (c1, . . . , cm1) in Seq(φ1, I, S,
Y, c) times the number of sequences (cm1+1, . . . , cm) in Seq(φ2, I, S, Y, c), and by ap-
plying the inductive hypothesis to both φ1, φ2, since our assumption implies that
(φj , Ij) �∈ CL(MON; L̄) for j = 1, 2.

Now, consider the case φ = φ1 ∧ φ2, where φ1 has m1 variables. If (φj , Ij) �∈
CL(MON; L̄) for j = 1, 2, then the claim follows similarly as for the previous case.
Therefore, assume that (φ1, I1) �∈ CL(MON; L̄) and (φ2, I2) ∈ CL(MON; L̄) (the sym-
metric case being proved similarly). Note that Lemma 11 implies that, after condi-
tioning on Y , there exists exactly one bit c2 such that co-Val(cm1+1, . . . , cm;φ2) = c2.
Then the claim follows by applying the inductive hypothesis to φ1 and by observ-
ing that the number of sequences �c in Seq(φ, I, S, Y, c) is the product of the number
of sequences (c1, . . . , cm1

) in Seq(φ1, I, S, Y, c ⊕ c2) times the number of sequences
(cm1+1, . . . , cm) in Seq(φ2, I, S, Y, c2), where we note that the latter number does not
depend on c.

Then the fact follows by combining the first and third claims.
Now, consider the jth execution of algorithm Construct-Similar in step V.2 while

running the jth parallel iteration, and recall that we denote by �a = (a1, . . . , am)
the sequence of bits obtained from the output W returned by this execution. Here,
we note that, by the definition of Construct-Similar , �a is co-well-formed with re-
spect to φ, and, moreover, using simple induction over formula φ, we obtain that
�a ∈ Seq(φ, I, S,Hj). For any subformula ψ of φ satisfying (ψ, Iψ) ∈ CL(MON; L̄)

and having leaves i1, . . . , ik, we denote as Hj
ψ = ((ui1,0, ui1,1), . . . , (uik,0, uik,1)) the

subsequence of Hj , where each pair (uij ,0, uij ,1) is computed at step 1 of procedure
Construct-Similar in correspondence to literal vij . Note that an execution of algo-

rithm Construct-Similar returning Hj implicitly defines a witness of similarity of Hj
ψ

to Iψ, containing sequence (ai1 , . . . , aik) such that co-Val(ai1 , . . . , aik) is equal to a
bit that we denote as aHj ,ψ. In the following fact we characterize set Seq(φ, I, S,Hj)
and the distribution of sequence �a computed by V in step V.1.

Fact 25. Let j = 1, . . . , l(|Y |) be such that dj = 1; the following holds. Set
Seq(φ, I, S,Hj) is equal to the set of sequences �a that are co-well-formed with respect
to φ and such that for each subformula ψ of φ satisfying (ψ, Iψ) ∈ CL(MON; L̄) and
having leaves i1, . . . , ik, it holds that co-Val(ai1 , . . . , aik ;ψ) = aHj ,ψ. Moreover, the
distribution of sequence �a computed at step V.1 is uniform over set Seq(φ, I, S,Hj).

Proof. The definition of algorithm Construct-Similar already implies that set
Seq(φ, I, S,Hj) includes all co-well-formed sequences �a satisfying co-Val(ai1 , . . . , aik ;
ψ) = aHj ,ψ for each subformula ψ of φ with leaves i1, . . . , ik and such that (ψ, Iψ) ∈
CL(MON; L̄). Now, consider all sequences (a1, . . . , am) in Seq(φ, I, S,Hj). By Defini-
tion 22, there exists a witness of the similarity between Hj and I, and co-Val(a1, . . . ,
am) ∈ {0, 1}. This implies that for each subformula ψ of φ such that (ψ, Iψ) ∈
CL(MON; L̄), it holds that co-Val(ai1 , . . . , aik) is equal to a bit that we denote as
a′Hj ,ψ. By Lemma 11, this bit is unique; that is, we have that a′Hj ,ψ = aHj ,ψ. The
claim on the distribution of sequence �a follows by combining Fact 17 with the above
characterization.

We can now use the above facts to prove that the distribution of tuple�b computed
by V in step V.2, even conditioned over the view of P so far, is independent from bit



1320 A. DE SANTIS, G. DI CRESCENZO, G. PERSIANO, M. YUNG

c chosen by V in step V.0. Specifically, for all �b ∈ Seq(φ, I, S, Y,Hj), we have that

Prob2[�b | tr, c ] =
∑
�c

Prob0[�c | tr, c ] · Prob2[�b | tr, c,�c ]

=
∑

�c∈Seq(φ,I,S,Y,c)

Prob0[�c | tr, c ] · Prob2[�b | tr, c,�c ]

=
∑

�c∈Seq(φ,I,S,Y,c)

Prob0[�c | tr, c ] · Prob1[ (b1 ⊕ c1, . . . , bm ⊕ cm) | tr, c,�c ]

= Prob1[�a | tr ] ·
∑

�c∈Seq(φ,I,S,Y,c)

Prob0[�c | tr, c ],

where the second equality follows from the fact that Prob0[�c | tr, c ] = 0 when �c �∈
Seq(φ, I, S, Y, c); the third equality follows from the fact that Prob2[�b | tr, c,�c ] = 0
when �a �= (b1 ⊕ c1, . . . , bm ⊕ cm) and from Fact 23; and the fourth equality fol-
lows by the definition of Construct-Similar , implying that the probability that tuple
(b1 ⊕ c1, . . . , bm ⊕ cm) in Seq(φ, I, S,Hj) is computed in step V.1 does not depend
on the value of c or �c, as proved in Fact 25. Finally, we observe that even the fac-
tor

∑
�c∈Seq(φ,I,S,Y,c) Prob0[�c | tr, c ] does not depend on the value of c, as proved in

Fact 24, and therefore neither does the value Prob2[�b | tr, c ]. We obtain that from

P’s point of view, the distribution of sequence �b, even when conditioned from the
transcript of the protocol so far, is independent from bit c chosen by V at step V.0.
As discussed before, this implies the soundness property.

The simulator. Now we exhibit a simulator to prove the zero-knowledge property.
The idea is to have the simulator run the protocol twice so as to get from the verifier
both the witness of similarity and the two sequences (b1, . . . , bm) and (ry1 , . . . , rym).
As we shall prove next, this allows the simulator to compute the bit c. We give a
formal description of the simulator in Figure 6.

Lemma 26. The simulator SV∗ runs in expected polynomial time.
Proof. All the steps of SV∗ can be executed in probabilistic polynomial time

except possibly step 7. For a random tape Rand, a formula φ, and a sequence I,
we denote by Good(Rand, φ, I) the set of l-bit sequences (d1, . . . , dl) for which V∗

provides a correct answer and by G = G(Rand, φ, I) its size. Obviously, we have
0 ≤ G ≤ 2l. We distinguish three cases.

1. G = 0. In this case the simulator stops at step 6 for all values of (d1, . . . , dl).
2. G = 1. If D �∈ Good(Rand, φ, I), then the simulator stops at step 6.

If D ∈ Good(Rand, φ, I), which happens with probability 2−l, then the sim-
ulator has to compute c such that Y can be co-opened as c.
Therefore, if we let l = l(|φ| + |I|), where l(·) is a polynomial such that the
length of a (φ, I)-co-opening of a sequence Y is at most l(|φ|+ |I|), and thus
such a co-opening can be computed in time O(poly(|φ|+ |I|) · 2l(|φ|+|I|)), the
contribution of this case to the expected running time of the simulator is
polynomial.

3. G > 1. The expected number of executions of step 7(a) is upper bounded
by the probability that D is good (which equals G/2l) times the expected
number of trials until a good D′ different from D is found (which equals
2l/(G− 1)), for a total of G/(G− 1) ≤ 2.

We now show that SV∗ is indeed a simulator for (P,V). Clearly, the random tape
Rand and the sequence of bits d1, . . . , dm have the same distribution in the output of
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The simulator SV∗ .
Input: (φ, I) ∈ CL(MON; L), where φ is a formula with m variables.

1. Uniformly choose a string Rand (of appropriate length) and write it on the ran-
dom tape of the verifier V∗.

2. Receive (Y, S) from V∗ and denote l(|Y |) simply by l.

3. Receive H1, . . . ,Hl from V∗.

4. Uniformly choose D = (d1, . . . , dl) ∈ {0, 1}l. Send D to V∗.

5. Receive mes = mes1 ◦ . . . ◦ mes l from V∗.

6. If, for some i, mesi is not a correct answer, then
Output:(Rand ;Y,H1, . . . ,HlD,mes) and STOP.

7. Execute the following two steps (a) and (b) in parallel and continue to step 8 as
soon as one of the two steps completes.

(a) Repeatedly try to “extract” c from V∗

(i) Rewind V∗ to the state just after step V∗.1.
(ii) Randomly choose sequence D′ = (d′1, . . . , d

′
l).

If D = D′, then go to step 7(a)(i) else send D′ to V∗.
(iii) Receive mes ′ = mes ′1 ◦ · · · ◦ mes ′l from V∗.
(iv) If for some j ∈ {1, . . . , l}, mes ′j is not a correct answer, then go to step

7(a)(i)
(v) Let j be any index such that dj �= d′j .
(vi) If dj = 0, then

write mesj as mesj = ((s1, t1, r
′
1, r

′′
1 , a1), . . . , (sm, tm, r′m, r′′m, am));

write mes′j as mes′j = ((b1, ry1), . . . , (bm, rym));
else

write mes′j as mes′j = ((s1, t1, r
′
1, r

′′
1 , a1), . . . , (sm, tm, r′m, r′′m, am));

write mesj as mesj = ((b1, ry1), . . . , (bm, rym)).
(vii) Compute c as c = co-Val(a1 ⊕ b1, . . . , am ⊕ bm;φ).

(b) Run an exhaustive search algorithm for computing bit c such that Y can
be co-opened as c.

8. Output: (Rand ;Y,H1, . . . ,Hl, D,mes, c) and STOP.

Fig. 6. The simulator for verifier V∗.

SV∗ as in the view of V∗. The next lemma shows that the bit c computed at step 7(a)
is such that Y can be co-opened as c.

Lemma 27. Let W = ((s1, t1, r
′
1, r

′′
1 , a1), . . . , (sm, tm, r′m, r′′m, am)) be a witness

of the similarity of the m-tuple H = ((u10, u11), . . . , (um0, um1)) to the m-tuple I =
((x1, z1), . . . , (xm, zm)), let (b1, . . . , bm) be a well-formed sequence with respect to the
formula φ, and let Y = (y1, . . . , ym) be a sequence.

Then there exists a polynomial-time algorithm that, on input W and ri ∈ Sxi
such

that yi = SampleR(xi, uibi , ri) for i = 1, . . . ,m, computes a (φ, I)-co-opening of Y as
c = co-Val(a1 ⊕ b1, . . . , am ⊕ bm;φ).

Proof. Let ci
def
= ai ⊕ bi. We show that it is possible to compute in polynomial

time, for i = 1, . . . ,m, ryi
such that if ci = 0, then yi = SampleR(xi, zi, ryi

), and
if ci = 1, then yi = SampleR(xi, si, ryi

). The sequence ((c1, ry1
), . . . , (cm, rym

)) is a
co-opening of Y as c.
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We consider only the case ci = 0, the case ci = 1 being similar. Assume ai = 0 and
bi = 0. Then we have ui0 = SampleR(xi, zi, r

′
i), ui1 = SampleR(xi, si, r

′′
i ), and yi =

SampleR(xi, ui0, ri). Using property 4 of RSR languages we have that it is possible to
compute in polynomial time ryi such that yi = SampleR(xi, zi, ryi). If instead ai = 1
and bi = 1, we have that ui0 = SampleR(xi, si, r

′
i), ui1 = SampleR(xi, zi, r

′′
i ), and

yi = SampleR(xi, ui1, ri). Again by property 4 of the RSR languages it follows that it
is possible to compute in polynomial time ryi

such that yi = SampleR(xi, zi, ryi).
Lemma 28. The probability distributions SV∗(φ, I) and V iewV∗(φ, I) are identi-

cal for all (φ, I) ∈ CL(MON; L̄).
Proof. Both distributions consist of a random Rand, sequences Y and H1, . . . ,Hl

(obtained for both distributions by applying V∗ to Rand and (φ, I)), a random se-
quence D = d1, . . . , dl, and, in case D ∈ Good(Rand, φ, I), messages from the verifier
(obtained for both distributions by applying V∗ to Rand, D, and (φ, I)), and a bit c.
By Lemma 11, c is the only value for which Y can be (φ, I)-co-opened as c.

We have thus proved the following theorem.
Theorem 29. Let L be an RSR language. Then, CL(MON; L) ∈ PZK.
Remark 4 (a variation on the protocol for monotone formulae over co-RSR lan-

guages). Next we show that it is possible to design a zero-knowledge proof system
for any monotone formula over co-RSR languages, which, although being less efficient
than the one already presented, does not use condition 4 in the definition of RSR
languages.

The only variation from the protocol described in Figure 5 is in the subprotocol
in which the verifier gives a “proof that he knows what c is.” Here, the verifier
considers the NP statement “there exist a string R and a bit c such that (Y,R)
is a (φ, I)-co-opening as c of Y .” Using standard polynomial-time reductions (see
[35]), this statement can be reduced in polynomial time to a statement about the
Hamiltonicity of graph G. We can assume without loss of generality that the used
reduction is witness-preserving (i.e., there exists an efficient algorithm that, on input
a witness R for the former statement, allows us to compute a witness π for the latter),
since so are many such reductions in the literature. Now, the verifier will compute a
witness π for the latter statement and prove its knowledge using a parallel execution
of a modification of the zero-knowledge proof system for graph Hamiltonicity given
in [10]. The modification is the following. Recall that the protocol in [10] uses a
bit commitment scheme based on one-way functions to encode an isomorphic copy of
the input graph G. We propose instead to use the procedure co-Construct-Opening
as a bit commitment scheme: to commit to a bit b run co-Construct-Opening on
input φ, I and b. The commitment scheme described has the following properties. If
(φ, I) ∈ CL(MON, L̄), the verifier is information theoretically bound to the committed
bit; this allows us to extract the bit c and thus to prove the zero-knowledge property.
On the other hand, if (φ, I) �∈ CL(MON, L̄), the committed bit is perfectly hidden to
the prover, and thus soundness can be easily proved.

The described technique is based on ideas that first appeared in [45].

6. Threshold formulae over RSR languages. In this section we give a PZK
proof system for the language CL(T ;L) of all true threshold formulae whose atoms are
statements about membership in an RSR language L. As MON is a subset of T , the
results in this section subsume the one in section 4. However, we note that the proof
system presented here is more complicated than that presented in section 4. On the
other hand, the threshold function has polynomial-size monotone boolean formulae
(see [55]), and thus we could use the proof system of section 4 for the monotone
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formula of size O(n5.3) for the threshold function on n arguments given by Valiant
in [55]. We show, however, a much more efficient construction that is constructive.
(Valiant’s proof that the threshold function has a monotone formula does not provide
an effective construction.)

6.1. Threshold schemes. In the construction of our proof system we will use
the notion of threshold scheme, introduced by Shamir [52] and Blackley [9]. A (k,m)-
threshold scheme is an efficient probabilistic algorithm that, on input a datum D,
outputs m pieces sh1, . . . , shm, such that

• knowledge of any k or more pieces shi makes D easily computable;
• knowledge of any k−1 or fewer pieces shi leaves D completely undetermined

(i.e., all its possible values are equally likely).
Shamir [52] shows how to construct such threshold schemes using interpolation of
polynomials in the following way. Let (E ,+, ·) be a finite field with more than m
elements and let D ∈ E be the value to be shared; we will consider E = GF(2l) (which
we identify with {0, 1, . . . , 2l − 1}). Choose at random a1, . . . , ak−1 ∈ E , construct
the polynomial q(x) = D + a1 · x + · · · + ak−1 · xk−1, and output shi = q(i) ∈ E (all
operations are performed in E) for i = 1, . . . ,m.

We say that a sequence (sh1, . . . , shm) is a (k,m)-sequence of admissible shares
(we will simply call it a sequence of admissible shares when k and m are clear from the
context) if there exists a polynomial q(x) = a0 +a1x+ · · ·+ak−1x

k−1 with coefficients
in E , such that shi = q(i) for i = 1, . . . ,m. We say that a sequence (sh1, . . . , shm)
is a (k,m)-sequence of admissible shares for D if there exists a polynomial q(x) =
a0 + a1x+ · · ·+ ak−1x

k−1 with coefficients in E , such that a0 = D and shi = q(i) for
i = 1, . . . ,m.

Now we recall some facts about threshold schemes that will be important for the
construction of our proof system. Let I ⊆ {1, . . . ,m} and suppose |I| < k. Given D
and a sequence (shi|i ∈ I) of values, it is always possible to efficiently generate values
shi, i �∈ I, such that (sh1, . . . , shm) is a sequence of admissible shares for D and the
shi’s for i �∈ I are uniformly distributed among the shi’s such that (sh1, . . . , shm)
is a sequence of admissible shares for D. If |I| ≥ k, then a sequence (shi|i ∈ I) of
values uniquely determines at most one value D and values shi for i �∈ I such that
(sh1, . . . , shm) is a sequence of admissible shares for D. Also, for |I| < k, given a
sequence (shi|i ∈ I) of values, if the values shi for i �∈ I are chosen with uniform
distribution among the shi’s such that (sh1, . . . , shm) is a sequence of admissible
shares, then D is uniformly distributed in E .

6.2. The construction. The construction of a proof system for CL(T ;L) is
based on an ad hoc modification of the concepts of value and opening and will be
obtained as for the proof system for monotone formulae over RSR languages.

The value t-Val(sh1, . . . , shm;φ) ∈ E ∪ {⊥} of an m-tuple (sh1, . . . , shm) ∈ Em

with respect to a threshold formula φ with m variables is defined recursively in the
following way. If φ consists of a single variable vi, then t-Val(shi; vi) = shi. Otherwise,
assume φ is a threshold formula Tk,n, over subformulae φ1, . . . , φn for some integers
k, n; also, let m0 = 0, let mi be the number of variables in φ1, . . . , φi, for i = 1, . . . , n,
and let si = t-Val(shmi−1+1, . . . , shmi , φi). Then it holds that t-Val(sh1, . . . , shm;φ)
is equal to D ∈ E if (s1, . . . , sn) is a (n − k + 1, n)-sequence of admissible shares for
D, or equal to ⊥ otherwise. Now we can define the notion of threshold-opening.

Definition 30 (threshold-opening). Let φ be a threshold formula, let D ∈
GF(2l), and let I = ((x1, z1), . . . , (xm, zm)) be an m-tuple of pairs.
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We say that

R = (((c11, r11, s11, t11), . . . , (c1l, r1l, s1l, t1l)), . . . , ((cm1, rm1, sm1, tm1), . . . ,

(cml, rml, sml, tml)))

is a (φ, I)-threshold-opening as D of Y = ((y11, . . . , y1l), . . . , (ym1, . . . , yml)) if and
only if the following hold:

1. ri,j ∈ Sxi
, ci,j ∈ {0, 1}, and (si,j , ti,j) ∈ Rxi

for i = 1, . . . ,m and j = 1, . . . , l;
2. t-Val(sh1, . . . , shm, φ) = D, where shi = ci1 ◦ · · · ◦ cil;
3. if ci,j = 0, then yij = SampleR(xi, zi, rij);
4. if ci,j = 1, then yij = SampleR(xi, si, rij).

Using the above properties of threshold schemes and the properties of RSR lan-
guages, one can see that if (φ, I) ∈ CL(T ;L), then any m-tuple �Y can be threshold-
opened as a sequence of admissible shares of D for all D ∈ {0, 1}l. Moreover, if
(φ, I) �∈ CL(T ;L), then any m-tuple can be threshold-opened as a sequence of admis-
sible shares for at most one D.

Therefore, similarly as before, we have the following two lemmas describing the
properties of the concept of threshold-opening.

Lemma 31. Let (φ, I) ∈ CL(T ;L), let D,D′ ∈ {0, 1}l, let Y be a tuple, and let
R be a (φ, I)-threshold-opening as D of the m-tuple Y . Then, there exists a tuple R′

that is a (φ, I)-threshold-opening as D′ of Y .
Lemma 32. Let (φ, I) �∈ CL(T ;L) and let Y be a tuple. Then, there exists at

most one element D for which there exists a (φ, I)-threshold-opening as D of Y .
Similarly to procedure Construct-Opening, we can design a procedure Threshold-

Construct-Opening that on input (φ, I, a) with a ∈ {0, 1} outputs a sequence Y and
a (φ, I)-threshold-opening as a of the m-tuple Y . Moreover, if (φ, I) ∈ CL(T ;L), the
distribution induced on Y is independent of a.

A PZK proof system (P,V) for language CL(T ;L) follows from the above two
properties and can be found in Figure 7.

The Proof System (P,V).
Input:(φ, I) ∈ CL(T ;L).

P.1 Obtain (Y,R) by running Threshold-Construct-Opening on input φ, I and
0. Send Y to V.

V.1 Randomly select b ∈ {0, 1}. Send b to P.
P.2 Randomly select a (φ, I)-threshold-opening R of Y as D′ = b according to

the distribution induced by procedure Threshold-Construct-Opening on its
second output conditioned on Y being the first element of the output pair.
Send R to V.

V.2 Verify that R is a (φ, I)-threshold-opening of Y as b.

Fig. 7. The proof system (P,V) for CL(T ;L).

The completeness of (P,V) follows from Lemma 31 and the soundness from Lemma
32. The simulator is designed analogously to the one in section 4.1, using procedure
Threshold-Construct-Opening.

Theorem 33. Let L be an RSR language. The above protocol (P,V) is a PZK
proof system for CL(T ;L).
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6.3. Threshold formulae over co-RSR languages. Similarly to what we did
for the monotone formulae, we can obtain a proof system for threshold formulae over
co-RSR languages using DeMorgan’s law and observing that a threshold formula over
statements xi �∈ L is equivalent to the negation of a threshold formula xi ∈ L with a
(k, n)-threshold becoming an (n− k + 1, n)-threshold.

7. Nonmonotone formulae over RSR languages. In this section we prove
that a class of nonmonotone formulae over RSR languages is in PZK. Specifically, we
consider the language CL(OR;L), where L is an RSR language. Recall that such lan-
guage is defined as the set of all tuples ((φ, Iφ), (ψ, Iψ)), where φ and ψ are monotone
formulae, such that at least one of φ, ψ is true, and the atoms of φ (resp., ψ) are
statements about membership in an RSR language L (resp., nonmembership in L).
That is, (φ, Iφ) ∈ CL(MON; L) or (ψ, Iψ) ∈ CL(MON; L̄).

Before explaining the proof system in its generality, we briefly discuss an example
relative to graph isomorphism.

A simple example. Let us consider the following proof system for proving that,
given two pairs of graphs (A0, A1) and (B0, B1), A0 is isomorphic to A1 or B0 is not
isomorphic to B1. The verifier picks a random bit b and encodes it by constructing
and sending the prover graph B isomorphic to Bb. The prover then constructs and
sends the verifier a graph A. Then the verifier reveals b by giving an isomorphism
between B and Bb. Finally, the verifier accepts if the prover shows an isomorphism
between A and Ab.

For the completeness, first consider the case in which A0 and A1 are isomorphic.
Then A can be constructed isomorphic to A0, and then, no matter what the value
of b is, the prover can always exhibit an isomorphism between A and Ab. Suppose
instead that A0 and A1 are not isomorphic and thus B0 and B1 are not isomorphic
either. Then, B is isomorphic to exactly one of B0 and B1, and thus the prover can
compute the value of b and construct A isomorphic to Ab.

For the soundness, observe that if A0 and A1 are not isomorphic, then A is
isomorphic to exactly one of the two. Moreover, since B0 and B1 are isomorphic,
the prover does not learn the value of b until after A has been given to the verifier.
Therefore, the verifier accepts with probability at most 1/2.

Finally, it is also easy to argue that the proof system described is honest-verifier
zero-knowledge. Indeed the simulator, after receiving graph B from the verifier, picks
a random b̂ and constructs A isomorphic to Ab̂. Then if b = b̂, the simulation is

completed by giving the isomorphism between Ab and A. If instead b �= b̂, then the
simulation is started again from scratch. Since b and b̂ are uniformly distributed (and
independent), the simulation will have to be repeated on average two times. To make
it zero-knowledge, we need to augment it as we have done in section 5.

The general case. The construction of a proof system for CL(OR;L) is based on
the concepts of value, co-value, opening, and co-opening.

Now we informally describe our proof system (P,V) for CL(OR;L). Let ((φ, Iφ),
(ψ, Iψ)) be the input to (P,V). The first three rounds are precisely the first three
rounds of protocol (P,V) in section 5 (i.e., steps labeled as V.0, V.1, P.1, V.2, P.2),
when run on input the formula ψ and the m-tuple Iψ. That is, V sends a pair (Yψ, S)
to P and proves that he knows a (ψ, Iψ)-co-opening of Yψ and that S has been
correctly constructed. The fourth step of our proof system is the following: P checks
that V knows a (ψ, Iψ)-co-opening of Y and that S has been correctly constructed.
If this check is not satisfied, he stops. Otherwise, he computes whether the formula
ψ is true. If it is, he computes the bit b such that Yψ can be (ψ, Iψ)-co-opened as b,
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and then he sets a = b. If the formula ψ is false, he picks the value of a at random
from {0, 1}. Then he sends an m-tuple Yφ to V that can be (φ, Iφ)-opened as a. Now,
V reveals the bit b that he chose in his first step and the (ψ, Iψ)-co-opening of Yψ as
b to P. Finally P computes and sends to V a (φ, Iφ)-opening of Yφ as bit b, and V
verifies that he receives a (φ, Iφ)-opening of Yφ as b.

The following theorem holds.
Theorem 34. Let L be an RSR language; then the language CL(OR;L) is in

PZK.
Proof. We show that the above protocol (P,V) is a PZK proof system for CL(OR;L).
Completeness. Suppose that ((φ, Iφ), (ψ, Iψ)) ∈ CL(OR;L).
In the first case (ψ, Iψ) ∈ CL(MON; L̄). Then, by the properties of a co-opening,

the prover can always find exactly one bit b such that Yψ can be (ψ, Iψ)-co-opened as
b and pick a equal to the bit b chosen by V. Also, as in section 5.1, one can show that
V can always perform the “proof of knowledge” in polynomial time. Then we have
that P can compute an m-tuple Yφ such that Yφ can be (φ, Iφ)-opened as b, and he
can later reveal an opening for Yφ.

Assume now that (φ, Iφ) ∈ CL(MON; L). Then, by Lemma 10, the m-tuple Yφ

can be opened both as 0 and as 1, and P can compute a (φ, Iφ)-opening as the bit b
sent by V. In both cases V’s verifications are satisfied with probability 1.

Soundness. Suppose that ((φ, Iφ), (ψ, Iψ)) �∈ CL(OR; L). In this case, the m-
tuple Yψ sent by the verifier can be (ψ, Iψ)-co-opened both as 0 and as 1. Moreover,
observe that, using an argument similar to the one used for proving the soundness of
the proof system of section 5, it can be shown that no information about b is revealed
by the verifier in his proof of knowledge. Also, by Lemma 11 any m-tuple Yφ can be
(φ, Iφ)-opened as at most one bit a. Thus the probability that bit a is equal to the
bit b chosen by the verifier is at most 1/2. Thus the verifications of the verifier are
satisfied with probability at most 1/2.

Perfect zero knowledge. Now we only sketch a simulator SV∗ for (P,V) as the
simulator is based on the same strategy as the simulator for the proof system of
section 5. The verifier is run twice, and from the answers of the verifier it is possible
to reconstruct the bit b. Finally, once b has been extracted, the simulator uses the
procedure Construct-Opening to compute an m-tuple Yφ that can be (φ, Iφ)-opened
as b along with an opening.

8. Conclusions, recent works, and open problems. We have shown clo-
sure properties under composition of (polynomial-size) monotone formulae and some
classes of nonmonotone formulae for the class PZK when restricted to RSR languages.
In the context of PZK, even for this set of languages, showing closure with respect to
any boolean formula, or, more generally, any boolean circuit, is still open.

Related works include closure results in [22, 23] for PZK proofs on quadratic
residuosity in the noninteractive model, as well as some closure techniques in [20] for
witness hiding and witness indistinguishable proofs over a class of languages containing
RSR languages.

We notice that the techniques of this paper have played an important role in
some recent results. Specifically, closure under some clustering-based type of com-
position has been considered in [25] based on the techniques herein. Restricted to
the class SZK of statistical zero-knowledge proofs (see [42] for definitions), our tech-
niques were also applied recently in [51] as probability amplification techniques for
proving some closure properties over general SZK statements proved to an honest
verifier (the techniques can, in turn, be applied to achieve monotone formula com-
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position of the resulting general SZK proofs constructed there using results in [49]).
Furthermore, our techniques were used to augment the set of known languages having
other types of PZK protocols [30], such as PZK proofs of decision power or PZK and
result-indistinguishable transfers of decision.
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Abstract. We consider a model for monitoring the connectivity of a network subject to node
or edge failures. In particular, we are concerned with detecting (ε, k)-failures: events in which an
adversary deletes up to k network elements (nodes or edges), after which there are two sets of nodes
A and B, each at least an ε fraction of the network, that are disconnected from one another. We
say that a set D of nodes is an (ε, k)-detection set if, for any (ε, k)-failure of the network, some two
nodes in D are no longer able to communicate; in this way, D “witnesses” any such failure. Recent
results show that for any graph G, there is an (ε, k)-detection set of size bounded by a polynomial
in k and ε, independent of the size of G. In this paper, we expose some relationships between
bounds on detection sets and the edge-connectivity λ and node-connectivity κ of the underlying
graph. Specifically, we show that detection set bounds can be made considerably stronger when
parameterized by these connectivity values. We show that for an adversary that can delete kλ edges,
there is always a detection set of size O( k

ε
log 1

ε
) which can be found by random sampling. Moreover,

an (ε, λ)-detection set of minimum size (which is at most 1
ε
) can be computed in polynomial time.

A crucial point is that these bounds are independent not just of the size of G but also of the value of
λ. Extending these bounds to node failures is much more challenging. The most technically difficult
result of this paper is that a random sample of O( 1

ε
log 1

ε
) nodes is a detection set for adversaries

that can delete a number of nodes up to κ, the node-connectivity. For the case of edge-failures we
use VC-dimension techniques and the cactus representation of all minimum edge-cuts of a graph;
for node failures, we develop a novel approach for working with the much more complex set of all
minimum node-cuts of a graph.

Key words. network failures, detection sets, connectivity, minimal cuts, cactus representation,
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1. Introduction. Monitoring network connectivity. As links or nodes fail in
a network, it is important to maintain information about basic properties such as
connectivity. For large, unstructured networks, this is often done by recourse to
sampling and other approximate measurements; performing such measurements in a
robust and accurate way is an active research topic (e.g., [4, 5, 19, 21, 20]). A general
problem here is to minimize the cost of network monitoring and measurement, in
terms of communication, computation, and resource usage.

Here we consider a model proposed by the first author for monitoring network
connectivity [16]. We are given a connected node graph G on n nodes, and we want
to detect “failure events” in which at most k network elements (nodes or edges) are
deleted, after which there are two sets of nodes A and B, each of size ≥ εn, such that
no node in A has a path to any node in B. We will call such a pair of sets separated,
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and we will call such an event an (ε, k)-failure. (To reflect the fact that the k node or
edge failures can be arbitrary, we will sometimes speak of them as being selected by
an adversary.)

To detect such failures, we consider the strategy of placing “detectors” at a subset
D of the nodes of G. Now, if we find that two detectors are unable to communicate—
either because there is no path between them, or because one has been deleted—we
can record a fault in the network. We would like our set D to have the property that
whenever an (ε, k)-failure occurs, some two detectors are unable to communicate; we
will refer to such a set D as an (ε, k)-detection set. Note the nature of this condition:
D must detect all possible (ε, k)-failures, so we imagine D as being chosen before the
adversary selects a set of k network elements to delete. The emphasis in [16] was on
finding a bound on the number of nodes that must be randomly selected from a graph
G in order to obtain an (ε, k)-detection set with high probability. Improvements to
these bounds were obtained by [7].1

In this paper, we adopt a somewhat different approach to this issue, by exposing
some interesting and nontrivial connections between the size of the smallest detection
set for a graph G and the values of its edge- and node-connectivity. (The edge-
connectivity of G, denoted λ(G), is the smallest number of edges that must be deleted
in order to disconnect G. The node-connectivity of G, denoted κ(G), is the analogous
quantity for node deletions.) We show that stronger bounds on detection set size
can be obtained if we parameterize these bounds by the connectivity values λ and
κ, and, for some cases, we use this relationship with connectivity to provide the first
per-instance guarantees for detection sets.

Because our results are different depending on whether the adversary is deleting
edges or nodes, we consider these two cases separately.

Detection sets for edge failures. We begin with adversaries that can delete up
to k edges; as such, we will be concerned with (ε, k)-edge-failures, which are (ε, k)-
failures in which only edges are deleted. It is known that a random set of O(kε log 1

ε )
nodes is an (ε, k)-detection set for edge-failures with high probability [16], and that
every graph contains an (ε, k)-detection set for edge-failures of size O(kε ) [7]; note that
both bounds are independent of the size of the graph G. It is not difficult to show
that both bounds are tight, and so there is no prospect of obtaining an improvement
that applies to all graphs. However, it makes sense to ask whether better bounds are
possible in terms of natural parameters of the graph G.

An obvious parameter to consider here is the edge-connectivity λ; indeed, there
can be no (ε, k)-edge-failures in G if k < λ. Our first main result establishes that λ is
indeed a natural way to parameterize the problem; we show that every graph G has
an (ε, λ)-detection set for edge-failures of size at most 1

ε . Note that there is no leading
constant in this bound and that it is independent not just of the size of G but also
of the value of λ. Extending this result, we show further that an (ε, λ)-detection set
for edge-failures of minimum size for a graph G can be computed in polynomial time.
The algorithms used to establish these results are based on the cactus representation
of all minimum edge-cuts of G [6, 9].

Given that strong bounds are possible for detecting an adversary that can delete
one minimum cut’s worth of edges, it is natural to ask what can be said about an
adversary capable of deleting a number of edges equal to k times the size of a minimum
cut. We show that a random set of O(kε log 1

ε ) nodes is a (kλ, ε)-detection set for edge-

1Following the publication of the conference version of this paper, further improvements have
been obtained in [8].
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failures with high probability. This is essentially a factor of λ times stronger than
the bounds of [7, 16], which did not take edge-connectivity into account. Our proof
of this result uses a VC-dimension argument in the style of [16]; the bound on the
VC-dimension is obtained using a result of Mader [18, 10] that extends results of
Lovász [17] and of Cherkasskij [3] (also see [10]) on edge-disjoint paths in graphs.

Detection sets for node failures. We now consider adversaries that can delete up
to k nodes. By analogy with our results for edge-failures, we consider the size of
detection sets in terms of the node-connectivity κ. Our main result here is that every
graph G (with κ = O(ε2n)) has an (ε, κ)-detection set for node-failures of size O( 1

ε );
moreover, a random set of O( 1

ε log 1
ε ) nodes forms an (ε, κ)-detection set for node-

failures with high probability. Again, note that these bounds are independent not
just of the size of G but also of the value of κ. Extending our results to adversaries
that delete kκ nodes for k > 1 is a very interesting and apparently difficult open
question.

We note the distinction, raised by Gupta [13] (see section 1.4.2 of [7]), between
strong and weak detection sets for node-failures. A strong detection set D has the
property that, after any (ε, k)-node-failure, two nodes of D lie in different connected
components. A weak detection set D′ has the property that, after any (ε, k)-node-
failure, two nodes of D lie in different connected components or an element of D
has been deleted. Either of these definitions arguably forms a plausible definition of
network failure detection. Improving a bound of [16], Fakcharoenphol showed that a
random set of O(kε log k log 1

ε ) nodes is a strong (ε, k)-detection set for node-failures
[7], and Gupta showed that every graph has a weak (ε, k)-detection set for node-
failures of size O(kε ). As we note in section 4, weak detection appears to be a more
useful notion when the problem is parameterized by node-connectivity; in particular,
our main result is about weak detection sets. Henceforth, we will assume that all
detection sets for node-failures are weak unless otherwise specified.

Our analysis for node-failures is significantly more complicated than for edge-
failures, and this is not surprising; not only is no analogue of the cactus representation
known for min-node-cuts, but this appears to be intrinsic due to the #P -completeness
of even counting the number of min-node-cuts [2]. Indeed, given the lack of tractable
representations for min-node-cuts, we believe that our analysis develops some useful
properties of their structure. We begin by constructing a detection set of minimum
size for adversaries that can delete shredders [2, 15]—min-node-cuts whose deletion
produces at least three components. The construction of the detection set then pro-
ceeds by greedily isolating a maximal collection of relatively balanced min-node-cuts
that produce just two components, and whose “small sides” are disjoint; the small
side of each such cut is required to have at least εn

10 nodes. We then show that by
placing detectors so that one lies on the small side of each of these cuts, there is no
way for a min-node-cut producing two components of size at least εn each to avoid
being detected.

Further discussion. A simple calculation based on Karger’s algorithm gives an up-
per bound of O(kε log n) on a random sample of nodes that forms an (ε, kλ)-detection
set for edge-failures.2 However, our goal in this paper is to find bounds that do not
depend on the size of the graph.

Following [16], we can extend our results to a model in which the nodes of the
network G are partitioned into two sets—a set V0 of end nodes and a set V1 of internal

2Note that no such simple bound is available for the case of node-failures, which is yet another
evidence of its difficulty.
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nodes. We assume that we are allowed only to place detectors at end nodes, and
correspondingly are interested only in monitoring the connectivity of the end nodes.
Specifically, we redefine (ε, k)-failures as failures of ≤ k network elements, after which
two disjoint subsets of V0, each of size ≥ ε|V0|, are separated from each other. We
can show that the bounds obtained above carry over to this more general setting; we
omit further discussion of the generalization from this version of the paper.

Our work is similar in spirit to some of the work on vertex connectivity and aug-
mentation thereof, e.g., [14, 2, 15, 12]. The actual technical issues are quite different,
however, since we are interested only in balanced cuts. In general one could view our
work here as integrating notions from edge- and node-connectivity with the problem
of balanced separators of graphs—two topics that have traditionally been approached
separately due to their great differences in tractability.

Notation. In this paper all graphs are assumed undirected; our standard notation
for a graph is G = (V,E). An edge(node)-cut is a set X of edges (nodes) such that
G \X is disconnected.

A min-edge(node)-cut is an edge(node)-cut of minimum size. This size is also
known as edge(node)-connectivity and is denoted by λ and κ, respectively. We will
write min-cut when it is clear whether we are talking about edge-cuts or node-cuts.
A set of nodes is tight if it is a union of some (but not all) components of a min-cut.
A cut X is called ε-balanced if there are two sets of vertices of size ≥ εn that are
disconnected from one another in G \ X. An ε-balanced cut of ≤ k edges(nodes) is
called an (ε, k)-cut.

If sets X, Y have a nonempty intersection, we say X meets Y . To help clarify
the notation in places, we will sometimes write X + Y to denote the union of disjoint
sets X and Y , and X − Y to denote the difference of sets X and Y for which Y ⊆ X.

2. Detection sets for edge failures. In this section we present our results on
edge-failures. For edge-failures that correspond to min-edge-cuts, our algorithms are
based on the cactus representation of all min-cuts in a graph [6, 9]. We include a
self-contained review of the relevant definitions and facts. Our result for the general
edge-failure proof uses a VC-dimension argument in the style of [16]; the bound on
the VC-dimension is obtained using a result of Mader [18, 10] on edge-disjoint paths
in graphs.

Throughout the section, all cuts are edge-cuts, and all detection sets are for edge-
failures. Let D be a set of nodes, representing the locations of our detectors. We say
that D detects a cut X if some pair of detectors is separated in G \X. We call D an
(ε, k)-detection set if it detects every (ε, k)-edge-cut.

In section 2.1 we review the cactus representation. Section 2.2 is on min-edge-
cuts: we construct a smallest (ε, λ)-detection set and prove that it has size ≤ 1

ε .

Section 2.3 is on general edge-failures: we prove that a set of O( k
λε log 1

ε ) randomly
sampled nodes is an (ε, k)-detection set with high probability.

2.1. Review: Cactus representation. Edges will be viewed as cycles of length
2; cycles of length 3 or more are called proper. A cactus is a connected graph such that
any two of its cycles have at most one vertex in common. An arbitrary cactus can be
obtained starting from a cycle and recursively adding new cycles that share a single
vertex with the existing graph. In a cactus, some edges are contained in a proper
cycle (cycle edges), and some are not (path edges). Each cycle edge has capacity 1

2 ,
and each path edge has capacity 1. It follows that min-cuts of a cactus have capacity
1. We can characterize them as follows.
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Fact 2.1. Consider a cactus T . Then (a) each path edge is a min-cut, (b)
any pair of cycle edges from the same cycle is a min-cut, and (c) there are no other
min-cuts.

Proof. Clearly any cut in T has capacity at least 1. For part (a), let uv be a
path edge. If there exists a uv-path p not containing the edge uv, then p + uv is a
cycle, contradicting the definition of a path edge. Therefore u and v are separated in
T − uv. So uv is a cut in T , hence a min-cut.

For part (b), let e1, e2 be cycle edges from the same cycle C. e1 + e2 splits C
into two arcs; call them C1 and C2. Suppose C1 and C2 are connected in T − e1 − e2.
Then there exist vertices u ∈ C1, v ∈ C2 such that there is a uv-path p that does not
intersect with C except for the endpoints. Let C ′ be the uv-arc of C that contains e1.
Then p+C ′ is a cycle in T that shares ≥ 2 vertices with C, which is a contradiction.
So C1 and C2 are not connected in T − e1 − e2. Therefore e1 + e2 is a cut in T , hence
a min-cut.

For part (c), suppose X is a min-cut of T that is neither a path edge nor a pair
of cycle edges from the same cycle. Since the capacity of X is ≤ 1, it consists of one
or two cycle edges. Thus there is a (proper) cycle C such that X contains exactly
one edge uv ∈ C. Since X is a min-cut, it must separate u and v. However, they are
connected by C − uv, which is a contradiction.

In a cactus, nodes of degree one will be called leaves, nodes of degree two that
are contained in a cycle will be called cycle nodes, and all other nodes will be called
branch nodes.

Fact 2.2. Let v be a branch node of a cactus T . Then the cycles that contain v
are pairwise disconnected in T − v.

Proof. Let C, C ′ be cycles that contain v. Let uv, u′v be edges in C, C ′,
respectively, Suppose u and u′ are connected in T − v; i.e., there is a uu′-path p not
containing v. Then p + uv + vu′ is a cycle that shares ≥ 2 vertices with C (and C ′),
a contradiction. Thus C and C ′ are disconnected in T − v.

Consider a branch node v of a cactus T . It connects two or more cycles. By
Fact 2.2, the removal of v splits T into two or more connected components (v-
components). Each v-component X is tight: for some cycle C containing v, it is
obtained by removing any edge of C that is adjacent to v.

Fact 2.3. Suppose S is a tight set in cactus T , and v is a branch node. Then

(a) if v ∈ S, then S contains at least one v-component;
(c) if v �∈ S, then S is contained in a v-component;
(c) for any v-component X of T , either X ⊂ S, or S ⊂ X, or X ⊂ V − S, or

V − S ⊂ X.

Proof. For part (a), let S be a component of a min-cut C. By Fact 2.1 C is
contained in a cycle, so C ⊂ T [X + v] for some v-component X. Therefore if Y is any
other v-component, then Y + v is connected in T \C. Y ⊂ S follows since v ∈ S and
S is connected in T \ C.

For part (a), suppose S meets two v-components. Then they are connected in
T − v (via S), a contradiction.

For part (c), suppose X meets both S and V − S. Then by part (b) if v ∈ S,
then V − S ⊂ X; else we have S ⊂ X.

Let G be a weighted graph on n vertices. A cactus-pair of G is a pair (T, π) where
T is a cactus and π is a mapping from V (G) to V (T ) such that if M is a tight set in T ,
then π−1(M) is a tight set in G. For each tight set M of T , say that (T, π) represents
the min-cut C of G such that π−1(M) is a C-component. A cactus representation
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of G is a cactus-pair of G that represents all min-cuts of G. Dinits, Karzanov, and
Lomonosov [6] proved that every capacitated graph has a cactus representation of size
O(n). Further results show that a cactus representation of size O(n) can be efficiently
constructed. See the introduction of [9] for a discussion.

2.2. Detection sets for min-edge-cuts. Here we are interested only in ε-
balanced min-cuts, and so the cactus representation is too general for our purposes.
This motivates the following definitions.

Definition 2.4. Let an ε-cactus-pair be a cactus-pair that represents all ε-
balanced min-cuts. Let an ε-cactus be the cactus in such a cactus-pair (if the mapping
is clear). A subset S of vertices of a cactus is heavy if |π−1(S)| ≥ εn. Call a cactus-
pair reduced if every v-component is heavy.

A reduced ε-cactus-pair can be efficiently computed from a standard cactus rep-
resentation by consecutively applying the following reduction.

Lemma 2.5. Suppose T is an ε-cactus, v is a branch node, and X is a v-
component that is not heavy. Let T ′ be T with X contracted into v. Then T ′ is
also an ε-cactus.

Proof. For each ε-balanced min-cut C of G there is a min-cut C ′ of T that
represents it. By Fact 2.3(c) there is a component S of C ′ such that X ⊂ S or S ⊂ X.
Since S is heavy and X is not, it must be the case that X is a proper subset of S.
Then v ∈ S, so C ′ is a min-cut in T ′, too. Therefore T ′ represents C.

Let G be a capacitated graph. Let (T, π) be a reduced ε-cactus-pair of G. We
will characterize (ε, λ)-detection sets of minimum size in terms of T .

Let a subcycle be a set of consecutive cycle nodes of a (proper) cycle in T . Consider
the nondegenerate case when there is at least one branch node. Then the weight
|π−1(·)| of each leaf and each subcycle is at most (1 − ε)n. Let a canonical subcactus
be a set of nodes of T that contains each leaf, has an element in every heavy subcycle,
and contains no branch nodes. Let D ⊂ V (G) be a set of detectors (not necessarily
an (ε, λ)-detection set). Say D is T -canonical if π(D) is a canonical subcactus and at
most one detector is mapped to each node of T . The following two lemmas show that
any smallest (ε, λ)-detection set is in fact a smallest T -canonical set.

Call S ⊂ V heavy if |S| ≥ εn, and balanced if both S and V \ S are heavy. Call
S′ ⊂ V (T ) balanced if π−1(S′) is balanced. For each balanced tight set S of G let
π′(S) be a (balanced) tight set S′ of T such that S = π−1(S′).

Lemma 2.6. Any smallest (ε, λ)-detection set is T -canonical.
Proof. Let D be a smallest (ε, λ)-detection set. Call elements of D detectors. We

need to show that (1) at most one detector is mapped to each node of T , (2) there is a
detector mapped to each leaf and each heavy subcycle of T , and (3) no detectors are
mapped to branch nodes of T . (See Figure 1.) Let us prove these three statements in
order.

(1) Suppose two detectors d1, d2 map to a node v of T . To obtain a contradiction
it suffices to show an (ε, λ)-detection set smaller than D. We claim that D−d1 is also
an (ε, λ)-detection set. Suppose not. Then there is a balanced tight set S of G that
contains D − d1. Obviously d1 �∈ S. Let S′ = π′(S). Since d2 ∈ S, v = π(d2) ∈ S′,
and thus d1 ∈ S, too, a contradiction.

(2) There is a detector mapped to each heavy tight set of T , in particular, to each
leaf and each heavy subcycle.

(3) Suppose a detector d is mapped to a branch node v of T . By analogy with
(1), we claim that D−d is also an (ε, λ)-detection set. For suppose not. Then D−d is
disjoint with some balanced tight set S. Let S′ = π′(S). Since D is an (ε, λ)-detection
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Fig. 1. An ε-cactus with detectors. Branch nodes are denoted by “•”, detectors by “*”. In the
central cycle, there are three subcycles between the branch nodes. The smallest of them is not heavy,
and hence does not contain a detector. The other two are big enough so that they need two detectors
each. Each of the three smaller cycles is heavy (even without its branch node), since otherwise it
would have been contracted.

set, d ∈ S, and thus v ∈ S′. Therefore by Fact 2.3(a) S′ contains some v-component
S′′. Since T is reduced, S′′ is heavy, so there is a detector mapped to it. Thus S
contains a detector other than d, a contradiction.

Lemma 2.7. Any T -canonical set is an (ε, λ)-detection set.

Proof. Suppose D ⊂ V and π(D) meets each leaf and each heavy subcycle of T .
We need to prove that π(D) meets each heavy tight set of T . To show this we claim
that any heavy tight set S of T contains a leaf or a heavy subcycle.

We will use induction on the size of S. The base case corresponds to an S that
consists of one vertex, say v. By Fact 2.3(a) v cannot be a branch node. So either v
is a leaf or it is a heavy subcycle consisting of a single cycle node.

For the induction step, note that if S contains a branch node v, then by Fact 2.3(a)
S contains some (heavy) v-components S′, to which the induction hypothesis applies.
If S does not contain any branch nodes, then it lies within a single cycle, so S is a
(heavy) subcycle. The claim follows.

Theorem 2.8. A smallest (ε, λ)-detection set is of size at most 1
ε . There is a

polynomial-time algorithm to construct it.

Proof. Let (T, π) be a reduced ε-cactus-pair of G. We have seen that smallest
(ε, λ)-detection sets are (mapped to) smallest canonical subcacti of T . Therefore it
suffices to compute a smallest canonical subcactus of T .

Let S be a subset of a proper cycle C in T . Call S a C-detection set if S does
not contain any branch nodes and every heavy subcycle of C contains an element
of S. By definition, if there are no heavy subcycles in C, then an empty set is a
C-detection set. Obviously, a subset of T is a canonical subcactus if and only if it is
a union of leaves of T and (disjoint) C-detection sets, one for each proper cycle of T .
Therefore to compute a smallest canonical subcactus of T it suffices to construct a
smallest C-detection set for each proper cycle C of T .

The construction is as follows. Assuming T consists of more than one cycle,
C contains one or more branch nodes. Assuming C contains cycle nodes, pick any
branch node vb followed by a cycle node v. Start with v. In the iterative step, start
with a cycle node and move clockwise along C till a heavy subcycle is detected (call
this subcycle selected) or a branch node is reached. Start a new step with the next
cycle node. Stop when vb is reached. Let S be the set of the last nodes (clockwise) of
selected subcycles.

Obviously S is a C-detection set. S is a smallest such set by the following obser-
vation. Let S′ be a C-detection set. Let v ∈ C be a branch node or an element of S′.
Let v′ be the next node clockwise. Let C ′ be the smallest heavy subcycle starting with
v′ if it exists. Let w be the last node of C ′. Then C ′ contains at least one element of
S. The observation is that S′ −C ′ + w is a C-detection set with the same or smaller
number of elements. Consecutively applying this observation, we can transform S′ to
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S without increasing the number of detectors.

Our construction puts one detector into each leaf of T and each selected sub
cycle. Since leaves of T are heavy and selected subcycles are heavy and disjoint, our
construction covers at least εn weight with each detector. Since the total weight of
(nodes of) T is n, the total number of detectors is at most 1

ε .

2.3. Smaller detection sets for edge-failures. A set S of nodes is k-edge-
separable if there exists a set Z of ≤ k edges such that S is a union of components
of G \ Z. Let F be the family of all k-edge-separable sets. We say that A ⊆ V is
shattered by F if for all B ⊆ A there exists an F ∈ F such that B = A ∩ F . The
VC-dimension of F is defined to be the maximum cardinality of a subset of V that is
shattered by F .

In [16], it was shown that one can connect the VC-dimension d of F with (ε, k)-
detection sets via the notion of an ε-net, which is a set that meets each F ∈ F of size
≥ εn. Specifically, a theorem by [1] says that a set of O(dε log 1

ε + 1
ε log 1

δ ) randomly

sampled nodes is an ε-net for F with probability at least 1 − δ.3 Moreover, it is easy
to show [16] that an ε-net for F is an (ε, k)-detection set.

In [16], it was shown that the VC-dimension of F is at most 2k + 1, yielding a
bound of O(kε log 1

ε ) on the size of an (ε, k)-detection set. In this section, we strengthen

the VC-dimension bound on F to O( k
λ ). Therefore, we obtain the following theorem.

Theorem 2.9. A set of O( k
λε log 1

ε ) randomly sampled nodes is an (ε, k)-detection
set with high probability.

We now turn to the new bound on the VC-dimension; to prove it, we will use the
following theorem by Mader [18] on edge-disjoint paths between elements of a given
set of vertices. Let R be a subset of V of size r. Let d(R) be the number of edges
leaving R. Let q(R) be the number of components C of G−R for which d(C) is odd.
Let an R-path be a path connecting distinct elements of R.

Theorem 2.10 (Mader [18]). The maximal number of edge-disjoint R-paths is
1
2 min(

∑
d(Vi) − q(∪Vi)), where the minimum is taken over all collections of disjoint

subsets of vertices V1, V2, . . . , Vr such that |Vi ∩R| = 1.

Corollary 2.11. There are Ω(rλ) edge-disjoint R-paths.

Proof. Consider a collection of disjoint subsets of vertices V1, V2, . . . , Vr such that
|Vi ∩R| = 1. Let d =

∑
d(Vi), q = q(∪Vi). By the above theorem it suffices to prove

that d− q = Ω(rλ).

Note that d ≥ rλ since d(Vi) ≥ λ. Let C1 . . . Cq be the components C of G−∪Vi

such that d(C) is odd. All edges exiting each Ci are to ∪Vi. So d ≥ d(∪Vi) ≥∑
d(Ci) ≥ qλ. If r ≥ q, then d − q ≥ rλ − q ≥ r(λ − 1). If r < q, then d − q ≥

qλ− q ≥ r(λ− 1). Therefore d− q = Ω(rλ).

The following is a well-known application of the probabilistic method.

Lemma 2.12. Let (R,F ) be a multigraph on R. Then there exists a partition of
R into sets R1, R2 such that there are at least 1

2 |F | edges between R1 and R2.

Lemma 2.13. The VC-dimension of F is O( k
λ ).

Proof. Let R be a subset of V of size r. By Corollary 2.11 there exists a family
P of Ω(rc) edge-disjoint R-paths. Let (R,F ) be a multigraph on R such that there
is a 1-1 correspondence between uv-paths in P and edges uv ∈ F . By Lemma 2.12
there exists a partition of R into sets R1, R2 such that (in the original graph) there

3Both [16] and [7] used a slightly weaker theorem, with a corresponding bound of O( d
ε

log d
ε

+
1
ε

log 1
δ
).
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are Ω(rλ) edge-disjoint paths between R1 and R2. We can choose r = Θ( k
λ ) so that

there is guaranteed to be a family P ′ of (at least) k + 1 edge-disjoint paths between
R1 and R2.

We claim that R cannot be shattered by F . Suppose not. Then there exists
X ∈ F such that X ∩ R = R1. X is a union of components of some cut Z of k
or fewer edges. Z is disjoint with (at least) one path p ∈ P ′. The ends of p are in
the same Z-component, so they are either both in X, or both not in X. In both
cases this contradicts X ∩R = R1. Thus, the claim is proved, and it follows that the
VC-dimension of F is r = O( k

λ ).

3. Detection sets for node failures. The main theorem of this section (Theo-
rem 3.6) is that for κ < O(ε2n) a set of O( 1

ε log 1
ε ) randomly sampled nodes is a weak

(ε, κ)-detection set with high probability. We rely on a special case of ε-shredders,
which is a corollary of our result on strong detection thereof (Theorem 3.1). We
also present a partial result (Theorem 3.15) on extending strong detection sets for
ε-shredders to those for general (ε, κ)-cuts.

Before we proceed, let us review the definitions. In this section all cuts are node-
cuts, and all detection sets are for node failures. A cut X is called two-way if G \X
has exactly two connected components, called the sides of X. A shredder is a min-cut
with three or more components. An ε-shredder is an ε-balanced shredder. A set D
of nodes strongly detects a cut X if some pair of detectors is separated in G \X. If
D either meets or strongly detects X, we say D weakly detects X. D detects (is a
detection set for) a family of cuts if it detects every cut in the family.

The rest of this section is organized as follows. In section 3.1 we show how to
find a strong detection sets for ε-shredders. In section 3.2 we use shredders to get a
detection set for two-way ε-balanced min-cuts. In section 3.3 we combine these two
results and obtain the main theorem. Finally, in section 3.4 we present our partial
result on strong detection sets.

3.1. Strong detection sets for shredders. It is a well-known fact that there
can be exponentially many min-cuts. Furthermore, even counting min-cuts is #P-
complete [2]. However, there can be only O(n) shredders [15], with a polynomial-time
enumeration algorithm [2]. We start by stating the main result of this subsection.

Theorem 3.1. Suppose κ < εn. Then a set of O( 1
ε log 1

εδ ) randomly sampled
nodes is a strong detection set for ε-shredders with probability at least 1−δ. Moreover,
a smallest strong detection set for ε-shredders has size ≤ 1

ε and can be constructed in
polynomial time.

Before we prove this theorem we need to establish some basic facts about min-
cuts. For a cut X the connected components of G \X are also called X-components.
Let S, T be min-cuts. Say S meshes T if S meets at least two T -components. By [2,
Lemma 4.3(1)], if S meshes T , then T meets every S-component. Thus meshing is a
symmetric relation. If S meshes T (and T meshes S), the two cuts are meshing. Else
S and T are nonmeshing.

Lemma 3.2 (see [2, Lemma 4.3(2)]). If min-cuts S and T are meshing, then there
is a component Q of either S or T such that Q contains V − S − T .

Corollary 3.3. If κ < εn, then any two ε-shredders are nonmeshing.
Lemma 3.4. Let S and T be nonmeshing shredders. Let C be the S-component

that meets T . Then C contains all T -components but one, call it C ′. Moreover, C ′

contains V − S − C, i.e., all S-components other than C.
Proof. Pick any v ∈ S−T . By minimality of S, v has edges to each S-component

(else, S−v is a cut). Thus, V −S−C+{v} is connected. Since T ⊂ S∪C, V −T −C
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is connected and hence lies in a T -component C ′. So all other T -components are
contained in C and V − S − C ⊂ V − T − C ⊂ C ′.

For a family F of ε-shredders, we call a component of a shredder an F-head if it
meets at least one shredder in F . Now, suppose we have an (ε, k)-detection set for
shredders, and S is an ε-shredder with an F-head H. Then there exists T ∈ F that
meets H; so by Lemma 3.4, H contains all T -components but one and hence contains
a detector. This gives the following lemma.

Lemma 3.5. Let F be a family of ε-shredders, with κ < εn, and let S be an
ε-shredder with an F-head H. Then any detection set for F meets H.

Proof of Theorem 3.1. Let F0 be the family of all ε-shredders. Start with F = F0.
While there exists an ε-shredder S ∈ F with two or more F-heads, delete S from F .
Let F1 be the resulting family of shredders. By Lemma 3.5 any strong detection set
for F1 is a strong detection set for F0.

Let S ∈ F1. Let the head H of S be the (single) F1-head of S. Let the tail of S
be V − S −H. Note that by Lemma 3.4 for any S, T ∈ F1 the tail of S is contained
in the head of T (and vice versa). In particular, tails are pairwise disjoint. Since each
head contains someone else’s tail, a set D of nodes is a detection set for F1 if and only
if D meets the tail of each S ∈ F1. Therefore, a smallest detection set for F1 has size
|F1|. Since tails are of size ≥ εn each, |F1| ≤ 1

ε . The random sampling result follows
by a simple probabilistic computation.

3.2. Detecting two-way min-cuts. In this subsection we construct a weak
detection set for two-way (ε, κ)-cuts. First we give a nonefficient deterministic con-
struction. We consider ( ε

10 , κ)-cuts and use a greedy-type algorithm to construct a
“maximal” family of two-way ( ε

10 , κ)-cuts with sides Ai and Bi such that Ai ⊆ Bj

for all i �= j. In particular Ai’s are pairwise disjoint, so there are at most 10
ε of them.

It turns out that, if κ < O(ε2n), then putting a detector into each Ai suffices. More
precisely we show (Theorem 3.8) that these detectors together with any weak detec-
tion set for shredders give a weak (ε, κ)-detection set. Then a simple probabilistic
argument yields a randomized result stated below.

Theorem 3.6. Suppose κ < ε2n
20 . Then a set of O( 1

ε log 1
εδ ) randomly sampled

nodes is a weak (ε, κ)-detection set with probability at least 1 − δ.
We start with some notation and a simple but very useful lemma about crossing

min-cuts. Let S be a set of nodes. Call S connected if the subgraph of G induced by
S is connected. Else say S is disconnected. Say a cut X preserves S if X is disjoint
with S and S lies in one component of G \X. Note that a connected set of nodes is
preserved by X if and only if it is disjoint with X. N(S) denotes the set of neighbors
of S, i.e., the set of all nodes in V −S that have an edge to S. Note that if V −S−N(S)
is nonempty, then N(S) is a cut.

Say two-way min-cuts X and Y are strongly crossing if each side of X meets each
side of Y . Say X and Y are weakly crossing if X meets both sides of Y and vice
versa.4 It is easy to see that strong crossing implies weak crossing, but not the other
way round.

To formulate the promised lemma, we will use the following notation. The sides
of X and Y are, respectively, P1, P2 and Q1, Q2. Their intersections (“quarters”) are
Cij = Pi ∩Qj . Also let Xi = Qi ∩X, Yi = Pi ∩ Y , and X ∩ Y = S.

4Note that if X meets both sides of Y , say at v1 and v2, respectively, then Y meets both sides
of X. Indeed, for the sake of contradiction suppose Y does not meet a side P1 of X. Then, since
any node in X has at least one edge to P1 and P1 is connected, there is a v1v2-path in G/Y , a
contradiction.
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Fig. 2. Two applications of the two-quarter lemma.

Lemma 3.7 (the two-quarters lemma). Suppose two-way min-cuts X and Y are
weakly crossing so that the two quarters C21 and C12 are nonempty. Then

(a) |X1| = |Y1| and |Y2| = |X2|,
(b) C21 and C12 are tight, with N(Cij) = Yj + Xi + S,
(c) V − C21 −N(C21) is connected, same for C12.

Proof. T = X1 +Y2 +S and U = X2 +Y1 +S separate C21 and C12, respectively,
from the rest of the graph. It follows that Y2 ≥ X2 (else |T | < |X|), X1 ≥ Y1 (else
|T | < |Y |), X2 ≥ Y2 (else |U | < |Y |), and Y1 ≥ X1 (else |U | < |X|). Therefore
|X1| = |Y1| and |X2| = |Y2|, so U and T are min-cuts and C12 and C21 are tight.
Finally, V −C21 −N(C21) is connected as a union of two connected sets (Q1 and P2)
with a nonempty intersection (C12).

This lemma is similar to the result of Jordán [14] on intersecting tight sets. Note
that if X and Y are strongly crossing, our lemma yields |X1| = |X2| = |Y1| = |Y2|
(Figure 2(a)). We will also use it for ε

10 -balanced min-cuts that are crossing weakly
but not strongly. Then one of the “quarters,” say C11, is empty, so, assuming κ < εn

10 ,
C21 and C12 are not (Figure 2(b)).

Now we are ready to describe the construction.

Construction.

1. Let F denote the family of all ε
10 -balanced two-way min-cuts, and let A(F)

denote the family of the sides of all F ∈ F . Stop if F is empty.
2. Choose any inclusionwise minimal component A0 from A(F), let X0 = N(A0)

be the corresponding cut, and let B0 be the second component of X0. Put
detectors in A0 and B0.

3. Delete from F all cuts which do not preserve A0. For X ∈ F , let A(X) be
the side of X that does not contain A0.

4. Start with the first iteration. For the ith iteration choose a cut Xi ∈ F so
that A(Xi) does not contain any other A(X) for X ∈ F . Let Ai = A(Xi).
Let Bi be the other side of Xi. (See Figure 3.)

5. Put a detector into Ai. Remove from F all cuts which do not preserve A0 ∪
A1 ∪ · · · ∪Ai. Stop if F is empty; else iterate.

By construction all Ai’s are pairwise disjoint, and each Ai ≥ ε
10 . Therefore our

algorithm will terminate after at most 10
ε steps after putting at most 10

ε detectors.
Denote this set of detectors by D2. Let D1 be any weak detection set for shredders,
D = D1 ∪ D2.

Theorem 3.8. Suppose κ ≤ ε2

20n. Then any ε-balanced two-way min-cut is weakly
detected by D.
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Fig. 3. Partitioning of the graph after the ith iteration of the algorithm.

Let us start with some simple properties of the construction.
Lemma 3.9. For all i �= j, Aj ⊆ Bi. In particular, Xi is disjoint with Aj.
Proof. We will prove that, for any i �= j, Xi is disjoint with Aj (which would

immediately imply Aj ⊆ Bi). If j < i, then by construction Xi is disjoint with all
Aj for j ≤ i and Aj ⊆ Bi. On the other hand, if j > i, then Bj contains Ai, and,
supposing Aj ∩Xi �= ∅, then v ∈ Aj ∩Xi has at least one edge to Ai and thus to Bj .
Thus Aj and Bj are not separated, a contradiction.

Corollary 3.10. Each Bi contains at least one detector.
Lemma 3.11. If a tight set A ⊂ Ai is of size ≥ εn

10 , then the cut N(A) is a
shredder.

Proof. Suppose not. Then N(A) is a two-way ( ε
10 , κ)-cut preserving Bi and hence⋃i−1

j=0 Aj . Thus N(A) was not deleted from F until iteration i, so it should have been
chosen instead of Xi, a contradiction.

In what follows we assume κ ≤ ε2

20n. The next lemma shows how D1 (a detection
set for shredders) helps to detect two-way min-cuts.

Lemma 3.12. Let Y be an ε
10 -balanced two-way min-cut with sides C and D.

Suppose D contains a set W of size at least εn
10 such that N(W ) is a shredder. Then

D + Y contains at least one detector from D1.
Proof. The shredder Z = N(W ) is ε

10 -balanced, so it is weakly detected by D1.
Since Y is a cut, there are no edges between W and C; i.e., Z lies in D+Y . It follows
that C is connected in G \Z, and hence lies in a single connected component thereof.
Thus at least one detector from D1 is not in C, so it is in D + Y .

Now we are ready to sketch the proof of Theorem 3.8; the details are in the next
subsection.

Proof sketch of Theorem 3.8. Let Y be an ε-balanced two-way min-cut with sides
C and D. We need to show that D meets Y or both sides thereof. For the sake of
contradiction suppose it is not so. Then without loss of generality D ⊂ C, which
implies that C meets every Ai and Bi. Clearly then Ai �⊆ D + Y , for every i. Also
note that by Lemma 3.12 D cannot contain disconnected tight sets larger than εn

10 .
There are now three cases to consider, depending on the relation of Y to the sets

Xi. First, suppose Y does not strongly cross any Xi. We show that N(D\ ∪Xi) is
a two-way ε

10 -balanced cut that was not excluded from F (see Figure 4(a)), and this
contradicts the stopping condition of the algorithm. If Y strongly crosses exactly one
Xi, then we replace Y by the cut Y ′ = N(D ∩ Bi) (see Figure 4(b)). Y ′ does not
strongly cross any Xi, so we apply the argument from the case above to show that
Y ′ is detected. Therefore there is at least one detector in set D, which contradicts
our assumption. Finally, if neither of these two cases applies, then Y strongly crosses
at least two sets among {Xi}, say Xi and Xj . An argument using the two-quarters
lemma then shows that Xi and Xj partition Y into the same subsets (see Figure 4c).
We then prove that Xi and Xj cut off a large connected subset D′ of D such that



1342 J. KLEINBERG, M. SANDLER, AND A. SLIVKINS

AD

A
2

A t

A
t-1i

i

1i

i ...

Y

(a)

Xi

Y

D

iB

A

C

i

1

X2

Y

C
D

X
A 1

A2

(b) (c)

Fig. 4. Three different options of how Y can interact with Xi’s. For (c) we prove that the
portion of Y between cuts X1 and X2 shrinks to an empty set, and X1 ∩ Y = X2 ∩ Y .

N(D′) is a two-way ( ε
10 , κ)-cut not deleted from F , which thus violates the stopping

condition.

3.3. Full proof of Theorem 3.8.

Lemma 3.13. Suppose Y is ε-balanced and Ai meets D. Then either there is a
detector in D + Y or the following conditions hold:

(a) Y strongly crosses Xi, and
(b) N(D ∩Bi) is a two-way 8ε

10 -balanced min-cut.

Proof. Suppose there is no detector in D + Y . Since Ai and Bi each contain a
detector, they meet C. Now we can invoke the two-quarters lemma to quarters Bi∩C
and Ai∩D and conclude that Ai∩D is tight. We claim that |Bi∩D| ≥ 8ε

10 n. Indeed,
otherwise |Ai ∩ D| ≥ εn

10 ; thus, by Lemma 3.12, N(Ai ∩ D) is a two-way cut, which
contradicts Lemma 3.11. The claim is proved.

This proves (a) and shows that N(Bi∩D) is an 8ε
10 -balanced cut. To complete (b),

note that Bi∩D is tight by the two-quarters lemma; thus, by Lemma 3.12, N(Bi∩D)
is two-way.

Let Y be an ε-balanced two-way min-cut with sides C and D. We need to show
that D meets Y or both sides thereof. For the sake of contradiction suppose it is not
so. Then without loss of generality D ⊂ C, which implies that C meets every Ai and
Bi. Clearly then Ai �⊆ D + Y , for every i. Also note that, by Lemma 3.12, D cannot
contain disconnected tight sets larger than εn

10 . There are three possible cases which
we prove separately: (1) cut Y does not strongly cross any Xi, (2) cut Y strongly
crosses exactly one Xi, and (3) cut Y strongly crosses at least two Xi’s.
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Case 1. Cut Y does not strongly cross any Xi.
To reuse this proof for the second case, we will assume that Y is only 8ε

10 -balanced,
rather than ε-balanced,

Since we assumed that Xi does not strongly cross Y , by Lemma 3.13 we have
that all Ai’s are disjoint with D. Using this fact, we show that each Xi excises a small
piece of size at most κ from D, and finally we show that D\ ∪Xi is large, tight, and
connected and preserves ∪Ai; thus our algorithm could have made at least one more
step.

Let Xi1 , Xi2 , . . . , Xit be all cuts which are intersecting with D. Let Dj = D −
D ∩

⋃j
h=1 Xih , Yj = N(Dj), and Cj = V − Yj −Dj . First,

|Dj | ≥ |D| −
j∑

h=1

|Xih | ≥
8ε

10
n− κ

10

ε
≥ 3ε

10
n.

The last transition is because κ ≤ ε2

20n.
We will prove by induction that each Dj is tight and connected and that corre-

sponding cut Yj = N(Dj) is two-way for every 0 ≤ j ≤ t.
Suppose we did that; then Dt by its construction is disjoint with any Xi, and thus

all Ai’s are disjoint with Yt and hence lie in V −Dt−Yt. Therefore Yt preserves
⋃
Ai

(because Yt is a two-way cut). On the other hand, |Dt| ≥ 2ε
10 n and |Ct| ≥ |C| ≥ εN .

So Yt is a 2ε
10 -balanced two-way min-cut and preserves

⋃
Ai; thus our algorithm could

have made one more step, and so we come to a contradiction.
Now we have to prove our claim. Clearly D0 is tight and connected, and N(D0) =

Y is two-way by our definition of Y and D. Supposing the claim holds for Dj−1, we
now prove it for Dj . We have

Dj = Dj−1 −Dj−1 ∩Xij = Bij ∩Dj−1.

If Dj is disjoint with Xij then Dj = Dj−1 and we are immediately done. Otherwise,
Yj−1 weakly crosses Xij . (Indeed, Dj−1 is not preserved by Xij . Moreover, Cj−1

contains C and hence meets both Aij and Bij . It follows that Cj−1 is not preserved
by Xij .) But then we satisfy conditions of the two-quarters lemma, where Aij ∩Cj−1

and Bij ∩ Dj−1 is not empty, and thus Dj = Bij ∩ Dj−1 is tight. Therefore, by
Lemma 3.12, Dj is connected and N(Dj) is a two-way cut. This proves the claim.

Case 2. Cut Y strongly crosses exactly one Xi.
Indeed, consider set D′ = D∩Bi. By Lemma 3.13 and our assumption that there

were no detectors in D + Y , it has size at least 8ε
10 n and is tight, and corresponding

cut Y ′ = D ∩Xi + Xi ∩ Y + Y ∩Bi is a two-way min-cut.
Since D′ ⊆ D and only one Ai meets D (and it does not meet with D′ by our

construction), no Ai meets with D′. Therefore, by Lemma 3.13, Y ′ does not strongly
cross any Xi, and thus by the case (1) Y ′ is detected by D. This proves that there
is at least one detector in Y ′ + D′, and by construction Y ′ + D′ ⊆ D + Y ; therefore
there is at least one detector in D + Y , a contradiction.

Case 3. Cut Y strongly crosses at least two Xi’s. We need to prove that either
D + Y contains at least one detector from D (thus contradicting our assumption), or
we could have done one more iteration of the construction in section 3.2. Without
loss of generality, Y strongly crosses X1 and X2 (see Figure 4(c)).

First we prove that each of the triples (A1, X1, B1) and (A2, X2, B2) partitions
set Y into the same subsets.

Claim 3.14. X1 ∩ Y = X2 ∩ Y , A1 ∩ Y = B2 ∩ Y , and B1 ∩ Y = A2 ∩ Y .
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Proof. Note that Y = Y ∩ Ai + Y ∩Xi + Y ∩ Bi. Since A1 ⊆ B2, we have that
Y ∩A1 ⊆ Y ∩B2, and analogously Y ∩A2 ⊆ Y ∩B1, but by the two-quarters lemma
we have |Y ∩A1| = |Y ∩B1| and |Y ∩A2| = |Y ∩B2| and thus Y ∩A1 = Y ∩B2 and
Y ∩A2 = Y ∩B1. Thus X1 ∩ Y = X2 ∩ Y .

We will prove that either there is a leftover part D′ in D, which could have been
used for the next step of the algorithm, or Y is detected.

For each i = 1, 2, since Xi strongly crosses Y , set D is partitioned by Xi into
three nonempty parts D′

i = D ∩ Bi, D′′
i = D ∩ Ai, and D′′′

i = D ∩ Xi. Now, by
Lemma 3.13 and our assumption that D∩ (D+ Y ) = ∅, we conclude that D′

i is tight,
its cardinality is at least 8ε

10 n, and N(D′
i) is two-way min-cut.

Consider D′ = D′
1 ∩ D′

2. We claim that the corresponding cut Z = N(D′) is a
two-way ( ε

10 , κ)-cut that preserves ∪Ai. This contradicts the stopping condition of
the algorithm: it could have made one more iteration. Therefore it remains to prove
the claim.

First, D′ is tight by the two-quarters lemma applied to cuts N(D′
1) and N(D′

2).
Its size is

|D′| = |D′
1 ∩D′

2| = |D − (D′′
1 + D′′′

1 ) ∪ (D′′
2 + D′′′

2 )| ≥ εn− 2
(εn

10
+ κ

)
≥ 6ε

10
n,

so Z is ε
10 -balanced, and, moreover, D′ is connected (this is by Lemma 3.12 and the

assumption that D is disjoint with Y +D). Since Z = (X1∪X2)∩(D∪Y ), we conclude
that (1) Z is two-way, since V −D′ − Z is connected as a union of three nondisjoint
connected subsets C, A1, and A2, and (2) Z is disjoint with ∪Ai by Lemma 3.9.

To prove that Z preserves ∪Ai it remains to show that all Ai’s are disjoint with
D′. Indeed, suppose some Ai meets D′. It cannot be properly contained in D, and
hence not in D′. So, since Ai is connected, it meets Z, a contradiction. The claim is
proved. This completes the proof of Theorem 3.8.

3.4. Strong detection sets. We present a partial result on extending strong
detection sets for ε-shredders to those for general (ε, κ)-cuts. Essentially, we show that
it suffices to have a strong (ε, κ)-detection set D′ for some subgraph G′ = (V,E′) of
G of the same connectivity κ. In particular, we can without loss of generality assume
that G is minimally k-connected.

Theorem 3.15. Suppose κ < εn and we have a strong (ε, κ)-detection set D′

for a κ-connected subgraph G′ = (V,E′) of G. Then we can use D′ to construct a
strong (ε, κ)-detection set for G. Specifically, for a high-probability result it suffices to
add O( 1

ε log 1
ε ) randomly sampled detectors. Alternatively, it suffices to add at most

2
ε detectors, and there is a polynomial-time algorithm to construct them.

Proof. Let D′′ be a smallest detection set for ε-shredders of G. Let S be an (ε, κ)-
cut G. Then S is an (ε, κ)-cut in G′ such that each S-component in G is a union of
S-components in G′. Obviously, if S-components are the same in G and in G′, then
D′ detects S. Therefore, if D′ ∪D′′ does not detect S, then S is a two-way (ε, κ)-cut
in G but a shredder in G′. Call such cuts evil. Therefore it suffices to detect all evil
cuts.

For an evil cut S, the two components of S in G are called S-shores. We need
to put a detector in each S-shore. For the rest of the proof we can forget about G.
We operate (only) on G′ and treat S-shores as unions of components of S in G′. The
proof is similar to that of Theorem 3.1.

Evil cuts are ε-shredders in G′, so there are at most n of them and they can be
efficiently listed. Let F0 be the family of all evil cuts. Start with F = F0. While
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there exists S ∈ F such that each S-shore contains an F-head of S, delete S from F
(because by Lemma 3.5 S is detected by D′). Let F1 be the resulting family of evil
cuts. Clearly if D is a detection set for F1, then D ∪D′ is a detection set for F0.

Say H ⊂ V is a head of S if H is an F1-head of S. Let the tail shore of S ∈ F1 be
the S-shore that does not contain any heads of S (such a shore exists by construction
of F1). Observe that for any two S, T ∈ F1 the tail shore of T is contained in a head
of S (and vice versa). Why? T meets exactly one component of S, say H (so H is a
head). By Lemma 3.4 H contains all T -components but one, call it C. C meets S;
thus C is a head. Therefore, the tail shore of T is contained in H.

By the observation above, the tail shores of cuts in F1 are pairwise disjoint, and,
moreover (assuming F1 consists of at least two cuts), putting a detector in each of
these shores strongly detects F1. Since the tail shores have size ≥ εn each, |F1| ≤ 1

ε .
Therefore we need 1

ε detectors for F0, which together with D′′ is at most 2
ε detectors.

For the random sampling result note that it suffices to augment D′ by a hitting
set for the tail shores of F1 and the tails of ε-shredders of G, as defined in the proof
of Theorem 3.1.

4. Extensions and further directions. There are a number of natural ques-
tions left open by this work. One is to investigate whether an (ε, κ)-detection set for
node failures of minimum size can be computed in polynomial time for a given graph
G; this would parallel the per-instance result we obtain for edge failures. We note that
section 3.1 provides such an optimality result for node failures when the adversary is
restricted to deleting a shredder.

We believe it would be interesting to extend our results on node failures to obtain
bounds for strong detection sets. In fact, our bounds for shredders apply already to
the case of strong detection, and in Theorem 3.15 we provide a further step in this
direction, proving that we can without loss of generality assume that G is minimally
k-connected.

It would clearly be interesting to obtain results on detection sets with respect to
adversaries that can delete a number of nodes equal to a constant times the node-
connectivity, by analogy with our results for edge-connectivity. To obtain detection
set bounds here that are independent of the value of κ, it is not difficult to see that
we need to focus on weak detection; indeed, there exist graphs in which we would
need at least k − κ nodes in any strong (ε, k)-detection set for node failures.

Finally, the problem of deciding whether a given set D is an (ε, k)-detection set
provides another clear connection to the problem of balanced separators in graphs:
indeed, deciding whether the empty set is an (ε, k)-detection set is coNP-complete
because of its equivalence to a balanced separator problem. On the other hand, using
techniques from [11, 22], we can obtain a polynomial-time algorithm for deciding
whether D is an (ε, k)-detection set for node failures when k = κ; this is nontrivial
due to the fact that there can be exponentially many min-node-cuts.

Acknowledgment. It is our pleasure to acknowledge the contribution of Laszlo
Lovász; discussions with him about the prospect of parameterizing detection sets by
the minimum cut size provided a portion of the motivation for this work and also led
to the results described in section 2.3.
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1. Introduction. Analysis of the usefulness of proof search heuristics and au-
tomated theorem proving procedures based on a proof system P amounts (on the
theoretical level) to the following two basic questions:

Question 1. Which theorems in principle possess efficient P -proofs?
Question 2. How can one find the optimal (or, at least, a nearly optimal) proof

of a given theorem in P?
Traditional proof complexity mostly dealt, and still deals, with the first question.

However, there has been a growing interest in the second one, too. An additional
motivation for studying the complexity of finding optimal proofs comes from deep
connections with efficient interpolation theorems; we refer the reader to the surveys
[9, 19, 22] for more details. These surveys also serve as a good starting point for
learning more about propositional proof complexity in general.

One convenient framework for the theoretical study of Question 2 was proposed by
Bonet, Pitassi, and Raz in [13]. Namely, they called a proof system P automatizable
if there exists a deterministic algorithm A which, given a tautology τ , returns its
P -proof in time polynomial in the size of the shortest P -proof of τ . The definition
of a quasi-automatizable proof system is given in the same way, but we only require
algorithm A to run in time which is quasi-polynomial (in the same parameter).

One advantage of this definition is that it allows us to completely disregard the
first basic question on the existence of efficient P -proofs and to indeed concentrate
on finding efficient proofs provided they exist. In particular, the notion of automatiz-
ability makes perfect sense for those (weak) proof systems for which hard tautologies
are already known. Moreover, the weaker our system is, the more likely it seems
to be automatizable. One possible explanation of this phenomenon comes from the
connection between automatizability and efficient interpolation (every automatizable
proof system has efficient interpolation, and the property of having efficient inter-
polation is indeed antimonotone w.r.t. the strength of the system). Anyway, given
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this connection, the results from [20, 13] imply that extended Frege and TC0-Frege
proof systems, respectively, are not automatizable under some widely believed cryp-
tographic assumptions. Bonet et al. [11] extended the latter result to bounded-depth
Frege but under a much stronger assumption.

In this paper we are primarily interested in the automatizability of resolution and
tree-like resolution. It is worth noting that both systems possess efficient interpolation,
and therefore their nonautomatizability cannot be proved via techniques similar to
those in [20, 13, 11]. Nonetheless, [18] proved that it is NP-hard to find the shortest
resolution refutation. Alekhnovich et al. [3] proved that if P �= NP, then the length
of the shortest resolution refutation cannot be approximated to within a constant
factor (both for general and tree-like resolution). Under the stronger assumption

NP �⊆ QP, they were able to improve the ratio from an arbitrary constant to 2log1−ε n

(later, Dinur and Safra [16] obtained a better probabilistically checkable proofs (PCP)
characterization of NP that allows one to prove the same bound for arbitrary ε → 0
modulo P �= NP).

In the opposite direction, Beame and Pitassi [8] observed that tree-like resolution
is quasi-automatizable. Thus, it is unlikely to show that this system is not automati-
zable modulo P �= NP, because it would imply quasi-polynomial algorithms for NP
(in case of general resolution this goal seems also tricky at the moment because there
is only one1 known example [12] for which the proof search algorithm of [10] requires
more than quasi-polynomial time). Therefore, any result establishing nonautomatiz-
ability of tree-like resolution needs to be formulated within a complexity framework
in which the asymptotics nO(1) and nlogn are essentially different.

One natural example of such a framework is parameterized complexity introduced
by Downey and Fellows (see [17]) in which algorithms working in times f(k)nO(1) and
nk are considered different from the point of view of effectiveness (here k is an integer
input parameter that should be thought of as an “arbitrarily large” constant). In this
paper we prove that neither resolution nor tree-like resolution is automatizable unless
the class W[P] (lying very high in the hierarchy of parameterized problems) is fixed-
parameter tractable by a randomized algorithm with one-sided error (Theorem 2.7).
Our proof goes by a reduction from the optimization problem MINIMUM MONO-
TONE CIRCUIT SATISFYING ASSIGNMENT (MMCSA) whose decision version
is complete for the class W[P]. An alternative hardness assumption is that there is
no deterministic fixed-parameter algorithm which approximates MMCSA within any
constant factor (Theorem 2.5). It is worth noting in this connection that we were
able to relate to each other the hardness of finding exact and approximate solutions
for MMCSA without using the PCP theorem (see the proof of Theorem 2.7 given in
section 4). This result can be interesting on its own.

The paper is organized as follows. Section 2 contains necessary preliminaries and
definitions. In section 3 we present our core reduction from MMCSA to automati-
zability of resolution, and in section 4 we use (sometimes nontrivial) self-improving
techniques to prove our main results, Theorems 2.5 and 2.7. The paper is concluded
with some open problems in section 5.

1.1. Recent developments. Since the preliminary version of this paper was
released, the following related developments have occurred.

Atserias and Bonet [6] studied a slightly different variant of automatizability
that they called weak automatizability. Using their techniques, they were also able

1See, however, section 1.1.
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to produce more examples of poly-size tautologies for which the width-based proof
search algorithm from [10] requires more than quasi-polynomial time. In the opposite
direction, Alekhnovich and Razborov [4] introduced an enhancement of that algo-
rithm which they called BWBATP (branch-width based automated theorem prover).
This algorithm performs better than the width-based algorithm for several important
classes of tautologies, and for at least one such class it even achieves complete (that
is, polynomial) automatization. Finally, quite unexpectedly our techniques turned
out to be useful in the totally different area of computational learning, where they
inspired a number of strong hardness results for the so-called model of proper learning
[2].

2. Preliminaries and main results.

2.1. Resolution and automatizability. Let x be a Boolean variable, i.e., a
variable that ranges over the set {0, 1}. A literal of x is either x (denoted sometimes
as x1) or x̄ (denoted sometimes as x0). A clause is a disjunction of literals. A CNF
(conjunctive normal form) is a conjunction of pairwise different clauses.

Let f(x1, . . . , xn) be an arbitrary function (possibly, partial) from {0, 1}n to some
finite domain D. An assignment to f is a mapping α : {x1, . . . , xn} → {0, 1}. A
restriction of f is a mapping ρ : {x1, . . . , xn} → {0, 1, �}. We denote by |ρ| the

number of assigned variables, |ρ| def
= |ρ−1({0, 1})|. The restriction of a function f

or CNF τ by ρ, denoted by f |ρ [τ |ρ], is the function [CNF] obtained from f [τ ,
respectively] by setting the value of each x ∈ ρ−1({0, 1}) to ρ(x), and leaving each
x ∈ ρ−1(�) as a variable.

The general definition of a propositional proof system was given in the seminal
paper [15]. But since we are interested only in resolution (which is one of the simplest
and most widely studied concrete systems), we prefer to skip this general definition.
Resolution operates with clauses and has one rule of inference called resolution rule:

A ∨ x B ∨ x̄

A ∨B
.

A resolution proof is tree-like if its underlying graph is a tree. A resolution refutation
of a CNF τ is a resolution proof of the empty clause from the clauses appearing in τ .

The size of a resolution proof is the overall number of clauses in it. For an
unsatisfiable CNF τ , S(τ) [ST (τ)] is the minimal size of its resolution refutation
(tree-like resolution refutation, respectively). Clearly, S(τ) ≤ ST (τ).

The width w(C) of a clause C is the number of literals in C. The width w(τ)
of a set of clauses τ (in particular, the width of a resolution proof) is the maximal
width of a clause appearing in this set. For a CNF τ , let n(τ) be the overall number
of distinct variables appearing in it, and let |τ | be the overall number of occurrences

of variables in τ , i.e., |τ | def
=

∑
C∈τ w(C). For an unsatisfiable CNF τ , w(τ � ∅) will

denote the minimal width of its resolution refutation.

For a nonnegative integer n, let [n]
def
= {1, 2, . . . , n}, and let [n]k

def
= {I ⊆ [n] | |I|=k }.

We will recall the general definition of automatizability from [13] for the special
cases of resolution and tree-like resolution.

Definition 2.1. Resolution (tree-like resolution) is (quasi-)automatizable if
there exists a deterministic algorithm A which, given an unsatisfiable CNF τ , returns
its resolution refutation (tree-like resolution refutation, respectively) in time which is
(quasi-)polynomial in |τ | + S(τ) (|τ | + ST (τ), respectively).
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Remark 1. Note that we do not require that all clauses from τ must necessarily
appear in the refutation, and therefore, we cannot a priori expect the inequality
n(τ) · S(τ) ≥ |τ |. This is why we must introduce the term |τ | into the bound on the
running time of A when adapting the general definition of automatizability from [13]
to the case of resolution.

2.2. Parameterized complexity and the MMCSA problem. We refer the
reader to [17] for a good general introduction to the topic of parameterized complexity.

Definition 2.2 (see [17, Definition 2.4]). The class FPT (fixed-parameter
tractable) of parameterized problems consists of all languages L ⊆ Σ∗ × N for which
there exists an algorithm Φ, a constant c, and a recursive function f : N −→ N such
that

1. the running time of Φ(〈x, k〉) is at most f(k) · |x|c;
2. 〈x, k〉 ∈ L iff Φ(〈x, k〉) = 1.

Thus, an algorithm is considered to be feasible if it works in time polynomial

in n
def
= |x| and f(k), where k should be thought of as much smaller than n, and f

is an arbitrarily large (recursive) function. A similar feasibility requirement arises in
the theory of polynomial-time approximation schemes (PTAS) for NP-hard problems:
assume that we have an algorithm that approximates a given problem within arbitrary
error ε > 0 working in time nO(1/ε). Is it possible to get rid of 1/ε in the exponent
and do it in time f(1/ε)nO(1)? (The algorithms which obey the latter bound on the
running time are called EPTAS, efficient polynomial-time approximation schemes.)

It turns out that this question is tightly related to the fixed-parameter tractability.
Namely, the existence of EPTAS for a given problem implies an exact algorithm for
the corresponding fixed-parameter version (see [7, 14]).

To study the complexity of parameterized problems, the following parameterized
reduction (that preserve the property of being in FPT) is used.

Definition 2.3 (see [17, Definition 9.3]). A parameterized problem L ⊆ Σ∗ × N
reduces to another parameterized problem L′ ⊆ Σ∗ × N if there exist (arbitrary!)
functions f, g : N −→ N, and a function h : Σ∗ × N −→ Σ∗ such that h(x, k) is
computable in time f(k)|x|O(1), and 〈x, k〉 ∈ L iff 〈h(x, k), g(k)〉 ∈ L′.

For any integer t, the parameterized problem WEIGHTED t-NORMALIZED
SATISFIABILITY is defined by restricting the ordinary SATISFIABILITY to a cer-
tain class of Boolean formulas depending on t (we omit the exact definition since it
is a little bit technical and not needed for our results), and the parameter k bounds
the Hamming weight of the satisfying assignment we are searching for. The com-
plexity class W[t] consists of all problems that can be reduced to WEIGHTED t-
NORMALIZED SATISFIABILITY via parameterized reduction, and the class W[P]
(where P stands for polynomial) includes all problems reducible to WEIGHTED CIR-
CUIT SATISFIABILITY described as follows:

WEIGHTED CIRCUIT SATISFIABILITY:

Instance: A circuit C.

Parameter: A positive integer k.

Question: Does C have a satisfying assignment of Hamming weight (defined as the
number of ones) k?

These definitions lead to the following parameterized hierarchy, in which every
inclusion is believed to be strict:

FPT ⊆ W[1] ⊆ W[2] · · · ⊆ W[P].
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In our paper we construct a randomized parameterized reduction from the au-
tomatizability of resolution to the following optimization problem (MMCSA in what
follows) that was introduced in [3].
Monotone minimum circuit satisfying assignment:
Instance: A monotone circuit C in n variables over the basis {∧,∨}.
Solution: An assignment a ∈ {0, 1}n such that C(a) = 1.
Objective function: k(a), defined as its Hamming weight.

By k(C) we will denote the minimal value k(a) of a solution a for an instance C
of MMCSA.

The following easy observation was made in [3] (“self-improvement”).
Proposition 2.4. For every fixed integer d > 0 there exists a polynomial-time

computable function π which maps monotone circuits into monotone circuits and such
that k(π(C)) = k(C)d for all C.

Our first result can be now formulated as follows.
Theorem 2.5. If either resolution or tree-like resolution is automatizable, then

for any fixed ε > 0 there exists an algorithm Φ receiving as inputs monotone circuits
C which runs in time exp

(
k(C)O(1)

)
· |C|O(1) and approximates the value of k(C) to

within a factor (1 + ε).
The decision version of MMCSA was considered in [17] (under the name WEIGHTED

MONOTONE CIRCUIT SATISFIABILITY) in the context of parameterized com-
plexity and was shown to be complete in the class W[P].

In order to formulate our second (and main) result, we need to introduce the
obvious hybrid of the classes R and FPT.

Definition 2.6. The class FPR (fixed-parameter randomized) of parameterized
problems consists of all languages L ⊆ Σ∗ × N for which there exists a probabilistic
algorithm Φ, a constant c, and a recursive function f : N −→ N such that

1. the running time of Φ(〈x, k〉) is at most f(k) · |x|c;
2. if 〈x, k〉 ∈ L, then P[Φ(〈x, k〉) = 1] ≥ 1/2;
3. if 〈x, k〉 �∈ L, then P[Φ(〈x, k〉) = 1] = 0.

Then we have the following.
Theorem 2.7. If either resolution or tree-like resolution is automatizable, then

W[P] ⊆ co-FPR.

3. Main reduction from MMCSA to automatizability of resolution.
This section is entirely devoted to the proof of the following technical lemma.

Lemma 3.1. There exists a polynomial-time computable function τ which maps
any pair 〈C, 1m〉, where C is a monotone circuit and m is an integer, to an unsatis-
fiable CNF τ(C,m) such that

ST (τ(C,m)) ≤ |C| ·mO(min{k(C), logm})

and

(1) S(τ(C,m)) ≥ mΩ(min{k(C), logm}).

We begin the proof of Lemma 3.1 by describing CNFs, which form the main
building block τ(C,m), and establishing their necessary properties. From now on fix
a monotone circuit C in n variables p1, . . . , pn. Let A ⊆ {0, 1}m. We will call vectors
from A (usually represented as columns) admissible and call a 0-1 matrix with m rows
A-admissible if all its columns are so. Consider the following combinatorial principle
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PC,A (that may be true or false, depending on the choice of C and A):
PC,A: every (m × n) 0-1 A-admissible matrix A = (aij) contains a row i ∈ [m]

such that C(ai1, ai2, . . . , ain) = 1.
Let us formulate one sufficient condition for PC,A to be true (regardless of proof

complexity considerations).
Definition 3.2. d1(A) is the maximal d such that for every d vectors from A

there exists a position i ∈ [m] in which all these vectors have 1.
d1(A) can also be easily characterized in terms of minimum covers. Namely, if we

associate with every

(
a1

...
am

)
∈ A

the subset {i ∈ [m] | ai = 0} of [m], then d1(A) + 1 is exactly the minimal number of
such sets needed to cover the whole [m].

Lemma 3.3. If k(C) ≤ d1(A), then PC,A is true.
Proof. Let A be an (m × n) 0-1 A-admissible matrix. Let a = (a1, . . . , an) be

such that C(a1, . . . , an) = 1 and k(a) = k(C). Let

A0
def
=

⎧⎪⎨
⎪⎩

⎛
⎜⎝

a1j

...
amj

⎞
⎟⎠
∣∣∣∣∣∣∣
aj = 1

⎫⎪⎬
⎪⎭

be the set of all columns in A corresponding to those positions j for which aj = 1.
Since |A0| ≤ k(a) = k(C) ≤ d1(A), there exists i ∈ [m] such that aij = 1 whenever
aj = 1. This means aij ≥ aj for all j ∈ [n] and implies C(ai1, . . . , ain) = 1 since C is
monotone.

The proof of Lemma 3.3 suggests that if C and A with the property k(C) ≤
d1(A) are “generic enough,” then the optimal propositional proof of the principle
PC,A should exhaustively search through all |A|k(C) possible placements of admissible
vectors to the columns {j | aj = 1} and thus have size roughly |A|k(C). Our task is
to find an encoding of (the negation of) PC,A as a CNF so that we can prove tight
upper and lower bounds on ST (τ(C,A)) and S(τ(C,A)) of (roughly) this order. This
encoding is somewhat technical and involves several auxiliary functions (see Definition
3.4 below). In order to convey why we need all of these, let us briefly discuss two
“naive” attempts at a simpler proof.

Attempt 1 (no encoding at all). Suppose that we simply enumerate elements of
A by binary strings of length log |A| and introduce propositional variables expressing
their bits. The main problem with this encoding is that it does not behave well with
respect to (random) restrictions. The standard width-reducing argument from [8] that
we use in part (c) of Lemma 3.8 below assumes a “reasonably uniform” distribution on
the set of those restrictions that “reasonably preserve” the complexity of the tautology.
But with the straightforward encoding, any restriction of propositional variables used
for enumerating the set A results in shrinking this set and completely destroys its
useful properties.

We circumvent this in a standard way by using “excessive encodings” F1, . . . , Fn :
{0, 1}s −→ A, where Fi(x1, . . . , xs) are surjective and remain so after restricting not
too many variables (Definition 3.5). It is worth noting that even if we may have
assumed in our definition of τ(C,A) that F1 = F2 = · · · = Fn, this property will not
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be invariant under restrictions (and this is why it is more convenient not to make this
assumption).

Attempt 2 (same encoding for A and C). The naive encoding of the circuit
C (that is, by propositional variables ziv encoding the intermediate result of the
computation by the circuit C at the gate v when its input is the ith row of A) suffers
from the same drawback as above, which is that we do not want the values of ziv to
be exposed by a random restriction. But why do we not apply to the variables ziv
just the same excessive encodings we used above for the elements of A?

It turns out that with this “lighter” version our lower bounds already go through,
and the upper bound holds for general resolution (in particular, the reader interested
in only this case can safely assume this simplification). In the tree-like case, however,
the upper bound becomes problematic. Namely, when formalizing the proof of Lemma
3.3, we need to prove the fact C(ai1 , . . . , ain) = 1, and the natural way of doing this in
tree-like resolution assumes full access to clauses of the form (zi,v1 ∧ · · · ∧ zi,vμ ⊃ zi,v)
(cf. the proof of part (a) of Lemma 3.8). This is not a problem if the variables zi,v
are not encoded, but if we encode them in a nontrivial way, then we no longer will
have a resolution proof.

In order to balance between these two conflicting requirements, we introduce a
more sophisticated encoding scheme that intuitively looks as follows. Imagine that we
have many independent copies C1, . . . , Cr of the circuit C; indices c ∈ {1, 2, . . . , r} will
be called controls. The (unencoded!) variables zci,v will again express the protocol of
computing the value Cc(ai1 , . . . , ain). But for every individual row i ∈ [m], our axioms
will require this protocol to be valid only for one of these r circuits (say, Cci), and the
values ci are excessively encoded by surjective mappings f1, . . . , fm : {0, 1}s −→ [r]
in the same way as we did with the elements of A.

In order to not obstruct the proof with irrelevant details, we will define our
CNFs τ(C,A, �F , �f) and establish their necessary properties in a situation which is
more general than what will be actually needed for completing the proof of Lemma
3.1. If the reader prefers, he/she may think during the course of the proof that A
is an arbitrary set of vectors such that d1(A) ≥ Ω(logm) and (see Definition 3.6)
d0(A) ≥ Ω(logm). Furthermore, r = logm, s = O(logm), and Fj , fi will be (logm)-
surjective in the sense of Definition 3.5.

Definition 3.4. Let C(p1, . . . , pn) be a monotone circuit, A ⊆ {0, 1}m be a set
of vectors, and F1, . . . , Fn : {0, 1}s −→ A, f1, . . . , fm : {0, 1}s −→ [r] be surjective
functions, where fis are possibly partial. For every j ∈ [n] and ν ∈ [s] we introduce a
propositional variable xν

j , for every i ∈ [m] and ν ∈ [s] introduce a variable yνi , and
for every i ∈ [m], every c ∈ [r] (elements of this set will be sometimes referred to as
controls), and every vertex v of the circuit C introduce a variable zciv.

For j ∈ [n] and �a ∈ A, let us denote by [Columnj = �a] the predicate Fj(x
1
j , . . . , x

s
j) =

�a. Likewise, for i ∈ [m] and c ∈ [r], let [Controli = c] denote the predicate “fi(y
1
i , . . . , y

s
i )

is defined and fi(y
1
i , . . . , y

s
i ) = c.”

The CNF τ(C,A, �F , �f) consists of all clauses that result from the expansion of
the following Boolean predicates as CNFs:

(2) (y1
i , . . . , y

s
i ) ∈ dom(fi) for all i ∈ [m];

(3)
([Columnj = �a] ∧ [Controli = c]) ⊃ zci,pj

for all �a ∈ A, i ∈ [m] such that ai = 1 and all j ∈ [n], c ∈ [r];

⎫⎪⎪⎬
⎪⎪⎭
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(4)

(
[Controli = c] ∧ (zci,v′ ∗ zci,v′′)

)
⊃ zciv

for all i ∈ [m], c ∈ [r] and all internal nodes v

corresponding to the instruction v ← v′ ∗ v′′, ∗ ∈ {∧,∨};

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5) [Controli = c] ⊃ z̄i,vfin
, where vfin is the output node of C.

It is easy to see that τ(C,A, �F , �f) is unsatisfiable (for arbitrary surjective �F , �f)

iff PC,A is true. Also, as we already mentioned, the only thing we need from �F , �f is
that they remain surjective after restricting a few variables.

Definition 3.5. We say that an onto (possibly partial) function g : {0, 1}s −→ D
is r-surjective if for any restriction ρ with |ρ| ≤ r the function g|ρ is still onto.

Finally, for the lower bound we need a notion dual to d1(A).

Definition 3.6. d0(A) is the maximal d such that for every d positions i1, . . . , id ∈
[m] there exists �a ∈ A such that ai1 = · · · = aid = 0.

Now we are ready to formulate our main technical lemma that provides upper
and lower bounds on the size of optimal resolution refutations of τ(C,A, �F , �f). Like
many similar proofs in the area, the lower bound is naturally split into two fairly
independent parts. The first part provides lower bounds on w(τ(C,A, �F , �f) � ∅), but
for technical reasons we need a slightly stronger statement based on a modified notion
of width.

Definition 3.7. For a clause D in the variables of the CNF τ(C,A, �F , �f), let
wx(D), wy(D), and wc(D) (c ∈ [r]) be the numbers of x-variables, y-variables, and
z-variables of the form zci,v, respectively, appearing in D. We define the controlled
width w̃(D) as

w̃(D)
def
= wx(D) + wy(D) + r · min

c∈[r]
wc(D).

The minimal controlled width w̃(τ(C,A, �F , �f) � ∅) is defined similarly to the minimal
refutation width.

Clearly, w̃(D) ≤ w(D) for any clause D, and thus w̃(τ(C,A, �F , �f) � ∅) ≤
w(τ(C,A, �F , �f) � ∅).

Lemma 3.8. Let C be a monotone circuit in n variables, let A ⊆ {0, 1}m, and
let F1, . . . , Fn : {0, 1}s −→ A, f1, . . . , fm : {0, 1}s −→ [r] be r-surjective functions,
where the fi’s are possibly partial and m, r, s are arbitrary integer parameters. Then
the following bounds hold:

(a) (cf. Lemma 3.3). If k(C) ≤ d1(A), then ST (τ(C,A, �F , �f)) ≤ O(|C|·
2s(k(C)+1)).

(b) w̃(τ(C,A, �F , �f) � ∅) ≥ r
2 · min{k(C), d0(A)}.

(c) S(τ(C,A, �F , �f)) ≥ exp(Ω( r
2

s · min{k(C), d0(A)})).
Proof of Lemma 3.8.

Part (a). We show this part by formalizing the proof of Lemma 3.3. Let k
def
= k(C)

and a1, . . . , an be such that C(a1, . . . , an) = 1 and k(a) = k. Assume for simplicity
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that a1 = · · · = ak = 1, ak+1 = · · · = an = 0. Fix arbitrary admissible vectors

�a1
def
=

⎛
⎜⎝

ai1
...

am1

⎞
⎟⎠ , . . . ,�ak

def
=

⎛
⎜⎝

aik
...

amk

⎞
⎟⎠

and, using the inequality d1(A) ≥ k, pick up an arbitrary i ∈ [m] (depending in
general on �a1, . . . ,�ak) such that ai1 = ai2 = · · · = aik = 1. We want to infer from

τ(C,A, �F , �f) all clauses in the CNF expansion of

(6) [Column1 �= �a1] ∨ · · · ∨ [Columnk �= �ak] ∨ [Controli �= c]

for all c ∈ [r]. It is fairly obvious how to do this efficiently in general resolution.
Namely, let V be the set of all nodes of the circuit C that are evaluated to 1 by the
assignment (1k, 0n−k). Then we may proceed by induction on the construction of C
and subsequently infer

([Column1 = �a1] ∧ · · · ∧ [Columnk = �ak] ∧ [Controli = c]) ⊃ zciv

for all v ∈ V until we reach vfin.
In order to get a tree-like proof, however, we should employ a dual (top-down)

strategy. Namely, enumerate the set V in some order which is consistent with the
topology of C: V = 〈v1 = p1, v2 = p2, . . . , vk = pk, vk+1, vk+2, . . . , vt = vfin〉; all
wires between vertices in V go from left to right. Then, by a reverse induction on
μ = t, t − 1, . . . , k we infer (all clauses in the CNF expansion of) [Controli = c] ⊃
(z̄ci,v1

∨ · · · ∨ z̄ci,vμ
). For μ = t this is (a weakening of) (5), and for the inductive step

we resolve with the appropriate axiom in (4). When we descend to [Controli = c] ⊃(
z̄ci,p1

∨ · · · ∨ z̄ci,pk

)
, we consecutively resolve with the corresponding axioms (3) to get

rid of z̄ci,pj
and arrive at (6). Clearly, this resolution inference of every individual

clause in (6) is tree-like and has size O(|C|).
Finally, for every i ∈ [m], every clause in the variables {yνi | 1 ≤ ν ≤ s} appears

in one of the CNFs resulting from the predicate { [Controli �= c] | c ∈ [r]} or the pred-
icates in (2), and every clause in the variables

{
xν
j | 1 ≤ ν ≤ s

}
appears in one of

[Columnj �= �aj ]. This gives us an obvious tree-like refutation of the set of clauses (2),
(6) that has size O(2s(k+1)). Combining this refutation with previously constructed

inferences of (6) from τ(C,A, �F , �f), we get the desired upper bound.
Part (b). We follow the general strategy proposed in [10]. Note that every one of

the axioms (2)–(5) “belongs” to a uniquely defined row; let Rowi be the set of axioms

in τ(C,A, �F , �f) that correspond to the row i. For a clause D, let μ(D) be the smallest
cardinality of I ⊆ [m] such that ∪{Rowi | i ∈ I } (semantically) implies D. μ(D) is
subadditive, that is, μ(D) ≤ μ(D1) + μ(D2) whenever D is obtained from D1, D2 via
a single application of the resolution rule. It is also obvious that μ(A) = 1 for any

axiom A ∈ τ(C,A, �F , �f).
We claim that μ(∅) > d0(A). Indeed, fix any I ⊆ [m] with |I| ≤ d0(A). We

need to construct an assignment that satisfies all axioms in ∪{Rowi | i ∈ I }. Pick �a
accordingly to Definition 3.6 in such a way that for all i ∈ I(ai = 0). Assign every
xν
j to αν

j , where α1
j , . . . , α

s
j is an arbitrary vector such that Fj(α

1
j , . . . , α

s
j) = �a; assign

yνi in an arbitrary way with the only requirement that they satisfy (2), and assign all
z-variables to 0. This assignment will satisfy all axioms in ∪{Rowi | i ∈ I }, which
proves μ(∅) > d0(A).
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Thus, any resolution refutation of τ(C,A, �F , �f) must contain a clause D with
1
2d0(A) ≤ μ(D) ≤ d0(A), and we need only show that this implies w̃(D) ≥ r

2 ·
min{k(C), d0(A)}. Fix I ⊆ [m] such that ∪{Rowi | i ∈ I } semantically implies D
and |I| is minimal with this property; 1

2d0(A) ≤ |I| ≤ d0(A).
If for every i ∈ I at least one of the following two events is true, then we are done:
1. the clause D contains at least r variables among {yνi | ν ∈ [s]};
2. for every control c ∈ [r] the clause D contains at least one variable among

{zciv | v is a node}.
Indeed, if h is the number of indices i for which 1 is true, then wy(D) ≥ rh. For those
i ∈ I for which 1 does not hold, we apply 2 to conclude minc∈[r] wc(D) ≥ (|I| − h),
and altogether we have w̃(D) ≥ wy(D) + r · minc∈[r] wc(D) ≥ r · |I| ≥ r

2d0(A).
Thus, suppose that for some i0 ∈ I neither of these two is true. In particular,

there exists a control c0 ∈ [r] such that no variable of the form zc0i0,v appears in D.
Fix an arbitrary assignment α that satisfies all axioms in {Rowi | i ∈ I \ {i0}} and
falsifies D (such an assignment exists due to the minimality of |I|).

Let J0 consist of those j ∈ [n] for which the clause D contains at least r variables
from

{
xν
j | ν ∈ [s]

}
. If |J0| ≥ k(C), we are also done. If this is not the case, we will

show how to alter the assignment α so that it will satisfy all axioms in ∪{Rowi | i ∈ I }
(including Rowi0) but still will falsify D, and this will give us the contradiction.

According to Definition 3.6, there exists �a ∈ A such that ai = 0 for all i ∈ I. We
alter α as follows.

Step 1. Using that Fj is r-surjective, we change for every j �∈ J0 the values of the
variables

{
xν
j | ν ∈ [s]

}
not appearing in D in such a way that Fj(x

1
j , . . . , x

s
j) = �a.

Step 2. Using the fact that fi0 is r-surjective, we change the values of variables{
yνi0 | ν ∈ [s]

}
not appearing in D in such a way that fi0(y

1
i0
, . . . , ysi0) = c0. Finally,

we reassign every zc0i0,v to the value computed by the node v on the characteristic
vector of the set J0. Note that zc0i0,pj

is set to 1 for j ∈ J0, whereas zc0i0,vfin
is set to 0

since |J0| < k(C).
We claim that this altered assignment α′ satisfies all axioms in ∪{Rowi | i ∈ I }.

Indeed, we made sure in our construction that it satisfies all axioms in Rowi0 of types
(2), (4), (5), and for i ∈ I \ {i0} axioms of these types are satisfied since we have
not touched any variable appearing in them. Thus, we have only to check the axiom
(3). If j ∈ J0 and i �= i0, this axiom has not been touched, and if j �∈ J0, it becomes
satisfied because of the first step in our construction of α′, and due to the condition
ai = 0 (i ∈ I). Finally, if j ∈ J0 and i = i0, the axiom (3) gets satisfied during the
second step (in which we set zc0i0,pj

to 1).

But α′ also falsifies D since we have not touched variables appearing in it. This
contradiction with the fact that {Rowi | i ∈ I } implies that D completes the proof of
part (b).

Part (c). We apply the standard argument of width-reducing restrictions (cf.

[8]). For doing this we observe that the CNFs of the form τ(C,A, �F , �f) behave well
with respect to certain restrictions. Namely, let d ≤ r and R ⊆ [r] be an arbitrary
set of controls. Denote by Rd,R the set of all restrictions that arbitrarily assign to a
Boolean value d variables in every one of the groups

{
xν
j | ν ∈ [s]

}
, {yνi | ν ∈ [s]} with

j ∈ [n], i ∈ [m] as well as all the variables zciv with c �∈ R. Then it is easy to see that

for ρ ∈ Rd,R, every nontrivial clause in τ(C,A, �F , �f)|ρ, after a suitable re-enumeration

of variables and controls, contains a subclause from τ(C,A, �F |ρ, (�f |ρ)|R) (the partial
function (fi|ρ)|R is obtained from fi|ρ by restricting its domain to {yi | fi|ρ(yi) ∈ R}
and range to R).
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Pick now ρ uniformly at random from Rr/2,R, where R is picked at random

from [r]r/2. Then Fj |ρ, (fi|ρ)|R will be (r/2)-surjective. Therefore, by the already

proven part (b), for every refutation P of τ(C,A, �F , �f), ρ(P ) will contain a clause of
controlled width

(7) Ω (r · min{k(C), d0(A)})
with probability 1.

It is easy to see, however, that every clause D whose controlled width w̃(D) is
that large is killed (that is, set to 1 and hence removed from the proof) by ρ with
probability

1 − exp

(
−Ω

(
r2

s
· min{k(C), d0(A)}

))
.

Indeed, according to Definition 3.7, either wx(D) or wy(D) or r · minc∈[r] wc(D)
is bounded from below by a quantity of the form (7). Let wx,j(D) be the num-
ber of variables in the corresponding group that appear in D so that wx(D) =∑

j∈[n] wx,j(D). Then the probability that D is not killed by variables in the jth

group is exp
(
− Ω

( r·wx,j(D)
s

))
, and these events are independent so the probabili-

ties of survival multiply to exp
(
− Ω

( r·wx,j(D)
s

))
. The case when wy(D) is large is

treated in exactly the same way, and the case when r ·minc∈[r] wc(D) is large is even
simpler since for every choice of R, the number of assigned z-variables is at least
r
2 · minc∈[r] wc(D) (and s ≥ r).

Therefore, the size of P must be at least exp
(
Ω
(
r2

s · min{k(C), d0(A)}
))

since
otherwise a random restriction ρ would have killed all such clauses with nonzero
probability, which is impossible.

Lemma 3.8 is completely proved.
Proof of Lemma 3.1. Our construction of τ(C,m) proceeds in polynomial time as

follows.
1. Let p be the smallest prime greater than or equal to m. Since m ≤ p ≤ 2m,

both bounds in Lemma 3.1 remain unchanged if we replace m by p or vice versa.
Therefore, w.l.o.g. we may assume from the beginning that m itself is a prime. Let
Pm be the (m×m) 0-1 Paley matrix given by aij = 1 iff j �= i and (j−i) is a quadratic
residue mod m. Let A ⊆ {0, 1}m consist of all columns of Pm. Then |A| = m and
d0(A), d1(A) ≥ 1

4 logm (see, e.g., [5]).

2. Fix any F2-linear code L ⊆ {0, 1}h�logm� of dimension �logm� that is com-
putable (as a language) in time mO(1) and has minimal distance ≥ �logm� (h > 0 is
an absolute constant). Consider the linear mapping G : {0, 1}h�logm� −→ {0, 1}�logm�

dual to the inclusion L → {0, 1}h�logm� (that is, we fix in L an arbitrary basis

x1, . . . , x�logm� and let G(y)
def
= (〈x1, y〉, . . . , 〈x�logm�, y〉)). By linear duality, the

fact that L has minimal distance ≥ �logm� is equivalent to �logm�-surjectivity of

G. Set r
def
= �logm� and s

def
= h�logm�. Consider arbitrary (polynomial-time com-

putable) surjective mappings Π : {0, 1}�logm� −→ A, π : {0, 1}�logm� −→ [r] and let

Fj
def
= Π ·G, fi

def
= π ·G for all i, j.

3. Construct τ(C,A, �F , �f). Note that the size of this CNF is polynomial in
|C|,m, 2s, which is polynomial in |C|,m due to our choice of parameters.

At this point, Lemma 3.8(c) already implies (1) for τ(C,A, �F , �f). The only re-
maining problem is that a priori we do not have the condition k(C) ≤ d1(A) needed
for part (a) of Lemma 3.8. We circumvent this by a trick similar to one used in [3].
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Namely, let τm be a fixed unsatisfiable (polynomial-time constructible) CNF
with S(τm), ST (τm) = mθ(logm) (for example, one can take a Tseitin tautology with
θ((logm)2) variables) and such that its set of variables is disjoint from the set of

variables of τ(C,A, �F , �f). We finally set τ(C,m)
def
= τ(C,A, �F , �f) ∧ τm.

Since both τ(C,A, �F , �f) and τm satisfy the lower bound (1), the weak feasible
disjunction property (see, e.g., [21] and the literature cited therein) for resolution
implies that τ(C,m) satisfies this bound, too. If k(C) ≤ 1

4 logm then, since d1(A) ≥
1
4 logm, we can apply Lemma 3.8(a) to get the required upper bound ST (τ(C,m)) ≤
|C| · mO(k(C)). If, on the other hand, k(C) ≥ 1

4 logm, the required upper bound

ST (τ(C,m)) ≤ mO(logm) simply follows from the upper bound for τm. This completes
the proof of Lemma 3.1.

4. Self-improvement. In this section we complete the proof of Theorems 2.5
and 2.7 by combining Lemma 3.1 with a (nontrivial) self-improvement technique.
First, we need to get rid of the dummy parameter m in the statement of Lemma 3.1.

Lemma 4.1. If either resolution or tree-like resolution is automatizable, then
there exists an absolute constant h > 1 and an algorithm Φ working on pairs 〈C, k〉,
where C is a monotone circuit and k is an integer such that

1. the running time of Φ(〈C, k〉) is at most exp(O(k2)) · |C|O(1);
2. if k(C) ≤ k, then Φ(〈C, k〉) = 1;
3. if k(C) ≥ hk, then Φ(〈C, k〉) = 0.

Proof. Combining the reduction in Lemma 3.1 with an automatizing algorithm
for either resolution or tree-like resolution, we get an integer-valued function S(C,m)

computable in time
(
|C| ·mmin{k(C), logm})h0

and such that

mε·min{k(C), logm} ≤ S(C,m) ≤
(
|C| ·mmin{k(C), logm}

)h1

for some absolute constants ε, h0, h1 > 0. Set the constant h in the statement in such
a way that

(8) h2 >
h1

ε
(h + 1).

Our algorithm Φ works as follows. We set

m
def
= 2h·max{k, log |C|/k}.

Φ simulates
(
|C| ·mk

)h0
steps in the computation of S(C,m), outputs 1 if the compu-

tation halts within this time, and its result S(C,m) satisfies the inequality S(C,m) ≤(
|C| ·mk

)h1
and outputs 0 in all other cases.

Our choice of m ensures that mk≤exp(O(k2))·|C|O(1), which implies property 1.
Since logm ≥ hk ≥ k, under the assumption k(C) ≤ k the limitations we have

imposed on the running time and the output value of the algorithm Φ are less strin-
gent than the bounds known of the underlying algorithm computing S(C,m). This
observation implies property 2.

Finally, using again the inequality logm ≥ hk, k(C) ≥ hk implies that S(C,m) ≥
mεhk, and elementary calculations show that, along with (8), this gives us S(C,m) >(
|C| ·mk

)h1
. Thus, if k(C) ≥ hk, the algorithm Φ outputs the value 0.

Lemma 4.1 is proved.
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Proof of Theorem 2.5. First, we extract from Lemma 4.1 an algorithm which meets
the bound on the running time and achieves the ratio of approximation h. For that we
consecutively run the algorithm Φ from that lemma on the inputs 〈C, 1〉, . . . , 〈C, k〉, . . .
and output the first value k for which we get the answer 0.

Combining this algorithm with the self-improving reduction from Proposition 2.4
(for d = � 1

ε lnh�), we get an approximating algorithm with the required properties.
In the established terminology, what we have seen so far under the assumption of

automatizability of (tree-like) resolution is a polynomial-time approximation scheme
(PTAS) for MMCSA in the context of parameterized complexity (the latter refer-
ring to the term exp

(
k(C)O(1)

)
in the bound on the running time). Unfortunately,

our PTAS is not efficient (see the discussion in section 2.2), as the reduction from
Proposition 2.4 blows up the size of the circuit. The task of converting an arbitrary
PTAS into an EPTAS seems to be hopeless in general even in the context of param-
eterized complexity (where it appears to be easier). We nonetheless can perform it
(in the latter context) for the specific problem MMCSA using a much trickier self-
improvement construction. This construction (that completes the proof of our main
theorem, Theorem 2.7) might be of independent interest, and its idea is roughly as
follows.

We need to improve the approximation ratio of the algorithm Φ in Theorem
2.5 from (say) 2 to (say) (1 + 1√

k
), and the straightforward way of doing this is by

iteratively applying Proposition 2.4 (say) d =
√
k times. The corresponding reduction

will map any circuit C(x1, . . . , xn) into an n-ary tree of C-gates, and of depth d, and
the resulting increase in size is too costly to us. What we basically show is that we can
circumvent this by replacing the tree with a random directed acyclic graph (DAG) of
the same depth d and of width polynomial in n.

Proof of Theorem 2.7. Let C be a monotone circuit in n variables and k be an
integer such that

(9) 10 ≤ k ≤ ε(log n/ log log n)2

for a sufficiently small constant ε > 0 (we will remark later how to get rid of this
condition). Our goal is to construct in polynomial time a randomized monotone
circuit π(C, k) and an integer α(k) (deterministically depending only on k) such that
α is recursive and the following conditions hold:

k(C) ≤ k =⇒ P[k(π(C, k)) ≤ α(k)] = 1;(10)

k(C) ≥ k + 1 =⇒ P[k(π(C, k)) ≥ 2α(k)] ≥ 1/2.(11)

First, we apply to C the reduction from Proposition 2.4 with d = 2 that maps the
range [k, k + 1] to [k2, k2 + 2k + 1]. Redenoting k2 back to k, we may assume w.l.o.g.
that in (11) we have the stronger premise

(12) k(C) ≥ k + 2
√
k =⇒ P[k(π(C, k)) ≥ 2α(k)] ≥ 1/2.

Now comes our main reduction. Let N, d be two parameters (to be specified
later). The randomized circuit π(C,N, d) in (nN) variables consists of d layers. Each
layer consists of N independent copies of the circuit C (see Figure 1); thus, it has
(nN) inputs and N outputs. We connect input nodes at the (i + 1)st level to output
nodes at the ith level at random. Finally, we pick up an arbitrary output node at the
last dth level and declare it to be the output of the whole circuit π(C,N, d).
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C C C

C C C C

C

Fig. 1. One layer of π(C,N, d).

Clearly, this construction is polynomial in |C|, N, d. Also, an obvious induction
on d shows that

(13) k(π(C,N, d)) ≤ k(C)d

with probability 1. In order to get a lower bound on k(π(C,N, d)), we need the
following easy lemma. It is of course yet another version of the well-known fact that
a random (bipartite) graph makes an extremely good expander.

Lemma 4.2. Let χ : [N ] × [n] −→ [N ] be a randomly chosen function, and let

k, a be any parameters. Then P
[
∃V ∈ [N ]k(|χ(V × [n])| ≤ kn− a)

]
≤ Nk · ( 4k2n2

N

a
).

Proof of Lemma 4.2. This event takes place iff there exist V ∈ [N ]k and disjoint
D1, . . . , Dr ⊆ V × [n] such that |D1|, . . . , |Dr| ≥ 2,

∑r
i=1(|Di| − 1) = a, and χ|Di =

const for all i ∈ [r]. Since the two first properties imply
∑r

i=1 |Di| ≤ 2a, the overall
number of all choices of 〈V,D1, . . . , Dr〉 does not exceed Nk · (2kn)2a. On the other
hand, for every fixed choice, we have

P[χ|D1 = const, . . . ,χ|Dr = const] =
Nr

N (
∑r

i=1 |Di|)
= N−a.

Lemma 4.2 follows.

Now we can complete the description of our reduction. Namely, we set N
def
= n3,

d
def
=

√
k and let π(C, k) = π(C, n3,

√
k), α(k)

def
= k

√
k.

Equation (10) follows from (13).

In order to check (12), denote by χi : [N ] × [n] −→ [N ] the function used for
connecting input nodes at the (i + 1)st level of π(C, n3,

√
k) to the output nodes at

the ith level. Let ki
def
= (k +

√
k)d−i. Let us call π(C,N, d) bad if for at least one

of these functions χi there exists a set V of circuits at the (i + 1)st level such that
|V | = ki+1 and |χi(V × [n])| ≤ ki+1(n−

√
k). Using Lemma 4.2 and (9), we get the
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bound

P[π(C,N, d) is bad] ≤
d−1∑
i=1

Nki+1 ·
(

4k2
i+1n

2

N

)√
k·ki+1

=

d−1∑
i=1

(
4k2

i+1

n1−3/
√
k

)√
k·ki+1

≤
d−1∑
i=1

(
1

3

)√
k·ki+1

≤ 1

2
.

On the other hand, it is easy to see by induction on i = d, . . . , 1 that if k(C) ≥
k + 2

√
k and π(C,N, d) is good, then every satisfying assignment a should satisfy at

least ki output nodes at the ith level. Indeed, the base i = d is obvious (kd = 1). For
the inductive step, assume that a satisfies the output nodes of a set V of circuits at
the (i + 1)st level, |V | = ki+1. Then at least (k + 2

√
k) · ki+1 input nodes to these

circuits should be satisfied. Since χi is good, there are at most
√
k · ki+1 collisions

between the (k + 2
√
k) · ki+1 wires leading to these input nodes from the ith level.

Therefore, at least (k + 2
√
k) · ki+1 −

√
k · ki+1 = ki output nodes at the ith level

should be satisfied.

In particular, at the first level we will have ≥ (k +
√
k)d−1 satisfied circuits and

≥ (k + 2
√
k) · (k +

√
k)

√
k−1 > 2α(k) satisfied input nodes. This completes the proof

that our probabilistic reduction π(C, k) has the properties (10), (12) (and, as we
already remarked, improving (12) to (11) takes one more easy step).

Now we finish the proof of Theorem 2.7. Suppose that either resolution or tree-like
resolution is automatizable. Since WEIGHTED MONOTONE CIRCUIT SATISFI-
ABILITY is W[P]-complete (see [17, Chapter 13]), we have only to show that the
language {〈C, k〉 | k(C) ≤ k } is in co-FPR. Given an input 〈C, k〉 we check condition
(9). If it is violated, we apply a straightforward brute-force algorithm with running
time O(|C|·nk) ≤ |C|·f(k)·n9 for some recursive f . Otherwise we simply combine our
probabilistic reduction 〈π, α〉 with the deterministic algorithm for deciding whether
k(π(C, k)) ≤ α(k) or k(π(C, k)) ≥ 2α(k) provided by Theorem 2.5. Theorem 2.7 is
completely proved.

5. Open problems. The main problem left open by this paper is whether gen-
eral resolution is quasi-automatizable. Since the width algorithm by Ben-Sasson
and Wigderson [10] finds a resolution refutation of any unsatisfiable CNF τ in time
nO(w(τ	∅)), a negative solution to this problem must involve a construction of a broad
and “tractable” family of CNF τ for which S(τ) is much smaller than 2w(τ	∅). Such
families are not so easy to come by (e.g., our techniques involve showing the opposite
in the proof of Lemma 3.8(c)), although some progress toward this goal was reported
in [6].

As we already mentioned in section 1.1, the same paper [6] also proposed an
interesting notion of weak automatizability. Namely, a proof system P is weakly au-
tomatizable if there exists any automatizable proof system that polynomially simulates
P . Is resolution weakly automatizable (under any reasonable complexity assumptions
in the case of a negative answer)? Paper [6] showed that this is equivalent to another
important open question in proof complexity, namely, if the system Res(2) has the
feasible interpolation property (for definitions, see, e.g., [22]).
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We were not able to derandomize the proof of Lemma 4.2. In the terminology of
[1], we need explicit constructions of (N × N) 0-1 matrices that would be (k, n, n −
O(1))-expanders for n ≥ NΩ(1) and an arbitrary function k = k(N) tending to infinity.
Explicit constructions based on Ramanujan graphs seem to give only (k, n, n − kε)-
expanders for any fixed ε which is not sufficient for our purposes. Can we weaken the
hardness assumption in Theorem 2.7 to W[P] �= FPT by an explicit construction of
better expanders (or by using any other means)?

Acknowledgment. The second author is greatly indebted to all three anony-
mous referees of the journal version of this paper for their constructive criticism and
many useful remarks and suggestions.
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New York, 1997, pp. 309–318.
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Abstract. A class of relational structures is said to have the extension preservation property if
every first-order sentence that is preserved under extensions on the class is equivalent to an existential
sentence. The class of all finite structures does not have the extension preservation property. We
study the property on classes of finite structures that are better behaved. We show that the property
holds for classes of acyclic structures, structures of bounded degree, and more generally structures
that are wide in a sense that we will make precise. We also show that the preservation property
holds for the class of structures of treewidth at most k, for any k. In contrast, we show that the
property fails for the class of planar graphs.
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1. Introduction. The subject of model theory is concerned with the relationship
between syntactic and semantic properties of logic. Among classical results in the sub-
ject are preservation theorems which relate syntactic restrictions on first-order logic
with structural properties of the classes of structures defined. A key example is the
�Loś–Tarski theorem, which asserts that a first-order formula is preserved under exten-
sions on all structures if and only if it is logically equivalent to an existential formula
(see [13]). One direction of this result is easy, namely, that any formula that is purely
existential is preserved under extensions, and this holds for any class of structures.
The other direction, going from the semantic restriction to the syntactic restriction,
makes key use of the compactness of first-order logic and hence of infinite structures.

In the early development of finite model theory, when it was realized that finite
structures are the ones that are interesting from the point of view of studying compu-
tation, it was observed that most classical preservation theorems from model theory
fail when only finite structures are allowed. In particular, the �Loś–Tarski theorem
fails on finite structures [16, 12]. These results suggest that the class of finite struc-
tures is not well behaved from the point of view of model theory. However, when one
considers the computational structures that arise in practice and are used as interpre-
tations for logical languages (for instance, program models interpreting specifications
or databases interpreting queries), in many cases they are not only finite but also
satisfy other structural restrictions as well. This motivates the study of not just the
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class of finite structures, but that of well-behaved subclasses of this class as well.
Note that classical model theory, in most of its more advanced parts, also considers
restricted classes of structures such as stable, simple, and o-minimal structures, and
specific structures that are of interest in other areas of mathematics.

There are certain restrictions on finite structures that have proved especially use-
ful in modern graph structure theory and also from an algorithmic point of view. For
instance, many intractable computational problems become tractable when restricted
to planar graphs or structures of bounded treewidth [4]. This is also the case in
relation to evaluation of logical formulas [9]. A common generalization of classes of
bounded treewidth and planar graphs are classes of structures that exclude a minor,
which have also been extensively studied.

A study of preservation properties for such restricted classes of finite structures
was initiated in [1]. There, the focus was on the homomorphism preservation theo-
rem, whose status on the class of finite structures was open. It was shown that this
preservation property holds for any class of structures of bounded degree or treewidth
or that excludes some minor (and has certain other closure properties). In the present
paper, we investigate the �Loś–Tarski extension preservation property on these classes
of finite structures. Note that the failure of the property on the class of all finite
structures does not imply its failure on subclasses. If one considers the nontrivial
direction of the preservation theorem on a class C, it says that any sentence ϕ that is
preserved under extensions on C is equivalent on C to an existential sentence. Thus,
restricting to a subclass C′ of C weakens both the hypothesis and the conclusion of
the statement.

We show that the extension preservation theorem holds for any class of finite
structures closed under substructures and disjoint unions that is also wide in the
sense that any sufficiently large structure in the class contains a large number of
elements that are far apart. This includes, for instance, any class of structures of
bounded degree. While classes of structures of bounded treewidth are not wide, they
are nearly so in that they can be made wide by removing a small number of elements.
We use this property and show that it implies the extension preservation theorem
for the class Tk—the class of structures of treewidth k or less (note that this is not
as general as saying that the property holds for all classes of bounded treewidth).
Finally, although all classes defined by excluded minors are known to be almost wide
in the same sense as Tk is, we show that the construction does not extend to them.
We provide a counterexample to the extension preservation property for the class of
planar graphs and, indeed, even for the class of planar graphs of treewidth at most
four. This contrasts with the results obtained for the homomorphism preservation
property in [1] as this property was shown to hold for all classes excluding a graph
minor and closed under substructures and disjoint unions.

The main methodology in establishing the preservation property for a class of
structures C is to show an upper bound on the size of a minimal model of a first-order
sentence ϕ that is preserved under extensions on C. The way we do this is to show
that for any sufficiently large model A of ϕ, there is a proper substructure of A and
an extension of A that cannot be distinguished by ϕ. In section 3 we establish this for
the relatively simple case of acyclic structures by means of a Hanf locality argument.
Section 4 contains the main combinatorial argument for wide structures which uses
Gaifman locality and an iterated construction of the substructure of A. In section 5,
the combinatorial argument is adapted to the classes Tk. Finally, in section 6 we
discuss the existence of a counterexample in the case of planar graphs. We begin in
section 2 with some background and definitions.
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2. Preliminaries. We use standard notation and terminology from finite model
theory (see [5]). Some particular definitions and notation are explained in this section.

2.1. Relational structures. A relational vocabulary σ is a finite set of relation
symbols, each with a specified arity. A σ-structure A consists of a universe A, or
domain, and an interpretation which associates to each relation symbol R ∈ σ of
some arity r a relation RA ⊆ Ar. A graph is a structure G = (V,E), where E is a
binary relation that is symmetric and antireflexive. Thus, our graphs are undirected,
loopless, and without parallel edges.

A σ-structure B is called a substructure of A if B ⊆ A and RB ⊆ RA for every
R ∈ σ. It is called an induced substructure if RB = RA ∩Br for every R ∈ σ of arity
r. Notice the analogy with the graph-theoretical concept of subgraph and induced
subgraph. A substructure B of A is proper if A �= B. If A is an induced substructure
of B, we say that B is an extension of A. If A is a proper induced substructure, then
B is a proper extension. If B is the disjoint union of A with another σ-structure,
we say that B is a disjoint extension of A. If S ⊆ A is a subset of the universe of
A, then A ∩ S denotes the induced substructure generated by S; in other words, the
universe of A ∩ S is S, and the interpretation in A ∩ S of the r-ary relation symbol
R is RA ∩ Sr.

The Gaifman graph of a σ-structure A, denoted by G(A), is the (undirected)
graph whose set of nodes is the universe of A, and whose set of edges consists of all
pairs (a, a′) of distinct elements of A such that a and a′ appear together in some tuple
of a relation in A. The degree of a structure is the degree of its Gaifman graph, that
is, the maximum number of neighbors of nodes of the Gaifman graph.

2.2. Neighborhoods and treewidth. Let G = (V,E) be a graph. Moreover,
let u ∈ V be a node and let d ≥ 0 be an integer. The d-neighborhood of u in G,
denoted by NG

d (u), is defined inductively as follows:
1. NG

0 (u) = {u};
2. NG

d+1(u) = NG
d (u) ∪ {v ∈ V : (v, w) ∈ E for some w ∈ NG

d (u)}.
If A is a σ-structure, a is a point in A, and G is the Gaifman graph of A, we let
NA

d (a) denote the d-neighborhood of a in G. Where it causes no confusion, we also
write NA

d (a) for the substructure of A generated by this set.
A tree is an acyclic connected graph. A tree-decomposition of G = (V,E) is a

pair (T,L) where T is a tree and L : T → ℘(V ) is a labeling of the nodes of T by sets
of vertices of G such that

1. for every edge {u, v} ∈ E, there is a node t of T such that {u, v} ⊆ L(t);
2. for every u ∈ V , the set {t ∈ T : u ∈ L(t)} forms a connected subtree of T .

The width of a tree-decomposition (T,L) is maxt∈T |L(t)| − 1. The treewidth of G
is the smallest k for which G has a tree-decomposition of width k. The treewidth of
a σ-structure is the treewidth of its Gaifman graph. Note that trees have treewidth
one.

2.3. First-order logic, monadic second-order logic, and types. Let σ be
a relational vocabulary. The atomic formulas of σ are those of the form R(x1, . . . , xr),
where R ∈ σ is a relation symbol of arity r, and x1, . . . , xr are first-order variables
that are not necessarily distinct. Formulas of the form x = y are also atomic.

The collection of first-order formulas is obtained by closing the atomic formu-
las under negation, conjunction, disjunction, and universal and existential first-order
quantification. The collection of existential first-order formulas is obtained by closing
the atomic formulas and the negated atomic formulas under conjunction, disjunction,
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and existential quantification. The semantics of first-order logic is standard.
The collection of monadic second-order formulas is obtained by closing the atomic

formulas under negation, conjunction, disjunction, universal and existential first-order
quantification, and universal and existential second-order quantification over sets. The
semantics of monadic second-order logic is also standard.

The quantifier rank of a formula, be it first-order or monadic second-order, is the
depth of nesting of quantifiers in the formula.

Let A be a σ-structure, and let a1, . . . , an be points in A. If ϕ(x1, . . . , xn) is
a formula with free variables x1, . . . , xn, we use the notation A |= ϕ(a1, . . . , an) to
denote the fact that ϕ is true in A when xi is interpreted by ai. If m is an integer,
the first-order m-type of a1, . . . , an in A is the collection of all first-order formulas
ϕ(x1, . . . , xn) of quantifier rank at most m, up to logical equivalence, for which A |=
ϕ(a1, . . . , an). The monadic second-order m-type of a1, . . . , an in A is the collection
of all monadic second-order formulas ϕ(x1, . . . , xn) of quantifier rank at most m, up
to logical equivalence, for which A |= ϕ(a1, . . . , an). In this definition, by quantifier
rank of a monadic second-order formula we mean the total quantifier rank, which
means that we include both first-order and second-order quantifiers in the count. We
note that some definitions of monadic second-order type in the literature distinguish
between first-order and second-order quantifier rank [14], but we do not need this
refinement.

2.4. Preservation under extensions and minimal models. Let C be a class
of finite σ-structures that is closed under induced substructures. Let ϕ be a first-order
sentence. We say that ϕ is preserved under extensions on C if whenever A and B are
structures in C such that B is an extension of A, then A |= ϕ implies B |= ϕ. We say
that A is a minimal model of ϕ if A |= ϕ and every proper induced substructure A′ of
A is such that A′ �|= ϕ. The following lemma states that the existential sentences are
precisely those that have finitely many minimal models. Its proof is part of folklore.

Lemma 2.1. Let C be a class of finite σ-structures that is closed under induced
substructures. Let ϕ be a first-order sentence that is preserved under extensions on C.
Then the following are equivalent:

1. ϕ is equivalent on C to an existential sentence.
2. ϕ has finitely many minimal models in C.

In the rest of the paper, we use several times the implication from item 2 to item 1.
Just for completeness, this is proved by taking the disjunction of the existential closure
of the atomic types of each of the finitely many minimal models.

3. Acyclic structures. We begin with the simple case of acyclic structures, by
which we mean structures whose Gaifman graph is acyclic. We show that any class of
such structures satisfying certain closure properties admits the extension preservation
property. Note that for structures whose Gaifman graphs are acyclic, there is no loss
of generality in assuming that the vocabulary σ consists of unary and binary relations
only.

The proof makes heavy use of a technique known as Hanf locality, for which we
provide the necessary background first.

Let A and B be structures. If a ∈ Am,b ∈ Bm are m-tuples, we write (A,a) ≡m

(B,b) to denote that the first-order m-type of a in A is the same as the first-order
m-type of b in B. In particular A ≡m B denotes that the structures A and B are not
distinguished by any first-order sentence of quantifier rank m or less. The equivalence
relation ≡m is characterized by Ehrenfeucht–Fräıssé games (see, for instance, [5]).
These can be used to show that the relation is a congruence with respect to disjoint
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union with a multiplicity threshold of m. A precise statement of this useful property
is given in the following lemma. We write A ⊕ B to denote the disjoint union of the
structures A and B and nA to denote the disjoint union of n copies of A (see [5,
Prop. 2.3.10]).

Lemma 3.1. Let A1, A2, B1, and B2 be structures, and let m, n, and n′ be
integers.

1. If A1 ≡m B1 and A2 ≡m B2, then A1 ⊕ A2 ≡m B1 ⊕ B2.
2. If n, n′ ≥ m and A ≡m B, then nA ≡m n′B.

A useful sufficient condition for the ≡m equivalence of structures is provided by
Hanf locality. The Hanf type of radius r of a structure A is the multiset of isomorphism
types of r-neighborhoods of elements in A. We say that two structures A and B are
Hanf equivalent with radius r and threshold q, written A �r,q B, if, for every a ∈ A,
either the number of occurrences of the isomorphism type of NA

r (a) in the Hanf type
of A is the same as that in the Hanf type of B or it is at least q, and conversely
for every element b ∈ B. This allows us to state the following (for a proof see, for
instance, [14, Thm. 4.24]).

Theorem 3.2 (Hanf locality). For every vocabulary σ and every m there are r
and q such that for any pair of σ-structures A and B if A �r,q B, then A ≡m B.

As a first step towards the main result of this section, we establish a useful prop-
erty of connected, acyclic structures with degree at most 2. These are structures whose
Gaifman graph consists of a simple path. This is a very restricted class of structures.
In particular, any class of such structures is wide, in the sense of Theorem 4.3 below.
Thus, on any class of such structures, the extension preservation property holds by
virtue of Theorem 4.3. However, the property in Lemma 3.3 provides a useful step-
ping stone in our proof for all acyclic structures and also serves as a useful warm-up
for the proof in section 4.

Lemma 3.3. For every vocabulary σ and every m > 0 there is a p such that if A
is a σ-structure whose Gaifman graph is connected, acyclic, and of degree at most 2
and |A| > p, then there is a disjoint extension B of A and a proper substructure A′

of A such that A′ ≡m B.
Proof. Given m, let r and q be obtained from Theorem 3.2. We first consider

the 2r-neighborhoods of elements of A, returning later to consider r-neighborhoods
when we wish to establish the Hanf types of the structures we construct. Clearly,
the 2r-neighborhood type of an element determines its r-neighborhood type. Also
note that among σ-structures whose degree is bounded (by 2) there are only finitely
many isomorphism types of 2r-neighborhoods. Let n be the number of such types,
let l = 2r(n + 1) + 1, and let p = nl(q + l).

For t the isomorphism type of a 2r-neighborhood in A, we say that t is frequent if
there are at least q+ l elements in A whose type is t. Since there are at most n types,
the number of occurrences of elements whose type is not frequent is less than n(q+ l).
Thus, in a path of length p there must be a sequence of l consecutive elements of
frequent type. Let a1, . . . , al be such a sequence. Among the 2rn+1 central elements
of the sequence ar+1, . . . , a(2n+1)r+1 there must be a pair ai, aj which have the same
type and such that j − i > 2r. Let C be the substructure of A generated by the
elements ai+1, . . . , aj . We define B to be A ⊕ C and A′ to be the substructure of A
generated by A \ C.

Our aim is to prove A′ ≡m B by showing that A′ �r,q B. We do this by
considering how the Hanf type changes in going from A to A′ and also how it changes
in going from A to B. So, for t the isomorphism type of an r-neighborhood in A, we
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say that t is rare if there are fewer than q elements in A whose type is t. Write D
for the set of elements {ai−r+1, . . . , ai, aj+1, . . . , aj+r}. That is, D consists of the r
elements that occur immediately before C and the r elements that occur immediately
after C in the sequence a1, . . . , al. For any element a ∈ A that is not in C ∪ D,
NA

r (a) = NA′

r (a). For any element a of C∪D, the multiplicity of the type t of NA
r (a)

may decrease in going from A to A′. However, t occurs at least q + l times in A and
this multiplicity cannot decrease by more than l as |C ∪D| ≤ l. Thus, t is not rare
in A′. Clearly the elements of D may have types in A′ that are different from their
types in A, and therefore the multiplicities of these types may increase.

Similarly, for any element a ∈ A, NA
r (a) = NB

r (a), thus any type t that occurs in
A has at least the same multiplicity in B. Let C ′ = {a′i+1, . . . , a

′
j} denote the elements

in the new disjoint copy of C. If a′k ∈ C ′ is such that i + r < k ≤ j − r, then the r-
neighborhood of a′k is isomorphic to NA

r (ak). Since the type of ak is frequent, adding
to its multiplicity is not significant. Thus, we only need to consider the types of the
elements in D′ = {a′i+1, . . . , a

′
i+r+1, a

′
j−r+1, . . . , a

′
j}. For these elements, the types of

their r-neighborhoods in B may be new and result in an increase of the multiplicities of
these types over their occurrences in A. Thus, to establish our result that A′ �r,q B
it suffices to show that there is a bijection f : D → D′ such that for all a ∈ D,
NA′

r (a) ∼= NB
r (f(a)). By construction, there is an isomorphism h : NA

2r(ai) → NA
2r(aj)

and therefore in particular, for −r ≤ k ≤ r, NA
r (ai+k) ∼= NA

r (aj+k). We can now
define the desired bijection f as follows: for 1 ≤ k ≤ r, f(ai−k+1) = a′j−k+1 and
f(aj+k) = a′i+k.

We now use the above lemma to obtain a similar result for connected acyclic
structures without a bound on the degree. This is done by reducing the case of general
degree to those with degree at most 2 by means of an appropriate translation. For
the vocabulary σ, there are only finitely many first-order m-types of σ-structures. Let
τ1, . . . , τn be an enumeration of the possible types of a in A, where A is a connected,
acyclic structure and a ∈ A. We refer to a as the distinguished element of (A, a).
We define a new vocabulary σ′ which has the same binary relations as σ and a unary
relation Ti for each τi.

Let A be a σ′-structure that is connected, acyclic, and of degree at most 2 with
the property that for each a ∈ A there is a unique i such that Ti(a). We construct
from A a σ-structure Ã as follows: each element a ∈ A with Ti(a) is replaced by a

structure Ta of type τi. Moreover, for any binary relation R, (b, c) ∈ RÃ if and only if
either b and c are in the same structure Ta and (b, c) ∈ RTa or b is the distinguished
element of Ta, c is the distinguished element of Ta′ , and (a, a′) ∈ RA. The structure
Ã is not uniquely determined by A as there are, in general, many structures of type τi.
However, the following lemma is easily established along the lines of Lemma 3.1.

Lemma 3.4. Let A and B be connected, acyclic structures of degree at most 2
with the property that for each element there is a unique i such that Ti holds, and let
m be an integer. If A ≡m B, then Ã ≡m B̃.

We will call a structure of the form Ã a σ-companion of A.
Lemma 3.5. For every vocabulary σ and every m > 0 there is a p such that if

A is a structure whose Gaifman graph is connected and acyclic and which contains
a path with more than p elements, then there is a disjoint extension B of A and a
proper substructure A′ of A such that A′ ≡m B.

Proof. Let σ′ be the vocabulary, as above, with a unary relation for each m-type
of σ-structures, and let p be as in Lemma 3.3 for the vocabulary σ′. Let a1, . . . , ap be
the path of length p in A. For each i, let Si be the set of elements that are reachable
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(in the Gaifman graph of A) from ai without going through aj for any j �= i, and
let Si be the substructure generated by Si. We define the σ′-structure sA as follows.
The universe of sA is {a1, . . . , ap}; Tk(ai) holds if and only if ai has type τk in Si;
and (ai, aj) ∈ RsA if and only if (ai, aj) ∈ RA. Then it is easily seen that A is a
σ-companion of sA (which is defined, since the Gaifman graph of A is acyclic).

Let sA′ and sB be the structures obtained from sA by Lemma 3.3. We obtain
A′ as a σ-companion of sA′ by replacing each element ai by the structure (Si, ai).
This ensures that A′ is a substructure of A. Similarly, we obtain B as a σ-companion
of sB, ensuring that B is a disjoint extension of A. Since sA′ ≡m sB by Lemma 3.3,
we also have A′ ≡m B by Lemma 3.4.

Note that in both Lemmas 3.3 and 3.5 B is not only a disjoint extension of A, it
is in fact also the disjoint union of A with a substructure of A.

In order to prove the main theorem of this section, we need one further compo-
sition property of acyclic structures along the lines of the properties in Lemma 3.1.
In order to define it, we introduce some further notation. Given an acyclic structure
A and an element a ∈ A, for every neighbor b of a let Sb be the set of elements in
A which are reachable from b (in the Gaifman graph) without going through a and
let tpa(b) denote the first-order m-type of b in Sb. We define the child-type of b with
respect to a to be the pair (at(a, b), tpa(b)), where at(a, b) is the atomic type of the
pair (a, b). Finally, we define the child-type of an element a, written ctA(a), to be the
multiset of the child-types of its neighbors with respect to a. Write (A, a) ∼m (B, b)
to denote that every type either occurs the same number of times in ctA(a) as it
does in ctB(b) or occurs at least m times in both. The following lemma is now a
straightforward application of games.

Lemma 3.6. If (A, a) ∼m (B, b), then (A, a) ≡m (B, b).
We are now ready for the main theorem of this section.
Theorem 3.7. Let C be a class of acyclic finite structures, closed under substruc-

tures and disjoint unions. Then, on C, every first-order sentence that is preserved
under extensions is equivalent to an existential sentence.

Proof. Let ϕ be such a sentence of quantifier rank m. We aim to show that there
is an N such that if A in C is a model of ϕ with more than N elements, then A is not
minimal. Let p be as in Lemma 3.5, let n be the number of distinct first-order m-types
of connected structures in C, and let q be the number of distinct types of the form
(at(a, b), tpa(b)), where a and b are neighbors in a structure in C. Let N = mn(qm)p.

Now, suppose A is a minimal model of ϕ in C with more than N elements. We
consider three cases.

Case 1. A has more than mn distinct connected components. Then there must
be some collection of more than m such components that have the same first-order
m-type. Consider the structure A′ obtained by removing one of these components.
By Lemma 3.1 A′ ≡m A, contradicting the minimality of A.

If A has mn or fewer connected components, one of these components must have
at least (qm)p elements. Call this component C the large component.

Case 2. The large component of A has a node of degree greater than qm. Call
this node a. The type ctA(a) must contain a type with more than m occurrences.
Let b be a neighbor of a that has this child-type with respect to a. Let A′ be the
substructure of A obtained by removing all elements in Sb. By Lemma 3.6, we have
A′ ≡m A, again contradicting the minimality of A.

Case 3. If C does not contain a node of degree greater than qm, it must contain
a path of length p. Thus, by Lemma 3.5, there is a proper substructure C′ of C and a
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disjoint extension D of C such that C′ ≡m D. Let A′ be the structure obtained from
A by replacing C by C′ and let B be the structure obtained from A by replacing C
by D. Then, by Lemma 3.1, A′ ≡m B. Note also that A′ and B are in C since it is
closed under substructures and disjoint unions. Since ϕ is preserved under extensions
on C, B |= ϕ, and hence A′ |= ϕ, again contradicting the minimality of A.

4. Wide structures. This section will focus on classes of structures that are
wide, meaning that large enough structures contain many points that are pairwise
far apart from each other. It was shown in [1] that the homomorphism preservation
theorem holds for any wide class of structures. Here we aim to establish the analogous
result for the extension preservation property.

Definition 4.1. A set of elements B in a σ-structure A is d-scattered if for
every pair of distinct a, b ∈ B we have NA

d (a) ∩NA
d (b) = ∅.

We say that a class of finite σ-structures C is wide if for every d and m there
exists an N such that every structure in C of size at least N contains a d-scattered set
of size m.

The canonical example of a wide class of structures is the collection of all struc-
tures of degree bounded by a constant. More generally, any class of structures whose
maximum degree is bounded by no(1), where n is the number of elements of the
structure, is wide.

Unfortunately, the techniques and arguments of section 3 based on Hanf locality
will not be enough for our current purpose. Instead, we will have to resort to Gaifman
locality, for which we provide the necessary background first.

For every integer r ≥ 0, let δ(x, y) ≤ r denote the first-order formula expressing
that the distance between x and y in the Gaifman graph is at most r. Let δ(x, y) > r
denote the negation of this formula. Note that the quantifier rank of δ(x, y) ≤ r is
bounded by r. A basic local sentence is a sentence of the form

(4.1) (∃x1) · · · (∃xn)

⎛
⎝∧

i �=j

δ(xi, xj) > 2r ∧
∧
i

ψNr(xi)(xi)

⎞
⎠ ,

where ψ is a first-order formula with one free variable. Here, ψNr(xi)(xi) stands for
the relativization of ψ to Nr(xi); that is, the subformulas of ψ of the form (∃x)(θ)
are replaced by (∃x)(δ(x, xi) ≤ r ∧ θ), and the subformulas of the form (∀x)(θ) are
replaced by (∀x)(δ(x, xi) ≤ r → θ). The locality radius of a basic local sentence
is r. Its width is n. Its local quantifier rank is the quantifier rank of ψ. We will
use the fact that basic local sentences are preserved under disjoint extensions. Note,
however, that they may not be preserved under plain extensions since in that case the
neighborhoods can grow.

The main result about basic local sentences is that they form a building block for
first-order logic. This is known as Gaifman’s theorem (for a proof, see, for example,
[5, Thm. 2.5.1]).

Theorem 4.2 (Gaifman locality). Every first-order sentence is equivalent to a
Boolean combination of basic local sentences.

The following theorem contains the main technical construction of the paper.
Theorem 4.3. Let C be a class of finite σ-structures that is wide and closed

under substructures and disjoint unions. Then, on C, every first-order sentence that
is preserved under extensions is equivalent to an existential sentence.

Proof. Let ϕ be a first-order sentence that is preserved under extensions on C.
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By Gaifman’s theorem we may assume that ϕ =
∨

i∈I τi, with

(4.2) τi =
∧
j∈Ji

θij ∧
∧

k∈Ki

¬θik,

where each θih is a basic local sentence. Now we define a list of parameters that we
need in the proof (the reader may skip this list now and use it to look up the values
when they are needed):

• r is the maximum of the locality radii of all θih;
• s is the sum of all widths of all θih;
• m is the maximum of the local quantifier ranks of all θih;
• 	 is the number of disjuncts in ϕ, so 	 = |I|;
• n = (	 + 2)s;
• M = m + 3r + 3;
• d = 2(r + 1)(	 + 1)s + 6r + 2;
• q is the number of monadic second-order M -types with one free variable;
• N is such that every structure in C of size at least N contains a (4dq+2r+1)-

scattered set of size (n− 1)q + s + 	s + 1.
Our goal is to show that the minimal models of ϕ have size less than N . Suppose on
the contrary that A is a minimal model of ϕ of size at least N . We define the type of
a point a ∈ A to be its monadic second-order M -type in A∩NA

d (a). In other words,
the type of a is the collection of all monadic second-order formulas ψ(x) of quantifier
rank at most M , up to logical equivalence, for which A ∩ NA

d (a) |= ψ(a). We say
that a realizes its type. The reason we consider monadic second-order types, instead
of first-order types, will become clear later in the proof. Let t1, . . . , tq be all possible
types. We need a couple of definitions. Let C be a subset of A and t a type. We say
that t is covered by C if for all realizations a of t we have NA

d (a) ⊆ C. We say that t
is free over C if there are at least n realizations a1, . . . , an of t such that NA

d (ai) and
NA

d (aj) are pairwise disjoint and do not intersect C.
Claim 4.4. There exist a radius e ≤ 2dq and a set D of at most (n− 1)q points

in A such that each type is either covered by NA
e (D) or free over NA

e (D).
Proof. We define D and e inductively. Let D0 = ∅ and e0 = 0. Suppose now that

Di and ei are already defined. Let C = NA
ei (Di). If all types are either covered by C or

free over C, then let D = Di and e = ei. Otherwise, let j be minimal such that type tj
is neither covered by C nor free over C. We define a set E inductively as follows. Let
E0 = ∅. Suppose now that Et is already defined. If there is no realization of tj outside
NA

2d(C∪Et), then let E = Et and we are done with the construction of E. Otherwise,
let at+1 be a realization of tj outside NA

2d(C ∪ Et) and let Et+1 = Et ∪ {at+1}. Note
that this iteration cannot continue beyond n − 1 steps since otherwise tj would be
free over C. This means that the iteration stops, and when it does |E| ≤ n− 1 and tj
is covered by any set that contains NA

2d(C ∪E), and in particular by NA
ei+2d(Di ∪E).

Let Di+1 = Di ∪ E and ei+1 = ei + 2d. The construction stops after at most q
steps because at each step one new type is covered and remains covered for the rest
of the construction. This shows that |D| ≤ (n − 1)q and e ≤ 2dq, which proves the
claim.

In the following, we fix e and D according to Claim 4.4. We say that a type t is
frequent if it is not covered by NA

e (D). Otherwise we say that t is rare.
We shall build a finite sequence of sets S0 ⊆ S1 ⊆ · · · ⊆ Sp ⊆ A, with p ≤ 	, so

that the last set Sp in the sequence will be such that the substructure of A induced by
Sp is a proper substructure of A that satisfies ϕ. This will contradict the minimality
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of A and will prove the theorem. The sequence Si is constructed inductively together
with a second sequence of sets C0 ⊆ C1 ⊆ · · · ⊆ Cp ⊆ A called the centers, and a
sequence of sets of indices I0 ⊆ I1 ⊆ · · · ⊆ Ip ⊆ I (recall that ϕ is the disjunction
of the formulas τi from (4.2) for i ∈ I). Moreover, the following conditions will be
preserved by the inductive construction for every i < p.

(a) Si ⊆ NA
r (Ci).

(b) |Ci| ≤ is.
(c) No disjoint extension of A ∩ Si satisfies

∨
j∈Ii

τj .

(d) NA
e (D) and NA

d (Ci) are disjoint.
(e) |Ii| = i.

Observe that it is a direct consequence of property (d) that the type of each a ∈ Ci

is frequent.
Let S0 = C0 = I0 = ∅, and let us assume that Si, Ci, and Ii have already been

defined with the properties above. We construct Si+1, Ci+1, and Ii+1. Let B be the
disjoint union of A with a copy of A ∩ Si.

(4.3) Since B is an extension of A, it satisfies ϕ.

Therefore, there exists an i′ ∈ I such that B satisfies τi′ . By property (c), since the
extension is disjoint, we know that i′ �∈ Ii. Let Ii+1 = Ii ∪ {i′}. For the rest of the
proof, the index i′ will be fixed so we drop any reference to it. For example, we will
write τ instead of τi′ and θh instead of θi

′

h . Recall that

τ =
∧
j∈J

θj ∧
∧
k∈K

¬θk.

Since B satisfies τ , in particular it satisfies the positive requirements: B |=∧
j∈J θj . Let Wj be a minimal set of witnesses in B for the outermost existential

quantifiers in θj , and let W =
⋃

j∈J Wj . We have |W | ≤ s. Some of these witnesses
may be in A and some may be in the new copy of A∩Si in B. Let WA∪WB = W be
such a partition, with WA being the witnesses in A. The following claim shows that
WA can be chosen far from Ci. This will be needed later.

Claim 4.5. There is a set W of witnesses such that NA
r+1(Ci) ∩NA

r (WA) = ∅.
Proof. Fix a set W of witnesses so that the number of points b in WA for which

NA
r+1(Ci) and NA

r (b) are not disjoint is minimal. Suppose that this number is not
zero, and let b ∈ WA with NA

r+1(Ci)∩NA
r (b) �= ∅. Let a ∈ Ci be such that NA

r+1(a)∩
NA

r (b) �= ∅. Then NA
r (b) ⊆ NA

3r+1(a) ⊆ NA
d (a). By property (d), the type t of a is

frequent. So let a′ be a realization of t such that NA
r+1(W ∪ Ci) and NA

3r+1(a
′) are

disjoint. Such an a′ exists because t is frequent and thus, by Claim 4.4, is free over
NA

e (D) and thus has

n > (	 + 1)s ≥ |W ∪ Ci|

realizations whose d-neighborhoods are pairwise disjoint and disjoint from NA
e (D).

The goal now is to find a b′ such that NA
r (b′) ⊆ NA

3r+1(a
′) ⊆ NA

d (a′) and such that
b and b′ have the same first-order m-type on A∩NA

r (b) and A∩NA
r (b′), respectively.

If we achieve this, then b′ can replace b as a witness in WA, and since NA
r+1(W ∪ Ci)

and NA
3r+1(a

′) are disjoint, so are NA
r+1(Ci) and NA

r (b′). This will contradict the
minimality of W .

In order to find b′ as above, let T be the first-order m-type of b on A ∩ NA
r (b),
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and let ξ(x) be the following first-order formula:

(∃y)

⎛
⎝(∀z)(δ(y, z) ≤ r → δ(x, z) ≤ 3r + 1) ∧

∧
χ∈T

χNr(y)(y)

⎞
⎠ .

Note that the conjunction is finite because the first-order m-type T contains finitely
many formulas up to logical equivalence, and that the quantifier rank of this formula
is bounded by 3r + 3 +m ≤ M . Also NA

d (a) |= ξ(a) because b can serve as a witness
for y. Therefore, since a and a′ have the same monadic second-order M -type and
hence the same first-order M -type in NA

d (a) and NA
d (a′), also NA

d (a′) |= ξ(a′). Note
here that we are not yet using the full power of monadic second-order type, only the
fact that it contains the first-order type as a subset. Let b′ be the witness to y in
NA

d (a′) |= ξ(a′), completing the proof.
In the following, we fix a set W of witnesses such that NA

r+1(Ci) ∩NA
r (WA) = ∅.

We let C be the substructure of A induced by NA
e (D) ∪ NA

r (WA) ∪ Si. We claim
that C satisfies the positive requirements of τ .

Claim 4.6. C is a substructure of A such that C |=
∧

j∈J θj.
Proof. It is obvious that C is a substructure of A. The point, however, is that

C is in fact the disjoint union of the substructure induced by NA
e (D) ∪ NA

r (WA)
and the substructure induced by Si. This is because Si ⊆ NA

r (Ci) and NA
r+1(Ci) is

disjoint from NA
e (D) by property (d) and also disjoint from NA

r (WA) by Claim 4.5.
It follows that the witnesses from B in WB can also be found in C. Obviously, also
the witnesses from B in WA can be found in C. This proves that C satisfies the
positive requirements of τ .

Consider ϕ on C. If C is a model of ϕ, let Sp = NA
e (D) ∪NA

r (WA) ∪ Si and we
are done. Notice that C is a proper substructure of A because A contains (n− 1)q +
s + 	s + 1 points that are (4dq + 2r + 1)-scattered, but Sp ⊆ NA

2dq+r(D ∪WA ∪ Ci)
and

|D ∪WA ∪ Ci| ≤ (n− 1)q + s + 	s.

If C is not a model of ϕ, it cannot satisfy τ . However, by Claim 4.6, C satisfies the
positive requirements

∧
j∈J θj . Therefore, C does not satisfy

∧
k∈K ¬θk. Let k ∈ K

such that C |= θk. In the next claim we find a substructure of A that extends A∩Si

and forces all its disjoint extensions to satisfy θk.
Claim 4.7. There exist Ci+1 ⊇ Ci and Si+1 ⊇ Si as required by conditions

(a)–(d).
Proof. Suppose that

θk = (∃x1) . . . (∃xs′)

⎛
⎝∧

i �=j

δ(xi, xj) > 2r′ ∧
∧
i

ψNr′ (xi)(xi)

⎞
⎠

for some r′ ≤ r, s′ ≤ s, and some formula ψ of quantifier rank m′ ≤ m. Without loss
of generality we may assume that m′ = m, and in order to simplify the notation, we
will assume that r′ = r and s′ = s. It will suffice to replace r by r′ and s by s′ in the
appropriate places.

We have C |= θk. Let V = {a1, . . . , as} be a set of witnesses for the outermost
existential quantifiers in θk. Then NC

r (ai)∩NC
r (aj) = ∅ for all i �= j and C∩NC

r (ai) |=
ψNr(xi)(ai) for all i. Necessarily, the type t of some a ∈ V is frequent. Otherwise
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NA
r (V ) ⊆ NA

e (D) ⊆ A, so A |= θk, and thus B |= θk, because B is a disjoint extension
of A. However, this is impossible because B |= τ .

So let a ∈ V have frequent type t. Let Z be a set of s realizations of t such that
(i) NA

d (b) ∩NA
d (b′) = ∅ for every pair of distinct b, b′ ∈ Z,

(ii) NA
e (D) ∩NA

d (Z) = ∅,
(iii) NA

r+1(Ci) ∩NA
r (Z) = ∅.

Such a set Z exists because t is frequent, n = (	+ 2)s, and |Ci| ≤ 	s by property (b).
Now, let F = NC

r (a). Remember that C ∩ F |= ψNr(x)(a). As F ⊆ NA
r (a), it

follows that A∩F |= ψNr(x)(a). Let X be a set variable, and let ψNr(x)∩X(X,x) denote
the simultaneous relativization of ψ(x) to Nr(x) and X, that is, the formula obtained
from ψ by replacing each subformula of the form (∃z)ξ by (∃z)(δ(x, z) ≤ r∧X(z)∧ξ),
and similarly for universally quantified subformulas. Observe that the quantifier rank
of ψNr(x)∩X(X,x) is at most m+r ≤ M−1, where we take r as an upper bound for the
quantifier rank of the formula expressing δ(x, z) ≤ r. Moreover, A |= ψNr(x)∩X(F, a)
and hence A |= ∃XψNr(x)∩X(a).

Next comes the place where we use the full power of monadic second-order types.
Since every b ∈ Z has the same monadic second-order M -type as a, we have A |=
∃XψNr(xi)∩X(b). Thus there is a set Fb ⊆ NA

r (b) such that A |= ψNr(xi)∩X(Fb, b). It
follows that

A ∩ Fb |= ψNr(x)(b).

Define Ci+1 = Ci ∪ Z and

Si+1 = Si ∪
⋃
b∈Z

Fb.

Let us prove that Ci+1 and Si+1 satisfy the properties (a), (b), (c), and (d). Prop-
erty (a) is clear since Fb ⊆ NA

r (b). For property (b) we have |Ci+1| = |Ci|+s ≤ (i+1)s.
Property (d) is satisfied by (ii) in our choice of Z.

Finally, for property (c) we argue as follows. First note that A∩Si+1 is a disjoint
extension of A∩ Si because NA

r+1(Ci)∩NA
r (Z) = ∅ by (iii) and Si ⊆ NA

r (Ci) by (a).
Therefore, no disjoint extension of A ∩ Si+1 satisfies τj for any j ∈ Ii. It remains to
show that no disjoint extension of A∩Si+1 satisfies τ . However, this is clear from the
construction because every disjoint extension of A ∩ Si+1 contains witnesses for the
outermost existential quantifiers in θk, namely, the elements of the set Z. Suppose
that Z = {b1, . . . , bs}. Note that bi have pairwise distance > 2r by (i), and we have
A ∩ Si+1 |= ψNr(xi)(bi), because NA∩Si+1(bi) = Fbi and A ∩ Fbi |= ψNr(xi)(bi).

Note that Ii+1 is constructed to satisfy property (e) as well. This completes the
definition of the inductive construction. All that remains to be shown is that the
construction stops in at most 	 steps. Because suppose for contradiction that we have
constructed S�, C�, and I� satisfying (a)–(e). Then I� = I by (e), and by (c) no
disjoint extension of A ∩ S� satisfies ϕ =

∨
i∈I τi. However,

(4.4) the disjoint union B of A ∩ S� with A is an extension of A and
hence does satisfy ϕ.

This is a contradiction.
As a direct application of Theorem 4.3, let us consider the class Dr of all finite

σ-structures of degree bounded by r. This class is both wide and closed under sub-
structures and disjoint unions. To see the wideness, note that when the degree of
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every node is at most r, for any element a, Nd(a) contains at most rd elements. Thus,
if a structure has size greater than m(rd), it must contain a d-scattered set of m
elements.

Theorem 4.8. Let r be an integer. Then, on Dr, every first-order sentence that
is preserved under extensions is equivalent to an existential sentence.

In the following section we show how the argument of Theorem 4.3 can be ex-
tended, in some cases, to classes of structures that are almost wide.

5. Bounded treewidth structures. The class of structures of bounded degree
provide a canonical example of a wide class. On the other hand, acyclic structures
(which we considered in section 3) are not wide. Indeed, in an arbitrarily large tree
of height 1 all pairs of nodes are at distance at most 2 from each other and there is
therefore no large d-scattered set for any d > 2, yet the tree may be arbitrarily large.
However, in such a structure, the removal of just one element, the root, creates a large
scattered set. This motivates the definition below.

Definition 5.1. A class of finite σ-structures C is almost wide if there is a k
such that for every d and m there exists an N such that every structure A of size at
least N in C contains a set B with at most k elements such that A − B contains a
d-scattered set of size m.

It was shown in [1] that the homomorphism preservation property holds for almost
wide classes of structures which are closed under substructures and disjoint unions.
It was also established that any class of graphs that excludes a minor is almost wide.

It is not the case that the extension preservation property holds for all almost wide
classes. This can be seen in the next section, where we show, in particular, that it fails
for the class of planar graphs. It turns out that the requirement that an almost wide
class be closed under substructures and disjoint unions is not sufficient to guarantee
the extension preservation property. Nevertheless, closure under unions over a set of
bottlenecks suffices, a notion we make more precise later. In this section we show that
this yields the preservation under extensions property for some particularly interesting
almost wide classes. To be precise, we show that the property holds for the class Tk
of all finite σ-structures of treewidth less than k. In other words, we aim to prove the
following result.

Theorem 5.2. Let k be an integer. Then, on Tk, every first-order sentence that
is preserved under extensions is equivalent to an existential sentence.

The proof of this result requires three ingredients. The first ingredient is a general-
ization of the disjoint union operation on structures by allowing some nonempty inter-
section. Let A and B be σ-structures, and let C ⊆ A∩B be such that A∩C = B∩C.
The union of A and B through C, denoted by A ⊕C B, is a new σ-structure defined
as follows. The universe of D = A ⊕C B is A′ ∪ B′ ∪ C, where A′ is a disjoint copy
of A − C and B′ is a disjoint copy of B − C. The relations of D are defined in
the obvious way: If a1, . . . , ar are points in A and a′1, . . . , a

′
r are the corresponding

points in A′ ∪C, then (a′1, . . . , a
′
r) ∈ RD if and only if (a1, . . . , ar) ∈ RA. Similarly, if

b1, . . . , br are points in B and b′1, . . . , b
′
r are the corresponding points in B′ ∪ C, then

(b′1, . . . , b
′
r) ∈ RD if and only if (b1, . . . , br) ∈ RB. Observe that this construction is

precisely the disjoint union of A and B when C = ∅.
The next lemma is a straightforward generalization of the obvious fact that Tk

is closed under disjoint unions. The lemma states, roughly, that Tk is closed under
unions through subsets of bags of tree-decompositions.

Lemma 5.3. Let k be an integer. Let A and B be two σ-structures, let C ⊆ A∩B
be such that A∩C = B∩C, and let (T,L) and (T ′, L′) be tree-decompositions of width k
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of A and B, respectively. Then, if there exists nodes u ∈ T and u′ ∈ T ′ such that
C ⊆ L(u) ∩ L′(u′), then the union of A and B through C has treewidth at most k.

Proof. The tree-decomposition of the union is (T ′′, L ∪ L′), where T ′′ = T ∪ T ′

with a new tree edge joining u and u′.
The second ingredient is the fact that the class of structures of treewidth less

than k is almost wide, in the sense of Definition 5.1 that there exists a small set of
vertices whose removal produces a large scattered set. Such a set is henceforth called
a bottleneck. This was proved in [1], but here we state the stronger claim that the
bottleneck can be found in a single bag of a tree-decomposition. The proof is the
same as in [1] and is sketched here for completeness.

Lemma 5.4. For every k, and for every d and m, there exists an N such that if
A is a σ-structure of size at least N and (T,L) is a tree-decomposition of A of width
k, then there exist u ∈ T and K ⊆ L(u) such that A −K contains a d-scattered set
of size m.

Proof sketch. Let p = (m− 1)(2d + 1) + 1, M = k!(p− 1)k, and N = k(m− 1)M

and suppose that A is a structure with more than N elements. Let (T,L) be a tree
decomposition of A such that L(u) has size at most k for all u ∈ T . Note that T has
size at least N/k+1. Furthermore, suppose T has a node u of degree at least m. But
then it is easy to see that taking K = L(u) gives a graph with at least m distinct
connected components and therefore a scattered set of size m. On the other hand, if
every node of T has degree less than m, then T must have a path with length greater
than M . By the sunflower lemma of Erdös and Rado [7], it follows that we can find p
distinct nodes u1, . . . , up ∈ T and a set K ⊆ A such that for i �= j, L(ui)∩L(uj) = K.
It can then be shown that A −K must contain a d-scattered set of size m.

The third ingredient in the proof is a first-order bi-interpretation between an
almost wide structure and a wide structure. From now on we focus on graphs; the
construction extends easily to the general case. Let P1, . . . , Pk, Q1, . . . , Qk be unary
relation symbols and σ = {E,P1, . . . , Pk, Q1, . . . , Qk}. For every graph G = (V,EG)
and every tuple a = (a1, . . . , ak) ∈ V k we define a σ-structure A = A(G,a) as follows:

1. A = V .
2. EA = EG − {(a, b) ∈ A2 : {a, b} ∩ {a1, . . . , ak} �= ∅}.
3. PA

i = {ai}.
4. QA

i = {b ∈ A : (ai, b) ∈ EG}.
Let us call a σ-structure A derived if EA is a symmetric and antireflexive binary
relation, and there are elements a1, . . . , ak ∈ A such that PA

i = {ai} for 1 ≤ i ≤ k
and ai is isolated in the graph underlying A; that is, for 1 ≤ i ≤ k there is no b such
that (ai, b) ∈ EA. Note that for every derived structure A there is a unique graph
G(A) and a unique k-tuple a(A) of vertices of G(A) such that

A = A(G(A),a(A)).

The point behind the construction of A = A(G,a) is that if K = {a1, . . . , ak} is a
bottleneck of G in the sense that G−K contains a large scattered set, then A itself
has a large scattered set and maintains all the information needed to reconstruct G.
Indeed, G(A) is first-order interpretable in A, and thus we get the following lemma.

Lemma 5.5. For every first-order sentence ϕ of vocabulary {E} there is a sentence
ϕ̃ of vocabulary σ such that for all σ-structures A we have the following:

1. If A |= ϕ̃, then A is derived.
2. If A is derived, then A |= ϕ̃ if and only if G(A) |= ϕ.

This follows at once from a standard result on syntactical interpretations (cf., for
example, Theorem VIII.2.2 of [6]).
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Equipped with these three ingredients, we are ready for the main argument.
Proof of Theorem 5.2. Let ϕ be a first-order sentence that is preserved under

extensions in Tk. It suffices to show that ϕ has finitely many minimal models. Let
G = (V,EG) be a graph in Tk that is a minimal model of ϕ. Suppose for contradiction
that G is very large. Let (T,L) be a tree-decomposition of width k of G, and let
K = {b1, . . . , bk} ⊆ V be a bottleneck; that is, a set such that G − K contains a
large scattered set. By Lemma 5.4 we may assume that K ⊆ L(u) for some u ∈ T .
Let A = A(G,b), where b = (b1, . . . , bk). The idea is to work with A and ϕ̃ instead
of G and ϕ and proceed as in the proof of Theorem 4.3. The difference is that ϕ̃
is not preserved under extensions. However, preservation under extensions is used
only twice in the proof of section 4 (in (4.3) and (4.4)), both times to prove that the
disjoint union B of the structure A with A ∩ Si is a model of ϕ. Claim 5.6 shows
that in both cases, B is a model of ϕ̃.

Claim 5.6. Let C ⊆ A such that the type of each a ∈ C is frequent. Let
S ⊆ Nr(C) and let B be the disjoint union of A with a disjoint copy of A ∩ S. Then
B is derived, G is an induced subgraph of G(B), and G(B) belongs to Tk.

Proof. The bottleneck points are not in C as their type is not frequent and
therefore not in Nr(C) as they are isolated in A. Thus, note that B is derived because
the bottleneck points are not in S. Let H = G(B). Clearly, G is an induced subgraph
of H. Thus all we have to prove is that H belongs to Tk. Let A′ = A∩(S∪K), where
K is the bottleneck of G. Again, A′ is derived. Let G′ = G(A′). Clearly, G′ is an
induced subgraph of G. In particular, G′ is in Tk so it has a tree-decomposition of
width k. More importantly, since K ⊆ L(u), we can assume as well that K is a subset
of some bag of the tree-decomposition of G′. These two facts together imply that the
union of G and G′ through K, which is precisely H, is in Tk by Lemma 5.3.

This then shows that the B in (4.3) and (4.4) is a model of ϕ̃. The proof proceeds
until we construct a structure C that satisfies ϕ̃ and is a proper substructure of A.
We claim that C is derived. This is because all bottleneck points have rare type, so
they belong to D. Let H = G(C). Note now that H is the union of two subgraphs
G1 and G2 of G through the bottleneck K. Again K is a subset of a bag of the
tree-decompositions of G1 and G2, so H belongs to Tk by Lemma 5.3. Moreover H
is a proper induced subgraph of G and H |= ϕ by Lemma 5.5. This contradicts the
minimality of G, which concludes the proof.

This completes the proof of Theorem 5.2.
Note that this does not imply that the existential preservation theorem holds on

all classes of bounded treewidth. Indeed, we show in the next section that it fails, in
particular, for the class of planar graphs of treewidth 4.

6. Counterexample for planar graphs. The aim of this section is to show
that the preservation-under-extensions property fails on the class of planar graphs.
Let us focus first on the class of planar graphs whose vertices are colored either black
or white. Later we show how to remove the colors. The vocabulary contains a binary
relation symbol E for the edge relation, and a unary relation symbol P for the color.
Let ϕ be the following first-order sentence:

ϕ = (∃x)(∃y)
(
x �= y ∧ P (x) ∧ P (y) ∧ (ϕ1(x, y) → ϕ2(x, y))

)
,

ϕ1(x, y) = (∀z)
(
z �= x ∧ z �= y → ¬P (z) ∧ E(x, z) ∧ E(y, z)

)
,

ϕ2(x, y) = (∀u)
(
u �= x ∧ u �= y

→ (∃v)(∃w)
(
v �= w ∧ ¬P (v) ∧ ¬P (w) ∧ E(u, v) ∧ E(u,w)

))
.

We claim that ϕ is preserved under extensions on the class of black/white-colored
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Fig. 1. G9.

planar graphs. Before we prove this we need a technical gadget. For every n ≥ 3, let
Gn be the black/white-colored planar graph displayed in Figure 1, where the number
of black vertices is exactly n.

It is not hard to see that Gn does not have any planar proper extension in which
all other vertices are adjacent to both white vertices. Let us state this as follows.

Lemma 6.1. Let n ≥ 3, and let H be a black/white-colored planar graph that is a
proper extension of Gn. Then no vertex in H−Gn is adjacent to both white vertices
in Gn.

Proof. Let u be a vertex in H − Gn. Suppose that u is adjacent to both white
vertices in Gn. Then H contains a K5 minor by contracting one of the edges con-
necting u to a white vertex in Gn, and by contracting all but two of the edges in Gn

that do not have a white endpoint. This contradicts the planarity of H.
Now we are ready to show that ϕ is preserved under extensions on the class of

black/white-colored planar graphs.
Lemma 6.2. Let G and H be black/white-colored planar graphs such that H is a

proper extension of G. If G is a model of ϕ, so is H.
Proof. Suppose that G is a model of ϕ, so let a and b be two different white

vertices in G. If G �|= ϕ1(a, b), then clearly H �|= ϕ1(a, b) because G is an induced
substructure of H. In this case, H is also a model of ϕ and we are done. Otherwise,
since G |= ϕ and G |= ϕ1(a, b), we have G |= ϕ2(a, b). This means that every vertex
in G−{a, b} is adjacent to at least two other black vertices. It follows that G contains
some Gn as a (not necessarily induced) subgraph with a and b as white vertices. Here
n ≥ 3. It follows then by Lemma 6.1 that some vertex in H−Gn fails to be connected
to both a and b. But then H �|= ϕ1(a, b) so H is a model of ϕ again.

To complete the argument we need to show that ϕ is not equivalent to an exis-
tential sentence on the class of black/white-colored graphs.

Lemma 6.3. There is no existential sentence equivalent to ϕ on all black/white-
colored planar graphs.

Proof. By virtue of Lemma 2.1, we only need to show that ϕ has infinitely many
minimal models among planar graphs. It is easily seen that for all n, Gn is a minimal
model of ϕ. Indeed, if we remove at least one of the white vertices from Gn, we would
not have witnesses for the two outermost existential quantifiers in ϕ, and if we remove
at least one of the black vertices, then ϕ1 remains true while ϕ2 fails.
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This shows that the preservation-under-extensions property fails for the class of
black/white-colored planar graphs. Removing the colors is easy. It suffices to replace
each occurrence of P (x) by a formula ϕ3(x) stating that x is attached to a 4× 4-grid
that is otherwise disconnected from the rest of the graph. One point to note is that
a node without such a grid attached in a graph G may have a grid in an extension
of G. However, this would mean that ϕ1 would fail in the extension and thus ϕ
would necessarily be true. Thus, the formula is still preserved under extensions. This
shows then that the preservation-under-extensions property fails for the class of planar
graphs.

Note further that for any n, the treewidth of Gn is at most 4. This implies that
the existential preservation theorem fails, even for the class P of planar graphs of
treewidth at most 4. Indeed, the sentence ϕ is preserved under extensions on P since
it is preserved under extensions on all planar graphs. However, ϕ still has infinitely
many minimal models in this class as each Gn is in P.

7. Conclusions. We have established the extension preservation theorem for a
number of interesting classes of finite structures. These include all wide classes—such
as any class of structures of bounded degree—and some almost wide classes, such as
Tk, the class of all structures of treewidth less than k. The situation for the extension
preservation theorem is quite different from that established for the homomorphism
preservation theorem in [1]. In particular, the former fails on the class of planar, while
the latter holds on all classes that exclude a graph minor. Indeed, the methods of proof
used here to establish the extension preservation property are rather different from
those used in [1]. It should also be noted that Rossman [15] recently established that
the homomorphism preservation theorem holds for the class of all finite structures;
compare this with the known failure of the extension preservation theorem for the
same class.

A number of recent results in finite model theory [1, 2, 3, 8, 10, 11] indicate that
classes of structures such as trees or structures of bounded treewidth, planar graphs,
and graphs of bounded genus, graphs with excluded minors, and graphs of bounded
degree are well behaved in various ways related to their first-order model theory (in
a broad sense). So far, no serious attempt has been made to identify general criteria
connecting the different results. The locality of first-order logic always appears to
play a crucial role, and the notion of wideness formally introduced here seems to be
a good structural counterpart. But there is more to it than this simple observation;
for example, the result of this paper holds on graphs of bounded degree, but not on
planar graphs, whereas for the algorithmic results of [3] it is the other way round. The
order invariance result of [2] has so far eluded all efforts to extend it beyond acyclic
structures.
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CLOSEST SUBSTRING PROBLEMS WITH SMALL DISTANCES∗
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Abstract. We study two pattern matching problems that are motivated by applications in
computational biology. In the Closest Substring problem k strings s1, . . . , sk are given, and the
task is to find a string s of length L such that each string si has a consecutive substring of length
L whose distance is at most d from s. We present two algorithms that aim to be efficient for
small fixed values of d and k: for some functions f and g, the algorithms have running time f(d) ·
nO(log d) and g(d, k) · nO(log log k), respectively. The second algorithm is based on connections with
the extremal combinatorics of hypergraphs. The Closest Substring problem is also investigated
from the parameterized complexity point of view. Answering an open question from [P. A. Evans,
A. D. Smith, and H. T. Wareham, Theoret. Comput. Sci., 306 (2003), pp. 407–430, M. R. Fellows,
J. Gramm, and R. Niedermeier, Combinatorica, 26 (2006), pp. 141–167, J. Gramm, J. Guo, and
R. Niedermeier, Lecture Notes in Comput. Sci. 2751, Springer, Berlin, 2003, pp. 195–209, J. Gramm,
R. Niedermeier, and P. Rossmanith, Algorithmica, 37 (2003), pp. 25–42], we show that the problem
is W[1]-hard even if both d and k are parameters. It follows as a consequence of this hardness result
that our algorithms are optimal in the sense that the exponent of n in the running time cannot be
improved to o(log d) or to o(log log k) (modulo some complexity-theoretic assumptions). Consensus

Patterns is the variant of the problem where, instead of the requirement that each si has a substring
that is of distance at most d from s, we have to select the substrings in such a way that the average
of these k distances is at most δ. By giving an f(δ) · n9 time algorithm, we show that the problem
is fixed-parameter tractable. This answers an open question from [M. R. Fellows, J. Gramm, and
R. Niedermeier, Combinatorica, 26 (2006), pp. 141–167].

Key words. closest substring, consensus pattern, parameterized complexity, fixed-parameter
tractability, computational complexity
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1. Introduction. Computational biology applications provide a steady source
of interesting stringology problems. In this paper we investigate two pattern match-
ing problems that received considerable attention lately. Finding similar regions in
multiple DNA, RNA, or protein sequences plays an important role in many appli-
cations, for example, in locating binding sites [27] and in finding conserved regions
in unaligned sequences [24, 28, 34]. This task can be formalized the following way.
Given k strings s1, . . . , sk over an alphabet Σ and an integer L, the task is to find
a pattern that appears (possibly with some errors) in each string si. More precisely,
we have to find a length L string s and a length L substring s′i of each si such that s
is “close” to every s′i. We investigate two variants of the problem that differ in how
closeness is defined. In the Closest Substring problem the goal is to find a string
s such that the Hamming-distance of s is at most d from every s′i. An equally natural
optimization goal is to minimize the sum of the distances of s from the substrings s′i:
in the Consensus Patterns problem we have to find a string s such that this sum
is at most D. An equivalent way of formulating this problem is to require that the
average distance is at most δ := D/k.
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The Closest Substring problem is NP-hard even in the special case when Σ =
{0, 1} and every string si has length L [18]. This means that most likely there are only
exponential-time algorithms for the problem. However, an exponential-time algorithm
can still be efficient if the exponential dependence is restricted to parameters that are
typically small in practice (for example, the size of the alphabet or the maximum
number of mismatches that we allow) and the running time depends polynomially on
all the other parameters (such as the lengths of the strings and length of the pattern).
Parameterized complexity is the systematic study of problem parameters with the
goal of restricting the exponential increase of the running time to as few parameters
of the instance as possible.

1.1. Parameterized complexity. In classical complexity theory, the running
time of an algorithm is usually expressed as a function of the input size. Parameterized
complexity provides a more refined, two-dimensional analysis of the running time: the
goal is to study how the different parameters of the input instance affect the running
time. We assume that every input instance has an integer number k associated to it,
which will be called the parameter. For example, in the case of (the decision version
of) Maximum Clique, we can associate to each instance the size of the clique that
has to be found. When evaluating an algorithm for a parameterized problem we take
into account both the input size n and the parameter k, and we try to express the
running time as a function of n and k. The goal is to develop algorithms that run in
uniformly polynomial time: the running time is f(k) · nc, where c is a constant and
f is a (possibly exponential) function depending only on k. We call a parameterized
problem fixed-parameter tractable (FPT) if such an algorithm exists. This means that
the exponential increase of the running time can be restricted to the parameter k. It
turns out that several NP-hard problems are fixed-parameter tractable, for example,
Minimum Vertex Cover, Longest Path, and Disjoint Triangles. Therefore,
for small values of k, the f(k) term is just a constant factor in the running time, and
the algorithms for these problems can be efficient even for large values of n. This has
to be contrasted with algorithms that have a running time such as nk: in this case the
algorithm becomes practically useless for large values of n even if k is as small as 10.
Analogously to NP-completeness in classical complexity, the theory of W[1]-hardness
can be used to show that a problem is unlikely to be fixed-parameter tractable, which
means that for every algorithm the parameter has to appear in the exponent of n.
For example, for Maximum Clique and Minimum Dominating Set the running
time of the best known algorithms is nΩ(k), and the W[1]-hardness of these problems
tells us that it is unlikely that an algorithm with a running time, say, O(2k · n) can
be found.

For a particular problem, there are many possible parameters that can be defined.
For example, in the case of the Maximum Clique problem, the maximum degree of
the graph, the genus of the graph, or the treewidth of the graph are also natural
choices for the parameter. Different applications might suggest different parameters:
whether a particular choice of parameter is relevant to an application depends on
whether it can be assumed that this parameter is typically “small” in practice. The
theory can be extended in a straightforward way to the case when there is more than
one parameter: if there are two parameters k1 and k2, then the goal is to develop
algorithms with a running time f(k1, k2) · nc. For more details, see section 2 and
[12, 16].

1.2. Previous work on Closest Substring. The NP-completeness of Clos-

est Substring was first shown by Frances and Litman [18] by considering an equiv-
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alent problem in coding theory. Li, Ma, and Wang [30] presented a polynomial-time
approximation scheme, but the running time of their approximation algorithm is pro-
hibitive. Heuristic approaches for the problem are discussed in [6, 31, 32, 26]; see also
the references therein.

Under the standard complexity-theoretic assumptions, the NP-completeness of
Closest Substring means that any exact algorithm has to run in exponential time.
However, there can be great qualitative differences between exponential-time algo-
rithms: for example, it can be a crucial difference whether the running time is ex-
ponential in the length of the strings or in the number of the strings. This question
was investigated in the framework of parameterized complexity by several papers.
Formally, the following problem is studied:

Closest Substring

Input:
k strings s1, . . . , sk over an alphabet Σ and integers d and L.

Parameters:
k, |Σ|, d, L
Task:
Find a string s of length L such that for every 1 ≤ i ≤ k, the string
si has a length L consecutive substring s′i with d(s, s′i) ≤ d.

The Hamming-distance of two strings w1 and w2 (i.e., the number of positions
where they differ) is denoted by d(w1, w2). The string s in the solution is called the
center string. Observe that for a given center string s, it is easy to check in polynomial
time whether the substrings s′i exist: we have to try every length L consecutive
substring of the strings si. Therefore, the real difficulty of the problem lies in finding
the best center string s. We will denote by n the size of the input, which is an upper
bound on the total length of the strings. In the following, “substring” will always
mean consecutive substring (and not an arbitrary subsequence of the symbols).

The problem can be solved in polynomial time if k, d, or L is fixed to a constant.
For every fixed value of L, the problem can be solved in polynomial time by enu-
merating all the |Σ|L = O(nL) possible center strings. If d is a fixed constant, then
the problem can be solved in polynomial time by making a guess at s′1 (at most n
possibilities) and then trying every center string s that is of distance at most d from
s′1 (at most (|Σ|L)d = O(n2d) possibilities). For fixed values of k, the problem can be
solved in polynomial time as follows. First, we guess the k substrings s′k (at most nk

possibilities). Now we have to find a center string s that is of distance at most d from
each s′i. This can be done by dynamic programming in O(nk) time or by applying
the linear-time algorithm of Gramm, Niedermeier, and Rossmanith [21] for Closest

String that is based on integer linear programming. Therefore, for fixed values of
L, d, or k, the problem can be solved in polynomial time. However, the algorithms
described above are not uniformly polynomial: the exponent of n increases as we
consider greater fixed values. The parameterized complexity analysis of the problem
can reveal whether it is possible to remove these parameters from the exponent of n
and obtain algorithms with a running time such as f(k) · nc.

In [14] and [13] it is shown that the problem is W[1]-hard even if all three of k,
d, and L are parameters. Therefore, if the size of the alphabet Σ is not bounded
in the input, then we cannot hope for an efficient exact algorithm for the problem.
Fortunately, in the computational biology applications the strings are typically DNA
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Table 1.1

Complexity of Closest Substring with different parameterizations. Asterisk denotes the new
results of this paper.

Parameters |Σ| is constant |Σ| is parameter |Σ| is unbounded

d W[1]-hard (*) W[1]-hard (*) W[1]-hard

d, k W[1]-hard (*) W[1]-hard (*) W[1]-hard

k W[1]-hard W[1]-hard W[1]-hard

L FPT FPT W[1]-hard

d, k, L FPT FPT W[1]-hard

or protein sequences, hence the number of different symbols is a small constant (4 or
20). Therefore, we will focus on the case when the size of Σ is a parameter. Restricting
|Σ| only does not make the problem tractable, since Closest Substring is NP-hard
even if the alphabet is binary. On the other hand, if |Σ| and L are both parameters,
then the problem becomes fixed-parameter tractable: we can enumerate and check
all the |Σ|L possible center strings. However, if the strings are long (which is often
the case in practical applications), then it makes much more sense to assume that the
number of strings k or the distance constraint d are parameters. In [14] it is shown
that Closest Substring is W[1]-hard with parameter k, even if the alphabet is
binary. However, the complexity of the problem with parameter d or with combined
parameters d, k remained an open question.

1.3. New results for Closest Substring. We show that the problem is W[1]-
hard with combined parameters k and d, even if the alphabet is binary. This resolves
an open question asked in [13, 14, 20, 21]. Therefore, even in the binary case, there
is no f(k, d) · nc algorithm for Closest Substring (unless FPT = W[1]); the expo-
nential increase cannot be restricted to the parameters k and d. This completes the
parameterized complexity analysis of Closest Substring (see Table 1.1; the results
of this paper are marked with an asterisk.)

As a first step of the reduction, we introduce a technical problem called Set Bal-

ancing, and prove W[1]-hardness for this problem. This part of the proof contains
most of the new combinatorial ideas. The Set Balancing problem is reduced to
Closest Substring by a reduction very similar to the one presented in [14].

We present two exact algorithms for the Closest Substring problem. These
algorithms can be efficient if d, or both d and k, are small (say, o(log n)). The first al-
gorithm runs in |Σ|d(log d+2)nO(log d) time. Notice that this algorithm is not uniformly
polynomial, but only the logarithm of the parameter appears in the exponent of n.
Therefore, the algorithm might be efficient for small values of d. The second algorithm
has running time |Σ|d · 2kd · dO(d log log k) · nO(log log k). Here the parameter k appears
in the exponent of n, but log log k is a very slowly growing function. This algorithm
is based on defining certain hypergraphs and enumerating all the places where one
hypergraph appears in the other. Using some results from extremal combinatorics, we
develop techniques that can speed up the search for hypergraphs. It turns out that if
hypergraph H has bounded fractional edge cover number, then we can enumerate in
uniformly polynomial time all the places where H appears in some larger hypergraph
G. This result might be of independent interest.

Notice that the running times of our two algorithms are incomparable. Assume
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that |Σ| = 2. If d = log n and k =
√
n, then the running time of the first algorithm

is nO(log log n) · nO(log log n) = nO(log log n), while the second algorithm needs at least
2kd = 2

√
n logn = n

√
n steps, which can be much larger. On the other hand, if

d = k = log logn, then the first algorithm runs in something like nO(log log log n) time,
while the running time of the second algorithm is dominated by the nO(log log k) factor,
which is only nO(log log log log n).

Our W[1]-hardness proof combined with some recent results on subexponential
algorithms shows that the two exact algorithms are in some sense best possible.
The exponents are optimal: we show that if there is an f1(k, d, |Σ|) · no(log d) or
an f2(k, d, |Σ|) · no(log log k) algorithm for Closest Substring, then n-variable 3-

Sat can be solved in 2o(n) time. It is widely believed that 3-Sat does not have
subexponential-time algorithms; this conjecture is called the Exponential Time Hy-
pothesis (cf. [25, 35]).

1.4. Relation to approximability. Li, Ma, and Wang [30] studied the opti-
mization version of Closest Substring, where the task is to find the smallest d that
makes the problem feasible. They presented a polynomial-time approximation scheme
(PTAS) for the problem: for every ε > 0, there is an nO(1/ε4) time algorithm that
produces a solution that is at most (1+ε)-times worse than the optimum. This PTAS

was improved to nO(log(1/ε)/ε2) time by Andoni, Indyk, and Pǎtraşcu [2] using an idea
from an earlier version of this paper. However, such a PTAS becomes practically
useless for large n, even if we ask for an error bound of, say, 20%. As pointed out in
[11], there are numerous approximation schemes in the literature where the degree of
the algorithm increases very rapidly as we decrease ε: having O(n1,000,000) or worse
for 20% error is not uncommon. Clearly, such approximation schemes do not yield
efficient approximation algorithms. Nevertheless, these results show that there are no
theoretical limitations on the approximation ratio that can be achieved.

An efficient PTAS (EPTAS) is an approximation scheme that produces a (1+ ε)-
approximation in f(ε) · nc time for some constant c. If f(ε) is, e.g., 21/ε, then such
an approximation scheme can be practical even for ε = 0.1 and large n. A standard
consequence of W[1]-hardness is that there is no EPTAS for the optimization version
of the problem [7, 4]. Hence our hardness result shows that the approximation schemes
of [30] and [2] for Closest Substring cannot be improved to an EPTAS.

1.5. Previous work on Consensus Patterns. The Consensus Patterns

problem is the same as Closest Substring, but instead of minimizing the maximum
distance between the center string and the substrings s′i, now the goal is to minimize
the sum of the distances. Similarly to Closest Substring, the problem is NP-
complete and admits a PTAS [29]. Heuristic algorithms for Consensus Patterns

and some generalizations are given in, e.g., [31, 23, 17, 33, 5].
We will study the decision version of the problem:

Consensus Patterns

Input:
k strings s1, . . . , sk over an alphabet Σ and integers D and L.

Parameters:
k, |Σ|, D, L

Task:
Find a string s of length L, and a length L consecutive substring s′i
of si for every 1 ≤ i ≤ k such that

∑k
i=1 d(s, s

′
i) ≤ D holds.
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Table 1.2

Complexity of Consensus Patterns with different parameterizations. Asterisk denotes the
new results of this paper.

Parameters |Σ| is constant |Σ| is parameter |Σ| is unbounded

δ FPT (*) FPT (*) W[1]-hard

D FPT (*) FPT (*) W[1]-hard

k W[1]-hard W[1]-hard W[1]-hard

L FPT FPT W[1]-hard

k, L FPT FPT W[1]-hard

D, k, L FPT FPT W[1]-hard

The string s in the solution is called the median string. Similarly to Closest Sub-

string, the problem is fixed-parameter tractable if both |Σ| and L are parameters:
we can enumerate and test every possible median string. Fellows, Gramm, and Nie-
dermeier [14] showed that their hardness results for Closest Substring can be
adapted for Consensus Patterns. Thus the problem is W[1]-hard with combined
parameters L, k, D in the unbounded alphabet case, and W[1]-hard with parameter
k in the binary alphabet case. The complexity of the problem in the binary alphabet
case with parameter D or combined parameters k and D remained open.

Notice that if D < k, then the problem can be solved in polynomial time. To see
this, observe that

∑k
i=1 d(s, s

′
i) ≤ D < k is only possible if d(s, s′i) = 0 for at least one

i. This means that the median string is a substring of some si, thus a solution can
be found by trying every length L substring of the input strings. Therefore, we can
assume that D ≥ k holds in the problem instance. It follows that the complexity of
Consensus Patterns is the same with parameter D and with combined parameters
k, D.

1.6. New results for Consensus Patterns. We define and investigate the
new parameter δ := D/k, which is the average error that is allowed between the
median string and the substrings s′i. Parameterization by δ (and not by k) is relevant
for applications where we want to find a solution with small average error, but the
number of strings is allowed to be large.

By presenting an algorithm with running time δO(δ) · |Σ|δ · n9, we show that
Consensus Patterns is fixed-parameter tractable if both |Σ| and δ are parameters.
The algorithm uses similar hypergraph techniques as the f(k, d, |Σ|) ·nO(log log k) time
algorithm for Closest Substring. However, a subtle difference in the combinatorics
of the two problems allows us to replace the O(log log k) term in the exponent of n
with a constant.

Since parameter δ is not greater than parameter D, it follows trivially that the
problem is fixed-parameter tractable with combined parameters |Σ| and D. This
settles another open question from [14]. The results for Consensus Patterns are
summarized in Table 1.2, with an asterisk marking the results of this paper.

1.7. Organization. The paper is organized as follows. Section 2 briefly reviews
the most important notions of parameterized complexity. The first algorithm for
Closest Substring is presented in section 3. In section 4 we discuss techniques
for finding one hypergraph in another. In section 5 we present the second algorithm
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for Closest Substring. This section introduces a new hypergraph property called
half-covering, which plays an important role in the algorithm. The algorithm for Con-

sensus Patterns is presented in section 6. We define the Set Balancing problem
in section 7 and prove that it is W[1]-hard. In section 8 the Set Balancing problem
is used to show that Closest Substring is W[1]-hard with combined parameters d
and k. We conclude the paper with a summary in section 9.

Algorithm 1 (section 3) and Algorithm 2 (sections 4 and 5) for the Closest

Substring problem are independent from each other. The algorithm for Consensus

Patterns (section 6) is very similar to the algorithm in section 5, but is presented
in a self-contained way. The algorithm of section 6 is also based on the hypergraph
techniques developed in section 4.

The hardness results in sections 7 and 8 are independent from the algorithms;
the reductions can be understood without the preceding sections. However, the com-
binatorics of the reduction in section 7 has subtle connections with the half-covering
property discussed in section 5. In some sense, section 5 explains why the reduction
in section 7 has to be done that way.

2. Parameterized complexity. We follow [16] for the standard definitions of
parameterized complexity. Let Σ be a finite alphabet. A decision problem is rep-
resented by a set Q ⊆ Σ∗ of strings over Σ. A parameterization of a problem is a
polynomial-time computable function κ : Σ∗ → N. A parameterized decision problem
is a pair (Q, κ), where Q ⊆ Σ∗ is an arbitrary decision problem and κ is a parameter-
ization. Intuitively, we can imagine a parameterized problem as a decision problem
where each input instance x ∈ Σ∗ has a positive integer κ(x) associated with it. A pa-
rameterized problem (Q, κ) is FPT if there is an algorithm that decides whether x ∈ Q
in time f(κ(x)) · |x|c for some constant c and computable function f . An algorithm
with such a running time is called an fpt-time algorithm or simply fpt-algorithm.

Many NP-hard problems were investigated in the parameterized complexity lit-
erature, with the goal of identifying fixed-parameter tractable problems. There is a
powerful toolbox of techniques for designing fpt-algorithms: kernelization, bounded
search trees, color coding, well-quasi ordering—just to name some of the more impor-
tant ones. On the other hand, certain problems resisted every attempt at obtaining
fpt-algorithms. Analogously to NP-completeness in classical complexity, the theory of
W[1]-hardness can be used to give strong evidence that certain problems are unlikely
to be fixed-parameter tractable. We omit the somewhat technical definition of the
complexity class W[1]; see [12, 16] for details. Here it will be sufficient to know that
there are several problems, including Maximum Clique, that were proved to be W[1]-
hard. Furthermore, we also expect that there is no no(k) (or even f(k)·no(k)) algorithm
for Maximum Clique: recently it was shown that if there exists an f(k) ·no(k) algo-
rithm for n-vertex Maximum Clique, then n-variable 3-Sat can be solved in time
2o(n) (see [8] and [15]).

To prove that a parameterized problem (Q′, κ′) is W[1]-hard, we have to present
a parameterized reduction from a known W[1]-hard problem (Q, κ) to (Q′, κ′). A
parameterized reduction from problem (Q, κ) to problem (Q′, κ′) is a function that
transforms a problem instance x of Q into a problem instance x′ of Q′ in such a way
that

1. x′ ∈ Q′ if and only if x ∈ Q,
2. κ′(x) can be bounded by a function of κ(x), and
3. the transformation can be computed in time f(κ(k)) · |x|c for some constant

c and function f(k).



CLOSEST SUBSTRING PROBLEMS WITH SMALL DISTANCES 1389

It is easy to see that if there is a parameterized reduction from (Q, κ) to (Q′, κ′),
and (Q′, κ′) is fixed-parameter tractable, then it follows that (Q, κ) is fixed-parameter
tractable as well. The most important difference between parameterized reductions
and classical polynomial-time many-to-one reductions is the second requirement: in
most NP-completeness proofs the new parameter is not a function of the old param-
eter. Therefore, finding parameterized reductions is usually more difficult and the
constructions have a somewhat different flavor than classical reductions.

There are many possible parameters that can be defined for a particular problem;
different parameters can be relevant in different applications. Usually, the parameter
is either some property of the solution we seek (number of vertices, quality of the so-
lution, etc.) or describes some aspect of the input structure (degree/genus/treewidth
of the input graph, number of variables/clauses in the input formula, etc.). The com-
plexity of the problem can be different with different parameters. Observe that if
parameter k1 is never greater than parameter k2, then the problem cannot be easier
with parameter k1 than with k2: an f(k1) ·nc time algorithm implies the existence of
an f(k2) · nc time algorithm.

In some cases we want to investigate the complexity of the problem by considering
two or more parameters at the same time; i.e., we assume that both parameter k1

and parameter k2 are typically small in applications. The problem is fixed-parameter
tractable with combined parameters k1 and k2 if there is an algorithm with running
time f(k1, k2) · nO(1). For a particular problem, we can investigate several different
combinations of parameters. In general, if we increase the set of parameters, then
we cannot make the problem harder: for example, if the problem is fixed-parameter
tractable with parameter k1, then clearly it is fixed-parameter tractable with combined
parameters k1 and k2.

3. Finding generators. In this section we present an algorithm for Closest

Substring that has running time proportional to roughly nlog d. The algorithm is
based on the following observation: if all the strings s′1, . . . , s

′
k agree at some position

p in the solution, then we can safely assume that the same symbol appears at the pth
position of the center string s. However, if we look at only a subset of the strings s′1,
. . . , s′k, then it is possible that they all agree at some position, but the center string
contains a different symbol at this position. We will be interested in sets of strings
that do not have this problem.

Definition 3.1. Let G = {g1, g2, . . . , g�} be a set of length L strings. We say
that G is a generator of the length L string s if whenever every gi has the same
character at some position p, then string s has this character at position p. The size
of the generator is �, the number of strings in G. The conflict size of the generator is
the number of those positions where not all of the strings gi have the same character.

As we have argued above, it can be assumed that the strings s′1, . . . , s
′
k of a

solution form a generator of the center string s. Furthermore, these strings have a
subset of size at most log d + 2 that is also a generator.

Lemma 3.2. If an instance of Closest Substring is solvable, then there is a
solution s that has a generator G having the following properties:

1. each string in G is a substring of some si,
2. G has size at most log d + 2,
3. the conflict size of G is at most d(log d + 2).

Proof. Let s, s′1, . . . , s
′
k be a solution such that

∑k
i=1 d(s, s

′
i) is minimal. We prove

by induction that for every j we can select a subset Gj of j strings from {s′1, . . . , s′k}
such that there are less than (d + 1)/2j−1 bad positions where the strings in Gj all
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Closest Substring-1(k, L, d, (s1, . . . , sk))
1. Construct S, the set of all length L substrings of the input strings.
2. for every G ⊆ S with |G| = log d + 2 do
3. if the strings in G agree on all but at most d(log d + 2) positions
4. for every string s that is generated by G do
5. if maxk

i=1 min{s′i is a substring of si} d(s, s
′
i) ≤ d then

6. s is a solution, STOP.
7. There is no solution, STOP.

Fig. 3.1. Algorithm 1 for Closest Substring.

agree, but this common character is different from the character in s at this position.
The lemma follows from j = �log(d + 1)	 + 1 ≤ log d + 2: the set Gj has no bad
positions, hence it is a generator of s. Furthermore, each string in Gj is at distance
at most d from s, thus the conflict size of Gj can be at most d(log d + 2).

For the case j = 1 we can set G1 = {s′1}, since s′1 differs from s at not more than
d positions. Now assume that the statement is true for some j. Let P be the set of
bad positions, where the j strings in Gj agree, but they differ from s. We claim that
there is some string s′t in the solution and a subset P ′ ⊆ P with |P ′| > |P |/2 such that
s′t differs from all the strings in Gj at every position of P ′. If this is true, then we add
s′t to the set Gj to obtain Gj+1. Only the positions in P \P ′ are bad for the set Gj+1:
for every position p in P ′, the strings cannot all agree at p, since s′t do not agree with
the other strings at this position. Thus there are at most |P \P ′| < |P |/2 < (d+1)/2j

bad positions, completing the induction.
Assume that there is no such string s′t. In this case we modify the center string

s the following way: for every position p ∈ P , let the character at position p be the
same as in string s′1. Denote by s∗ the new center string. We show that d(s∗, s′i) ≤
d(s, s′i) ≤ d for every 1 ≤ i ≤ k, hence s∗ is also a solution. By assumption, every
string s′i in the solution agrees with s′1 on at least |P |/2 positions of P . Therefore, if we
replace s with s∗, the distance of s′i from the center string decreases on at least |P |/2
positions, and the distance can increase only on the remaining at most |P |/2 positions.
Therefore, d(s∗, s′i) ≤ d(s, s′i) follows. Furthermore, d(s∗, s′1) = d(s, s′1) − |P | implies∑k

i=1 d(s
∗, s′i) <

∑k
i=1 d(s, s

′
i), which contradicts the minimality of s.

We note that Lemma 3.2 (appearing in an earlier version of this paper) was used
by Andoni, Indyk, and Pǎtraşcu [2] to improve the running time of the PTAS of Li,

Ma, and Wang [30] to nO(log(1/ε)/ε2) time.
Our algorithm first creates a set S containing all the length L substrings of s1,

. . . , sk. For every subset G ⊆ S of log d + 2 strings, we check whether G generates
a center string s that solves the problem. Since |S| ≤ n, there are at most nlog d+2

possibilities to try. By Lemma 3.2 we have to consider only those generators whose
conflict size is at most d(log d + 2), hence at most |Σ|d(log d+2) possible center strings
have to be tested for each G.

Theorem 3.3. Closest Substring can be solved in time |Σ|d(log d+2)nlog d+O(1).
Proof. The algorithm is presented in pseudocode in Figure 3.1. Let S be the set

of all length L substrings in s1, . . . , sk, clearly |S| ≤ n (recall that n is the total
length of the input). If there is a solution s, then Lemma 3.2 ensures that there
is a subset G ⊆ S of size at most log d + 2 that generates s. We test every size
log d + 2 subset of S to see whether it can generate a solution. First, by Lemma 3.2
we can restrict our attention to those G where the strings in G agree on all but at
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most d(log d + 2) positions. If such a G generates a string s, then the characters of
s are determined everywhere except on the conflicting positions of G. Therefore, G
can be the generator of at most |Σ|d(log d+2) different strings. We try all the possible
combinations of assigning characters on the conflicting positions of G and check for
each resulting string s whether it is true for every 1 ≤ i ≤ k that there is a substring
s′i of si such that d(s, s′i) ≤ d. This method will eventually find a solution, if one
exists.

We try O(nlog d+2) different subsets G (line 2), and each G can generate at
most |Σ|d(log d+2) different center strings s (line 4). It can be checked in polyno-
mial time whether a center string s is a solution (line 5), hence the total running time
is |Σ|d(log d+2)nlog d+O(1).

We remark here that the algorithm can be made slightly more efficient: it is suffi-
cient to check those generators where the log d+ 2 strings come from different strings
si. However, this observation does not improve the asymptotics of the running time,
and we did not want to complicate the notation to accommodate this improvement.

4. Finding hypergraphs. Let us recall some standard definitions concerning
hypergraphs. A hypergraph H(VH , EH) consists of a set of vertices VH and a collection
of edges EH , where each edge is a subset of VH . Let H(VH , EH) and G(VG, EG) be
two hypergraphs. We say that H appears at V ′ ⊆ VG as partial hypergraph if there
is a bijection π between the elements of VH and V ′ such that for every edge E ∈ EH

we have that π(E) is an edge of G (where the mapping π is extended to the edges
the obvious way). For example, if H has the edges {1, 2}, {2, 3}, and G has the edges
{a, b}, {b, c}, {c, d}, then H appears as a partial hypergraph at {a, b, c} and at {b, c, d}.
We say that H appears at V ′ ⊆ VG as subhypergraph if there is such a bijection π
where for every E ∈ EH , there is an edge E′ ∈ EG with π(E) = E′∩V ′. For example,
let the edges of H be {1, 2}, {2, 3}, and let the edges of G be {a, c, d}, {b, c, d}. Now
H does not appear in G as partial hypergraph, but H appears as subhypergraph at
{a, b, c} and at {a, b, d}. If H appears at some V ′ ⊆ VG as partial hypergraph, then
it appears there as subhypergraph as well.

A stable set in H(VH , EH) is a subset S ⊆ VH such that every edge of H contains
at most one element from S. The stable number α(H) is the size of the largest
stable set in H. A fractional stable set is an assignment φ: VH → [0, 1] such that∑

v∈E φ(v) ≤ 1 for every edge E of H. The fractional stable number α∗(H) is the
maximum of

∑
v∈VH

φ(v) taken over all fractional stable sets φ. The incidence vector
of a stable set is a fractional stable set, hence α∗(H) ≥ α(H).

An edge cover of H is a subset E′ ⊆ EH such that each vertex of VH is contained
in at least one edge of E′. The edge cover number ρ(H) is the size of the smallest edge
cover in H. (The hypergraphs considered in this paper do not have isolated vertices,
hence every hypergraph has an edge cover.) A fractional edge cover is an assignment
ψ: EH → [0, 1] such that

∑
E:v∈E ψ(E) ≥ 1 for every vertex v. The fractional cover

number ρ∗(H) is the minimum of
∑

E∈EH
ψ(E) taken over all fractional edge covers

ψ, clearly ρ∗(H) ≤ ρ(H). It follows from the duality theorem of linear programming
that α∗(H) = ρ∗(H) for every hypergraph H with no isolated vertices.

Friedgut and Kahn [19] determined the maximum number of times a hypergraph
H(VH , EH) can appear as partial hypergraph in a hypergraph G with m edges. That
is, we are interested in the maximum number of different subsets V ′ ⊆ VG where H
can appear in G. A trivial upper bound is m|EH |: if we fix π(E) ∈ EG for each edge
E ∈ EH , then this uniquely determines π(VH). This trivial bound can be improved
to mρ(H): if edges E1, E2, . . . , Eρ(H) cover every vertex of VH , then by fixing π(E1),
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π(E2), . . . , π(Eρ(H)) the set π(VH) is determined. The result of Friedgut and Kahn
says that ρ can be replaced with the (possibly smaller) ρ∗.

Theorem 4.1 (see [19]). Let H be a hypergraph with fractional cover number
ρ∗(H), and let G be a hypergraph with m edges. There are at most |VH ||VH | ·mρ∗(H)

different subsets V ′ ⊆ VG such that H appears in G at V ′ as partial hypergraph.
Furthermore, for every H and sufficiently large m, there is a hypergraph with m edges
where H appears mρ∗(H) times.

We remark here that Theorem 4.1 was proved for the special case of graphs in
the first published paper of Alon [1].

To appreciate the strength of Theorem 4.1, it is worth pointing out that ρ∗(H)
can be much smaller than ρ(H), hence the upper bound can be much stronger than
mρ(H). For example, consider the hypergraph where the vertices correspond to the
k-element subsets of {1, 2, . . . , n}, and edge Ei (1 ≤ i ≤ n) contains those vertices
that correspond to sets containing i. Now ρ = n− k + 1: if we select less than
n − k + 1 edges, then there is a k-element set that is not covered by the less than
n−k+1 elements corresponding to the edges. On the other hand, we can construct a
fractional edge cover of total weight n/k by assigning weight 1/k to each edge. This
is a fractional edge cover, since each vertex is contained in exactly k edges. Therefore,
the ratio ρ/ρ∗ = (n− k + 1)/(n/k) can be arbitrarily large.

Theorem 4.1 does not remain valid if we replace “partial hypergraph” with “sub-
hypergraph.” For example, let H contain only one edge {1, 2}, and let G have one
edge E of size �. Now H appears at each of the

(
�
2

)
two element subsets of E as

subhypergraph. However, if we bound the size of the edges in G, then we can state a
subhypergraph analog of Theorem 4.1.

Corollary 4.2. Let H be a hypergraph with fractional cover number ρ∗(H), and
let G be a hypergraph with m edges, each of size at most �. Hypergraph H can appear
in G as subhypergraph at most |VH ||VH | · �|VH |ρ∗(H) ·mρ∗(H) times.

Proof. Let G′(VG, EG′) be a hypergraph over VG where E′ ∈ EG′ if and only
if |E′| ≤ |VH | and E′ is a subset of some edge E ∈ EG. An edge of G contributes
at most �|VH | edges to G′, hence G′ has at most �|VH | · m edges. If H appears as
subhypergraph at V ′ ⊆ VG in G, then H appears as partial hypergraph at V ′ in G′.
By Theorem 4.1, hypergraph H can appear at most |VH ||VH | ·�|VH |ρ∗(H) ·mρ∗(H) times
in G′ as partial hypergraph, proving the lemma.

Given hypergraphs H(VH , EH) and G(VG, EG), we would like to find all the
places V ′ ⊆ VG in G where H appears as subhypergraph. If there are t such places,
then obviously we cannot enumerate all of them in less than t steps. Therefore,
our aim is to find an algorithm with running time polynomial in the upper bound
|VH ||VH | · �|VH |ρ∗(H) ·mρ∗(H) on t given by Corollary 4.2. The proof of Theorem 4.1
is not algorithmic (it is based on Shearer’s Lemma [10], which is proved by entropy
arguments), hence it does not directly imply an efficient way of enumerating all the
places where H appears. However, in Theorem 4.3, we show that there is a very
simple algorithm for enumerating all these places. Corollary 4.2 is used to bound the
running time of the algorithm. This result might be useful in other applications as
well.

Theorem 4.3. Let H(VH , EH) be a hypergraph with fractional cover number
ρ∗(H), and let G(VH , EH) be a hypergraph where each edge has size at most �. There
is an algorithm that enumerates in time |VH |O(VH) · �|VH |ρ∗(H)+1 · |EG|ρ

∗(H)+1 · |VG|2
every subset V ′ ⊆ VG where H appears in G as subhypergraph.

Proof. Let VH = {1, 2, . . . , r}. For each 1 ≤ i ≤ r, let Hi(Vi, Ei) be the subhy-
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Find-Subhypergraph(H,G)
1. L1 := all the places where H1 appears in G
2. for i := 1 to r − 1 do
3. for every X ∈ Li do
4. for every x ∈ VG \X do
5. X ′ := X ∪ {x}
6. if X ′ �∈ Li+1 then
7. for every bijection π : Vi+1 → X ′ do
8. for every E ∈ Ei+1 do
9. for every E′ ∈ EG do

10. if π(E) = E′ ∩X ′ then
11. Go to step 8, select next E
12. Go to step 7, select next π
13. Add X ′ to Li+1

14. return Lr

Fig. 4.1. Algorithm for enumerating all the places where hypergraph H appears in G as subhy-
pergraph.

pergraph of H induced by Vi = {1, 2, . . . , i}; that is, if E is an edge of H, then E ∩Vi

is an edge of Hi. For each i = 1, 2, . . . , r, we find all the places where Hi appears in
G as subhypergraph. Since H = Hr this method will solve the problem.

For i = 1 the problem is trivial, since Vi has only one vertex. Assume now that we
have a list Li of all the i-element subsets of VG where Hi appears as subhypergraph.
The important observation is that if Hi+1 appears as subhypergraph at some (i+ 1)-
element subset V ′ ⊆ VG, then V ′ has an i-element subset V ′′ ∈ Li where Hi appears
as subhypergraph. Thus for each set X ∈ Li, we try all the |VG \X| different ways
of extending X to an (i + 1)-element set X ′, and check whether Hi+1 appears at X ′

as subhypergraph. This can be checked by trying all the (i+ 1)! possible bijections π
between Vi+1 and X ′, and by checking for each edge E of Hi+1 whether there is an
edge E′ in G with π(E) = E′ ∩X ′.

The structure of the algorithm is presented in Figure 4.1. Let us make a rough
estimate of the running time. The loop in step 2 consists of |VH |−1 iterations. Notice
first that ρ∗(Hi) ≤ ρ∗(H), since a fractional edge cover of H can be used to obtain a
fractional edge cover of Hi. Therefore, by Corollary 4.2, each list Li has size at most
|VH ||VH | · �|VH |ρ∗(H) · |EG|ρ

∗(H), which bounds the maximum number of times the loop
in step 3 is iterated. When we determine the list Li+1, we have to check for at most
|Li| · |VG| different sets X ′ of size i+1 whether Hi+1 appears at X ′ as subhypergraph
(step 4). Adding duplicate entries into the list Li+1 should be avoided; otherwise we
would not have the bound on the size of Li claimed above. Therefore, in step 6, we
check whether X ′ is already in Li. If the list Li is implemented as a trie structure,
then the test in step 6 can be performed in time O(|VH | · |VG|). The trie structure
can increase the time required to enumerate the list Li by a factor of |VH |. Checking
one X ′ requires us to test (i + 1)! different bijections π (step 7). Testing a bijection
π means that for each E ∈ Ei+1 (step 8), it has to be checked whether there is a
corresponding E′ ∈ EG (step 9) such that E′ ∩ X ′ = E (step 10). Hypergraph H
has at most 2|VH | edges, hence the loop of step 8 is iterated at most 2|VH | times. If
the edges of G are represented as lists of vertices, then the check in step 10 can be
implemented in O(�) time. Adding a new element into the trie structure (step 13)
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can be done in O(|VH | · |VG|) time.
The dominating part of the running time comes from steps 7–13, which are re-

peated |VH |O(VH) · �|VH |ρ∗(H) · |EG|ρ
∗(H) · |VG| times. The loop in steps 7–12 takes

O(|VH |! · 2|VH | · |EG| · �) = |VH |O(VH) · |EG| · � time, while step 13 takes O(|VH | · |VG|)
time. Therefore, the total running time can be bounded by |VH |O(VH) · �|VH |ρ∗(H)+1 ·
|EG|ρ

∗(H)+1 · |VG|2.
We can use a similar technique to find all the places where H appears in G as

partial hypergraph. This result is not used in this paper, but might be useful in some
other applications.

Corollary 4.4. Let H(VH , EH) be a hypergraph with fractional cover number
ρ∗(H), and let G(VG, EG) be an arbitrary hypergraph. There is an algorithm that
enumerates in time |VH |O(|VH |ρ∗(H)) · |EG|ρ

∗(H)+1 · |VG|2 all the subsets V ′ ⊆ VG

where H appears in G as partial hypergraph.
Proof. We can throw away from G every edge larger than |VH | without chang-

ing the problem. Now Theorem 4.3 can be used to find in time |VH |O(|VH |ρ∗(H)) ·
|EG|ρ

∗(H)+1 · |VG|2 the list L of all the subsets V ′ ⊆ VG where H appears in G as
subhypergraph. If H appears at V ′ as partial hypergraph, then this is only possi-
ble if H appears at V ′ as subhypergraph. Therefore, the algorithm returns a list
that is a superset of the expected result. Let us modify step 10 of the algorithm
of Theorem 4.3 such that in iteration i = r − 1 it tests π(E) = E′ instead of
π(E) = E′ ∩ X ′. This ensures that Lr contains only those positions where H ap-
pears as partial hypergraph.

5. Half-covering and the Closest Substring problem. The following hy-
pergraph property plays a crucial role in our second algorithm for the Closest Sub-

string problem.
Definition 5.1. We say that a hypergraph H(V,E) has the half-covering property

if for every nonempty subset Y ⊆ V there is an edge X ∈ E with |X ∩ Y | > |Y |/2.
Theorem 4.3 says that finding a hypergraph H is easy if H has small fractional

cover number. In our algorithm for the Closest Substring problem (described later
in this section), we have to find hypergraphs satisfying the half-covering property. The
following combinatorial lemma shows that such hypergraphs have small fractional
cover number, hence they are easy to find.

Lemma 5.2. If H(V,E) is a hypergraph with m edges satisfying the half-covering
property, then the fractional cover number ρ∗ of H is O(log logm).

Proof. The fractional cover number equals the fractional stable number, thus there
is a function φ: V → [0, 1] such that

∑
v∈X φ(v) ≤ 1 holds for every edge X ∈ E, and∑

v∈V φ(v) = ρ∗. The lemma is proved by a probabilistic argument: we show that if
a random subset Y ⊆ V is selected such that the probability of selecting a vertex v
is proportional to φ(v), then with nonzero probability no edge covers more than half
of Y , unless the number of edges is double exponential in ρ∗. The idea is to show
that for each edge X, the expected size of Y is ρ∗ times the expected size of Y ∩X,
hence the Chernoff Bound can be used to show that there is only a small probability
that X covers more than half of Y . However, the straightforward application of this
idea gives only an exponential lower bound on the number of edges. To improve the
bound to double exponential, we have to restrict our attention to a suitable subset T
of vertices, and scale the probabilities appropriately.

Let v1, v2, . . . , v|V | be an ordering of the vertices by nonincreasing value of φ(vi).
First, we give a bound on the sum of the largest φ(vi)’s.

Proposition 5.3.

∑i
j=1 φ(vj) ≤ −4 log2 φ(vi) + 4 holds for every 1 ≤ i ≤ |V |.
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Proof. The proof is by induction on i. Since φ(v1) ≤ 1, the claim is trivial for
i = 1. For an arbitrary i > 1, let i′ ≤ i be the smallest value such that φ(vi′) ≤ 2φ(vi).
By assumption, there is an edge X of H that covers more than half of the set S =
{vi′ , . . . , vi}. Every weight in S is at least φ(vi), hence X can cover at most 1/φ(vi)

elements of S. Thus |S| ≤ 2/φ(vi), and
∑i

j=i′ φ(vj) ≤ 4 follows from the fact that

φ(vj) ≤ 2φ(vi) for i′ ≤ j ≤ i. If i′ = 1, then we are done. Otherwise
∑i′−1

j=1 φ(vj) ≤
−4 log2 φ(vi′−1) + 4 < −4(log2 φ(vi) + 1) + 4 follows from the induction hypothesis

and from φ(vi′−1) > 2φ(vi). Therefore,
∑i

j=1 φ(vj) =
∑i′−1

j=1 φ(vj) +
∑i

j=i′ φ(vj) ≤
−4 log2 φ(vi) + 4, what we had to show.

In the rest of the proof, we assume that ρ∗ is sufficiently large, say ρ∗ ≥ 100.

Let i be the largest value such that
∑|V |

j=i φ(vj) ≥ ρ∗/2. By the definition of i,∑|V |
j=i+1 φ(vj) < ρ∗/2, hence

∑i
j=1 φ(vj) ≥ ρ∗/2. Thus by Proposition 5.3, the weight

of vi (and every vj with j ≥ i) is at most 2−(ρ∗/2−4)/4 ≤ 2−ρ∗/10 (assuming that ρ∗

is sufficiently large). Define T := {vi, . . . , v|V |}, and let us select a random subset
Y ⊆ T : independently each vertex vj ∈ T is selected into Y with probability p(vj) :=

2ρ
∗/10 · φ(vj) ≤ 1. We show that if H does not have 22Ω(ρ∗)

edges, then with nonzero
probability every edge of H covers at most half of Y , contradicting the assumption
that H satisfies the half-covering property.

The size of Y is the sum of |T | independent 0-1 random variables. The expected

value of this sum is μ =
∑|V |

j=i p(vj) = 2ρ
∗/10 ·

∑|V |
j=i φ(vj) ≥ 2ρ

∗/10 · ρ∗/2. We show
that with nonzero probability |Y | ≥ μ/2, but |X ∩ Y | ≤ μ/4 for every edge X. To
bound the probability of the bad events, we use the following form of the Chernoff
Bound.

Theorem 5.4 (see [3]). Let X1, X2, . . . , Xn be independent 0-1 random variables
with Pr [Xi = 1] = pi. Denote X =

∑n
i=1 Xi and μ = E [X]. Then

Pr [X ≤ (1 − β)μ] ≤ exp(−β2μ/2) for 0 < β ≤ 1,

Pr [X ≥ (1 + β)μ] ≤
{

exp(−β2μ/3) for 0 < β ≤ 1,
exp(−β2μ/(2 + β)) for β > 1.

Thus by setting β = 1
2 , the probability that Y is too small can be bounded as

Pr [|Y | ≤ μ/2] ≤ exp(−μ/8).

For each edge X, the random variable |X ∩ Y | is the sum of |X ∩ T | independent
0-1 random variables. The expected value of this sum is μX =

∑
v∈X∩T p(v) =

2ρ
∗/10 ·

∑
v∈X∩T φ(v) ≤ 2ρ

∗/10 ≤ μ/(ρ∗/2), where the first inequality follows from the
fact that φ is a fractional stable set, hence the total weight X can cover is at most 1.
Notice that if ρ∗ is sufficiently large, then the expected size of X ∩ Y is much smaller
than the expected size of Y . We want to bound the probability that |X ∩ Y | is at
least μ/4. Setting β = (μ/4)/μX − 1 ≥ ρ∗/8 − 1, the Chernoff bound gives

Pr
[
|X ∩ Y | ≥ μ/4

]
= Pr

[
|X ∩ Y | ≥ (1 + β)μX

]
≤ exp(−β2μX/(2 + β))

≤ exp(−β2μX/(2β)) = exp(−μ/8 + μX/2) ≤ exp(−μ/16).

Here we assumed that ρ∗ is sufficiently large such that β ≥ 2 (second inequality) and
μX/2 ≤ μ/16 (third inequality) hold. If H has m edges, then the probability that
|Y | ≤ μ/2 holds or an edge X covers at least μ/4 vertices of Y is at most

exp(−μ/8) + m · exp(−μ/16) ≤ (m + 1) exp(−2ρ
∗/10 · ρ∗/32) ≤ m · 2−2Ω(ρ∗)

.(5.1)
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If H satisfies the half-covering property, then for every Y there has to be at least
one edge that covers more than half of Y . Therefore, the upper bound (5.1) cannot

be smaller than 1. This is only possible if m is 22Ω(ρ∗)

, and it follows that ρ∗ =
O(log logm), what we had to show.

The following example shows that the bound O(log logm) is tight in Lemma 5.2.
Fix an integer r, and consider the 2r−1 vertices V := {1, 2, . . . , 2r−1}. We construct
a hypergraph that has not more than 22r

edges and its fractional cover number is at
least r/2. Given a finite nonempty set F of positive integers, define up(F ) to be the
largest �(|F |+1)/2	 elements of this set. For every nonempty subset X of V , add the
edge up(X) to the set system. This results in not more than 22r−1 − 1 edges. (There
will be lots of parallel edges, but let us not worry about that.) Clearly, the set system
satisfies the half-covering property: for every set Y , the set up(Y ) covers more than
half of Y .

We claim that the fractional cover number of the hypergraph is at least r/2. This
can be proved by presenting a fractional stable set of weight r/2. Let the weight of
v1 be 1/2, the weight of v2 and v3 be 1/4, the weight of v4, v5, v6, v7 be 1/8, and
so on. It is easy to see that the total weight assigned is exactly r/2. Furthermore,
observe that the weight of vt is at most 1/(t + 1) (there is equality if t is of the form
2k−1; otherwise vt is strictly smaller). To show that this weight assignment is indeed
a fractional stable set, suppose that the vertices covered by some edge have total
weight of more than 1. Let this edge be up(X) for some subset X of V . Let t be the
smallest element in up(X). Vertex vt has weight of at most 1/(t + 1), and if t is the
smallest element in up(X), then up(X) contains at most t + 1 elements. Therefore,
the total weight of the vertices covered by this edge is at most (t+1)/(t+1) = 1. We
remark that the W[1]-hardness proof in section 7 is essentially based on this example
(see the construction of the enforcer systems in the proof of Proposition 7.2).

Now we are ready to prove the main result of this section.

Theorem 5.5. Closest Substring can be solved in time |Σ|d ·2kd ·dO(d log log k) ·
nO(log log k).

Proof. Let us fix the first substring s′1 ∈ s1 of the solution. We will repeat
the following algorithm for each possible choice of s′1. Since there are at most n
possibilities for choosing s′1, the running time of the algorithm presented below has
to be multiplied by a factor of n, which is dominated by the nO(log log k) term.

The center string s can differ on at most d positions from s′1. Therefore, if we
can find the set P of these positions, then the problem can be solved by trying all the
|Σ||P | ≤ |Σ|d possible assignments on the positions in P . We show how to enumerate
efficiently all the possible sets P .

We construct a hypergraph G over the vertex set {1, . . . , L}. The edges of the
hypergraph describe the possible substrings in the solution. If w is a length L substring
of some string si and the distance of w is at most 2d from s′1, then we add an edge E to
G such that p ∈ E if and only if the pth character of w differs from the pth character
of s′1. Clearly, G has at most n edges, each of size at most 2d. If (s, s′1, . . . , s

′
k) is a

solution, then let H be the partial hypergraph of G that contains only the k−1 edges
corresponding to the k− 1 substrings s′2, . . . , s

′
k. (Note that the distance of s′1 and s′i

is at most 2d, hence G indeed contains the corresponding edges.) Denote by P the
set of at most d positions where s and s′1 differ. Let H0 be the subhypergraph of H
induced by P : the vertex set of H0 is P , and for each edge E of H there is an edge
E ∩ P in H0. Hypergraph H0 is subhypergraph of H and H is partial hypergraph of
G, thus H0 appears in G at P as subhypergraph.
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Closest Substring-2(k, L, d, (s1, . . . , sk))
1. for each substring s′1 of s1 having length L do
2. Construct the hypergraph G on {1, . . . , L}
3. for every hypergraph H0 having ≤ d vertices and ≤ k edges do
4. if H0 has the half-covering property then
5. for every place P where H0 appears in G as subhypergraph do

(Algorithm Find-Subhypergraph of Theorem 4.3)
6. for every string s that differs from s′1 only at P do
7. if maxk

i=1 min{s′i is a substring of si} d(s, s
′
i) ≤ d then

8. s is a solution, STOP.
9. There is no solution, STOP.

Fig. 5.1. Algorithm 2 for Closest Substring.

We say that a solution is minimal if
∑k

i=1 d(s, s
′
i) is minimal. In Proposition

5.6, we show that if the solution (s, s′1, . . . , s
′
k) is minimal, then H0 has the half-

covering property. Therefore, we can enumerate all the possible P ’s by considering
every hypergraph H0 on at most d vertices that has the half-covering property (there
are only a constant number of them), and for each such H0, we enumerate all the
places in G where H0 appears as subhypergraph. Lemma 5.2 ensures that every H0

considered has small fractional cover number. By Lemma 4.3, this means that we
can enumerate efficiently all the places P where H0 appears in G as subhypergraph.
As discussed above, for each such P we can check whether there is a solution where
the center string s differs from s′1 only on P . By repeating this method for every
hypergraph H0 having the half-covering property, we eventually find a solution, if one
exists.

Proposition 5.6. For every minimal solution (s, s′1, . . . , s
′
k), the corresponding

hypergraph H0 has the half-covering property.

Proof. To see that H0 has the half-covering property, assume that for some Y ⊆ P ,
every edge of H0 covers at most half of Y . We show that in this case the solution is
not minimal. Modify s such that it is the same as s′1 on every position of Y ; let s∗ be
the new center string. Clearly, d(s∗, s′1) = d(s, s′1) − |Y |. Furthermore, we show that
this modification does not increase the distance for any i, that is, d(s∗, s′i) ≤ d(s, s′i)
for every i. It follows that s∗ is also a good center string, contradicting the minimality
of the solution.

Let Ei be the edge of H0 corresponding to the substring s′i. This means that
s′1 and s′i differ on Y ∩ Ei, and they are the same on Y \ Ei. Therefore, d(s∗, s′i) ≤
d(s, s′i) + |Y ∩ Ei| − |Y \ Ei|. By assumption, Ei can cover at most half of Y , hence
d(s∗, s′i) ≤ d(s, s′i), as required.

The overall algorithm is presented in Figure 5.1. There are at most n different
possibilities for the string s′1 in step 1. The construction of the hypergraph G in step 2
takes polynomial time. There are not more than 2kd different hypergraphs on at most
d vertices having at most k edges, since there are at most 2d possibilities for each
edge. Therefore, the loop in step 3 is iterated at most 2kd times. In step 4 the half-
covering property can be tested by complete enumeration: we have to test for at most
2d different subsets whether there is an edge that covers more than half of it. If H0

satisfies the half-covering property, then by Lemma 5.2 its fractional cover number is
at most O(log log k). Therefore, by Theorem 4.3, step 5 takes dO(d log log k) ·nO(log log k)

time. If H0 appears at P in G as subhypergraph, then in step 6 we have to try at most
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|Σ|d possible center strings. Testing each center string can be done in polynomial time
(step 7). Therefore, the total running time is n·2kd·dO(d log log k)·nO(log log k)·|Σ|d.

6. Algorithm for Consensus Patterns. The aim of this section is to show
that the problem Consensus Patterns is fixed-parameter tractable in the bounded
alphabet case if the parameter is δ := D/k, the average distance. The algorithm is
very similar to the algorithm of Theorem 5.5. The crucial difference is that here we
can obtain a constant bound on the fractional cover number of the small hypergraphs
H0, instead of the weaker O(log log k) bound coming from the half-covering property.
This means that the exponent of n in the running time of the Find-Subhypergraph

algorithm of Theorem 4.3 is a constant and we obtain a uniformly polynomial algo-
rithm.

Theorem 6.1. Consensus Patterns can be solved in time δO(δ) · |Σ|δ · n9.
Proof. If {s, s′1, . . . , s′k} is a solution for an instance of Consensus Patterns,

then d(s, s′i) ≤ δ for at least one i. Therefore, if there is a solution for the instance,
then it can be found by considering every string s0 that is a length L substring of
some si, and by checking for each such s0 whether there is a solution with d(s, s0) ≤ δ.
Below we describe how to perform this check for a particular s0. There are at most
n possibilities for s0, hence the total running time is at most n times greater than for
a single s0. We will assume that δ ≥ 2; otherwise it is easy to check every possible s
with d(s, s0) ≤ δ.

We construct a hypergraph G over the vertex set {1, . . . , L}. If w is a length
L substring of some string si, then we add an edge E to G such that p ∈ E if and
only if the pth character of w differs from the pth character of s0. (Note that, unlike
in the proof of Theorem 5.5, the hypergraph G can have edges larger than 2d.) If
(s, s′1, . . . , s

′
k) is a solution, then let H be the partial hypergraph of G that contains

only the k edges corresponding to the k substrings s′1, . . . , s
′
k.

Let (s, s1, . . . , sk) be a minimal solution; that is,
∑k

i=1 d(s, s
′
i) is as small as

possible. Denote by P the set of positions where s and s0 differ. Let H0 be the
subhypergraph of H induced by P : the vertex set of H0 is P , and for each edge E
of H there is an edge E ∩ P in H0. Hypergraph H0 is subhypergraph of H and H is
partial hypergraph of G, thus H0 appears in G at P as subhypergraph.

We follow the same path as in the proof of Theorem 5.5. It can be shown that
the fractional cover number of H0 is at most 2 (see the proof of Proposition 6.2
below). Therefore, we can find all the possible places P by enumerating every suitable
hypergraph H0, and by using Theorem 4.3 to enumerate all the places where H0

appears in G as subhypergraph. The problem is that there can be large edges in G,
and the algorithm of Theorem 4.3 can be used only if the size of the edges is bounded
by the parameter. However, we argue that the same technique works even if the large
edges are thrown away from G.

Remove every edge of size greater than 20δ from G (resp., H), let G∗ (resp., H∗)
be the resulting hypergraph, and let H∗

0 be the subhypergraph of H∗ induced by P .
It is clear that H∗

0 is a subhypergraph of G∗. Furthermore, the fractional edge cover
number of H∗

0 can be bounded by a constant.
Proposition 6.2. For every minimal solution (s, s′1, . . . , s

′
k), the corresponding

hypergraph H∗
0 has fractional cover number at most 5/2.

Proof. We claim that every element of P is covered by at least k/2 edges of H0.
Assume that only k′ < k/2 edges of H0 cover some p ∈ P . This means that only
k′ of the strings s′1, . . . , s

′
k differ from s0 at position p. Let us change position p of

the median string s: let this character be the same as the character at position p of
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Consensus Patterns(k, L, δ, (s1, . . . , sk))
1. for each substring s0 of s1, . . . , sk having length L do
2. Construct the hypergraph G∗ on {1, . . . , L}
3. for every hypergraph H∗∗

0 having ≤ δ vertices and ≤ 200 ln δ edges do
4. if every vertex of H∗∗

0 is covered by at least 1/5 part of the edges then
5. for every place P where H∗∗

0 appears in G∗ as subhypergraph do
(Algorithm Find-Subhypergraph of Theorem 4.3)

6. for every string s that differs from s0 only at P do
7. if

∑k
i=1 min{s′i is a substring of si} d(s, s

′
i) ≤ δk then

8. s is solution, STOP
9. There is no solution, STOP

Fig. 6.1. Algorithm for Consensus Patterns.

s0. Now d(s, s′i) decreases for k − k′ > k/2 values of i, and it increases for at most

k′ < k/2 values of i. Therefore,
∑k

i=1 d(s, s
′
i) strictly decreases, contradicting the

minimality of s. This shows that every vertex of H0 is covered by at least k/2 of the
k edges, hence the fractional cover number of H0 is at most 2.

From d(s, s0) ≤ δ and
∑k

i=1 d(s, s
′
i) ≤ D = kδ, it follows that

∑k
i=1 d(s0, s

′
i) ≤

2kδ. Therefore, the total size of the edges in H is at most 2kδ, which means that
there are at most 2k/20 ≤ k/10 edges in H that have size greater than 20δ. Each
element of P is covered by at least k/2 edges of H0, hence even if the edges greater
than 20δ are thrown away, there remain at least k/2 − k/10 = 2k/5 edges in H∗

0 to
cover each element. Therefore, if we set the weight of each edge to (5/2) · (1/k), then
we obtain a fractional edge cover with total weight 5/2.

Proposition 6.2 shows that we can find all the possible places P by enumerating
every hypergraph H∗

0 on δ vertices having fractional cover number at most 5/2, and
then enumerating every place in G∗ where H∗

0 appears. To reduce the number of
hypergraphs H∗

0 that has to be considered, we show that it is sufficient to restrict our
attention to hypergraphs having O(log δ) edges.

Proposition 6.3. Assume δ ≥ 2. If (s, s′1, . . . , s
′
k) is a minimal solution and

H∗
0 is the corresponding hypergraph, then it is possible to select 200 ln δ edges of H∗

0

in such a way that if we delete all the other edges, then the resulting hypergraph H∗∗
0

has fractional cover number at most 5.
Proof. Let k′ ≤ k be the number of edges of H∗

0 . Let us select each edge of H∗
0

independently with probability (150 ln δ)/k′. The expected number of selected edges
is 150 ln δ; from Theorem 5.4 (β = 1/3) it follows that the probability of selecting more
than 200 ln δ edges is at most exp((−150 ln δ)/27) < 1/δ2. We have seen in Proposition
6.2 that each vertex of H∗

0 is covered by at least 2k/5 edges, thus the expected
number of edges that cover a given vertex of H∗∗

0 is at least 60(k/k′) ln δ ≥ 60 ln δ.
Furthermore, by Theorem 5.4 (β = 1/3) the probability that a given vertex of H∗∗

0

is covered by less than 40 ln δ edges is at most exp(−60 ln δ/18) ≤ 1/δ3. Therefore,
with probability at least 1−1/δ2−δ ·1/δ3 > 0, we select a maximum of 200 ln δ edges
and each vertex is covered by at least 40 ln δ edges. This means that the fractional
cover number of H∗∗

0 is at most 5: setting the weight of each edge to 1/(40 ln δ) gives
a fractional edge cover.

The overall algorithm is presented in Figure 6.1. There are at most n different
possibilities for the string s0 in step 1. The rest of the algorithm checks whether there
is a solution where the median string differs from s0 on at most δ positions. The
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construction of the hypergraph G∗ can be done in O(Ln) time in step 2. Since we try
to find solutions with d(s0, s) ≤ δ, it can be assumed that H∗∗

0 has at most δ vertices.
There are not more than 2O(δ ln δ) = δO(δ) different hypergraphs on at most δ vertices
having at most 200 ln δ edges, since there are at most 2δ possibilities for each edge.
Therefore, the loop in step 3 is iterated at most 2O(δ ln δ) times. The test in step 4 is
trivial. Since the fractional cover number of H∗∗

0 is at most 5 and every edge of G∗

has size at most 20δ, step 5 takes δO(δ) · n6L2 time. If H∗∗
0 appears at P in G∗ as

subhypergraph, then in step 6 we have to try at most |Σ|δ possible median strings.
Testing each median string can be done in O(Ln) time (step 7). Therefore, the total
running time is δO(δ) · |Σ|δ · n9.

7. Set balancing. In this section we introduce a new problem called Set Bal-

ancing. The problem is somewhat technical and it is not motivated by practical
applications. However, as we will see it in section 8, the problem is useful in proving
the W[1]-hardness of Closest Substring.

Set Balancing

Input:
A collection of m set systems Si = {Si,1, . . . , Si,|Si|} (1 ≤ i ≤ m)
over the same ground set A and a positive integer d. The size of each
set Si,j is at most �, and there is an integer weight wi,j associated
to each set Si,j .

Parameters:
m, d, �

Task:
Find a set X ⊆ A of size at most d and select a set Si,ai ∈ Si for
every 1 ≤ i ≤ m in such a way that

(7.1) |X � Si,ai | ≤ wi,ai

holds for every 1 ≤ i ≤ m.

Here X �Si,ai
denotes the symmetric difference (X \Si,ai

)∪ (Si,ai
\X). We have

to select a set X and a set from each set system in such a way that the balancing
requirement (7.1) is satisfied: every selected set is close to X. The weight wi,j of
each set Si,j prescribes the maximum distance of X from this set. The smaller the
weight, the more restrictive the requirement. The distance is measured by symmetric
difference; therefore, adding an element outside Si,j to X can be compensated by
adding an element from Si,j to X. If (7.1) holds for some set Si,ai , then we say that
Si,ai is balanced, or X balances Si,ai .

It can be assumed that the weight of each set is at most � + d; otherwise the
requirement would be automatically satisfied for every possible X. If a set appears in
multiple set systems, then it can have different weights in the different systems.

In this section we show that Set Balancing is W[1]-hard even when all of m,
d, and � are parameters. It is not very difficult to show that the problem is W[1]-
hard if we consider the variant of the problem where the size of X has to be exactly
d. However, the proof becomes significantly more complicated if we have only the
requirement |X| ≤ d. Intuitively, now the problem is that we have to ensure that the
reduction does not construct instances that can be solved by a “small” X, since such
an X could be found with an exhaustive search. An easy way to ensure that X is
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large would be to have a set that can be balanced only by selecting d elements from
this set. However, this would reduce the search space to the d-element subsets of this
set, and the problem would be easy, since there are at most

(
�
d

)
such sets. The main

combinatorial challenge in the proof is to ensure that there are no small solutions, but
there are lots of possible sets that could form a solution. It should be the combined
effect of several set systems that prevent |X| from being small. Furthermore, each
set in a set system should be useful for many possible solutions, since the set systems
cannot be too large.

Theorem 7.1. Set Balancing is W[1]-hard with combined parameters m, d,
and �.

Proof. The proof is by reduction from the Maximum Clique problem. Assume
that a graph G(V,E) is given with n vertices and e edges; the task is to find a

clique of size t. It can be assumed that n = 22C

for some integer C: we can ensure
that the number of vertices has this form by adding at most |V |2 isolated vertices.

Furthermore, we can assume that C ≥ t (i.e., n ≥ 22t

): if n < 22t

, then Maximum

Clique can be solved directly in time O((22t

)t ·n) by enumerating every set of size t.

The ground set A of the constructed instance of Set Balancing is partitioned
into t groups A0, . . . , At−1. The group Ai is further partitioned into 2i blocks Ai,1,

. . . , Ai,2i ; the total number of blocks is 2t − 1. The block Ai,j contains n1/2i

= 22C−i

elements. Set d := 2t − 1. Later we will argue that it is sufficient to restrict our
attention to solutions where X contains exactly one element from each block Ai,j .
Let us call such a solution a standard solution. We construct the set systems in such a
way that there is one-to-one correspondence between the standard solutions and the
size t cliques of G. In a standard solution X contains exactly 2i elements from group
Ai, and there are (n1/2i

)2
i

= n different possibilities for selecting these 2i elements
from the blocks of Ai. Let Xi,1, . . . , Xi,n be these n different 2i-element sets. These
n possibilities will correspond to the choice of the ith vertex of the clique.

The set systems are of two types: the verifier systems and the enforcer systems.
The role of the verifier systems is to ensure that every standard solution corresponds
to a clique of size t, while the enforcer systems ensure that there are only standard
solutions.

For each 0 ≤ i1 < i2 ≤ t − 1 the verifier system Si1,i2 ensures that the i1th and
the i2th vertices of the clique are adjacent. The set system Si1,i2 contains 2e sets of
size 2i1 +2i2 each. If vertices u and v are adjacent in G, then Xi1,u∪Xi2,v is in Si1,i2 .
The weight of every set in Si1,i2 is (2t − 1) − (2i1 + 2i2).

Proposition 7.2. There is a standard solution if and only if G has a size t
clique.

Proof. Assume that v0, . . . , vt−1 is a clique in G. Let

X =

t−1⋃
i=0

Xi,vi .

The size of X is
∑t−1

i=0 2i = 2t − 1. Select the set Xi1,vi1
∪ Xi2,vi2

from the verifier

system Si1,i2 . This set is balanced by X: it is a size 2i1 + 2i2 subset of X having
weight (2t − 1) − (2i1 + 2i2).

To prove the other direction, assume now that there is a standard solution X. In
a standard solution, X ∩Ai is a 2i-element set Xi,vi for some vi. We claim that these
vi’s form a size t clique in G.
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Suppose that for some i1 < i2 vertices vi1 and vi2 are not connected by an edge
(including the possibility vi1 = vi2). Consider the set S ∈ Si1,i2 selected in the
solution. The size of X is 2t − 1 in a standard solution, thus the set X contains at
least 2t − 1 − (2i1 + 2i2) elements outside the set S. Therefore, S can be balanced
only if all the 2i1 + 2i2 elements of S are in X. Assume that the set S selected from
Si1,i2 is Xi1,u∪Xi2,v. Now Xi1,u∪Xi2,v ⊆ X, which means that u = vi1 and v = vi2 .
By construction, if Xi1,u ∪Xi2,v is in Si1,i2 , then u and v are adjacent, hence vi1 and
vi2 are indeed neighbors.

The job of the enforcer systems is to ensure that every solution of weight at most
d = 2t − 1 is standard. The 2t − 1 blocks Ai,j are indexed by two indices i and j. In
the following, it will be more convenient to index the blocks by a single variable. Let
B1, . . . , B2t−1 be an ordering of the blocks such that B1 is the only block of group
A0, the blocks B2, B3 are the blocks of A1, the next four blocks after that are the
blocks of A2, etc.

A naive way of constructing the enforcer set systems would be to have for each
block Bi a corresponding set system Si that contains |Bi| one-element sets: there is
one set of weight 2t−2 for each element of Bi. This ensures that if a solution contains
at least one element from every block other than Bi (i.e., it contains at least 2t − 2
elements outside Bi), then it has to contain an element of Bi as well (otherwise the
symmetric difference is at least 2t − 1). The problem with this construction is that
every set of Si is balanced by the solution X = ∅, hence such systems cannot ensure
that every solution is standard.

There are 22t−1 − 1 enforcer set systems: there is a set system SF corresponding
to each nonempty subset F of {1, 2, . . . , 2t − 1}. The job of SF is to rule out the
possibility that a solution X contains no elements from the blocks indexed by F , but
X contains at least one element from every other block. Clearly, these systems will
ensure that no block is empty in a solution, hence every solution of weight 2t − 1 is
standard. One possible way of constructing the system SF is to have one set of size
|F | and weight 2t − 1 − |F | for each possible way of selecting one element from each
block indexed by F . Clearly, this makes it impossible to have at least one element in
each of the 2t − 1 − |F | blocks outside F , but none in F . Now the problem is that
the size of SF can be too large, in particular when F = {1, 2, . . . , 2t − 1}. We use a
somewhat more complicated construction to keep the size of the systems small.

Recall the definition of up(F ) from section 5: given a finite set F of positive
integers, up(F ) is defined to be the largest �(|F | + 1)/2	 elements of this set. The
enforcer system corresponding to F is defined as

(7.2) SF =
∏

p∈up(F )

Bp.

That is, we consider the blocks indexed by the upper half of F , and put into SF all
the possible combinations of selecting one element from each block. Let the weight of
each set in SF be 2t − 1 − |up(F )|. Notice that it is possible that up(F1) = up(F2)
for some F1 �= F2, which means that for such F1 and F2 the systems SF1 and SF2

are in fact the same. However, we do not care about that.
We have to verify that these set systems are not too large; i.e., they can be

constructed in uniformly polynomial time.
Proposition 7.3. For every nonempty F ⊆ {1, 2, . . . , 2t−1}, the enforcer system

SF contains at most n2 sets.
Proof. Let x be the smallest element of up(F ), and assume that 2p ≤ x < 2p+1
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for some integer p. There is one block of size n, there are 2 blocks of size n1/2, . . . ,
there are 2i blocks of size n1/2i

, hence the size of B2p is n1/2p

. The size of the blocks
is decreasing, thus all the sets in the product (7.2) are of size at most n1/2p

. If the
smallest element of up(F ) is x, then it can contain at most x + 1 elements. This
means that we take the direct product of at most x+1 sets of size at most n1/2p

each.
Therefore, the total number of sets in SF is at most (n1/2p

)x+1 ≤ (n1/2p

)2
p+1

=
n2.

The following proposition completes the proof of the first direction: if the solu-
tion is standard, then we can select a set from each enforcer system. Together with
Proposition 7.2, it follows that if there is a clique of size t, then there is a (standard)
solution for the constructed instance of Set Balancing.

Proposition 7.4. If X is a standard solution, then each SF contains a set that
is balanced by X.

Proof. For the enforcer system SF , let us select the set

SF = X ∩
⋃

p∈up(F )

Bp.

That is, SF contains those elements of X that belong to the blocks indexed by up(F ).
The set SF is a size |up(F )| subset of X. Therefore, |X � SF | = 2t − 1 − |up(F )|,
which is exactly the weight of the selected set. Thus SF is balanced.

On the other hand, if there is a solution for the constructed instance of Set

Balancing with |X| ≤ d = 2t − 1, then this solution has to be standard, and by
Proposition 7.2 there is a clique of size t in G. This completes the proof of the second
direction.

Proposition 7.5. If |X| ≤ 2t − 1, then X contains exactly one element from
each block.

Proof. Assume first that X does not contain elements from some of the blocks.
Let F contain the indices of those blocks that are disjoint from X. This means that
X contains at least one element from each block not in F , hence |X| ≥ 2t − 1 − |F |.
Assume that some set S is selected from SF in the solution. This set contains
elements only from blocks indexed by up(F ) ⊆ F , hence S is disjoint from X. Thus
|X �S| = |X|+ |S| ≥ 2t−1−|F |+ |up(F )| > 2t−1−|up(F )|, which means that S is
not balanced (here we used |F | − |up(F )| < |up(F )|). Therefore, each block contains
at least one element of X. Since there are 2t − 1 blocks, this is only possible if each
block contains exactly one element of X.

The distance d = 2t − 1 is a function of the original parameter t. The number m
of the constructed set systems is

(
t
2

)
+ 22t−1 − 1, which is also a function of t. Each

set in the constructed systems has size at most � := 2t−1. We have seen that the size
of each set system is polynomial in n, hence the reduction is a correct parameterized
reduction.

8. Hardness of Closest Substring. In this section we show that Closest

Substring is W[1]-hard with combined parameters k and d. The reduction is very
similar to the reduction presented in [14], where it is proved that problem is W[1]-hard
with parameter k only. As in that reduction, the main technical trick is that each
string si is divided into blocks and we ensure that the string s′i is one of these blocks
in every solution. However, here the reduction is from Set Balancing, and not from
Maximum Clique. This allows us to construct an instance of Closest Substring

where the distance parameter d is bounded by a constant.
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Theorem 8.1. Closest Substring is W[1]-hard with parameters d and k, even
if Σ = {0, 1}.

Proof. The reduction is from the Set Balancing problem, whose W[1]-hardness
was shown in section 7. Assume that m set systems Si = {Si,1, . . . , Si,|Si|} and an
integer d are given. Let 0 ≤ wi,j ≤ d+ � be the weight of Si,j in Si, and assume that
each set has size at most �. We construct an instance of Closest Substring with
distance parameter d′ := d+ �, where d′ + 1 strings si,1, si,2, . . . , si,d′+1 correspond to
each set system Si, and there is one additional string s0 called the template string.
Thus there are k := (d′ + 1)m + 1 strings in total.

Set L := 6d′ + 3d′(3d′ + 1) + |A|+ d′ − d+ 2d′m(d′ + 1), where A is the common
ground set of the set systems. The template string s0 has length L, hence s′0 = s0

in every solution. The string si,j is the concatenation of blocks Bi,j,1, . . . , Bi,j,|Si| of
the same length L, and each block corresponds to a set in Si. We will ensure that
in a solution the substring s′i,j is one complete block from si,j . Therefore, selecting
s′i,j from si,j in the constructed Closest Substring instance plays the same role as
selecting a set Si from Si in Set Balancing.

Each block Bi,j,k of the string Si,j is the concatenation of four parts: the front tag,
the core, the complete tag, and the back tag. The front tag is the same in every block:
13d′

(103d′
)3d

′
13d′

. The core corresponds to the ground set A in the Set Balancing

problem. The length of the core is |A|, and the pth character of the core in block
Bi,j,k is 1 if and only if the set Si,k ∈ Si contains the pth element of A. The complete

tag is 1d
′−d in every block. The back tag is the concatenation of m(d′ + 1) segments

Ci,j (1 ≤ i ≤ m, 1 ≤ j ≤ d′ + 1) (the order in which these segments are concatenated
will not be important). The length of each segment is 2d′. In block Bi,j,k of string
si,j the back tag contains 1’s only in segment Ci,j : there is 1 on the first d′−wi,k ≥ 0
positions of Ci,j ; the rest of Ci,j is 0. This completes the description of the strings
si,j . Notice that the blocks Bi,j1,k and Bi,j2,k differ only in the back tag. The length
L template string s0 is similar to the blocks defined above: it has the same front tag
as all the other blocks, but its core, complete tag, and back tag contain only 0’s.

The first direction of the proof is shown in the following proposition.

Proposition 8.2. If the Set Balancing instance has a solution, then the
constructed instance of Closest Substring also has a solution.

Proof. Let X ⊆ A and S1,a1 ∈ S1, . . . , Sm,am ∈ Sm be a solution of Set Bal-

ancing. Let the center string s be the concatenation of the front tag, the incidence
vector of X, the string 1d

′−d, and the string 02d′m(d′+1). The distance of s and s0 is
|X| + d′ − d ≤ d′: the distance is |X| on the core and d′ − d on the complete tag.
Furthermore, we claim that the block Bi,j,ai in string si,j is at distance at most d′

from s. If we can show this, then it follows that Closest Substring has a solution.

The front tag of Bi,j,ai is the same as the front tag of s. In the core the distance
is the symmetric difference of X and Si,ai

. The complete tag is the same in s and
Bi,j,ai . The back tag of s is all 0, while the back tag of Bi,j,ai

contains d′ − wi,k

characters 1 (in the segment Ci,j). Therefore,

d(s,Bi,j,ai) = |X � Si,ai | + d′ − wi,k ≤ d′,

where the inequality follows from the fact that X balances the set Si,ai , that is,
|X � Si,ai | ≤ wi,k.

To prove the reverse direction, first we show that each substring s′i,j has to be a
complete block of the string si,j . By the triangle inequality, d(s0, s

′
i,j) = d(s′0, s

′
i,j) ≤
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d(s′0, s) + d(s, s′i,j) ≤ 2d′ has to hold in every solution. We show that d(s0, s
′
i,j) ≤ 2d′

implies that s′i,j is a complete block.

Proposition 8.3. If d(s0, s
′
i,j) ≤ 2d′ for some substring s′i,j of si,j, then s′i,j is

the block Bi,j,b for some b.

Proof. Assume that s′i,j starts on the pth character of some block Bi,j,b. This
means that s′i,j contains the last L − p + 1 characters from Bi,j,b and the first p − 1
characters from the next block Bi,j,b+1. We show that if p �= 1, then d(s0, s

′
i,j) > 2d′.

Denote by f = 6d′ + 3d′(3d′ + 1) the length of the front tag. Assume first that
3d′ < p ≤ L− f . In this case the first 3d′ characters of Bi,j,b+1 (all of them are 1’s)
are aligned with characters L+1− p, . . . , L+3d′− p of s0 (all of them are 0’s), hence
d(s0, s

′
i,j) > 2d′ follows. Assume now that L − f < p ≤ L − 3d′; a similar argument

shows that the last 3d′ characters in the front tag of Bi,j,b+1 cause 3d′ mismatches. If

1 < p ≤ 3d′, then the 1’s in the (103d′
)3d

′
part of the front tag are not aligned, which

increases the difference to more than 2d′. The same thing happens if L− 3d′ < p ≤ L
holds. This concludes the proof that p = 1; that is, the string s′i,j is one complete
block Bi,j,b.

Since the template string and each block begins with the front tag, it cannot hurt
if the center string also begins with the front tag.

Proposition 8.4. If there is a solution for the constructed instance of Closest

Substring, then there is such a solution where the front tag of the center string s is
the same as the front tag of s0.

It can be assumed that the back tag of the center string s contains only 0’s.

Proposition 8.5. If there is a solution for the constructed instance of Closest

Substring, then there is such a solution where the back tag of the center string s
contains only 0’s.

Proof. Let s be the center string of a solution. Since the back tag of s0 contains
only 0’s, in the back tag of s at most d′ characters can be 1. This means that with
the exception of at most d′ segments, the segments of the back tag contain only 0’s.
Thus for every 1 ≤ i ≤ m, there is a 1 ≤ xi ≤ d′ + 1 such that segment Ci,xi of the
back tag of s contains only 0’s. Let s∗ be the same as s but with the back tag set to
0’s. It is clear that d(s∗, s0) ≤ d(s, s0) ≤ d′: the back tag of s0 is empty, hence setting
the back tag to 0 cannot increase the distance.

We claim that a block can be selected from each string si,j in such a way that the
distance of each selected block is at most d′ from s∗. For the string si,xi we can select
the same s′i,xi

as before: the back tag of s′i,xi
contains 1’s only in segment Ci,xi , but s

does not contain any 1’s in Ci,xi
. This means that setting to 0 the back tag of s does

not increase the distance between s and s′i,xi
. Assume that s′i,xi

is block Bi,xi,t for
some t. For every j �= xi, select block Bi,j,t from the string si,j . The only difference
between blocks Bi,xi,t and Bi,j,t is in the back tag: they have the same number of 1’s
in the back tag, but in different segments. However, s∗ has only 0’s in the back tag,
hence d(Bi,j,t, s

∗) = d(Bi,xi,t, s
∗) ≤ d′. Therefore, s∗ and the selected blocks form a

solution where the back tag of the center string s∗ contains only 0’s.

We can assume that the complete tag is 1d
′−d in s.

Proposition 8.6. If there is a solution for the constructed instance of Closest

Substring, then there is such a solution where the complete tag of the center string
s contains only 1’s.

Proof. Let s be a solution where the number of 0’s in the complete tag of the center
string is minimal. Assume first that there is a 1 in the core of s. In this case replace
this 1 with a 0, and set one of the 0’s in the complete tag to 1. This modification
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does not change the difference of s from s0. Furthermore, it does not increase the
distance of s from s′i,j : replacing the 0 with a 1 in the complete tag decreases the
distance, while replacing the 1 with 0 in the core may or may not increase the distance.
Therefore, the new center string contradicts the minimality of s.

Assume now that the core of s contains only 0’s. We have already seen that the
front tag of s is the same as the front tag of s0 (Proposition 8.4), and the back tag
contains only 0’s (Proposition 8.5). Therefore, s differs from s0 only in the complete
tag. This means that in the complete tag of s we can replace every 0 with 1: the
distance between s and s0 increases only to d′−d, while the distance decreases between
s and every string s′i,j .

The proofs of Propositions 8.4–8.6 are independent in the sense that we can
assume that there is a solution where the center string s satisfies all three requirements
at the same time. Assuming that s is of this form, it is not difficult to prove the
converse of Proposition 8.2.

Proposition 8.7. If there is a solution for the constructed instance of Closest

Substring, then there is a solution for the Set Balancing problem.
Proof. Consider a solution where the complete tag of s contains only 1’s, and the

back tag of s contains only 0’s. Define the set X ⊆ A based on the core of s: let an
element of A be in X if and only if the corresponding character is 1 in the core of s.
The string s differs from the template string s0 at |X| positions in the core and at
d′ − d positions in the complete tag. Since d(s, s0) ≤ d′, it follows that |X| ≤ d.

We claim that for every 1 ≤ i ≤ s, a set can be selected from Si that is balanced
by X. Assume that s′i,1 is the block Bi,1,t of si,1 for some t. We show that Si,t ∈ Si

is balanced by X. Let us determine the distance d(Bi,1,t, s), which is by assumption
at most d′. In the core, the two strings differ on the symmetric difference of Si,t and
X. The strings do not differ on the complete tag, but they differ on every position of
the back tag where Bi,1,t is 1. There are exactly d′ − wi,t such positions, hence

d(s, s′i,j) = |X � Si,k| + d′ − wi,t ≤ d′,

which means that |X � Si,t| ≤ wi,t and the set Si,t is balanced.
Propositions 8.2 and 8.7 together prove the correctness of the reduction.
Putting together Theorems 7.1 and 8.1 gives a two-step reduction from Maxi-

mum Clique to Closest Substring. Let us follow how the parameters depend on
each other during this reduction. If an instance of Maximum Clique is given with
parameter t, then Theorem 7.1 constructs an instance of Set Balancing with the
following parameters:

d := 2t − 1,

m :=

(
t

2

)
+ 22t−1 − 1 = 22O(t)

,

� := 2t−1.

Theorem 8.1 transforms this instance into an instance of Closest Substring with
the following parameters:

k := (d + � + 1)m + 1 = 22O(t)

,

d′ := d + � = 2O(t).

Theorem 3.3 gives an |Σ|d(log d+2)nlog d+O(1) time algorithm for Closest Sub-

string and Theorem 5.5 gives an algorithm with running time 2kd · dO(d log log k) ·
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nO(log log k) · |Σ|d. We argue that in some sense these algorithms are best possible:
the exponent of n cannot be improved to o(log d) or to o(log log k) (modulo some
complexity-theoretic assumptions).

Assume that there is an f1(k, d)·no(log d) time algorithm for Closest Substring.
We can construct an algorithm for Maximum Clique by reducing it to Closest

Substring and using our assumed algorithm for the latter problem. The running

time of this algorithm for finding a size t clique is f1(k, d) · no(log d) = f1(2
2O(t)

, 2t) ·
no(log 2t) = f ′

1(t) · no(t) (it can be assumed that the running time of the reduction
to Closest Substring is dominated by the time required to solve the Closest

Substring instance.) By a result of [9], the existence of an f ′
1(t) ·no(t) algorithm for

Maximum Clique would imply that n-variable 3-Sat can be solved in 2o(n) time; i.e.,
the Exponential Time Hypothesis would be violated. Therefore, it is highly unlikely
that there is an algorithm for Closest Substring with o(log d) in the exponent.

Corollary 8.8. There is no f1(k, d) · no(log d) time algorithm for Closest

Substring, unless n-variable 3-Sat can be solved in time 2o(n).

Similarly, an f2(k, d) · no(log log k) time algorithm for Closest Substring would

imply that there is an f2(2
2O(t)

, 2t) · no(log log 22O(t)
) = f ′

2(t) · no(t) algorithm for Max-

imum Clique.

Corollary 8.9. There is no f2(k, d) · no(log log k) time algorithm for Closest

Substring, unless n-variable 3-Sat can be solved in time 2o(n).

In our reduction from Maximum Clique to Closest Substring, the blow-up of
the parameters is unusually large: double exponential. It might seem that with some
more careful construction we could give a simpler reduction, where the parameters of
the constructed instance are smaller. However, the connection with subexponential
algorithms shows that the double exponential increase cannot be avoided, i.e., it is
a necessary part of any reduction from Maximum Clique to Closest Substring.
Assume that there is an f(t) · nc time parameterized reduction where d = g1(t) and

k = g2(t) = 22o(t)

. This reduction and the h(k, d) · nO(log log k) time algorithm of
Theorem 5.5 would give an algorithm for Maximum Clique with running time

f(t)nc + h(g1(t), g2(t)) · (f(t)nc)O(log log g2(t))

= h′(t) · nO(log log 22o(t) ) = h′(t) · no(t),

which is not possible, unless 3-Sat has subexponential algorithms.

Cesati and Trevisan [7] and Bazgan [4] have shown that if a problem is W[1]-
hard, then the corresponding optimization problem cannot have an EPTAS (i.e., a
PTAS with running time f(ε) · nc), unless FPT = W[1]. Let us recall the argument
here. Assume that there is an approximation scheme with running time f(ε) · nc for
Closest Substring. Running the algorithm with ε = 1/2k decides whether there
is a solution with d ≤ k: if there is such a solution, then the approximation scheme
always produces a solution with d at most (1 + ε)k < k + 1. This would imply an
f(1/2k) ·nc algorithm for Closest Substring, and it would follow that the problem
is fixed-parameter tractable, which is not possible, unless FPT = W[1].

We can push this argument a bit further: it can be shown that there is no PTAS
with running time f(ε) · no(log 1/ε). The same reasoning as in the previous paragraph
shows that such a PTAS would imply an f(1/2k) · no(log 2k) algorithm for Closest

Substring. In Corollary 8.8, we have seen that this is not possible, unless there are
subexponential algorithms for 3-Sat.
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Corollary 8.10. There is no f(ε) · no(log 1/ε) time PTAS for Closest Sub-

string, unless n-variable 3-Sat can be solved in time 2o(n).

The lower bound of Corollary 8.10 does not match the known approximation
schemes for the problem. Using a different approach, Andoni, Indyk, and Pǎtraşcu
[2] proved an essentially tight lower bound. However, in a strict technical sense, their
lower bound is not directly comparable with Corollary 8.10.

9. Conclusions. We have presented algorithms and complexity results for two
string matching problems, Closest Substring and Consensus Patterns. We
have proved that Closest Substring parameterized by the distance parameter d
and by the number of strings k is W[1]-hard, even if the alphabet is binary. This
improves the previous result of [14], where it is proved that the problem is W[1]-hard
with parameter k only (and binary alphabet). Our hardness result also improves [20],
where it is proved that Distinguishing Substring Selection (a generalization
of Closest Substring) is W[1]-hard with parameters k and d (again with binary
alphabet). In our reduction we used some of the techniques from these results, but
new ideas were also required. In particular, we had to ensure that in the constructed
instance of Closest Substring there is no solution where the center string is very
close to some substring. This is easy to ensure if d is unbounded, or if we can use the
additional features of Distinguishing Substring Selection. However, if d is a
parameter, then we have to develop new combinatorial machinery to make sure that
no solution can be close to some substring.

The W[1]-hardness of a problem is usually interpreted as evidence that the prob-
lem is unlikely to be fixed-parameter tractable; that is, the parameter has to appear
in the exponent of n. Furthermore, using recent connections with subexponential
algorithms, we can even give a lower bound on the exponent of n. Our reduction
for Closest Substring is “weak” in the sense that the parameters are significantly
increased (exponentially and double exponentially). Therefore, we obtain only weak
lower bounds on the exponent of n: all we can show is that the exponent cannot
be o(log d) or o(log log k). However, it turned out that these bounds are tight: we
presented two algorithms where the exponent of n is O(log d) and O(log log k), re-
spectively. The second algorithm is based on some surprising connections with the
extremal combinatorics of hypergraphs. We have introduced and investigated the
half-covering property, which played an important role in the algorithm. Further-
more, we have shown that all the copies of hypergraph H in hypergraph G can be
efficiently found if H has small fractional cover number. This result might be useful
in some other applications as well. More generally, the fractional cover number and
Shearer’s lemma (which is the main combinatorial idea behind Theorem 4.1 and hence
behind Theorem 4.3) can be useful algorithmic tools in other contexts; see [22].

The same hypergraph techniques can be used in the case of the Consensus

Patterns problem. However, the combinatorial structure of this problem is slightly
different, and this slight difference allows us to obtain a uniformly polynomial time
algorithm with running time f(|Σ|, δ) · n9. Therefore, in the constant alphabet case
the problem is fixed-parameter tractable with parameter δ (and also with the larger
parameter D). This resolves another open question from [14].

The algorithms of Theorems 5.5 and 6.1 are based on the same idea: we want to
enumerate all the “small” places P in a large hypergraph G that are “well-covered” in
a certain sense. Our algorithms do this in a somewhat cumbersome way: first every
small well-covered hypergraph is enumerated, and then for each such H, the algorithm
enumerates all the places where H appears in G. It might be possible to do this in
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a more direct and elegant way. What we need is an algorithm that enumerates every
maximal subset of vertices having the property that it can be fractionally covered
by weight k with the running time being something like nO(k). Developing such an
algorithm could improve the running time of our algorithms, and, more importantly,
would give us more insight into the nature of fractional edge covers.

Our results present an example where parameterized complexity and subexponen-
tial algorithms are closely connected. First, a weak parameterized reduction might
be the sign that some kind of subexponential algorithm is possible for the problem.
On the other hand, a parameterized reduction can be used to show the optimality of
a subexponential algorithm. It is possible that this interplay between parameterized
complexity and subexponential algorithms appears in the case of some other problems
as well.

Acknowledgments. I’m grateful to Mike Fellows for directing my attention to
this problem and to Ildi Schlotter for reading the manuscript.
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Abstract. We develop approximation algorithms for the problem of placing replicated data in
arbitrary networks, where the nodes may both issue requests for data objects and have capacity for
storing data objects so as to minimize the average data-access cost. We introduce the data placement
problem to model this problem. We have a set of caches F , a set of clients D, and a set of data
objects O. Each cache i can store at most ui data objects. Each client j ∈ D has demand dj for
a specific data object o(j) ∈ O and has to be assigned to a cache that stores that object. Storing
an object o in cache i incurs a storage cost of fo

i , and assigning client j to cache i incurs an access
cost of djcij . The goal is to find a placement of the data objects to caches respecting the capacity
constraints, and an assignment of clients to caches so as to minimize the total storage and client
access costs. We present a 10-approximation algorithm for this problem. Our algorithm is based
on rounding an optimal solution to a natural linear-programming relaxation of the problem. One
of the main technical challenges encountered during rounding is to preserve the cache capacities
while incurring only a constant-factor increase in the solution cost. We also introduce the connected
data placement problem to capture settings where write-requests are also issued for data objects, so
that one requires a mechanism to maintain consistency of data. We model this by requiring that
all caches containing a given object be connected by a Steiner tree to a root for that object, which
issues a multicast message upon a write to (any copy of) that object. The total cost now includes
the cost of these Steiner trees. We devise a 14-approximation algorithm for this problem. We show
that our algorithms can be adapted to handle two variants of the problem: (a) a k-median variant,
where there is a specified bound on the number of caches that may contain a given object, and (b) a
generalization where objects have lengths and the total length of the objects stored in any cache
must not exceed its capacity.
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1. Introduction. Consider a distributed network, some of whose nodes need
to periodically access certain data objects, and some of whose nodes have storage
capacity and may serve as caches to store data objects thereby reducing the cost of
accessing data objects. For example, one could have a network of distributed caches
and/or processors in a large-scale information system or computing environment. A
powerful paradigm for improving performance, which has been explored in several
studies [10, 5, 2, 28], is cooperative caching, wherein the caches cooperate in making
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storage decisions and in serving each other’s requests. (Cooperation is of course likely
to be the default mode under centralized control, where all the network nodes are
under the control of a single entity, e.g., as in an organization’s local area network.)
Clearly, cooperation has the potential to improve system performance by reducing
average access cost and improving storage-space utilization. A basic problem that
arises in such a cooperative setup is the following: given a cost function specifying
the cost of accessing an object stored at one location from another, and the access
pattern of each node for each object, determine a placement or mapping of the data
objects to caches so as to minimize the average cost of accessing the data objects.

We abstract this problem via the following mathematical formulation, which we
call the data placement problem. We are given a set of caches F , a set of data objects
O, and a set of clients D. Each cache i ∈ F has a capacity ui that limits the total
number of data objects that may be stored in the cache. Each client j ∈ D has
demand dj for a specific data object o(j) ∈ O and has to be assigned to a cache
that stores that object. Storing an object o in cache i incurs a storage cost of fo

i ,
and assigning client j to cache i incurs an access cost of djcij proportional to the
“distance” cij between i and j. The storage costs could be used to model the cost of
realizing a placement; e.g., the cost fo

i might represent the cost of expunging some
items from the cache in order to free up storage space. The data placement problem
seeks a placement of the data objects to caches that respects the cache capacities, and
an assignment of clients to caches so as to minimize the total storage and client access
costs. More precisely, we want to determine a set of objects O(i) ⊆ O to place in each
cache i ∈ F satisfying |O(i)| ≤ ui and assign each client j to a cache i(j) that stores
object o(j) (i.e., o(j) ∈ O(i(j))) so as to minimize

∑
i∈F

∑
o∈O(i) f

o
i +

∑
j∈D djci(j)j .

As in several previous studies, especially on facility location [5, 2, 37, 34, 7, 6], we
assume that the caches and clients are located in a common metric space, so the
distances cij form a metric.

More generally, each object o ∈ O may have a length lo, and the capacity ui of
cache i ∈ F now bounds the total length of data objects that may be stored in the
cache. The access cost of an object is weighted by its length, so if client j is assigned
to cache i, it incurs an access cost of dj lo(j)cij . Unless otherwise stated, we will use the
data placement problem to denote the problem with unit (or, equivalently, uniform)
object lengths.

The data placement problem can also be motivated from a facility-location per-
spective. In a typical facility-location setting, we are given a set of facilities with
facility-opening costs and a set of clients with demands, and we want to open facilities
and assign clients to open facilities so as to minimize the sum of the facility-opening
costs and client-assignment costs. In various such applications, the clients are differ-
entiated according to the kind of service they require, and in order to satisfy a client
we need to assign (the demand of) the client to a facility where the service required
by it has been “installed” (so that the facility can provide this service). The data
placement problem can be used to abstract such settings, wherein the caches represent
facilities and the objects correspond to the different services required by the clients;
the storage cost models the cost of installing service at a given facility, and the cache
capacity imposes a restriction on the number of services that may be installed at a
facility. Shmoys, Swamy, and Levi [35] and Ravi and Sinha [33] introduced problems
closely related to the data placement problem, motivated by such facility-location
applications.

The data placement problem is a generalization of the metric uncapacitated facility
location (UFL) problem and, hence, is APX-hard. Moreover, as we show in section 6
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by a reduction from metric UFL, the problem (with uniform object lengths) remains
APX-hard even when there are no storage costs.

Our results and techniques. Our main result (section 3) is a 10-approximation
algorithm for the data placement problem. The algorithm we present here is an
improvement over the approximation algorithm described in [3]. For the benefit of
the reader, in section 1.1 we briefly sketch the differences between this algorithm and
the one in [3].

Our algorithm is based on rounding an optimal solution to a natural linear-
programming (LP) relaxation of the problem. Observe that the placement problem
for each individual object is a UFL instance; however, these instances are coupled
due to the cache-capacity constraints, which is what makes the problem hard. One
of the main technical challenges faced in the rounding is to preserve the cache ca-
pacities while losing only a constant factor in the approximation ratio. Despite the
similarity with UFL, hard capacities make it quite difficult to apply the standard
rounding ideas underlying the design of approximation algorithms for UFL. All LP-
based algorithms for UFL either employ filtering [26, 37] or use the dual to bound the
solution cost [8, 18, 17, 6]. Filtering typically involves blowing up the LP variables,
thereby violating the cache capacities, and the dual of the LP relaxation of the data
placement problem contains negative variables (corresponding to the primal capacity
constraints), which presents a serious obstacle to using the dual to bound the solution
cost. Instead, we use the techniques developed by Charikar et al. [7] for the k-median
problem.

Our algorithm proceeds in two phases. In the first phase, we build upon a clus-
tering method introduced by Charikar et al. (Step 1 in [7]) and round the LP solution
to a half-integral solution. In the second phase of our algorithm, we use the Shmoys–
Tardos–Aardal clustering method [37] without any filtering to cluster the demand-
nodes for each object and obtain a solution with the property that for every object
o and cache i, there is at most one demand-node for o that is served by i. The key
observation that allows us to do away with the problematic filtering step is that, in a
half-integral solution, the distance between a client and any cache serving it fraction-
ally is already bounded relative to its access cost in the half-integral solution. Once
we have the aforementioned property, we can view the fractional solution as a feasi-
ble flow to a minimum-cost flow problem with integral capacities. By the integrality
property of flows one can now extract an integer solution of no greater cost. This
algorithm and its analysis are described in section 3.

The formulation of the data placement problem appears most suitable for applica-
tions where objects are rarely written. In a setting where write-requests are issued for
data objects, one needs to have a separate mechanism to maintain consistency among
the replicas of an object. In section 4, we formulate the connected data placement
problem, which incorporates this aspect of data management (which is not captured
by the data placement problem). As proposed by Krick, Räcke, and Westermann
[22] in the context of another caching problem, we model this by requiring that, for
every object o, all caches containing o be connected via a Steiner tree To to a root
ro. When a write-request is issued for object o, the root initiates an update of all the
copies of object o using the tree To as a multicast tree. The objective is to minimize
the total cost incurred in storing and accessing objects and building the Steiner trees,
that is, to minimize

∑
i∈F

∑
o∈O(i) f

o
i +

∑
j∈D djci(j)j +

∑
o∈O Mo

∑
e∈To

ce, where
the Mos are input scaling parameters. This generalizes the connected facility location
problem [14, 39, 15] for which the best known guarantee is 8.55 [39]. We present a
14-approximation algorithm for this problem. One noteworthy feature here is the ease
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with which one can interface the algorithm developed in section 3 (which handles the
data placement part of the problem) with the rounding ideas proposed in [32, 14] to
handle the connectivity aspect of the problem.

In section 5, we consider a couple of extensions. First, we consider the k-median
variant, where, for every object o, there is a bound of ko on the number of caches
that may store object o. Our rounding algorithm is versatile and extends easily
with minimal changes to this variant, yielding the same approximation guarantee.
Second, we consider the data placement problem with arbitrary object lengths. It is
easy to show (see section 6) via a reduction from the Partition problem that with
arbitrary object lengths, it is NP-complete to even decide if there exists a feasible
solution; hence, no approximation ratio is achievable in polynomial time unless P =
NP. We can modify our algorithm to obtain a bicriteria approximation guarantee in
this setting: we return a placement of cost at most 10 times the optimal where the
total length of objects stored in a cache may exceed its capacity by the maximum
object length. We conclude in section 6 with a couple of hardness results about the
data placement problem with (i) no storage costs, and (ii) nonuniform object lengths.

Related work. The problem of data management in a distributed network has
been extensively studied. Dowdy and Foster [10] initiated the study of cooperative
caching in the context of allocating files in a distributed network, and this problem
has since received much attention. We limit ourselves to an overview of the work in
models that most closely resemble our model; the reader is referred to the surveys
[10, 12] for a more detailed discussion.

Various works [5, 1, 2] have considered an online version of our problem, both with
and without cache capacities, where read- and write-requests arrive online and have to
be taken care of on the fly. The competitive ratios achievable in the online setting are,
not surprisingly, weaker than the approximation ratios achievable in the offline setting.
Awerbuch, Bartal, and Fiat [1] gave a randomized algorithm with competitive ratio
polylog(

∑
i∈F ui) for the uniform metric, whereas in [2] they give a polylog(maxij cij)-

competitive algorithm for arbitrary metrics, but require a polylog(maxij cij)-factor
blow-up in the cache capacities. Various studies have incorporated routing information
into the caching problem, for instance, by having intermediate nodes cache copies of
an object when the object is being routed [16, 31, 41], or by considering the problem
of minimizing network congestion due to routing of requests [27, 28]. In contrast, we
abstract away routing concerns by assuming that the cij-values, which determine the
access costs, are given to us as input.

The offline data placement problem that we consider was first studied for hierar-
chical networks, or, equivalently, when the access costs form an ultrametric (a more
restricted class of metrics). Leff, Wolf, and Yu [23] considered ultrametrics derived
from a star, Korupolu, Plaxton, and Rajaraman [20] gave exact and approximation
algorithms for general ultrametrics, and Korupolu and Dahlin [19] evaluated the prac-
tical performance of several placement algorithms for ultrametrics. Independent of
[3], Meyerson, Munagala, and Plotkin [29] considered a generalization of our prob-
lem (called the page placement problem), where a cache also has a client capacity
limiting the number of clients that may be assigned to it. They gave a constant ap-
proximation, but with a logarithmic violation of both the client capacities and the
object capacities. Subsequently, Guha and Munagala [13] obtained a constant-factor
approximation where the capacities are violated by only a constant factor. Fleischer
et al. [11] considered a maximization version of the data placement problem with
similar client-capacity constraints that limit the total demand that may be assigned
to a cache. They give a (1− 1

e − ε)-approximation algorithm, for any ε > 0, and show
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that no better guarantee is achievable unless NP ⊆DTIME
[
nO(log log n)

]
.

As mentioned earlier, the data placement problem can also be motivated from
a facility-location perspective, where caches correspond to facilities and the objects
correspond to the different services required by clients. Shmoys, Swamy, and Levi [35]
formulated a closely related problem in this context called facility location with service
installation costs (FLSIC). Using the terminology of the data placement problem,
in FLSIC the caches (facilities) are uncapacitated, but one has to pay a location-
dependent cache-setup (facility-opening) cost to “build” a cache at a location before
storing any data object at that cache. Independently, Ravi and Sinha [33] proposed
the multicommodity facility-location problem giving a similar motivation. Shmoys,
Swamy, and Levi [35] give a 6-approximation algorithm for FLSIC under a certain
assumption on the service installation costs.

The data placement problem (without storage costs) and FLSIC have also been
studied for the special case of the directed line-metric under the names of broadcast
scheduling [4] and the joint replenishment problem [24], respectively. In both problems,
both the clients and the caches correspond to points on the timeline. In broadcast
scheduling, the objects correspond to pages. A client corresponds to a request for
a page, a cache corresponds to a page-broadcast, and a request at time t must be
assigned to a broadcast of that page at some time t′ > t. At most c pages may
be broadcast at any time; the goal is to minimize the average response time of the

requests. The best-known approximation factor for this problem is O
( log2 |O|

log log |O|
)

due

to Bansal, Coppersmith, and Sviridenko [4]. In the joint replenishment problem, the
objects are items. Demands for items occur at various points of time, and one has
to determine which items to order at which times, so that all demand can be met by
orders that are placed at earlier points of time. Placing an order for a subset of items
incurs a joint ordering cost to start the order and an item-dependent cost, and each
demand gets charged the cost incurred to hold the inventory for that demand. Levi,
Roundy, and Shmoys [24] gave a 2-approximation algorithm for this problem.

The data placement problem is a generalization of UFL, which corresponds to the
special case with only one object. There is a large body of literature that deals with
designing approximation algorithms for metric UFL; see [34] for a survey of this and
earlier work. The first constant approximation guarantee for UFL was obtained by
Shmoys, Tardos, and Aardal [37] via an LP-rounding algorithm, and the current state-
of-the-art is a 1.5-approximation algorithm due to Byrka [6]. For the closely related
k-median problem, the first constant-factor approximation algorithm was given by
Charikar et al. [7] using LP rounding. As mentioned earlier, the clustering method
developed by them plays a key role in our algorithm.

Finally, we remark that the presence of cache capacities might suggest a similar-
ity to the capacitated facility location (CFL) problem, but this resemblance is only
superficial. The capacities in our problem limit the number of objects that may be
assigned to a cache, but there is no bound on the demand (or number) of clients
requesting a given object, or total demand, that may be assigned to a cache. (The
data placement problem may be viewed as a collection of UFL instances, one for each
object, that are coupled due to the cache-capacity constraints.) In particular, as our
algorithm shows, the integrality gap of the natural LP relaxation for our problem is
at most a constant, whereas there is no known LP relaxation of CFL with constant
integrality gap. Moreover, the local search algorithms in [21, 9, 30, 42] do not directly
apply, and it is not clear if they can be adapted to our problem.
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1.1. Relationship with the work of [3] and [38]. This work is a merger of
two earlier papers: an extended abstract of Baev and Rajaraman [3] and an unpub-
lished manuscript of Swamy [38]. In order to place our work in proper bibliographic
context, and for the benefit of the reader, we include a brief comparison of our work
with [3] and [38].

The data placement problem that we consider was introduced by Baev and Ra-
jaraman [3]. (In their model, each client j has demand djo for every object o ∈ O; this
easily reduces to the model considered here since one can create a colocated copy j(o)

of client j with demand djo for every object o.) They gave a 20.5-approximation al-
gorithm for this problem, which is based on rounding an optimal solution to the same
LP relaxation of the problem that we consider. The 10-approximation algorithm de-
scribed in this paper is from [38] and is based on an improved rounding procedure for
the same LP. We briefly describe the main differences between the two algorithms.

As described earlier, our algorithm proceeds in two phases. The first phase of
our algorithm, where we round the LP solution to a half-integral solution, is identical
to the first half (steps 1–3) of the algorithm in [3]. From here on the two algorithms
proceed along different tracks. In both algorithms, the goal is to modify the previously
obtained half-integral solution into one that has the property that for every object o
and cache i, there is at most one demand-node for o that is served by i, so that one
can then set up a minimum-cost flow problem to round the half-integral solution to an
integral one. In the second phase of our algorithm, we use the Shmoys–Tardos–Aardal
clustering method [37] (without filtering) to obtain a solution with the above property.
In contrast, the Baev–Rajaraman algorithm dovetails the rounding procedure of [7]
(creating 1-level trees that are used to cluster the clients) to obtain a solution with
the aforementioned property. By adopting a different clustering approach that better
exploits half-integrality, we obtain a simpler algorithm that also yields a much better
approximation guarantee.

The connected data placement problem was introduced by Swamy [38], and the
14-approximation algorithm that we present for this problem was described therein.

2. An LP relaxation. We can express the data placement problem as an integer
program and relax the integrality constraints to get a linear program. Throughout
we will use i to index the caches in F , j to index the clients in D, and o to index the
objects in O.

min
∑
i

∑
o

fo
i y

o
i +

∑
j

∑
i

djcijxij(P)

subject to
∑
i

xij ≥ 1 ∀j,

xij ≤ y
o(j)
i ∀i, j,

∑
o

yoi ≤ ui ∀i,(1)

xij , y
o
i ≥ 0 ∀i, j, o.

Variable yoi indicates if object o is stored in cache i, and xij indicates if client j is
assigned to cache i. The first and second constraints say that each client must be
assigned to a cache and if client j is assigned to cache i, then object o(j) must be
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stored in cache i. The third constraint states that the total length of items stored in
any cache i is at most its capacity ui. An integer solution corresponds exactly to a
solution to our problem. We let Go denote the set of clients that demand object o,
i.e., Go = {j : o(j) = o}.

3. The rounding procedure. Let (x, y) denote the optimal solution to (P) and
OPT be its value. We will round this to an integer solution losing a factor of at most
10. We use the terms access cost and assignment cost interchangeably.

3.1. Overview of the algorithm. We first give a high level description of
the algorithm. Suppose for a moment that the optimal solution (x, y) satisfies the
following property: for any cache i and object o, there is at most one client j ∈ Go

such that xij > 0 (∗). We can then set up the following min-cost flow problem:
create a bipartite graph with vertex set D∪F and edges (i, j) for every i, j such that

xij > 0 with cost f
o(j)
i + djcij and capacity 1; client j has a demand of 1, and cache i

has capacity ui. The LP solution translates to a feasible fractional flow in this graph
of cost at most OPT . Note that property (∗) is crucial for this. Conversely an integer
flow yields an integer solution to (P) of cost equal to the flow cost. Therefore by the
integrality property of flows (given integer capacities) we can round (x, y) to an integer
solution of no greater cost. Of course, the LP solution need not have property (∗), so
our goal will be (loosely speaking) to transform (x, y) to a solution that has property
(∗) without increasing the cost by much. One of the major challenges encountered is
to do this transformation without violating the cache capacities, while increasing the
cost by only a constant factor.

Roughly speaking we want to do the following: for each object o, cluster the
clients in Go around certain “centers” (also clients in Go) such that (a) every client
k is mapped to a “nearby” cluster center j whose LP assignment cost is less than
that of k, and (b) the facilities serving the cluster centers in the fractional solution
(x, y) are disjoint. Thus, the modified instance where the demand of a client is moved
to the center of its cluster has a fractional solution, namely, the solution induced by
(x, y), that satisfies (∗) and has cost at most OPT . Furthermore, given a solution
to the modified instance we can obtain a solution to the original instance losing a
small additive factor. This clustering idea lies at the core of most algorithms for
facility location; however, the necessity of preserving cache capacities renders many
of the known clustering methods [37, 8, 25] unsuitable for our purposes. For example,
one option is to use the decomposition method of Shmoys, Tardos, and Aardal [37]
that produces precisely such a clustering. The problem, however, is that [37] uses
filtering which involves blowing up the xij and yoi values and thus violating the cache
capacities. Chudak and Shmoys [8] and Levi, Shmoys, and Swamy [25] use similar
clustering ideas but without filtering, using the dual solution to bound (portions of)
the cost. The difficulty here in bounding the cost using the dual solution is that there
are terms with negative coefficients in the dual objective function that correspond to
the primal capacity constraints (1). Although [40, 25] showed that it is possible to
overcome this difficulty in certain cases, the situation here looks more complicated,
and it is not clear how to use their techniques.

Instead, we use the clustering technique of Charikar et al. [7] developed for the
k-median problem. Our algorithm proceeds in two phases. In the first phase (sec-
tion 3.2), we extract a modified instance and a fractional solution to this instance
from the LP solution, and round this to a half-integral solution (x̂, ŷ), that is, each
x̂ij , ŷi ∈

{
0, 1

2 , 1
}
, losing a factor of 3. Further, any solution here will give a solution
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to the original instance while increasing the cost by at most 4 · OPT . We do this by
first transferring demands to certain well-separated centers (Step I) exactly as in the
demand-consolidation step of [7], so as to ensure that each center has its own private
set of caches that serve it to an extent of at least half. This allows us to set up a
minimum-cost flow problem (Step II) with half-integral capacities with a one-one cor-
respondence between solutions and flows, and thereby round the fractional solution
on the centers to a half-integral solution.

In phase two (section 3.3), we observe that we can now use the clustering method
in [37] on the half-integral solution (x̂, ŷ) without any filtering (Step III) since such
a solution is essentially already filtered: if client j is assigned to i and i′ in x̂, then
cij , ci′j ≤ 2(cij x̂ij + ci′j x̂i′j). This clustering satisfies the requirements (a) and (b)
mentioned above. Thus, one can obtain an integer solution for the new cluster centers
by solving a suitable min-cost flow problem. This is essentially what we do, but we
set up the min-cost flow problem more carefully (Step IV) so as to lose only a factor
of 2 in converting (x̂, ŷ) to an integer solution (for the modified instance extracted in
phase 1). So overall we get an approximation ratio of 4 + 2 × 3 = 10 (Theorem 3.5).

We now describe each of these steps in detail. Let C̄j =
∑

i cijxij denote the cost
incurred by the LP solution to assign one unit of demand of client j.

3.2. Obtaining a half-integral solution (x̂, ŷ).
Step I: Consolidating demands around centers. We first consider every object o

separately and consolidate (or cluster) the demand of clients in Go at certain clients,
which we call cluster centers. We do not modify the fractional solution (x, y) but
modify only the demands so that for some clients j, the demand dj is “moved” to a
“nearby” center k. We assume every client has a nonzero demand.

Set d′j ← 0 for every j. Consider the clients in Go in increasing order of C̄j .
For each client j, if there exists a client k (including j) such that d′k > 0 and cjk <
4 max(C̄j , C̄k) = 4C̄j , set d′k ← d′k + dj ; otherwise set d′j ← dj . We do this for
every object o. Let Do = {j ∈ Go : d′j > 0} and D =

⋃
o Do. Each client in D is

a cluster center. Let OPT ′ =
∑

i,s f
o
i y

o
i +

∑
j∈D,i d

′
jcijxij denote the cost of (x, y)

for the modified instance consisting of the cluster centers. Since the demand of each
client k /∈ D moves a distance of at most 4C̄k, it is clear that any solution to the
modified instance yields a solution for client-set D incurring an additive factor of at
most 4

∑
k/∈D dkC̄k ≤ 4 · OPT . We obtain the following lemma.

Lemma 3.1. The following hold: (i) if j, k ∈ Do, then cjk ≥ 4 max(C̄j , C̄k);
(ii) OPT ′ ≤ OPT; and (iii) any solution (x′, y′) to the modified instance can be
converted to a solution to the original instance incurring an additional cost of at most
4 · OPT.

From now on we will focus on the modified instance with client-set D and modified
demands d′j . At the very end we will use the above lemma to translate an integer
solution to the modified instance to an integer solution to the original instance.

Step II: Transforming to a half-integral solution. We define the cluster of a client
j ∈ Do to consist of all clients k ∈ Go whose demand dk was moved to j, and a set of
facilities Fj . Fj consists of all facilities i to which j is fractionally assigned such that
j is the center in Do closest to i; that is, Fj = {i : xij > 0 and cij = mink∈Do cik},
with ties broken arbitrarily. Let F ′

j ⊆ Fj = {i ∈ Fj : cij ≤ 2C̄j}. Define γj to
be mini/∈Fj :xij>0 cij . Clearly the sets Fj for j ∈ Do are disjoint. By property (i)
of Lemma 3.1, we have that Fj contains all the facilities i such that xij > 0 and
cij ≤ 2C̄j . So

∑
i∈F ′

j
xij =

∑
i:cij≤2C̄j

xij ≥ 1
2 , where the last inequality follows from

Markov’s inequality.
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(1; 3d′jγj)

t

(ui; 0)

F ′
j

Fj ⊇ F ′
j

(1;0) aj

bj

ri

(1
2 ; 0)

Demand
vj= −1

(capacity;cost) = (1; f
o(j)
i + d′jcij)

Fig. 3.1. The min-cost flow network constructed in Step II. The tuple labeling an edge gives
the (capacity;cost) for the edge.

In the half-integral solution (x̂, ŷ), we will store object o only at caches that lie
in some set Fj for j ∈ Do. To obtain (x̂, ŷ), we set up a min-cost flow problem. We
create a sink t and a node ri for every cache i in

⋃
j∈D Fj with an outgoing edge (ri, t)

of capacity ui and cost 0 (see Figure 3.1). For each client j ∈ D we create three nodes
vj , aj , and bj . Node vj has demand −1 (i.e., the net outgoing flow should be 1) to
denote the requirement that j must be assigned to a cache. We add edges (vj , aj) with
capacity 1 and cost 0, and (vj , bj) with capacity 1

2 and cost 0. Node aj represents the
option that j is assigned to a facility in F ′

j , so we add edges (aj , ri) to every i ∈ F ′
j

with capacity 1 and cost f
o(j)
i +d′jcij . Notice that setting the capacity of (vj , bj) to 1

2

forces j to be assigned to an extent of at least 1
2 to facilities in F ′

j . Node bj signifies
that j is assigned either to a facility in Fj or to some other facility. To encode this,

we add edges (bj , ri) to every i ∈ Fj with capacity 1 and cost f
o(j)
i + d′jcij , and an

edge (bj , t) with capacity 1 and cost 3d′jγj (since, as we show later, there is always a
facility at distance at most 3γj from j that is at least half-open). Figure 3.1 shows
the portion of the min-cost flow instance corresponding to client j.

Since all edge capacities are 1
2 or 1, the network has a half-integral min-cost

flow. Given such a flow, we obtain (x̂, ŷ) as follows. We initialize all x̂ij , ŷoi to
0. Consider object o. For every j ∈ Do and cache i ∈ F ′

j , we set ŷoi = x̂ij =
flow along (aj , ri) + flow along (bj , ri). For every i ∈ Fj \ F ′

j , we set ŷoi and x̂ij equal
to the flow along edge (bj , ri). Observe that there is at least one cache i ∈ F ′

j such
that x̂ij > 0; we call the cache in F ′

j closest to j with x̂ij > 0 the primary cache of j.
Note that since the sets Fj (and hence F ′

j) for j ∈ Do are disjoint, every client in Do

has a unique primary cache i. Let i′ be the cache nearest to j, other than its primary
cache, with ŷoi′ > 0. If edge (bj , t) carries positive flow (so no edge (bj , ri) carries any
flow implying that ŷoi = 0 for every i ∈ Fj \F ′

j), we set x̂i′j = flow on (bj , t) = 1
2 . We

do this for every object o. If a client j is assigned to a cache other than its primary
cache, we call the other cache the secondary cache of j. It is easy to verify that (x̂, ŷ)
is a feasible solution to (P), where the client-set is D. The following lemma shows
that the cost of (x̂, ŷ) is at most 3 · OPT .

Lemma 3.2. The cost of (x̂, ŷ), that is,
∑

i,o f
o
i ŷ

o
i +

∑
j∈D,i d

′
jcij x̂ij, is at most

3 · OPT ′ ≤ 3 · OPT.

Proof. First we show that (x, y) induces a flow of cost at most 3·OPT ′, so the cost
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of the min-cost flow is no greater. Then we show that the cost of (x̂, ŷ) is bounded
by the cost of the min-cost flow.

Consider the following flow: each edge (vj , aj) has flow
∑

i∈F ′
j
xij , (vj , bj) has

flow 1 −
∑

i∈F ′
j
xij , and (bj , t) has flow 1 −

∑
i∈Fj

xij ; every edge (aj , ri) or (bj , ri)

has flow xij ; the flow on (ri, t) is
∑

o

∑
j∈Do:i∈Fj

xij . It is easy to see that this is a
feasible flow. The cost of this flow is

∑
o,j∈Do

⎛
⎝∑

i∈Fj

(d′jcij + fo
i )xij + 3d′jγj

⎛
⎝1 −

∑
i∈Fj

xij

⎞
⎠
⎞
⎠

≤
∑
i,o

fo
i y

o
i +

∑
j

d′j

⎛
⎝∑

i∈Fj

cijxij + 3γj

⎛
⎝1 −

∑
i∈Fj

xij

⎞
⎠
⎞
⎠ .

We have OPT ′ =
∑

i,o f
o
i y

o
i +

∑
j d

′
jC̄j . For any j ∈ D, C̄j =

∑
i∈Fj

cijxij +∑
i/∈Fj

cijxij ≥
∑

i∈Fj
cijxij+γj(1−

∑
i∈Fj

xij) since γj was defined as mini/∈Fj :xij>0 cij .
This shows that the cost of the constructed flow, and hence of the min-cost flow, is
at most 3 · OPT ′.

Now consider the solution (x̂, ŷ) induced by the half-integral min-cost flow. By
construction, the quantity

∑
i,o f

o
i ŷ

o
i +

∑
j∈D,i∈Fj

d′jcij x̂ij is exactly equal to the total

cost of the flow on edges (aj , ri) and (bj , ri). For any j ∈ D the remaining cost∑
i/∈Fj

d′jcij x̂ij is equal to d′jci′j · (flow on (bj , t)), where i′ is the secondary cache of

j. So it suffices to show that ci′j ≤ 3γj . Let γj = ci′′j , where i′′ /∈ Fj and xi′′j > 0.
Let k be the center in Do nearest to i′′ and let � be the primary cache of k. Then,
ci′j ≤ c�j and 4 max(C̄j , C̄k) ≤ cjk ≤ ci′′j + ci′′k ≤ 2γj . Also c�k ≤ 2C̄k since � ∈ F ′

k.
Combining the inequalities we get that ci′j ≤ 3γj which completes the proof of the
lemma.

3.3. Converting (x̂, ŷ) to an integer solution (x̃, ỹ). Define Ĉj =
∑

i cij x̂ij

for j ∈ D. Let i1(j) denote the primary cache of j. For convenience, we will say
that every client j ∈ D has both a primary cache i1(j) and a secondary cache i′ with
x̂i1(j)j = x̂i′j = 1

2 , with the understanding that if j does not have a secondary cache,
then i′ is a copy of i1(j), so effectively x̂i1(j)j = 1. We denote the secondary cache by

i2(j). Then we have Ĉj = 1
2 (ci1(j)j + ci2(j)j), ci1(j)j ≤ Ĉj , and ci1(j)j ≤ ci2(j)j ≤ 2Ĉj .

Notice that i1(j) and i2(j) are the (one or) two caches with ŷ
o(j)
i > 0 that are nearest

to j. Let Lo = {i : ŷoi > 0} and L =
⋃

o Lo.
Step III: Clustering. First for every object o we cluster the clients in Do as follows:

pick j ∈ Do with smallest Ĉj . Remove every client k ∈ Do such that both j and k are
(fractionally) assigned to a cache i ∈ Lo, and recurse on the remaining set of clients
until no client in Do is left. Let D′

o be the set of clients picked for object o and let
D′ =

⋃
o D

′
o; D

′ denotes the new cluster centers. It is clear that for any cache in Lo

at most one client in D′
o is assigned to it. Observe that for every client k ∈ Do \D′

o

there is some j ∈ D′
o such that Ĉj ≤ Ĉk and x̂ij , x̂ik > 0 for some i ∈ Lo, implying

that cjk ≤ 4Ĉk. We call j the center of k and denote it by ctr(k).
Now for every client k ∈ D \D′ we can move its demand d′k to j = ctr(k). The

resulting instance with client-set D′ (and the new demands) satisfies the property
(∗) mentioned in section 3.1. Hence, one can set up a min-cost flow problem as
mentioned in section 3.1 to get an integer solution to the instance with client-set
D′, which translates to a solution with client-set D (and the original demands d′j).
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all these edges

(ui”; 0)

(ui; 0)ri

t

ri′ (ui′; 0)

i′ = i2(j)

ri”

cost of (wo
i”, ri”) is f o

i” +
∑

k∈Bo
i”
d′k(ci”k − ci2(k)k)

cost of (vj, ri′) is f
o(j)
i′ + d′jci′j +

∑
k∈Aj

d′kci′k +
∑

k∈Bj
d′k(ci′k − ci2(k)k)

(1,0)

wo
i”

vj

have capacity 1

i = i1(j)

cost of (vj, ri) is f
o(j)
i + d′jcij +

∑
k∈Aj

d′kcik

each node has
demand = −1

Fig. 3.2. The min-cost flow network constructed in Step IV. The tuple labeling an edge gives
the (capacity;cost) for the edge.

Doing this naively, we lose an additive factor of (at most) 4
∑

k∈D d′kĈk in translating
the demands back from D′ to D. We will set up the min-cost flow network more
carefully so that we lose only a multiplicative factor of 2 in rounding (x̂, ŷ) to an
integer solution for the client-set D. We want to capture the following observation:
suppose the demand of a client k ∈ Do is moved to j = ctr(k). Let x̂ik = x̂i′k = 1

2 and
x̂ij = x̂i′′j = 1

2 . The per-unit-demand assignment cost of k is at most 1
2 (cik + ci′′k) ≤

cik + Ĉj ≤ 3Ĉk (since ci′′k ≤ ci′′j + cij + cik), which is much less than the naive bound

of 4Ĉk + Ĉj .

Step IV: The min-cost flow network. Fix o ∈ O and consider a client j ∈ D′
o.

We will maintain two sets Aj and Bj for j. Let i = i1(j) and i′ = i2(j) be the
primary and secondary caches of j. We define Aj = {k ∈ Do : ctr(k) = j} and
Bj = {k ∈ Do : ctr(k) �= j and i′ = i1(k)}. Also, for every cache i ∈ Lo such that
x̂ij = 0 for every j ∈ D′

o, we define Bo
i = {k ∈ Do : i = i1(k)} (which is either empty

or a singleton). Note that all the sets Aj , Bj , and Bo
i are subsets of Do \D′

o.

We create a sink t, and a node ri for every i ∈ L for which x̂ij > 0 for some
j ∈ D′, or Bo

i �= φ for some o (see Figure 3.2). We have an edge (ri, t) of capacity
ui and cost 0. For every client j ∈ D′ we create a node vj . Further, for every
i ∈ L, o ∈ O with Bo

i �= φ we create a node wo
i . The nodes vj and wo

i all have
demand −1. For every node vj we have edges (vj , ri) to every i with x̂ij > 0, and we
have edges (wo

i , ri), (wo
i , t) for every node wo

i . All these edges have capacity 1. The
cost of these edges is set as follows. Consider a node vj and let i = i1(j), i

′ = i2(j).

We set the cost of (vj , ri) to f
o(j)
i + d′jcij +

∑
k∈Aj

d′kcik and the cost of (vj , ri′) to

f
o(j)
i′ + d′jci′j +

∑
k∈Aj

d′kci′k +
∑

k∈Bj
d′k(ci′k − ci2(k)k). We set the cost of (wo

i , ri) to

fo
i +

∑
k∈Bo

i
d′k(cik − ci2(k)k) and the cost of (wo

i , t) to 0; see Figure 3.2.

Since all capacities are integer, there is an integer min-cost flow. We map this
to an integer solution (x̃, ỹ) to the instance with client-set D. Set x̃ij , ỹi ← 0 for
all i, j. Consider object o. First, for every j ∈ D′

o and i ∈ {i1(j), i2(j)}, we set
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x̃ij = flow on edge (vj , ri). For every client k ∈ Bj we set x̃i2(j)k = x̃i2(j)j , and for
every k ∈ Bo

i we set x̃ik = flow on (wo
i , ri). Next, for every j ∈ D′

o and every k ∈ Aj

that has not yet been assigned (i.e.,
∑

i x̃ik = 0), we set x̃ik = x̃ij for i ∈ {i1(j), i2(j)}.
Finally, set ỹoi = maxj∈Do x̃ij . We do this for every o. Observe that ỹoi = 1 for at
most one facility from F ′

j for every client j ∈ Do. This will be useful in section 4. It
is easy to see that (x̃, ỹ) is a feasible integer solution. We now bound its cost.

Lemma 3.3. The cost of the min-cost flow in the network is at most twice the
cost of (x̂, ŷ).

Proof. We exhibit a fractional flow of cost at most the claimed cost. The fractional
flow is obtained by setting the flow on every edge (vj , ri) to x̂ij , and the flow on (wo

i , t)
and (wo

i , ri) to maxk∈Bo
i
x̂ik = 1

2 , where the equality follows since every k ∈ Bo
i is

assigned to an extent of 1
2 to i2(k) �= i. The flow on the edges (ri, t) is set accordingly

to
∑

o

(∑
j∈D′

o
x̂ij + maxk∈Bo

i
x̂ik

)
. This is a feasible flow since, for every i, o, either

Bo
i = φ and there is exactly one j ∈ D′

o such that x̂ij > 0, or Bo
i �= φ and x̂ij = 0 for

every j ∈ D′
o. So

∑
j∈D′

o
x̂ij + maxk∈Bo

i
x̂ik is at most yoi .

The cost of an edge (vj , ri) or (wo
i , ri) consists of a storage component (f

o(j)
i or

fo
i ) and an assignment component that can be attributed to various clients. We call

the contribution of the storage components to the flow cost the flow storage cost, and
the contribution of the assignment components the flow assignment cost. The flow
storage cost is

∑
i,o f

o
i

(∑
j∈D′

o
x̂ij+maxk∈Bo

i
x̂ik

)
≤

∑
i,o f

o
i y

o
i by the above reasoning.

To evaluate the flow assignment cost we consider the contribution of each client to
the assignment components separately. Fix an object o. First consider j ∈ D′

o with
i = i1(j), i

′ = i2(j). Client j figures only in the assignment component of (vj , ri) and

(vj , ri′), and its contribution is d′j(cij x̂ij + ci′j x̂i′j) = d′jĈj . A client k ∈ Do \D′
o is in

exactly one set Aj , where j = ctr(k), and may possibly also lie in one of the sets Bj′

or Bo
i′′ . Let i = i1(j) and i′ = i2(j).

1. If k does not lie in any set Bj′ or Bo
i′′ , then it must be that x̂i1(k)j > 0. Client

k contributes only to the assignment component of edges (vj , ri) and (vj , ri′), and this

contribution is d′k(cikx̂ij + ci′kx̂i′j) ≤ d′k(ci1(k)k + Ĉj) ≤ 2d′kĈk since x̂ij = x̂i′j = 1
2

and cik + ci′k ≤ 2ci1(k)k + cij + ci′j .
2. Now suppose k is also in one of the sets Bj′ or Bo

i′′ , so that it also con-
tributes to the assignment component of an edge (vj′ , ri1(k)) or an edge (wo

i′′ , ri′′).

The contribution in both cases is
d′
k

2 (ci1(k)k − ci2(k)k) since we must have xi1(k)j′ =
1
2 = xi′′k. Adding the contributions to edges (vj , ri) and (vj , ri′), the total contri-

bution is
d′
k

2 (cik + ci′k + ci1(k)k − ci2(k)k) ≤ d′k(Ĉk + Ĉj) ≤ 2d′kĈk since cik + ci′k ≤
2ci2(k)k + cij + ci′j .

So the flow assignment cost is at most 2
∑

j∈D d′jĈj . Thus the total flow cost is

at most
∑

i,o f
o
i ŷ

o
i + 2

∑
j∈D d′jĈj , which is at most twice the cost of (x̂, ŷ).

Lemma 3.4. The cost of the integer solution (x̃, ỹ) is at most the cost of the
min-cost integer flow.

Proof. Observe that, for any o,
∑

i f
o
i ỹ

o
i =

∑
i,j∈D′

o
fo
i x̃ij +

∑
nodes wo

i
fo
i (flow on

(wo
i , ri)). So the total storage cost is

∑
e=(vj ,ri)

f
o(j)
i (flow on e) +

∑
e=(wo

i ,ri)
fo
i (flow

on e) which is just the flow storage cost.

We will bound the assignment cost of a client by the contribution it makes to
the flow assignment cost. Fix object o. Consider j ∈ D′

o. Let i = i1(j) and i′ =
i2(j). At most one of the edges (vj , ri), (vj , ri′) carries nonzero flow, and we set
x̃ij , x̃i′j equal to the flow on the corresponding edge. So the assignment cost of j is
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d′j(cij(flow on (vj , ri)) + ci′j(flow on (vj , ri′))), which is also the contribution of j to
the assignment flow cost. The same argument holds for k ∈ Aj if k is assigned to one
of i or i′. The remaining case is when k ∈ Aj , and k is not assigned to i or i′, but
is assigned to i′′ = i1(k) either because k ∈ Bj′ where i′′ = i2(j

′) and (vj′ , ri′′) has
nonzero flow, or because k ∈ Bo

i′′ and (wo
i′′ , ri′′) carries nonzero flow. The assignment

cost of k is d′kci′′k. The contribution of k to the assignment flow cost is at least
d′k(ci′′k − ci2(k)k) + d′k min(cik, ci′k) since k ∈ Aj . This is at least d′kci′′k since both
cik, ci′k are at least ci2(k). So the assignment cost of (x̃, ỹ) is bounded by the flow
assignment cost. This completes the proof.

Combining Lemmas 3.1–3.4, we obtain that (x̃, ỹ) yields an integer solution to the
original instance of cost at most 10 · OPT . Thus, we obtain the following theorem.

Theorem 3.5. There is a 10-approximation algorithm for the data placement
problem.

4. The connected data placement problem. The formulation of the data
placement problem seems most suitable for applications where objects are rarely writ-
ten. In the presence of write-requests, one needs to have a mechanism that ensures
that all the copies of a data object replicated in the various caches are consistent, and
this requires that a write-request updates all the replicas of the data object. One way
of modeling this, as proposed by Krick, Räcke, and Westermann [22], is to insist that
all caches containing the same data object be interconnected via a Steiner tree, which
would serve as a multicast tree that is used to update all copies of an object when a
write-request is issued for it.

This gives rise to the connected data placement problem. We assume that there is
a root ro ∈ D ∪ F for each object o that issues the multicast message when a write-
request is issued for o, and require that all caches containing object o be connected to
ro. Thus, our goal is to find a placement {O(i)}i∈F of objects to caches respecting the
cache-capacity constraints, assign each client j to a cache i(j) containing the object
o(j), and, for each object o, connect the caches storing object o to ro via a Steiner
tree To, so as to minimize∑

i∈F

∑
o∈O(i)

fo
i +

∑
j∈D

djci(j)j +
∑
o∈O

Mo

∑
e∈To

ce.

Here Mo ≥ 1 is an input scaling parameter; e.g., it might denote the total number of
write-requests for object o.

The LP relaxation (P) is modified as follows. We introduce variables zoe ≥ 0 for
each object o, and each edge e (of the complete graph on D ∪ F) that indicates (in
the integer program) if edge e is part of the tree To. The objective function includes
the additional term

∑
o Mo

∑
e cez

o
e . For each object o, set S ⊆ D ∪ F such that

ro /∈ S, and client j ∈ Go, we add the constraint
∑

e∈δ(S) z
o
e ≥

∑
i∈S xij , where

δ(S) = {e = (u, v) : |S ∩ {u, v}| = 1}. Although this LP has an exponential number
of constraints, it can be solved efficiently via the ellipsoid method.

Observe that the connected data placement is a generalization of the connected
facility location problem [14, 39, 15] (which is the special case with only one object)
for which the best-known approximation guarantee is 8.55 [39]. However, due to the
presence of cache capacities, it is not clear how to apply the primal-dual technique in
[39] or the random-sampling idea in [15]. We show that the LP-rounding technique
proposed in [32, 14] to handle such connectivity requirements can be overlaid almost
directly on top of our rounding procedure from section 3, to round an optimal solution
to the above LP losing a factor of at most 14.
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We briefly sketch the main steps. Let (x, y, z) be an optimal fractional solution,
and let C̄j =

∑
i cijxij . We slightly modify the demand-consolidation step (Step I)

of our rounding procedure: we now move the demand of client k to client j (where
d′j > 0, C̄j ≤ C̄k) if cjk < 8 max(C̄j , C̄k). Recall that F ′

j = {i : xij > 0, cij ≤ 2C̄j}
and that the sets F ′

j are disjoint for clients in Do. Due to the above change, we lose

an additive factor of 8
∑

j djC̄j in translating a solution for client-set D =
⋃

o Do to
a solution for D. More importantly, for any two facilities i ∈ F ′

j and i′ ∈ F ′
k, where

j, k ∈ Do, j �= k, we now have that cii′ ≥ 4 max(C̄j , C̄k). The rest of the rounding
process in section 3 is unchanged. Thus, the sum of the storage costs and access costs
is at most 14

(∑
i,o f

o
i y

o
i +

∑
j,i djcijxij

)
.

For each object o, we build the tree To as follows. We contract the sets F ′
j for

j ∈ Do into supernodes and build a minimum spanning tree (MST) T ′
o connecting

these to ro, and then connect the caches storing object o to T ′
o. To bound the cost

of T ′
o, notice that 2zo yields a fractional Steiner tree on the supernodes and ro, since

for any set S containing a supernode F ′
j and not containing ro, we have

∑
e∈δ(S) z

o
e ≥∑

i∈F ′
j
xij ≥ 1

2 . Thus, we get c(T ′
o) ≤ 4

∑
e z

o
e since it is well known that the cost

of the MST is at most twice the cost of a fractional solution for the Steiner tree LP.
Observe that an edge e of T ′

o joining F ′
j and F ′

k has ce ≥ 4 max(C̄j , C̄k). Let i be a
facility on which object o is stored. Notice there is a unique client j ∈ Do such that
i ∈ F ′

j . To connect i to T ′
o, we add the edge (i, j) and add edges joining j to every

cache in F ′
j that has an edge incident to it in T ′

o. We do this for every cache on which
o is stored. Let δj denote the degree of the supernode F ′

j in the tree T ′
o. The cost of

adding these extra edges is at most
∑

j∈Do
(1 + δj)2C̄j ≤ 2

∑
j∈Do

δj · 2C̄j ≤ 2c(T ′
o).

Thus, c(To) ≤ 3c(T ′
o) ≤ 12

∑
e z

o
e , and the total cost incurred is at most 14

∑
i,o f

o
i y

o
i +

14
∑

j,i djcijxij + 12
∑

o Mo

∑
e z

o
e , yielding a 14-approximation algorithm.

Theorem 4.1. There is a 14-approximation algorithm for the connected data
placement problem.

5. Extensions.

The k-median variant. We can easily adapt our techniques to handle an extension
of the data placement problem where additionally, for every object o, there is a bound
of ko on the number of caches that can store object o. This adds the constraints∑

i y
o
i ≤ ko for all o to (P). We need to modify the min-cost flow network construction

slightly in Steps II and IV of section 3. In Step II, we remove the edges (bj , t). Instead,
for every object o, we add a node po with demand |Do| − ko and edges (bj , po) for
j ∈ Do of capacity 1

2 and cost 3γj . We also add an edge (po, t) with capacity ko
and cost 0. The effect of these changes is to limit the total flow on edges (aj , ri)
and (bj , ri), where j ∈ Do, to at most ko so that at most ko caches store object o
(half-integrally). The half-integral solution (x̂, ŷ) is obtained as before with po now
playing the role of t. It is easy to see that (x̂, ŷ) is feasible and Lemma 3.2 still holds.
Similarly, in Step IV, we remove the edges (wo

i , t). For every o, we add a node po with
demand |{i : Bo

i �= φ}| − (ko − |D′
o|), add edges (wo

i , po) with capacity 1 and cost 0,
and add edge (po, t) with capacity ko − |D′

o| and cost 0. This limits the total flow on
edges (vj , ri), where j ∈ D′

o, and (wo
i , ri) to at most ko. The integer solution (x̃, ỹ)

is obtained as before, and Lemmas 3.3 and 3.4 still hold. So we get the following
theorem.

Theorem 5.1. There is a 10-approximation algorithm for the data placement
problem with a priori bounds on the number of caches that may store an object.
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Nonuniform object lengths. We can obtain a bicriteria approximation algorithm
for the setting where each object o has a nonuniform length lo and the total length
of the objects stored in any cache must not exceed its capacity. Constraint (1) of (P)
now reads

∑
o loy

i
o ≤ ui. As mentioned in the introduction, no approximation ratio

is achievable in polynomial time in this case, unless P = NP (see Theorem 6.2). We
show the following theorem.

Theorem 5.2. For the data placement problem with arbitrary object lengths, one
can compute in polynomial time a placement of cost at most 10 ·OPT where the cache
capacities are violated by an additive amount of at most maxo lo.

Proof. We need only modify Steps II and IV above. Instead of formulating a min-
cost flow problem to take care of cache capacities, we will now construct an instance
of the generalized assignment problem (GAP) [36]. In Step II, each node aj , bj of the
min-cost flow network represents a job, and each node ri and the sink t represent
a machine. Each machine ri has processing-time capacity 2ui, and the sink t has 0
capacity. An edge (aj , ri) or (bj , ri) denotes that job aj or bj has processing time lo(j)

on machine ri. Its assignment cost for machine ri is f
o(j)
i + d′j lo(j)cij , which is simply

a modification of the cost of the corresponding edge in the flow network that takes
into account the length lo(j). Job bj also has processing time 0 and assignment cost
3d′j lo(j)γj on machine t, corresponding to the edge (bj , t). All other processing times
(corresponding to nonedges) are infinity. It is not hard to see that (2x, 2y) induces a
feasible solution to this GAP instance of cost at most 6 ·OPT ′. Hence, by [36], there
exists an integer solution (2x̂, 2ŷ) of no greater cost, where

∑
o lo ·2ŷoi ≤ 2ui +maxo lo

for every i ∈ F . Thus, (x̂, ŷ) yields a half-integral solution of cost at most 3 · OPT ′,
where the cache capacities are violated by at most 1

2 maxo lo.

Similarly, in Step IV, we have a job for each node vj and each node wo
i , and a

machine for each node ri and the sink t. Each machine ri has capacity ui +
1
2 maxo lo,

and machine t has 0 capacity. As before, an edge (vj , ri) or (wo
i , ri) represents that

the corresponding job has processing time lo(j) or lo, respectively, on machine ri. The
assignment cost is the cost of the corresponding edge in the flow network modified (as
above) to incorporate object lengths by multiplying the terms not involving the storage
cost by the object length (lo(j) in case of job vj , and lo in case of job wo

i ). For example,
corresponding to the edge (vj , ri′), where i′ = i2(j), we set the assignment cost of job

vj on a machine ri′ to be f
o(j)
i′ + lo(j)

(
d′jci′j +

∑
k∈Aj

d′kci′k+
∑

k∈Bj
d′k(ci′k−ci2(k)k)

)
(note that o(k) = o(j) for all k ∈ Aj ∪ Bj). Edge (wo

i , t) denotes that job wo
i has

0 processing time and 0 assignment cost on machine t. All job-machine processing
times corresponding to nonedges are infinity. As in Lemma 3.3, (x̂, ŷ) induces a half-
integral feasible solution of cost at most twice the cost of (x̂, ŷ). Using the algorithm
in [36] directly, one can obtain an integer solution of no greater cost where the load
of every machine ri is at most ui + 3

2 maxo lo. A more careful analysis that exploits
the half-integrality of the solution shows that the violation in the capacity of ri is in
fact at most 1

2 maxo lo, and the load of ri is at most ui + maxo lo. As in Lemma 3.4
and Theorem 3.5, this yields an integer solution of cost at most 10 · OPT .

We observe that for the connected versions of the above extensions, one obtains
the same guarantees as for the connected data placement problem. We simply use the
algorithms described above (with the modification to Step I specified in section 4) to
handle the data-placement part of the problem; then we apply the rounding method
of section 4 to build the Steiner trees. The analysis from section 4 still applies, since
it is still true that for any cache i on which an object o is stored, there is a unique
client j ∈ Do such that i ∈ F ′

j .
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Theorem 5.3. There is a 14-approximation algorithm for the connected version
of the following data placement problems:

(i) the placement problem with a priori bounds on the number of caches that
may store a data object;

(ii) the placement problem with arbitrary object lengths; here we obtain a bicri-
teria guarantee where the cache capacities may be violated by an additive amount of
at most maxo lo.

6. Hardness results. In this section, we establish two hardness results. It is
clear that the data placement problem with storage costs is APX-hard, since it is a
generalization of metric UFL. We show that the data placement problem is APX-hard
even when there are no storage costs. Our second result is that for the data placement
problem with arbitrary object lengths, it is NP-complete to even decide if there exists
a feasible solution; hence, one cannot achieve any approximation ratio in polynomial
time unless P = NP.

Theorem 6.1. The data placement problem is APX-hard even when there are
no storage costs.

Proof. We give a reduction from metric UFL. In the unit-demand version of metric
UFL (which is still APX-hard), we are given a set of n facilities F with facility-opening
costs {fi}i∈F , a client-set D, and distances/assignment costs {Cij} that form a metric.
The goal is to open a subset of the facilities and assign each client to an open facility,
so as to minimize the sum of the facility-opening and client-assignment costs.

Given such a UFL instance, we construct the following instance of the data place-
ment problem. We let F = F ∪ {Γ} be the set of caches, and D = D ∪ F ′ be the
set of clients, where F ′ is a copy of F ; i.e., for every i ∈ F , we create a unique client
σ(i) ∈ F ′. There are |F | + 1 data objects o0, o1, . . . , on. Each client j ∈ D has unit
demand for object o0. Each client σ(i) ∈ F ′ has demand fi/M for object oi, where M
is some large number such that M � maxi,j Cij . Each cache i ∈ F has unit capacity,
and cache Γ has capacity n + 1 = |F | + 1. We define the distances cij for i ∈ F and
j ∈ D; all other distances are equal to the shortest-path distances in the bipartite
graph (F ∪ D, {(i, j) : i ∈ F , j ∈ D ∪ {σ(i)}}) with these cij ’s as the edge weights.
For every i ∈ F , we set cij = Cij if j ∈ D ⊆ D′, and 0 if j = σ(i); for i = Γ and every
j ∈ D, we set cij = M . It is easy to see that the cij ’s form a metric.

We show that this is an approximation-preserving reduction by arguing that any
UFL solution translates to a data placement solution of no greater cost and vice versa.
Consider a UFL solution that opens the facilities in S ⊆ F (and assigns each client
to the nearest facility in S). We map this to the data placement solution, where each
cache in S stores object o0, each cache i ∈ F \ S stores object oi, and cache Γ stores
the objects oi for i ∈ S. Clearly, the total access cost incurred for object o0 is equal
to the client-assignment cost of the UFL solution, the total access cost incurred for
the objects oi, where i ∈ S, is

∑
i fi, and the access cost for all other objects is 0. So

the cost of this data placement solution is exactly the cost of the UFL solution.

Conversely, suppose we have a data placement solution. We may assume that
object o0 is stored in some cache in F ; otherwise we can improve the solution cost by
storing o0 in some cache i ∈ F (and moving the object stored in i to Γ if necessary).
Let S ⊆ F be the set of caches that store o0. We open the facilities corresponding
to S (and assign each client to the nearest facility in S). Since M � maxi,j Cij , the
client-assignment cost in the UFL solution is at most the total access cost for o0. For
each cache i ∈ S, the access cost for object oi is at least fi/M · M = fi (since the
distance from i to any other cache is at least M), so the facility-opening cost of the



APPROXIMATION ALGORITHMS FOR DATA PLACEMENT PROBLEMS 1427

UFL solution is at most the access cost for the objects oi, where i ∈ S. Thus, the
cost of the UFL solution is at most that of the data placement solution.

Theorem 6.2. It is NP-complete to decide if there exists a feasible solution
to an instance of the data placement problem with arbitrary object lengths. Conse-
quently, there is no polynomial-time approximation algorithm for this problem unless
P = NP .

Proof. Membership in NP is immediate. The NP-hardness proof follows from an
easy reduction from the Partition problem. Let a1, . . . , am be an instance of the
Partition problem with A =

∑
i ai/2. In the data placement instance, we have two

caches with capacity A, m objects with lengths a1, . . . , am, and m clients, each of
which has unit demand for a unique object. (The distances and the locations of the
clients and the caches are not important.) Clearly, any feasible solution to the data
placement problem yields a solution to the Partition problem, and vice versa. The
NP-completeness result follows.
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[36] D. B. Shmoys and É. Tardos, An approximation algorithm for the generalized assignment
problem, Math. Programming, 62 (1993), pp. 461–474.
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Abstract. We consider the problem of computing a minimum cycle basis in a directed graph.
The input to this problem is a directed graph G whose edges have nonnegative weights. A cycle
in this graph is actually a cycle in the underlying undirected graph with edges traversable in both
directions. A {−1, 0, 1} edge incidence vector is associated with each cycle: edges traversed by the
cycle in the right direction get 1 and edges traversed in the opposite direction get −1. The vector
space over Q generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis
of G if it forms a basis for this vector space. We seek a cycle basis where the sum of weights of the
cycles is minimum. The current fastest algorithm for computing a minimum cycle basis in a directed
graph with m edges and n vertices runs in Õ(mω+1n) time, where ω < 2.376 is the exponent of
matrix multiplication. We present an O(m3n + m2n2 logn) algorithm. We obtain our algorithm
by using fast matrix multiplication over rings and an efficient extension of Dijkstra’s algorithm to
compute a shortest cycle in G whose dot product with a function on its edge set is nonzero. We
also present a simple O(m2n + mn2 logn) Monte Carlo algorithm. The problem of computing a
minimum cycle basis in an undirected graph has been well studied. In this problem a {0, 1} edge
incidence vector is associated with each cycle and the vector space over Z2 generated by these vectors
is the cycle space of the graph. The fastest known algorithm for computing a minimum cycle basis
in an undirected graph runs in O(m2n+mn2 logn) time and our randomized algorithm for directed
graphs matches this running time.

Key words. cycle basis, fast matrix multiplication, randomization, shortest paths
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1. Introduction. Let G = (V,E) be a directed graph with m edges and n
vertices. A cycle in G is actually a cycle in the underlying undirected graph, i.e.,
edges are traversable in both directions. Associated with each cycle is a {−1, 0, 1}
edge incidence vector: edges traversed by the cycle in the right direction get 1, edges
traversed in the opposite direction get −1, and edges not in the cycle at all get 0.1

The vector space over Q generated by these vectors is the cycle space of G. A set
of cycles is called a cycle basis if it forms a basis for this vector space. When G is
connected, the cycle space has dimension d = m− n + 1.

We assume that there is a weight function w : E → R≥0, i.e., the edges of G have
nonnegative weights assigned to them. The weight of a cycle basis is the sum of the
weights of its cycles. A minimum cycle basis of G is a cycle basis of minimum weight.
We consider the problem of computing a minimum cycle basis in a given digraph.
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A related problem pertains to undirected graphs, where we associate a {0, 1} edge
incidence vector with each cycle; edges in the cycle get 1 and others get 0. Unlike
directed graphs where the cycle space is defined over Q, cycle spaces in undirected
graphs are defined as vector spaces over Z2. The minimum cycle basis problem in an
undirected graph G asks for the cycle basis of minimum weight in G.

The different possible settings for the minimum cycle basis problem are (i) the
minimum cycle basis problem in undirected graphs, (ii) the minimum cycle basis
problem in directed graphs (where the directions on the cycles are ignored), and
(iii) the minimum directed cycle basis problem in directed graphs, where the cycle
basis has to consist of cycles that traverse edges only along the direction of the edge.

We first compare problems (i) and (ii) and then discuss problem (iii). Problems (i)
and (ii) are essentially different, since the first problem deals with computing a min-
imum weight spanning set of cycles that is linearly independent over Z2 while the
second problem needs to compute a minimum weight spanning set of cycles that is
linearly independent over Q. Transforming cycles in a cycle basis of a directed graph
by replacing both −1 and 1 by 1 does not necessarily yield a basis for the underlying
undirected graph, since the given cycle basis could be linearly independent over Q but
linearly dependent over Z2. In addition, lifting a minimum cycle basis of the underly-
ing undirected graph by putting back directions does not necessarily yield a minimum
cycle basis for the directed graph. Examples of both phenomena were presented in
[22], which we include in section 2. Thus, one cannot find a minimum cycle basis for
a directed graph by simply working with the underlying undirected graph.

A directed cycle basis is a spanning set of cycles where the incidence vector of
each cycle in this basis is a vector in {0, 1}m, that is, each edge in a cycle here is
traversed in the right direction. Note that a directed graph need not admit a directed
cycle basis. Berge [2] studied the question of when a directed graph G admits such
a cycle basis. He showed that if G is strongly connected, then G admits a directed
cycle basis. Conversely, he showed that if G admits a directed cycle basis, then
each maximal weakly connected induced subgraph of G with no cut vertex has to be
strongly connected or a single arc.

Efficient algorithms for computing minimum cycle bases in the above settings
have several applications. The minimum cycle basis problem is a special case of the
null space problem. The null space problem is defined as follows: given a field F and
an n × m matrix A with n ≤ m, rank r, and entries in F, find a matrix with the
fewest nonzeros, whose columns span the null space of A. The null space problem
was studied by Coleman and Pothen [6, 7], and this problem is NP-hard in general.
The minimum cycle basis problem in undirected graphs with unit weights on the
edges arises when the underlying field is Z2 and A is the {0, 1} vertex-edge incidence
matrix of an undirected graph G(V,E). The null vectors of this A are the vectors

(xe)e∈E ∈ Z|E|
2 such that for each v ∈ V we have

∑
e∈δ(v) xe = 0 (mod2), where δ(v)

is the set of edges incident on v. Note that the set of such vectors (xe)e∈E is the cycle
space of G, and a solution to the null space problem is a minimum cycle basis of G.

Similarly, the minimum cycle basis problem in directed graphs with unit weights
on the edges is an instance of the null space problem when the underlying field is Q
and A is the {−1, 0, 1} vertex-edge incidence matrix of a directed graph G(V,E). The
null vectors of such an A are the vectors (xe)e∈E ∈ Q|E| such that for each v ∈ V
we have

∑
e∈δ+(v) xe −

∑
e∈δ−(v) xe = 0, where δ+(v) and δ−(v) are the set of edges

leaving v and entering v, respectively. It is easy to see that the set of such vectors
(xe)e∈E is the cycle space of G. The minimum cycle basis of G is a solution to this
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null space problem. Indeed, assume that B is a minimum solution to the null space
problem. We may assume that the entries of B are integral, as multiplication by a
suitable constant makes all entries integral and does not change the number of nonzero
entries. So assume that B contains a column C whose entries are not in {0,±1}. Since
C belongs to the null space of the vertex-edge incidence matrix A, C decomposes into
a set of simple cycles C1 to Ck. Each Ci uses a subset (not necessarily proper) of
the edges of C and B \ C ∪ Ci is a basis for some i. We conclude that there exists a
solution with 0,±1 entries to this null space problem, which implies that a minimum
cycle basis of the directed graph G is a solution to this null space problem.

Some of the applications of minimum cycle bases arise from the above character-
ization of minimum cycle bases as the solutions of the null space problem in graphs.
The cycle analysis of electrical networks [9] corresponding to Kirchoff’s law is such
an example. Applications of minimum cycle bases have also been shown in structural
engineering [5], chemistry and biochemistry [11, 19], and surface reconstruction from
point clouds [23]. The minimum directed cycle basis has applications in metabolic
flux analysis [12]. A cycle basis of minimum weight in a directed graph whose d×m
cycle-edge incidence matrix satisfies the constraint that all its regular d × d subma-
trices have determinant ±1 has been found to be very useful in cyclic timetabling
[20, 21]. Books by Deo [10] and Bollobás [4] have in-depth coverage of cycle bases.

Horton [15] designed the first polynomial time algorithm to compute a minimum
cycle basis in an undirected graph and there are now several polynomial time al-
gorithms for this problem [3, 9, 13, 18], the fastest running in O(m2n + mn2 log n)
time [18]. Gleiss, Leydold, and Stadler [12] used Berge’s characterization of directed
cycle bases and showed that a generalization of Horton’s minimum cycle basis al-
gorithm in undirected graphs computes a minimum directed cycle basis in strongly
connected directed graphs. The first polynomial time algorithm for computing a min-
imum cycle basis in a directed graph had a running time of Õ(m4n) [17]. Liebchen
and Rizzi [22] gave an Õ(mω+1n) algorithm for this problem, where ω < 2.376 [8] is
the exponent of matrix multiplication; this was the fastest deterministic algorithm so
far for this problem in directed graphs.

In this paper we present an O(m3n + m2n2 log n) deterministic algorithm and
an O(m2n + mn2 log n) Monte Carlo algorithm to compute a minimum cycle basis
in a directed graph G with m edges, n vertices, and nonnegative edge weights. The
running time of our deterministic algorithm is m times the running time of the fastest
algorithm for computing minimum cycle bases in undirected graphs, we leave it as a
challenge to close the gap. The increased complexity seems to stem from the larger
base field. Arithmetic in Z2 suffices for undirected graphs. For directed graphs, the
base field is Q, which seems to necessitate the handling of large numbers. Also, the
computation of a shortest cycle that has a nonzero dot product with a given vector
seems more difficult in directed graphs than in undirected graphs.

The framework used in our algorithms was introduced by de Pina [9] and was also
used in [3, 18, 17]: we compute cycles Ci and supporting vectors Ni so that each Ci

is a shortest cycle not orthogonal to its corresponding Ni, and each Ni is orthogonal
to all previous Cj , j < i. This collection of cycles Ci is known to be a minimum cycle
basis. Our algorithms for computing the Ci’s and Ni’s rest on two ideas.

First, we show how to compute the vectors Ni efficiently using fast matrix mul-
tiplication and inversion. Our basic algorithm updates all vectors Nj with j > i in

iteration i, which results in an Õ(m4) algorithm. The improvement rests on an idea
already used in [18] to delay the update of vectors with higher index and to perform
these updates in bulk using matrix multiplication and inversion. However, this creates
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a problem since the numbers involved in the arithmetic get very large. We show two
approaches to solving this problem, leading to an O(m2n + mn2 log n) randomized
algorithm and an O(m3n + m2n2 log n) deterministic algorithm. In the randomized
algorithm we work over a finite field Zp for a small prime p, which ensures that the
numbers involved here do not get large. We show that we compute a minimum cy-
cle basis with a probability of at least 3/4 when p is a prime chosen uniformly at
random from a set of d2 small primes. In the deterministic algorithm, we could run
into intermediate numbers whose bit size is Θ̃(m2) when we use fast matrix inversion
algorithms. This makes the running time of our algorithm Θ̃(mω+2), which is worse
than the original iterative algorithm. We circumvent the problem by working over
a suitable ring ZR. The important point is that there is no fixed R over which we
work during the entire algorithm: whenever we perform the matrix multiplication and
inversion, we determine a suitable R so that the inverse of the matrix that we seek to
invert exists in ZR. This leads us to the vectors Ni mod R, and the number R will
be large enough so that we can easily recover the original vectors Ni from Ni mod R.
The total time needed now is Õ(mω+1).

The second key step in our algorithm is a subroutine to compute a shortest cycle
whose dot product with a given vector Ni is nonzero modulo a small number p. We
present an O(mn+n2 log n) algorithm to compute such a cycle Cp. This algorithm is
obtained by computing two types of paths between each adjacent pair of vertices. The
first path is a shortest path between these two vertices and the second is a shortest
path whose residue class is different from the residue class of the first path. Thus this
yields an O(m2n + mn2 log n) algorithm over Zp for computing the d cycles. For the
deterministic algorithm, the computation of each cycle can be reduced via the Chinese
remainder theorem to computing a shortest cycle Cp whose inner product with Ni

is nonzero modulo p for some p ∈ {p1, . . . , pd}, which is a collection of small primes.
This procedure is repeated for each p ∈ {p1, . . . , pd} yielding O(m2n+mn2 log n) time
for each Ci and thus O(m3n + m2n2 log n) time overall for all of the d cycles.

Organization of this paper. In section 2 we discuss some preliminaries and describe
the examples from [22] that were mentioned in section 1. Our framework is given in
section 3, and we present a simple deterministic algorithm from [17] that follows
from this framework. Section 4 lays the approach for a faster scheme and shows the
problem of large numbers that such an approach runs into. Section 5 describes the
deterministic algorithm that overcomes this problem, and section 6 gives a randomized
algorithm. Section 7 describes the subroutine for computing the required cycles.

2. Preliminaries. We are given a digraph G = (V,E), where |V | = n and |E| =
m. Without loss of generality, the underlying undirected graph of G is connected.
Then d = m − n + 1 is the dimension2 of the cycle space of G. So a minimum cycle
basis of G consists of d cycles C1, . . . , Cd. We describe cycles by their incidence vectors
in {−1, 0,+1}m.

A cycle basis of a directed graph need not project onto an undirected cycle

2Fix any spanning tree of G. For a nontree edge e, the fundamental cycle Fe induced by e consists
of e plus the tree path connecting its endpoints. This set of cycles is clearly independent as every
nontree edge is contained in a single cycle. We need to show that it spans all cycles. Consider any
cycle C = (xe)e∈E and define the sum S =

∑
e is a nontree edge xeFe, in which every fundamental

cycle is multiplied with the multiplicity of its defining edge in C. The vector S is in the cycle space
and so is Z = S − C. The entries of Z corresponding to nontree edges are zero (by the definition
of S) and Z satisfies the flow conservation constraints. Hence the entries of Z corresponding to tree
edges must also be zero. Thus Z = 0 and the fundamental cycles form a basis. The number of
fundamental cycles is exactly m− n + 1.
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basis. Consider the following three 4-cycles in the directed graph in Figure 2.1:
C1 = (e1, e2, e3, e4), C2 = (e1, e6, e3, e5), and C3 = (e2, e5, e4, e6) given by the vectors
(1, 1, 1, 1, 0, 0), (1, 0,−1, 0,−1,−1), and (0, 1, 0,−1,−1, 1). It is easy to see that these
vectors are linearly independent over Q. Hence they form a cycle basis for the directed
K4. But in the underlying undirected graph, each of these cycles is equal to the sum
modulo 2 of the other two, so C1, C2, C3 do not form a cycle basis for the undirected
K4.

1 2

34

ee
e

e1

24

1 2

34

56
e

e
3

Fig. 2.1. Directed K4 and the underlying undirected graph.

Further, there are directed weighted graphs in which the minimum cycle basis
has lower weight than any cycle basis of the underlying undirected graph; such an
example was given in [22]. Consider the generalized Petersen graph P7,2 in Figure 2.2.

a

b

c

de

f

g 0

1

2

34

5

6

Fig. 2.2. The generalized Petersen graph P7,2.

Call an edge (u, v) an inner edge if {u, v} ⊂ {0, 1, . . . , 6}. Similarly call an edge
(u, v) an outer edge if {u, v} ⊂ {a, . . . , g}. The seven edges that remain are called
spokes. Assign weight two to the seven inner edges and weight three to the outer
edges and spokes. The shortest cycle in this graph has a weight of 14 and there are
precisely eight cycles having a weight of 14, namely the cycle CI consisting of only
inner edges, and the seven cycles using one inner edge, two spokes, and two outer
edges. Use Ci, 0 ≤ i ≤ 6, to denote the cycle using the inner edge connecting i and
i + 2 mod 7. Every other cycle has a length of at least 15.

Every edge of P7,2 belongs to precisely two of the eight cycles with a weight of 14.
Therefore in the undirected case, these 8 = m−n+1 cycles are not independent over
Z2. Thus in the undirected case, every cycle basis has a weight of at least 113. In the
directed case, these 8 cycles under any orientation of edges are linearly independent.3

So there is a directed cycle basis of weight 112.

3Direct the inner edges clockwise, the spokes outward, and the outer edges counterclockwise.
Then all eight cycles use their inner and outer edges in the forward direction. Assume αICI +∑

0≤i≤6 αiCi = 0. The edge (i, i + 2 mod 7) is used only by CI and Ci, and hence we must have
αi = −αI for all i. But then the outer edges do not cancel out.
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We will assume for the rest of this paper that the edges in E = {e1, . . . , em}
are ordered so that edges ed+1 to em form the edges of a spanning tree T of the
underlying undirected graph. This means that the first d coordinates, of each of
C1, . . . , Cd, correspond to edges outside the tree T , and the last n− 1 coordinates are
the edges of T . This will be important in our proofs in section 3. We can also assume
that there are no multiple edges in G. It is easy to see that whenever there are two
edges from u to v, the heavier edge (call it a) can be deleted from E, and the least
weight cycle (call it C(a)) that contains the edge a can be added to the minimum
cycle basis computed on (V,E \ {a}). The cycle C(a) consists of the edge a and the
shortest path between u and v in the underlying undirected graph. All such cycles can
be computed by an all-pairs-shortest-paths computation in the underlying undirected
graph of G, which takes Õ(mn) time. So we will assume from now on that m ≤ n2.

3. Framework and a simple algorithm. We begin with a structural char-
acterization of a minimum cycle basis. This characterization uses auxiliary rational
vectors N1, . . . , Nd which serve as a scaffold for proving properties of C1, . . . , Cd, as
described below. We use 〈v1, v2〉 to denote the standard inner product or dot product
of the vectors v1 and v2.

Theorem 3.1. Cycles C1, . . . , Cd form a minimum cycle basis if there are vectors
N1, . . . , Nd in Qm such that for all i, 1 ≤ i ≤ d:

1. Prefix orthogonality: 〈Ni, Cj〉 = 0 for all j, 1 ≤ j < i.
2. Nonorthogonality: 〈Ni, Ci〉 	= 0.
3. Shortness: Ci is a shortest cycle with 〈Ni, Ci〉 	= 0.

Proof. First, we show that C1, . . . , Cd is a cycle basis of G by showing that these
are linearly independent over Q (recall that any set of d linearly independent cycles
is a cycle basis). Suppose it is not. Then a rational linear combination of a subset of
these cycles yields 0. Let the cycle with the largest index in this subset be Ci. By
properties 1 and 2 of the theorem, taking the dot product of this linear combination
with Ni yields a nonzero value on one side of this linear combination and a 0 on the
other side, a contradiction.

Second, we show that C1, . . . , Cd is a minimum cycle basis of G. Suppose it is
not. Then consider the smallest i ≥ 1 such that C1, . . . , Ci are not in any minimum
cycle basis. Then C1, . . . , Ci−1 belong to some minimum cycle basis; call this basis
K (in the event that i = 1, let K be any minimum cycle basis). We will exhibit a
cycle K ∈ K such that (i) 〈Ni,K〉 	= 0 and (ii) K can be written as a rational linear
combination of Ci along with cycles in K/{K}. Demonstrating such a cycle K ∈ K
is easy: since K is a basis not containing Ci, the cycle Ci must be a rational linear
combination of cycles in K. At least one of these cycles K ∈ K satisfies 〈Ni,K〉 	= 0,
because 〈Ni, Ci〉 	= 0 by property 2 in the theorem. Therefore (i) holds. Further, (ii)
follows by rewriting the above linear combination to switch the sides of Ci and K.

Property 1 of the theorem and condition (i) ensure that the cycle K is not one of
C1, . . . , Ci−1. Condition (ii) implies that K/{K} ∪ {Ci} is a cycle basis. Property 3
of the theorem and condition (i) imply that Ci has weight at most that of K and
therefore K/{K} ∪ {Ci} is also a minimum cycle basis. C1, . . . , Ci belong to this
minimum cycle basis, a contradiction.

We present a simple deterministic algorithm from [17] that computes Ni’s and
Ci’s satisfying the criteria in Theorem 3.1.

The algorithm deterministic-MCB.
1. Initialize the vectors N1, . . . , Nd of Qm to the first d vectors e1, . . . , ed of the

standard basis of Qm.
(The vector ei has 1 in the ith position and 0’s elsewhere.)
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2. For i = 1 to d do
• compute Ci to be a shortest cycle such that 〈Ci, Ni〉 	= 0,
• for j = i + 1 to d do

update Nj as: Nj = Nj −Ni
〈Ci, Nj〉
〈Ci, Ni〉

,

normalize Nj as: Nj = Nj
〈Ci, Ni〉

〈Ci−1, Ni−1〉
.

(We take 〈C0, N0〉 = 1.)
The above algorithm needs the vector Ni in the ith iteration to compute the cycle

Ci. Instead of computing Ni from scratch in the ith iteration, it obtains Ni by update
and normalization steps through iterations 1 to i− 1. We describe how to compute a
shortest cycle Ci such that 〈Ci, Ni〉 	= 0 in section 7. Let us now show that the Ni’s
obey the prefix orthogonality property. Lemma 3.2, proved in [17], shows this and
more.

Lemma 3.2. For any i, at the end of iteration i − 1, the vectors Ni, . . . , Nd

are orthogonal to C1, . . . , Ci−1, and, moreover, for any j with i ≤ j ≤ d, Nj =
〈Ni−1, Ci−1〉(xj,1, . . . , xj,i−1, 0, . . . , 0, 1, 0, . . . , 0), where 1 occurs in the jth coordinate
and the vector x = (xj,1, . . . , xj,i−1) is the unique solution to the set of equations:

(3.1)

⎛
⎜⎝

C̃T
1
...

C̃T
i−1

⎞
⎟⎠x =

⎛
⎜⎝

−c1j
...

−c(i−1)j

⎞
⎟⎠ .

Here C̃k, 1 ≤ k < i, is the restriction of Ck to its first i− 1 coordinates and ckj is the
jth coordinate of Ck.

Proof. The claim is certainly true after the 0th iteration, that is, at the beginning
of the algorithm. So consider the ith iteration and assume that the claim is true at
the end of iteration i− 1. In iteration i, we determine Ci with 〈Ci, Ni〉 	= 0 and then
update the Nj ’s for all j with i + 1 ≤ j ≤ n. Consider any j with i + 1 ≤ j ≤ n and
use N ′

j to denote the updated value of Nj .
Nj is updated by subtracting a scalar multiple of Ni from it. Since Nj and Ni

are orthogonal to Cl for l < i by induction hypothesis, N ′
j is orthogonal to Cl. The

update step also guarantees orthogonality to Ci. Indeed,

〈Ci, N
′
j〉 = 〈Ci, Nj〉 − 〈Ci, Ni〉

〈Ci, Nj〉
〈Ci, Ni〉

= 0.

By induction hypothesis, Nj is of the form (tj,1, . . . , tj,i−1, 0, . . . , tj,j , 0, . . .), where
tj,j = 〈Ci−1, Ni−1〉 and Ni has nonzero entries only in its first i coordinates. So N ′

j

has the form (t′j,1, . . . , t
′
j,i, 0, . . . , tj,j , 0, . . .). After normalization, the jth coordinate

of N ′
j is

tj,j
〈Ni, Ci〉

〈Ni−1, Ci−1〉
= 〈Ni−1, Ci−1〉

〈Ni, Ci〉
〈Ni−1, Ci−1〉

= 〈Ni, Ci〉.

Hence N ′
j has the form

N ′
j = 〈Ni, Ci〉(uj,1, . . . , uj,i, 0, . . . , 1, 0, . . . , 0).



FASTER ALGORITHMS FOR MINIMUM CYCLE BASIS 1437

Since N ′
j is orthogonal to C1, . . . , Ci and 〈Ni, Ci〉 	= 0, (uj,1, . . . , uj,i) is a solution to

the following set of equations:

(3.2)

⎛
⎜⎝

C̃T
1
...

C̃T
i

⎞
⎟⎠x =

⎛
⎜⎝

−c1j
...

−cij

⎞
⎟⎠ ,

where C̃k, for k = 1, . . . , i, is the restriction of the vector Ck to its first i coordinates
and ckj is the jth coordinate of the vector Ck. We show that the matrix of C̃k’s is
nonsingular, hence (uj,1, . . . , uj,i) is the unique solution of (3.2). The proof of the
nonsingularity of this matrix mimics the argument in Theorem 3.1. Consider any
linear combination of the rows adding to the zero vector:

(3.3)

i∑
k=1

αkC̃k = 0.

Assume that one of the αk’s is nonzero and consider the largest � such that α� 	= 0. We
take the inner product of both sides of (3.3) with Ñ�, where Ñ� is the restriction of the
vector N� to its first i coordinates. Note that Ñ� has all of the nonzero entries of N�

since � ≤ i and only the first � entries of N� may be nonzero. So 〈C̃k, Ñ�〉 = 〈Ck, N�〉 for

all k ≤ �. Hence the left-hand side is
∑�

k=1 αk〈Ck, N�〉 = α�〈C�, N�〉 since 〈Ck, N�〉 = 0
for each k with k < �. Since α� and 〈C�, N�〉 are nonzero while the right-hand side is
zero, we get a contradiction. Thus all of the αk’s in (3.3) are zero and so the matrix
with C̃k’s as its rows is nonsingular and the proof is complete.

Remark. Note that the ith coordinate of Ni is nonzero. This readily implies
that there is at least one cycle that has nonzero dot product with Ni, namely the
fundamental cycle Fei formed by the edge ei and the path in the spanning tree T
connecting its endpoints. The dot product 〈Fei , Ni〉 is equal to the ith coordinate of
Ni, which is nonzero.

We next give an alternative characterization of these Nj ’s. This characterization
helps us in bounding the running time of the algorithm deterministic-MCB. Let M
denote the (i−1)× (i−1) matrix of C̃k’s in (3.1), and let bj denote the column vector
of −ckj ’s on the right. We claim that solving Mx = det(M) · bj leads to the same
vectors Nj for all j with i ≤ j ≤ d. We first show the following claim.

Lemma 3.3. 〈Ni−1, Ci−1〉 = det(M).
Proof. Let X be the (i − 1) × (i − 1) matrix with its kth column equal to Nk

truncated to its first i− 1 coordinates. We know from Lemma 3.2 that X is an upper
triangular matrix with X[k, k] = 〈Nk−1, Ck−1〉. So det(X) =

∏i−1
k=1〈Nk−1, Ck−1〉. The

product MX has 〈Cj , Nk〉 as its (j, k)th element, so it is a lower triangular matrix
by prefix orthogonality. Hence det(MX) is the product of its diagonal values, i.e,

det(MX) =
∏i−1

k=1〈Nk, Ck〉. Since det(M) · det(X) = det(MX), 〈N0, C0〉 = 1, and
〈Nk, Ck〉 	= 0 for all k, the lemma follows.

We know by Lemma 3.2 that (xj,1, . . . , xj,i−1) is the unique solution to Mx = bj .
In the ith iteration of the algorithm, we could have directly computed the vector
Ni = 〈Ni−1, Ci−1〉(xi,1, . . . , xi,i−1, 1, 0, . . .), which is det(M)(xi,1, . . . , xi,i−1, 1, 0, . . .)
(by Lemma 3.3), by solving the set of equations Mx = det(M)bi and appending
(det(M), 0, . . . , 0) to x. However, such an algorithm would be slower—it would take
time Θ̃(mω+2), where ω < 2.376 is the exponent of matrix multiplication. The updates
and normalizations in the algorithm deterministic-MCB achieve the same result in a
more efficient manner.
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Let us now bound the running time of the ith iteration of deterministic-MCB. We
will show in section 7 that a shortest cycle Ci such that 〈Ci, Ni〉 	= 0 can be computed
in O(m2n+mn2 log n) time. Let us look at bounding the time taken for the update and
normalization steps. We take O(m) arithmetic steps for updating and scaling each Nj

since each Nj has m coordinates. Thus the total number of arithmetic operations in
the ith iteration is O((d− i)m) = O(md) over all j, i + 1 ≤ j ≤ d. We next estimate
the cost of the arithmetic. The coordinates of Nj are determined by the system
Mx = det(M)bj and hence are given by Cramer’s rule. Fact 1 below shows that each

entry in Nj is bounded by dd/2. Thus we pay Õ(d) time per arithmetic operation.

Thus the running time of the ith iteration is Õ(m3), and hence the running time of
deterministic-MCB is Õ(m4).

Fact 1. Since M is a ±1, 0 matrix of size (i−1)×(i−1) and bj is a ±1, 0 vector,
all determinants used in Cramer’s rule in solving Mx = det(M)bj are bounded by ii/2

using Hadamard’s inequality. Therefore, the absolute value of each entry in Nj in the
ith iteration, where j ≥ i, is bounded by ii/2.

4. A faster scheme. The update and normalization steps form the bottleneck in
the algorithm deterministic-MCB. We will reduce their cost from Õ(m4) to Õ(mω+1).

• First, we delay updates until after several new cycles have been computed.
For instance, we update N�d/2�+1, . . . , Nd not after each new cycle but in bulk
after all of C1, C2, . . . , C�d/2� are computed.

• Second, we use a fast matrix multiplication method to do the updates for all
of N�d/2�+1, . . . , Nd together, and not individually as before.

The scheme. The faster deterministic algorithm starts with the same configura-
tion for the Ni’s as before, i.e., Ni is initialized to the ith unit vector, 1 ≤ i ≤ d.
It then executes three steps. First, it computes C1, . . . , C�d/2� and N1, . . . , N�d/2�
recursively, leaving N�d/2�+1, . . . , Nd at their initial values. Second, it runs a bulk
update step in which N�d/2�+1, . . . , Nd are modified so that they become orthogonal
to C1, . . . , C�d/2�. And third, C�d/2�+1, . . . , Cd are computed recursively modifying
N�d/2�+1, . . . , Nd in the process.

A crucial point to note about the second recursive call is that it modifies N�d/2�+1,
. . . , Nd while ignoring C1, . . . , C�d/2� and N1, . . . , N�d/2�; how then does it retain
the orthogonality of N�d/2�+1, . . . , Nd with C1, . . . , C�d/2� that we achieved in the
bulk update step? The trick lies in the fact that whenever we update any Nj in

{N�d/2�+1, . . . , Nd} in the second recursive call, we do it as Nj =
∑d

k=�d/2�+1 αkNk,
where αk ∈ Q. That is, the updated Nj is obtained as a rational linear combination
of N�d/2�+1, . . . , Nd. Since the bulk update step prior to the second recursive call
ensures that N�d/2�+1, . . . , Nd are all orthogonal to C1, . . . , C�d/2� at the beginning of
this step, the updated Nj ’s remain orthogonal to C1, . . . , C�d/2�. This property allows
the second recursive call to work strictly in the bottom half of the data without looking
at the top half.

The base case for the recursion is a subproblem of size 1 (let this subproblem
involve C�, N�) in which case the algorithm simply retains N� as it is and computes
C� using the algorithm in section 7. With regards to time complexity, the bulk update
step will be shown to take O(mdω−1) arithmetic operations.

We describe the bulk update procedure in the recursive call that computes the
cycles C�, . . . , Ch for some h and � with h > �. This recursive call works with the
vectors N�, . . . , Nh: all of these vectors are already orthogonal to C1, . . . , C�−1. The
recursive call runs as follows:
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1. Compute the cycles C�, . . . , Cmid, where mid = �(� + h)/2� − 1, using the
vectors N�, . . . , Nmid recursively.

2. Modify Nmid+1, . . . , Nh, which are untouched by the first step, to make them
orthogonal to C�, . . . , Cmid.

3. Compute Cmid+1, . . . , Ch using these Nmid+1, . . . , Nh recursively.
Step 2 is the bulk update step. We wish to update each Nj , mid + 1 ≤ j ≤ h, to a
rational linear combination of N�, . . . , Nmid and Nj as follows:4

Nj =
〈Nmid, Cmid〉
〈N�−1, C�−1〉

Nj +

mid∑
t=�

αtjNt,

where the αtj ’s are to be determined in a way which ensures that Nj becomes orthog-
onal to C�, . . . , Cmid. That is, for all i, j, where � ≤ i ≤ mid and mid+ 1 ≤ j ≤ h, we
want

(4.1)
〈Nmid, Cmid〉
〈N�−1, C�−1〉

〈Ci, Nj〉 +

mid∑
t=�

αtj〈Ci, Nt〉 = 0.

Rewriting the above relations in matrix form, we get

(4.2) A · Nd ·D = −A · Nu ·X,

where (let k = mid− � + 1)
• A is a k ∗m matrix, the ith row of which is C�+i−1,
• Nd is an m ∗ (h− k) matrix, the jth column of which is Nmid+j ,
• D is an (h− k) ∗ (h− k) scalar matrix with 〈Nmid, Cmid〉/〈N�−1, C�−1〉 in the

diagonal,
• Nu is an m ∗ k matrix, the tth column of which is N�+t−1, and
• X is the k ∗ (h − k) matrix of variables αtj , with t indexing the rows and j

indexing the columns.
To compute the αtj ’s, we solve for X = −(A ·Nu)−1 ·A ·Nd ·D. Using fast matrix

multiplication, we can compute A · Nu and A · Nd in O(mkω−1) time by splitting the
matrices into d/k square blocks and using fast matrix multiplication to multiply the
blocks. Multiplying each element of A ·Nd with the scalar 〈Nmid, Cmid〉/〈N�−1, C�−1〉
gives us A ·Nd ·D. Thus we compute the matrix A ·Nd ·D with O(mkω−1) arithmetic
operations. Next, we find the inverse of A ·Nu with O(kω) arithmetic operations (this
inverse exists because A · Nu is a lower triangular matrix whose diagonal entries are
〈Ci, Ni〉 	= 0). Then we multiply (A · Nu)−1 with A · Nd ·D using O(kω) arithmetic
operations. Thus we obtain X. Finally, we obtain Nmid+1, . . . , Nd from X using
the product Nu ·X, which we can compute in O(mkω−1) arithmetic operations, and
adding Nd ·D to Nu ·X. The total number of arithmetic operations required for the
bulk update step is thus O(mkω−1).

The total number of arithmetic operations required for the bulk update step is
O(mkω−1); however, each arithmetic operation is quite expensive since we deal with
large numbers here. In this algorithm, the entries in (A · Nu)−1 could be very large.
The elements in A · Nu have values up to dΘ(d), which would result in the entries
in (A · Nu)−1 being as large as dΘ(d2). So each arithmetic operation then costs us

4Note that the coefficient 〈Nmid, Cmid〉/〈N�−1, C�−1〉 for Nj is chosen so that the updated vector
Nj here is exactly the same vector Nj that we would have obtained at this stage using the algorithm
deterministic-MCB (section 3).
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up to Θ̃(d2) time, and the overall time for the outermost bulk update step would be
Θ̃(mω+2) time, which makes this approach slower than the algorithm deterministic-
MCB.

5. A fast deterministic algorithm. In the approach described in the previous
section, we saw that entries in the matrix (A ·Nu)−1 (refer to (4.2)) could be as large

as dΘ(d2). Thus we were not able to use the faster scheme for updating the vectors
Nj , since each arithmetic operation could cost us up to Θ̃(d2) time. But observe that
the αtj ’s are just intermediate numbers in our computation. That is, they are the
coefficients in

mid∑
t=�

αtjNt +
〈Nmid, Cmid〉
〈N�−1, C�−1〉

Nj .

Our final aim is to determine the updated coordinates of Nj which are at most dd/2

(see Fact 1), since we know Nj = (y1, . . . , ymid, 0, . . . , 0, 〈Nmid, Cmid〉, 0, . . . , 0), where
y = (y1, . . . , ymid) is the solution to the linear system: My = det(M)bj ; M is the
mid ×mid matrix of C1, . . . , Cmid truncated to the their first mid coordinates, and
bj is the column vector of negated j coordinates of C1, . . . , Cmid.

Since the final coordinates are bounded by dd/2 while the intermediate values
could be much larger, this suggests the use of modular arithmetic here. We could
work over the finite fields Zp1

,Zp2 , . . . ,Zps where p1, . . . , ps are small primes (say,
in the range d to d2) and try to retrieve Nj from Nj mod p1, . . . , Nj mod ps, which
is possible (by the Chinese remainder theorem) if s ≈ d/2. Arithmetic in Zp takes
O(1) time and we thus spend O(s ·mkω−1) time for the update step now. However,
if it is the case that some p is a divisor of some 〈Ni, Ci〉 where � ≤ i ≤ mid, then
we cannot invert A · Nu in the field Zp. Since each number 〈Ni, Ci〉 could be as
large as dd/2, it could be a multiple of up to Θ(d) primes which are in the range
d, . . . , d2. So in order to be able to determine d primes which are relatively prime
to each of 〈N�, C�〉, . . . , 〈Nmid, Cmid〉, we might in the worst case have to test about
(mid− �+1) ·d = kd primes. Testing kd primes for divisibility with respect to k d-bit
numbers costs us k2d2 time. We cannot afford so much time per update step.

Another idea is to work over just one finite field Zq where q is a large prime. If
q > dd/2, then q can never be a divisor of any 〈Ni, Ci〉, so we can carry out all of our
arithmetic in Zq since the matrix A · Nu will be nonsingular in Zq. Arithmetic in Zq

costs us Θ̃(d) time if q ≈ dd. Then our update step takes Õ(m2kω−1) time, which will
result in a total time of Õ(mω+1) for all of the update steps, which is our goal. But
computing such a large prime q is a difficult problem.

The solution is to work over a suitable ring instead of over a field; recall that fast
matrix multiplication algorithms work over rings. Let us do the above computation
modulo a large integer R, say, R ≈ dd. Then intermediate numbers do not grow more
than R and we can retrieve Nj directly from Nj mod R, because R is much larger
than any coordinate of Nj .

What properties of R do we need? The integer R must be relatively prime to
the numbers: 〈N�, C�〉, 〈N�+1, C�+1〉, . . . , 〈Nmid, Cmid〉 so that the triangular matrix
A · Nu which has these elements along the diagonal is invertible in ZR. And R must
also be relatively prime to 〈N�−1, C�−1〉 so that 〈Nmid, Cmid〉/〈N�−1, C�−1〉 is defined
in ZR. Once we determine such an R, we will work in ZR. We stress the point that
such an R is a number used only in this particular bulk update step—in another bulk
update step of another recursive call, we need to compute another such large integer.
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It is easy to see that the number R determined below is a large number that
is relatively prime to 〈N�−1, C�−1〉, 〈N�, C�〉, 〈N�+1, C�+1〉, . . . , and 〈Nmid, Cmid〉 by
doing the following.

1. Right at the beginning of the algorithm, compute d2 primes p1, . . . , pd2 , where
each of these primes is at least d. Then form the d products: P1 = p1 · · · pd,
P2 = p1 · · · p2d, P3 = p1 · · · p3d, . . . , Pd = p1 · · · pd2 .

2. Then during our current update step, compute the product

L = 〈N�−1, C�−1〉〈N�, C�〉 · · · 〈Nmid, Cmid〉.

3. By doing a binary search on P1, . . . , Pd, determine the smallest s ≥ 0 such
that Ps+1 does not divide L.

4. Determine a p ∈ {psd+1, . . . , psd+d} that does not divide L. Let R = pd.
Cost of computing R. The value of π(r), the number of primes less than r, is

given by r/6 log r ≤ π(r) ≤ 8r/log r [1]. So all the primes p1, . . . , pd2 are Õ(d2), and
computing them takes Õ(d2) time using a sieving algorithm. The products P1, . . . , Pd

are computed just once in a preprocessing step. We will always perform arithmetic
on large integers using Schönhage–Strassen multiplication, so that it takes Õ(d) time
to multiply two d-bit numbers. Whenever we perform a sequence of multiplications,
we will use a tree so that d numbers (each of bit size Õ(d)) can be multiplied in Õ(d2)
time. So computing P1, . . . , Pd takes Õ(d3) preprocessing time.

In the update step, we compute L, which takes Õ(d2) time. The product Ps+1 =
psd+1 · · · psd+d is found in Õ(d2) time by binary search in the set {P1, . . . , Pd}. De-
termine a p in the set {psd+1, . . . , psd+d} that does not divide L by testing which of
the two products psd+1 · · · psd+�d/2� or psd+�d/2�+1 · · · psd+d does not divide L, and

recurse on the product that does not divide L. Thus R can be computed in Õ(d2)
time.

Computation in ZR. We need to invert the matrix A · Nu in the ring ZR. Recall
that this matrix is lower triangular. Computing the inverse of a lower triangular
matrix is easy. If

A · Nu =

(
W 0
Y Z

)
, then we have (A · Nu)−1 =

(
W−1 0

−Z−1YW−1 Z−1

)
.

Hence to invert A · Nu in ZR we need the multiplicative inverses of only its diagonal
elements: 〈C�, N�〉, . . . , 〈Cmid, Nmid〉 in ZR. Using Euclid’s greatest common divisor
(gcd) algorithm, each inverse can be computed in Õ(d2) time, since each of the num-
bers involved here and R have bit size Õ(d). The matrix A · Nu is inverted via fast
matrix multiplication, and once we compute (A · Nu)−1, the matrix X, that consists
of all the coordinates αtj that we need (see (4.1)), can be easily computed in ZR as
−(A·Nu)−1 ·A·Nd ·D by fast matrix multiplication. Then we determine all Nj mod R
for mid + 1 ≤ j ≤ h from Nu ·X + Nd ·D. It follows from the analysis presented in
section 4 that the time required for all of these operations is Õ(m2kω−1) since each
number is now bounded by dd.

Retrieving the actual Nj. Each entry of Nj can have absolute value at most dd/2

(from Fact 1). The number R is much larger than this, R > dd. So if any coordi-
nate, say, nl in Nj mod R, is larger than dd/2, then we can retrieve the original nl

as nl − R. Thus we can retrieve Nj from Nj mod R in O(d2) time. The time com-
plexity for the update step, which includes matrix operations, gcd computations, and
other arithmetic, is Õ(m2kω−1 + d2k) or Õ(m2kω−1). Thus our recurrence becomes
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(assuming Lemma 7.4 from section 7, which shows that the base case T (1) takes
O(m2n + mn2 log n) time)

T (k) =

{
2T (k/2) + Õ(m2kω−1) if k > 1,

m2n + mn2 log n if k = 1.

The recurrence solves to T (k) = O(k(m2n + mn2 log n) + kω−1m2 · poly(logm)),
and hence T (d) = O(m3n + m2n2 log n) + Õ(mω+1), which is O(m3n + m2n2 log n),
because m ≤ n2 implies Õ(mω+1) is always o(m3n). Thus we have shown the following
theorem.

Theorem 5.1. A minimum cycle basis in a weighted directed graph with m edges
and n vertices and nonnegative edge weights can be computed in O(m3n+m2n2 log n)
time.

6. Faster arithmetic via randomization. Suppose we could perform each
arithmetic operation in O(1) time; then our recurrence relation for T (k), k > 1 will
be given by:

T (k) = 2T (k/2) + O(mkω−1).

We would also like to show that T (1) is O(mn + n2 log n). Then this yields a run-
ning time of O(n2d log n + nmd + mω) or O(m2n + mn2 log n), since mω is o(m2n).
Such a running time matches the complexity of minimum cycle basis computation in
undirected graphs.

Now we will show that we can perform each arithmetic operation in O(1) time.
This will require working modulo a randomly chosen prime p. We will perform all
arithmetic over the finite field Zp and not over the rationals. The danger now is
that the results of working in this field could be different from those obtained by
working over rationals. Fortunately, the following theorem claims that the results
remain the same, provided the prime p chosen satisfies certain properties. In the
description below, let Ci, Ni denote the results obtained by the fast deterministic
algorithm working over the rationals, and let C ′

i, N
′
i be the counterparts obtained by

the fast deterministic algorithm working over Zp.
Theorem 6.1. If 〈Ci, Ni〉 	= 0 (mod p) for all i, 1 ≤ i ≤ d, then C ′

i = Ci and
N ′

i = Ni (mod p).
Proof. Recall that the fast deterministic algorithm has a recursive structure. We

use an inductive argument that mimics this recursion. At the very beginning, N ′
i = Ni

( mod p) for all i, 1 ≤ i ≤ d, as the Ni’s are {0, 1} vectors. Each recursive subproblem
(when working with rationals) then takes a contiguous subset N�, N�+1, . . . , Nh and
computes C�, C�+1, . . . , Ch using only N�, N�+1, . . . , Nh, modifying the latter in the
process. We claim that if this recursive subproblem began with N ′

�, N
′
�+1, . . . , N

′
h

instead of N�, N�+1, . . . , Nh, where

N ′
� = N� (mod p), N ′

�+1 = N�+1 (mod p), . . . , N ′
h = Nh (mod p),

and subsequently worked modulo p, then it would still produce the same cycles
C�, . . . , Ch and in addition, after modification, the relations N ′

� = N� (mod p), N ′
�+1

= N�+1 (mod p), . . . , N ′
h = Nh (mod p) will continue to hold. We will use induc-

tion on � − h + 1 to prove this claim. We will explicitly show the base case when
�−h+1 = 1. We will then assume that the claim is true for all recursive subproblems
with 1 ≤ �− h + 1 < t and then prove it for �− h + 1 = t.
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Consider a subproblem of size 1 (� − h + 1 = 1, i.e., � = h). When working
over rationals, N� does not change and C� is defined as the shortest cycle such that
〈C�, N�〉 	= 0. When working (mod p), N ′

� does not change and C ′
� is defined as the

shortest cycle such that 〈C ′
�, N

′
�〉 	= 0 (mod p). Assuming N ′

� = N� (mod p) at the
beginning of this subproblem, and given that p satisfies 〈C�, N�〉 	= 0 (mod p), it
follows that C ′

� = C�. This shows the base case.

Next, consider the three-step process used in the fast deterministic algorithm.
First, consider the first recursive step which computes C�, . . . , Cmid. By the in-
duction hypothesis, at the end of this step, we have C ′

� = C�, . . . , C
′
mid = Cmid

and N ′
� = N� (mod p), . . . , N ′

mid = Nmid (mod p). The vectors N ′
mid+1, . . . , N

′
h

are untouched by this step and by virtue of the initial assignment, stay identi-
cal to Nmid+1, . . . , Nh. Second, consider the bulk update step. This step mod-
ifies N ′

mid+1 . . . N
′
h as a function of N ′

�, . . . , N
′
mid and C ′

�, . . . , C
′
mid. Since N ′

� =
N� (mod p), . . . , N ′

mid = Nmid (mod p) and C ′
1 = C1, . . . , C

′
mid = Cmid, it follows

that N ′
mid+1 = Nmid+1 (mod p), . . . , N ′

h = Nh (mod p) after the bulk update step.
This sets up the necessary initial condition for the second recursive step which com-
putes C ′

mid+1, . . . , C
′
h from N ′

mid+1, . . . , N
′
h alone. Applying the induction hypothesis

again proves the theorem.

Selecting the number p. It remains to show how p is chosen. Consider a pool of
d2 primes, each of which is bigger than d2, and suppose we choose a prime at random
from this pool. Lemma 6.3 shows that it satisfies the conditions of Theorem 6.1 with
probability of at least 3/4. Let us first make the following definition.

Definition 6.2. Call a prime p good if 〈Ci, Ni〉 	= 0 (mod p) for each i ∈
{1, . . . , d}. Call a prime p bad if it is not good.

Lemma 6.3. Let P be a set of d2 primes, each of which is at least d2. Then at
least 3/4th of the set P is good.

Proof. We will use Lemma 3.3 here. Lemma 3.3 shows that for all 1 ≤ j ≤ d,
〈Cj , Nj〉 = det(M), where M is the j × j matrix of C̃k’s on the right-hand side
of (3.1). Hadamard’s inequality tells us that the absolute value of det(M) is at
most dd/2, since the entries in M are 0,±1. Hence for all 1 ≤ i ≤ d, we have
0 	= |〈Ci, Ni〉| ≤ dd/2. Since each prime in P is at least d2, at most d/4 elements in P
can be divisors of 〈Ci, Ni〉. So the number of primes in P that can divide at least one
of 〈C1, N1〉, 〈C2, N2〉, . . . , 〈Cd, Nd〉 is at most d2/4. Hence the fraction of bad primes
in P is at most d2/4d2 ≤ 1/4.

We now need to show how to compute the pool P of d2 primes, each bigger than
d2. As mentioned earlier, the value of π(r), the number of primes less than r, is given
by r/6 log r ≤ π(r) ≤ 8r/log r. So the elements in P can be bounded by 100d2 log d.
Using sieving, we can compute the set of primes in the first 100d2 log d numbers in
O(d2 log2 d) time. So the set P can be determined in O(d2 log2 d) = O(m2 log2 n) time.
Note that this term does not appear in the final complexity of O(m2n + mn2 log n)
because it is completely dominated by the m2n term.

Arithmetic modulo p. Under the assumption that arithmetic on O(logm) bits
takes unit time, it follows that addition, subtraction, and multiplication in Zp can
be implemented in unit time since p is O(d2 log d) = O(m2 logm). However, we
also need to implement division efficiently. Once p is chosen, we will compute the
multiplicative inverses of all elements in Z∗

p by the extended Euclid’s gcd algorithm
by solving ax = 1(modp) for each a ∈ Z∗

p. This takes time O(log p) for each element

and hence O(p log p) = O(d2 log2 d) for all of the elements. Thereafter, division in Zp

gets implemented as multiplication with the inverse of the divisor. The O(d2 log2 d)
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term does not appear in the final complexity of O(m2n + mn2 log n) because it is
completely dominated by the m2n term.

Lemma 7.3, proved in section 7, shows that T (1), the time taken to compute the
shortest Ci such that 〈Ci, Ni〉 	= 0(modp), is O(mn+mn2 log n). Hence Theorem 6.4
follows from the recurrence relation for T (·) (refer to the beginning of this section).

Theorem 6.4. A minimum cycle basis in a directed graph with n vertices and m
edges, with nonnegative weights on its edges, can be computed with a probability of at
least 3/4 in O(m2n + mn2 log n) time.

7. Computing nonorthogonal shortest cycles. Now we come to the second
key routine required by our algorithm—given a directed graph G with nonnegative
edge weights, compute a shortest cycle in G whose dot product with a given vector
Ni ∈ Zm is nonzero. We will first consider the problem of computing a shortest cycle
Cp such that 〈Cp, Ni〉 	= 0 (mod p) for a number p = O(d2 log d). Recall that Cp can
traverse edges of G in both forward and reverse directions; the vector representation
of Cp has a 1 for every forward edge in the cycle, a −1 for every reverse edge, and
a 0 for edges not present at all in the cycle. This vector representation is used for
computing dot products with Ni. The weight of Cp itself is simply the sum of the
weights of the edges in the cycle. We show how to compute Cp in O(mn + n2 log n)
time.

Definitions. To compute shortest paths and cycles, we will work with the undi-
rected version of G. Directions will be used only to compute the residue class of a
path or cycle, i.e., the dot product between the vector representation of this path or
cycle and Ni modulo p. Let puv denote a shortest path between vertices u and v and
let fuv denote its length and ruv its residue class. Let suv be the length of a shortest
path, if any, between u and v in a residue class distinct from ruv. Observe that the
value of suv is independent of the choice of puv.

We will show how to compute fuv and suv for all pairs of vertices u, v in O(mn+
n2 log n) time. As is standard, we will also compute paths realizing these lengths in
addition to computing the lengths themselves. The following claim tells us how these
paths can be used to compute a shortest nonorthogonal cycle—simply take each edge
uv and combine it with svu to get a cycle. The shortest of all these cycles having a
nonzero residue class is our required cycle.

Lemma 7.1. Let C = u0u1 . . . uku0 be a shortest cycle whose residue class is
nonzero modulo p and whose shortest edge is u0u1. Then the path u1u2 . . . uku0 has
a residue class different from the residue class of the edge u1u0, the length of the path
u1u2 . . . uku0 equals su1u0 , and the length of the edge u0u1 equals fu1u0 .

Proof. First, we show that the path u1u2 . . . uku0 and the edge u1u0 have different
residue classes. Let x denote the residue class of the path, and let y denote the residue
class of the edge u0u1. Since C is in a nonzero residue class, x + y 	≡ 0 (mod p), so
x 	≡ −y (mod p). Since the incidence vector corresponding to u1u0 is the negation of
the incidence vector corresponding to u0u1, the residue class of the edge u1u0 is −y.
Thus the claim follows.

Now, if the length of u1u0 is strictly greater than fu1u0 , then consider any shortest
path π between u1 and u0 (which, of course, has length fu1u0

). Combining π with
u1u0 yields a cycle and combining π with u1u2 . . . uku0 yields another cycle. These
cycles are in distinct residue classes and are shorter than C. This contradicts the
definition of C. Therefore, the edge u1u0 has length fu1u0 .

Since u1u2 . . . uku0 has a different residue class from the edge u1u0, the length of
u1u2 . . . uku0 cannot be smaller than su1u0 , by the very definition of su1u0 . Suppose,
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for a contradiction, that the length u1u2 . . . uku0 is strictly larger than su1u0
. Then

combining the path between u1 and u0 which realizes the length su1u0
along with the

edge u1u0 yields a cycle which is shorter than C and which has a nonzero residue
class modulo p. This contradicts the definition of C. The lemma follows.

Computing fuv and suv. We first find any one shortest path (among possibly
many) between each pair of vertices u and v by Dijkstra’s algorithm; this gives us
puv, fuv, and ruv for each pair u, v. The time taken is O(mn+n2 log n). For each pair
u, v, we now need to find a shortest path between u, v with a residue class distinct
from ruv; the length of this path will be suv. Use quv to denote any such path. We
show how a modified Dijkstra search can compute these paths in O(mn + n2 log n)
time. The following lemma shows the key prefix property of the quv paths needed for
a Dijkstra-type algorithm.

Lemma 7.2. For any u and v, the path quv can be chosen from the set {puw ◦
wv, quw ◦ wv : wv ∈ E}. Here p ◦ e denotes the path p extended by the edge e.

Proof. Consider any path π between u and v that realizes the value suv, i.e., it
has length suv and residue class distinct from ruv. Let w be the penultimate vertex
on this path, and let π′ be the prefix path from u to w. Clearly, π cannot be shorter
than puw ◦wv. Hence, if the residue class of puw ◦wv is distinct from ruv, then we are
done. So assume that puw ◦ wv has residue class ruv. Then π′ must have a residue
class distinct from puw and hence quw exists. Also, the length of π′ must be at least
the length of quw, and the residue class of quw ◦ wv is distinct from the residue class
of puw ◦ wv and hence distinct from ruv. Thus quw ◦ wv realizes suv.

We now show how to compute the suv’s for any fixed u in time O(m + n log n)
with a Dijkstra-type algorithm. Repeating this for every source gives the result. The
algorithm differs from Dijkstra’s shortest path algorithm only in the initialization and
update steps, which we describe below. We use the notation keyuv to denote the key
used to organize the priority heap; keyuv will finally equal suv.

Initialization. We set keyuv to the minimal length of any path puw ◦ wv with
residue class distinct from ruv. If there is no such path, then we set it to ∞.

The update step. Suppose we have just removed w from the priority queue. We
consider the u-w path of length keyuw which was responsible for the current key value
of w. For each edge wv incident on w, we extend this path via the edge wv. We
update keyuv to the length of this path provided its residue class is different from ruv.

Correctness. We need to show that keyuv is set to suv in the course of the
algorithm (note that one does not need to worry about the residue class since any
path that updates keyuv in the course of the algorithm has residue class different
from ruv). This follows immediately from Lemma 7.2. If suv is realized by the path
puw ◦ wv for some neighbor w, then keyuv is set to suv in the initialization step. If
suv is realized by the path quw ◦ wv for some neighbor w, then keyuv is set to suv
in the update step. This completes the proof of correctness. Thus we have given an
O(mn+n2 log n) algorithm to compute the suv’s for all u, v ∈ V . We have thus shown
the following lemma.

Lemma 7.3. A shortest cycle Cp in G, whose dot product with Ni is nonzero
modulo p, can be computed in O(mn + n2 log n) time.

We now consider the complexity of computing a shortest cycle Ci whose dot
product with Ni is nonzero, instead of the condition that the dot product is nonzero
modulo p. But any cycle Ci which satisfies 〈Ci, Ni〉 	= 0 satisfies 〈Ci, Ni〉 	= 0 ( mod p)
for some p ∈ {p1, . . . , pd/2}, where p1, . . . , pd/2 are distinct primes, each of which is
at least d. This follows from the isomorphism of the ring Z∏

pi
to the ring Zp1 ×
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Zp2
× · · · × Zpd/2

. So any nonzero element whose absolute value is less than
∏d/2

i=1 pi
is mapped to a tuple of its residues that is not the zero vector.

We have |〈Ci, Ni〉| ≤ dd/2 (from Lemma 3.3 and Hadamard’s inequality). Thus

|〈Ci, Ni〉| <
∏d/2

i=1 pi. So if 〈Ci, Ni〉 is nonzero, then it is a nonzero element in
Z∏

pi
, and so it satisfies 〈Ci, Ni〉 	= 0 (modp) for some p in {p1, . . . , pd/2}. Thus

a shortest cycle Ci such that 〈Ci, Ni〉 	= 0 is the shortest among all the cycles Cp,
p ∈ {p1, . . . , pd/2}, where Cp is a shortest cycle such that 〈Cp, Ni〉 	= 0 (mod p).
Hence, by Lemma 7.3, the time taken to compute C is O(d · (mn + n2 log n)) or
O(m2n + mn2 log n). Thus we have shown Lemma 7.4.

Lemma 7.4. A shortest cycle Ci in G, whose dot product with Ni is nonzero, can
be computed in O(m2n + mn2 log n) time.

8. Conclusions. We considered the minimum cycle basis problem in directed
graphs with nonnegative edge weights. We presented an O(m3n + m2n2 log n) deter-
ministic algorithm and an O(m2n+mn2 log n) randomized algorithm for this problem,
where m is the number of edges and n is the number of vertices. These algorithms use
the framework of computing cycles C1, . . . , Cd and their supporting vectors N1, . . . , Nd

using fast matrix multiplication. However, this approach leads to large intermediate
numbers and the cost of arithmetic becomes high. We overcome this problem in the
randomized algorithm by working over a finite field Zp for a small random prime p
and by working over suitable rings ZR in the deterministic algorithm. We also pre-
sented an efficient algorithm, based on Dijkstra’s algorithm, to compute a shortest
cycle whose dot product with a function on its edge set is nonzero.

REFERENCES

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1997.
[2] C. Berge, Graphs, North–Holland, Amsterdam, The Netherlands, 1985.
[3] F. Berger, P. Gritzmann, and S. de Vries, Minimum cycle bases for network graphs, Algo-

rithmica, 40 (2004), pp. 51–62.
[4] B. Bollobás, Modern Graph Theory, in Graduate Texts in Mathematics 184, Springer-Verlag,

New York, 1998.
[5] A. C. Cassell, J. C. Henderson, and K. Ramachandran, Cycle bases of minimal measure for

the structural analysis of skeletal structures by the flexibility method, Proc. Royal Society
of London Series A, 350 (1976), pp. 61–70.

[6] T. F. Coleman and A. Pothen, The null space problem I. Complexity, SIAM J. Algebraic
Discrete Methods, 7 (1986), pp. 527–537.

[7] T. F. Coleman and A. Pothen, The null space problem II. Algorithms, SIAM J. Algebraic
Discrete Methods, 8 (1987), pp. 544–563.

[8] D. Coppersmith and S. Winograd, Matrix multiplications via arithmetic progressions, J.
Symbolic Comput., 9 (1990), pp. 251–280.

[9] J. C. de Pina, Applications of Shortest Path Methods, Ph.D. thesis, University of Amsterdam,
Amsterdam, The Netherlands, 1995.

[10] N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall
Series in Automatic Computation, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[11] P. M. Gleiss, Short Cycles: Minimum Cycle Bases of Graphs from Chemistry and Biochem-
istry, Ph.D. thesis, Universität Wien, Wein, Germany, 2001.

[12] P. M. Gleiss, J. Leydold, and P. F. Stadler, Circuit bases of strongly connected digraphs,
Discuss. Math. Graph Theory, 23 (2003), pp. 241–260.

[13] A. Golynski and J. D. Horton, A polynomial time algorithm to find the minimum cycle
basis of a regular matroid, in Proceedings of SWAT, Lecture Notes in Comput. Sci. 2368,
Springer, Berlin, 2002, pp. 200–209.

[14] R. Hariharan, T. Kavitha, and K. Mehlhorn, A faster deterministic algorithm for mini-
mum cycle basis in directed graphs, in Proceedings of ICALP, Lecture Notes in Comput.
Sci. 4051, Springer, Berlin, 2006, pp. 250–261.



FASTER ALGORITHMS FOR MINIMUM CYCLE BASIS 1447

[15] J. D. Horton, A polynomial-time algorithm to find a shortest cycle basis of a graph, SIAM J.
Comput., 16 (1987), pp. 358–366.
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LINEAR EQUATIONS MODULO 2 AND THE L1 DIAMETER OF
CONVEX BODIES∗

SUBHASH KHOT† AND ASSAF NAOR†

Abstract. We design a randomized polynomial time algorithm which, given a 3-tensor of
real numbers A = {aijk}ni,j,k=1 such that for all i, j, k ∈ {1, . . . , n} we have aijk = aikj =

akji = ajik = akij = ajki and aiik = aijj = aiji = 0, computes a number Alg(A) which

satisfies with probability at least 1
2
, Ω(

√
log n
n

t) · maxx∈{−1,1}n
∑n

i,j,k=1 aijkxixjxk ≤ Alg(A) ≤
maxx∈{−1,1}n

∑n
i,j,k=1 aijkxixjxk. On the other hand, we show via a simple reduction from a re-

sult of H̊astad and Venkatesh [Random Structures Algorithms, 25 (2004), pp. 117–149] that under

the assumption NP �⊆ DTIME(n(log n)O(1)
), for every ε > 0 there is no algorithm that approx-

imates maxx∈{−1,1}n
∑n

i,j,k=1 aijkxixjxk within a factor of 2(log n)1−ε
in time 2(log n)O(1)

. Our
algorithm is based on a reduction to the problem of computing the diameter of a convex body in R

n

with respect to the L1 norm. We show that it is possible to do so up to a multiplicative error of
O(

√
n

log n
), while no randomized polynomial time algorithm can achieve accuracy o(

√
n

log n
). This re-

solves a question posed by Brieden et al. in [Mathematika, 48 (2001), pp. 63–105]. We apply our new
algorithm to improve the algorithm of H̊astad and Venkatesh for the Max-E3-Lin-2 problem. Given
an overdetermined system E of N linear equations modulo 2 in n ≤ N Boolean variables such that
in each equation only three distinct variables appear, the goal is to approximate in polynomial time
the maximum number of satisfiable equations in E minus N

2
(i.e., we subtract the expected number

of satisfied equations in a random assignment). H̊astad and Venkatesh obtained an algorithm which

approximates this value up to a factor of O(
√
N). We obtain an O(

√
n

log n
) approximation algorithm.

By relating this problem to the refutation problem for random 3 −CNF formulas, we give evidence
that obtaining a significant improvement over this approximation factor is likely to be difficult.

Key words. Max-E3-Lin-2, computational convex geometry, semidefinite programming, refu-
tation of random SAT, Grothendieck’s inequality
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1. Introduction. A function f : {−1, 1}n → R has Fourier expansion f(x) =∑
S⊆{1,...,n} f̂(S)

∏
i∈S xi. Assume that f has a succinct representation in phase space;

i.e., only polynomially many of the Fourier coefficients f̂(S) are nonzero. Can we then
compute in polynomial time a good approximation of the maximum of f over the
discrete cube {−1, 1}n? In other words, if we are given polynomially many Fourier
coefficients, is there a way to approximate maxx∈{−1,1}n f(x) while looking only at the
values of f on a tiny part of the cube? As we shall see below, under widely believed
complexity assumptions the answer to this question is generally negative. But, under
some additional structural information on the support of the Fourier transform it is
possible to achieve this goal, and when this occurs such phenomena have powerful
algorithmic applications. Currently our understanding of this fundamental problem
is far from satisfactory, and the purpose of the present paper is to investigate cases
which have previously eluded researchers. As a result, we uncover new connections
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to problems in algorithmic convex geometry and combinatorial optimization.
The Fourier maximization problem described above has been investigated exten-

sively in the quadratic case, partly due to its connections to various graph partitioning
problems. In [3] it has been shown that a classical inequality of Grothendieck can
be used to give a constant factor approximation algorithm for computing the max-
imum of functions f : {−1, 1}n × {−1, 1}m → R which have the form f(x, y) =∑n

i=1

∑m
j=1 aijxiyj . This algorithm has various applications, including an algorith-

mic version of Szemerédi’s regularity lemma. In the nonbipartite case, several re-
searchers [27, 25, 12] have discovered an algorithm which computes up to a fac-
tor O(log n) the maximum of functions f : {−1, 1}n → R which have the form
f(x) =

∑n
i,j=1 aijxixj , where the matrix (aij) is assumed to be symmetric and vanish

on the diagonal. This result was shown in [12] to imply the best-known approximation
algorithms for graphing partitioning problems such as MAXCUTGAIN and correla-
tion clustering. In [2] the structure of the “Fourier support graph,” i.e., the pairs
{i, j} ∈ {1, . . . , n} for which aij �= 0, was taken into account. It was shown there that
there exists an approximation algorithm which approximates the maximum of f up to
a factor O(log ϑ) = O(logχ), where ϑ is the Lovász theta function of the complement
of the Fourier support graph and χ is the chromatic number of this graph. We refer
to [2] for more information on this topic, as well as its connection to the evaluation
of ground states of spin glasses.

Negative results on the performance of the above mentioned algorithms as well as
complexity lower bounds were obtained in [3, 2, 5, 24, 1]. In particular, it was shown
in [2] that the semidefinite relaxation that was used in the O(log n) algorithm discussed
above had integrality gap Ω(logn). Moreover, in [5] it was shown that unless NP ⊆
DTIME(nO((log n)3)) there is no polynomial time algorithm which approximates the
maximum of

∑n
i,j=1 aijxixj on {−1, 1}n up to a factor smaller than (logn)γ , where

γ is a universal constant. It was also shown in [5] that under the assumption of the
existence of sufficiently strong PCPs it is also NP-hard to approximate this problem
to within a factor of O(log n).

The motivation for the present paper is to study the case of functions whose
Fourier expansion is supported on the third level. Specifically, given a 3-tensor of real
numbers A = {aijk}ni,j,k=1 such that for all i, j, k ∈ {1, . . . , n} we have aijk = aikj =
akji = ajik = akij = ajki and aiik = aijj = aiji = 0, we wish to approximate the max-
imum of the function f : {−1, 1}n → R given by f(x) =

∑n
i,j,k=1 aijkxixjxk. Despite

being a modest goal, this problem has eluded researchers for some time, as the “obvi-
ous” semidefinite programming approach that was previously applied to the quadratic
case does not generalize to the degree-3 case. As we shall see below, this issue reflects

a major difference from the quadratic case: Unless NP ⊆ DTIME(n(log n)O(1)

), for
every ε > 0 there is no algorithm that approximates the maximum of f within a factor

of 2(log n)1−ε

in time 2(log n)O(1)

. On the other hand, we will derive here a polynomial
time algorithm which approximates the maximum of f to within a factor of O(

√
n

log n ).
This algorithm is based on a novel connection between this problem and the problem
of efficient computation of the diameter of convex bodies under the �n1 norm, which
is the main new insight of the present paper. We shall now describe our new ap-
proach and its application to a fundamental problem in combinatorial optimization:
the Max-E3-Lin-2 problem.

We associate with every 3-tensor A as above a convex body KA ⊆ Rn. The
body KA admits a polynomial time solution to the weak optimization problem for
linear functionals (see [19, 18] for the relevant background on convex optimization).
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Moreover, we show that the �n1 diameter of KA, i.e., diam1(KA) := maxa,b∈KA
‖a−b‖1,

is within a constant factor of maxxi∈{−1,1}
∑n

i,j,k=1 aijkxixjxk. This step is crucially
based on an application of Grothendieck’s inequality. We therefore reduce the level-
3 Fourier maximization problem to the following question: Given a convex body
K ⊆ Rn with a weak optimization oracle, approximate in oracle-polynomial time its
�n1 diameter diam1(K).

Such problems have been studied extensively in the literature, though mostly in
the context of the Euclidean �n2 diameter (see, for example, [6, 8, 18, 10, 9, 31] and
the references therein). In particular, a famous result of Bárány and Füredi states
that no deterministic polynomial time algorithm can approximate the �n2 diameter
of convex bodies up to a factor of o(

√
n

logn ). In the paper [10] of Brieden et al. it is
shown that unlike the case of volume computation, randomization does not help when
it comes to approximating the Euclidean diameter of convex bodies: The same lower
bound holds also for the accuracy of randomized oracle-polynomial time algorithms.
The paper [10] also studies the case of the �n1 diameter, or more generally the �np
diameter, i.e., diamp(K) := maxa,b∈KA

‖a − b‖p. It is shown there that there is an
oracle-polynomial time algorithm which approximates diam1(K) to within a factor of

O(
√
n), and no polynomial time algorithm can achieve accuracy better than O(

√
n

log n ).

When 1 < p ≤ 2 it is shown in [10] that diamp(K) can be approximated within a factor

O(
√
n

(log n)(p−1)/p ), and no polynomial time algorithm can achieve accuracy better than

Op(
√

n
logn ). These bounds coincide only when p = 2, and the question of closing the

gap in the remaining cases was raised in [10] (see also [9]). Here we resolve this problem
by showing that the accuracy threshold for randomized oracle-polynomial algorithms
that compute diamp(K) is Θ(

√
n

logn ) for all 1 ≤ p ≤ 2. Our improved accuracy lower
bound when p = 1 is a slight variant of the argument in [10]. The main issue is
obtaining an improved approximation algorithm—our approach is different from the
polyhedral approximation of the �np ball that was used in [10] (though we believe that
the construction of [10] is of independent interest).

We apply the results described above to obtain a significant improvement to the
Max-E3-Lin-2 algorithm of H̊astad and Venkatesh [22]. This fundamental problem
is described as follows. Consider a system E of N linear equations modulo 2 in n
Boolean variables z1, . . . , zn such that in each equation only three distinct variables
appear. We assume throughout that N ≥ n (thus avoiding degenerate cases). Let
MAXSAT(E) be the maximum number of equations in E that can be satisfied si-
multaneously. A random assignment of these variables satisfies in expectation N

2
equations, so in the Max-E3-Lin-2 problem it is natural to ask for an approximation
algorithm to MAXSAT(E) − N

2 . This problem was studied extensively by H̊astad
and Venkatesh in [22], where the best known upper and lower bounds were ob-
tained. In particular, using the powerful methods of H̊astad [21] they show that unless

NP ⊆ DTIME(n(log n)O(1)

), for every ε > 0 there is no algorithm that approximates

MAXSAT(E)− N
2 within a factor of 2(log n)1−ε

in time 2(log n)O(1)

. Moreover, they de-

sign a randomized polynomial time algorithm which approximates MAXSAT(E)− N
2

to within a factor of O(
√
N).

Let E be a system of linear equations as above. Write aijk(E) = 1 if the equation
zi + zj + zk = 0 is in the system E . Similarly write aijk(E) = −1 if the equation
zi + zj + zk = 1 is in E . Finally, write aijk(E) = 0 if no equation in E corresponds to
zi + zj + zk. Assume that the assignment (z1, . . . , zk) satisfies m of the equations in
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E . Then
∑n

i,j,k=1 aijk(E)(−1)zi+zj+zk = m− (N −m) = 2
(
m− N

2

)
. It follows that

max
xi∈{−1,1}

n∑
i,j,k=1

aijk(E)xixjxk = max
zi∈{0,1}

n∑
i,j,k=1

aijk(E)(−1)zi+zj+zk

= 2

(
MAXSAT(E) − N

2

)
.

Thus our algorithm yields an O(
√

n
logn ) approximation to the Max-E3-Lin-2 problem.

Note that when N = Θ(n) our improvement over the H̊astad–Venkatesh algorithm is
only logarithmic, but typically N can be as large as Θ(N3). The above reasoning also
allows us to apply the H̊astad–Venkatesh hardness result for Max-E3-Lin-2 that was
described above to the level-3 Fourier maximization problem. In particular it follows
that this problem is computationally much harder than the quadratic case, in which
an O(log n) approximation is possible. Finally, our reasoning comes full circle to shed
light on the problem of approximating the �n1 diameter diam1(K). While the proof
in [10] is essentially an “entropy argument” showing that there are simply too many
convex bodies to allow an approximation factor better than O (

√
n), our reduction

produces a concrete family of convex bodies for which computing the �n1 diameter

within a factor of 2(log n)1−ε

is hard.

2. A new algorithm for Max-E3-Lin-2. As described in the reduction that
was presented in the introduction, our new algorithm for Max-E3-Lin-2 will follow
from the more general algorithm for approximating the maximum of functions whose
Fourier transform is supported on subsets of size 3. So, from now on let {aijk}ni,j,k=1

be real numbers such that for all i, j, k ∈ {1, . . . , n} we have aijk = aikj = akji =
ajik = akij = ajki and aiik = aijj = aiji = 0. Our first lemma reduces the problem
of maximizing

∑n
i,j,k=1 aijkxixjxk to the analogous tripartite case. Note that such

a result is false in the quadratic case. Indeed, Theorem 3.5 in [2] implies that the
gap between maxxi∈{−1,1}

∑n
i,j=1 aijxixj and maxxi,yj∈{−1,1}

∑n
i,j=1 aijxiyj can be as

large as Ω( n
logn ). The key “trick” which allows us to prove that this cannot happen

in the level-3 case is identity (1) below.
Lemma 2.1. The following inequalities hold true:

1

10
max

xi,yj ,zk∈{−1,1}

n∑
i,j,k=1

aijkxiyjzk ≤ max
xi∈{−1,1}

n∑
i,j,k=1

aijkxixjxk

≤ max
xi,yj ,zk∈{−1,1}

n∑
i,j,k=1

aijkxiyjzk.

Proof. Define

M = max
xi,yj ,zk∈{−1,1}

n∑
i,j,k=1

aijkxiyjzk

and

m = max
xi∈{−1,1}

n∑
i,j,k=1

aijkxixjxk.
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Clearly m ≤ M , so we need to show that M ≤ 10m. To see this observe first that∑n
i,j,k=1 aijkxixjxk is linear in xi for each i. This implies that

m = max
|xi|≤1

n∑
i,j,k=1

aijkxixjxk.

Moreover, since
∑n

i,j,k=1 aijkxixjxk changes sign if we replace xi by −xi for each i,
we see that

m = max
|xi|≤1

∣∣∣∣∣∣
n∑

i,j,k=1

aijkxixjxk

∣∣∣∣∣∣ .

Now, for each i, j, k ∈ {1, . . . , n} we have the identity

(1) 2xiyjyk + 2xjyiyk + 2xkyiyj

= (xi + yi)(xj + yj)(xk + yk) + (xi − yi)(xj − yj)(xk − yk) − 2xixjxk − 2yiyjyk.

Multiplying this identity by aijk, summing over all i, j, k ∈ {1, . . . , n}, and using the
symmetries of the coefficients aijk, we see that

6
n∑

i,j,k=1

aijkxiyjyk = 8

n∑
i,j,k=1

aijk
xi + yi

2
· xj + yj

2
· xk + yk

2

+ 8
n∑

i,j,k=1

aijk
xi − yi

2
· xj − yj

2
· xk − yk

2

− 2
n∑

i,j,k=1

aijkxixjxk − 2

n∑
i,j,k=1

aijkyiyjyk.

It follows that

M ′ := max
xi,yj∈{−1,1}

∣∣∣∣∣∣
n∑

i,j,k=1

aijkxiyjyk

∣∣∣∣∣∣ ≤
20

6
m =

10

3
m.

As before, because
∑n

i,j,k=1 aijkxiyjyk is linear in each of the variables xi and yj , we
have the identity

M ′ = max
|xi|,|yj |≤1

∣∣∣∣∣∣
n∑

i,j,k=1

aijkxiyjyk

∣∣∣∣∣∣ .

Now, consider the identity

yjzk + ykzj = (yj + zj)(yk + zk) − yjyk − zjzk.

Multiplying by aijkxi and summing up, we get the identity

2
n∑

i,j,k=1

aijkxiyjzk = 4

n∑
i,j,k=1

aijkxi ·
yj + zj

2
· yk + zk

2
−

n∑
i,j,k=1

aijkxiyjyk

−
n∑

i,j,k=1

aijkxizjzk ≤ 6M ′ ≤ 20m.
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It follows that M ≤ 10m, as required.
Let (�n2 )n∞ denote the space of �v = (v1, . . . , vn) ∈ (Rn)n, equipped with the norm

‖�v‖(�n2 )n∞
:= max

1≤j≤n
‖vj‖2.

Similarly we let (�n2 )n1 denote the space of �v = (v1, . . . , vn) ∈ (Rn)n, equipped with
the norm

‖�v‖(�n2 )n1
:=

n∑
j=1

‖vj‖2.

Any n×n matrix B = (bij) ∈ Mn(R) can be tensorized with the identity to yield
an operator B ⊗ I : (�n2 )n∞ → (�n2 )n1 given by

((B ⊗ I)�v)i :=

n∑
j=1

bijvj .

The operator norm of B ⊗ I is given by

‖B ⊗ I‖(�n2 )n∞→(�n2 )n1
= max

⎧⎨
⎩

n∑
i=1

∥∥∥∥∥∥
n∑

j=1

bijvj

∥∥∥∥∥∥
2

: max
1≤j≤n

‖vj‖2 ≤ 1

⎫⎬
⎭

= max

⎧⎨
⎩

n∑
i=1

〈
n∑

j=1

bijvj , ui

〉
: max

1≤j≤n
‖vj‖2 ≤ 1 ∧ max

1≤i≤n
‖ui‖2 ≤ 1

⎫⎬
⎭

= max
‖ui‖2,‖vj‖2≤1

n∑
i,j=1

bij 〈ui, vj〉 .(2)

By Lemma 2.1, our goal is to approximate the value

Opt(A) := max
xi,yj ,zk∈{−1,1}

n∑
i,j,k=1

aijkxiyjzk.

For every x ∈ {−1, 1}n, define an n× n matrix A(x) ∈ Mn(R) by

A(x)jk =

n∑
i=1

aijkxi.

Since for each x ∈ Rn we have

‖A(x) ⊗ I‖(�n2 )n∞→(�n2 )n1
≥ max

|yj |,|zk|≤1

n∑
j,k=1

A(x)ijyjzk,

it follows that Opt(A) ≤ maxx∈{−1,1}n ‖A(x) ⊗ I‖(�n2 )n∞→(�n2 )n1
. On the other hand,

using (2), Grothendieck’s inequality (see the discussion in [3]) says that

max
x∈{−1,1}n

‖A(x) ⊗ I‖(�n2 )n∞→(�n2 )n1
≤ max

x∈{−1,1}n
KG max

y,x∈{−1,1}n

n∑
j,k=1

A(x)jkyjzk

= KG · Opt(A),
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where KG ≤ 2 is Grothendieck’s constant. It therefore suffices to approximate the
value of

max
x∈{−1,1}n

‖A(x) ⊗ I‖(�n2 )n∞→(�n2 )n1
.

Define a norm ‖ · ‖A on Rn by ‖x‖A := ‖A(x) ⊗ I‖(�n2 )n∞→(�n2 )n1
. Then the unit ball

BA := {x ∈ Rn : ‖x‖A ≤ 1} is a centrally symmetric convex body. Denote by
KA = B◦

A the polar of BA, i.e.,

KA = {y ∈ Rn : ∀x ∈ BA, 〈x, y〉 ≤ 1}.

Then

max
x∈{−1,1}n

‖A(x) ⊗ I‖(�n2 )n∞→(�n2 )n1
= max

‖x‖∞≤1
‖x‖A = max

‖x‖∞≤1
max
y∈KA

〈x, y〉

= max
y∈KA

max
‖x‖∞≤1

〈x, y〉 = max
y∈KA

‖y‖1 =
1

2
diam1 (KA) .

We have thus reduced our original problem to approximating diam1 (KA) in poly-
nomial time. Note that (2) implies that the computation of ‖x‖A is a semidefinite
program. Therefore by the theory of Grötschel, Lovász, and Schrijver [19] it follows
that linear functionals can be optimized on BA in polynomial time. As shown in [19],
this property is preserved under polarity; i.e., linear functionals can be optimized on
B◦

A = KA in polynomial time. We have therefore reduced the problem of approximat-
ing maxxi∈{−1,1}

∑n
i,j,k=1 aijkxixjxk to the problem of approximating diam1(K) in

oracle-polynomial time, where K is a centrally symmetric convex body with a weak
optimization oracle. This problem is resolved in section 3, thus proving the following
theorem, which is our main result.

Theorem 2.2. There is a randomized polynomial time algorithm which, given a
3-tensor A = {aijk}ni,j,k=1 such that for all i, j, k ∈ {1, . . . , n} we have aijk = aikj =
akji = ajik = akij = ajki and aiik = aijj = aiji = 0, computes a number Alg(A),
which satisfies with probability at least 1

2

max
x∈{−1,1}n

n∑
i,j,k=1

aijkxixjxk ≤ Alg(A) ≤ O

(√
n

log n

)
max

x∈{−1,1}n

n∑
i,j,k=1

aijkxixjxk.

3. An approximation algorithm for the L1 diameter. The main result of
this section is the following theorem, which settles a problem posed by Brieden et
al. in [10].

Theorem 3.1. Let K ⊆ Rn be a convex body with a weak optimization oracle.
Then there exists a randomized algorithm which computes in oracle-polynomial time
a number Alg(K) such that with probability at least 1

2

1

2

√
log n

n
· diam1(K) ≤ Alg(K) ≤ diam1(K).

On the other hand, no randomized oracle-polynomial time algorithm can compute
diam1(K) with accuracy o(

√
n

logn ).
Since we will be using Theorem 3.1 only when K is 0-symmetric, i.e., K = −K,

we will prove it under this assumption. This is only for the sake of simplifying the
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notation—identical arguments work in the general case. Our starting point is the
following distributional inequality.

Lemma 3.2. For every δ ∈ (0, 1
2 ) there is a constant c(δ) > 0 with the following

property. Fix a = (a1, . . . , an) ∈ Rn and let ε1, . . . , εn be independently and identically
distributed (i.i.d.) symmetric Bernoulli random variables. Then

Pr

⎛
⎝ n∑

j=1

ajεj ≥
√

δ log n

n
· ‖a‖1

⎞
⎠ ≥ c(δ)

nδ
.

Proof. Write X =
∑n

j=1 ajεj . Assume first that

4‖a‖2
2

√
n

‖a‖2
1

>
1

12nδ
.(3)

The classical Paley–Zygmund inequality [28, 23, 4] states that for every θ ∈ (0, 1) we
have

Pr
(
X2 ≥ θEX2

)
≥ (1 − θ)

2 ·
(
EX2

)2
EX4

≥ (1 − θ)2

9
,(4)

where we used the well-known (and easy) fact that EX4 ≤ 9
(
EX2

)2
.

The inclusion of events {X2 ≥ θ} ⊆ {X ≥
√
θ} ∪ {−X ≥

√
θ}, and the fact that

X is symmetric, implies that Pr(X ≥
√
θ) ≥ 1

2 Pr(X2 ≥ θ). Since δ < 1
2 there is

n0(δ) ∈ N such that for every n ≥ n0(δ) we have 48δ logn

n
1
2
−δ

< 1
2 . For such n we deduce

that

Pr

⎛
⎝ n∑

j=1

ajεj ≥
√

δ log n

n
· ‖a‖1

⎞
⎠ ≥ 1

2
Pr

(
X2 ≥ δ log n

n
‖a‖2

1

)

(3)

≥ 1

2
Pr

(
X2 ≥ 48δ log n

n
1
2−δ

· EX2

)
(4)

≥ 1

72
.

Hence Lemma 3.2 holds assuming (3) and n ≥ n0(δ). By adjusting c(δ), the required
result holds also when n ≤ n0(δ), so it remains to deal with the case

4‖a‖2
2

√
n

‖a‖2
1

≤ 1

12nδ
.(5)

Assuming (5), we define S := {j ∈ {1, . . . , n} : |aj | < 2‖a‖2
2

‖a‖1
}. Then

‖a‖1 =
∑
j /∈S

|aj | +
∑
j∈S

|aj | ≤
‖a‖1

2‖a‖2
2

∑
j /∈S

a2
j +

√
|S|

∑
j∈S

a2
j ≤ ‖a‖1

2
+

√
n
∑
j∈S

a2
j .

Hence,
√∑

j∈S

a2
j ≥ ‖a‖1

2
√
n
.(6)

Write Y =
∑

j∈S ajεj and Z = X − Y . For every t ∈ R we have {Y ≥ 2t} ⊆
{Y + Z ≥ t} ∪ {Y − Z ≥ t}. Since Y + Z and Y − Z have the same distribution as
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X, it follows that Pr(X ≥ t) ≥ 1
2 Pr(Y ≥ 2t). Let g be a standard Gaussian random

variable. By the Berry–Esseen inequality (see [20]; the constant we use below follows
from [30]), we know that

Pr(Y ≥ 2t) = Pr

(
Y√
EY 2

≥ 2t√
EY 2

)
≥ Pr

(
Y√
EY 2

≥ t
√
n

‖a‖1

)

≥ Pr

(
g ≥ t

√
n

‖a‖1

)
− max

j∈S

|aj |√∑
k∈S a2

k

(6)

≥ 1√
2π

exp

(
− t2n

‖a‖2
1

)
− 4‖a‖2

2

√
n

‖a‖2
1

.

Plugging t =
√

δ logn
n · ‖a‖1 into the equation, we get that

Pr

⎛
⎝ n∑

j=1

ajεj ≥
√

δ log n

n
· ‖a‖1

⎞
⎠ ≥ 1

2
Pr(Y ≥ 2t) ≥ 1

6nδ
− 4‖a‖2

2

√
n

‖a‖2
1

(5)

≥ 1

12nδ
,

as required.
Proof of Theorem 3.1. Let {εij : i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}} be i.i.d. symmet-

ric Bernoulli random variables. Compute the number

Alg(K) := 2 max
1≤i≤m

max
a∈K

n∑
j=1

ajεij .

Then Alg(K) ≤ 2 maxa∈K ‖a‖1 = diam1(K). Moreover, M can be computed using
O(m) oracle calls. Now, fix a ∈ K such that ‖a‖1 = 1

2diam1(K). Using Lemma 3.2,
we see that there exists a universal constant c > 0 for which

Pr

(
Alg(K) >

1

2

√
log n

n
· diam1(K)

)

= 1 − Pr

⎛
⎝ m⋂

i=1

⎧⎨
⎩

n∑
j=1

ajεij <
1

2

√
log n

n
· ‖a‖1

⎫⎬
⎭
⎞
⎠

≥ 1 −
(

1 − c
4
√
n

)m

≥ 1 − exp

(
− cm

4
√
n

)
.

Choosing m =
⌈

4
√
n
c

⌉
, we see that with probability at least 1

2

1

2

√
log n

n
· diam1(K) ≤ Alg(K) ≤ diam1(K),

as required.
The algorithmic lower bound in Theorem 3.1 is essentially already contained

in [10]—the authors simply overlooked an easy stronger upper bound on the volume
of polytopes inscribed in the cube [−1, 1]n. In Proposition 1.10 in [10] the authors
prove that for every 0-symmetric polytope P ⊆ [−1, 1]n with at most 2k vertices,
where 20 log2

(
k
n + 1

)
≤ n ≤ k,

(vol(P ))
1/n ≤ O(1)

√
1 + log n ·

√
log

(
k
n + 1

)
n

.(7)
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The term
√

1 + log n in (7) is precisely the reason that the lower bound in [10] for the

accuracy of randomized algorithms which compute diam1(K) was Ω(
√
n

logn ) instead of

O(
√

n
logn ). This term can be removed as follows.
Let Bn

2 be the standard unit Euclidean ball of �n2 . Write P = conv{±v1, . . . ,±vk},
where vi ∈ [−1, 1]n. Then vi√

n
∈ Bn

2 , and by the results of [6, 11, 17] we deduce that

⎛
⎝vol

(
1√
n
P
)

vol (Bn
2 )

⎞
⎠

1/n

≤ O(1)

√
log

(
k
n + 1

)
n

.

Since (vol (Bn
2 ))

1/n
= Θ( 1√

n
) it follows that

(vol(P ))
1/n ≤ O(1)

√
log

(
k
n + 1

)
n

.

3.1. The case of the Lp diameter, 1 < p < 2. Fix p ∈ (1, 2), and define
q = p

p−1 > 2. Let h1, . . . , hn be i.i.d. random variables whose density is q
2Γ(1/q)e

−|t|q .

Let H be the random vector (h1, . . . , hn) ∈ Rn. Then the random variables H/‖H‖q
and ‖H‖q are independent [29] (see [7] for more information on this phenomenon).
The following lemma is analogous to Lemma 3.2.

Lemma 3.3. There exist universal constants δ, c1, c2 > 0 such that for every
a = (a1, . . . , an) ∈ Rn we have

Pr

(〈
H

‖H‖q
, a

〉
≥

√
δ log n

n
· ‖a‖p

)
≥ c1

nc2
.

Proof. The random variable ‖H‖q has density q
Γ(n/q)u

n−1e−uq

for u > 0 (see, for

example, [26]). Hence for every t ∈ (0, 1) we have

Eet‖H‖q
q =

q

Γ(n/q)

∫ ∞

0

etu
q · un−1e−uq

du

=
q

Γ(n/q)

∫ ∞

0

un−1e−[(1−t)1/qu]qdu =
1

(1 − t)n/q
.

Since q ≥ 2 it follows that

(8) Pr
(
‖H‖q ≥ n1/q

)
≤ e−n(1− 1

e )Ee(1−
1
e )‖H‖q

q = e−n(1− 1
e−

1
q )

≤ e−n( 1
2−

1
e ) ≤ e−n/8.
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Using the independence of H/‖H‖q and ‖H‖q, we deduce that

Pr

(〈
H

‖H‖q
, a

〉
≥

√
δ log n

n
· ‖a‖p

)

≥ Pr

(〈
H

‖H‖q
, a

〉
≥

√
δ log n

n
· ‖a‖p

)
Pr

(
‖H‖q ≤ n1/q

)

= Pr

(〈
H

‖H‖q
, a

〉
≥

√
δ log n

n
· ‖a‖p ∧ ‖H‖q ≤ n1/q

)

≥ Pr

(
〈H, a〉 ≥ n1/q

√
δ log n

n
· ‖a‖p ∧ ‖H‖q ≤ n1/q

)

≥ 1 − Pr

(
〈H, a〉 < n1/q

√
δ log n

n
· ‖a‖p

)
− Pr

(
‖H‖q > n1/q

)

(8)

≥ Pr

(
〈H, a〉 ≥ n1/q

√
δ log n

n
· ‖a‖p

)
− e−n/8.(9)

As in the proof of Lemma 3.2 we write X =
∑n

j=1 ajhj . Let

S :=

⎧⎨
⎩j ∈ {1, . . . , n} : |aj | ≤

2
1

2−p ‖a‖
2

2−p

2

‖a‖
p

2−p
p

⎫⎬
⎭ .

Then, using the definition of S and Hölder’s inequality, we see that

‖a‖pp =
∑
j /∈S

|aj |p +
∑
j∈S

|aj |p ≤
‖a‖pp
2‖a‖2

2

∑
j /∈S

a2
j + |S|

2−p
2

⎛
⎝∑

j∈S

a2
j

⎞
⎠

p
2

≤
‖a‖pp

2
+ n

2−p
2

⎛
⎝∑

j∈S

a2
j

⎞
⎠

p
2

.

It follows that

√∑
j∈S

a2
j ≥ ‖a‖p

2
1
pn

1
p−

1
2

.(10)

Set Y :=
∑

j∈S ajhj , and note that

√
EY 2 =

√∑
j∈S

a2
jEh

2
j = Ω(1)

√∑
j∈S

a2
j

(10)

≥ c
‖a‖p
n

1
p−

1
2

,(11)

where c > 0 is a universal constant. Using the Berry–Esseen inequality as in the proof
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of Lemma 3.2, we see that

(12)

Pr

⎛
⎝ n∑

j=1

ajhj ≥ n
1
q

√
δ log n

n
· ‖a‖p

⎞
⎠ ≥ 1

2
Pr

(
Y√
EY 2

≥ 2cn1− 1
p

√
δ log n

n
· n 1

p−
1
2

)

≥ 1

6n4c2δ
−max

j∈S

|aj |√∑
k∈S a2

k

·E|h1|3 =
1

6n4c2δ
−O

(
n

1
p−

1
2

(
‖a‖2

‖a‖p

) 2
2−p

)
≥ 1

12n4c2δ
,

provided that

n
1
p−

1
2

(
‖a‖2

‖a‖p

) 2
2−p

≤ c̃

n4c2δ
(13)

for some small enough constant c̃. But, assuming that (13) fails, and that δ is small
enough and n is large enough, we may apply the Paley–Zygmund inequality to con-
clude that

(14) Pr

⎛
⎝ n∑

j=1

ajhj ≥ n
1
q

√
δ log n

n
· ‖a‖p

⎞
⎠ ≥ Pr

(
X2 ≥ c̃2−pδ log n

n2− p
2−

1
p−8c2δ

· EX2

)

≥ Pr

(
X2 ≥ δ log n

n
1
2−8c2δ

· EX2

)
≥ Ω(1),

where we used the fact that p ∈ (1, 2) and the easy bound
4
√

EX4 = O(
√

EX2).
Combining (12) and (14) with (9) yields the required result.

Now, arguing as in the proof of Theorem 3.1, given a 0-symmetric convex body
K ⊆ Rn with a weak optimization oracle, we select m i.i.d. copies of H, H1, . . . , Hm,
and define

Alg(K) := 2 max
1≤i≤m

max
a∈K

〈
Hi

‖Hi‖q
, a

〉
.

Arguing as in the proof of Theorem 3.1, with Lemma 3.2 replaced by Lemma 3.3, we
see that for m = poly(n), with constant probability

Ω(1)

√
log n

n
· diamp(K) ≤ Alg(K) ≤ diamp(K).

4. Discussion and open problems. We end this paper with some remarks
and directions for future research.

• We assumed throughout that aiik = aijj = aiji = 0. This restriction, which
also appeared in [2] as the condition that the Fourier support graph does not have
self loops, is necessary since otherwise if P �= NP , then there is no polynomial time
algorithm that evaluates the maximum of

∑n
i,j,k=1 aijkxixjxk over x ∈ {−1, 1}n up to

any factor (even one that grows with n arbitrarily fast)—see the discussion in Remark
3.2 in [2].

• It would be very interesting to investigate the maximization problem of∑n
i,j,k=1 aijkxixjxk in terms of the combinatorial structure of the Fourier support

hypergraph given by {{i, j, k} : aijk �= 0}. The results of [2] suggest that it might
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be possible to achieve a better approximation guarantee in the presence of additional
structural information of this type.

• A natural question that arises from our results is to study the maximization
problem for

∑
S⊆{1,...,n}

|S|=k

aS
∏
j∈S

xj

when k ≥ 4. Our methods do not immediately give good bounds in this case—
it is quite easy to get an O(n

k
2−1/(log n)

k
2−1) approximation algorithm for odd k

by iterating our approach, and it would be desirable to get improved bounds. Such
improvements, beyond their intrinsic interest, might have implications for the problem
of refutation of random k−CNF formulas [16, 15, 14] (see [13] for motivation of such
questions). The connection between these two problems is explained in the following
theorem.

Theorem 4.1. Suppose for every � ∈ {1, . . . , k} there is a deterministic polyno-
mial time algorithm that approximates

max
x1,x2,...,xn∈{−1,1}

∑
S⊆{1,...,n}

|S|=�

aS
∏
j∈S

xj

within factor f(n). Then there is a polynomial time refutation procedure that refutes
with high probability a random k-CNF formula with 24k+1nf(n)2 clauses.

Remark 1. Note that for � = 1 there is a (trivial) exact algorithm, and for
� = 2 the result of [27, 25, 12] gives an O(log n)-approximation. Therefore, as long as
f(n) ≥ O(log n), the hypothesis in Theorem 4.1 is required to hold only for 3 ≤ � ≤ k.

The best known refutation procedure for random 3−CNF formulas works when
they have O(n3/2) clauses [16]. This can be viewed as evidence that obtaining an
improvement over our approximation factor to o(n1/4) is likely to be difficult.

Before proving Theorem 4.1 we shall introduce some notation. Let −1 represent
logical TRUE and 1 represent logical FALSE. Let φ = {C1, C2, . . . , Cm} be a k-CNF
formula on variables x := {x1, x2, . . . , xn}. Let the set of indices of variables in the
clause Ci be denoted as Si, so that |Si| = k. Define {σij : 1 ≤ i ≤ m, j ∈ Si} as
follows: σij = 1 if xj appears in clause Ci unnegated and σij = −1 if xj appears in
clause Ci negated. Consider the expression

1 − 1

2k

∏
j∈Si

(1 + σijxj) .

For any {−1, 1}-assignment to variables, this expression evaluates to 1 if the clause Ci

is satisfied and to 0 if the clause Ci is not satisfied. Therefore, the fraction of satisfied
clauses is

(15)
1

m

m∑
i=1

⎛
⎝1 − 1

2k

∏
j∈Si

(1 + σijxj)

⎞
⎠ .

For notational convenience, think of Si as an ordered k-tuple of indices, and for
T ⊆ {1, . . . , k}, let Si[T ] denote the subset of Si given by the coordinates in T . With
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this notation (15) can be rewritten as

1 − 1

2k
− 1

m

m∑
i=1

∑
∅=T⊆{1,...,k}

∏
j∈Si[T ]

σijxj = 1 − 1

2k
+

∑
∅=T⊆{1,...,k}

ΓT (x),(16)

where

ΓT (x) := − 1

m

m∑
i=1

∏
j∈Si[T ]

σijxj .(17)

Lemma 4.2. If φ is satisfiable, then there exists a {−1, 1} assignment to variables
of φ and a nonempty set T ⊆ {1, . . . k} such that ΓT (x) ≥ 1

2k(2k−1)
. In other words,

∃ ∅ �= T ⊆ {1, . . . , k}, max
x∈{−1,1}n

ΓT (x) ≥ 1

2k(2k − 1)
.

Proof. Since φ is satisfiable, there is an assignment x that satisfies every clause.
For this assignment, the expression (16) has value 1. Thus, for some T ⊆ [k], T �= ∅,
it must be the case that ΓT (x) ≥ 1

2k(2k−1)
.

Lemma 4.3. Let φ be a random k-CNF formula with m ≥ 24k+1nf(n)2 clauses.
Then with probability 1 − 2−Ω(n) over the choice of the formula, for every {−1, 1}-
assignment to variables and every nonempty T ⊆ {1, . . . , k} we have ΓT (x) ≤ 1

22kf(n)
.

In other words,

∀∅ �= T ⊆ {1, . . . , k}, max
x∈{−1,1}n

ΓT (x) ≤ 1

22kf(n)
.

Proof. Fix any {−1, 1}-assignment to the variables and a nonempty set T ⊆
{1, . . . , k}. We will show that with probability 1 − e−n over the choice of φ we have
ΓT (x) ≤ 1

22kf(n)
. Taking the union bound over all possible {−1, 1}-assignments to

variables and all choices for T implies the statement of the lemma.
Note that when φ is random, the signs σij are random and independent, and

therefore an inspection of the definition (17) shows that ΓT (x) is an average of m
independent Bernoulli random variables. By the Chernoff bound,

Pr

[
ΓT (x) ≥ 1

22kf(n)

]
≤ exp

(
−1

2
· m

(22kf(n))2

)
≤ e−n.

Proof of Theorem 4.1. The refutation procedure is very simple. Given a formula φ,
use the f(n)-approximation algorithm to compute, for every nonempty T ⊆ {1, . . . , k},
a number Alg(ΓT ) such that

1

f(n)

(
max

x∈{−1,1}n
ΓT (x)

)
≤ Alg(ΓT ) ≤ max

x∈{−1,1}n
ΓT (x).

If there is some T �= ∅ for which Alg(ΓT ) ≥ 1
2k(2k−1)f(n)

, then say YES. Otherwise,

say NO. Lemma 4.2 shows that this procedure always says YES if φ is satisfiable.
Lemma 4.3 shows that the procedure says NO on a 1 − 2−Ω(n) fraction of random
formulas.
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[26] A. Naor, The surface measure and cone measure on the sphere of lnp , Trans. Amer. Math.
Soc., 359 (2007), pp. 1045–1079.



LINEAR EQUATIONS AND THE L1 DIAMETER 1463

[27] A. Nemirovski, C. Roos, and T. Terlaky, On maximization of quadratic form over inter-
section of ellipsoids with common center, Math. Program., 86 (1999), pp. 463–473.

[28] R. E. A. C. Paley and A. Zygmund, A note on analytic functions in the unit circle, Proc.
Camb. Phil. Soc., 28 (1932), pp. 266–272.

[29] G. Schechtman and J. Zinn, On the volume of the intersection of two Ln
p balls, Proc. Amer.

Math. Soc., 110 (1990), pp. 217–224.
[30] P. van Beek, An application of Fourier methods to the problem of sharpening the Berry-Esseen

inequality, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 23 (1972), pp. 187–196.
[31] K. R. Varadarajan, S. Venkatesh, and J. Zhang, On approximating the radii of point

sets in high dimensions, in Proceedings of the 43rd Annual Symposium on Foundations of
Computer Science, IEEE Computer Society, Piscataway, NJ, 2002, pp. 561–569.



SIAM J. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 38, No. 4, pp. 1464–1483

COMBINATION CAN BE HARD: APPROXIMABILITY OF THE
UNIQUE COVERAGE PROBLEM∗

ERIK D. DEMAINE† , URIEL FEIGE‡ , MOHAMMADTAGHI HAJIAGHAYI† , AND

MOHAMMAD R. SALAVATIPOUR§

Abstract. We prove semilogarithmic inapproximability for a maximization problem called
unique coverage: given a collection of sets, find a subcollection that maximizes the number of ele-
ments covered exactly once. Specifically, assuming that NP �⊆ BPTIME(2n

ε
) for an arbitrary ε > 0,

we prove O(1/ logσ n) inapproximability for some constant σ = σ(ε). We also prove O(1/ log1/3−ε n)
inapproximability for any ε > 0, assuming that refuting random instances of 3SAT is hard on average;
and we prove O(1/ logn) inapproximability under a plausible hypothesis concerning the hardness of
another problem, balanced bipartite independent set. We establish an Ω(1/ logn)-approximation
algorithm, even for a more general (budgeted) setting, and obtain an Ω(1/ logB)-approximation al-
gorithm when every set has at most B elements. We also show that our inapproximability results
extend to envy-free pricing, an important problem in computational economics. We describe how
the (budgeted) unique coverage problem, motivated by real-world applications, has close connections
to other theoretical problems, including max cut, maximum coverage, and radio broadcasting.

Key words. unique coverage, hardness of approximation, wireless networks

AMS subject classifications. 68Q25, 68W25

DOI. 10.1137/060656048

1. Introduction. In this paper we consider the approximability of the following
natural maximization analogue of the set cover problem:

Unique coverage problem. Given a universe U = {e1, . . . , en} of
elements, and given a collection S = {S1, . . . , Sm} of subsets of U ,
find a subcollection S ′ ⊆ S to maximize the number of elements that
are uniquely covered, i.e., appear in exactly one set of S ′.

We also consider a generalized form of this problem that is useful for several applica-
tions (detailed in section 2):

Budgeted unique coverage problem. Given a universe U =
{e1, . . . , en} of elements, a profit pi for each element ei, a collection
S = {S1, . . . , Sm} of subsets of U , a cost ci of each subset Si, and a
budget B, find a subcollection S ′ ⊆ S, whose total cost is at most the
budget B, to maximize the total profit of elements that are uniquely
covered, i.e., appear in exactly one set of S ′.

Motivation. Logarithmic inapproximability for minimization problems is by
now commonplace, starting in 1993 with a result for the celebrated set cover problem

∗Received by the editors April 3, 2006; accepted for publication (in revised form) May 28, 2008;
published electronically September 8, 2008. A preliminary version of this paper appeared in Pro-
ceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, 2006.

http://www.siam.org/journals/sicomp/38-4/65604.html
†Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

Cambridge, MA 02139 (edemaine@mit.edu, hajiagha@mit.edu).
‡Department of Computer Science and Applied Mathematics, The Weizmann Institute, Rehovot

76100, Israel (uriel.feige@weizmann.ac.il).
§Department of Computing Science, University of Alberta, Edmonton, AB, T6G 2E8, Canada

(mreza@cs.ualberta.ca). This author’s research was supported by NSERC and a faculty startup
grant.

1464



COMBINATION CAN BE HARD: UNIQUE COVERAGE PROBLEM 1465

[42], which has since been improved to the optimal constant [18] and to assume just

P �= NP [47], and has been used to prove other tight (not necessarily logarithmic) inap-
proximability results for a variety of minimization problems; see, e.g., [34, 25, 13]. In
contrast, for maximization problems, logn inapproximability seems more difficult, and
relatively few results are known. The only three such results of which we are aware are
(1 + ε)/ lnn inapproximability for domatic number unless NP ⊆ DTIME(nO(log log n))

[21]; 1/ log1/2−ε n inapproximability for the maximum edge-disjoint paths problems
unless NP ⊆ ZPTIME(npolylog n) [5, 6, 48]; and 1/ log1−ε n inapproximability for the
maximum edge-disjoint cycles problems unless NP ⊆ ZPTIME(npolylog n) [38]. Al-
though these problems are interesting, they are rather specific, and we lack a central
maximization problem analogous to set cover to serve as a basis for further reduction
to many other maximization problems.

The unique coverage problem defined above is a natural maximization version
of set cover which was brought to our attention from its applications in wireless
networks. In one (simplified) application, we have a certain budget to build/place
some transmitters at a subset of some specified set of possible locations. Our goal is
to maximize the clients that are “covered” by (i.e., are within the range of) exactly
one transmitter; these are the clients that receive signal without interference; see
section 2.1 for details. Another closely related application is the radio broadcast
problem, in which a message (starting from one node of the network) is to be sent to
all the nodes in the network in rounds. In each round, some of the nodes that have
already received the message send it to their neighbors, and a node receives a message
only if it receives it from exactly one of its neighbors. The goal is to find the minimum
number of rounds to broadcast the message to all the nodes; see section 2.5 for details.
Therefore, every single round of a radio broadcast can be seen as a unique coverage
problem. These applications and others are studied in more detail in section 2.

Known results. To the best of our knowledge, there is no explicit study in the
literature of the unique coverage problem and its budgeted version. However, the
closely related radio broadcast problem has been studied extensively in the past, and
implicitly includes an Ω(1/ log n)-approximation algorithm for the basic (unbudgeted)
unique coverage problem; see section 2.5 for details.

Concurrently and independently of our work, Guruswami and Trevisan [28] study
the so-called 1-in-k SAT problem, which includes the unique coverage problem (but
not its budgeted version) as a special case. In particular, they show that there is an
approximation algorithm that achieves an approximation ratio of 1/e on satisfiable
instances (in which all items can be covered by mutually disjoint sets).

Our results. On the positive side, we give an Ω(1/ log n)-approximation for the
budgeted unique coverage problem. We also show that if each set has a bound B on
the ratio between the maximum profit of a set (where the profit of a set is the sum of
profits of its elements) and the minimum profit of an element, then budgeted unique
coverage has an Ω(1/ logB)-approximation. Section 4 proves these results.

The main focus of this paper is proving the following inapproximability results.
We show that it is hard to approximate the unique coverage problem within a factor of
Ω(1/ logσ n) for some constant σ depending on ε, assuming that NP �⊆ BPTIME(2n

ε

)

for some constant ε > 0. This inapproximability can be strengthened to Ω(1/ log1/3−ε n)
(for any constant ε > 0) under the assumption that refuting random instances of 3SAT
is hard on average (hardness of R3SAT as in [19]). The inapproximability can be fur-
ther strengthened to 1/(ε log n) for some constant ε > 0 under a plausible hardness
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hypothesis about a problem called balanced bipartite independent set; see Hypothe-
sis 3.22. Section 3 proves all of these results.

Our hardness results have other implications regarding the hardness of some well-
studied problems. In particular, for the problem of unlimited-supply single-minded
(envy-free) pricing, a recent result [27] proves an Ω(1/ log n)-approximation, but no in-
approximability result better than APX-hardness is known. As we show in section 2.2,
our hardness results for the unique coverage problem imply the same hardness-of-
approximation bounds for this version of envy-free pricing. For the radio broadcast
problem, as we discuss in section 2.5, there is essentially a gap of Ω(log n) between
the approximation and inapproximability factors (O(log2 n) vs. Ω(log n)). We believe
that our technique to prove hardness of unique coverage may shed some light on how
to obtain a hardness of approximation beyond Ω(logn) for this problem.

More generally, there are many maximization problems for which the best known
approximation factor is Ω(1/ log n)—see, e.g., [27, 9, 43]—and it is not known whether
an Ω(1)-factor approximation is possible. Often (as indeed is the case with unique
coverage) these problems naturally decompose into Θ(log n) subproblems, where at
least an Ω(1/ log n) fraction of the optimum’s value comes from one of these subprob-
lems. In isolation, each subproblem can be approximated up to a constant factor,
leading to an Ω(1/ log n)-approximation algorithm for the whole problem. It may ap-
pear that this isolation approach is too näıve to give the best possible approximation,
and that by a clever combination of the subproblems, it should be possible to get an
Ω(1)-approximation algorithm. Our hardness results show to the contrary that such
intelligent combination can be hard, in the sense that the näıve isolation approach
cannot be substantially improved, and suggest how one might obtain better hardness
results for these problems.

2. Applications and related problems.

2.1. Wireless networks. Our original motivation for the budgeted unique cov-
erage problem is a real-world application arising in wireless networks.1 We are given
a map of the densities of mobile clients throughout a service region (e.g., the plane
with obstacles). We are also given a collection of candidate locations for wireless base
stations, each with a specified building cost and a specified coverage region (typically
a cone or a disk, possibly obstructed by obstacles). This collection may include multi-
ple options for base stations at the same location, e.g., different powers and different
orientations of antennas. The goal is to choose a set of base stations and options to
build, subject to a budget on the total building cost, in order to maximize the density
of served clients.

The difficult aspect of this problem (and what distinguishes it from maximum
coverage—see section 2.4) is interference between base stations. In the simplest form,
there is a limit k on the number of base stations that a mobile client can reasonably
hear without conflict between the signals; any client within range of more than k base
stations cannot communicate because of interference and thus is not serviced. More
generally, a mobile client’s reception is better when it is within range of fewer base
stations, and our goal is to maximize total reception. To capture these desires, the
instance specifies the satisfaction si of a client within range of exactly i base stations,

1The application arises in the context of cellular networks at Bell Labs. The problem we consider
here is a somewhat simplified theoretical formulation of this application. In the real application, the
interference patterns are more complicated, but this problem seems to be the cleanest theoretical
formulation.
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such that s0 = 0 and s1 ≥ s2 ≥ s3 ≥ · · · ≥ 0. The goal is to choose a set of base
stations and options, again subject to the budget constraint, in order to maximize the
total satisfaction weighted by client densities.

When all si’s are equal, we just have the maximum coverage problem (section 2.4).
When s1 = 1 and si = 0 for all i �= 1, this problem can be formulated as a budgeted
unique coverage problem, by standard discretization of the density map. More gen-
erally, for any assignment of si’s, the problem can be formulated as a generalization
of budgeted unique coverage, the budgeted low-coverage problem. In this problem, we
are also given satisfaction factors si for an element being covered exactly i times, zero
for i = 0 and nonincreasing for i > 0, and the goal is to maximize the total satis-
faction, i.e., the sum over all elements of the product of the element’s profit (here,
density) and its satisfaction factor (the appropriate si). We show that our approx-
imation algorithms for the budgeted unique coverage problem apply more generally
to the budgeted low-coverage problem, yielding an Ω(1/ log n)-approximation where
n is the total number of options for base stations.

While similar problems about base-station placement have been considered before,
very few works consider maximization forms of the problem, which is the focus of
this paper. Lev-Tov and Peleg [41] consider the following very specialized form of
the problem: base stations are unit disks in the plane, and the goal is to maximize
the number of uniquely receiving clients. For this problem they give an nO(

√
n)-time

algorithm, where n is the number of candidate disks. In the application of interest, we
believe that it is more natural to allow clients to be covered more than once but reduce
(or eliminate) the satisfaction of these clients; this removal of an artificial constraint
may enable substantially better solutions to the problem. Other work [31, 22, 8] solves
the problem of assigning powers to base stations such that, when each client prefers
a unique base station, we do not violate the capacities of the base stations, provided
the number of clients is at most the total capacity of the network.

2.2. Envy-free pricing. Fundamental to “fair” equilibrium pricing in economics
is the notion of envy-free pricing [49, 26]. This concept has recently received attention
in computer science [1, 27] in the new trend toward an algorithmic understanding of
economic game theory; see, e.g., [14, 15] for related work.

The following version of envy-free pricing was considered in [27]. A single seller
prices m different items, I1, . . . , Im, each with a specified quantity (limited or unlim-
ited supply). Each of n buyers bi (1 ≤ i ≤ n) wishes to purchase a subset of items (a
bundle), and the seller knows the maximum price that each buyer is willing to pay for
each bundle (the valuation). A buyer’s utility is the difference between the valuation
and the price of the bundle (sum of the prices of the items in the bundle) as sold to
the buyer. The seller must choose the item prices, price pi for item Ii, and which
bundles are sold to which buyers in such a way that is envy-free: each buyer should
be sold a bundle that has the maximum utility among all bundles. The goal is to
maximize the seller’s profit, i.e., the total price of the sold bundles.

Among other results, Guruswami et al. [27] give an Ω(1/(log n+ logm))-approxi-
mation algorithm for the unlimited-supply single-minded bidder problem, where each
buyer bi considers only one particular bundle Bi and buys it if the cost is less than
the valuation. They also give a constant-factor hardness-of-approximation result for
this problem, via a reduction from max-cut. Single-minded bidders were considered
before in the context of combinatorial auctions and mechanism design [7, 45, 40]. The
unlimited-supply assumption in combination with single-mindedness simplifies the
problem, as the notion of envy does not play a role in this case. The general version
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of the envy-free pricing problem is of course at least as difficult as this special case.
We now show that unlimited-supply single-minded (envy-free) pricing is as hard

to approximate as the unique coverage problem. The reduction is as follows. Each
set Si in the collection (for the instance of unique coverage) maps to an item Ii
(for the instance of envy-free pricing). Each element ei of the universe U maps to
a buyer bi. Buyer bi has a valuation of 1 for one bundle, Bi, namely, the set of
items Ij that correspond to sets Sj containing the element ei. In this context, every
price assignment is envy-free, because we have unlimited supply for each item so the
seller can always sell each buyer its desired bundle (if the buyer wants). Because the
valuations are all 1, we can assume that all prices are between 0 and 1. By randomized
rounding (see Lemma A.1), we can assume that all prices are either 0 or 1, at a loss of
a constant factor in profit. In this case, each buyer bi will buy its bundle precisely if at
most one item is priced at 1, and the rest of the items are priced at 0. If all items in a
bundle are priced at 0, then the seller makes no profit; if exactly one item is priced at
1 and the rest are priced at 0, then the seller profits by 1. Thus the effective goal is to
assign prices of 0 or 1 in order to maximize the number of bundles for which exactly
one item is priced at 1, which is identical to the original unique coverage problem.

Therefore our hardness-of-approximation results apply to unlimited-supply single-
minded (envy-free) pricing and establish semilogarithmic inapproximability.

2.3. Max-cut. Recall the max-cut problem: given a graph G, find a cut (S, S),
where S ⊆ V (G) and S = V (G) − S, that maximizes the number of edges with one
endpoint in S and the other endpoint in S. The max-cut problem can be seen to be
equivalent to a special case of the unique coverage problem in which every element is
in exactly two sets. Simply view every vertex as a set and every edge as an element.

Max-cut is 0.878567-approximable [24], 0.941177-inapproximable assuming P �=
NP [29], and 0.878568-inapproximable assuming the unique games conjecture [33].
From these results one can immediately obtain constant-factor hardness for unique
coverage, but in this paper we show that unique coverage is in fact much harder.

2.4. Maximum coverage. Our budgeted unique coverage problem is also closely
related to the budgeted maximum coverage variation of set cover: given a collection
of subsets S of a universe U , where each element in U has a specified weight and
each subset has a specified cost, and given a budget B, find a subcollection S′ ⊆ S of
sets, whose total cost is at most B, in order to maximize the total weight of elements
covered by S′. For this problem, there is a (1− 1/e)-approximation [30, 34], and this
is the best constant approximation ratio possible unless P = NP [18, 34].

At first glance, one might expect the greedy (1 − 1/e)-approximation algorithm
to work for unique coverage as well: the only difference between the two prob-
lems is whether we count elements that are covered (contained in at least one set)
or uniquely covered (contained in exactly one set). Of course, we show that the
(in)approximability of the two problems is quite different. Indeed, a natural class of
greedy algorithms can be very bad for unique coverage. Consider the collection of sets
Si = {i, k + 1, k + 2, . . . , n} for i = 1, 2, . . . , k, with an infinite budget B. Consider
a greedy algorithm that repeatedly chooses a set to add to the cover, according to
some (arbitrary) rule, with one of two stopping conditions: either when the budget is
exhausted, or when the number of uniquely covered elements goes down. Then the
approximation ratio is Θ(1/n) with the first stopping condition if k = 2, and with the
second stopping condition if k = n− 2.
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2.5. Radio broadcast. The unique coverage problem is closely related to a
single “round” of the radio broadcast problem [10]. This problem considers a radio
network, i.e., a network of processors (nodes) that communicate synchronously in
rounds. In each round, a node can either transmit to all of its neighbors in an
undirected graph (representing the communicability between pairs of nodes) or not
transmit. A node receives a message if exactly one of its neighbors transmits a message
in the round; otherwise the messages are lost because of radio interference. In the
radio broadcast problem, initially one node has a message, and the goal is to propagate
this message to all nodes in the network.

Radio broadcast is one of the most important communication primitives in radio
networks, and the problem has been studied extensively in the literature. In summary,
the current best algorithms for approximating the minimum number of rounds are a
(multiplicative) O(log2 n)-approximation [12, 10, 36, 35] and an additive O(log2 n)-
approximation [23]. Alon et al. [3] show that, even for graphs with diameter 3,
Ω(log2 n) rounds can be necessary. The problem has also been considered in the
context of distributed algorithms [39, 37] and low-energy ad-hoc wireless networks
[4]. Elkin and Kortsarz prove a lower bound of inapproximability of a (multiplicative)
Ω(log n) [16] and an additive Ω(log2 n) [17] assuming NP �⊆ BPTIME(nO(log log n)).

The unique coverage problem (but not the budgeted version) can be considered as
a single round of a greedy algorithm for the radio broadcast problem, which maximizes
the number of nodes that receive the message in each step. Specifically, consider the
bipartite subgraph where one side consists of all nodes that currently have the message
and the other side consists of all nodes that do not yet have the message. In one round
of the greedy algorithm, the goal is to find a subset of nodes in the first side to transmit
in order to maximize the number of nodes in the second side that (uniquely) receive
the message. This problem is equivalent to unique coverage, viewing nodes on the
first side as sets and the nodes on the second side as elements of the universe.

One implication of the radio broadcasting work on unique coverage is an implicit
Ω(1/ log n)-approximation algorithm for the (unbudgeted) unique coverage problem.
Namely, there is a randomized broadcasting algorithm that, in each round, guarantees
transmission to an Ω(1/ log r) fraction of the r neighbors of nodes that currently
have the message. Because r is an obvious upper bound on the number of successful
transmissions of the message, this result is an Ω(1/ log r) = Ω(1/ log n)-approximation
in this special case; see, e.g., [10].

To avoid the possibility of misunderstanding, let us point out that the known
hardness-of-approximation results for radio broadcast [16, 17] do not give (neither ex-
plicitly nor implicitly) any useful hardness-of-approximation result for the unique cov-
erage problem (not even a constant factor). Likewise, our hardness-of-approximation
results for the unique coverage problem do not by themselves imply any new hardness-
of-approximation results for radio broadcast. However, they do introduce a component
that may be useful in future hardness-of-approximation results for the radio broad-
cast problem, as they show that the greedy broadcast policy might need to lose a
semilogarithmic factor already in a single round (a fact not used in [16, 17]).

3. Inapproximability. In this section we prove that it is hard to approximate
unique coverage within a factor of Ω(1/ logc n) for some constant c, 0 < c ≤ 1.
Our main result is a general reduction from a variation of the balanced bipartite
independent set (BBIS) problem (defined below) to the unique coverage problem.
From this reduction and the known hardness results for BBIS, we can derive an
O(1/ logc n) hardness for unique coverage. Under a plausible assumption about the
hardness of BBIS, this bound can be improved to O(1/ log n).
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We consider the natural graph-theoretic model of the unique coverage problem.
Define the bipartite graph H(V ∪ W,F ) with a vertex vi ∈ V for every set Si ∈ S
and a vertex wj ∈ W for every element ej ∈ U , and with an edge f = (vi, wj) ∈ F
precisely if ej ∈ Si. Then the unique coverage problem asks to find a subset V ′ ⊆ V
such that the subgraph induced by V ′ ∪ W has the maximum number of degree-1
vertices in W . We call the degree-1 vertices uniquely covered by the vertices in V ′.

Definition 3.1. Given a bipartite graph G(A ∪ B,E) with |A| = |B| = n, the
BBIS problem asks to find the largest value of k such that there are sets Ã ⊆ A and
B̃ ⊆ B with |Ã| = |B̃| = k where the subgraph G̃ of G induced by Ã ∪ B̃ is an
independent set.

As detailed below, this problem has known hardness results (see [19, 32]). In
order to prove hardness of the unique coverage problem, we define a variation of
BBIS. Then we give a reduction from this variation of BBIS. Before stating the main
result, we need to define what we mean by an (a, b)-BIS (bipartite independent set).
Let G(A ∪ B,E) be a given a bipartite graph. If the subgraph G̃ induced by Ã ⊆ A
and B̃ ⊆ B, with |Ã| = a and |B̃′| = b, is an independent set, then we call it an
(a, b)-BIS.

Definition 3.2. Given bipartite graph G(A ∪ B,E) with |A| = |B| = n, and
given parameters γ, γ′, δ, and δ′ satisfying 0 < γ′ < γ ≤ 1 and 0 ≤ δ < δ′ ≤ 1, the
BBIS(γ, γ′, δ, δ′) problem is to distinguish between two cases:

1. Yes instance: G has an (nγ , n/ logδ n)-BIS.

2. No instance: G has no (nγ′
, n/ logδ

′
n)-BIS.

The main theorem of this section is the following.
Theorem 3.3. There is a polynomial-time probabilistic reduction from BBIS to

the unique coverage problem with the following properties. Given a bipartite graph
G(A ∪ B,E) with |A| = |B| = n and given constants γ, γ′, δ, and δ′ satisfying
0 < γ′ < γ ≤ 1 and 0 ≤ δ < δ′ ≤ 1, the algorithm constructs in randomized polynomial
time an instance H(V ∪W,F ) of unique coverage with |W | = Θ((γ − γ′)n log n) and
|V | = n satisfying the following two properties:

1. If G is a Yes instance of BBIS(γ, γ′, δ, δ′), then H has a solution of size
Ω((γ − γ′)n log1−δ n).

2. If G is a No instance of BBIS(γ, γ′, δ, δ′), then H has no solution of size

O((γ − γ′)n log1−δ′ n).
Corollary 3.4. Assuming that BBIS(γ, γ′, δ, δ′) is hard for constants γ, γ′, δ, δ′,

we get a hardness of approximation within a factor of Ω(1/ logδ
′−δ n) for unique cov-

erage.
This theorem is proved in section 3.1. Next we show how the known hardness

results for BBIS can be used to derive explicit hardness results for unique coverage.
In particular, the following theorems follow from Theorem 3.3.

Theorem 3.5. Let ε > 0 be an arbitrarily small constant. Assuming that NP �⊆
BPTIME(2n

ε

), it is hard to approximate the unique coverage problem within a factor
of Ω(1/ logσ n) for some constant σ = σ(ε).

Feige [19] makes the following hypothesis about average-case hardness of 3SAT.

R3SAT hardness hypothesis [19]: Let φ be a 3SAT formula with
n variables and m = Δn clauses where every clause is generated
independently at random by selecting three literals independently at
random. For arbitrary large constant Δ, there is no polynomial-time
algorithm that accepts if φ is satisfiable and refutes at least half of
the times for those formulas that are not satisfiable.
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Under this hypothesis, we can prove the same hardness result with an explicit
value for σ.

Theorem 3.6. Assuming R3SAT hardness hypothesis, unique coverage is hard
to approximate within a factor of Ω(1/ log1/3−σ n) for an arbitrarily small constant
σ > 0.

Under a stronger (yet plausible) hardness assumption, explained in section 3.2, we
close the gap between the approximation factor and the hardness of approximation,
up to the constant multiplicative factor, by proving an O(1/ log n)-hardness result for
unique coverage.

Theorem 3.7. Assuming a specific hardness of factor Ω(nε) for BBIS for some
constant ε > 0 (Hypothesis 3.22), it is hard to approximate the unique coverage prob-
lem within a factor of Ω(1/ log n) where the constant in the Ω term depends on ε.

Theorems 3.5 to 3.7 are proved in section 3.2.

3.1. Reduction from BBIS to unique coverage and proof of Theorem 3.3.

Construction. Consider an instance of BBIS(γ, γ′, δ, δ′): a bipartite graph G(A∪
B,E) with |A| = |B| = n, and constants γ, γ′, δ, and δ′ with 0 < γ′ < γ ≤ 1 and
0 ≤ δ < δ′ ≤ 1. We construct a graph H(V ∪W,F ) as an instance of unique coverage
as follows.

First we construct a random graph G′(A′ ∪ B′, E′) where A′ is a copy of A and
B′ is a copy of B. For every a ∈ A′ and b ∈ B′ we place the edge (a, b) in E′ with
probability 1/nγ . So the expected degree of every vertex in G′ is n1−γ .

Now to construct H, let V be a copy of A. Then with γ′′ = γ−γ′

7 , create p =
γ′′ log n copies of B, named W1, . . . ,Wp. We define a bipartite graph Hi(V ∪Wi, Fi),
for every 1 ≤ i ≤ p, and at the end H =

⋃p
i=1 Hi. Note that |V | = n and |W | = pn.

The set of edges Fi (in Hi) consists of the union of two edge sets: (i) the edges of
the random graph G′ induced on the vertices V ∪Wi (V as A′ and Wi as B′), plus
(ii) the edges of another random graph Gi, where Gi is defined recursively as follows.
Initially, G1 is G induced on V ∪ W1. For every i ≥ 2, Gi is obtained from Gi−1

by deleting every edge independently with probability 1
2 . The edges of G′ in Hi are

called type-1 edges and the rest of the edges of Hi (which come from Gi) are called
type-2 edges of Hi. In a solution to V ′ ⊆ V for instance H, we say a vertex of W is
uniquely covered by a type-1 (type-2) edge if that vertex is adjacent to exactly one
vertex of V ′ and that edge is a type-1 (type-2) edge.

Proof overview. Here is the general idea of the proof. Intuitively, the bal-
anced independent sets in G relate to the elements that will be uniquely covered
by type-1 edges in H. The removal of edges (randomly) from Gi to Gi+1 is to en-
sure that not too many vertices are uniquely covered by type-2 edges. More specif-
ically, we will show that the number of vertices uniquely covered by type-2 edges
(edges that were originally in G) in this instance is O(n). So let us focus on the
vertices uniquely covered by type-1 edges (i.e., edges from the random graph G′ in
each Hi).

First suppose that G is a Yes instance; i.e., it has an (nγ , n
logδ n

)-BIS, say A∗∪B∗

(with A∗ ⊆ A and B∗ ⊆ B). Because the expected degree of every vertex in G′ is
n1−γ , the expected number of type-1 edges coming out of A∗ (in G′) is n, and because
these edges are selected at random, we expect a fraction of 1/e of the vertices in B′

(in G′) and in particular a fraction of 1/e of the vertices in B∗ to have degree 1. This
implies that the type-1 edges in each Hi uniquely cover a linear number of vertices of
B∗ (at least in expectation); i.e., it gives a solution of size Ω( n

logδ n
) in Hi. Because
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H =
⋃p

i=1 Hi and p = γ′′ log n, we have a total of Ω(γ′′n log1−δ n) vertices uniquely
covered by type-1 edges.

Now suppose that G is a No instance; i.e., it has no (nγ′
, n/ logδ

′
n)-BIS. We

will show that although we delete edges to construct Gi from Gi−1, the last (and
most sparse) graph Gp will not have “too large” a bipartite independent set with high
probability. This property will be used to show that, in every graph Hi, the number of

vertices uniquely covered by type-1 edges in any solution of H is at most O(n/ logδ
′
n)

with high probability. Thus, the total number of vertices uniquely covered in H (by

type-1 or type-2 edges) in any solution is at most O(γ′′n log1−δ′ n + n) with high

probability. Because δ′ ≤ 1, this creates a hardness gap of Ω(1/ logδ
′−δ n).

Now we give the details of the proof of Theorem 3.3. We use the following
simplified version of the Chernoff bound.

Lemma 3.8 (Chernoff bound). For independent 0/1 random variables X1, . . . , Xn,
X =

∑n
i=1 Xi, μ = E[X], and any 0 < δ < 1, we have

Pr[|X − E[X]| > δμ] ≤ e−δ2μ/3.

Lemma 3.9. For every selection of vertices V ′ ⊆ V as a solution for instance H,
the number of vertices uniquely covered by type-2 edges in any solution to H is O(n)
with high probability.

Proof. Let b ∈ B be an arbitrary vertex (in G) and assume that w1, . . . , wp are
its corresponding vertices in W1, . . . ,Wp. Consider any subset V ′ ⊆ V . Assuming
that V ′ is a solution to unique coverage, we compute the probability that exactly
i vertices out of w1, . . . , wp are uniquely covered by type-2 edges (of the vertices
of V ′). Assume that j is the first index for which wj is uniquely covered by a type-2
edge, and wj , . . . , wj+i−1 are the copies that are uniquely covered by a type-2 edge.
Because every edge is deleted with probability 1

2 from Gt to Gt+1 (for 1 ≤ t < p),
the probability that a single edge survives i rounds is 2−i. Let Xb be the number
of copies of b (from w1, . . . , wp) that are uniquely covered by a type-2 edge (by the
vertices of V ′) and define X =

∑
b∈B Xb. Therefore,

E[X] =
∑
b∈B

E[Xb] = n

p∑
i=1

i

2i
≤ 3n.

Using the Chernoff bound (Lemma 3.8), we obtain

Pr[X ≥ 6n] ≤ e−4n.

Because there are 2n subsets V ′, a union bound shows that the probability that, for
at least one of those sets, the number of vertices in W that are uniquely covered by
type-2 edges is ≥ 6n is at most 2n · e−4n ≤ e−Ω(n). This completes the proof of the
lemma.

Completeness. Suppose that G is a Yes instance; i.e., it has a (nγ , n/ logδ n)-
BIS, say, A∗∪B∗ where A∗ ⊆ A and B∗ ⊆ B. Assume that V ′ and W ′

i are the subsets
of vertices in Hi and A′′ and B′′ are the subsets of vertices in G′ corresponding to A∗

and B∗, respectively. Because Gi is obtained from G by deleting edges, there are no
type-2 edges in V ′∪W ′

i in Hi (for any 1 ≤ i ≤ p). Therefore, every vertex w ∈ W ′
i (for

all values of 1 ≤ i ≤ p) has degree 1 if and only if the corresponding vertex w ∈ B′′

(in G′) has degree 1. For every w ∈ B′′, let Xw be a 0/1 random variable that is 1
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if and only if w ∈ B′′ has degree 1 (and so w is uniquely covered by a type-1 edge in
Hi for all 1 ≤ i ≤ p). With X =

∑
w∈B′′ Xw,

E[X] =
∑

w∈B′′

Pr[Xw = 1]

= |B′′| ·
(
|A′′|
1

)
· 1

nγ

(
1 − 1

nγ

)|A′′|−1

≥ |B′′|
e

≥ n

e logδ n
.

A simple application of the Chernoff bound shows that Pr[X ≤ n
6 logδ n

] ≤
e−Ω(n/ logδ n). Therefore, if we select the subset of vertices in V (in H) corresponding
to A∗ (in G), then, with high probability, there are at least p· n

6 logδ n
= Ω(γ′′n log1−δ n)

vertices in W uniquely covered (by type-1 edges). Thus, we have proved the following.
Corollary 3.10. If G is a Yes instance, then, with high probability, H has a

unique cover of size Ω(γ′′n log1−δ n).

Soundness. Suppose that G is a No instance; i.e., it has no (nγ′
, n/ logδ

′
n)-BIS.

Our goal is to show that, with high probability, every solution to unique coverage for

H has size O(γ′′n log1−δ′ n). Because by Lemma 3.9 the number of vertices uniquely
covered by type-2 edges is O(n), we only need to prove that, with high probability,

the number of vertices uniquely covered by type-1 edges is at most O(γ′′n log1−δ′ n).
Consider any solution to unique coverage for H. By construction of the Hi’s, it

is easy to see that, for every vertex b ∈ B (in G), if the corresponding vertex in Wi

is uniquely covered by a type-1 edge in Hi, then all the corresponding vertices of b
in the Wj ’s, for i ≤ j ≤ p, are also uniquely covered by a type-1 edge. Therefore,
if we prove that the number of vertices uniquely covered by type-1 edges in Hp is
upper bounded (with high probability) by O(n/ logδ

′
n), then because p = γ′′ log n,

we obtain the claimed upper bound for the total number of vertices uniquely covered
by type-1 edges.

Suppose that V ′ ⊆ V and W ′ ⊆ Wp are such that all the vertices in W ′ are
uniquely covered by V ′, and the edges that cover them are all type-1 edges. It is easy
to see that V ′ ∪ W ′ must be a bipartite independent set in Gp (otherwise there is
some type-2 edge incident to some vertex w ∈ W ′ and therefore w is not uniquely
covered).

Lemma 3.11. If V ′ ∪W ′ (with V ′ ⊆ V and W ′ ⊆ Wp) is a bipartite independent

set in Gp, then with high probability, either |V ′| < n(γ+γ′)/2 or |W ′| < 2n/ logδ
′
n;

i.e., Gp has no (n(γ+γ′)/2, 2n/ logδ
′
n)-BIS.

Proof. Suppose that V ′ ⊆ V and W ′ ⊆ Wp satisfy |V ′| = n(γ+γ′)/2 and |W ′| =

2n/ logδ
′
n. Partition V ′ into q = n(γ−γ′)/2 subsets V ′

1 , . . . , V
′
q , each of size nγ′

. Let
A∗

i and B∗ (1 ≤ i ≤ q) be the subset of vertices of A and B (in G) corresponding to V ′
i

and W ′, respectively. Consider the subgraph of G induced by A∗
i ∪B∗. Because |A∗

i | =

nγ′
, |B∗| = 2n/ logδ

′
n, and because G has no (nγ′

, n/ logδ
′
n)-BIS, it follows that at

least n/ logδ
′
n vertices in B∗ must be connected to the vertices in A∗

i . Therefore,
the total number of edges in the subgraph induced by B∗ ∪

⋃q
i=1 A

∗
i is at least q ·

n/ logδ
′
n = Ω(n1+(γ−γ′)/2/ logδ

′
n). Because G1 = G, V ′ ∪W ′ forms an independent

set in Gp only if all of these Ω(n1+(γ−γ′)/2/ logδ
′
n) edges are deleted while Gp is

created. Because in creating Gi+1 from Gi, edges are deleted with probability 1
2 , we
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have

Pr[V ′ ∪W ′ is an independent set in Gp] ≤ (1 − 2−p)Ω(n1+(γ−γ′)/2/ logδ′ n).(3.1)

The number of such subsets V ′ ∪W ′ is

(3.2)

(
n

n(γ+γ′)/2

)(
n

2n/ logδ
′
n

)
.

Thus, using (3.1) and (3.2), the expected number of bipartite independent sets

V ′ ∪W ′ with |V ′| = n(γ′+γ)/2 and |W ′| = 2n/ logδ
′
n in Gp is at most

(1 − 2−p)Ω(n1+(γ−γ′)/2/ logδ′ n)

(
n

n(γ+γ′)/2

)(
n

2n/ logδ
′
n

)

≤ (1 − n−(γ−γ′)/7)Ω(n1+(γ−γ′)/2/ logδ′ n) ·
( en

n(γ+γ′)/2

)n(γ+γ′)/2

·
(

en

2n/ logδ
′
n

)2n/ logδ′ n

≤ e−Ω(n1+(γ−γ′)/2−(γ−γ′)/7/ logδ′ n) · eO(n(γ+γ′)/2 logn) · eO(n log log n/ logδ′ n)

≤ e−Ω(n1+(γ−γ′)/3) · eO(n/ logδ′/2 n)

≤ e−Ω(n1+(γ−γ′)/3).

Therefore, with probability 1 − e−Ω(n1+(γ−γ′)/3), for every bipartite independent

set V ′ ∪ W ′ of Gp, either |V ′| < n(γ+γ′)/2 or |W ′| < 2n/ logδ
′
n; i.e., Gp has no

(n(γ+γ′)/2, 2n/ logδ
′
n)-BIS.

Lemma 3.12. With high probability, for every selection of vertices V ′ ⊆ V as
a solution to instance H, for every Hi (1 ≤ i ≤ p), the number of vertices uniquely

covered by type-1 edges is at most O(n/ logδ
′
n).

Proof. Let V ′ ⊆ V be any fixed solution to instance H. Clearly, for every vertex
uniquely covered by a type-1 edge in Wi, its corresponding copy is also uniquely
covered (by a type-1 edge) in Wj for every i ≤ j ≤ p. So let us focus on the number
of vertices uniquely covered by type-1 edges in Hp. If W ′

p ⊆ Wp is the set of vertices
uniquely covered by type-1 edges in Hp (by V ′), then V ′ ∪ W ′

p is a (|V ′|, |W ′
p|)-BIS

in Gp. We are going to use Lemma 3.11 to prove that, with high probability (for all
possible choices of V ′), the size of W ′

p is small.

First consider the case that |V ′| ≥ n(γ+γ′)/2 and V ′,W ′
p form a (|V ′|, |W ′

p|)-BIS in

Gp. By Lemma 3.11, the probability that V ′ ≥ n(γ+γ′)/2 and |W ′
p| ≥ 2n/ logδ

′
n is at

most e−Ω(n1+(γ−γ′)/3). The number of solutions to H (i.e., subsets V ′) that satisfy the
bound on V ′ is clearly at most 2n. Thus, the probability that there is a solution V ′

such that V ′ ≥ n(γ+γ′)/2 and |W ′
p| ≥ 2n/ logδ

′
n and V ′,W ′

p forms a (|V ′|, |W ′
p|)-BIS

in Gp is at most

(3.3) 2n · e−Ω(n1+(γ−γ′)/3) = e−Ω(n1+(γ−γ′)/3).

Now consider the case that |V ′| < n(γ+γ′)/2 (and of course |W ′
p| ≤ n). In this

case, we show that, with high probability, |W ′
p| ≤ O(n1−(γ−γ′)/3), which is clearly

O(n/ logδ
′
n). Consider an arbitrary vertex w ∈ W ′

p and let Xw be a 0/1 random
variable that is 1 if and only if w is incident to exactly one type-1 edge. With
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X =
∑

w∈W ′
p
Xw,

E[X] =
∑

w∈W ′
p

Pr[Xw = 1]

=
∑

w∈W ′
p

(
|V ′|
1

)
· 1

nγ

(
1 − 1

nγ

)|V ′|−1

< n · n(γ+γ′)/2 · 1

nγ

≤ n1−(γ−γ′)/2.

Using the Chernoff bound,

Pr[X ≥ n1−(γ−γ′)/3] ≤ e−Ω(n1−(γ−γ′)/6).

The number of solutions V ′ such that |V ′| < n(γ+γ′)/2 is at most
(

n
n(γ+γ′)/2

)
≤(

en
n(γ+γ′)/2

)n(γ+γ′)/2

≤ eO(n(γ+γ′)/2·logn). Thus, the probability that there is a solu-

tion V ′ such that |V ′| < n(γ+γ′)/2 and |W ′
p| > O(n1−(γ−γ′)/3) and V ′,W ′

p forms a
(|V ′|, |W ′

p|)-BIS in Gp is at most

(3.4) eO(n(γ+γ′)/2·logn) · e−Ω(n1−(γ−γ′)/6) ≤ e−Ω(n1−(γ−γ′)/6),

since 1 > 2γ
3 + γ′

3 .
Therefore, using (3.3) and (3.4), with high probability over all possible solutions

V ′, |W ′
p| ≤ O(n/ logδ

′
n) as wanted.

Corollary 3.13. If G is a No instance, then, with high probability, every solu-

tion to unique coverage for H has size at most O(γ′′n log1−δ′ n).
Proof. From Lemma 3.12 and because p = γ′′ log n, it follows that, with high

probability, the number of vertices uniquely covered by type-1 edges is at most

O(γ′′n log1−δ′ n). Combining this bound with Lemma 3.9 shows that if G is a No

instance (i.e., has no (nγ′
, n/ logδ

′
n)-BIS), then the size of any solution to unique

coverage for H is at most O(γ′′n log1−δ′ n).
Proof of Theorem 3.3. The proof follows easily from Corollaries 3.10 and 3.13 and

the assumption that BBIS(γ, γ′, δ, δ′) is hard.

3.2. Proving specific hardness results for unique coverage. In this sub-
section we prove Theorems 3.5, 3.6, and 3.7. In order to prove these theorems, we
will prove some hardness results for BBIS(γ, γ′, δ, δ′) and then combine them with
Theorem 3.3.

Recently, two hardness results for BBIS were proved by Feige [19] and Khot [32]
under different complexity assumptions. Feige [19] proved a constant factor hardness
result for BBIS under the R3SAT hardness hypothesis (for more details see [19]).

Theorem 3.14 (see [19]). For every ε > 0 and a given bipartite graph G(A∪B,E)
with |A| = |B| = n, deciding between the following two cases is hard, under the
complexity assumption that refuting random instances of 3SAT is hard on average:

1. G has a BBIS of size at least ( 1
4 − ε)n.

2. Every BBIS of G has size smaller than ( 1
8 + ε)n.
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More recently, Khot [32] proved a similar result, for some (unspecified) constants
α and β instead of (1

4 − ε) and (1
8 + ε), respectively, but under a more plausible

assumption that NP problems do not have subexponential-time algorithms. More
specifically, he proved the following PCP (probabilistically checkable proof) theorem.

Theorem 3.15 (see [32]). For every ε > 0 an integer d = O( 1
ε log( 1

ε )) exists
such that there is a PCP verifier for SAT instances of size n such that the following
hold:

1. The proof Π for the verifier has size 2n
ε

.
2. The verifier queries a set Q of size d bits from Π.
3. Every query bit is uniformly distributed over Π.
4. Completeness: If SAT is a Yes instance, Π is a correct proof, and Π0 is the

set of 0-bits in the proof (it contains half the bits from the proof), then

Pr[Q ⊆ Π0] ≥
(

1 −O

(
1

d

))
1

2d−1
,

where the probability is taken over the random tests of the verifier.
5. Soundness: If SAT is a No instance and Π∗ is any set of half the bits from

Π, then

Pr[Q ⊆ Π∗] =
1

2d
±O

(
1

220d

)
.

A direct application of Theorem 3.15 implies the following (see [32]).2

Theorem 3.16. Let ε > 0 be an arbitrary constant and d = O( 1
ε log( 1

ε )). Con-
sider an instance Φ of SAT with n variables. Let α = 3

4
1

2d−1 and β = (1− 1
25d )α. We

can construct a bipartite graph G(A ∪ B,E) as an instance of BBIS from the PCP
verifier of Theorem 3.15 with |A| = |B| = N where N = 2n

ε

such that the following
hold:

1. Yes instance: If Φ is a Yes instance, then G has a BBIS of size αN .
2. No instance: If Φ is a No instance, then no BBIS of G has size βN .

Corollary 3.17. Assuming that NP �⊆ BPTIME(2n
ε

), it is hard to distinguish
between the Yes and No cases in the above theorem.

In order to get a hardness for BBIS(γ, γ′, δ, δ′), we need a stronger version of The-
orem 3.16. For this, we boost the gap in Theorem 3.16 using the standard technique
of graph products (see, for example, [20, 11]). Note that Theorem 1.2 in [32] amplifies
the gap in Theorem 3.16 using the same technique. However, we require a gap which
is asymmetric with respect to the sizes of sets selected on different parts; i.e., the
bipartite independent set is not necessarily balanced. In particular, the gap created
on one side (say A) is polynomial, whereas the gap created on the other side (that is,
B) is polylogarithmic. Our proof is very similar to that of Theorem 1.2 in [32]. We
need the following definition for our proof.

Definition 3.18. For a bipartite graph G(A ∪ B,E) and integers KA,KB ≥ 2
the bipartite graph G(KA,KB) is defined as follows:

1. The vertex set of GKA,KB is A′ ∪ B′, where A′ ∩ B′ = ∅, A′ = AKA , and
B′ = BKB ; i.e., A′ and B′ are the sets of all KA-tuples from A and all
KB-tuples from B, respectively.

2. Two vertices (a1, . . . , aKA
) ∈ A′ and (b1, . . . , bKB

) ∈ B′ are adjacent in
G(KA,KB) if and only if ∃i, j, 1 ≤ i ≤ KA, 1 ≤ j ≤ KB , (ai, bj) ∈ E.

2Khot defines the bi-clique problem and proves this theorem for bi-clique.



COMBINATION CAN BE HARD: UNIQUE COVERAGE PROBLEM 1477

Suppose that G(A ∪B,E) is a bipartite graph with |A| = |B| = N , 0 < α < 1 is
a constant, and KA,KB are integers such that

(3.5)
1

αKA
,

1

αKB
∈ O(N).

Let G∗(A∗ ∪B∗, E∗) be a random subgraph of GKA,KB (A′ ∪B′, E′) with |A∗| =
|B∗| = M , where M = N3 and every vertex of GKA,KB is selected uniformly at
random but with different probabilities for A′ and B′.

Lemma 3.19. If G(A∪B,E) has a BBIS of size αN , then, with high probability,
G∗ has a ( 1

2α
KAM, 1

2α
KBM)-BIS.

Proof. Let AI ⊆ A and BI ⊆ B be subsets that form a BBIS of size αN in
G. Clearly, the subgraph of GKA,KB induced on AKA

I ∪ BKB

I is an independent set.

Because the vertices of G∗ are selected randomly, each vertex of A∗ belongs to AKA

I

with probability αKA . Also, each vertex of B∗ belongs to BKB

I with probability αKB .

Therefore, E[|A∗ ∩ AKA

I |] = αKA |A∗| and E[B∗ ∩ BKB

I ] = αKB |B∗|. Using the Cher-
noff bound and (3.5),

Pr

[
|A∗ ∩AKA

I | ≤ 1

2
αKA |A∗|

]
≤ 2−Ω(N2).

Similarly, with high probability, |B∗ ∩ BKB

I | ≥ 1
2α

KB |B∗|. Therefore, with high
probability, G∗ has a ( 1

2α
KA |A∗|, 1

2α
KB |B∗|)-BIS.

Lemma 3.20. If G(A∪B,E) has no BBIS of size βN , then, with high probability,
G∗ does not have any (2βKAM, 2βKBM)-BIS.

Proof. First, note that every maximal bipartite independent set of GKA,KB is
of the form AKA

I ∪ BKB

I , where AI ∪ BI is a bipartite independent set in G. Con-

sider a fixed maximal bipartite independent set of GKA,KB , say AKA

I ∪ BKB

I . Ei-

ther |AKA

I | < βKANKA or |BKB

I | < βKBNKB . Without loss of generality, assume

|AKA

I | < βKANKA . Because the elements in A∗ and B∗ are selected uniformly ran-

domly, E[|A∗ ∩AKA

I |] < βKA |A∗|. Using the Chernoff bound,

Pr
[
|A∗ ∩AKA

I | ≥ 2βKA |A∗|
]
≤ 2−Ω(N2).

An almost identical argument applies if |BKB

I | < βKBNKB . Because there are at
most 2O(N) possible maximal bipartite independent sets in G, using union bound, the
probability of having a (2βKA |A∗|, 2βKB |B∗|)-BIS in G∗ is o(1).

Let Φ be an instance of SAT and let ε > 0 be an arbitrary small constant. Define
d, α, β, and G(A∪B,E) as in Theorem 3.16, with |A| = |B| = N . Also let M = N3,

KA = − (1−γ) logM
logα , and KB = − δ log logM

logα , for some constants 0 < γ, δ < 1 such

that 1/αKA ∈ O(N). Construct the graph GKA,KB and the random subgraph of it
G∗(A∗ ∪B∗, E∗), where |A∗| = |B∗| = M , as explained above. By Theorem 3.16 and
Lemmas 3.19 and 3.20 we have the following:

1. If Φ is a Yes instance, then, by Theorem 3.16, G has a BBIS of size αN . So,
by Lemma 3.19, with high probability, G∗ has a ( 1

2α
KAM, 1

2α
KBM)-BIS. By

definition of KA and KB , this is a (M
γ

2 , M
2 logδ M

)-BIS in G∗.

2. If Φ is a No instance, then, by Theorem 3.16, G has no BBIS of size βN . So,
by Lemma 3.20, with high probability, G∗ has no (2βKAM, 2βKBM)-BIS.
With 	 = logα(β/α), γ′ = γ − 	(1 − γ), and δ′ = δ(1 + 	), this means that,
with high probability, G∗ has no (2Mγ′

, 2M
logδ′ M

)-BIS.
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Therefore, we have proved the following amplified version of Theorem 3.16.
Theorem 3.21. Let G(A ∪ B,E) be a given bipartite graph with |A| = |B| = n,

together with an arbitrary small constant ε > 0, and d = O( 1
ε log( 1

ε )), α = 3
4

1
2d−1 ,

β = (1− 1
25d )α. Furthermore, let 0 < γ′ < γ ≤ 1 and 0 ≤ δ < δ′ ≤ 1 be such that δ is

any constant and with 	 = logα(β/α): γ′ = γ − 	(1 − γ), and δ′ = δ(1 + 	). Then it
is hard to distinguish between the following two cases unless NP ⊆ BPTIME(2n

ε

):
1. G has a (n

γ

2 , n
2 logδ n

)-BIS.

2. G has no (2nγ′
, 2n

logδ′ n
)-BIS.

Proof of Theorem 3.5. Given a bipartite graph G(A∪B,E) with |A| = |B| = n as
an instance of bipartite independent set and parameters ε, α, β, δ, γ, δ′, and γ′ as in
Theorem 3.21 we construct H(V ∪W,F ) as explained in the proof of Theorem 3.3. We
choose δ = 1

1+� , where 	 = logα(β/α). Therefore δ′ = 1 and by Corollaries 3.10 and

3.13 unless NP ⊆ BPTIME(2n
ε

) it is hard to approximate unique coverage within a

factor of Ω(1/ logδ
′−δ n). Because δ′− δ = �

1+� and 	 is a function of ε, this completes
the proof of the theorem.

Proof of Theorem 3.6. If our starting point to prove Theorem 3.21 is Theorem 3.14
instead of Theorem 3.16, then we have α = 1

4 −ε and β = 1
8 +ε, and 	 = 1

2 +ε′, where
ε′ = ε′(ε) is a constant. Then the same argument as in the proof of Theorem 3.5 proves

a hardness of O(1/ log
1/2+ε′

1+1/2+ε′ n) which is O(1/ log
1
3−σ n) for some σ = σ(ε).

We now turn to the proof of Theorem 3.7. It is based on the following hypothesis.
Hypothesis 3.22. Given a bipartite graph G(A ∪B,E) with size |A| = |B| = n

as an instance of BBIS and for absolute constants 1 ≥ γ > γ′ > 0 it is hard to
distinguish the following two cases:

1. G has an (nγ ,Ω(n))-BIS.
2. G has no (nγ′

, n/ log n)-BIS.
Now we show how Hypothesis 3.22 would imply an O(1/ log n)-hardness for unique

coverage.
Proof of Theorem 3.7. Given a bipartite graph G(A∪B,E) with size |A| = |B| = n

and 1 ≥ γ > γ′ > 0 we construct H(V ∪W,F ), the instance of unique coverage, as in
the reduction of Theorem 3.3.

1. If G has an (nγ ,Ω(n))-BIS, then H has a unique coverage of size Ω((γ −
γ′)n log1−δ n) with δ = 0, which is Ω(n log n).

2. If G has no (nγ′
, n/ log n)-BIS, then every unique coverage solution for H has

size at most O((γ − γ′)n log1−δ′ n) with δ′ = 1, which is O(n).
This implies that, assuming Hypothesis 3.22, it is hard to distinguish between the
two cases above, and hence hard to approximate unique coverage within a factor of
Ω(1/ log n).

The authors suspect that Hypothesis 3.22 will be difficult to refute in the near
future. The BBIS problem appears to be at least as hard to approximate as max-
imum independent set in general graphs. (This is not a theorem, but merely an
empirical observation concerning currently known approximation algorithms.) For
the latter problem, despite extensive work, no known polynomial-time algorithm can
distinguish between graphs with independent sets of size Ω(n/k) and graphs with no
independent set of size n1/k, where k is some sufficiently large constant. It is plausi-
ble (though not certain) that any refutation of Hypothesis 3.22 would lead to major
improvements in the approximation ratio for maximum independent sets in general
graphs.
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4. Approximation algorithms.

4.1. Ω(1/ logm)-approximation. In this section we develop our main loga-
rithmic approximation algorithm.

Theorem 4.1. There is an Ω(1/ log ρ) = Ω(1/ logm)-approximation algorithm
for the budgeted unique coverage problem, where ρ is one more than the ratio of the
maximum number of sets in which an element appears over the minimum number of
sets in which an element appears.

Proof. First we find an (1−1/e)-approximate solution S ′ to the maximum coverage
problem with the same universe, profits, sets, costs, and budget [34]. Because the total
profit of uniquely covered elements is always at most the total profit of all covered
elements, the optimum solution value OPT to the unique coverage problem must be
at most the optimum solution value to the maximum coverage problem. Thus the
total profit of covered elements in S ′ is within an 1 − 1/e factor of an upper bound
on OPT. Symbolically, if p(S) denotes the total profit of elements in set S and

⋃
S ′

denotes the union
⋃

S∈S′ S, then p(
⋃
S ′) ≥ (1 − 1/e) OPT.

We cluster the elements in
⋃
S ′ into lg ρ groups as follows: an element is in group

i if it is covered by between 2i and 2i+1 − 1 sets. The group i∗ with the most total
profit must have at least a 1/ lg ρ fraction of p(

⋃
S ′) ≥ (1 − 1/e) OPT. Now we

randomly discard sets from S ′, keeping a set with probability 1/2i
∗
. We claim that,

in expectation, the resulting collection S ′′ uniquely covers a constant fraction of the
elements in group i∗, which is Ω(OPT / log ρ).

Fix an element x in group i∗, and suppose that it was covered d times in S ′,
2i

∗ ≤ d ≤ 2i
∗+1 − 1. The probability that x is covered exactly once by S ′′ is

(d/2i
∗
)(1 − 1/2i

∗
)d−1. (There is a factor of d for the choice of which set covers

x, a 1/2i
∗

probability that this set is kept, and a 1−1/2i
∗

probability that each of the
d− 1 other sets is discarded.) By our bounds on d, the probability that x is covered
exactly once by S ′′ is at least (1 − 1/2i

∗
)2

i∗+1 ≥ 1/e2.
The expected total profit of elements covered exactly once by S ′′ is at least∑

{px/e2 | x in group i∗}, which is 1/e2 times the total profit of elements in group
i∗, which we argued is at least (1 − 1/e) OPT / lg ρ. Therefore the expected profit of
our randomized solution is at least (1/e2 − 1/e3) OPT / lg ρ = Ω(OPT / log ρ).

We can derandomize this algorithm by the standard method of conditional ex-
pectation [44]. For each set in S ′, we decide whether to keep it in S ′′ by trying
both options, and choosing the option that maximizes the conditional expectation
of the total profit of elements in group i∗ uniquely covered by S ′′. The conditional
expectations can be computed easily in polynomial time according to the analysis
above.

The approximate solution computed by this algorithm is not only within an
Ω(1/ logm) factor of the optimal unique coverage, but also within an Ω(1/ logm)
of the optimal maximum coverage. As a consequence, we also obtain an Ω(1/ logm)-
approximation for the more general problem of budgeted low-coverage described in
section 2.1.

4.2. Approximation with bounded set size. In this section we consider the
unique coverage problem with a bound B on the maximum set size, or more gener-
ally, the budgeted unique coverage problem with a bound B on the ratio between
the maximum profit of a set and the minimum profit of an element (recall that the
profit of a set is the sum of profits of its elements). In both cases we obtain an
approximation ratio of Ω(1/ logB). In particular, B ≤ n, so this algorithm is an
Ω(1/ log n)-approximation.
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Theorem 4.2. There is an Ω(1/ logB)-approximation algorithm for instances of
the budgeted unique coverage problem in which the minimum element profit is 1 and
the total profit of every set is at most B.

Proof. As before, we first find an (1 − 1/e)-approximate solution S ′ to the max-
imum coverage problem with the same universe, profits, sets, costs, and budget [34].
As argued in the proof of Theorem 4.1, p(

⋃
S ′) ≥ (1 − 1/e) OPT, where p(S) de-

notes the total profit of elements in set S,
⋃
S ′ denotes the union

⋃
S∈S′ S, and OPT

denotes the optimum solution value to the unique coverage problem.
We modify S ′ to be minimal by removing any sets that do not uniquely cover

any elements. Thus the set of covered elements remains the same, so the same upper
bound on OPT holds. Let X be the set of elements covered by exactly one set of S ′.
Because S ′ is minimal, each set must uniquely cover at least one element in X, so
|X| ≥ |S ′|. Because every element has profit at least 1, p(X) ≥ |X| ≥ |S ′|.

If p(
⋃
S ′) ≤ 2|S ′| ≤ 2p(X), then S ′ is already an Ω(1)-approximate solution to the

budgeted unique coverage problem. If p(
⋃
S ′) > 2|S ′|, then we claim that the total

profit of elements covered at most B times by S ′ is at least p(
⋃
S ′)/2. Otherwise,

the elements covered more than B times by S ′ would be at least p(
⋃
S ′)/2, and

thus the total profit of the sets would satisfy
∑

S∈S′ p(S) > Bp(
⋃
S ′)/2 > B|S ′|,

contradicting that every set in S (and thus S ′) has total profit at most B. Now we
apply Theorem 4.1 above to the elements covered at most B times by S ′, for which
ρ ≤ B. Thus we obtain an Ω(1/ logB)-approximation for this subproblem, whose
optimal solution value is at least (1 − 1/e) OPT /2.

We note that, when every set has cardinality at most B = 3 and every element
appears in exactly two sets (ρ = 1), the unique coverage problem is APX-hard even
in this restricted case [46, 2].

Appendix. Randomized rounding for envy-free pricing. In this section we
prove the necessary lemma about randomized rounding needed in section 2.2 for the
reduction from unique coverage to unlimited-supply single-minded envy-free pricing.

Lemma A.1. In the setting of single-minded envy-free pricing, suppose all valu-
ations are 1. Then there is a price assignment that uses prices of just 0 and 1 and
whose profit is within a constant factor of optimal.

Proof. Consider the optimal assignment of prices pi to items Ii. If any price
pi is larger than 1, we set it to 1 at no cost. Now we round by setting the new
price p′i of item Ii to 1 with probability 1

2pi and to 0 otherwise. We claim that if
ui =

∑
Ij∈Bi

pj < 1 (i.e., the optimal solution profits ui from buyer bi), then the

probability that the seller profits 1 from buyer bi is at least 1
2eui.

The probability that the seller profits 1 from buyer bi, who desires bundle Bi,
is

∑
Ij∈Bi

1
2pj

∏
Ij �=Ik∈Bi

(1 − 1
2pk). This quantity can be rewritten as

∏
Ik∈Bi

(1 −
1
2pk)

∑
Ij∈Bi

1
2pj/(1 − 1

2pj). Because
∑

Ij∈Bi
pj ≤ 1

2 , it is easy to show that the
quantity is minimized when all of the pj ’s, Ij ∈ Bi, are equal. Thus the probability
of profit from bi is at least (1− 1

2ui/|Bi|)|Bi| 1
2ui/(1− 1

2ui|Bi|). Because 1− x ≥ e−2x

for 0 ≤ x ≤ 1
2 , this probability is at least e−ui 1

2ui ≥ e−1 1
2ui, as claimed.

Thus the expected total profit in the modified solution is at least
∑

i
1
2eui/e,

which is 1
2e times the profit of the optimal solution. We can derandomize this al-

gorithm by the standard method of conditional expectation [44]; see the proof of
Theorem 4.1.
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[4] C. Ambühl, A. E. F. Clementi, M. D. Ianni, N. Lev-Tov, A. Monti, D. Peleg, G. Rossi,

and R. Silvestri, Efficient algorithms for low-energy bounded-hop broadcast in ad-hoc
wireless networks, in Proceedings of the 21st Annual Symposium on Theoretical Aspects
of Computer Science, Lecture Notes in Comput. Sci. 2996, Springer-Verlag, Berlin, 2004,
pp. 418–427.

[5] M. Andrews, J. Chuzhoy, S. Khanna, and L. Zhang, Hardness of the undirected edge-
disjoint paths problem with congestion, in Proceedings of the 46th Annual IEEE Symposium
on Foundations of Computer Science, 2005, pp. 226–244.

[6] M. Andrews and L. Zhang, Hardness of the undirected edge-disjoint paths problem, in Pro-
ceedings of the 37th Annual ACM Symposium on Theory of Computing, 2005, pp. 276–283.

[7] A. Archer, C. Papadimitriou, K. Talwar, and É. Tardos, An approximate truthful mech-
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Abstract. In this paper, we propose the first fully polynomial-time randomized approximation
scheme (FPRAS) for closed Jackson networks with single servers. Our algorithm is based on the
Markov chain Monte Carlo (MCMC) method, and our scheme returns an approximate solution,
for which the size of error satisfies a given error rate. We propose two Markov chains: one is for
approximate sampling, and the other is for perfect sampling based on the monotone coupling from
the past algorithm.
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1. Introduction. In this paper, we propose the first fully polynomial-time ran-
domized approximation scheme for basic queueing networks, called closed Jackson
networks with single servers. Our scheme is based on the Markov chain Monte Carlo
(MCMC) method and returns an approximate value of the normalizing constant of
the steady-state distribution of the numbers of customers at nodes. The complexity
of our algorithm is bounded by a polynomial of n and the logarithm of K where n
is the number of nodes and K is the number of customers in a network. Thus our
scheme is a polynomial-time approximation scheme. We propose two Markov chains,
both of which are rapidly mixing. One is for approximate sampling, while the other
is for perfect sampling based on the coupling from the past (CFTP) algorithm.

The Jackson network, proposed by Jackson in 1957 [13], is one of the basic models
in queueing network theory and is of considerable importance. The Jackson network
consists of a set of nodes, each of which has one or more servers. In the network,
customers receive a service from a server at a node according to an exponentially
distributed service time, move stochastically to a next node after the service, and
wait their turn in a line on a first-come-first-served (FCFS) basis. It is well known
that the steady-state distribution of customers in a Jackson network is a product
form [13, 11, 10].

We say a network is closed if no customers leave or enter the network. By comput-
ing the normalizing constant of the product form solution of a given closed queueing
network, we can evaluate useful parameters such as network throughput and rates of
utilization of stations [10]. Buzen’s algorithm [5], which computes the normalizing
constant of closed queueing networks, is well known. However, Buzen’s algorithm
runs in pseudopolynomial time that depends on K, the number of customers in a
closed network, and not on the logarithm of K. To deal with networks where the
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number of customers as well as the server capacities are very large, we need a weakly
polynomial-time (approximation) algorithm.

The MCMC method is practical for computing the normalizing constant of a
distribution. Chen and O’Cinneide [6] proposed a randomized algorithm based on
MCMC, but their algorithm runs in weakly polynomial time only in some very special
cases. Ozawa [23] proposed a perfect sampler for closed Jackson networks with single
servers, and his chain mixes in pseudopolynomial time.

When we construct a randomized approximation algorithm based on MCMC, we
need to consider the accuracy of the obtained value. For any given ε and δ with 0 < ε,
δ < 1, a fully polynomial-time randomized approximation scheme (FPRAS) provides
an algorithm which finds an approximate solution Z satisfying

Pr[|Z −A| ≤ εA] ≥ 1 − δ

where A is the exact solution, and whose running time is bounded by a polynomial
of the input size of the instance (the number of nodes n and logarithm of the number
of customers K), ε−1, and ln(δ−1) [15].

In many practical situations, each node of a network has a single server. In
this paper, we are concerned with a closed Jackson network with single servers. We
propose an FPRAS based on MCMC for calculating the normalizing constant. We
make use of a Markov chain which has the product form solution of a given closed
Jackson network as a unique stationary distribution and show that the chain mixes in
O(n2 lnK), where n is the number of nodes and K is the number of customers in the
closed Jackson network. Here we note that the chain is not a simulation of customers’
movements in a queueing network, but just has a unique stationary distribution which
is the same as the product form solution for the given network.

We also propose a second Markov chain and show that this chain is monotone and
rapidly O(n3 lnK) mixing. An ordinary sampling via Markov chain is an approximate
sampler, whereas Propp and Wilson [24] devised the monotone CFTP algorithm which
realizes a perfect (exact) sampling from stationary distribution in probabilistically
finite time by ingeniously simulating the chain (see also [12, 18, 21]). Our chain
provides an efficient perfect sampler based on monotone CFTP. One of the great
advantages of utilizing perfect sampling is that we need not be concerned with the
error rate ε. Another is that a perfect sampler becomes faster than any approximate
sampler based on a Markov chain when we need a sample which accurately follows a
particular distribution.

2. Closed Jackson networks. We denote the set of real numbers (nonnegative,
positive real numbers) by R (R+, R++), and the set of integers (nonnegative, positive
integers) by Z (Z+, Z++), respectively. A closed Jackson network with single servers
is a queueing network model satisfying the following:

(i) The network has n ∈ Z++ nodes. Each node contains exactly one server;
thus at most one customer can receive a service on a node at a time.

(ii) In each node, customers are served one by one on an FCFS basis. The
servicing time on node i ∈ {1, . . . , n} is exponentially distributed with mean
1/μi ∈ R++.

(iii) Once served in node i ∈ {1, . . . , n}, a customer goes to node j ∈ {1, . . . , n}
with probability Wij ∈ R+. We assume that the matrix W = (Wij) of
transition probabilities of customers is irreducible and aperiodic, and thus
ergodic.
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(iv) No customers leave or enter the network. Thus, there are always K ∈ Z++

customers in the network.
In queueing network theory, it is well known that a closed Jackson network has

a product form solution as a steady-state distribution of customers in a network. Let
us consider the set of nonnegative integer points

Ξ(K)
def.
=

{
x = (x1, x2, . . . , xn) ∈ Zn

+

∣∣∣∣∣
n∑

i=1

xi = K

}

contained in an n−1-dimensional simplex. Clearly, a state of customers in the network
with K customers is represented by x = (x1, x2, . . . , xn) ∈ Ξ(K). We abbreviate Ξ(K)
to Ξ when doing so causes no confusion. Since matrix W of the transition probabilities
of customers is ergodic, 1 is an eigenvalue and its corresponding eigenvector is unique,
excluding a constant factor. Let θ ∈ Rn

++ be an eigenvector for W corresponding to
the eigenvalue 1, i.e., θW = θ. The steady-state distribution J : Ξ → R++ for the
closed Jackson network is a product form defined by

J(x) =
1

G(K)

n∏
i=1

αxi
i

(
≡ 1

G(K)

n∏
i=1

(
θi
μi

)xi
)
,(2.1)

where αi
def.
= θi/μi and G(K)

def.
=

∑
x∈Ξ(K)

∏n
i=1 α

xi
i is the normalizing constant [13].

3. Randomized approximation scheme. In the following we consider a closed
Jackson network with n nodes, K customers, and parameters α1, α2, . . . , αn ∈ Z++

which has the product form solution (2.1) for any x ∈ Ξ(K).

3.1. Rapidly mixing Markov chain. Now we propose a new Markov chain
MA(K) with state space Ξ(K). A transition of MA(K) from a current state X ∈
Ξ(K) to a next state X ′ is defined as follows. First, we choose a pair of distinct
indices (nodes) {j1, j2} ⊆ {1, . . . , n} uniformly at random. Next, put k = Xj1 + Xj2 ,
and choose l ∈ {0, 1, . . . , k} with probability

αl
j1
αk−l
j2∑k

s=0 α
s
j1
αk−s
j2

(
=

αl
j1
αk−l
j2

∏
j �∈{j1,j2} α

Xj

j∑k
s=0 α

s
j1
αk−s
j2

∏
j �∈{j1,j2} α

Xj

j

)
(3.1)

and set

X ′
i =

⎧⎨
⎩

l (for i = j1),
k − l (for i = j2),
Xi (otherwise).

The Markov chain MA(K) is irreducible and aperiodic, so ergodic, and hence has a
unique stationary distribution. Also, MA(K) satisfies the detailed balance equation,
and thus the stationary distribution is the product form solution J(x).

Given a pair of probability distributions ν1 and ν2 on a finite state space Ω, the to-
tal variation distance between ν1 and ν2 is defined by dTV(ν1, ν2)

def.
= 1

2

∑
x∈Ω |ν1(x)−

ν2(x)|. The mixing time of an ergodic Markov chain is defined by

τ(ε)
def.
= max

x∈Ξ
{min{t | ∀s ≥ t, dTV(π, P s

x) ≤ ε}} (0 < ∀ε < 1),

where π is the stationary distribution and P s
x is the probability distribution of the

chain at time period s ≥ 0 with initial state x at time period 0. In the following, we
discuss the mixing time of MA(K).
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0 α0
iα

k
j /A α1

iα
k−1
j /A · · · αk

i α
0
j/A 1

0 α0
iα

k+1
j /A′ α1

iα
k
j /A

′ α2
iα

k−1
j /A′ · · · αk+1

i α0
j/A

′ 1

Fig. 3.1. Alternating inequalities for a pair of indices (i, j) and a nonnegative integer k. In

the figure, A
def.
=

∑k
s=0 α

s
iα

k−s
j and A′ def.

=
∑k+1

s=0 αs
iα

k+1−s
j are normalizing constants.

Here, we consider the cumulative distribution function gkij : {0, 1, . . . , k} → R+ of
the transition probability (3.1) after a pair of indices is chosen, defined by

gkij(l)
def.
=

∑l
s=0 α

s
iα

k−s
j

Ak
ij

=

⎧⎪⎨
⎪⎩

αl+1
i −αl+1

j

αk+1
i −αk+1

j

· αk−l
j (αi 	= αj),

l
k+1 (αi = αj)

for l ∈ {0, 1, . . . , k}, where Ak
ij

def.
=

∑k
s=0 α

s
iα

k−s
j is a normalizing constant. We also

define gkij(−1)
def.
= 0 for convenience. We can simulate the Markov chain MA(K) effi-

ciently by using the function gkij as follows. First, choose a pair {i, j} of indices with
the probability 2/(n(n − 1)). Next, put k = Xi + Xj , generate a uniformly random
real number Λ ∈ [0, 1), choose a unique integer l satisfying gkij(l − 1) ≤ Λ < gkij(l),
and set X ′

i = l and X ′
j = k− l, keeping the value of the other indices. We can execute

a transition of MA efficiently by employing an ordinary binary search technique.
The following lemma gives a property of functions gkij , which plays a key role in

this paper.
Lemma 3.1. The function gkij satisfies the following “alternating inequalities”:

gk+1
ij (l) ≤ gkij(l) ≤ gk+1

ij (l + 1) ∀k ∈ {1, . . . ,K}, ∀l ∈ {1, . . . , k}.(3.2)

Figure 3.1 is an illustration of inequalities (3.2) for a fixed k.
Proof. First, we prove the former inequality gk+1

ij (l) ≤ gkij(l) as follows:

gkij(l)

gk+1
ij (l)

=

∑l
s=0 α

s
iα

k−s
j

Ak
ij

·
Ak+1

ij∑l
s=0 α

s
iα

k+1−s
j

=
Ak+1

ij

αjAk
ij

=

∑k+1
s=0 α

s
iα

k+1−s
j

αj

∑k
s=0 α

s
iα

k−s
j

=

∑k+1
s=0 α

s
iα

k+1−s
j∑k

s=0 α
s
iα

k+1−s
j

≥ 1.

Next, we prove the latter inequality gkij(l) ≤ gk+1
ij (l + 1) as follows (see, the appendix

for details):

gk+1
ij (l + 1)

gkij(l)
=

(∑k
s=0 α

s
iα

k−s
j

)(∑l
s=0 α

s
iα

k+1−s
j + αl+1

i αk−l
j

)
(∑k

s=0 α
s
iα

k+1−s
j + αk+1

i

)(∑l
s=0 α

s
iα

k−s
j

)

=

(
αl+1
i αk−l

j

)−1
αj

(∑k
s=0 α

s
iα

k−s
j

)(∑l
s=0 α

s
iα

k−s
j

)
+

∑k
s=0 α

s
iα

k−s
j(

αl+1
i αk−l

j

)−1
αj

(∑k
s=0 α

s
iα

k−s
j

)(∑l
s=0 α

s
iα

k−s
j

)
+

∑k
s=k−l α

s
iα

k−s
j

≥ 1.

Thus we obtain the claim.
The above alternating inequalities imply the following.
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Theorem 3.2. For 0 < ∀ε < 1, the mixing time τ(ε) of Markov chain MA(K)
satisfies

τ(ε) ≤ n(n− 1)

2
ln(Kε−1).

Proof. Let G = (Ξ, E) be an undirected simple graph with vertex set Ξ and
edge set E defined as follows. A pair of vertices {x,y} is an edge of G if and only if
(1/2)

∑n
i=1 |xi−yi| = 1. Clearly the graph G is connected. We define the length lA(e)

of every edge e ∈ E by lA(e)
def.
= 1. For each pair (x,y) ∈ Ξ2, we define the distance

dA(x,y) by the length of the shortest path between x and y on G with respect to lA.
Clearly, the diameter of G, defined by maxx,y∈Ξ{dA(x,y)}, is bounded by K.

We define a joint process (X,Y ) 
→ (X ′, Y ′) for any pair {X,Y } ∈ E as follows.
Pick a distinct pair of indices {i1, i2} uniformly at random. Then set kX = Xi1 +Xi2

and kY = Yi1 + Yi2 , generate a uniform random number Λ ∈ [0, 1), choose lX and
lY satisfying gkX

i1i2
(lX − 1) ≤ Λ < gkX

i1i2
(lX) and gkY

i1i2
(lY − 1) ≤ Λ < gkY

i1i2
(lY ), and set

X ′
i1

= lX , X ′
i2

= kX − lX , Y ′
i1

= lY , and Y ′
i2

= kY − lY . Now we show that

∀{X,Y } ∈ E , E[dA(Y ′, Y ′)] ≤ β · dA(X,Y ), where β = 1 − 2

n(n− 1)
.

Since {X,Y } ∈ E , there exists a distinct pair of indices {j1, j2} satisfying |Xj−Yj | = 1
for j ∈ {j1, j2}, and |Xj − Yj | = 0 for j 	∈ {j1, j2}. We will consider the following
three cases.

Case 1. When neither index j1 nor j2 is chosen, i.e., {i1, i2} ∩ {j1, j2} = ∅, we
put k = Xi1 + Xi2 , and it is easy to see that Pr(X ′

i1
= l) = Pr(Y ′

i1
= l) for any

l ∈ {0, . . . , k} since Yi1 + Yi2 = k. Thus X ′
i1

= Y ′
i1

and X ′
i2

= Y ′
i2

hold. Hence
dA(X ′, Y ′) = dA(X,Y ).

Case 2. When both indices j1 and j2 are chosen, i.e., {i1, i2} = {j1, j2}, in the
same way as Case 1, both X ′

i1
= Y ′

i1
and X ′

i2
= Y ′

i2
hold. Hence dA(X ′, Y ′) = 0.

Case 3. When exactly one of j1 and j2 is chosen, i.e., |{i1, i2} ∩ {j1, j2}| = 1,
without loss of generality, we can assume that i1 = j1 and that Xi1 = Yi1 + 1. Let
k + 1 = Xi1 + Xi2 . Then Yi1 + Yi2 = k obviously. We parameterize the transition
of Markov chain MA(K) with a uniformly random number Λ ∈ [0, 1) by using the
functions gk+1

i1i2
and gki1i2 . Set Xi1 = l1 such that gk+1

i1i2
(l1 − 1) ≤ Λ < gk+1

i1i2
(l1) and

Yi1 = l2 such that gki1i2(l2 − 1) ≤ Λ < gki1i2(l2) for the common random number Λ.
From Lemma 3.1, the alternating inequalities hold, and thus we can see that l1 = l2
or l1 = l2 + 1. In either case, we can set [X ′

i1
= Y ′

i1
+ 1 and X ′

i2
= Y ′

i2
] or [X ′

i1
= Y ′

i1
and X ′

i2
= Y ′

i2
+ 1]. Hence dA(X ′, Y ′) = dA(X,Y ).

Considering that Case 2 occurs with probability 2/(n(n− 1)), we obtain that

E[dA(X ′, Y ′)] ≤
(

1 − 2

n(n− 1)

)
dA(X,Y ).

Since the diameter of G is bounded by K, the path coupling theorem (see Theorem 3.3
described below) implies that the mixing time τ(ε) of MA(K) satisfies

τ(ε) ≤ n(n− 1)

2
ln(Kε−1).

The path coupling theorem proposed by Bubley and Dyer [4] is a useful technique
for bounding the mixing time (see also [1, 3, 7, 22]).
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Theorem 3.3 (path coupling theorem [4]). Let M be a finite ergodic Markov
chain with state space Ω. Let H = (Ω,F) be a connected undirected graph with vertex
set Ω and edge set F ⊆

(
Ω
2

)
. Let l : F → R++ be a positive length defined on the

edge set. For any pair of vertices {x, y} of H, the distance between x and y, denoted
by d(x, y) and/or d(y, x), is the length of a shortest path between x and y, where the
length of a path is the sum of the lengths of edges in the path. Suppose that there exists
a joint process (X,Y ) 
→ (X ′, Y ′) with respect to M whose marginals are a faithful
copy of M and satisfying

0 < ∃β < 1, ∀{X,Y } ∈ F , E[d(X ′, Y ′)] ≤ βd(X,Y ).

Then the mixing time τ(ε) of the Markov chain M satisfies τ(ε) ≤ (1−β)−1 ln(ε−1D/d),
where d

def.
= min{d(x, y) | ∀x,∀y ∈ Ω, x 	= y} and D

def.
= max{d(x, y) | ∀x,∀y ∈ Ω}.

The above theorem differs from the original theorem in [4] in that the integrality
of the edge lengths is not assumed. We dropped the integrality and introduced the
minimum distance d. Theorem 3.3 can be proved by slightly modifying the original
proof.

3.2. Monte Carlo integration. In this section, we give an FPRAS for calcu-
lating the normalizing constant G(K) of product form solution for a closed Jackson
network. Our approximation scheme is a standard Jerrum–Sinclair-type recursive
algorithm [16, 15] but we need to exercise caution at some points.

Here we suppose that K ≥ 1. We arrange the indices (nodes in the network)
satisfying the following condition.

Condition 1. α1 = maxi αi.
We define a set Ξ′(K) ⊂ Ξ(K) by Ξ′(K)

def.
=

{
x ∈ Ξ(K) | x1 ≥

⌈
K
n

⌉}
and G′(K)

def.
=∑

x∈Ξ′(K)

∏n
i=1 α

xi
i . It is not difficult to see that Condition 1 implies G′(K)/G(K) ≥

1/n.
Considering that αi (∀i ∈ {1, 2, . . . , n}) is independent of K, it is easy to see that

G′(K) =
∑

x∈Ξ′(K)

(
α
�K/n�
1 ·

(
n∏

i=2

αxi
i

)
· αx1−�K/n�

1

)

=
∑

x∈Ξ(K−�K/n�)

(
α
�K/n�
1 ·

(
n∏

i=2

αxi
i

)
· αx1

1

)

= α
�K/n�
1 ·G(K − �K/n�).

Thus, we can compute G(K) by

G(K) =
G(K)

G′(K)
· α�K/n�

1 ·G(K − �K/n�)

if we know the value of G(K)/G′(K) and G(K − �K/n�). By applying the above
equation recursively, G(0) = 1 implies that

G(K) = G(0)

R∏
j=1

G(Kj−1)

G(Kj)
=

R∏
j=1

(
α
Kj−1−Kj

1 · G(Kj−1)

G′(Kj−1)

)
= αK

1

R−1∏
j=0

G(Kj)

G′(Kj)
,

where we define K0
def.
= K, and Kj

def.
= Kj−1−

⌈Kj−1

n

⌉
for j = 1, 2, . . . , R while Kj ≥ 0,

and let R ∈ Z++ be the minimum index satisfying KR = 0.
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Lemma 3.4. The number of recursions R satisfies that R ≤ n lnK + 1 for any
K ∈ Z++.

We give a proof of Lemma 3.4 in the appendix. Since we already have an approxi-
mate sampler via the Markov chain MA(K), we only need to estimate G(Kj)/G

′(Kj)
for j ∈ {0, 1, . . . , R−1} by the Monte Carlo method. The whole algorithm is as follows.

Algorithm 1 (randomize approximation scheme with approximate sampler).

Step 1. Set j = 1, K ′ = K.
While K ′ ≥ 1,
do→
Generate QA samples, each of which is obtained by simulating MA(K ′)
for TA(K ′) steps.
Let Uj be the number of samples x which satisfy x1 ≥ K ′/n.
Set Zj := (Uj + 1)/(QA + 1).

Set K ′ := K ′ −
⌈
K′

n

⌉
and set j := j + 1.

←od
Step 2. Set Z := αK

1

∏
j(1/Zj). Output Z.

Our algorithm generates QA samples by simulating MA(Kj) for TA(Kj) steps for

each sample. By setting QA = 144nR2ε−2 ln(2R/δ) and TA(K ′) =
⌈n(n−1)

2 ln 6nRK′

ε

⌉
,

we obtain the following theorem.

Theorem 3.5. If we set QA =144nR2ε−2ln(2R/δ) and TA(K ′)=
⌈n(n−1)

2 ln6nRK′

ε

⌉
,

then our randomized approximation scheme (Algorithm 1) returns Z satisfying

Pr [|Z −G(K)| ≤ εG(K)] ≥ 1 − δ.

In our proof of the above theorem, we need the following modified Chernoff
bound [17].

Lemma 3.6. Let Xi (1 ≤ i ≤ M) be independently and identically distributed
(i.i.d.) random variables such that Xi = 1 with probability p, and Xi = 0 with prob-

ability 1 − p. Let U =
∑M

i=1 Xi and 0 < λ < 1. If M ≥ (4 + 2
√

3)/pλ, then the
inequality

Pr

[∣∣∣∣ U + 1

M + 1
− p

∣∣∣∣ ≥ λp

]
≤ 2e−

1
4λ

2Mp

holds.
Also we can estimate the error of bias.
Theorem 3.7. If we set QA =144nR2ε−2ln(2R/δ) and TA(K ′)=�n(n−1)

2 ln6nRK′

ε �,
then the bias of the expectation of the obtained approximate solution is bounded as fol-
lows:

|E[Z] −G(K)|
G(K)

≤ ε

4
+ Re−120R2ε−2 ln(2R/δ) ≤

(
1

4
+

1

1036

)
ε.

Proofs of the above results are given in the appendix.

4. Perfect sampler.

4.1. Monotone coupling from the past. Here we briefly review CFTP [24].
Suppose that we have an ergodic Markov chain M with a finite state space Ω and
a transition matrix P . The transition rule of the Markov chain X 
→ X ′ can be
described by a deterministic function φ : Ω× [0, 1) → Ω, called an update function, as
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follows. Given a random number Λ uniformly distributed over [0, 1), update function
φ satisfies that Pr(φ(x,Λ) = y) = P (x, y) for any x, y ∈ Ω. We can realize the
Markov chain by setting X ′ = φ(X,Λ). Clearly, update functions corresponding
to the given transition matrix P are not unique. The result of transitions of the
chain from the time t1 to t2 (t1 < t2) with a sequence of random numbers λ =
(λ[t1], λ[t1+1], . . . , λ[t2−1]) ∈ [0, 1)t2−t1 is denoted by Φt2

t1(x,λ) : Ω× [0, 1)t2−t1 → Ω,

where Φt2
t1(x,λ)

def.
= φ(φ(· · ·φ(x, λ[t1]), . . . , λ[t2−2]), λ[t2−1]). We say that a sequence

λ ∈ [0, 1)|T | satisfies the coalescence condition, when ∃y ∈ Ω, ∀x ∈ Ω, y = Φ0
T (x,λ).

Suppose that there exists a partial order “�” on the set of states Ω. A transition
rule expressed by a deterministic update function φ is called monotone (with respect
to “�”) if ∀λ ∈ [0, 1), ∀x,∀y ∈ Ω, x � y ⇒ φ(x, λ) � φ(y, λ). We also say that a
chain is monotone if the chain has a monotone update function. Here we suppose
that there exists a unique pair of states (xmax, xmin) in a partially ordered set (Ω,�),
satisfying xmax � x � xmin ∀x ∈ Ω.

With these preparations, a standard monotone CFTP algorithm is expressed as
follows.

Algorithm 2 (monotone CFTP algorithm [24]).

Step 1. Set the starting time period T := −1 to go back, and set λ to be the empty
sequence.

Step 2. Generate random real numbers λ[T ], λ[T + 1], . . . , λ[�T/2� − 1] ∈ [0, 1), and
insert them to the head of λ in order, i.e., put λ := (λ[T ], λ[T + 1], . . . , λ[−1]).

Step 3. Start two chains from xmax and xmin, respectively, at time period T , and
run each chain to time period 0 according to the update function φ with the sequence
of numbers in λ. (Here we note that every chain uses the common sequence λ.)

Step 4. [Coalescence check. ] The state obtained at time period 0 is denoted by
Φ0

T (x,λ).
(a) If ∃y ∈ Ω, y = Φ0

T (xmax,λ) = Φ0
T (xmin,λ), then return y.

(b) Else, update the starting time period T := 2T , and go to Step 2.

Theorem 4.1 (monotone CFTP theorem [24]). Suppose that a Markov chain
defined by an update function φ is monotone with respect to a partially ordered set of
states (Ω,�), and ∃xmax,∃xmin ∈ Ω, ∀x ∈ Ω, xmax � x � xmin. Then the monotone
CFTP algorithm (Algorithm 2) terminates with probability 1, and the obtained value
is a realization of a random variable exactly distributed according to the stationary
distribution.

Theorem 4.1 says that Algorithm 2 is a (probabilistically) finite time algorithm
for infinite time simulation.

4.2. Monotone Markov chain. In this section we propose a new Markov chain
MP for a given Jackson network. The transition rule of MP is defined by the following
update function φ : Ξ × [1, n) → Ξ. For a current state X ∈ Ξ, the next state
X ′ = φ(X,λ) ∈ Ξ with respect to a random number λ ∈ [1, n) is defined by

X ′
i =

⎧⎨
⎩

l (for i = �λ�),
k − l (for i = �λ� + 1),
Xi (otherwise),

where k = X	λ
 + X	λ
+1 and l ∈ {0, 1, . . . , k} satisfies

gk	λ
(	λ
+1)(l − 1) ≤ λ− �λ� < gk	λ
(	λ
+1)(l).
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Our chain MP is a modification of MA, obtained by restricting ourselves to choosing
only a consecutive pair of indices. Clearly, MP is ergodic. The chain has a unique
stationary distribution J(x) defined in section 2.

In the following, we show the monotonicity of MP. Here we introduce a par-
tial order “�” on Ξ. For any state x ∈ Ξ, we define cumulative sum vector cx =
(cx(0), cx(1), . . . , cx(n)) ∈ Zn+1

+ by

cx(i)
def.
=

{
0 (for i = 0),∑i

j=1 xj (for i ∈ {1, 2, . . . , n}).

For any pair of states x,y ∈ Ξ, we say x � y if and only if cx ≥ cy. Next, we define two
special states xmax, xmin ∈ Ξ(K) by xmax

def.
= (K, 0, . . . , 0) and xmin

def.
= (0, . . . , 0,K).

Then we can see easily that ∀x ∈ Ξ(K), xmax � x � xmin.

Theorem 4.2. Markov chain MP is monotone on the partially ordered set
(Ξ(K),�), i.e., ∀λ ∈ [1, n), ∀X, ∀Y ∈ Ξ(K), X � Y ⇒ φ(X,λ) � φ(Y, λ).

Outline of proof (a detailed proof appears in the appendix). We say that a state
X ∈ Ξ covers Y ∈ Ξ (at j), denoted by X ·� Y (or X ·�j Y ), when

Xi − Yi =

⎧⎨
⎩

+1 (for i = j),
−1 (for i = j + 1),
0 (otherwise).

We show that if a pair of states X,Y ∈ Ξ satisfies X · �j Y , then ∀λ ∈ [1, n),
φ(X,λ) � φ(Y, λ). We denote φ(X,λ) by X ′ and φ(Y, λ) by Y ′ for simplicity. For
any index i 	= �λ�, it is easy to see that cX(i) = cX′(i) and cY (i) = cY ′(i), and so
cX′(i) − cY ′(i) = cX(i) − cY (i) ≥ 0 since X � Y . We can show that cX′(�λ�) ≥
cY ′(�λ�) by considering the following three cases:

Case 1. [�λ� 	= j − 1 and �λ� 	= j + 1].

Case 2. [�λ� = j − 1].

Case 3. [�λ� = j + 1].

For any pair of states X,Y satisfying X � Y , it is easy to see that there exists a
sequence of states Z1, Z2, . . . , Zr with an appropriate length that satisfies X = Z1 ·�
Z2 ·� · · · ·� Zr = Y . Then, by applying the above property repeatedly, we obtain
φ(X,λ) = φ(Z1, λ) � φ(Z2, λ) � · · · � φ(Zr, λ) = φ(Y, λ).

Since MP is a monotone chain, we can design a perfect sampler based on mono-
tone CFTP. We could also employ Wilson’s read-once algorithm [25] and Fill’s inter-
ruptible algorithm [8, 9], each of which also gives a perfect sampler.

4.3. Expected running time. Here, we assume a condition which gives the
expected polynomial-time monotone CFTP algorithm.

Condition 2. Parameters are arranged in nonincreasing order, i.e., α1 ≥ α2 ≥
· · · ≥ αn.

Theorem 4.3. Under Condition 2, the expected running time of our perfect
sampler is bounded by O(n3 lnK), where n is the number of nodes and K is the
number of customers in a closed Jackson network.

We can show Theorem 4.3 by estimating the expectation of coalescence time
T∗ ∈ Z++ defined by T∗

def.
= min{t > 0 | ∃y ∈ Ξ, ∀x ∈ Ξ, y = Φ0

−t(x,Λ)}. Note that
T∗ is a random variable.
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Outline of proof. Let G = (Ξ, E) be the graph defined in the proof of Theorem 3.2
in section 3. For each edge e = {X,Y } ∈ E , there exists a unique pair of indices
j1, j2 ∈ {1, 2, . . . , n} called a supporting pair of e satisfying

|Xj − Yj | =

{
1 (for j ∈ {j1, j2}),
0 (otherwise).

We define the length of lP(e) of an edge e = {X,Y } ∈ E by lP(e)
def.
= (1/(n −

1))
∑j∗−1

i=1 (n − i), where j∗ = max{j1, j2} ≥ 2 and {j1, j2} is the supporting pair
of e. Note that 1 ≤ mine∈E lP(e) ≤ maxe∈E lP(e) ≤ n/2. For each pair X,Y ∈ Ξ, we
define the distance dP(X,Y ) to be the length of a shortest path between X and Y
on G. Clearly, the length between xmax and xmin is bounded by Kn. Here we denote
X ′ = φ(X,λ) and Y ′ = φ(Y,Λ) with the uniform real random number Λ ∈ [1, n);
then Condition 2 implies

E[dP(X ′, Y ′)] ≤
(

1 − 1

n(n− 1)2

)
dP(X,Y )

for any pair {X,Y } ∈ E , and we can prove the claim.
A detailed proof appears in the appendix.

5. Concluding remarks. We proposed FPRAS for closed Jackson networks
with single servers. Our scheme is based on MCMC, and we made use of two rapidly
mixing Markov chains. One is for approximate sampling, while the other is for perfect
sampling. Though we omit the details here, we can also construct an FPRAS using
the perfect sampler in the same way as we did with the approximate sampler. It is also
possible to show that it suffices to take 36nR2ε−2 ln(2R/δ) samples in each iteration.
In [19], we discussed a class of functions which satisfies alternating inequalities and
showed that this class contains all logarithmic separable concave functions.

We plan to extend our FPRAS to closed Jackson networks with multiple servers [20].
We also hope to extend it to closed BCMP networks [2].

Appendix. Proofs.
Lemma 3.1. The function gkij satisfies the following “alternating inequalities”:

gk+1
ij (l) ≤ gkij(l) ≤ gk+1

ij (l + 1) ∀k ∈ {1, . . . ,K}, ∀l ∈ {1, . . . , k}.

Proof. First, we prove the former inequality gk+1
ij (l) ≤ gkij(l) as follows:

gkij(l)

gk+1
ij (l)

=

∑l
s=0 α

s
iα

k−s
j

Ak
ij

Ak+1
ij∑l

s=0 α
s
iα

k+1−s
j

=
Ak+1

ij

αjAk
ij

=

∑k+1
s=0 α

s
iα

k+1−s
j

αj

∑k
s=0 α

s
iα

k−s
j

=

∑k+1
s=0 α

s
iα

k+1−s
j∑k

s=0 α
s
iα

k+1−s
j

≥ 1.

Next, we prove the latter inequality gkij(l) ≤ gk+1
ij (l + 1) as follows:

gk+1
ij (l + 1)

gkij(l)
=

Ak
ij

Ak+1
ij

∑l+1
s=0 α

s
iα

k+1−s
j∑l

s=0 α
s
iα

k−s
j

=

(∑k
s=0 α

s
iα

k−s
j

)(∑l+1
s=0 α

s
iα

k+1−s
j

)
(∑k+1

s=0 α
s
iα

k+1−s
j

)(∑l
s=0 α

s
iα

k−s
j

)
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=

(∑k
s=0 α

s
iα

k−s
j

)(∑l
s=0 α

s
iα

k+1−s
j + αl+1

i αk−l
j

)
(∑k

s=0 α
s
iα

k+1−s
j + αk+1

i

)(∑l
s=0 α

s
iα

k−s
j

)

=

(∑k
s=0 α

s
iα

k−s
j

)(
αj

∑l
s=0 α

s
iα

k−s
j

)
+ αl+1

i αk−l
j

(∑k
s=0 α

s
iα

k−s
j

)
(
αj

∑k
s=0 α

s
iα

k−s
j

)(∑l
s=0 α

s
iα

k−s
j

)
+ αk+1

i

(∑l
s=0 α

s
iα

k−s
j

)

=

(
αl+1
i αk−l

j

)−1
αj

(∑k
s=0 α

s
iα

k−s
j

)(∑l
s=0 α

s
iα

k−s
j

)
+

∑k
s=0 α

s
iα

k−s
j(

αl+1
i αk−l

j

)−1
αj

(∑k
s=0 α

s
iα

k−s
j

)(∑l
s=0 α

s
iα

k−s
j

)
+ αk−l

i αl−k
j

∑l
s=0 α

s
iα

k−s
j

=

(
αl+1
i αk−l

j

)−1
αj

(∑k
s=0 α

s
iα

k−s
j

)(∑l
s=0 α

s
iα

k−s
j

)
+

∑k
s=0 α

s
iα

k−s
j(

αl+1
i αk−l

j

)−1
αj

(∑k
s=0 α

s
iα

k−s
j

)(∑l
s=0 α

s
iα

k−s
j

)
+

∑k
s=k−l α

s
iα

k−s
j

≥ 1.

Thus we obtain the claim.
Lemma 3.4. The number of recursions R satisfies that R ≤ n lnK + 1 for any

K ∈ Z++.
Proof. If n = 1, then R = 1; hence we obtain the claim. If n ≥ 2 and K = 1, 2,

then R = 1, 2, respectively; hence we also obtain the claim. In the following, we
consider the case n ≥ 2 and K ≥ 3. We define R′ by

R′ def.
= min

{
r

∣∣∣∣ K
(
n− 1

n

)r

< 1

}
.

Then clearly R ≤ R′, since K ′ − �K ′/n� ≤ K ′(n − 1)/n for any K ′ ∈ Z++. Thus it
is enough to show that

K

(
n− 1

n

)n lnK

≤ 1.

Considering lnK > 0,

(
n− 1

n

)n lnK

=

((
1 − 1

n

)n)lnK

≤
(

1

e

)lnK

= 1/K.

Thus we obtain the claim.
Theorem 3.5. If we set QA = 144nR2ε−2 ln(2R/δ) and TA(K ′) =

⌈n(n−1)
2 ln 6nRK′

ε

⌉
,

then our randomized approximation scheme (Algorithm 1) returns Z satisfying

Pr [|Z −G(K)| ≤ εG(K)] ≥ 1 − δ.

Proof. In the following, we denote ωj
def.
= G′(Kj)/G(Kj) and ω̂j

def.
= E[Uj/QA] for

j ∈ {1, 2, . . . , R}, for simplicity.
(i) We show that 1 ≤ ∀j ≤ R, the inequality ω̂j ≥ 1/n − ε/(6nR) holds. By the

hypothesis of the theorem, |ωj − ω̂j | ≤ ε/(6nR). Since ωj ≥ 1/n, we can see that
ω̂j ≥ ωj − ε/(6nR) ≥ 1/n− ε/(6nR) for 1 ≤ j ≤ R.

(ii) We show that |ωj − ω̂j | ≤ εω̂j

6R−ε . By using the result of (i), we have

|ωj − ω̂j | ≤
ε

6nR
=

ε

6nR
· 1

ω̂j
· ω̂j ≤

ε

6nR
· ω̂j(

1
n − ε

6nR

) =
ε

6R− ε
· ω̂j .
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(iii) We show that Pr[|Zj−ω̂j | > (ε/(6R−ε))] ≤ δ/R. By employing the modified
Chernoff bound in Lemma 3.6, we have

Pr
[∣∣∣ U+1

M+1 − p
∣∣∣ ≥ λp

]
≤ 2e−

1
4λ

2Mp.

By substituting the parameters λ = ε/(6R− ε) and p = ω̂j ≥ 1/n− ε/(6nR), clearly
QA ≥ (4 + 2

√
3)/(pλ) holds. We put M = QA = 144nR2ε−2 ln(2R/δ) and U = Uj .

Then we obtain that Zj =
Uj+1
QA+1 satisfies

Pr

[
|Zj − ω̂j | >

ε

6R− ε
ω̂j

]
≤ 2e−( ε

6R−ε )
2 1

4 144nR2ε−2(ln 2R
δ )ω̂j

≤ 2e−( ε
6R−ε )

2
36nR2ε−2(ln 2R

δ )( 6R−ε
6nR ) ≤ 2e−( 6R

6R−ε )(ln
2R
δ ) ≤ 2e−(ln 2R

δ ) =
δ

R
.

(iv) We show that |(Z1 · · ·ZR)−1− (ω1 · · ·ωR)−1| ≤ ε(ω1 · · ·ωR)−1 with probabil-
ity higher than 1 − δ. By using the result of (ii), we obtain that

6R− 2ε

6R− ε
· ω̂j ≤ ωj ≤

6R

6R− ε
· ω̂j .(A.1)

From the result of (iii), we obtain that

6R− ε

6R
· Zj ≤ ω̂j ≤

6R− ε

6R− 2ε
· Zj ,(A.2)

with probability higher than 1−δ/R. By combining (A.1) and (A.2), and considering
Zj > 0, the pair of ωj and Zj satisfy that

6R− 2ε

6R
≤ ωj

Zj
≤ 6R

6R− 2ε
with probability higher than 1 − δ/R.

The above inequality holds for each 1 ≤ j ≤ R and each Zj follows i.i.d.; thus with
probability higher than 1 − δ, the inequalities

(
1 − ε

3R

)R

≤ ω1 · · ·ωR

Z1 · · ·ZR
≤

(
1

1 − ε
3R

)R

(A.3)

hold. The right-hand side of inequality (A.3) satisfies

(
1

1 − ε
3R

)R

=

(
1 +

ε

3R− ε

)R

≤
(

1 +
ε

3R− 1

)R

≤ e
R

3R−1 ε ≤ e
1
2 ε ≤ 1 + ε.

The left-hand side satisfies

(
1 − ε

3R

)R

=

(
1

1 − ε
3R

)−R

≥ 1

1 + ε
≥ 1 − ε.

Thus, inequality (A.3) is transformed into

1 − ε ≤ ω1 · · ·ωR

Z1 · · ·ZR
≤ 1 + ε

accordingly. Then we have the result that with probability higher than 1 − δ,

|(Z1 · · ·ZR)−1 − (ω1 · · ·ωR)−1| ≤ ε(ω1 · · ·ωR)−1.
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(v) Since αK
1 (ω1 · · ·ωR)−1 = G(K) and αK

1 (Z1 · · ·ZR)−1 = Z, we obtain the
desired result that

Pr [|Z −G(K)| ≤ εG(K)] ≥ 1 − δ.

Lemma 3.6. Let Xi (1 ≤ i ≤ M) be i.i.d. random variables such that Xi = 1 with

probability p, and Xi = 0 with probability 1 − p. Let U =
∑M

i=1 Xi and 0 < λ < 1. If

M ≥ (4 + 2
√

3)/pλ, then

1. Pr
[
p− U+1

M+1 ≥ λp
]
≤ e−

1
2λ

2Mp,

2. Pr
[
U+1
M+1 − p ≥ λp

]
≤ e−

1
4λ

2Mp, and

3. Pr
[∣∣ U+1

M+1 − p
∣∣ ≥ λp

]
≤ 2e−

1
4λ

2Mp

hold.
Proof. 1. If p− U+1

M+1 ≥ λp, then p− U
M ≥ λp. This implies that

Pr

[
p− U + 1

M + 1
≥ λp

]
≤ Pr

[
p− U

M
≥ λp

]
≤ e−

1
2λ

2Mp,

where the last inequality is obtained by a Chernoff bound.
2. By using a Chernoff bound, the condition M ≥ (4 + 2

√
3)/pλ implies that

Pr

[
U + 1

M + 1
− p ≥ λp

]
≤ Pr

[
U

M
+

1

M
− p ≥ λp

]
= Pr

[
U

M
− p ≥

(
λ− 1

Mp

)
p

]

≤ e−
1
3 (λ−

1
Mp )

2
Mp = e−

1
3 (1−

1
Mpλ )

2
λ2Mp ≤ e−

1
4λ

2Mp.

3. By using the result of 1 and 2, clearly we have

Pr

[∣∣∣∣ U + 1

M + 1
− p

∣∣∣∣ ≥ λp

]
= Pr

[
p− U + 1

M + 1
≥ λp

]
+ Pr

[
U + 1

M + 1
− p ≥ λp

]

≤ e−
1
2λ

2Mp + e−
1
4λ

2Mp ≤ 2e−
1
4λ

2Mp.

Theorem 3.7. If we set QA =144nR2ε−2ln(2R/δ) and TA(K ′)=�n(n−1)
2 ln(6nRT ′

ε )�,
then the bias of the expectation of the approximate solution Z obtained by Algorithm 1
is bounded as follows:

|E[Z] −G(K)|
G(K)

≤ ε

4
+ Re−120R2ε−2 ln(2R/δ) ≤

(
1

4
+

1

1036

)
ε.

Proof. Since Z1, . . . , ZR are independent, the equalities

E[Z] = αK
1 E

[
R∏
i=1

1

Zi

]
= αK

1

R∏
i=1

E

[
1

Zi

]

hold. Now, we have

E

[
1

Zi

]
=

QA∑
Ui=0

QA + 1

Ui + 1

(
QA

Ui

)
ω̂i

Ui(1 − ω̂i)
QA−Ui

=
1

ω̂i

QA∑
Ui=0

(
QA + 1

Ui + 1

)
ω̂i

Ui+1(1 − ω̂i)
QA−Ui

=
1

ω̂i

{
1 − (1 − ω̂i)

QA+1
}
.
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Let γi
def.
= (1 − ω̂i)

QA+1; then the equality

E[Z] = αK
1

R∏
i=1

1

ω̂i
(1 − γi)(A.4)

holds, where we note that 0 ≤ γi < 1. From (A.4), |G(K) − E[Z]| satisfies

|G(K) − E[Z]| =

∣∣∣∣∣αK
1

R∏
i=1

1
ωi

− αK
1

R∏
i=1

1
ω̂i

(1 − γi)

∣∣∣∣∣
= αK

1

∣∣∣∣∣
R∏
i=1

1

ωi
(1 − γi) +

(
R∏
i=1

1

ωi

){
1 −

R∏
i=1

(1 − γi)

}
−

R∏
i=1

1

ω̂i
(1 − γi)

∣∣∣∣∣
≤ αK

1

∣∣∣∣∣
R∏
i=1

1

ωi
−

R∏
i=1

1

ω̂i

∣∣∣∣∣
R∏
i=1

(1 − γi) + αK
1

(
R∏
i=1

1

ωi

){
1 −

R∏
i=1

(1 − γi)

}

≤ αK
1

(
R∏
i=1

1

ωi

)∣∣∣∣∣1 −
R∏
i=1

ωi

ω̂i

∣∣∣∣∣ + αK
1

(
R∏
i=1

1

ωi

){
1 −

R∏
i=1

(1 − γi)

}

= G(K)

∣∣∣∣∣1 −
R∏
i=1

ωi

ω̂i

∣∣∣∣∣ + G(K)

{
1 −

R∏
i=1

(1 − γi)

}
.

If 1 −
∏R

i=1(ωi/ω̂i) ≤ 0, we have that

∣∣∣∣∣1 −
R∏
i=1

ωi

ω̂i

∣∣∣∣∣ =

R∏
i=1

ωi

ω̂i
− 1 ≤

(
1 +

ε

6R− ε

)R

− 1 = 1 +

R∑
k=1

(
R

k

)(
ε

6R− ε

)k

− 1

≤
R∑

k=1

(
R

6R− ε

)k

εk ≤ ε

R∑
k=1

(
1

5

)k

≤ ε

∞∑
k=1

(
1

5

)k

≤ ε

4
,

since R ≥ 1 ≥ ε. Otherwise, 1 −
∏R

i=1(ωi/ω̂i) > 0 implies that

∣∣∣∣∣1 −
R∏
i=1

ωi

ω̂i

∣∣∣∣∣ = 1 −
R∏
i=1

ωi

ω̂i
≤ 1 −

(
1 − ε

6R− ε

)R

≤
(

1 +
ε

6R− ε

)R

− 1 ≤ ε

4
.

Thus

|G(K) − E[Z]| ≤ ε

4
G(K) + G(K)

{
1 −

R∏
i=1

(1 − γi)

}
.

Since 0 ≤ γi < 1 (∀i), it is easy to show that 1−
∏R

i=1(1−γi) ≤
∑R

i=1 γi by induction
on R. Accordingly, we have

1 −
R∏
i=1

(1 − γi) ≤
R∑
i=1

γi =

R∑
i=1

(1 − ω̂i)
QA+1 ≤ R

{
1 −

(
1

n
− ε

6nR

)}QA

= R

{
1 −

(
1 − ε

6R

n

)}QA

≤ R

(
1 − 5

6n

)QA

≤ R

(
1 − 5

6n

)144nR2ε−2 ln(2R/δ)

≤ R
(
e−1

) 5
6n 144nR2ε−2 ln(2R/δ)

= e−120R2ε−2 ln(2R/δ).
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Hence the bias is bounded as follows

|G(K) − E[Z]| ≤ ε

4
G(K) + Re−120R2ε−2 ln(2R/δ)G(K)

≤ G(K)
(ε

4
+ Re−120R2ε−2 ln(2R/δ)

)
.

Theorem 4.2. Markov chain MP is monotone on the partially ordered set
(Ξ(K),�), i.e., ∀λ ∈ [1, n), ∀X, ∀Y ∈ Ξ(K), X � Y ⇒ φ(X,λ) � φ(Y, λ).

Proof. We say that a state X ∈ Ξ covers Y ∈ Ξ (at j), denoted by X ·� Y (or
X ·�j Y ), when

Xi − Yi =

⎧⎨
⎩

+1 (for i = j),
−1 (for i = j + 1),
0 (otherwise).

We show that if a pair of states X,Y ∈ Ξ satisfies X · �j Y , then ∀λ ∈ [1, n),
φ(X,λ) � φ(Y, λ). We denote φ(X,λ) by X ′ and φ(Y, λ) by Y ′ for simplicity. For
any index i 	= �λ�, it is easy to see that cX(i) = cX′(i) and cY (i) = cY ′(i), and so
cX′(i) − cY ′(i) = cX(i) − cY (i) ≥ 0 since X � Y . In the following, we show that
cX′(�λ�) ≥ cY ′(�λ�).

Case 1. In the case that �λ� 	= j−1 and �λ� 	= j+1, if we put k = X	λ
+X	λ
+1,
then it is easy to see that Y	λ
 + Y	λ
+1 = k. Accordingly, X ′

	λ
 = Y ′
	λ
 = l, where l

satisfies

gk	λ
(	λ
+1)(l − 1) ≤ λ− �λ� < gk	λ
(	λ
+1)(l),

and hence cX′(�λ�) = cY ′(�λ�).
Case 2. Consider the case that �λ� = j − 1. Let k + 1 = Xj−1 + Xj . Then

Yj−1 + Yj = k, since X ·�j Y . From the definition of the cumulative sum vector,

cX′(�λ�) − cY ′(�λ�) = cX′(j − 1) − cY ′(j − 1)

= cX′(j − 2) + X ′
j−1 − cY ′(j − 2) − Y ′

j−1

= cX(j − 2) + X ′
j−1 − cY (j − 2) − Y ′

j−1

= X ′
j−1 − Y ′

j−1.

Thus, it is enough to show that X ′
j−1 ≥ Y ′

j−1. Now suppose that l ∈ {0, 1, . . . , k}
satisfies gk(j−1)j(l − 1) ≤ λ − �λ� < gk(j−1)j(l) for λ. Then gk+1

(j−1)j(l − 1) ≤ λ − �λ� <

gk+1
(j−1)j(l+1), since the alternating inequalities imply that gk+1

(j−1)j(l− 1) ≤ gk(j−1)j(l−
1) < gk+1

(j−1)j(l) ≤ gk+1
(j−1)j(l+1). Thus we have that if Y ′

j−1 = l, then X ′
j−1 = l or l+1.

In other words,
(

X ′
j−1

Y ′
j−1

)
∈

{(
0
0

)
,

(
1
0

)
,

(
1
1

)
,

(
2
1

)
, . . . ,

(
k
k

)
,

(
k + 1
k

)}

and X ′
j−1 ≥ Y ′

j−1 in all cases. Accordingly, we have that cX′(�λ�) ≥ cY ′(�λ�).
Case 3. Consider the case that �λ� = j + 1. We can show cX′(�λ�) ≥ cY ′(�λ�) in

a similar way to Case 2.
For any pair of states X,Y satisfying X � Y , it is easy to see that there exists

a sequence of states Z1, Z2, . . . , Zr with appropriate length satisfying X = Z1 · �
Z2 · � · · · · � Zr = Y . Then applying the above claim repeatedly, we obtain that
φ(X,λ) = φ(Z1, λ) � φ(Z2, λ) � · · · � φ(Zr, λ) = φ(Y, λ).
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Theorem 4.3. Under Condition 2, the expected running time of our perfect
sampler is bounded by O(n3 lnK), where n is the number of nodes and K is the
number of customers in a closed Jackson network.

To show the above theorem, we need the following three lemmas.

Lemma A.1. Under Condition 2, the mixing rate τ , defined by τ
def.
= τ(1/e), of

our Markov chain MP satisfies

τ ≤ n(n− 1)2(1 + lnKn).

Proof. Let G = (Ξ, E) be an undirected simple graph with vertex set Ξ and
edge set E defined as follows. A pair of vertices {X,Y } is an edge if and only if
(1/2)

∑n
i=1 |Xi − Yi| = 1. Clearly, the graph G is connected. For each edge e =

{X,Y } ∈ E , there exists a unique pair of indices j1, j2 ∈ {1, . . . , n}, called a supporting
pair of e, satisfying

|Xi − Yi| =

{
1 (i ∈ {j1, j2}),
0 (otherwise).

We define the length lP(e) of an edge e = {X,Y } ∈ E by lP(e)
def.
= (1/(n−1))

∑j∗−1
i=1 (n−

i), where j∗ = max{j1, j2} ≥ 2 and {j1, j2} is the supporting pair of e. Note that
1 ≤ mine∈E lP(e) ≤ maxe∈E lP(e) ≤ n/2. For each pair X,Y ∈ Ξ, we define the
distance d(X,Y ) to be the length of a shortest path between X and Y on G. Clearly,
the diameter of G, i.e., max(X,Y )∈Ξ2 d(X,Y ), is bounded by Kn/2, since d(X,Y ) ≤
(n/2)

∑n
i=1(1/2)|Xi − Yi| ≤ (n/2)K for any (X,Y ) ∈ Ξ2. The definition of edge

length implies that for any edge {X,Y } ∈ E , d(X,Y ) = lP({X,Y }).
We define a joint process (X,Y ) → (X ′, Y ′) as (X,Y ) → (φ(X,Λ), φ(Y,Λ)) with

a uniform real random number Λ ∈ [1, n) and the update function φ defined in sub-
section 3.2. Now we show that

E[d(X ′, Y ′)] ≤ β · d(X,Y ), where β = 1 − 1/(n(n− 1)2),(A.5)

for any pair {X,Y } ∈ E . In the following, we denote the supporting pair of {X,Y }
by {j1, j2}. Without loss of generality, we can assume that j1 < j2 and Xj2 +1 = Yj2 .

Case 1. When �Λ� = j2 − 1, we will show that

E[d(X ′, Y ′) | �Λ� = j2 − 1] ≤ d(X,Y ) − (1/2)(n− j2 + 1)/(n− 1).

In the case j1 = j2 − 1, X ′ = Y ′ with conditional probability 1. Hence d(X ′, Y ′) = 0.
In the following, we consider the case j1 < j2 − 1. Put k′ = Xj2−1 + Xj2 and
k′′ = Yj2−1 + Yj2 . Since Xj2 + 1 = Yj2 , k

′ + 1 = k′′ holds. From the definition of the
update function of our Markov chain, we have the following:

X ′
j2−1 = l ⇔ [gk

′

(j2−1)j2
(l − 1) ≤ Λ − �Λ� < gk

′

(j2−1)j2
(l)],

Y ′
j2−1 = l ⇔ [gk

′+1
(j2−1)j2

(l − 1) ≤ Λ − �Λ� < gk
′+1

(j2−1)j2
(l)].

Now, the alternating inequalities

0 < gk
′+1

(j2−1)j2
(0) = gk

′

(j2−1)j2
(0) ≤ gk

′+1
(j2−1)j2

(1) ≤ gk
′

(j2−1)j2
(1) ≤ · · ·

≤ gk
′+1

(j2−1)j2
(k′) ≤ gk

′

(j2−1)j2
(k′) = gk

′+1
(j2−1)j2

(k′ + 1) = 1
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hold. Thus we have(
X ′

j2−1

Y ′
j2−1

)
∈

{(
0
0

)
,

(
0
1

)
,

(
1
1

)
,

(
1
2

)
, . . . ,

(
k′

k′

)
,

(
k′

k′ + 1

)}
.

If X ′
j2−1 = Y ′

j2−1, the supporting pair of {X ′, Y ′} is {j1, j2} and so d(X ′, Y ′) =
d(X,Y ). If X ′

j2−1 	= Y ′
j2−1, the supporting pair of {X ′, Y ′} is {j1, j2 − 1} and so

d(X ′, Y ′) = d(X,Y ) − (n− j2 + 1)/(n− 1).
Lemma A.2 (proved later) implies that if αj2−1 ≥ αj2 , then

Pr[X ′
j2−1 	= Y ′

j2−1 | �Λ� = j2 − 1] − Pr[X ′
j2−1 = Y ′

j2−1 | �Λ� = j2 − 1]

=

k′∑
l=0

(
gk

′

(j2−1),j2
(l) − gk

′+1
(j2−1),j2

(l)
)

−
k′∑
l=1

(
gk

′+1
(j2−1),j2

(l) − gk
′

(j2−1),j2
(l − 1)

)
− gk

′+1
(j2−1),j2

(0) ≥ 0.

Hence

Pr[X ′
j2−1 = Y ′

j2−1 | �Λ� = j2 − 1] ≤ (1/2),

Pr[X ′
j2−1 	= Y ′

j2−1 | �Λ� = j2 − 1] ≥ (1/2).

Thus we obtain that

E[d(X ′, Y ′)|�Λ� = j2 − 1] ≤ (1/2)d(X,Y ) + (1/2)(d(X,Y ) − (n− j2 + 1)/(n− 1))

= d(X,Y ) − (1/2)(n− j2 + 1)/(n− 1).

Case 2. When �Λ� = j2, we can show that E[d(X ′, Y ′)|�Λ� = j2] ≤ d(X,Y ) +
(1/2)(n− j2)/(n− 1) in a similar way to Case 1.

Case 3. When �Λ� 	= j2 − 1 and �Λ� 	= j2, it is easy to see that the supporting
pair {j′1, j′2} of {X ′, Y ′} satisfies j2 = max{j′1, j′2}. Thus d(X,Y ) = d(X ′, Y ′).

The probability of appearance of Case 1 is equal to 1/(n− 1), and that of Case 2
is less than or equal to 1/(n− 1). From the above,

E[d(X ′, Y ′)] ≤ d(X,Y ) − 1

n− 1
· 1

2
· n− j2 + 1

n− 1
+

1

n− 1
· 1

2
· n− j2
n− 1

= d(X,Y ) − 1

2(n− 1)2

≤
(

1 − 1

2(n− 1)2
· 1

max{X,Y }∈E{d(X,Y )}

)
d(X,Y )

=

(
1 − 1

n(n− 1)2

)
d(X,Y ).

Since the diameter of G is bounded by Kn/2, Theorem 3.3 implies that the mixing
rate τ satisfies τ ≤ n(n− 1)2(1 + ln(Kn/2)).

Lemma A.2. When αi ≥ αj > 0, the inequality

k∑
l=0

(
gkij(l) − gk+1

ij (l)
)
−

k∑
l=1

(
gk+1
ij (l) − gkij(l − 1)

)
− gk+1

ij (0) ≥ 0

holds.
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Proof. We can transform the left-hand side as

k∑
l=0

(
gkij(l) − gk+1

ij (l)
)
−

k∑
l=1

(
gk+1
ij (l) − gkij(l − 1)

)
− gk+1

ij (0)

=

k∑
l=0

(
gkij(l) − gk+1

ij (l)
)
−

k−1∑
l=0

(
gk+1
ij (k − l) − gkij(k − l − 1)

)
− gk+1

ij (0)

=

k−1∑
l=0

(
gkij(l) − gk+1

ij (l) − gk+1
ij (k − l) + gkij(k − l − 1)

)
+ 1 − gk+1

ij (k) − gk+1
ij (0),

and we can see that

1 − gk+1
ij (k) − gk+1

ij (0) = 1 −
∑k

s=0 α
s
iα

k+1−s
j∑k+1

s=0 α
s
iα

k+1−s
j

−
∑0

s=0 α
s
iα

k+1−s
j∑k+1

s=0 α
s
iα

k+1−s
j

=
αk+1
i∑k+1

s=0 α
s
iα

k+1−s
j

−
αk+1
j∑k+1

s=0 α
s
iα

k+1−s
j

≥ 0,

since αi ≥ αj (Condition 2). Thus it is sufficient to show that

gkij(l) − gk+1
ij (l) − gk+1

ij (k − l) + gkij(k − l − 1) ≥ 0 for any l (0 ≤ l ≤ k − 1).

By transforming the left-hand side, we can see that

gkij(l) − gk+1
ij (l) − gk+1

ij (k − l) + gkij(k − l − 1)

= gkij(l) − gk+1
ij (l) −

∑k−l
s=0 α

s
iα

k+1−s
j∑k+1

s=0 α
s
iα

k+1−s
j

+

∑k−l−1
s=0 αs

iα
k−s
j∑k

s=0 α
s
iα

k−s
j

= gkij(l) − gk+1
ij (l) −

(
1 −

∑k+1
s=k−l+1 α

s
iα

k+1−s
j∑k+1

s=0 α
s
iα

k+1−s
j

)
+

(
1 −

∑k
s=k−l α

s
iα

k−s
j∑k

s=0 α
s
iα

k−s
j

)

=

∑l
s=0 α

s
iα

k−s
j

Ak
ij

−
∑l

s=0 α
s
iα

k+1−s
j

Ak+1
ij

+

∑k+1
s=k−l+1 α

s
iα

k+1−s
j

Ak+1
ij

−
∑k

s=k−l α
s
iα

k−s
j

Ak
ij

=

∑l
s=0 α

s
iα

k−s
j

Ak
ij

−
∑l

s=0 α
s
iα

k+1−s
j

Ak+1
ij

+

∑l
s=0 α

k+1−s
i αs

j

Ak+1
ij

−
∑l

s=0 α
k−s
i αs

j

Ak
ij

=

(
1

Ak
ij

− αj

Ak+1
ij

)
l∑

s=0

αs
iα

k−s
j +

(
αi

Ak+1
ij

− 1

Ak
ij

)
l∑

s=0

αk−s
i αs

j

=

∑l
s=0 α

s
iα

k−s
j

Ak
ijA

k+1
ij

(
k+1∑
s=0

αs
iα

k+1−s
j −

k∑
s=0

αs
iα

k+1−s
j

)

+

∑l
s=0 α

k−s
i αs

j

Ak
ijA

k+1
ij

(
k+1∑
s=1

αs
iα

k+1−s
j −

k+1∑
s=0

αs
iα

k+1−s
j

)

=
1

Ak
ijA

k+1
ij

(
αk+1
i

l∑
s=0

αs
iα

k−s
j − αk+1

j

l∑
s=0

αk−s
i αs

j

)
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=
1

Ak
ijA

k+1
ij

l∑
s=0

(
αk+1+s
i αk−s

j − αk−s
i αk+1+s

j

)

=
1

Ak
ijA

k+1
ij

l∑
s=0

(
αk−s
i αk−s

j

(
α2s+1
i − α2s+1

j

))
≥ 0,

since αi ≥ αj (Condition 2). Thus we obtain the claim.
Next we estimate the expectation of the coalescence time of MP.
Lemma A.3. Under Condition 2, the coalescence time T∗ of MP satisfies E[T∗] =

O(n3 lnKn).
Proof. Let G = (Ξ, E) be the undirected graph and d(X,Y ) ∀X, ∀Y ∈ Ξ be

the metric on G, both of which are defined in the proof of Lemma A.1. We define
D

def.
= d(xmax, xmin) and τ0

def.
= n(n− 1)2(1+ lnD). By using inequality (A.5) obtained

in the proof of Lemma A.1, we have

Pr[T∗ > τ0] = Pr
[
Φ0

−τ0(xmax,Λ) 	= Φ0
−τ0(xmin,Λ)

]
= Pr [Φτ0

0 (xmax,Λ) 	= Φτ0
0 (xmin,Λ)]

≤
∑

(X,Y )∈Ξ2

d(X,Y )Pr [X = Φτ0
0 (xmax,Λ), Y = Φτ0

0 (xmin,Λ)]

= E [d (Φτ0
0 (xmax,Λ),Φτ0

0 (xmin,Λ))] ≤
(

1 − 1

n(n− 1)2

)τ0

d(xmax, xmin)

=

(
1 − 1

n(n− 1)2

)n(n−1)2(1+lnD)

D ≤ e−1e− lnDD =
1

e
.

By the submultiplicativity of coalescence time (see [24]), for any k ∈ Z+, the inequality

Pr[T∗ > kτ0] ≤ (Pr[T∗ > τ0])
k ≤ (1/e)k holds. Thus

E[T∗] =

∞∑
t=0

tPr[T∗ = t] ≤ τ0 + τ0Pr[T∗ > τ0] + τ0Pr[T∗ > 2τ0] + · · ·

≤ τ0 + τ0/e + τ0/e
2 + · · · = τ0/(1 − 1/e) ≤ 2τ0.

Clearly D ≤ Kn. Then we obtain the result that E[T∗] = O(n3 lnKn).
Proof of Theorem 4.3. Let T∗ be the coalescence time of our chain. Clearly T∗

is a random variable. Put m = �log2 T∗�. Algorithm 2 terminates when we set the
starting time period T = −2m to the (m + 1)st iteration. Then the total number of
simulated transitions is bounded by 2(20 + 21 + 22 + · · · + 2K) < 2 · 2 · 2m ≤ 8T∗,
since we need to execute two chains from both xmax and xmin. Thus the expectation
of total number of transitions of M is bounded by O(E[8T∗]) = O(n3 ln(Kn)).
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APPROXIMATION ALGORITHMS FOR BICLUSTERING
PROBLEMS∗

LUSHENG WANG† , YU LIN‡ , AND XIAOWEN LIU†

Abstract. One of the main goals in the analysis of microarray data is to identify groups of genes
and groups of experimental conditions (including environments, individuals, and tissues) that exhibit
similar expression patterns. This is the so-called biclustering problem. In this paper, we consider two
variations of the biclustering problem: the consensus submatrix problem and the bottleneck submatrix
problem. The input of the problems contains an m×n matrix A and integers l and k. The consensus
submatrix problem is to find an l × k submatrix with l < m and k < n and a consensus vector such
that the sum of distances between the rows in the submatrix and the consensus vector is minimized.
The bottleneck submatrix problem is to find an l × k submatrix with l < m and k < n, an integer
d and a center vector such that the distance between every row in the submatrix and the vector
is at most d and d is minimized. We show that both problems are NP-hard and give randomized
approximation algorithms for special cases of the two problems. Using standard techniques, we can
derandomize the algorithms to get polynomial time approximation schemes for the two problems.
To the best of our knowledge, this is the first time that approximation algorithms with guaranteed
ratios are presented for microarray data analysis.

Key words. approximation algorithms, computational biology, microarray data analysis, genes
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1. Introduction. In the past few years, microarray techniques have been widely
used in biological research. Microarray techniques have helped to illuminate mecha-
nisms of diseases, identify disease subphenotypes, predict disease progression, assign
functions to previously unannotated genes, group genes into functional pathways,
and predict activities of new compounds [1]. Microarray data analysis is an impor-
tant problem in computational biology [2]. For this large-scale data, classifying genes
into different groups under certain conditions is a first step to gain more sophisti-
cated knowledge of different biological pathways or functions. Several clustering or
classification techniques such as k-means [3, 4], self-organizing maps [5, 6], hierarchi-
cal clustering [7, 8, 9], principal component analysis, and singular value decomposi-
tion [10, 11, 12] have been extensively applied to identify groups of similarly expressed
genes and conditions from gene expression data.

It is known that many activation patterns are common to a group of genes only
under specific experimental conditions. We should expect subsets of genes to be coreg-
ulated and coexpressed only under certain experimental conditions, but to behave
almost independently under other conditions, according to our general understanding
of cellular processes [22, 23, 24]. The fact is that we need to discover local patterns
in the microarray matrix. The basic model for biclustering is as follows: given an
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m×n matrix A, where each element ai,j ∈ {0, 1}, the problem here is to find an l× k
submatrix with all elements identical to 1 such that l × k is maximized.

Let Σ = {π1, π2, . . . , π|Σ|} be a fixed size alphabet of symbols. A vector over Σ is
a sequence of symbols in Σ. Let A be an m×n matrix, where each row corresponds to
a gene and each column corresponds to a condition. Each element ai,j in A represents
the expression level of gene i under condition j. Such a matrix A is defined by its set
of m rows, X = {x1, x2, . . . , xm}, and its set of n columns, Y = {y1, y2, . . . , yn}. Let
P = {p1, . . . , pl} be a subset of {1, 2, . . . ,m} indicating rows in X and Q = {q1, . . . , qk}
be a subset of {1, 2, . . . , n} indicating columns in Y . The l×k submatrix AP,Q induced
by the pair (P,Q) contains the elements ai,j , where i ∈ P and j ∈ Q. We treat each
row in the matrix or submatrix as a vector over Σ. Define xi|Q = ai,q1ai,q2 . . . ai,qk .
Let p and p′ be two vectors of the same length over Σ. We use d(p, p′) to denote
the number of mismatches between the two vectors. Throughout this paper, we will
study the following two problems:

1. The consensus submatrix problem: Given an m× n matrix A, and integers l
and k, find a subset P of l rows, a subset Q of k columns in matrix A, and a
consensus vector z of length k such that the consensus score

∑l
i=1 d(xpi |Q, z)

is minimized.
2. The bottleneck submatrix problem: Given an m × n matrix A, and integers

l and k, find a subset P of l rows, a subset Q of k, columns in matrix A,
a center vector z of length k, and an integer d such that for every pi ∈ P ,
d(xpi |Q, z) ≤ d and the bottleneck score d is minimized.

In some applications, the number of conditions/samples ranges from 50 to 550
and the number of genes is about a few thousand. The interesting submatrices (bi-
clusters) may contain tens of conditions/samples. In this case, we have k = Ω(n). In
practice, there are errors in the microarray data. In [22, 29], the input matrix contains
12.3% missing values (see Data Preparation in [22]). In the l × k submatrix, if we

assume that 12.3% values are missing, then the total consensus score
∑l

i=1 d(xpi |Q, z)
is Ω(lk) and the bottleneck score d is Ω(k). Moreover, the expression levels of coreg-
ulated and coexpressed genes in the submatrices are not 100% numerically identical.
Therefore, in some cases we can assume that for the consensus submatrix problem∑l

i=1 d(xpi |Q, z) = Ω(lk) and for the bottleneck submatrix problem d = Ω(k).
Throughout this paper, we assume that for the consensus submatrix problem∑l

i=1 d(xpi |Q, z) = Ω(lk) and for the bottleneck submatrix problem d = Ω(k). More-
over, we further assume that k = Ω(n).

1.1. Real examples. Here we present a few real examples to show that our
assumptions on d and k are reasonable in some real applications.

Example 1. The first paper using the biclustering approach for microarray data
analysis is [22]. In this paper, the authors analyze the human data originated from [29].
There are 4, 026 genes and 96 conditions with 12.3% missing values in the input
matrix. (For more on microarray data errors, see [13, 14, 15, 16, 17, 18, 19, 20].) For
the interesting submatrices, the number of conditions ranges from 13 to 96 (most of
them > 20). (See the caption of Figure 5 in [22].) Here the assumption that k = Ω(n)

does hold. Moreover, with 12.3% missing values (thus
∑l

i=1 d(xpi |Q, z) = Ω(lk) and
d = Ω(k)), they can still find some biologically interesting submatrices.

Example 2. Koyutürk, Szpankowski, and Grama study a dataset containing 84
samples for human breast cancer [28]. They obtain a biologically interesting subma-
trix containing 62 samples and 141 genes. Figure 1 shows the submatrix after binary
quantization. From Figure 1, we can see that in the gray (red in the color version)
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Fig. 1. The interesting submatrix originally from [M. Koyutürk, W. Szpankowski, and A.
Grama, Biclustering gene-feature matrices for statistically significant dense patterns, in Proceedings
of the 2004 Annual IEEE Bioinformatics Conference, 2004, pp. 480–484]. c©2004 IEEE.

submatrix, there are still quite a lot of dark and white (blue and white in the color
version) dots indicating that the expression levels of genes are not completely iden-
tical. (This may be caused by the performance of genes or by data errors.) Based
on Figure 1, it is easy to see that there are at least 10% errors. Again, this example
shows that our assumptions on d and k are reasonable in some applications.

1.2. Relations to previous work. The basic model for biclustering is to find
a submatrix AP,Q with all elements identical to a constant value [23]:

ai,j = μ for all i ∈ P, j ∈ Q.

If the submatrix is error free, both the consensus score and the bottleneck score are
clearly 0 for the new problems that we propose in the paper.

In practice, it is interesting to find submatrices such that all elements in a row
have the same constant value [21, 24]. That is,

ai,j = ci for j ∈ Q.

In this case, all the columns in the submatrix are identical. Again, it is clear that
both the consensus score and the bottleneck score are 0 if the submatrix is error-free.

For the additive model [22, 23], we are interested in submatrices satisfying

ai,j = ai′,j + c(i, i′) for all i, i′ ∈ P, j ∈ Q.(1)

That is, for two elements ai,j and ai′,j in row i and row i′, the difference is a constant
c(i′, i).

Now we will show that our model can also handle the additive model. Let r be a
row in the error-free submatrix. We construct a new matrix A′ as follows:

a′i,j = ai,j − ar,j for all i ∈ X, j ∈ Y.



APPROXIMATION ALGORITHMS FOR BICLUSTERING PROBLEMS 1507

Then, the error-free submatrix is converted into a new submatrix A′
P,Q with the

element

a′i,j = ai,j − ar,j

= c(i, r) for all i ∈ P, j ∈ Q.

That is, in the resulting submatrix, all elements in a row have the same value. Thus,
the additive model degenerates to the second case. Therefore, our models can also
handle the additive model by trying all rows in A as row r.

Cheng and Church were the first to use the biclustering approach for microarray
data analysis [22]. They introduced the mean squared residue score H to measure the
coherence of the rows and columns in the submatrix.

H(P,Q) =
1

|P ||Q|
∑

i∈P,j∈Q

(ai,j − ai,Q − aP,j + aP,Q)2,

where

ai,Q =
1

|Q|
∑
j∈Q

ai,j , aP,j =
1

|P |
∑
i∈P

ai,j , and aP,Q =
1

|P ||Q|
∑

i∈P,j∈Q

(ai,j).

Clearly, the H score is 0 for the first two cases if the submatrix is error free. We
can show that for the additive model, the H score is also 0 if the submatrix is error
free.

In this paper, we design randomized approximation algorithms for both prob-
lems. We have a new idea to randomly select Θ(logm) columns in the optimal set of
columns Qopt ⊆ Y when Qopt is not known. For the bottleneck submatrix problem,
we use linear programming and randomized rounding to successfully select a good
approximation Q of Qopt and set the letters for the center vector at the columns in
Q. Using standard techniques, we can derandomize the randomized algorithms to get
polynomial time approximation schemes (PTAS) for the two problems. To the best of
our knowledge, this is the first time that approximation algorithms with guaranteed
ratios have been presented for microarray analysis.

The paper is organized as follows. In section 2, we prove that both problems are
NP-hard. In section 3, we give the algorithm for the consensus submatrix problem.
The algorithm for the bottleneck submatrix problem is given in section 4.

2. NP-hardness result. In this section, we will show that both the consen-
sus submatrix problem and the bottleneck submatrix problem are NP-hard. The
reduction is from the maximum edge biclique problem. The maximum edge biclique
problem was proved to be NP-hard in [25]. A biclique is a complete bipartite sub-
graph, where every vertex of the first set is connected to every vertex of the second
set.

The maximum edge biclique problem. Given a bipartite graph G = (V1 ∪
V2, E) and a positive integer t, does G contain a biclique with t edges?

Theorem 1. The consensus submatrix problem and the bottleneck submatrix
problem are NP-hard.

Proof. We use a reduction from the maximum edge biclique problem. Given a
graph G = (V1∪V2, E) and a positive integer t, where |V1| = m, |V2| = n, we construct
an m× n matrix A = {ai,j} as follows: ai,j = 1 if and only if (v1(i), v2(j)) ∈ E, and
otherwise ai,j = 0. After constructing A, we get a new matrix A′ of size 2m × n by
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adding m rows, each containing n 1’s, to A. Thus, for an element a′i,j in A′, a′i,j = ai,j
if 1 ≤ i ≤ m. Otherwise, a′i,j = 1. (Here we need A′ to ensure that every element in
the consensus/center vector is 1.)

The input of both the consensus submatrix and the bottleneck submatrix prob-
lems contains the matrix A′ and two integers l+m and k with t = l×k. The number
of pairs for l and k is at most t2.

It is easy to see that there exists an l× k biclique for the maximum edge biclique
problem if and only if there is a size l× k submatrix of A in which every element is 1.

Now, we want to show that there is an l × k submatrix of A such that every
element is 1 if and only if there is an (l + m) × k submatrix of A′ such that every
element is 1.

(if) Given an l × k submatrix of A such that every element is 1, we can obtain
an (l + m) × k submatrix of A′ such that every element is 1 by adding the m newly
added rows with every element being 1 in A′.

(only if) Consider an (l + m) × k submatrix of A′ such that every element is 1.
There are at least l rows in the (l + m) × k submatrix that are also in A since there
are m newly added rows in A′. Thus, we can select l rows in the (l+m)×k submatrix
that are also in A. In this way, we get an l×k submatrix of A such that every element
is 1.

Obviously, every element in the (l + m) × k submatrix of A′ is 1 if and only if
both the consensus score and the bottleneck score for the submatrix are 0 and every
element in the consensus/center vector is 1.

The proof also suggests that it is NP-hard to decide whether the score is 0 in
both problems. Therefore, there is no approximation algorithm with any guaranteed
ratio for both problems when the optimal score is 0.

3. The consensus submatrix problem. In this section, we will present the
randomized approximation algorithm for the consensus submatrix problem. Let Popt,
Qopt, and zopt be the set of rows, the set of columns, and the consensus vector of an
optimal solution. The optimal consensus score is Hopt. By assumption, Hopt = Ω(kl),
i.e., there is a constant c′ such that Hopt × c′ = kl. Again, by assumption, k = Ω(n),
i.e., there is a constant c such that k × c = n.

Before we present the algorithm, we first introduce the basic ideas of the algo-
rithm. By enumerating all size k subsets of Y and all length k vectors, we can find
Qopt and zopt at some moment. It is easy to see that if we know exactly Qopt and zopt,
then we can find the corresponding Popt in polynomial time to minimize the consen-
sus score. However, this straightforward approach costs exponential time. Here we
use a random sampling technique to randomly select Θ(logm) columns in Qopt, and
enumerate all possible vectors of length Θ(logm) for those columns. (If n < Θ(logm),
we will select all the n columns and the running time is still polynomial in terms of
the input size.) At some point, we know Θ(logm) bits of zopt and we can use the
partial zopt to select the l rows which are closest to zopt in those Θ(logm) bits. After
that we can construct a consensus vector z as follows. For each column, choose the
(majority) letter that appears the most in each of the l letters in the l selected rows.
Then for each of the n columns, we can calculate the number of mismatches between
the majority letter and the l letters in the l selected rows. By selecting the best k
columns, we can get a good solution.

The remaining difficulty is how to randomly select Θ(logm) columns in Qopt while

Qopt is unknown. Our new idea is to randomly select a set B of �(c+ 1)( 4 logm
ε2 + 1)�

columns from A and enumerate all size � 4 logm
ε2 � subsets of B in time O(m

4(c+1)

ε2 ),
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Algorithm 1 for the Consensus Submatrix Problem
Input: an m× n matrix A, integers l and k, and a number ε > 0.
Output: a size l subset P of rows, a size k subset Q of columns and a
length k consensus vector z.
Step 1: Randomly and independently select a set B of �(c+1)( 4 logm

ε2 +1)�
columns from A. (If n < �(c+1)( 4 logm

ε2 +1)�, we will select all the n columns
and the running time is still polynomial in terms of the input size.)

(1.1) for every size � 4 logm
ε2 � subset R of B do

(1.2) for every z|R ∈ Σ|R| do
(a) Select the best l rows P = {p1, . . . , pl} that minimize

d(z|R, xi|R).
(b) for each column j do

Compute f(j) =
∑l

i=1 d(sj , api,j), where sj is the
majority element of the l rows in P in column j.

Select the best k columns Q = {q1, . . . , qk} with
minimum value f(j) and let z(Q) = sq1sq2 . . . sqk .

(c) Calculate H =
∑l

i=1 d(xpi |Q, z) of this solution.
Step 2: Output P , Q and z with minimum H.

Fig. 2. Algorithm 1.

which is polynomial in terms of the input size O(mn). We can show that with high
probability, we can get a set of � 4 logm

ε2 � columns randomly selected from Qopt.
Now we describe the complete algorithm in Figure 2.
The following lemma, originally from [26], will be used in our proofs.
Lemma 1. Let X1, X2, . . . , Xn be n independent random 0-1 variables, where Xi

takes 1 with probability pi, 0 < pi < 1. Let X =
∑n

i=1 Xi and μ = E[X]. Then for
any 0 < ε ≤ 1,

Pr(X > μ + ε n) < exp

(
−1

3
nε2

)
,

Pr(X < μ− ε n) ≤ exp

(
−1

2
nε2

)
.

Lemma 2. With probability at most m
− 2

ε2c2(c+1) , no subset R of size � 4 logm
ε2 �

used in Step 1 of Algorithm 1 satisfies R ⊆ Qopt.
Proof. Obviously, if the subset B in Step 1 of Algorithm 1 contains at least

� 4 logm
ε2 � columns in Qopt, there is a size � 4 logm

ε2 � subset R ⊆ Qopt. Now we consider

the probability that the subset B contains less than � 4 logm
ε2 � columns in Qopt. Let b be

the number of columns in B that are also in Qopt. Recall that k×c = n. If we randomly
select a column, the probability that the column is in Qopt is 1

c . Let μ be the expected

number of columns in B that are in Qopt. We have μ = |B|
c = 1

c �(c+ 1)( 4 logm
ε2 + 1)�.

Let X1, X2, . . . , X|B| be |B| independent random 0/1 variables, where Xi = 1 with

probability 1
c indicating that the selected column is in Qopt. Thus,

b =

|B|∑
i=1

Xi(2)
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and

μ = E

( |B|∑
i=1

Xi

)
=

1

c

⌈
(c + 1)

(
4 logm

ε2
+ 1

)⌉
.(3)

From the algorithm,

|B| =

⌈
(c + 1)

(
4 logm

ε2
+ 1

)⌉
.(4)

Based on Lemma 1, we have

Pr

(
b <

⌈
4 logm

ε2

⌉)
≤ Pr

(
b <

4 logm

ε2
+ 1

)

≤ Pr

(
b <

(
1

c
− 1

c(c + 1)

)⌈
(c + 1)

(
4 logm

ε2
+ 1

)⌉)

= Pr

( |B|∑
i=1

Xi < μ− 1

c(c + 1)
|B|

)
(from (2), (3), and (4))

≤ exp

(
− 1

2c2(c + 1)2
|B|

)

≤ exp

(
− 1

2c2(c + 1)2
(c + 1)

(
4 logm

ε2

))

= exp

(
− 2 logm

ε2c2(c + 1)

)
= m

− 2
ε2c2(c+1) .

Therefore, with probability at most m
− 2

ε2c2(c+1) , no subset R of size � 4 logm
ε2 � used

in Step 1 of Algorithm 1 satisfies R ⊆ Qopt.

Lemma 3. Assume |R| = � 4 logm
ε2 � and R ⊆ Qopt. Let ρ = k

|R| . With probability

at most m−1, there is a row xi in X satisfying

d(zopt, xi|Qopt) − εk

ρ
> d(zopt|R, xi|R).(5)

With probability at most m− 1
3 , there is a row xi in X satisfying

d(zopt|R, xi|R) >
d(zopt, xi|Qopt) + εk

ρ
.(6)

Proof. We will calculate Pr(d(zopt|R, xi|R) <
d(zopt,xi|Qopt )−εk

ρ ) first. From Al-
gorithm 1, R is a subset of B, a set of randomly independently selected columns.
Thus, R is also a set of randomly independently selected columns. Therefore, we can

treat d(zopt|R, xi|R) as the sum of |R| independent random 0/1 variables
∑|R|

j=1 Xj .
As R ⊆ Qopt, Xj = 1 indicates a mismatch between zopt and xi at the jth position
in R. Clearly E[d(zopt|R, xi|R)] = d(zopt, xi|Qopt)/ρ. From Lemma 1, we have

Pr

(
d(zopt|R, xi|R) <

d(zopt, xi|Qopt) − εk

ρ

)

= Pr(d(zopt|R, xi|R) < E[d(zopt|R, xi|R)] − ε|R|)

≤ exp

(
−1

2
ε2|R|

)
≤ m−2,
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where the last inequality is due to the setting |R| = � 4 logm
ε2 � in Step 1 of Algorithm 1.

Considering all the m xi’s, the probability that an xi ∈ X satisfies (5) is at most
m×m−2 = m−1.

Similarly, we have

Pr

(
d(zopt|R, xi|R) >

d(zopt, xi|Qopt) + εk

ρ

)
< m− 4

3 .

Considering all the m xi’s, the probability that an xi ∈ X satisfies (6) is at most

m×m− 4
3 = m− 1

3 .
Lemma 4. When R ⊆ Qopt and z|R = zopt|R, with probability at most 2m− 1

3 , the

set of rows P = {p1, . . . , pl} selected in Step 1(a) of Algorithm 1 satisfies
∑l

i=1 d(zopt,
xpi |Qopt) > Hopt + 2εkl.

Proof. Let Popt = {p∗1, . . . , p∗l } be the l rows in the optimal solution; we have

l∑
i=1

d(zopt, xp∗
i
|Qopt) = Hopt.(7)

From Lemma 3, with probability at most m−1, a row xpi
∈ {p1, p2, . . . , pl} satisfies

l∑
i=1

d(zopt|R, xpi |R) <

l∑
i=1

d(zopt, xpi |Qopt) − εk

ρ
.(8)

Again from Lemma 3, with probability at most m− 1
3 , a row xp∗

i
∈ {p∗1, p∗2, . . . , p∗l }

satisfies

l∑
i=1

d(zopt|R, xp∗
i
|R) >

l∑
i=1

d(zopt, xp∗
i
|Qopt) + εk

ρ
.(9)

By trying all length |R| vectors in Step 1 of Algorithm 1, we can assume that we
know zopt|R. In Step 1(a), we select the best set P = {p1, . . . , pl} with minimum
d(zopt|R, xi|R). Thus, for any R ⊆ Qopt, we have

l∑
i=1

d(zopt|R, xpi
|R) ≤

l∑
i=1

d(zopt|R, xp∗
i
|R).(10)

From (8), (9), and (10), if R ⊆ Qopt and z|R = zopt|R, with probability at most

m−1 +m− 1
3 ≤ 2m− 1

3 , there exists a set of rows P = {p1, . . . , pl} obtained in Step 1(a)
of Algorithm 1 such that

l∑
i=1

d(zopt, xpi |Qopt) >

l∑
i=1

(d(zopt, xp∗
i
|Qopt) + 2εk)

= Hopt + 2εkl.

The last inequality is from (7).

Theorem 2. For any δ > 0, with probability at least 1 − m
− 8c′2

δ2c2(c+1) − 2m− 1
3 ,

Algorithm 1 outputs a solution with consensus score at most (1+δ)Hopt in O(nmO( 1
δ2

))
time.
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Proof. When R ⊆ Qopt and z|R = zopt|R, in Step 1(b), we can construct a Q and
z(Q) such that

l∑
i=1

d(z(Q), xpi
|Q) ≤

l∑
i=1

d(zopt, xpi
|Qopt).(11)

From Lemma 2, we know that with probability at most m
− 2

ε2c2(c+1) , there is no
subset R with size � 4 logm

ε2 � in Step 1 of Algorithm 1 such that R ⊆ Qopt. Combining

with Lemma 4, we know that with probability at most m
− 2

ε2c2(c+1) + 2m− 1
3 , in the

execution of Algorithm 1, any set of rows P = {p1, . . . , pl} obtained in Step 1(a)
satisfies

l∑
i=1

d(zopt, xpi |Qopt) > Hopt + 2εkl.

In other words, with probability at least 1 − m
− 2

ε2c2(c+1) − 2m− 1
3 , in the execution

of Algorithm 1, we can get a set of rows P = {p1, . . . , pl} in Step 1(a) that satisfies∑l
i=1 d(zopt, xpi

|Qopt) ≤ Hopt + 2εkl.
From (11), we have

l∑
i=1

d(z(Q), xpi |Q) ≤
l∑

i=1

d(zopt, xpi |Qopt) ≤ Hopt + 2εkl.

Recall that Hopt × c′ = kl. Set ε = δ
2c′ . So with probability at least 1 −

m
− 8c′2

δ2c2(c+1) − 2m− 1
3 , Algorithm 1 outputs a solution with consensus score at most

(1 + δ)Hopt.
For the time complexity, Step 1(a), Step 1(b), and Step 1(c) take O(mn) time.

Step 1.1 is repeated O(2
4(c+1) log m

ε2 ) = O(mO( 1
ε2

)) = O(mO( 1
δ2

)) times. Step 1.2 is

repeated O(mO( log |Σ|
ε2

)) = O(mO( 1
δ2

)) times as ε = δ
2c′ and |Σ| is a fixed constant.

Thus, the total running time is O(nmO( 1
δ2

)).
Theorem 3. There exists a PTAS for the consensus submatrix problem.
Proof. Algorithm 1 can be derandomized by the standard method. For instance,

instead of randomly and independently choosing Θ(logm) columns from the n columns
in Step 1, we can pick the vertices encountered on a random walk of length Θ(logm)
on a constant degree expander [27]. Obviously, the number of such random walks on
a constant degree expander is polynomial in terms of m. Thus, by enumerating all
random walks of length Θ(logm), we have a polynomial time deterministic algorithm.
(Also see [30].)

4. The bottleneck submatrix problem. In this section, we present the ran-
domized approximation algorithm for the bottleneck submatrix problem. Let Popt,
Qopt, and zopt be the set of rows, the set of columns, and the center vector of an
optimal solution. The optimal bottleneck score is dopt. By assumption, dopt = Ω(k)
and k = Ω(n), i.e., there are constants c′′ and c such that dopt× c′′ = k and k× c = n.

Similar to Algorithm 1, we can use a random sampling technique to know Θ(logm)
bits of zopt. Then we can use the partial zopt to select the l rows which are closest to
zopt in those Θ(logm) bits as in Step 1(a) of Algorithm 1. From Lemma 3, we know
that using Θ(logm) bits in R, we can get a good estimation of d(zopt, xi|Qopt) for each
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xi in X. Thus, if we can correctly select Qopt from the n given columns, then we can
get a good approximation solution. However, Step 1(b) in Algorithm 1 does not work
for the bottleneck score in selecting a good approximation of Qopt. Thus, we use the
linear programming and randomized rounding technique to select k columns in the
matrix.

Linear programming formulation. Given a set of rows P = {p1, . . . , pl}, we
want to find a set of k columns Q and a vector z such that the bottleneck score is
minimized. This problem is equivalent to the following optimization problem:

{
min d;
d(z, xpi |Q) ≤ d, i = 1, 2, . . . , l, Q ⊆ Y, |Q| = k, z ∈ Σk.

(12)

Let Σ = {π1, π2, . . . , π|Σ|}. We introduce 0/1 variable yi,j (i = 1, 2, . . . , n, j =
1, 2, . . . , |Σ|) to indicate the membership of column i in Q and the corresponding
bit of z. We have yi,j = 1 if and only if column i is in Q and the corresponding bit
in z is πj . For any a, b ∈ Σ, χ(a, b) = 0 if a = b and χ(a, b) = 1 if a �= b. We can
formulate (12) as 0/1 integer linear programming:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min d;
n∑

i=1

|Σ|∑
j=1

yi,j = k,

|Σ|∑
j=1

yi,j ≤ 1, i = 1, 2, . . . , n,

n∑
i=1

|Σ|∑
j=1

χ(πj , xps,i)yi,j ≤ d, s = 1, 2, . . . , l.

(13)

Here yi,j is used to achieve two tasks: (1) to decide whether column i is selected and
(2) if column i is selected, to choose the letter in the center vector z on this column.

We can obtain a fraction solution yi,j = yi,j(i = 1, 2, . . . , n, j = 1, 2, . . . , |Σ|)
for (13) in polynomial time. After we get the fraction solution, we do randomized
rounding to get an integer solution.

Randomized rounding. Given a fraction solution yi,j = yi,j (i = 1, 2, . . . , n, j =
1, 2, . . . , |Σ|) with cost d, for each 1 ≤ i ≤ n, 1 ≤ j ≤ |Σ|, we randomly select column i

to Q with probability
∑|Σ|

j=1 yi,j and randomly set the bit of z in this column according
to the distribution yi,j for j = 1, 2, . . . , |Σ|. In terms of programming, we can generate

a random number ρ in (0,1) for every column i. If ρ <
∑|Σ|

j=1 yi,j , we select this
column into Q and let the bit of z corresponding to this column be πt if and only if∑t−1

j=1 yi,j ≤ ρ <
∑t

j=1 yi,j . If ρ ≥
∑|Σ|

j=1 yi,j , this column is not selected. Hence we
get a 0/1 integer solution y′ = {y′1,1, . . . , y′1,|Σ|, . . . , y

′
n,1, . . . , y

′
n,|Σ|}.

In this randomized rounding process, we have to do two things: (1) select k′

columns, where k′ ≥ k − δdopt, and (2) get the integral value for each yi,j such that
the distance (restricted on the k′ selected columns) between any row in P and the
center vector thus obtained is at most γdopt. Here δ > 0 and γ > 0 are two parameters
used to control the errors.

Lemma 5. When nγ2

3(cc′′)2 ≥ 2 logm, for any γ, δ > 0, with probability at most

exp(− nδ2

2(cc′′)2 ) + m−1, the integer solution y′ = {y′1,1, . . . , y′1,|Σ|, . . . , y
′
n,1, . . . , y

′
n,|Σ|}
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violates at least one of the following inequalities,

n∑
i=1

( |Σ|∑
j=1

y′i,j

)
> k − δdopt,(14)

and for every row xps
(s = 1, 2, . . . , l),

n∑
i=1

( |Σ|∑
j=1

χ(πj , xps,i)y
′
i,j

)
< d + γdopt.(15)

Proof. From k × c = n and dopt × c′′ = k, we have dopt × cc′′ = n. For each
1 ≤ i ≤ n, the randomized rounding process ensures that at most one y′i,a = 1

for πa ∈ Σ. Since the rounding is independent for different i’s, (
∑|Σ|

j=1 y
′
i,j)’s are

independent 0/1 random variables for 1 ≤ i ≤ n, and (
∑|Σ|

j=1 χ(πj , xps,i)y
′
i,j)’s are

independent 0/1 random variables for 1 ≤ i ≤ n in every row xps . It is easy to see that

E

( n∑
i=1

( |Σ|∑
j=1

y′i,j

))
= k,

and for every row xps(s = 1, 2, . . . , l),

E

( n∑
i=1

( |Σ|∑
j=1

χ(πj , xps,i)y
′
i,j

))
≤ d.

From Lemma 1, we have

Pr

( n∑
i=1

( |Σ|∑
j=1

y′i,j

)
< k − δdopt

)
= Pr

( n∑
i=1

( |Σ|∑
j=1

y′i,j

)
< E

( n∑
i=1

( |Σ|∑
j=1

y′i,j

))
− δn

cc′′

)

≤ exp

(
− nδ2

2(cc′′)2

)
,

and for every row xps(s = 1, 2, . . . , l),

Pr

( n∑
i=1

( |Σ|∑
j=1

χ(πj , xps,i)y
′
i,j

)
> d + γdopt

)

≤ Pr

( n∑
i=1

( |Σ|∑
j=1

χ(πj , xps,i)y
′
i,j

)
> E

( n∑
i=1

( |Σ|∑
j=1

χ(πj , xps,i)y
′
i,j

))
+

γ

cc′′
n

)

< exp

(
− nγ2

3(cc′′)2

)
.

Considering all l rows in P , the probability that at least one row in P satisfies∑n
i=1(

∑|Σ|
j=1 χ(πj , xps,i)y

′
i,j) > d+γdopt is at most l×exp(− nγ2

3(cc′′)2 ) ≤ m×exp(− nγ2

3(cc′′)2 ).

Thus, with probability at most exp(− nδ2

2(cc′′)2 )+m×exp(− nγ2

3(cc′′)2 ), the integer solution

y′ = {y′1,1, . . . , y′1,|Σ|, . . . , y
′
n,1, . . . , y

′
n,|Σ|} violates at least one of (14) and (15). When

nγ2

3(cc′′)2 ≥ 2 logm, we get the desired probability.
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Algorithm 2 for the Bottleneck Submatrix Problem
Input: a matrix A ∈ Σm×n, integers l, k, a row z ∈ Σn and numbers ε > 0,
and γ > 0.
Output: a size l subset P of rows, a size k subset Q of columns and a
length k center vector z.

if nγ2

3(cc′′)2 ≤ 2 logm then

try all size k subset Q of the n columns and all center vectors of length
k to solve the problem.

if nγ2

3(cc′′)2 > 2 logm then

Step 1: randomly and independently select a set B of � 4(c+1) logm
ε2 �

columns from A.
for every � 4 logm

ε2 � size subset R of B do

for every z|R ∈ Σ|R| do
(a) Select the best l rows P = {p1, . . . , pl} that minimize

d(z|R, xi|R).
(b) Solve the optimization problem (12) by linear program-

ming and randomized rounding to get Q and z.
Step 2: Output P ,Q and z with minimum bottleneck score d.

Fig. 3. Algorithm 2.

When nγ2

3(cc′′)2 < 2 logm, we try all subsets of X with size k and all length k

vectors in polynomial time and get the best solution.
From Lemma 5, we know that in the randomized rounding process, with high

probability, we selected k′ columns in Q, where (1 − ε)k ≤ k′. Our aim is to exactly
select k columns. If k′ > k, we can arbitrarily delete k′ − k columns from Q and
obtain the set of k columns Q′ ⊆ Q. If k′ < k, we can arbitrarily select k−k′ columns
outside Q and add them to Q to get a set of k columns Q′ ⊃ Q. By doing so, the
extra error introduced is at most εk. Since d = Ω(n), the error εk is small and we
still can get a PTAS.

Now we describe the complete algorithm in Figure 3.
Similar to Lemma 4, we have the following lemma.
Lemma 6. When R ⊆ Qopt and z|R = zopt|R, with probability at most 2m− 1

3 ,
the set of rows P = {p1, . . . , pl} obtained in Step 1(a) of Algorithm 2 satisfies d(zopt,
xpi

|Qopt) > dopt + 2εk for some row xpi(1 ≤ i ≤ l).
Proof. Let Popt = {p∗1, . . . , p∗l } be the l rows in the optimal solution. We have

max
p∗
i ∈Popt

d(zopt, xp∗
i
|Qopt) = dopt.(16)

From Lemma 3, with probability at most m−1, a row xpi ∈ {p1, p2, . . . , pl} satisfies

d(zopt|R, xpi
|R) <

d(zopt, xpi
|Qopt) − εk

ρ
.(17)

Again from Lemma 3, with probability at most m− 1
3 , a row xp∗

i
∈ {p∗1, p∗2, . . . , p∗l }

satisfies

d(zopt|R, xp∗
i
|R) >

d(zopt, xp∗
i
|Qopt) + εk

ρ
.(18)
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By trying all length |R| vectors in Step 1 of Algorithm 2, we can assume that we
know zopt|R. In Step 1(a), we select the best set P = {p1, . . . , pl} with minimum
d(zopt|R, xi|R). Thus, for any R ⊆ Qopt, for every pi ∈ P , we have

d(zopt|R, xpi |R) ≤ max
p∗
i ∈Popt

d(zopt|R, xp∗
i
|R).(19)

From (17), (18), and (19), if R ⊆ Qopt and z|R = zopt|R, with probability at most

m−1 +m− 1
3 ≤ 2m− 1

3 , there exists a set of rows P = {p1, . . . , pl} obtained in Step 1(a)
of Algorithm 2 such that for some row xpi(1 ≤ i ≤ l),

d(zopt, xpi
|Qopt) > max

p∗
i ∈Popt

d(zopt, xp∗
i
|Qopt) + 2εk

= dopt + 2εk.

The last inequality is from (16).
From Lemmas 2, 5, and 6, we have the following theorem.

Theorem 4. With probability at least 1−m
− 2

ε2c2(c+1) − 2m− 1
3 − exp(− nδ2

2(cc′′)2 )−
m−1, Algorithm 2 runs in time O(nO(1)m

O( 1
ε2

+ 1
γ2 )

) and obtains a solution with the
bottleneck score at most (1 + 2c′′ε + γ + δ)dopt for any fixed ε, γ, δ > 0.

Proof. From Lemma 2, we know that with probability at most m
− 2

ε2c2(c+1) , there is
no subset R with size � 4 logm

ε2 � in Step 1 of Algorithm 2 such that R ⊆ Qopt. Combining

with Lemma 6, we know that with probability at most m
− 8c′′2

ε′2c2(c+1) + 2m− 1
3 , in the

execution of Algorithm 2, for any set of rows P = {p1, . . . , pl} obtained in Step 1(a),
problem (12) has a solution Q = Qopt and z = zopt with the bottleneck score dP >
(1 + 2c′′ε)dopt as k = 2c′′dopt. In Step 1(b), we can get a fraction solution yi,j = yi,j
(i = 1, 2, . . . , n, j = 1, 2, . . . , |Σ|) with cost d < dP . Thus, with probability at most

m
− 8c′′2

ε′2c2(c+1) + 2m− 1
3 ,

d > (1 + 2c′′ε)dopt.(20)

From Lemma 5, when nγ2

3(cc′′)2 ≥ 2 logm, we know that with probability at most

exp(− nδ2

2(cc′′)2 ) + m−1, the integer solution y′ = {y′1,1, . . . , y′1,|Σ|, . . . , y
′
n,1, . . . , y

′
n,|Σ|}

violates at least one of (14) and (15). Thus the bottleneck score

d′ > (δ + γ)dopt + d.(21)

From (20) and (21), when nγ2

3(cc′′)2 ≥ 2 logm, with probability at most m
− 2

ε2c2(c+1) +

2m− 1
3 + exp(− nδ2

2(cc′′)2 ) + m−1,

d′ > (1 + 2c′′ε + γ + δ)dopt.

In other words, when nγ2

3(cc′′)2 ≥ 2 logm, with probability at least 1 −m
− 2

ε2c2(c+1)

−2m− 1
3 −exp(− nδ2

2(cc′′)2 )−m−1, in the execution of Algorithm 2, we can get a solution

in Step 1(b) with the bottleneck score at most (1 + 2c′′ε + γ + δ)dopt.
For the time complexity, Step 1(a), Step 1(b), and Step 1(c) take O((mn|Σ|)O(1))

time. Step 1 is repeated at most O(mO( log |Σ|
ε2

)) = O(mO( 1
ε2

)) times. Thus, the total

time required is O(nO(1)mO( 1
ε2

)).
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When nγ2

3(cc′′)2 < 2 logm, we can solve the problem in O(nO(1)m
O( 1

γ2 )
) time by

enumerating all possible sets Q and all possible center vectors z.
Theorem 5. There exists a PTAS for the bottleneck submatrix problem.
Proof. For Step 1(b), we can use the technique in [26] to derandomize it. The

derandomization of the random sampling step is the same as in Algorithm 1.

5. Conclusion. We have designed PTASs for both the consensus submatrix and
the bottleneck submatrix problems. To the best of our knowledge, this is the first
time that approximation algorithms with guaranteed performance ratios have been
presented for microarray data analysis. It is important to point out that the running
time here is very high and the algorithms may not work in practice.
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A DETERMINISTIC SUBEXPONENTIAL ALGORITHM FOR
SOLVING PARITY GAMES∗

MARCIN JURDZIŃSKI† , MIKE PATERSON† , AND URI ZWICK‡

Abstract. The existence of polynomial-time algorithms for the solution of parity games is a
major open problem. The fastest known algorithms for the problem are randomized algorithms that
run in subexponential time. These algorithms are all ultimately based on the randomized subexpo-
nential simplex algorithms of Kalai and of Matoušek, Sharir, and Welzl. Randomness seems to play
an essential role in these algorithms. We use a completely different, and elementary, approach to ob-
tain a deterministic subexponential algorithm for the solution of parity games. The new algorithm,
like the existing randomized subexponential algorithms, uses only polynomial space, and it is almost
as fast as the randomized subexponential algorithms mentioned above.

Key words. analysis of algorithms and problem complexity, specification and verification,
2-player games, games on graphs, discrete-time games

AMS subject classifications. 68Q25, 68Q60, 91A05, 91A43, 91A50
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1. Introduction. A parity game [11, 15] is played on a directed graph (V,E) by
two players, Even and Odd, who move a token from vertex to vertex along the edges
of the graph so that an infinite path is formed. A partition (V0, V1) is given of the
set V of vertices: player Even moves if the token is at a vertex of V0, and player Odd
moves if the token is at a vertex of V1. Finally, a priority function p : V → N is given.
The players compete for the parity of the highest priority occurring infinitely often:
player Even wins if lim supi→∞ p(vi) is even, while player Odd wins if it is odd, where
v0, v1, v2, . . . is the infinite path formed by the players.

The algorithmic problem of solving parity games is, given a parity game G =
(V0, V1, E, p) and an initial vertex v0 ∈ V , to determine whether player Even has a
winning strategy in the game if the token is initially placed on vertex v0. Algorithms
for solving parity games [33, 20, 32, 15, 2] usually compute the winning sets win0 and
win1, i.e., the sets of vertices from which players Even and Odd, respectively, have a
winning strategy. By the determinacy theorem for parity games [11, 15] the winning
sets win0 and win1 form a partition of the set of vertices V . None of these algorithms
is known to run in polynomial time and the existence of a polynomial-time algorithm
for the solution of parity games is a long-standing open problem [12, 15].

The original motivation for the study of parity games comes from the area of
formal verification of systems by temporal logic model checking [5, 15]. The problem
of solving parity games is polynomial-time equivalent to the nonemptiness problem
of ω-automata on infinite trees with Rabin-chain acceptance conditions [12], and to
the model checking problem of the modal μ-calculus (modal fixpoint logic) which
is a formalism of great expressiveness and succinctness in formal specification and
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validation [10, 15]. The model checking problem is a fundamental algorithmic problem
in automated hardware and software verification [10, 5].

Another important motivation to study the problem of solving parity games is its
intriguing complexity theoretic status: the problem is known to be in NP ∩ co-NP [12]
and even in UP ∩ co-UP [19] but, as mentioned, despite considerable efforts of the
community [12, 20, 32, 15, 2, 28] no polynomial-time algorithm has been found so far.
(The complexity class UP, a.k.a. unambiguous NP, is defined to contain all problems
that can be recognized by an unambiguous nondeterministic polynomial-time Turing
machine. A Turing machine is unambiguous if for every input it has at most one
accepting computation. Clearly, the inclusions P ⊆ UP ⊆ NP hold.) Moreover, parity
games are polynomial-time reducible to mean payoff games [34], simple stochastic
games [6], and discounted payoff games [6, 34]. A stochastic generalization of parity
games was also studied [9, 3]. The problems of solving all those games are in UP ∩ co-
UP as well [19, 3]. Condon has shown that simple stochastic games are complete (with
respect to log-space reductions) in the class of log-space randomized alternating Turing
machines [6].

The task of solving parity, mean payoff, discounted payoff, and simple stochastic
games can be also viewed as a search problem: given a game graph, compute opti-
mal strategies for both players. The value functions used in strategy improvement
algorithms [7, 25, 32, 2] witness membership of all those optimal strategies search
problems in PLS (i.e., the class of polynomial local search problems) [17]. On the
other hand, the problem of computing optimal strategies in simple stochastic games
can be reduced in polynomial time to solving a P-matrix linear complementarity
problem [14, 31, 21], and to finding a Brouwer fixpoint [18], and hence it is also in
PPAD (see [29] for a definition of PPAD). It follows that there are polynomial-time
reductions from the problems of computing optimal strategies in parity, mean pay-
off, discounted payoff, and simple stochastic games to the problem of finding Nash
equilibria in bimatrix games [8, 4].

Let n = |V | and m = |E| be the numbers of vertices and edges of a parity
game graph and let d be the number of different priorities assigned to vertices by the
priority function p : V → N. For parity games with a small number of priorities,
more specifically if d = O(n1/2), the progress-measure lifting algorithm [20] gave,
until recently, the best time complexity of O(dm(2n/d)d/2). This has been improved
by Schewe [30] to O(m(κn/d)d/3), where κ ≤ (2e)3/2. If d = Ω(n(1/2)+ε), then
the randomized algorithm of Björklund, Sandberg, and Vorobyov [2] has a better
(expected) running-time bound of nO(

√
n/ logn).

The main contribution of this paper is a deterministic algorithm for solving
parity games which achieves roughly the same complexity as the randomized algo-
rithm of Björklund, Sandberg, and Vorobyov [2]: the complexity of our algorithm is
nO(

√
n/ logn) if the out-degree of all vertices is bounded, and is nO(

√
n) otherwise. The

new algorithm uses only polynomial space.
The randomized algorithm of Björklund, Sandberg, and Vorobyov [2] is based on

the randomized algorithm of Ludwig [25] for simple stochastic games, which in turn is
inspired by the subexponential randomized simplex algorithms for linear programming
and LP-type problems by Kalai [23] and by Matoušek, Sharir, and Welzl [26]. For
games with out-degree two these algorithms are instantiations of the Random-Facet
algorithm for finding the unique sink in an acyclic unique sink orientation (AUSO)
of a hypercube [13]. The nodes of a hypercube correspond to positional strategies for
one of the players, and the orientation of an edge connecting two positional strategies
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that differ at exactly one vertex is determined by which of the two strategies has a
better value when the opponent plays a best-response strategy [7, 25, 32, 2].

In contrast, our deterministic algorithm for parity games is obtained by a mod-
ification of a more elementary algorithm of McNaughton and Zielonka for parity
games [33, 15]. The methods we use are thus very different from those of Ludwig and
Björklund et al. Our method is applicable, so it seems, only to parity games, while the
randomized algorithms for finding the unique sink in an AUSO [13] and for solving an
LP-type problem [26] can be applied to a number of problems, including computing the
values of parity, mean payoff, discounted payoff, and simple stochastic games [2, 1, 16].

The recent improvement of the complexity of solving parity games with a small
number of priorities due to Schewe [30] was inspired by the preliminary version of
this paper published at SODA’06 [22]. Schewe refined our technique of searching
and removing dominions while running the classical recursive algorithm [27, 33]: in-
stead of a brute-force search he used a modification of the progress measure lifting
algorithm [20].

2. Definitions. A parity game G = (V0, V1, E, p) is composed of two disjoint
sets of vertices V0 and V1, a set of directed edges E ⊆ V ×V , where V = V0 ∪V1, and
a priority function p : V0 ∪ V1 → N, defined on its vertices. Every vertex u ∈ V has
at least one outgoing edge (u, v) ∈ E. The game is played by two players: Even, also
referred to as Player 0, and Odd, also referred to as Player 1.

The game starts at some vertex v0 ∈ V . The players construct an infinite path
(a play) as follows. Let u be the last vertex added so far to the path. If u ∈ V0, then
Player 0 chooses an edge (u, v) ∈ E. Otherwise, if u ∈ V1, then Player 1 chooses an
edge (u, v) ∈ E. In either case, vertex v is added to the path, and a new edge is then
chosen by either Player 0 or Player 1. As each vertex has at least one outgoing edge,
the path constructed can always be continued.

Let v0, v1, v2, . . . be the infinite path constructed by the two players, and let
p(v0), p(v1), p(v2), . . . be the sequence of the priorities of the vertices on the path.
Player 0 wins the play if the largest priority seen infinitely many times is even, and
Player 1 wins otherwise. Observe that removing an arbitrary finite prefix of a play in
a parity game does not change the winner; we refer to this property of parity games
as prefix independence.

A strategy for Player i in a game G specifies, for every finite path v0, v1, . . . , vk
in G that ends in a vertex vk ∈ Vi, an edge (vk, vk+1) ∈ E. A strategy is said to be
a positional strategy if the edge (vk, vk+1) ∈ E chosen depends only on vk, the last
vertex visited. A strategy for Player i is said to be a winning strategy if using this
strategy ensures a win for Player i, no matter which strategy is used by the other
player. The determinacy theorem for parity games [11, 15] says that for every parity
game G and every start vertex v0, either Player 0 has a winning strategy or Player 1
has a winning strategy. (This claim is not immediate as the games considered are
infinite.) Furthermore, if a player has a winning strategy from a vertex in a parity
game, then she also has a winning positional strategy from this vertex.

In the parity gameG illustrated in Figure 2.1, the initial vertex is labeled a, Even’s
vertices are represented as squares (even number of sides), and Odd ’s as triangles. The
numbers within the vertices show priorities. Note that each player’s vertices may have
both even and odd parities. As an example of a play in G, if each player were to choose
the double-headed arrow out of each of their vertices, then the infinite path formed
would be a, d, b, e, d, b, e, . . . , and the largest priority seen infinitely often would be 4
at vertex e. So Even would win this play.
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Fig. 2.1. A parity game G. Double-headed arrows show a positional strategy for each player.

The winning set for Player i, denoted by wini(G), is the set of vertices of the
game from which Player i has a winning strategy. By the determinacy theorem for
parity games [11, 15] we have that win0(G) ∪ win1(G) = V .

3. Overview of the new algorithm. The previously known deterministic al-
gorithm [33, 15] on which our improvement is built will be described fully in section 5.
It has a recursive structure: solving a game with n vertices may require two recursive
calls to smaller games. In the worst case, each of these games may have n−1 vertices,
resulting in a running time satisfying the recurrence T (n) ≤ 2T (n−1)+O(n2), which
yields T (n) = O(2n). We offer no improvement in the first of the two recursive calls,
but we do take advantage of a special feature of the second of these.

We introduce the notion of a dominion. An i-dominion, as the name suggests, is
a set of vertices D ruled by Player i, in the sense that Player i can win from every
vertex of D, without leaving D and without allowing the other player to leave D.
One example of an i-dominion would be the whole of wini(G), but there may well
be other “i-closed” subsets of wini(G) which are i-dominions. Although finding i-
dominions can be just as hard as finding wini(G), we show that searching for small
enough dominions is feasible, though taking time exponential in the size of dominion
sought.

The significance of dominions for our algorithm depends on two properties. First,
every i-dominion found can be easily removed at small cost, leaving a smaller game
to be solved. Second, the second of the recursive calls is to a game resulting from the
removal of a dominion. Therefore, if we look for and then remove all small dominions
before entering the recursive calls, we can be sure that the second recursive call is
to a substantially reduced game. The corresponding recurrence is then of the form
T (n) ≤ T (n− 1) + T (n− �) +O(n�) for some � = �(n).

With an appropriate choice of �(n) to achieve a balance between the time to
search for dominions of size up to � and the savings from avoidance of the worst cases
of the second recursive call, we achieve our subexponential algorithm with running
time nO(

√
n).

In the next section we prepare for the algorithms by introducing some key notions
(i-closed and reachability set) and proving some of their properties. Lemmas 4.5
and 4.6 lay the foundation for the exponential algorithm. They show that we can
begin to solve a game G by considering the set A of vertices with highest priority
which Player i (say) would like the play to visit infinitely often, and identifying the
set A∗ from which Player i can guarantee to reach A at least once. From Lemma 4.6,
we see that by first solving the smaller game G′ based on vertices in V (G)\A∗ we can
identify a subset U of the winning set of the opponent of Player i, say Player j, in G.
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By Lemma 4.5 we then know that the set U∗, from which Player j can guarantee to
reach U at least once, is also included in the winning set of Player j in G. Moreover,
Lemma 4.5 establishes that the winning set of Player i in G is equal to her winning
set in the smaller game based on vertices in V (G) \U∗, and hence the task of solving
the game G is reduced to the task of solving the smaller game. For an illustration,
see Figure 5.2, where A∗ = reachi(A), U = W ′

j , and U∗ = reachj(W ′
j).

After giving details of the exponential algorithm in section 5, we show in section 6
how to find dominions. In sections 7 and 8 we integrate this search-and-remove process
into our new algorithm and analyze the resulting running time.

4. Preliminaries. The results presented in this section are well known [15] and
form the basis of algorithms by McNaughton [27] and Zielonka [33]. We include our
detailed exposition of them here in order to fix the terminology and to make the paper
self-contained.

A set B ⊆ V is said to be i-closed, where i ∈ { 0, 1 }, if for every u ∈ B the
following hold:

• if u ∈ Vi, then there is some (u, v) ∈ E, such that v ∈ B; and
• if u ∈ V¬i, then for every (u, v) ∈ E, we have v ∈ B.

(We use ¬i for the element (1 − i) in { 0, 1 }.) In other words, a set B is i-closed if
Player i can always choose to stay in B while Player ¬i cannot escape from it, i.e., B
is a “trap” for Player ¬i.

Lemma 4.1. For each i ∈ { 0, 1 }, the set wini(G) is i-closed.
Proof. The proof is straightforward from the definitions and prefix independence

of parity games.
Let A ⊆ V be an arbitrary set. The i-reachability set of A, denoted reachi(A),

contains all vertices in A and all vertices from which Player i has a strategy to enter
the set A at least once; we call such a strategy an i-reachability strategy to set A. (See
Figure 4.1 for a simple example.)

3

2 3 2

4 1

G

A

reach0(A)

Fig. 4.1. The 0-reachability set of A and a positional 0-reachability strategy to set A.

Lemma 4.2. For every set A ⊆ V and i ∈ {0, 1}, the set V \ reachi(A) is
(¬i)-closed.

Proof. Let u ∈ V \ reachi(A). Recall that every vertex has at least one outgoing
edge; hence if u ∈ V¬i, then there must be an edge (u, v) ∈ E from vertex u into the
set V \ reachi(A), i.e., such that v 	∈ reachi(A), since otherwise vertex u would be
in reachi(A). Similarly, if u ∈ Vi, then all edges from vertex u must go into the set
V \ reachi(A). Therefore, the set V \ reachi(A) is (¬i)-closed.

Lemma 4.3. For every set A ⊆ V and i ∈ {0, 1}, the set reachi(A) can be
computed in O(m) time, where m = |E| is the number of edges in the game.
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Proof. The vertices of A are in reachi(A) so we initialize B ← A. We then
iteratively add to B every vertex of Vi that has at least one edge going into B, and
every vertex of V¬i all of whose edges go into B. We stop when no new vertices can
be added to B.

Some care is needed to keep the time in O(m). One method is to maintain an
adjacency list giving, for each vertex, the incoming edges together with a count of the
number of outgoing edges. At each step we take an edge (u, v) entering B and delete
it (from the list of edges entering v and from the count of edges leaving u): if u ∈ B,
then nothing more is done; otherwise, if u ∈ Vi, then u is added to B; otherwise (when
u ∈ V¬i \B), if there are no other edges from u, then u is added to B.

It is easy to see that this process can be performed in O(m) time, and that when
it ends we have B = reachi(A), as required.

If B ⊆ V is such that for every vertex u ∈ V \ B there is an edge (u, v) with
v ∈ V \ B, then the subgame G \ B is the game obtained from G by removing the
vertices of B and all the edges that touch them. We will only be using B’s for which
V \ B is an i-closed set for some i. In such cases G \ B is always well-defined. The
next lemmas show some useful properties of subgames.

Lemma 4.4. Let G′ be a subgame of G and let i ∈ {0, 1}. If V ′, the vertex set
of G′, is i-closed in G, then wini(G′) ⊆ wini(G).

Proof. A winning strategy for Player i from the set wini(G′) in the subgame G′

is also winning for her from the same set in the original game G. Player ¬i cannot
escape to V \ V ′, since the set V ′ is i-closed in G.

The following lemma implies that if we know an arbitrary nonempty subset U of
the winning set of a player, say Player j, in a game G, then computing the winning
sets of both players in G can be reduced to computing their winning sets in the smaller
game G \ reachj(U).

Lemma 4.5. Let G be a parity game, let i ∈ { 0, 1 } and j = ¬i. If U ⊆ winj(G)
and U∗ = reachj(U), then winj(G) = U∗∪winj(G\U∗) and wini(G) = wini(G\U∗).

winj(G \ U ∗) wini(G \ U ∗)

Wj Wi

U

U ∗ = reachj(U) G \ U ∗

Fig. 4.2. Diagram illustrating Lemma 4.5.

Proof. Let Wj = U∗ ∪winj(G \U∗) and Wi = wini(G \U∗); see Figure 4.2. Since
(Wi,Wj) is a partition of V , it suffices to show that Wi ⊆ wini(G) and Wj ⊆ winj(G).
By Lemma 4.2, V \ U∗, the vertex set of G \ U∗, is i-closed. The first inclusion then
follows from Lemma 4.4.

To show the second inclusion, we exhibit a strategy for Player j that is winning
for her from the set Wj in the game G. By the assumption that U ⊆ winj(G), there
is a strategy σ for Player j in the game G which is winning for her from all vertices
in U . Let τ be a winning strategy for Player j from the set winj(G \ U∗) in the
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subgame G \ U∗. A strategy π for Player j in the game G is made by composing
strategies τ and σ in the following way: if the play so far is contained in the set
winj(G \ U∗), then follow strategy τ ; otherwise use the j-reachability strategy to the
set U and “restart” the play following the strategy σ thenceforth. The strategy π
is well-defined because, by Lemma 4.1, Player i can escape from winj(G \ U∗) only
into the set U∗. By prefix independence of parity games, the strategy π is a winning
strategy for Player j, because if it ever switches from following τ to following σ, then
an infinite suffix of the play is winning for Player j.

The next lemma complements Lemma 4.5 by providing an algorithmic method
which either finds a nonempty subset of the winning set of a player, say Player j, in a
parity game G, or (if it returns an empty set) concludes that Player ¬j can win from
every vertex in G.

Lemma 4.6. Let G be a parity game. Let d = d(G) be the highest priority and
let A = Ad(G) be the set of vertices of highest priority. Let i = d mod 2 and j = ¬i.
Let G′ = G \ reachi(A). Then we have winj(G′) ⊆ winj(G). Also, if winj(G′) = ∅,
then wini(G) = V (G), i.e., Player i wins from every vertex of G.

(As an example, consider Figures 4.1 and 4.3, with i = 0 and j = 1.)

3

2 2

1
W1'

G' =G \ reach0(A)

W0'

Fig. 4.3. The game G′ = G \ reach0(A) and winning sets W ′
i = wini(G

′) for i = 0, 1.

Proof. That winj(G′) ⊆ winj(G) follows from Lemmas 4.2 and 4.4.
Suppose now that winj(G′) = ∅. Let τ be a winning strategy for Player i from

wini(G′) (which, by determinacy, is equal to V \ reachi(A)) in the subgame G′. We
construct a strategy π for Player i in the following way: if a play so far is contained in
the set wini(G′), then follow strategy τ ; otherwise the current vertex is in reachi(A) so
follow the i-reachability strategy to the set A; moreover, each time the play reenters
the set wini(G′) “restart” the play and follow strategy τ , etc. If a play following
the strategy π visits reachi(A) (and hence A) infinitely often, then it is winning for
Player i because i = d mod 2. Otherwise, it has an infinite suffix played according
to strategy τ , and hence it is winning for Player i by prefix independence of parity
games.

5. An exponential algorithm. A simple exponential-time algorithm for the
solution of parity games is given in Figure 5.1. This algorithm originates from the
work of McNaughton [27] and was first presented for parity games by Zielonka [33, 15].
Algorithm win(G) receives a parity game G and returns the pair of winning sets
(win0(G),win1(G)) for the two players.

Algorithm win(G) is based on Lemmas 4.5 and 4.6. It starts by letting d be the
largest priority in G and by letting A be the set of vertices having this highest priority.
Let i = d mod 2 be the index of the player associated with the highest priority, and
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algorithm win(G)

if V (G) = ∅ then return (∅, ∅)
d ← d(G) ; A ← Ad(G)
i ← d mod 2 ; j ← ¬i

(W ′
0, W

′
1) ← win(G \ reachi(A))

if W ′
j = ∅ then

(Wi, Wj) ← (V (G), ∅)
else

(W ′′
0 , W ′′

1 ) ← win(G \ reachj(W
′
j))

(Wi, Wj) ← (W ′′
i , V (G) \ W ′′

i )
endif

return (W0, W1)

Fig. 5.1. An exponential algorithm for solving parity games.

G′ = G \ reachi(A) reachi(A)

G′′ = G \ reachj(W
′
j)

W ′
j = winj(G

′)

A

G′′ = G \ reachj(W
′
j)

reachj(W
′
j)

Fig. 5.2. A game G and its subgames G′ = G \ reachi(A) and G′′ = G \ reachj(W
′
j).

let j = ¬i be the index of the other player. The algorithm first finds the winning sets
(W ′

0,W
′
1) of the smaller game G′ = G\reachi(A), using a recursive call; see Figure 5.2.

By Lemma 4.6, if W ′
j = ∅, then Player i wins from all vertices of G and we are

done. Otherwise, again by Lemma 4.6, we know that W ′
j ⊆ winj(G). The algorithm

then finds the winning sets (W ′′
0 ,W

′′
1 ) of the smaller game G′′ = G \ reachj(W ′

j)
by a second recursive call. By Lemma 4.5, we then know that wini(G) = W ′′

i and
winj(G) = reachj(W ′

j) ∪W ′′
j = V (G) \W ′′

i .
A small detailed illustration of the main steps of the algorithm is given in Fig-

ures 4.1, 4.3, 5.3, and 5.4.
Theorem 5.1. Algorithm win(G) correctly finds the winning sets of the parity

game G. Its running time is O(2n), where n = |V (G)| is the number of vertices in G.
Proof. The correctness of the algorithm follows from Lemmas 4.5 and 4.6, as

argued above. Let T (n) be the maximum running time of algorithm win(G) for a
game on at most n vertices. Algorithm win(G) makes two recursive calls win(G′)
and win(G′′) on games with at most n−1 vertices. Other than that, it performs only
O(n2) operations. (The most time-consuming operations are the computations of the
sets reachi(A) and reachj(W ′

j).) Thus T (n) ≤ 2T (n − 1) + O(n2). It is easy to see
then that T (n) = O(2n).
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3

2 3 2

4 1

G

W1' reach1(W1' )

Fig. 5.3. The 1-reachability set of W ′
1.

3 2
G'' = G \ reach1(W1' )

Fig. 5.4. The game G′′ = G \ reach1(W ′
1).

6. Finding small dominions. A set D ⊆ V (G) is said to be an i-dominion if
Player i can win from every vertex of D without ever leaving D. Note, in particular,
that an i-dominion must be i-closed. A set D ⊆ V (G) is said to be a dominion if it
is either a 0-dominion or a 1-dominion. By prefix independence of parity games, the
winning set wini(G) of Player i is an i-dominion.

Lemma 6.1. Let G be a parity game on n vertices and let � ≤ n/3. There is
an O(n�)-time algorithm that finds a nonempty dominion in G of size at most �, or
determines that no such dominion exists.

Proof. If � ≤ n/3, then, for all j ≤ �, we have that
(
n
j

)
/
(
n
j−1

)
> 2. The number∑�

j=1

(
n
j

)
of subsets of V of size at most � is therefore at most 2

(
n
�

)
. For each such

subset U we check, in O(�2) time, whether it is 0-closed or 1-closed. If both tests
fail, then U is clearly not a dominion. If U is i-closed, for some i ∈ {0, 1}, we form
the game G[U ], which is the game G restricted to U . This is well-defined since U is
i-closed. We now apply the exponential algorithm of the previous section to G[U ] and
find out, in O(2�) time, whether Player i can win from all the vertices of G[U ]. If so,
then U is an i-dominion; otherwise it is not. The total running time of the algorithm
is therefore O(

(
n
�

)
2�) = O(n�), as required.

In a game with bounded out-degrees we can find small dominions even faster.
For simplicity, the lemma below and the analysis in section 8 are stated for games
in which the out-degree of every vertex is exactly two. Note, however, that for every
constant b, every game on n vertices with out-degrees at most b can be easily converted
into an equivalent game on at most n(b− 1) vertices with out-degrees exactly two, by
replacing each higher-degree vertex by a binary tree.

Lemma 6.2. Let G be a parity game on n vertices in which the out-degree of
each vertex is two. There is an O(n2�� log �)-time algorithm that finds a nonempty
dominion in G of size at most �, or determines that no such dominion exists.

Proof. Assume, without loss of generality, that the vertices of G are numbered
from 1 to n. Let u ∈ V be a vertex of G and let (u, v0) and (u, v1) be the two edges
emanating from v, where v0 ≤ v1. We say that (u, v0) is the 0th outgoing edge of v,
while (u, v1) is the 1st outgoing edge of v.

The algorithm generates at most O(n2�) 0-closed sets of size at most � that are
candidates for being 0-dominions. For every vertex v ∈ V and a binary sequence
〈a1, . . . , a�〉 ∈ {0, 1}�, construct a set U ⊂ V as follows. Start with U = {v} and
r = 1. Vertices added to U are initially unmarked. As long as there is still an
unmarked vertex in U , pick the smallest such vertex u ∈ U and mark it. If u ∈ V0,
then add the endpoint of the arth outgoing edge of u to U , if it is not already there,
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and increment r. If u ∈ V1, then add the endpoints of both the outgoing edges of u
to U . If at some stage |U | > �, then discard the set U and restart the construction
with the next binary sequence.

If the process above ends with |U | ≤ �, then a 0-closed set of size at most � has
been found. Furthermore, for every vertex u ∈ U ∩ V0, one of the outgoing edges of u
was selected. This corresponds to a suggested strategy for Player 0 in the game G[U ].
Our algorithm therefore considers by exhaustive search all 0-closed sets of at most �
vertices, and for each set considers all possible positional strategies for Player 0.

Using an algorithm of King, Kupferman, and Vardi [24] we can check, in O(� log �)
time, whether a given U and proposed strategy is indeed a winning strategy for
Player 0 from all the vertices of U . Thus, if there is a 0-dominion of size at most �
in G, then the algorithm will find one. Finding 1-dominions of size at most � can be
done in an analogous manner.

The algorithm described in Lemma 6.1 finds some i-dominion D if there is a
dominion of size at most �. We denote this algorithm by dominion(G, �), and suppose
that it returns either the pair (D, i) if successful, or (∅,−1) if not.

7. The new subexponential algorithm. The new algorithm for solving parity
games is given in Figure 7.1. The algorithm new-win starts by trying to find a
dominion of size at most �, where � = �

√
2n � (and � = �

√
n logn � for games with

bounded out-degree) is a parameter chosen to minimize the running time of the whole
algorithm. If such a small i-dominion is found, then it is easy to remove it, as well
as its i-reachability set, from the game and recurse on what is left over. If no small

algorithm new-win(G)

if V (G) = ∅ then return (∅, ∅)
n ← |V (G)| ; � ← �

√
2n�

(D, i) ← dominion(G, �); j ← ¬i

if D = ∅ then

(W0, W1) ← old-win(G)
else

(W ′
0, W

′
1) ← new-win(G \ reachi(D))

(Wj , Wi) ← (W ′
j , V (G) \ W ′

j)
endif

return(W0, W1)

algorithm old-win(G)

d ← d(G) ; A ← Ad(G)
i ← d mod 2 ; j ← ¬i

(W ′
0, W

′
1) ← new-win(G \ reachi(A))

if W ′
j = ∅ then

(Wi, Wj) ← (V (G), ∅)
else

(W ′′
0 , W ′′

1 ) ← new-win(G \ reachj(W
′
j))

(Wi, Wj) ← (W ′′
i , V (G) \ W ′′

i )
endif

return (W0, W1)

Fig. 7.1. The new subexponential algorithm for solving parity games.
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dominion is found, then new-win(G) simply calls algorithm old-win(G), which is
almost identical to the exponential algorithm win(G) of section 5. The only difference
between old-win(G) and win(G) is that the recursive calls are made to new-win(G)
and not to win(G).

Theorem 7.1.Algorithm new-win(G) correctly finds the winning sets of a parity
game G. Its running time on a game with n vertices is nO(

√
n).

Proof. The correctness of the algorithm is immediate. We next analyze its running
time. Let T (n) be the maximum running time of new-win(G) on a game with at
most n vertices.

Algorithm new-win(G) tries to find dominions of size at most � = �
√

2n �. By
Lemma 6.1 this takesO(n�) time. If a nonempty dominion is found, then the algorithm
simply proceeds on the remaining game, which has at most n − 1 vertices, and the
remaining running time is therefore at most T (n−1). Otherwise, a call to old-win(G)
is made. This results in a call to new-win(G\reachi(A)), which takes at most T (n−1)
time. If the set W ′

j returned by the call is empty, then we are done. Otherwise,
W ′
j = winj(G \ reachi(A)), and this is equal to winj(G) by Lemma 4.5. Therefore W ′

j

is a j-dominion of G. We are in the case that there is no small dominion in G, so we
know that |W ′

j | > �, and therefore the second recursive call new-win(G\ reachj(W ′
j))

takes at most T (n− �) time. Thus we get

T (n) ≤ O(n�) + T (n− 1) + T (n− �).

This recurrence relation, with � = �
√

2n�, is analyzed in Theorem 8.1, where it is
shown that T (n) = nO(

√
n).

A slightly better bound is achieved for graphs with out-degree two.
Theorem 7.2. Consider the algorithm new-win(G) in which the variable � is

set to �
√
n logn �. If the game G has n vertices and the out-degree of each of them is

two, then the running time of the modified algorithm is nO(
√
n/ logn).

Proof. Note that if � = �
√
n logn �, then O(n2�� log �) = nO(

√
n/ logn ). Therefore,

by Lemma 6.2 and by the analysis in the proof of the previous theorem, the time
complexity T (n) satisfies the following recurrence:

T (n) ≤ nO(
√
n/ log n ) + T (n− 1) + T (n− �).

The recurrence is analyzed in the following section in Theorem 8.2, where we show
that T (n) = nO(

√
n/ logn ).

8. Solving the recurrence relations. In this section we analyze the recurrence
relations used in the previous section to bound the running time of the new algorithm.

We start by analyzing the recurrence relation used to bound the running time of
the algorithm for game graphs with arbitrary out-degrees.

Theorem 8.1. If T (n) is a positive function such that, for every n > 3,

T (n) ≤ O(n�) + T (n− 1) + T (n− �),

where � = �
√

2n �, then T (n) = nO(
√
n).

Proof. For every integer n we construct a binary tree Tn in the following way.
The root of Tn is labeled by n. A node labeled by a number k > 3 has two children:
a left child labeled by k − 1 and a right child labeled by k − �

√
2k �. Nodes labeled

by the numbers 1, 2, and 3 are leaves. A node labeled by k has a cost of kO(
√

2k)
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associated with it. It is easy to see that the sum of the costs of the nodes of Tn is an
upper bound on T (n).

Clearly, the length of every path in Tn from the root to a leaf is at most n. We
say that such a path makes a right turn when it descends from a vertex to its right
child. We next claim that each such path makes at most �

√
2n� right turns. This

follows immediately from the observation that the function f(n) = n − �
√

2n� can
be iterated on n at most �

√
2n� times before reaching the value of 3 or less. This

observation can be proved by induction, based on the fact that if 1
2 j

2 < n ≤ 1
2 (j+1)2,

then n− �
√

2n� ≤ 1
2j

2. (Initially we have j = �
√

2n� and finally, with 1 ≤ n ≤ 3, we
have j ≥ 1.)

As each leaf of Tn is determined by the positions of the right turns on the path
leading to it from the root, we get that the number of leaves in Tn is at most

(
n

�
√

2n	
)
.

The total number of nodes in Tn is therefore at most 2
(

n
�
√

2n	
)
. As the cost of each

node is at most nO(
√

2n), we immediately get that

T (n) ≤ 2
(

n

�
√

2n�

)
nO(

√
2n) = nO(

√
n) ,

as claimed.
A more careful analysis, in which the O(n�) term in the recurrence relation is

replaced by O
((
n
�

)
2�
)
, can be used to show that T (n) = O((cn)

√
n/2), for some

constant c > 0, and that the choice � = �
√

2n � is essentially optimal.
The running time of the algorithm for graphs with out-degree two satisfies a

tighter recurrence relation, which is analyzed similarly in the next theorem.
Theorem 8.2. If T (n) is a positive function such that, for every n > 3,

T (n) ≤ nO(
√
n/ logn ) + T (n− 1) + T (n− �),

where � = �
√
n logn �, then T (n) = nO(

√
n/ logn ).

Proof. The proof is similar to the proof of Theorem 8.1. For every integer n we
again construct a tree Tn. A node labeled by a number k > 2 now has a left child
labeled by k−1 and a right child labeled by k−�

√
k log k �. The cost of a node labeled

by k is now kO(k/ log k). Every root-to-leaf path in Tn is again of length at most n,
and it can now make at most O(

√
n/ logn) right turns. Thus, the number of nodes

in Tn is at most nO(
√
n/ logn). As the cost of each node is also nO(

√
n/ logn), we get

that T (n) = nO(
√
n/ logn), as claimed.

9. Concluding remarks. We have obtained the first deterministic subexpo-
nential algorithm for solving parity games. Our algorithm does not seem to extend
in an obvious way to the solution of the more general mean payoff games and simple
stochastic games. On the other hand, the techniques that we have introduced in this
paper have recently inspired a notable improvement in the running-time complexity
of parity games with a small number of priorities [30].
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[28] J. Obdržálek, Fast mu-calculus model checking when tree-width is bounded, in Computer-

Aided Verification (CAV), Lecture Notes in Comput. Sci. 2725, Springer, Berlin, 2003,
pp. 80–92.

[29] C. H. Papadimitriou, On the complexity of the parity argument and other inefficient proofs
of existence, J. Comput. System Sci., 48 (1994), pp. 498–532.

[30] S. Schewe, Solving parity games in big steps, in Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), Lecture Notes in Comput. Sci. 4855, Springer,
Berlin, 2007, pp. 449–460.

[31] O. Svensson and S. Vorobyov, Linear complementarity and P-matrices for stochastic games,
in Perspectives of Systems Informatics, Andrei Ershov Memorial Conference (PSI 2006),
Lecture Notes in Comput. Sci. 4378, Springer, Berlin, 2007, pp. 409–423.
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tors in a flowgraph. Computing dominators is a fundamental problem in the theory
of directed graphs and is a crucial first step in global optimizations of computer code.
Although versions of the 1979 dominators algorithm are very fast in practice [34] and
are widely used, the question remained of whether dominators could be computed in
linear time, in either the random-access-machine (RAM) model or the less powerful
pointer-machine model. Harel [37] claimed to have a linear-time RAM algorithm,
but Alstrup et al. [10] found problems in his work. They developed a correct but
very complicated algorithm that uses powerful bit-manipulation techniques. Buchs-
baum et al. [16] claimed to present a simpler linear-time algorithm, but Georgiadis
and Tarjan [32] found a flaw in their analysis, which, when corrected, results in a
nonlinear-time bound. They also presented a way to repair and modify the algorithm
so that it does indeed run in linear time, on a pointer machine. Buchsbaum et al. [16,
Corrig.] gave a different fix for the RAM model.

Our paper addresses the question of exactly what techniques are needed to com-
pute dominators in linear time and explores the range of application of these tech-
niques. We clarify and extend the conference papers [15, 32] to provide not only a
linear-time algorithm for finding dominators but linear-time algorithms for a variety
of related problems as well. We avoid the use of bit-manipulation techniques, so that
all our algorithms can run on a pointer machine. We describe the techniques needed
(in different combinations) to obtain these results as well as the key difficulties in the
dominators problem.

2. Overview. We study six problems—off-line computation of nearest common
ancestors (NCAs), verification and construction of minimum spanning trees (MSTs),
interval analysis of flowgraphs, finding dominators in flowgraphs, and building the
component tree of a weighted tree—that directly or indirectly require the evaluation
of a function defined on paths in a tree. Each of these problems has a linear-time
algorithm on a RAM. Some of these algorithms are quite complicated, and the fastest
pointer-machine algorithms are slower by an inverse-Ackermann-function factor.1 (See
Table 2.1.)

Table 2.1

Time bounds, where n is the number of vertices, m is either the number of edges/arcs for
graph problems or the number of NCA queries for the NCA problem, and α(m, n) is the standard
functional inverse of the Ackermann function.

Problem Previous pointer-machine bound Previous RAM bound

Off-line NCAs O(mα(m, n) + n) [3] O(n + m) [38, 52]

MST verification O(mα(m, n) + n) [58] O(n + m) [22, 40]

MST construction O(mα(m, n) + n) [18] O(n + m) [26, 39]

Interval analysis O(mα(m, n) + n) [57] O(n + m) [29, 57]

Dominators O(mα(m, n) + n) [43] O(n + m) [10, 16]

Component trees O(mα(m, n) + n) O(n + m) [62]

A pointer machine [59] allows binary comparisons and arithmetic operations on
data, dereferencing of pointers, and equality tests on pointers. It does not permit
pointer arithmetic or tests on pointers other than testing for equality and is thus less
powerful than the RAM model [2]. Pointer machines are powerful enough to simulate

1We use Tarjan’s definition [56]. Let A(i, j) for i, j ≥ 1 be defined by A(1, j) = 2j for j ≥ 1;
A(i, 1) = A(i−1, 2) for i ≥ 2; and A(i, j) = A(i−1, A(i, j−1)) for i, j ≥ 2. Then α(m, n) = min{i ≥
1 : A(i, �m/n�) > log n}.
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functional programming languages like LISP and ML. Pointer machine algorithms can
be simpler than RAM algorithms in that they avoid the use of table look-up and more
complicated bit-manipulation techniques. Thus pointer machine algorithms may have
a conceptual, if not a practical, advantage over RAM algorithms.

We develop linear-time algorithms for all six problems that are simpler than the
previous algorithms, in some cases substantially. We extract the commonalities among
the problems and develop a set of techniques that in various combinations give our
efficient algorithms. We do not use table look-up or any bit-manipulation techniques,
so all our algorithms can run on a pointer machine.

Our improvements come mainly from three new ideas. The first is a refined anal-
ysis of path compression. Path compression is a well-known technique first used to
speed up the standard disjoint-set-union (DSU) data structure [56] and later extended
to speed up the evaluation of functions defined on paths in trees [58]. Our applica-
tions use either the DSU structure or path evaluation for the function minimum or
maximum, or both. We show that, under a certain restriction on the compressions,
which is satisfied by our applications, compression takes constant rather than inverse-
Ackermann amortized time.

The second new idea is to replace the table-based methods of the RAM algo-
rithms with radix sorting. Each of the RAM algorithms precomputes answers to
small subproblems, stores the answers in a table, and looks up the answers by ran-
dom access. If the size of the subproblems is small enough, the total size of all distinct
subproblems and the total time to solve them are linear (or even sublinear) in the
size of the original problem. Our alternative approach is to construct an encoding
of each subproblem, group isomorphic subproblems together using a radix sort, solve
one instance of each group of isomorphic subproblems, and transfer its solution to the
isomorphic subproblems.

The third new idea is to change the partitioning strategy. In order to reduce the
original problem to a collection of small subproblems, the RAM algorithms partition
a tree corresponding to the original problem into small subtrees. For some of the
problems, partitioning the entire tree into subtrees produces serious technical compli-
cations, especially for computing dominators. Instead, for all but one of the problems
we partition only the bottom part of the tree into small subtrees. For NCAs and
MSTs, this technique together with our refined analysis of path compression suffices
to yield a linear-time algorithm. For interval analysis and finding dominators, we also
partition the remainder of the tree into a set of maximal disjoint paths. Only one of
our applications, building a component tree, relies on the original idea of partitioning
the entire tree into small subtrees.

The remainder of our paper proceeds as follows. Section 3 formally defines the
problems we consider and reviews previous work. Section 4 discusses DSU and com-
puting path minima on trees, and gives a refined analysis of path compression. Sec-
tion 5 discusses the use of radix sorting to solve a graph problem for a collection of
many small instances. Sections 6 through 10 discuss our applications: NCAs, MSTs,
flowgraph interval analysis, finding dominators, and building a component tree, re-
spectively. Section 11 contains concluding remarks. Our paper is a significantly
revised and improved combination of two conference papers [15, 32], including new
results in sections 8 and 10.

3. Problem definitions and previous work. Throughout this paper we de-
note the base-two logarithm by log. We assume n ≥ 2 throughout.
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3.1. Nearest common ancestors.
Problem 3.1 (off-line nearest common ancestors). Given an n-node tree T rooted

at node r and a set P of m node pairs, find, for each pair {v, w} in P , the nearest
common ancestor of v and w in T , denoted by nca(v, w).

The fastest previous pointer-machine algorithm is that of Aho, Hopcroft, and
Ullman (AHU) [3], which runs in O(n + mα(m + n, n)) time. The AHU algorithm
uses a DSU data structure; it runs in O(n + m) time on a RAM if this structure is
implemented using the DSU algorithm of Gabow and Tarjan [29] for the special case in
which the set of unions is known in advance. The first linear-time RAM algorithm was
actually given by Harel and Tarjan [38]. Other linear-time RAM algorithms were given
by Schieber and Vishkin [52], Bender and Farach-Colton [12], and Alstrup et al. [9].

There are several variants of the NCAs problem of increasing difficulty. For each
but the last, there is a nonconstant-factor gap between the running time of the fastest
RAM and pointer-machine algorithms.

• Static on-line. T is given a priori but P is given on-line: each NCA query
must be answered before the next one is known.

• Linking roots. T is given dynamically. Specifically, T is initially a forest
of singleton nodes. Interspersed with the on-line NCA queries are on-line
link(v, w) operations, each of which is given a pair of distinct roots v and w
in the current forest and connects them by making v the parent of w.

• Adding leaves. Like linking roots, only v is any node other than w and w is
a singleton.

• General linking. Like linking roots, only v can be any node that is not a
descendant of w.

• Linking and cutting. Like general linking, but with additional interspersed
cut(v) operations, each of which is given a nonroot node and makes it a root
by disconnecting it from its parent.

Harel and Tarjan [38] showed that the static on-line problem (and thus each more
general variant) takes Ω(log logn) time on a pointer machine for each query, in the
worst case. Alstrup and Thorup [7] gave a matching O(n+m log logn)-time pointer-
machine algorithm for general linking, which is also optimal for the static on-line,
linking roots, and adding leaves variants. Earlier, Tsakalidis and van Leeuwen [63]
gave such an algorithm for the static on-line variant, and a modified version of van
Leeuwen’s earlier algorithm [64] has the same bound for linking roots. The fastest
known pointer-machine algorithm for linking and cutting is the O(n +m logn)-time
algorithm of Sleator and Tarjan [53]; Harel and Tarjan [38] conjectured that this is
asymptotically optimal, which in the cell-probe model follows from a result of Pǎtraşcu
and Demaine [47]. On a RAM, the fastest known algorithms take Θ(n+m) time for
the static on-line [38, 52] and adding leaves [27] variants, O(n +mα(m+ n, n)) time
for linking roots [38] and general linking [27], and O(n+m logn) time for linking and
cutting [53]. All these algorithms use O(n + m) space. For a more thorough survey
of previous work see Alstrup et al. [9].

3.2. Verification and construction of MSTs.
Problem 3.2 (MST construction). Given an undirected, connected graph G =

(V,E) whose edges have real-valued weights, find a spanning tree of minimum total
edge weight (an MST) of G.

Problem 3.3 (MST verification). Given an undirected, connected graph G =
(V,E) whose edges have real-valued weights and a spanning tree T of G, determine
whether T is an MST of G.
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In both problems, we denote by n and m the numbers of vertices and edges,
respectively. Since G is connected and n ≥ 2, m ≥ n− 1 implies n = O(m).

MST construction has perhaps the longest and richest history of any network
optimization problem; Graham and Hell [35] and Chazelle [18] provide excellent
surveys. A sequence of faster and faster algorithms culminated in the random-
ized linear-time algorithm of Karger, Klein, and Tarjan [39]. This algorithm re-
quires a RAM, but only for a computation equivalent to MST verification. It is
also comparison-based : the only operations it does on edge weights are binary com-
parisons. Previously, Fredman and Willard [26] developed a linear-time RAM algo-
rithm that is not comparison-based. Subsequently, Chazelle [18] developed a deter-
ministic, comparison-based O(mα(m,n))-time pointer-machine algorithm, and Pet-
tie and Ramachandran [49] developed a deterministic, comparison-based pointer-
machine algorithm that runs in minimum time to within a constant factor. Getting an
asymptotically tight bound on the running time of this algorithm remains an open
problem.

Although it remains open whether there is a comparison-based, deterministic
linear-time MST construction algorithm, even for a RAM, such algorithms do exist for
MST verification. Tarjan [58] gave a comparison-based, deterministic O(mα(m,n))-
time pointer-machine algorithm for verification. Komlós [41] showed how to do MST
verification in O(m) comparisons, without providing an efficient way to determine
which comparisons to do. Dixon, Rauch, and Tarjan [22] combined Tarjan’s algorithm,
Komlós’s bound, and the tree partitioning technique of Gabow and Tarjan [29] to
produce a comparison-based, deterministic linear-time RAM algorithm. King later
gave a simplified algorithm [40].

3.3. Interval analysis of flowgraphs. A flowgraph G = (V,E, r) is a directed
graph with a distinguished root vertex r such that every vertex is reachable from r.
A depth-first spanning tree D of G is a spanning tree rooted at r defined by some
depth-first search (DFS) of G, with the vertices numbered from 1 to n in preorder
with respect to the DFS (the order in which the search first visits them). We identify
vertices by their preorder number. We denote by n and m the number of vertices and
arcs of G, respectively.

Problem 3.4 (interval analysis). Given a flowgraph G and a depth-first spanning
tree D of G, compute, for each vertex v, its head h(v), defined by

h(v) = max{u : u is a proper ancestor of v in D and there is a path
from v to u in G containing only descendants of u},
or null if this set is empty.

The heads define a forest called the interval forest H , in which the parent of a
vertex is its head. If v is any vertex, the descendants of v in H induce a strongly
connected subgraph of G, which is called an interval ; these intervals impose a hi-
erarchy on the loop structure of G. Interval analysis has been used in global flow
analysis of computer programs [4], in testing flowgraph reducibility [60], and in the
construction of two maximally edge-disjoint spanning trees of a flowgraph [57]. Tar-
jan [57] gave an O(mα(m,n))-time pointer-machine algorithm for interval analysis
using DSU. The Gabow–Tarjan DSU algorithm [29] reduces the running time of this
algorithm to O(m) on a RAM.

3.4. Finding dominators. Let G = (V,E, r) be a flowgraph. We denote by n
and m the number of vertices and arcs of G, respectively. Vertex v dominates vertex
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w if every path from r to w contains v, and v is the immediate dominator of w if every
vertex that dominates w also dominates v. The dominators define a tree rooted at r,
the dominator tree T , such that v dominates w if and only if v is an ancestor of w in
T : for any vertex v �= r, the immediate dominator of v is its parent in T .

Problem 3.5 (finding dominators). Given a flowgraph G = (V,E, r), compute
the immediate dominator of every vertex other than r.

Finding dominators in flowgraphs is an elegant problem in graph theory with
fundamental applications in global flow analysis and program optimization [1, 19,
24, 45] and additional applications in VLSI design [11], theoretical biology [5, 6], and
constraint programming [51]. Lengauer and Tarjan [43] gave a practicalO(mα(m,n))-
time pointer-machine algorithm, capping a sequence of previous improvements [1, 45,
50, 55]. Harel [37] claimed a linear-time RAM algorithm, but Alstrup et al. [10] found
problems with some of his arguments and developed a corrected algorithm, which uses
powerful bit-manipulation-based data structures. Buchsbaum et al. [16] proposed a
simpler algorithm, but Georgiadis and Tarjan [32] gave a counterexample to their
linear-time analysis and presented a way to repair and modify the algorithm so that
it runs in linear time on a pointer machine; Buchsbaum et al. [16, Corrig.] gave a
different resolution that results in a linear-time algorithm for a RAM.

3.5. Building a component tree. Let T be a tree and let L be a list of the
edges of T . The Kruskal tree of T with respect to L is a tree representing the connected
components formed by deleting the edges of T and adding them back one at a time
in the order of their occurrence in L. Specifically, K contains 2n− 1 nodes. Its leaves
are the nodes of T . Each internal node is a component formed by adding an edge
(v, w) back to T ; its children are the two components that combine to form it.

Problem 3.6 (component-tree construction). Given an n-node tree T and a list
L of its edges, build the corresponding Kruskal tree.

Compressed component trees (formed by adding edges a group at a time rather
than one at a time) have been used in shortest-path algorithms [48, 62]. It is straight-
forward to build a component tree or a compressed component tree in O(nα(n, n))
time on a pointer machine using DSU. The Gabow–Tarjan DSU algorithm [29] im-
proves this algorithm to O(n) time on a RAM, as described by Thorup [62].

4. Path compression on balanced trees.

4.1. DSU via path compression and balanced unions. The disjoint set
union (DSU) problem calls for the maintenance of a dynamic partition of a universe
U , initially consisting of singleton sets. Each set has a unique designated element ; the
designated element of a singleton set is its only element. Two operations are allowed:

• unite(v, w): Form the union of the sets whose designated elements are v and
w, with v being the designated element of the new set.

• find(v): Return the designated element of the set containing element v.
There are alternative, equivalent formulations of the DSU problem. In one [59, 56],

each set is accessed by a label, rather than by a designated element. In another [61],
sets have labels but can be accessed by any element. In yet another [61], each set
is accessed by a canonical element, which in the case of a unite(v, w) operation can
be freely chosen by the implementation to be either v or w. Our formulation more
closely matches our uses. We denote by n the total number of elements and by m the
total number of finds.

The standard solution to the DSU problem [56, 61] represents the sets by rooted
trees in a forest. Each tree represents a set, whose elements are the nodes of the tree.
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Each node has a pointer to its parent and a bit indicating whether it is a root; the root
points to the designated element of the set. To provide constant-time access to the
root from the designated node, the latter is either the root itself or a child of the root.
With this representation, to perform unite(v, w), find the roots of the trees containing
v and w, link them together by making one root the parent of the other, and make v
a child of the new root if it is not that root or a child of that root already. To perform
find(v), follow parent pointers until reaching a root, reach the designated element of
the set in at most one more step, and return this element. A unite operation takes
O(1) time. A find takes time proportional to the number of nodes on the find path.
A sequence of intermixed unite and find operations thus takes O(n + s) time, where
s is the total number of nodes on find paths.

One way to reduce s is to use path compression: after a find, make the root the
parent of every other node on the find path. Another way to reduce s is to do balanced
unions. There are two well-known balanced-union rules. In the first, union-by-size,
each root stores the number of its descendants. To perform unite(v, w), make the root
of the larger tree the parent of the root of the smaller, making either the parent of
the other in case of a tie. In the second, union-by-rank, each root has a nonnegative
integer rank, initially zero. To perform unite(v, w), make the root of higher rank
the parent of the root of lower rank; in case of a tie, make either root the parent
of the other and add one to the rank of the remaining root. Both of these union
rules produce balanced trees. More specifically, let F be the forest built by doing
all the unite operations and none of the finds. We call F the reference forest. F is
balanced or, more precisely, c-balanced if for a constant c > 1 the number of nodes of
height h in F is O(n/ch) for every h. Both union-by-size and union-by-rank produce
2-balanced forests. Furthermore, since only roots must maintain sizes or ranks, these
fields obviate the need for separate bits to indicate which nodes are roots.

For any sequence of unions and finds such that the unions build a balanced forest
and the finds use path compression, the total running time is O(n+mα(m+n, n)): the
analysis of path compression by Tarjan and van Leeuwen [61] applies if the reference
forest is balanced. We seek a linear time bound, which we can obtain for sequences
of finds that are suitably restricted. Before obtaining this bound, we discuss a more
general use of path compression and balanced union: to find minima on paths in
dynamic trees.

4.2. Finding minima on paths. The dynamic path-minimum problem calls
for the maintenance of a forest of rooted trees, each initially a one-node tree, whose
arcs, which are directed from parent to child, have real values. The trees are subject
to three operations:

• link(v, w, x): Nodes v and w are the roots of different trees in F , and x is a
real number. Make v the parent of w by adding arc (v, w) to F , with value
x.

• findroot(v): Return the root of the tree in F containing the node v.
• eval(v): Return the minimum value of an arc on the path to v from the root

of the tree containing it.
We shall denote by n the total number of nodes and by m the total number of

findroot and eval operations. Variants of this problem include omitting the findroot
operation, replacing minimum by maximum, and requiring the eval operation to return
an arc of minimum value rather than just the minimum value. The two solutions to
be described are easily modified to handle these variants. We call a data structure
that solves the dynamic path-minimum problem a link-eval structure.
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Tarjan [58] considered this problem and developed two data structures to solve
it: a simple one [58, sec. 2], which uses path compression on the forest defined by the
links, and a sophisticated one [58, sec. 5], which uses path compression on a balanced
forest related to the one defined by the links. Tarjan’s simple link-eval structure uses
a compressed version of F , represented by parent pointers, with the nodes rather
than the arcs storing values. Each root has value infinity. Perform link(v, w, x) by
making v the parent of w and giving w the value x. Perform findroot(v) by following
parent pointers from v to the root of the tree containing it, compressing this path,
and returning the root. Perform eval(v) by following parent pointers from v to the
root of the tree containing it, compressing this path, and returning the value of v. To
compress a path v0, v1, . . . , vk with vi the parent of vi+1 for 0 ≤ i < k, repeat the
following step for each i from 2 through k: replace the parent of vi by v0, and replace
the value of vi by the value of vi−1 if the latter is smaller. Compression preserves the
results of findroot and eval operations while making tree paths shorter.

If the final forest F is balanced, then this simple link-eval structure takes O(n+
mα(m + n, n)) time to perform a sequence of operations [58]: the effect of a com-
pression on the structure of a tree is the same whether the compression is due to
a findroot or an eval. In our MST application the final forest is actually balanced.
Our application to finding dominators requires Tarjan’s sophisticated link-eval struc-
ture.

4.3. Delayed linking with balancing. Tarjan’s sophisticated structure delays
the effect of some of the links so that they can be done in a way that makes the
resulting forest balanced. Since our analysis requires some knowledge of the inner
workings of this structure, we describe it here. We streamline the structure slightly,
and we add to it the ability to do findroot operations, which were not supported by
the original. We also describe (in section 4.4) a variant that uses linking-by-rank; the
original uses linking-by-size.

We represent the forest F defined by the link operations by a shadow forest R.
Each tree in F corresponds to a tree in R with the same vertices and the same root.
Each tree T in R is partitioned into one or more subtrees S0, S1, . . . , Sk, such that
the root of Si is the parent of the root of Si+1 for 0 ≤ i < k, and the root of S0 is the
root of T . We call the roots of the subtrees S0, S1, . . . , Sk (including the root of S0)
subroots. We represent R by a set of parent pointers that are defined for nodes that
are not subroots and, for each subroot, a pointer to its child that is a subroot, if any.
(Each subroot has a null parent pointer; the deepest subroot has a null child pointer.)
Since parents are needed only for nodes that are not subroots and child pointers are
required only for subroots, we can use a single pointer per node to store both kinds
of pointers, if we mark each node to indicate whether it is a subroot. We shall use
shp(v) to denote the parent of v in its subtree and shc(v) to denote the child of v that
is a subroot, if there is one; shp(v) = null if v is a subroot, and shc(v) = null if v is a
subroot without a child that is a subroot.

With each node v we store a value b(v). We manipulate the trees of R and the
node values to preserve two related invariants:

(i) eval(v) = min{b(u) : u is an ancestor in R of v in the same subtree};
(ii) b(shc(v)) ≤ b(v) if shc(v) �= null.

To help keep evaluation paths short, we use both path compression and a variant
of union-by-size. We denote by size(v) the number of descendants of v in R and by
subsize(v) the number of descendants of v in the same subtree as v. For convenience,
we let size(null) = 0. Then subsize(v) = size(v) if v is not a subroot, and subsize(v) =
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Fig. 4.1. Linking by size: Part 1, size(v) ≥ size(w), and Part 2, size(v) < size(w).

size(v)− size(shc(v)) if v is a subroot. We maintain sizes but only for subroots, which
allows us to compute the subsize of a subroot in constant time.

To initialize the structure, make each node v a singleton tree (shp(v) = shc(v) =
null), with b(v) = ∞ and size(v) = 1. To perform eval(v), return b(v) if shp(v) =
null; otherwise, compress the path to v from the subroot of the subtree contain-
ing it (exactly as in the simple link-eval structure of section 4.2), and then return
min{b(v), b(shp(v))}. Perform link(v, w, x) as follows. First, set b(w) (previously in-
finity) equal to x. Next, if size(v) ≥ size(w), perform Part 1 below; otherwise, perform
Part 2 below and, if necessary, Part 3. (See Figures 4.1 and 4.2.)

Part 1 (size(v) ≥ size(w)). Combine the subtree rooted at v with all the subtrees
in the tree rooted at w by setting shp(u) = v and b(u) = min{b(u), x} for each subroot
u of a subtree in the tree rooted at w. Find such subroots by following shc pointers
from w. (In Figure 4.1 (Part 1), the successive values of u are w, s1, s2.) This step
effects a compression to v from the deepest subroot descendant of w. The updates to
the b-values maintain (i) and (ii).

Part 2 (size(v) < size(w)). Combine all the subtrees in the tree rooted at v
by setting shp(u) = v for each subroot u �= v of a subtree in the tree rooted at v.
(In Figure 4.1 (Part 2), the successive values of u are r1, r2, r3.) This step effects a
compression to v from the deepest subroot descendant of v. Then set shc(v) = w.
This may cause violations of invariants (i) and (ii).

Part 3. In order to restore (i) and (ii) after Part 2, repeat the following step
until it no longer applies. Let s0 = shc(v) and s1 = shc(s0). (In the first iteration,
s0 = w.) If s1 �= null and x < b(s1), compare the subsizes of s0 and s1. If the former
is not smaller, combine the subtrees with subroots s0 and s1, making s0 the new
subroot, by simultaneously setting shp(s1) = s0 and shc(s0) = shc(s1). If the former
is smaller, combine the subtrees with subroots s0 and s1, making s1 the new subroot,
by simultaneously setting shp(s0) = s1, shc(v) = s1, b(s1) = x, and size(s1) = size(s0).
Once this step no longer applies, (i) and (ii) are restored.

Complete the linking by setting size(v) = size(v) + size(w). We call this linking
method linking-by-size.

The method must keep track of which nodes are subroots. Nodes that are not
subroots can be marked as such by, e.g., setting their sizes to zero, since sizes are
maintained only for subroots. We have omitted this updating from Parts 1, 2, and 3.
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This version of the data structure differs from the original [58] only in the place-
ment of Part 3 of the link operation. In the original, Part 3 is done before Parts 1 and
2 to restore (i) and (ii), whether or not size(v) ≥ size(w). Delaying Part 3 allows it
to be avoided entirely if size(v) ≥ size(w); in this case Part 1 alone suffices to restore
(i) and (ii).

This structure does not support findroot (because an eval operation reaches only
a subroot, not a root), but we can easily extend it to do so. To each subroot that
is not a root, we add a pointer to its deepest subroot descendant; to each deepest
subroot, we add a pointer to the root of its tree. Then a root is reachable from any
subroot descendant in at most two steps. To perform findroot(v), compress the path
to v from the subroot of its subtree; then follow at most two pointers to reach a root,
and return this root. Operation findroot has the same asymptotic complexity as eval.
The running time of a link operation increases by at most a constant factor because
of the extra pointer updates needed.

In the sophisticated link-eval structure, path compression is performed on the
subtrees, not on the trees. The next lemma implies that these subtrees are balanced.

Lemma 4.1. Consider a shadow forest built using linking-by-size. If u is a tree
node such that shp(u) and shp(shp(u)) are both nonnull, then subsize(shp(shp(u))) ≥
2 · subsize(u).

Proof. A node u can be assigned a parent shp(u) in Part 1, 2, or 3 of a link
operation. If this occurs in Part 3, subsize(shp(u)) ≥ 2 · subsize(u) after u gets its
parent. Once this happens, subsize(u) stays the same and subsize(shp(u)) can only
increase. Thus when shp(u) gets a parent, subsize(shp(shp(u))) ≥ subsize(shp(u)) ≥
2 · subsize(u), and this inequality persists. Regardless of when u gets a parent shp(u),
if shp(u) gets its parent in Part 3, then subsize(shp(shp(u))) ≥ 2 · subsize(shp(u)) ≥
2 · subsize(u) when this happens, and this inequality persists. Suppose then that both
u and shp(u) get their parents in Part 1 or 2. When u gets its parent, size(shp(u)) ≥
2 · subsize(u). Subsequently, size(shp(u)) cannot decrease until shp(u) gets its parent,
at which time subsize(shp(shp(u))) ≥ size(shp(u)) ≥ 2 · subsize(u). This inequality
persists.
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Fig. 4.3. Linking by rank: Part 0, maxrank(v) = maxrank(w).

Corollary 4.2. The subtrees in any shadow forest built using linking-by-size
are

√
2-balanced.

4.4. Linking by rank. An alternative to using linking-by-size in the sophisti-
cated link-eval structure is to use linking-by-rank. In place of a size, every node has
a nonnegative integer rank, initially zero. The ranks satisfy the following invariant:

(iii) rank(shp(v)) > rank(v).
We explicitly maintain ranks only for subroots. If v is a virtual tree root (i.e., in

F ), we denote by maxrank(v) the maximum rank of a subroot descendant. With each
virtual tree root v, we store maxrank(v) (in addition to rank(v)).

Perform link(v, w, x) as follows. First, set b(w) = x. Then compare maxrank(v)
to maxrank(w). We split the rest of the operation into the following parts.

Part 0. If maxrank(v) = maxrank(w), set rank(v) = maxrank(v)+1, maxrank(v) =
maxrank(v) + 1, and combine all the subtrees in the trees rooted at v and w into a
single subtree rooted at v by setting shp(u) = v for each subroot u �= v, setting
shc(v) = null, and setting b(u) = min{b(u), b(w)} if u was a descendant of w. (See
Figure 4.3.)

Part 1. If maxrank(v) > maxrank(w), set rank(v) = max{rank(v),maxrank(w) +
1}, and combine the subtree rooted at v with all the subtrees in the tree rooted at w
by setting shp(u) = v and b(u) = min{b(u), b(w)} for each subroot descendant u of w.

Part 2. If maxrank(v) < maxrank(w), combine all the subtrees in the tree rooted
at v into a single subtree, unless shc(v) = null, by setting rank(v) = maxrank(v) + 1,
maxrank(v)=maxrank(w), and, for each subroot u �= v, shp(u) = v. Then set shc(v) =
w. This may cause violations of invariants (i) and (ii).

Part 3. To restore (i) and (ii) after Part 2, repeat the following step until it
no longer applies. Let s0 = shc(v) and s1 = shc(s0). If s1 �= null and x <
b(s1), compare rank(s0) to rank(s1), and if rank(s0) = rank(s1), simultaneously
set shp(s1) = s0, shc(s0) = shc(s1), rank(s0) = rank(s0) + 1, and maxrank(v) =
max{maxrank(v), rank(s0) + 1}; if rank(s0) > rank(s1), simultaneously set shp(s1) =
s0 and shc(s0) = shc(s1); if rank(s0) < rank(s1), simultaneously set shp(s0) = s1,
shc(v) = s1, and b(s1) = x.

Parts 1, 2, and 3 of linking-by-rank correspond to Parts 1, 2, and 3 of linking-by-
size; Part 0 handles the case of equal maxranks , in which all subtrees of both trees
are combined. (We could add a corresponding Part 0 to linking-by-size, but this is
unnecessary.) As does linking-by-size, linking-by-rank produces balanced forests, as
we now show. For a node u, let subsize(u) be the number of descendants of u in its
subtree.

Lemma 4.3. In any shadow forest built using linking-by-rank, any node u has
subsize(u) ≥ 2(rank(u)−1)/2.

Proof. To obtain this result we actually need to prove something stronger. Sup-
pose we perform a sequence of link-by-rank operations. We track the states of nodes,
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their ranks, and their subsizes as the links take place. Each node is in one of two
states: normal or special. The following invariants will hold:

(a) a normal node u has subsize(u) ≥ 2rank(u)/2;
(b) a special node u has subsize(u) ≥ 2(rank(u)−1)/2;
(c) a special root u has a normal subroot descendant of rank at least rank(u).

Initially all nodes are normal; since all initial ranks are zero, (a), (b), and (c) hold
initially. We need to determine the effect of each part of an operation link(v, w, x).

If maxrank(v) = maxrank(w), we make v normal after the link; all other nodes
retain their states. This preserves (a), (b), and (c); the only question is whether v
satisfies (a), since it gains one in rank and can change from special to normal. Before
the link, both the tree rooted at v and the tree rooted at w have a subroot of rank
maxrank(v). Since each of these nodes has subsize at least 2(maxrank(v)−1)/2 before the
link by (a) and (b), after the link subsize(v) ≥ 2 · 2(rank(v)−2)/2 = 2rank(v)/2. Hence
(a) holds for v after the link.

If maxrank(v) > maxrank(w) and rank(v) does not change as a result of the link,
all nodes retain their states. The link preserves (a), (b), and (c), because no node
increases in rank. If rank(v) does change because of the link (becoming one greater
than the old value of maxrank(w)), we make v special. Node v now satisfies (b),
because before the link w had a normal subroot descendant u of rank maxrank(w),
and subsize(u) ≥ 2maxrank(w)/2 by (a); hence, after the link, subsize(v) ≥ 2(rank(v)−1)/2.
Node v satisfies (c), because before the link it had a normal subroot descendant z of
rank maxrank(v) ≥ maxrank(w) + 1, which it retains after the link.

The last case is maxrank(v) < maxrank(w). In this case we look at the effects
of Part 2 and Part 3 separately. If Part 2 does anything, we make v special. Node
v satisfies (b), because before the link it had a normal subroot descendant of rank
maxrank(v), which satisfied (a); hence, after the link, subsize(v) ≥ 2(rank(v)−1)/2.
Node v satisfies (c) after the link, because before the link w had a normal subroot
descendant of rank maxrank(w) ≥ maxrank(v) + 1 by (a), which becomes a normal
subroot descendant of v.

Finally, we must account for the effect of Part 3. Each combination of subtrees
done by Part 3 preserves (a), (b), and (c), except possibly for those that combine
two subtrees with subroots, say y and z, of equal rank. In this case the rank of the
surviving subroot increases by one; and if the ranks of y and z previously equaled
maxrank(v), maxrank(v) increases by one. To preserve the invariants in this case, we
make the surviving root, say y, normal. Now y satisfies (a), because before the subtrees
rooted at y and z were combined, both y and z have subsize at least 2(rank(y)−1)/2;
after the subtrees are combined, subsize(y) ≥ 2 · 2(rank(y)−2)/2 = 2rank(y)/2. Because y
satisfies (a), v satisfies (c).

Thus linking preserves the invariants. By induction, they remain true throughout
any sequence of links. The lemma follows from (a) and (b).

Corollary 4.4. The subtrees in any shadow forest built using linking-by-rank
are

√
2-balanced.

Theorem 4.5. A sequence of operations performed using the sophisticated link-
eval structure with either linking-by-size or linking-by-rank takes O(n) time for the
links and O(n +mα(m+ n, n)) time for the findroot and eval operations.

Proof. The time for a link is O(k + 1), where k is the decrease in the number of
subtrees caused by the link. Thus the total time for all the links is O(n). The total
length of compressed paths, and hence the total time for findroot and eval operations,
is O(n+mα(m+n, n)) by the Tarjan–van Leeuwen analysis of path compression [61],
applying Corollary 4.2 (for linking-by-size) or Corollary 4.4 (for linking-by-rank).
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4.5. Refined analysis of path compression. In order to use path compression
on balanced trees as a tool for building linear-time algorithms, we need to show that
the total time becomes linear if the compressions are suitably restricted. In order to
capture both DSU and link-eval applications, we abstract the situation as follows. An
intermixed sequence of the following two kinds of operations is performed on a rooted
forest, initially consisting of n single-node trees:

• assign(u, v). Given two distinct roots u and v, make u the parent of v.
• compress(u). Compress the path to u from the root of the tree containing it

by making the root the parent of every other node on the path.
Lemma 4.6. Suppose � nodes are marked and the remaining n − � unmarked.

Suppose the assignments build a balanced forest, and that each node has its parent
change at most k times before it is in a tree containing a marked node. If there
are m compress operations, then the total number of nodes on compression paths is
O(kn+mα(m+ �, �)).

Proof. Let F be the balanced forest built by the entire sequence of assignments,
ignoring the compressions; let c > 1 be such that F is c-balanced; and let h(v) be the
height of a node v in F . Let

a =
⌈
logc (n/�) + logc (1/(c− 1)) + 1

⌉
.

Classify each node v into one of three types: low, if v has no marked descendant in
F ; middle, if v has a marked descendant in F and h(v) < a; and high otherwise.

A compression path from a tree root to one of its descendants consists of zero
or more high nodes followed by zero or more middle nodes followed by zero or more
low nodes. Every node on the path except the first two (totaling at most 2m over
all compressions) has its parent change to one of greater height as a result of the
compression.

Consider a compression path containing only low nodes. Since the root is low,
the tree in which the compression takes place contains no marked nodes. All but two
nodes on the path change parent but remain in a tree with no marked nodes. The
number of times this can happen to a particular node is at most k by the hypothesis
of the lemma, totaling at most kn over all compressions.

Consider a compression path containing at least one middle or high node. Every
low node on the path except one has its parent change from low to middle or high
as a result of the compression. Thus the total number of low nodes on such paths
is at most n + m. Every middle node on the path whose parent changes obtains a
parent of greater height. This can happen to a middle node at most a times before
its parent is high. At most one middle node on a compression path has a high parent,
totaling at most m over all compression paths. Each middle node has a marked node
as a descendant; each marked node has at most a + 1 middle nodes as ancestors (at
most one per height less than a). The total number of middle nodes is thus at most
�(a + 1). Combining estimates, we find that the total number of middle nodes on
compression paths is at most � · a · (a+1) +m. Since � ≤ n and a is O(log (n/�)), the
first term is O(n), implying that the total number of middle nodes on compression
paths is O(n) +m.

Finally, we need to count the number of high nodes on compression paths. Since
F is c-balanced, the total number of high nodes is at most

∑
i≥a

n

ci
≤ n

ca
· c

c− 1
=

n

ca−1(c− 1)
≤ �.



1546 BUCHSBAUM ET AL.

Let the rank of a node v be h(v) − a. Then every high node has nonnegative rank,
and the number of high nodes of rank i ≥ 0 is at most �/ci. The analysis of Tarjan
and van Leeuwen [61, Lem. 6] applied to the high nodes bounds the number of high
nodes on compression paths by O(� + mα(m + �, �)). Combining all our estimates
gives the lemma.

Lemma 4.6 gives a bound of O(n+m) if, for example, � = O(n/ log logn), by the
properties of the inverse-Ackermann function [56]. In our applications � = n/ log1/3 n,
which is sufficiently small to give an O(n+m) bound.

We conclude this section by reviewing some previous results on DSU and refined
analysis of the DSU structure. The linear-time RAM DSU algorithm of Gabow and
Tarjan [29] assumes a priori knowledge of the unordered set of unions. An earlier
version of our work [15] contained a result much weaker than Lemma 4.6, restricted to
disjoint set union, which required changing the implementation of unite based on the
marked nodes. Alstrup et al. [10] also proved a weaker version of Lemma 4.6 in which
the mα(m + �, �) term is replaced by � log � + m, which sufficed for their purpose.
They derived this result for a hybrid algorithm that handles long paths of unary
nodes outside the standard DSU structure. Dillencourt, Samet, and Tamminen [20]
gave a linear-time result assuming the stable tree property: essentially, once a find is
performed on any element in a set X , all subsequent finds on elements currently in X
must be performed before X can be united with another set. Fiorio and Gustedt [25]
exploited the specific order of unions in an image-processing application. Gustedt [36]
generalized the previous two works to consider structures imposed on sets of allowable
unions by various classes of graphs. This work is orthogonal to that of Gabow and
Tarjan [29]. Other improved bounds for path compression [14, 44, 46] restrict the
order in which finds are performed, in ways different from our restriction.

5. Topological graph computations. Consider a computation that takes as
input a graph G whose vertices and edges (or arcs) have O(1)-bit labels and produces
some output information (possibly none) associated with the graph itself and with
each vertex and edge (or arc). We call such a computation a topological graph com-
putation, because it is based only on the graph structure and the O(1)-bit labels, in
contrast, for example, to a problem in which graph vertices and edges (or arcs) have
associated real values. In general the output of a topological graph computation can
be arbitrarily complex, even exponential in size, and can contain pointers to elements
of the input graph. Our MST verification algorithm will exploit this flexibility; in all
our other applications, the size of the output is linear in the size of the input.

Suppose we need to perform a topological graph computation on not just one
input graph but on an entire collection of graphs. If the input instances are small and
there are many of them, then many of them will be isomorphic. By doing the compu-
tation once for each nonisomorphic instance (a canonical instance) and copying these
solutions to the duplicate instances, we can amortize away the cost of actually doing
the computations on the canonical instances; most of the time is spent identifying
the isomorphic instances and transferring the solutions from the canonical instances
to the duplicate ones. The total time spent is then linear in the total size of all the
instances.

Gabow and Tarjan [29] used this idea to solve a special case of DSU in which the
unordered set of unions is given in advance; Dixon, Rauch, and Tarjan [21] applied
the technique to MST verification and other problems. These applications use table
look-up and require a RAM. Here we describe how to accomplish the same thing on
a pointer machine. Our approach is as follows. Encode each instance as a list of
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pointers. Use a radix sort to sort these lists. Identify the first instance in each group
of identically encoded instances as the canonical instance. Solve the problem for each
canonical instance. Map the solutions back to the duplicate instances. The details
follow.

Let G be the set of input instances, each of which contains at most g vertices. Let
N be the total number of vertices and edges (or arcs) in all the instances. Let k be the
maximum number of bits associated with each vertex and edge (or arc) of an instance.
Construct a singly linked master list whose nodes, in order, represent the integers from
zero through max{g, 2k + 1} and are so numbered. For each instance G, perform a
DFS, numbering the vertices in preorder and adding to each vertex a pointer into the
master list corresponding to its preorder number; the preorder numbering allows us to
maintain a global pointer into the master list to facilitate this assignment of pointers
to vertices. Represent the label of each vertex and edge (or arc) by a pointer into the
master list, using a pointer to the zero node to encode the lack of a label. Construct
a list L of triples corresponding to the vertices of G, one triple per vertex, consisting
of a pointer to the vertex, and its number and label, both represented as pointers into
the master list. Construct a list Q of quadruples corresponding to the edges (or arcs)
of the graph, one quadruple per edge (or arc), consisting of a pointer to the edge (or
arc), and the numbers of its endpoints and its label, represented as pointers into the
master list. (For an undirected graph, order the numbers of the edge endpoints in
increasing order.) Encode the instance by a list whose first entry is a pair consisting
of a pointer to the instance and the number of its vertices, represented as a pointer
into the master list, catenated with lists L and Q.

Constructing encodings for all the instances takes O(N) time. Recall that the
elements of the encodings are pointers to the master list. Attach a bucket to each
element of the master list. Use a radix sort for variable length lists [2], following
the encoding pointers to reach the buckets, to arrange the encodings into groups
that are identical except for the first components of each list element (pair, triple, or
quadruple): instances whose encodings are in the same group are isomorphic. This
also takes O(N) time.

Now perform the topological graph computation on any one instance of each group
(the canonical instance for that group). Finally, for each duplicate instance, traverse
its encoding and the encoding of the corresponding canonical instance concurrently,
transferring the solution from the canonical instance to the duplicate instance. The
exact form this transfer takes depends upon the form of the output to the topolog-
ical graph computation. One way to do the transfer is to traverse the encodings of
the canonical instance and the duplicate instance in parallel, constructing pointers
between corresponding vertices and edges (or arcs) of the two instances. Then visit
each vertex and edge (or arc) of the canonical instance, copying the output to the
duplicate instance but replacing each pointer to a vertex or edge (or arc) by a pointer
to the corresponding vertex or edge (or arc) in the duplicate instance. If the output
has size linear in the input, this takes O(N) time. Summarizing, we have the following
theorem.

Theorem 5.1. If the output of a topological graph computation has size linear in
the input size, the computation can be done on a collection of instances of total size
N in O(N) time on a pointer machine, plus the time to do the computation on one
instance of each group of isomorphic instances.

This method extends to allow the vertices and edges (or arcs) of the instances to
be labeled with integers in the range [1, g] if these labels are represented by pointers
to the nodes of a precomputed master list. We shall need this extension in our
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applications to finding dominators and computing component trees (sections 9 and
10, respectively). In another of our applications, MST verification, the output of the
topological graph computation has exponential size: it is a comparison tree, whose
nodes indicate comparisons between the weights of two edges. In this case, we do
not construct a new copy of the comparison tree for each duplicate instance. Instead,
when we are ready to run the comparison tree for a duplicate instance, we construct
pointers from the edges of the canonical instance to the corresponding edges of the
duplicate instance and run the comparison tree constructed for the canonical instance,
but comparing weights of the corresponding edges in the duplicate instance. The total
time is O(N) plus the time to build the comparison trees for the canonical instances
plus the time to run the comparison trees for all the instances.

It remains to bound the time required to do the topological graph computation on
the canonical instances. The number of canonical instances is gO(g2). In all but one
of our applications, the time to do a topological graph computation on an instance
of size g or smaller is O(g2); for MST verification, it is gO(g2). Thus the following
theorem suffices for us.

Theorem 5.2. If a topological graph computation takes gO(g2) time on a graph
with g or fewer vertices, and if g = log1/3N , then the total time on a pointer machine
to do the topological graph computation on a collection of graphs of total size N , each
having at most g vertices, is O(N).

Proof. The proof is immediate from Theorem 5.1, since the total time to do the
topological graph computation on the canonical instances is gO(g2)gO(g2) = gO(g2) =
O(N).

The ability to recover the answers from the topological graph computations on
the instances in G is subtle but crucial. Alstrup, Secher, and Spork [8] show how to
compute connectivity queries on a tree T undergoing edge deletions in linear time.
They partition T into bottom-level microtrees (discussed in the next section) and
compute, for each vertex v in a microtree, a bit-string that encodes the vertices on
the path from v to the root of its microtree. They show how to answer connectivity
queries using a constant number of bitwise operations on these bit-strings and applying
the Even and Shiloach decremental connectivity algorithm [23] to the upper part of T .

The Alstrup, Secher, and Spork algorithm [8] runs on a pointer machine: since the
connectivity queries return yes/no answers, they do not need index tables to recover
the answers. In contrast, while their method can be extended to solve the off-line
NCAs problem in linear time on a RAM, and even to simplify the Gabow–Tarjan
linear-time DSU result [29], both of these extensions require index tables to map the
results of the bitwise operations back to vertices in T .

The idea of using pointers to buckets in lieu of indexing an array was described in
general by Cai and Paige [17] in the context of multisequence discrimination. Their
technique leaves the efficient identification of buckets with specific elements as an
application-dependent problem. They solve this problem for several applications,
including discriminating trees and DAGs, but their solutions exploit structures specific
to their applications and do not extend to general graphs.

6. Nearest common ancestors. We now have the tools to solve our first appli-
cation, the off-line nearest common ancestors (NCAs) problem: given a rooted n-node
tree T and a set P of m queries, each of which is a pair {v, w} of nodes in T , compute
nca(v, w) for each query {v, w}. Aho, Hopcroft, and Ullman’s algorithm [3] for this
problem, as presented by Tarjan [58], solves it using DSU. The algorithm traverses T
bottom-up, building a shadow copy as a DSU forest. It maintains, for each subtree
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a

b

Fig. 6.1. Partitioning of a tree T with g = 3; fringe nodes are open, and core nodes are filled;
bottom-level microtrees are encircled. Nodes a and b are the leaves of the core.

built so far, the set of its nodes, with the root of the subtree as the designated element.
Initially, each node is in a singleton set. Each node v also has a set P (v) of queries
{v, w}; each query is in two such lists, one for v and one for w. The algorithm is as
follows.

Visit the nodes of T in a postorder [54]. (Any postorder will do.) When visiting
a node v, for every pair {v, w} in P (v) such that w has already been visited, return
find(w) as the answer to the query nca(v, w). Finish the visit to v by performing
unite(p(v), v) if v is not the root of T , where p(v) is the parent of v in T .

The correctness of this algorithm follows from basic properties of postorder. The
DSU operations dominate the running time, which is O(n+mα(m+n, n)) if the stan-
dard DSU structure presented in section 4 is used. In this algorithm, the unordered
set of unions is known in advance, since it is given by the input tree T . Thus the use
of the Gabow–Tarjan [29] linear-time RAM DSU algorithm results in a linear-time
RAM algorithm for NCAs. Knowing the set of unions in advance, however, is not
sufficient to solve the DSU problem in linear time on a pointer machine [46]. We
exploit a different property of the unions: they occur in a bottom-up order.

We partition T into a set of small bottom-level trees, called microtrees, and T ′,
the rest of T . For any node v, let T (v) be the subtree of T induced by the descendants
of v, and let |T (v)| be the number of nodes in T (v). Let g ≥ 1 be a fixed parameter
to be chosen later. We define T (v) to be a microtree if |T (v)| ≤ g but |T (p(v))| > g.
For a node x in T (v), micro(x) = T (v) is the microtree of x and root(micro(x)) is
the root of its microtree. Let T ′ be the subtree of T induced by the vertices in T
that are not in microtrees. Each leaf in T ′ has at least g descendants in T , and the
descendants of two different leaves of T ′ form disjoint sets, so T ′ has at most n/g
leaves. We call the microtrees the fringe of T and T ′ the core of T . See Figure 6.1. It
is straightforward to partition T into its microtrees and core in linear time by visiting
the nodes in postorder and computing their numbers of descendants.

We call a query {v, w} small if v and w are in the same microtree, and big
otherwise. We can partition the queries into big and small and assign each small
query to the microtree containing it in linear time. We answer all the big queries by
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using the AHU algorithm. We answer all the small queries by doing a topological
graph computation on the set of graphs defined by each microtree and its associated
queries. By choosing g appropriately, we get a linear-time bound for both parts of
the computation.

Specifically, choose g = log1/3 n. Answer all the big queries by running the
AHU algorithm, restricted to the big queries. To bound the running time, apply
Lemma 4.6 to the tree built by the parent assignments done by the unite operations.
Mark every leaf of T ′. Each find occurs in a set containing at least one marked
node. Therefore, setting k = 1, to count the initial parent assignment for each node,
satisfies the hypothesis of the lemma. Since the number of marked nodes is at most
n/g = n/ log1/3 n, the lemma implies an O(n +m) bound on the time to answer all
the big queries.

Answer all the small queries by constructing, for each microtree, a graph contain-
ing the microtree edges and, for each query with both nodes in the microtree, an edge
denoted as a query edge by a bit. Then do a topological graph computation on these
graphs to answer the small queries, using the method of section 5. With g = log1/3 n,
this takes O(n+m) time. Thus we obtain the following theorem.

Theorem 6.1. The off-line NCAs problem can be solved in O(n+m) time on a
pointer machine.

7. Minimum spanning trees.

7.1. Verification. Our next applications, minimum spanning tree (MST) verifi-
cation and construction, combine topological graph processing with use of the simple
link-eval structure of section 4.2. Let T be a spanning tree of a connected, undirected
graph G whose edges have real-valued weights. For any edge {v, w}, let c(v, w) be
the weight of {v, w}. We denote the set of nontree edges by P . For any pair (v, w)
of vertices, we denote by T (v, w) the unique path from v to w in T . The tree T
is minimum if and only if, for every edge {v, w} in P , c(v, w) ≥ c(x, y) for every
edge {x, y} on T (v, w). Thus to verify that T is minimum it suffices to compute
max{c(x, y) : {x, y} on T (v, w)} for every edge {v, w} in P . We assume henceforth
that T is rooted at a fixed but arbitrary vertex and that each vertex v has a set P (v)
of the pairs {v, w} in P .

Tarjan’s O(mα(m,n))-time MST verification algorithm [58] is like the AHU NCA
algorithm, except that it uses a link-eval structure (with max instead of min) in place
of a DSU structure to compute the needed path maxima. The algorithm builds the
link-eval forest during a bottom-up traversal of T . As part of the process of computing
path maxima, the algorithm computes u = nca(v, w) for each pair {v, w} in P and
stores {v, w} in a set Q(u). Initially each node of T is in a single-node tree of the
link-eval structure, and Q(u) is empty for each node u. The algorithm follows.

Visit the nodes of T in a postorder. (Any postorder will do.) When visiting a
vertex v, for every pair {v, w} in P (v) such that w has already been visited, add {v, w}
to Q(findroot(w)). For every pair {x, y} in Q(v), return max{eval(x), eval(y)} as the
answer to the query {x, y}. Finish the visit to v by performing link(p(v), v, c(p(v), v))
unless v is the root of T .

When the algorithm answers a query {x, y} while visiting a vertex v, v = nca(x, y),
and eval(x) and eval(y) are the maximum costs of the arcs on T (v, x) and T (v, y),
respectively. In Tarjan’s original presentation, the NCA calculations are separate from
the path evaluations, but combining them gives a more coherent algorithm. Ignoring
the arc costs and eval operations, the link-eval structure functions exactly like the
DSU structure in the AHU NCA algorithm.
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If the sophisticated link-eval structure of section 4.3 or section 4.4 is used, this
algorithm runs in O(mα(m,n)) time. Unfortunately, these structures delay the effect
of the links, so parent assignments do not necessarily occur in a bottom-up order, and
we cannot immediately apply the approach of section 6 to reduce the running time to
linear. This problem was pointed out by Georgiadis and Tarjan [32]. Instead, we use
a result of King [40] to transform the original tree into an O(n)-node balanced tree
on which to compute path maxima. Then we can use the simple link-eval structure
of section 4.2 in combination with the approach of section 6 to obtain a linear-time
algorithm.

7.2. The Bor̊uvka tree. A Bor̊uvka step [13] applied to a weighted, undirected
graph G is as follows: Select a least-weight edge incident to each vertex, and contract
to a single vertex each connected component formed by the selected edges. Repeating
this step until only a single vertex remains produces an MST defined by the original
edges corresponding to the edges selected in all the steps if all edge weights are distinct,
which we can assume without loss of generality.

This algorithm can be enhanced to produce the Bor̊uvka tree B, whose nodes
are the connected components that exist during the Bor̊uvka steps, with each node
having as children those components from which it is formed during a Bor̊uvka step.
If component C is the parent of component D, the weight of arc (C,D) is the weight
of the edge selected for the vertex corresponding to D by the Bor̊uvka step in which D
is contracted into C. The leaves of B are the vertices of G, each of which is originally
a single-vertex component. Each Bor̊uvka step reduces the number of vertices by at
least a factor of two; hence, B is 2-balanced. Also, B contains at most 2n− 1 nodes.
In general the enhanced Bor̊uvka algorithm runs in O(m log n) time on a pointer
machine. On a tree, however, it runs in O(n) time, because each contracted graph
is a tree, and a tree has O(n) edges. We apply the enhanced Bor̊uvka algorithm to
the tree T that is to be verified, thereby constructing the Bor̊uvka tree B of T . In
addition to being balanced, B has the following key property [40]: for any pair of
vertices {v, w}, max{c(x, y) : (x, y) on T (v, w)} = max{c(x, y) : (x, y) on B(v, w)}.
Thus we can compute path maxima on B instead of on T without affecting the answers
to the queries.

7.3. Comparison trees for computing path maxima. Now we can apply
the approach of section 6. Let g = log1/3 n. Partition B into microtrees and a core
B′ as in section 6. Partition the pairs in P into big pairs, those with ends in different
microtrees, and small pairs, those with ends in the same microtree. Compute path
maxima for all the big pairs by running Tarjan’s algorithm on B, restricted to the big
pairs and using the simple link-eval structure of section 4.2.

To bound the running time of this computation, we apply Lemma 4.6 to B. Mark
every leaf of B′. Each findroot and eval occurs in a subtree of B containing a marked
node, so setting k = 1 satisfies the hypothesis of the lemma. Since the number of
marked nodes is at most 2n/g = 2n/ log1/3 n, the lemma implies an O(m) bound on
the time to compute path maxima for all the big pairs.

We would like to compute path maxima for all the small pairs by applying the
method of section 5. To this end, construct for each microtree a graph containing the
microtree edges and, for each pair with both ends in the microtree, an edge designated
as a query edge by a bit. Now a new difficulty arises: since the edge costs are arbitrary
real numbers, computing path maxima is not a topological graph computation; we
cannot encode the edge costs in O(1) bits, or even in O(log g) bits.

We overcome this difficulty by following the approach of Dixon, Rauch, and Tar-
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jan [22]: Do a topological graph computation that builds, for each distinct marked
graph, a comparison tree, whose nodes designate binary comparisons between costs of
unmarked edges of the graph (tree edges), such that the output nodes of the compar-
ison tree designate, for each marked edge (query pair), which of the unmarked edges
on the path between the ends of the edge has maximum cost. Having built all the
comparison trees, run the appropriate comparison tree for each microtree and its as-
sociated pairs, using the actual costs of the microtree arcs to determine the outcomes
of the comparisons.

With g = log1/3 n, the time for this computation is O(m), plus the time to build
comparison trees for the topologically distinct instances, plus the time to run the
comparison trees for the actual instances. Komlós [41] proved that the path maxima
needed for MST verification can be determined in a number of binary comparisons
of tree edge costs that is linear in the number of graph edges, which implies for each
instance the existence of a comparison tree that has depth linear in the number of
edges. Dixon, Rauch, and Tarjan [22] observed that the comparison tree implied by
Komlós’ result can be built in a time per comparison-tree node that is quadratic in
the number of graph vertices. If we use their method to build the comparison trees
during the topological graph computation, then g = log1/3 n implies by the results of
section 5 that the total time to build the comparison trees is O(m). The total time
to run them is linear in the total size of all the actual instances, which is also O(m).
Thus we obtain the following theorem.

Theorem 7.1. Computing all the path maxima needed for MST verification, and
doing the verification itself, takes O(m) time on a pointer machine.

7.4. Construction of MSTs. The randomized linear-time MST construction
algorithm of Karger, Klein, and Tarjan [39] runs on a pointer machine except for
the part that computes the path maxima needed for MST verification. Using the
algorithm of section 7.3, this part can be done (deterministically) in linear time on a
pointer machine, resulting in a randomized linear-time pointer-machine algorithm for
constructing an MST.

7.5. Remarks. It is instructive to compare our MST verification algorithm
to those of Dixon, Rauch, and Tarjan [22] and of King [40]. Our use of King’s
Bor̊uvka tree construction as an intermediate step allows us to use only bottom-level
microtrees, whereas Dixon et al. partition the original tree entirely into microtrees,
with an extra macrotree to represent the connections between them. It also allows us
to use the simple link-eval structure instead of the sophisticated one. Lemma 4.6 al-
lows us to break big queries into only two parts (having an NCA in common); Dixon
et al. break each big query into as many as six parts. King explicitly implements
Komlós’ comparison algorithm for the Bor̊uvka tree, but her algorithm is heavily
table-driven and requires a RAM. She also must compute NCAs separately.

There is an alternative, though more complicated, way to verify an MST in linear
time on a pointer machine. This method replaces the use of the Bor̊uvka tree by
a partition of the original tree into bottom-level microtrees and a set of maximal
paths that partition the core. The method does NCA computations on trees derived
from the maximal paths, and it uses a sophisticated link-eval structure instead of the
simple one. We discuss this method in more detail in section 9.7. Though the use
of the Bor̊uvka tree gives us a simpler algorithm for MST verification, there is no
corresponding concept for either of our remaining applications, and we must rely on
the alternative of partitioning the core into maximal paths.
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8. Interval analysis. We turn now to two problems on flowgraphs. The first is
interval analysis. Let G = (V,A, r) be a flowgraph, and let D be a given DFS tree
rooted at r. Identify vertices by their preorder number with respect to the DFS: v < w
means that v was visited before w. Reverse preorder of the vertices is decreasing order
by (preorder) vertex number. For each vertex v, the head of v is

h(v) = max{u �= v : there is a path from v to u containing only descendants of u};

h(v) = null if this set is empty. The heads define a forest H called the interval forest :
h(v) is the parent of v in H . Each subtree H(v) of H induces a strongly connected
subgraph of G, containing only vertices in D(v) (the descendants of v in D). See
Figure 8.1. Tarjan [57] proposed an algorithm that uses an NCA computation, incre-
mental backward search, and a DSU data structure to compute H in O(mα(m,n))
time on a pointer machine. We shall add microtrees, a maximal path partition of the
core, and a stack to Tarjan’s algorithm, thereby improving its running time to O(m)
on a pointer machine.
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Fig. 8.1. (a) A DFS tree D of the input flowgraph G; nontree arcs are dashed. (b) The interval
forest H of G with respect to D; arrows are parent pointers.

Tarjan’s algorithm proceeds as follows: Delete all the arcs from the graph. For
each vertex u, form a set of all deleted arcs (x, y) such that nca(x, y) = u. Process the
vertices in any bottom-up order. (Tarjan uses reverse preorder, but any bottom-up
order will do.) To process a vertex u, add back to the graph arcs corresponding to
all the deleted arcs (x, y) with nca(x, y) = u. Then examine each arc (v, u) entering
u. If v �= u, set h(v) = u, and contract v into u; for all arcs having v as an end,
replace v by u. This may create multiple arcs and loops, which poses no difficulty
for the algorithm. Continue until all arcs into u have been examined, including those
formed by contraction. When adding arcs back to the graph, the arc corresponding
to an original arc is the one formed by doing end replacements corresponding to all
the contractions done so far.

To keep track of contractions, Tarjan’s algorithm uses a DSU structure whose
elements are the graph vertices. The algorithm also uses a reverse adjacency set R(u),
initially empty, for each vertex u. A more detailed description of the algorithm is as
follows. To process u, for each arc (x, y) such that nca(x, y) = u, add x to R(find(y)).
(The replacement for x is done later.) Then, while R(u) is nonempty, delete a vertex
x from R(u); let v ← find(x); if v �= u, set h(v) ← u, set R(u) ← R(u)∪R(v), and do
unite(u, v).
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With the sets R(u) represented as singly linked circular lists (so that set union
takes constant time), the running time of this algorithm on a pointer machine is linear
except for the NCA computations and the DSU operations, which take O(mα(m,n))
time in Tarjan’s original implementation. We shall reduce the running time to linear
by using microtrees to eliminate redundant computation and by reordering the unites
into a bottom-up order.

As in section 6, partition D into a set of bottom-level microtrees (the fringe), each
with fewer than g = log1/3 n vertices, and D′, the remainder of D (the core). Use a
topological graph computation to compute h(v) for every vertex v such that h(v) is in
the fringe. The definition of heads implies that for any such vertex v, h(v) and v are
in the same microtree, and furthermore that the only information needed to compute
heads in the fringe is, for each microtree, the subgraph induced by its vertices, with
nontree edges marked by a bit. With g = log1/3 n, this computation takes O(m) time
by Theorem 5.2.

It remains to compute heads for vertices whose heads are in the core. Our ap-
proach is to run Tarjan’s algorithm starting from the state it would have reached after
processing the fringe. This amounts to contracting all the strong components in the
fringe and then running the algorithm. This approach does not quite work as stated,
because the DSU operations are not restricted enough for Lemma 4.6 to apply. To
overcome this difficulty, we partition the core into maximal paths. Then we run Tar-
jan’s algorithm path-by-path, keeping track of contractions with a hybrid structure
consisting of a DSU structure that maintains contractions outside the path being pro-
cessed and a stack that maintains contractions inside the path being processed. The
latter structure functions in the same way as the one Gabow used in his algorithm [28]
for finding strong components. Now we give the complete description of our algorithm.

Partition the vertices in D′ into a set of maximal paths by choosing, for each
nonleaf vertex v in D′, a child c(v) in D′. (Any child will do.) The arcs (v, c(v)) form
a set of paths that partition the vertices in D′. For such a path P , we denote the
smallest and largest vertices on P by top(P ) and bottom(P ), respectively; bottom(P )
is a leaf of D′. Since D′ has at most n/g leaves, the number of paths is at most n/g.
Partitioning D′ into paths takes O(n) time.

After constructing a maximal path partition of the core, initialize a DSU structure
containing every vertex (fringe and core) as a singleton set. Visit the fringe vertices
in bottom-up order, and, for each fringe vertex v with h(v) also in the fringe, perform
unite(h(v), v); for such a vertex, h(v) has already been computed. Initialize R(u) ← ∅
for every vertex u. For every arc (x, y) with x and y in the same microtree, add x
to R(find(y)). For every remaining arc (x, y), compute u = nca(x, y) and add (x, y)
to the set of arcs associated with u. These NCA computations take O(m) time using
the algorithm of section 6. Indeed, every NCA query is big, so the AHU algorithm
answers them in linear time. This completes the initialization.

Now process each path P in the path partition, in bottom-up order with respect
to top(P ). To process a path P , initialize an empty stack S. Process each vertex u
of P in bottom-up order. To process u, for each arc (x, y) such that nca(x, y) = u,
add x to R(find(y)) unless u = x and p(y) �= x. (Heads do not depend on arcs (x, y)
such that x is an ancestor of y but not its parent.) Then, while R(u) is nonempty,
delete a vertex x from R(u). Let v ← find(x). If v is not on P , set h(v) ← u, set
R(u) ← R(u)∪R(v), and do unite(u, v). If, on the other hand, v is on P , v �= u, and
v is no less than the top vertex on S, pop from S each vertex w less than or equal
to v, set h(w) ← u, and set R(u) ← R(u) ∪R(w). Once R(u) is empty, push u onto
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S. After processing all vertices on P , visit each vertex u on P again, in bottom-up
order, and if h(u) is now defined, perform unite(h(u), u). See Figure 8.2

This algorithm delays the unites for vertices on a path until the entire path is
processed, using the stack to keep track of the corresponding contractions. Specifically,
the algorithm maintains the following invariant: if vertex u on path P is currently
being processed and x is any original vertex, then the vertex into which x has been
contracted is v = find(x) if v is not on P , or the largest vertex on S less than or equal
to v if v is on P and S is nonempty, or u otherwise. It is straightforward to verify
this invariant by induction on time; the correctness of this implementation of Tarjan’s
algorithm follows.

Theorem 8.1. The interval analysis algorithm runs in O(m) time on a pointer
machine.

Proof. The running time is linear except for the find operations: each vertex gets
added to S once and has its head set at most once. To bound the time for the find
operations, we apply Lemma 4.6 to the tree built by the parent assignments done by
the unite operations. Mark the tops of all paths. Since there are at most n/g paths,
there are at most n/g = n/ log1/3 n marked vertices. We claim that k = 5 satisfies the
hypothesis of the lemma. We need a property of the interval forest H : if h(v) = u,
then every vertex w �= u on the path in D from u to v is a descendant of u in H .
This holds because there is a path containing only vertices in D(u) from w to v (via
D) to u.

Consider any vertex v. We bound the number of times the parent of v in the DSU
structure can change before v is in a set with a marked vertex. One parent change can
occur during the initialization. After initialization, the parent of v can change once
by a find before v is in a set with a designated vertex on the current path P . The
parent of v can change only once more by a find while P is the current path, since its
set does not change again until P is no longer the current path. Once P is not the
current path, the next parent change of v caused by a find results in v being in a set
with a designated vertex on the new current path Q. The parent of v can change only
once more while Q is the current path, after which it is in the same set as top(P ) (by
the property above) and thus is in a set with a marked vertex. Therefore, the parent
of v can change at most five times before it is in a set with a marked vertex, so the
claim is true.

With k = 5 and � ≤ n/ log1/3 n, Lemma 4.6 gives a bound of O(m) on the time
for the find operations.

Interval analysis is an important component of program flow analysis [4]. It also
has other applications, including testing flow graph reducibility [60], finding a pair of
arc-disjoint spanning trees in a directed graph [57], and verifying a dominator tree
[33]. Our interval analysis algorithm givesO(m)-time algorithms on a pointer machine
for these applications as well.

In the next section we shall need a compressed version of the interval forest H ′

that is defined with respect to the fringe-core partition: the parent h′(v) of a vertex v
is its nearest core ancestor inH if it has one, null otherwise. We can easily computeH ′

from H in linear time, but if we only wantH ′ and not H , we can avoid the topological
graph computation on the microtrees: First, find the strong components of the graphs
induced by the vertex sets of the microtrees. For each such component, find its
smallest vertex u, and perform unite(u, v) for every other vertex v in the component.
Then run the algorithm above for the core. This computes h(v) = h′(v) for every
vertex v with head in the core. Complete the computation by setting h′(v) = h′(u)
for each vertex v �= u in a fringe strong component with smallest vertex u.
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Fig. 8.2. Idealized execution of the algorithm on the graph in (a), with circled microtree. Arcs
depict the effects of contractions: whenever x ∈ R(y), (find(x), find(y)) is an arc in the corresponding
graph. The first vertex in each labeled set is the corresponding original vertex in (a). (a)→(b) During
preprocessing, h(v) ← u1, and v is inserted into the set of u1. (b)→(c) When processing u2, h(u1) ←
u2 via the arc (v, u2). (c)→(d) When processing u3, the stack S is (top-down) (u2, bottom(P )).
Hence, when processing the arc (bottom(P ), u3), S is popped so that h(u2) ← u3 and h(bottom(P )) ←
u3. (d) shows the state after doing the unite(·)’s for path P . (d)→(e) When processing u4, S is
(w, z, bottom(Q)). Arc (u2, u4) sets h(u3) ← u4 and adds top(P ) and z to R(u4). Processing top(P )
causes h(top(P )) ← u4, and processing z pops the stack so that h(w) ← u4 and h(z) ← u4. (f) After
processing path Q.
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9. Dominators. Our second flowgraph problem is finding immediate domina-
tors. Let G = (V,A, r) be a flowgraph. We denote the immediate dominator of any
vertex v by idom(v). Let D be an arbitrary but fixed DFS tree rooted at r. As
in section 8, we identify vertices by their preorder number with respect to the DFS;
reverse preorder is decreasing order by vertex number. We use the notation v

∗→ w
to denote that v is an ancestor of w in D, and v

+→ w to denote that v is a proper
ancestor of w in D. Sometimes we use the same notation to denote the respective
paths in D from v to w. We denote by p(v) the parent of v in D. We shall need the
following basic property of DFS.

Lemma 9.1 (see [54]). Any path from a vertex v to a vertex w > v contains a
common ancestor of v and w.

We shall describe an algorithm to compute immediate dominators in O(m) time
on a pointer machine. This is our most complicated application: it uses all the ideas
and algorithms we have developed so far. Our algorithm is a reengineering of the
algorithms presented by Buchsbaum et al. [16] and Georgiadis and Tarjan [31, 32].
As we proceed with the description, we shall point out the relationships between
concepts we introduce here and the corresponding ideas in those previous works.

9.1. Semidominators, relative dominators, tags, and extended tags.
Lengauer and Tarjan (LT) [43] devised a three-pass, O(mα(m,n))-time algorithm
to compute immediate dominators. We shall improve their algorithm by speeding up
the first two steps. Central to the LT algorithm is the concept of semidominators. A
path x0, x1, . . . , xk in G is a high path if xi > xk for i < k. As a degenerate case, a
single vertex is a high path. A high path avoids all proper ancestors of its last vertex.
The semidominator of a vertex w is

sdom(w) = min({w} ∪ {u : for some (u, v) in A there is a high path from v to w}).

The relative dominator of a vertex w is

rdom(w) = argmin{sdom(u) : sdom(w) +→ u
∗→ w}.

With this definition, relative dominators are not unique, but for any vertex any relative
dominator will do.

The LT algorithm operates as follows:
Step 1. Compute semidominators.
Step 2. Compute relative dominators from semidominators.
Step 3. Compute immediate dominators from relative dominators.
Step 3 relies on the following lemma.
Lemma 9.2 (see [43, Cor. 1]). For any vertex v �= r, if sdom(rdom(v)) = sdom(v),

then idom(v) = sdom(v); otherwise, idom(v) = idom(rdom(v)).
Using Lemma 9.2, the LT algorithm performs Step 3 in a straightforward top-

down pass over D that takes O(n) time on a pointer machine.
The LT algorithm performs Steps 1 and 2 in a single pass that visits the vertices of

D in reverse preorder and uses a link-eval data structure to compute semidominators
and relative dominators. We shall present separate algorithms for Steps 1 and 2,
although these steps can be partially combined, as we discuss in section 9.7.

Step 2 is almost identical to MST verification. Indeed, suppose we assign a cost
sdom(v) to each tree arc (p(v), v) and apply the MST verification algorithm to the
tree D (ignoring arc directions) with query set Q = {{sdom(v), v} : v �= r}, with the
modification that the answer to a query is an arc of minimum cost on the query path
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rather than the cost of such an arc. Then for v �= r, rdom(v) is the vertex u such that
(p(u), u) is the answer to the query (sdom(v), v). Modifying the link-eval structure to
replace maximum by minimum and to return arcs (or, better, vertices) rather than
costs is straightforward. The algorithm of section 7 thus performs Step 2 in O(n)
time on a pointer machine. (The number of queries is O(n).)

It remains to implement Step 1, the computation of semidominators. Lengauer
and Tarjan reduce this computation, also, to a problem of finding minima on tree
paths, using the following lemma.

Lemma 9.3 (see [43, Thm. 4]). For any vertex w,

sdom(w) = min
(
{w} ∪ {nca(u,w) : (u,w) ∈ A} ∪

{sdom(v) : ∃(u,w) ∈ A,nca(u,w) +→ v
∗→ u}

)
.

The lemma gives a recurrence for sdom(w) in terms of sdom(v) for v > w. The
LT algorithm performs Step 1 by visiting the vertices in reverse preorder and using a
link-eval structure to perform the computations needed to evaluate the recurrence.

Even though Step 1 is now reduced to computing minima on tree paths, we cannot
use the MST verification algorithm directly for this purpose, because that algorithm
answers the queries in an order incompatible with the requirements of the recurrence.
Instead we develop an alternative strategy. For convenience we restate the problem,
which allows us to simplify slightly the recurrence in Lemma 9.3. Suppose each vertex
w has an integer tag t(w) in the range [1, n]. The extended tag of a vertex w is defined
to be

et(w) = min{t(v) : there is a high path from v to w}.

Lemma 9.4. If t(w) = min({w} ∪ {v : (v, w) ∈ A}) for every vertex, then
sdom(w) = et(w) for every vertex.

Proof. The proof is immediate from the definitions of semidominators and ex-
tended tags.

We can easily compute the tag specified in Lemma 9.4 for every vertex in O(m)
time. Thus the problem of computing semidominators becomes that of computing
extended tags.

Lemma 9.3 extends to give the following recurrence for extended tags.
Lemma 9.5. For any vertex w,

et(w) = min({t(w)} ∪ {et(v) : ∃(u,w) ∈ A, nca(u,w) +→ v
∗→ u}).

Proof. The proof is analogous to that of Lemma 9.3. Let x be the right side of
the equation in the statement of the lemma. First we prove et(w) ≤ x. If x = t(w),
et(w) ≤ x is immediate from the definition of et(w). Suppose x = et(v) for v such
that nca(u,w) +→ v

∗→ u and (u,w) in A. By the definition of et(v), et(v) = t(z) for
some vertex z such that there is a high path from z to v. Extending this path by the
tree path from v to u followed by the arc (u,w) gives a high path from z to w. Hence
et(w) ≤ et(v) = x.

Next we prove x ≤ et(w). Let z be a vertex such that et(w) = t(z) and there
is a high path from z to w (by the definition of the extended tags). If z = w, then
x ≤ et(w) from the definition of x. If not, let (u,w) be the last arc on the high path
from z to w. Let v be the first vertex along the high path such that nca(u,w) +→ v

∗→ u.
Such a v exists since u is a candidate (nca(u,w) ≤ w < u). We claim that the part of
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Fig. 9.1. Extended tags and arc tags. The number inside each bracket is the extended tag of
the corresponding vertex. The number on each arc is its tag; the arc tag of a tree or forward arc is
infinite and not shown in the figure.

the high path from z to v is itself a high path. Suppose to the contrary that this part
contains a vertex less than v, and let y be the last such vertex. Then y must be an
ancestor of v by Lemma 9.1, and since y is on a high path for w, nca(u,w) +→ y

+→ v.
This contradicts the choice of v. It follows that et(v) ≤ t(z); that is, x ≤ et(w).

We introduce one more definition that simplifies some of our formulas and dis-
cussion. For an arc (u,w), the arc tag of (u,w) is

at(u,w) = min{et(v) : nca(u,w) +→ v
∗→ u}

if this minimum is over a nonempty set, and infinity otherwise (when nca(u,w) = u).
An example is shown in Figure 9.1. Using arc tags, the recurrence in Lemma 9.5
becomes

et(w) = min({t(w)} ∪ {at(u,w) : (u,w) ∈ A}).(9.1)

9.2. The interval forest. We could use (9.1) to compute extended tags just as
the LT algorithm uses Lemma 9.3 to compute semidominators, but we seek a faster
method. Note that there are two kinds of arcs (u,w) that must be handled: those
such that u and w are unrelated (cross arcs), and those such that w +→ u (back arcs).
(Arcs such that u +→ w do not contribute to the recurrence.) We apply different
techniques to the cross arcs and the back arcs, which allows us to tease apart the
intertwined computations implied by (9.1) and reorder them to apply our techniques.

To handle the back arcs, we use the interval forest discussed in section 8. Recall
the following definitions. For each vertex w, the head h(w) of w is the maximum
vertex u �= w such that there is a path from w to u containing only descendants of u,
if this maximum is over a nonempty set, and null otherwise. Lemma 9.1 implies that
the constraint on u in the definition of h(w) is equivalent to u

+→ w and there is a
high path from w to u. The heads define a forest H called the interval forest : h(w)
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is the parent of w in H . The following lemma allows us to compute extended tags by
computing arc tags only for the cross arcs and propagating minima up the interval
forest.

Lemma 9.6. For any vertex w,

et(w) = min({t(v) : v ∈ H(w)} ∪ {at(u, v) : (u, v) ∈ A, v ∈ H(w), u �∈ D(w)}).

Proof. Let x be the right side of the equation in the statement of the lemma.
First we prove et(w) ≤ x. Let v be in H(w). Since there is a high path from v to w,
et(w) ≤ t(v). Let (u, v) be in A such that v is in H(w) but u is not in D(w). Let y
be a vertex of minimum et(y) such that nca(u, v) +→ y

∗→ u, and let z be a vertex of
minimum t(z) such that there is a high path from z to y. Then there is a high path
from z to y to u to v to w, which implies et(w) ≤ t(z) = et(y) = at(u, v). We conclude
that et(w) ≤ x.

Next we prove x ≤ et(w). Let z be a vertex such that et(w) = t(z) and there is
a high path from z to w. If z is in H(w), then x ≤ t(z) = et(w). Suppose z is not
in H(w). Let (u, v) be the first arc along the high path from z to w such that v is in
H(w). Then u cannot be in D(w), or it would be in H(w), contradicting the choice
of (u, v). Thus nca(u, v) +→ u. Let y be the first vertex along the high path such that
nca(u, v) +→ y

∗→ u. By Lemma 9.1, the part of the high path from z to y is itself a
high path. Thus x ≤ at(u, v) ≤ et(y) ≤ t(z) = et(w).

Corollary 9.7. For any vertex w,

et(w) = min({t(w)} ∪ {et(v) : h(v) = w} ∪ {at(v, w) : (v, w) is a cross arc}).

Corollary 9.7 gives an alternative recursion for computing extended tags by pro-
cessing the vertices in reverse preorder. Lemma 9.6 also allows us to compute extended
tags for all the vertices on a tree path, given only arc tags for arcs starting to the
right of the path.

9.3. Microtrees and left paths. As in section 6, we partition D into a set of
bottom-level microtrees (the fringe), each containing fewer than g = log1/3 n vertices,
and D′ (the core), the remainder of D. We call a cross arc small if both its ends are in
the same microtree, and big otherwise. We also partition D′ into maximal paths as in
section 8, but a particular set of maximal paths. Specifically, we partition D′ into left
paths, as follows: An arc (p(v), v) of D′ is a left arc if v is the smallest child of p(v) in
D′. A left path is a maximal sequence of left arcs. We can partition D into microtrees
and left paths in O(m) time during the DFS that defines D. If P is a left path, as in
section 8 we denote by top(P ) and bottom(P ) the smallest and largest vertices on P ,
respectively. The importance of left paths is twofold. First, there are at most n/g of
them. Second, if (p(v), v) is a left arc, any child of p(v) smaller than v must be in the
fringe, not the core. That is, left paths have only microtrees descending on their left.
Left paths serve in place of the lines of Georgiadis and Tarjan [31, 32]; left paths are
catenations of those lines.

Our hypothetical plan for computing extended tags in linear time is to use a
topological graph computation to handle the microtrees and a link-eval structure to
compute arc tags for the big cross arcs. This plan does not quite work: computing
extended tags is unlike the previous problems we have considered in that there is
an interaction between the fringe and the core. In particular, we need at least some
information about the small cross arcs in order to compute extended tags in the core,
and information about the big cross arcs to compute extended tags in the fringe. For
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the former computation we do not, however, need to compute arc tags for the small
cross arcs: the recurrence in Lemma 9.6 expresses the extended tags of vertices in
the core in terms only of tags of vertices and arc tags of big cross arcs. To handle
the limited interaction between fringe and core, we use a two-pass strategy. During
the first pass, we compute arc tags of big cross arcs and extended tags in the core
while computing limited information in the fringe. In the second pass, we use the
information computed in the first pass in a topological graph computation to compute
extended tags in the fringe.

The information we need in the fringe is a set of values defined as follows. For a
vertex w in a microtree D(s), the microtag of w is

mt(w) = min
(
{t(v) : there is a path from v to w in D(s)} ∪
{at(u, v) : (u, v) is a cross arc, v ∈ D(s), u /∈ D(s),

and there is a path in D(s) from v to w}
)
.

Our microtags correspond to the pushed external dominators of Buchsbaum et al. [16]
(also used by Georgiadis and Tarjan [31, 32]). The next lemma shows that when
computing the arc tags of big cross arcs, we can use microtags in place of extended
tags for fringe vertices; that is, we shall use microtag values in the link-eval structure
when linking fringe vertices.

Lemma 9.8. Let w be a vertex in a microtree D(s). Then

min{et(v) : s ∗→ v
∗→ w} = min{mt(v) : s ∗→ v

∗→ w}.

Proof. Let x and y be the values of the left and right sides of the equation in the
statement of the lemma, respectively. First we prove that x ≥ y. Let v be a vertex
such that x = et(v) and s

∗→ v
∗→ w. Let z be a vertex such that t(z) = et(v) and

there is a high path from z to v. If z is in D(s), then this high path is in D(s), which
implies that x = t(z) ≥ mt(v) ≥ y. Suppose on the other hand that z is not in D(s).
Let (p, q) be the last arc along the high path such that p is not in D(s), and let z′

be the first vertex along the high path such that nca(p, q) +→ z′
∗→ p. Note that (p, q)

must be a cross arc, since p is not in D(s) and is on a high path to v in D(s). See
Figure 9.2. As in the proof of Lemma 9.5, the part of the high path from z to z′ is
itself a high path, which implies x = t(z) ≥ et(z′) ≥ at(p, q) ≥ mt(v) ≥ y.

Next we prove that x ≤ y. Let v be a vertex such that y = mt(v) and s ∗→ v
∗→ w.

Suppose mt(v) = t(z) for some z in D(s) from which there is a path to v in D(s).
Let u be the first vertex on this path that is an ancestor of w. Then the path from
z to u is a high path by Lemma 9.1 and the choice of u. Thus x ≤ et(u) ≤ t(z) = y.
Suppose on the other hand that mt(v) = at(p, q) for an arc (p, q) such that q but not
p is in D(s) and there is a path from q to v. Let u be the first vertex on this path
that is an ancestor of w. By Lemma 9.1, the part of the path from q to u is a high
path. Let z be a vertex such that t(z) = at(p, q) and there is a high path from z to
a vertex z′ such that nca(p, q) +→ z′

∗→ p. See Figure 9.2. This path, together with
the path z′

∗→ p, the arc (p, q), and the high path from q to u, is a high path. Thus
x ≤ et(u) ≤ t(z) = at(p, q) = mt(v) = y.

To help compute extended tags during the first pass, we use a compressed interval
forest H ′ in place of the interval forest H . Recall that in H ′, the parent h′(v) of a
vertex v is the nearest ancestor of v in H that is a core vertex. Forests H and H ′

are identical on the core; each subtree of H consisting of fringe vertices with a core
root is compressed in H ′ to the root with all the fringe vertices as children. The use
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Fig. 9.2. Proof of Lemma 9.8. Dashed curves represent graph paths. Solid edges represent tree
paths. Each gray vertex can be in the core or in the fringe.

of H ′ in place of H is an optimization only: we can build either H or H ′ in linear
time using the algorithm of section 8, but, as noted in section 8, building H ′ instead
of H avoids the use of topological graph computations on the microtrees and thus is
simpler. The algorithm of section 8 builds H ′ by partitioning D into microtrees and
maximal paths. We can use the set of left paths as the maximal paths, avoiding the
need for two different partitions.

To compute extended tags in the core, we use the following corollary of Lemma
9.6.

Corollary 9.9. If w is a core vertex

et(w) = min
(
{t(v) : v = w or v is fringe with h′(v) = w} ∪
{et(v) : v is core with h′(v) = w} ∪
{at(u, v) : (u, v) is a big cross arc such that

v = w or v is fringe with h′(v) = w}
)
.

The algorithm of Georgiadis and Tarjan [32] for computing dominators does not
use H ′ explicitly, but it does do an incremental backward search using a stack to
maintain strongly connected parts of lines, in effect doing a just-in-time computation
of (part of) H ′. Making this computation separate, as we have done, breaks the
overall algorithm into smaller, easier-to-understand parts, which could be combined
if desired.

9.4. Computation of arc tags. The heart of the algorithm is the computation
of arc tags. We split each such computation into two parts, either of which can be
void: a top part, which computes a minimum of extended tags over part or all of a left
path, and a bottom part, which computes a minimum of extended tags of core vertices
and microtags of fringe vertices using a sophisticated link-eval structure. Specifically,
let (u, v) be a big cross arc. Let P be the left path containing nca(u, v), and let Q be
the intersection of P and the path nca(u, v) +→ u. We denote the last vertex on Q by
mid(u, v). Note that Q can be nonempty (contain arcs) only if v is a fringe vertex.
See Figure 9.3.

For a given left path P , we compute minima of extended tags for all such nonempty
paths Q at the same time. We do not need to know any of these minima until all
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Fig. 9.3. Examples of nonempty nca(u, v)
+→ mid(u, v) paths. (a) Case u > bottom(P ). (b)

Case u < bottom(P ).

the extended tags for vertices on P have been computed. This allows us to compute
the minima for such paths Q in arbitrary order. One way to compute these minima
is to use the MST verification algorithm, as suggested above for doing Step 2 of
the LT algorithm. In this application, however, the tree being verified is actually
a path, and we can use an algorithm that is at least conceptually simpler, if not
asymptotically faster. The problem we need to solve is that of computing minima
for given subsequences of a sequence of numbers. This is the range minimum query
(RMQ) problem [30]. This problem has a linear-time reduction [30] to an NCA
problem on a Cartesian tree [65]. We can thus compute minima for paths Q by
constructing the Cartesian tree and applying our NCA algorithm. Either method
allows us to compute the top parts of arc tags in O(m) time on a pointer machine.

To compute the bottom parts of arc tags, we use a sophisticated link-eval struc-
ture. We delay the links for arcs on a left path until the top of the left path is reached,
and for arcs in a microtree until its root is reached. This allows us to establish a linear-
time bound for all the link-eval operations using Lemma 4.6.

9.5. The first pass. We now have all the pieces necessary to describe the first
pass of our algorithm for computing extended tags. Before the first pass, build the
compressed interval forest H ′, compute nca(u, v) for each big cross arc (u, v), and
construct, for each core vertex w, the set of big cross arcs (u, v) with nca(u, v) = w.
This takes O(m) time on a pointer machine using the method of section 8: the NCAs
are computed as part of the algorithm that builds H ′. Each vertex v has a computed
tag ct(v) that is initialized to t(v) and that decreases as the first pass proceeds, until
ct(v) = mt(v) if v is fringe, or ct(v) = et(v) if v is core. Each fringe vertex v also
has an associated set of cross arcs, initially empty. For each fringe vertex v, if v has
a parent in H ′ and ct(h′(v)) > ct(v), replace ct(h′(v)) by ct(v). Finally, initialize a
sophisticated link-eval data structure with no edges and each vertex of G as a node.

The first pass visits each microtree once and each left path twice. The visits are
in reverse preorder with respect to the roots of the microtrees and the top and bottom
vertices of the left paths; the first visit to a left path corresponds to its bottom (largest)
vertex, and the second visit to its top (smallest) vertex. Conceptually, envision a
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reverse preorder traversal of D, with actions taken as described below whenever a
microtree root or bottom or top vertex of a left path is visited.

When visiting a microtree D(s), it will be true that, for each vertex v in D(s),

(9.2) et(v) ≤ ct(v) ≤ min({t(v)} ∪ {at(u, v) : (u, v) ∈ A, u �∈ D(s)}).

Compute microtags for all vertices in D(s) by finding the strong components of the
subgraph induced by the vertices in D(s) and processing the strong components in
topological order. To process a component, compute a microtag for the component,
equal to the minimum of the ct(·) values for all vertices in the component and the
microtags for all preceding components (those with an arc leading to the compo-
nent). Then set ct(v) for every vertex in the component equal to the computed
microtag. The assigned value of ct(v) must be mt(v), assuming (9.2) holds. The
time required for this computation is linear in the size of the subgraph induced by
D(s) [54]. Having computed microtags for D(s), perform link(p(v), v, ct(v)) for ev-
ery vertex in D(s), in bottom-up order. Finally, for each cross arc (u, v) in the set
of cross arcs of a vertex u in D(s), set ct(v) ← min{ct(v), eval(u)}, and then set
ct(h′(v)) ← min{ct(h′(v)), ct(v)} if v has a parent in H ′. Such computations happen
here only for arcs (u, v) such that u is in a microtree hanging on the left of some left
path. It will become clear later that, for such an arc, the top part of the evaluation
of at(u, v) gets done first, when the left path is processed. The eval(u) operation does
the bottom part of the evaluation, finishing the job. We describe below when these
arcs are entered in the set associated with u.

When visiting a left path P for the first time, begin by visiting the vertices w
of P in bottom-up order and setting ct(h′(w)) ← min{ct(h′(w)), ct(w)} if w has a
parent in H ′. Once these updates are completed, ct(w) = et(w) for every vertex w
on P . Then collect all the arcs (u, v) in the sets associated with the vertices on P ,
i.e., the arcs (u, v) such that nca(u, v) ∈ P . For each such arc (u, v), set mid(u, v) ←
p(root(micro(u))) if u < bottom(P ), and mid(u, v) ← findroot(u) otherwise. The
findroot operation in the latter case is an operation on the link-eval structure. Having
computed all the mid values for all the cross arcs, evaluate the top parts of their arc
tags, using either of the methods discussed in section 9.4. For each such arc (u, v)
with computed arc tag top part x, do the following. If u > bottom(v) (see Figure
9.3(a)), set x ← min{x, eval(u)}; otherwise (see Figure 9.3(b)), add (u, v) to the set
of cross arcs of u. In the former case, the eval(u) operation computes the bottom part
of the arc tag; in the latter case, the computation of the bottom part is done when
the microtree containing u (which hangs to the left of P ) is visited. In either case, set
ct(v) ← min{ct(v), x}, and then set ct(h′(v)) ← min{ct(h′(v)), ct(v)} if v is a fringe
vertex with a parent in H ′.

When visiting a left path P for the second time, perform link(p(w), w, ct(w)) for
each vertex on P in bottom-up order, unless P is the last path, in which case the first
pass is done.

Based on the results of the previous sections, it is straightforward (but tedious) to
prove that this algorithm correctly computes extended tags. Note that the algorithm
eagerly pushes ct(·) values up H ′, rather than lazily pulling them; the latter would
require computing sets of children for H ′, whereas the former can be done using just
parent pointers.

Lemma 9.10. The first pass takes O(m) time on a pointer machine.
Proof. The running time of all parts of the algorithm is linear based on previous

results, except for the findroot and eval operations. To bound the time for these, we
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apply Lemma 4.6 to the shadow subtrees built by the link operations. These subtrees
are

√
2-balanced by Corollary 4.2 for linking-by-size and Corollary 4.4 for linking-by-

rank. Mark the parents (in D) of the tops of all the left paths. This marks at most
n/g = n/ log1/3 n vertices. We claim that k = 5 satisfies the hypothesis of the lemma.

We need to use details of the link implementation, for which we refer the reader
to section 4.3 for linking-by-size and section 4.4 for linking-by-rank. The links occur
in batches with no intermixed findroot or eval operations, one batch per microtree
and one batch per left path. Let v be any vertex. We count the number of times the
subroot of the shadow subtree containing v can change, as the result of a batch of
links, before v is in a subtree containing a marked node. Let v0 = v, v1, v2, . . . be the
successive roots of the shadow trees containing v. The subroot of the shadow subtree
containing v can change only as the result of a batch of links that include the current
vi as one of the vertices being linked. Suppose v is fringe. The first batch of links to
include v0 is the one for micro(v). This batch of links makes p(root(micro(v))) the
root of the tree containing v; that is, v1 = p(root(micro(v))). The next batches of
links that include v1 are those for other microtrees whose roots are children of v1 in
D. Such a batch does not change the root of the tree containing v but can change
the subroot of the subtree containing v, making it equal to v1. Once such links are
done, the only remaining batch of links that includes v1 is the one for the left path
P1 containing v1. This batch makes v2 = p(top(P1)), which means that the shadow
tree containing v (but not necessarily the shadow subtree containing v) has a marked
vertex. The next batches of links that include v2 are those for microtrees whose roots
are children of v2 in D. Such a batch cannot change the root of the tree containing
v, but it can change the subroot of the subtree containing v, making it equal to v2,
which is marked. Otherwise, the next (and last) batch of links that includes v2 is the
one for the left path P2 containing v2. This batch makes v3 = p(top(P2)).

Now v is either in the subtree rooted at v3, and hence in a subtree with a marked
vertex, or it is a shadow descendant of v2, which is no longer the root of the shadow
tree containing v. No subsequent link can change the root of the subtree containing
v without putting v and v2, which is marked, in the same subtree. Tracing through
the analysis above, we see that the subroot of the shadow subtree containing a fringe
vertex v can change at most four times before v is in a subtree with a marked vertex.
If v is a core vertex, the last part of the same analysis applies: the first batch of links
that can change either the root of the tree containing v or the subroot of the subtree
containing v is the one for the left path containing v; the subroot of the subtree
containing v can change at most twice before v is in a subtree with a marked vertex.
The shadow parent of vertex v can change at most once before the root of the shadow
subtree containing v changes. Thus the shadow parent of v can change at most five
times before v is in a shadow subtree with a marked vertex. This verifies the claim.
With k = 5 and � ≤ n/ log1/3 n, Lemma 4.6 gives a bound of O(m) on the time for
the findroot and eval operations.

9.6. The second pass. Having computed extended tags for all core vertices, we
compute extended tags for all fringe vertices by using a topological graph computation
on the microtrees. In the first pass, just before a microtree D(s) is processed, each
vertex v in D(s) has ct(v) = min({t(v)}∪{at(u, v) : (u, v) ∈ A, u �∈ D(s)}). It follows
that if we compute extended tags within the subgraph induced by the vertices ofD(s),
using these ct(·) values as the initial tags, we will obtain the correct extended tags for
the vertices in D(s) with respect to the original tags in the entire graph. The ct(·)
values are in the range [1, n], but we can map them to the range [1, g] by sorting all the
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ct(·) values using a pointer-based radix sort, extracting a sorted list of ct(·) values for
each subproblem, and mapping each such sorted list to [1, g]. To do this on a pointer
machine, we need to maintain a singly linked master list of length n, whose nodes
correspond to the integers 1 through n, and store with each integer a pointer to its
corresponding position in the master list, and we need to track such pointers through
the entire running of the algorithm. We assume that each input tag is given along
with a corresponding pointer into the master list. For the special case of computing
semidominators, we construct the master list and the corresponding pointers as we
perform the DFS and number the vertices. The only manipulations of vertex numbers
are comparisons, so it is easy to track these pointers through the entire computation.

Once the tags are mapped to [1, g], the computation of extended tags on the
microtrees is a topological graph computation, which we perform using the method
described in section 6. With the choice g = log1/3 n, the second pass requires O(m)
time on a pointer machine.

Combining all the parts of the algorithm, we obtain the following theorem.
Theorem 9.11. Finding immediate dominators takes O(m) time on a pointer ma-

chine.

9.7. An alternative method for Step 2. We conclude our discussion of dom-
inators by sketching an alternative method for performing Step 2 (computing relative
dominators) that does some of the work in the second pass of Step 1 and then uses a
simplification of the algorithm for the first pass of Step 1 to do the rest.

For a microtree D(s), the ct(·) values of its vertices just before D(s) is processed
provide enough information not only to compute the semidominators of each of its
vertices but also to compute the relative dominator of each vertex v such that sdom(v)
is in D(s). This we can do as part of the topological graph computation that forms
the second pass of Step 1. The remaining part of Step 2 is to compute rdom(v) =
argmin{sdom(u) : sdom(v) +→ u

∗→ v} for each vertex v with sdom(v) in the core. We
can do this by running a simplified version of the first pass of Step 1. We modify the
link-eval structure so that an eval returns a vertex of minimum value, rather than
the value itself. We compute the relative dominators in the same way that pass 1 of
Step 1 computes the arc tags of big cross arcs, but without using the interval tree H ′

and without using NCAs. We begin by storing each pair (sdom(v), v) with sdom(v).
Then we perform link(p(v), v, sdom(v)) for every fringe vertex v, in reverse preorder.
Finally, we process each left path P , in reverse preorder with respect to bottom(P ).
To process a left path P , we collect all the pairs (u, v) stored with its vertices. For
each such pair, we set mid(u, v) ← findroot(v). We evaluate each top part from u
to mid(u, v) using an NCA computation on a derived Cartesian tree as discussed in
section 9.4, modified to return a candidate relative dominator rd(u, v) for each pair.
For each pair we set rdom(v) ← argmin{sdom(eval(v)), sdom(rd(u, v))}. Finally, we
perform link(p(v), v, sdom(v)) for every vertex on P in reverse preorder, unless P is the
last path, in which case we are done. This method for doing Step 2 takes O(n) time.

This approach also leads to an alternative algorithm for MST verification, as
mentioned in section 7.5, which avoids the use of the Bor̊uvka tree as an intermediate
step, replacing it with NCA computations on Cartesian trees derived from the paths
of a partition of the core of the original tree T into maximal paths. We must still
do verification within microtrees, but these are microtrees of the original tree rather
than of the Bor̊uvka tree.

9.8. Remarks. From the definition of microtags we have that for any w in a
microtree D(s), mt(w) ≤ mt(v) for any s ∗→ v

∗→ w. This inequality implies that the
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eval function need only operate on the core tree. The algorithms of Buchsbaum et
al. [16] and Georgiadis and Tarjan [31, 32] rely on this fact but also require a hybrid
link-eval structure for the evaluation of path minima on the core. Lemma 4.6 allows
us to use a standard (simpler) link-eval structure that can include the fringe, which
also yields a more uniform treatment of the core and fringe vertices.

Our dominators algorithm uses the linear-time offline NCA algorithm for two
subproblems: interval analysis and range minimum queries. Georgiadis [31] observed
that a refined partition of the core tree into unary paths of size O(g) enables us
to use trivial algorithms to compute NCAs; topological graph computations are still
required, but they are performed on Cartesian trees corresponding to each unary path.

10. Component trees. Our final application is a tree problem, unusual in that
it seems to require partitioning all of the given tree, rather than just the bottom part,
into microtrees.

10.1. Kruskal trees. The Bor̊uvka tree discussed in section 7 represents the
connected components that are formed as Bor̊uvka’s MST algorithm is run. We can
define the analogous concept for other MST algorithms. For example, the Kruskal
tree is the tree whose nodes are the connected components formed as Kruskal’s MST
algorithm [42] is run. Kruskal’s algorithm starts with all vertices in singleton com-
ponents and examines the edges in increasing order by weight, adding an edge to
the MST being built, and combining the two corresponding components when the
edge has ends in two different components. The Kruskal tree K is binary, with one
node per component, whose children are the components combined to form the given
component. Each leaf of K is a vertex of the original graph; each nonleaf node is a
nonsingleton component. See Figure 10.1.

Even if the given graph is a tree, constructing the Kruskal tree is equivalent to
sorting the edges by weight, because the Kruskal tree for a star (a tree of diameter
two) contains enough information to sort the edges. If we are given the edges in
order by weight, however, the problem of constructing the Kruskal tree becomes more
interesting. We shall develop an O(n)-time, pointer-machine algorithm to build the
Kruskal tree K of a tree T , given a list of the edges of T in order by weight.
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Fig. 10.1. (a) The input weighted tree T ; the filled nodes are subtree roots when T is partitioned
with g = 3. (b) The Kruskal tree K of T . Leaves correspond to the nodes of T ; internal nodes
correspond to edges of T .

10.2. Bottom-up construction of a Kruskal tree. It is straightforward to
build K bottom-up using a DSU structure whose nodes are the nodes of T and whose
sets are the node sets of the current components. As the algorithm proceeds, each
designated node of a set stores the node of K corresponding to the set. Root T at an
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arbitrary vertex; let p(v) denote the parent of v in the rooted tree. Initialize a DSU
structure with each node in a singleton set, storing itself (a leaf of K). Process the
edges (now arcs) in the given order. To process an arc (p(v), v), let u = find(p(v)).
Add a new node x to K, whose two children are the nodes stored at u and v. Store x
at u, and perform unite(u, v). (For example, in Figure 10.1, the node corresponding
to (f, j) is stored at b.)

This algorithm runs in O(nα(n, n)) time on a pointer machine; only the finds take
nonlinear time. Although it builds K bottom-up, it does not process T bottom-up
but in the given arc order. As in sections 7–9, we thus cannot directly apply the
method of section 6 to reduce the running time to linear. On the other hand, if we
generalize the DSU structure to allow unite operations to have arbitrary nodes, rather
than just designated nodes, as parameters, and we replace each unite(u, v) operation
in the algorithm by unite(p(v), v), then the (unordered) set of unions is known in
advance, because the unions correspond to the arcs of T . As Thorup [62] observed in
the context of solving an equivalent problem (see section 10.4), this means that the
algorithm runs in linear time on a RAM if the linear-time DSU algorithm of Gabow
and Tarjan [29] is used.

Not only are the unions not bottom-up on T , but also there is no obvious way to
transform the problem into one on a balanced tree as in section 7. Instead, we partition
all of T into microtrees and do a topological graph computation to precompute the
answers to finds within the microtrees. Once these answers are known, running the
algorithm to build K takes O(n) time. Number the arcs of T from 1 through n − 1
in the given order. For any nonroot vertex v, let num(v) be the number of (p(v), v);
let num(v) = ∞ if v is the root. For any nonroot vertex v, let f(v) be the node
returned by find(p(v)) in the algorithm that builds K. (For example, in Figure 10.1,
f(j) = b.) Then f(v) is the nearest ancestor u of v that has num(u) > num(v). We
will precompute f(v) if v and f(v) are in the same microtree.

10.3. Linear-time construction. Let g = n/ log1/3 n. Partition all of T into
microtrees, each of size at most g, using the method of Dixon, Rauch, and Tarjan [22],
slightly modified. Visit the nodes of T in a bottom-up order, computing, for each node
v, a size s(v) and possibly marking v as a subtree root. The value of s(v) is the number
of descendants w of v such that no node on the path from v to w is marked. When
visiting v, set s(v) ← 1 +

∑
{s(w) : w is a child of v}. If s(v) > g, mark every child

of v and set s(v) to 1. Every marked node v determines a microtree whose nodes are
the descendants w of v such that v is the only marked node on the path from v to
w. The construction guarantees that every microtree contains at most g nodes. It
also guarantees that there are at most n/g parents of marked nodes, since, for each
such parent, the set of microtrees rooted at its children contains at least g nodes.
Partitioning T into microtrees takes O(n) time.

To precompute the answers to finds in the microtrees, begin by initializing f(v) ←
null for every nonroot node v. Then use a pointer-based radix sort to renumber the
nodes in each microtree consecutively from 1 up to at most g in an order consistent
with their original numbers (given by num). This does not affect the answers to the
finds for any vertex whose answer is in the same microtree. To do the pointer-based
radix sort, build a master list of nodes representing the numbers 1 through n, and
use pointers to these nodes in lieu of the actual numbers. For each microtree, build a
similar master list of nodes representing the numbers 1 through the number of nodes
in the microtree, and use pointers to these nodes in lieu of numbers. Now the problem
of answering the finds within microtrees is actually a topological graph computation
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as defined in section 5, and with g = n/ log1/3 n it can be done in O(n) time by
Theorem 5.2. This computation gives a nonnull value f(v) for every vertex v such
that v and f(v) are in the same microtree.

Having precomputed the answers to some of the finds, we run the algorithm that
builds K, but using the precomputed answers. Specifically, to process an arc (p(v), v),
let u = f(v) if f(v) �= null, u = find(p(v)) otherwise. Then proceed as in section 10.2.

Theorem 10.1. Suppose that the edges of a weighted tree T are given in order by
weight. Then the Kruskal tree of T can be built in O(n) time on a pointer machine.

Proof. The algorithm runs on a pointer machine; the running time is O(n) except
for the time to do the finds. We bound the time for the finds by applying Lemma 4.6
to the tree built by the parent assignments done by the unite operations. Mark every
parent of a microtree root. This marks at most n/g nodes. If an operation find(p(v))
is actually done, because its answer is not precomputed, f(v) and v are in different
microtrees. The union operations are such that if x and y are in the same set and x
is an ancestor of y, every vertex on the tree path from x to y is also in the same set.
Thus when find(p(v)) is done, f(v), p(v), and p(root(micro(v))) are all in the same
set. Since p(root(micro(v))) is marked, this find occurs in a set with a marked node.
We conclude that Lemma 4.6 applies with k = 1, giving an O(n) time bound for the
finds that are not precomputed.

We do not know whether there is a way to build K in linear time using only
bottom-level microtrees. If there is, it is likely to be considerably more complicated
than the algorithm we have proposed.

10.4. Compressed Kruskal trees. We can generalize the Kruskal tree to allow
equal-weight edges: when adding edges, we add all edges of the same weight at the
same time and add a node to the Kruskal tree for every new component so formed,
whose children are the components connected together to form it. The resulting com-
ponent tree is not necessarily binary. Thorup [62] and Pettie and Ramachandran [48]
have used such a compressed Kruskal tree in shortest path algorithms. Given a tree
and a partition of its edges into equal-weight groups, ordered by weight, we can con-
struct the generalized Kruskal tree in linear time on a pointer machine as follows:
Break ties in weight arbitrarily. Build the Kruskal tree, labeling each component
node with the group of the edge that formed it. Contract into a single node each
connected set of nodes labeled with the same group. The last step is easy to do in
O(n) time.

11. Concluding remarks. We have presented linear-time pointer-machine al-
gorithms for six tree and graph problems, all of which have in common the need to
evaluate a function defined on paths in a tree. Linear time is optimal and matches
the previous bound for RAM algorithms for these problems; our algorithms improve
previous pointer-machine algorithms by an inverse-Ackermann-function factor. Our
improvements rely mainly on three new ideas: refined analysis of path compression
when the compressions favor certain nodes; radix sorting to group isomorphic small
subproblems; and careful partitioning of the tree corresponding to the original prob-
lem into a collection of microtrees and maximal paths, as appropriate to the particular
application.

Our algorithms are simpler than the previous linear-time algorithms. Indeed, our
approach provides the first linear-time dominators algorithm that could feasibly be
implemented at all: the linear-time algorithm of Alstrup et al. [10] requires Q-heaps
[26], implying an impossibly-large constant factor. Buchsbaum et al. implemented
their original dominators algorithm [16], of which our algorithm is an improvement,
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and presented experimental results demonstrating low constant factors, though the
simpler LT algorithm was faster. Georgiadis, Tarjan, and Werneck [34] report more
recent experiments with algorithms for finding dominators, with results that vary
depending on input size and complexity.

Our methods are sufficiently simple and general that we expect them to have
additional applications, which remain to be discovered.

Note Added in Proof. We recently discovered how to avoid the need for NCAs
in Tarjan’s algorithm for interval analysis described in section 8. The resulting sim-
plified algorithm builds the sets R(u) and finds heads during a single DFS of the
flowgraph. It maintains the same DSU structure as in section 8. Initially R(u) is
empty for every vertex u. The algorithm is as follows. When the DFS retreats along
an arc (x, y), add x to R(find(y)). When the DFS visits a vertex u in postorder,
while R(u) is nonempty delete a vertex x from R(u), let v ← find(x), and if v �= u,
set h(v) ← u, set R(u) ← R(u) ∪ R(v), and do unite(u, v). This is the computation
done by the original algorithm after it does insertions into R-sets for arcs (x, y) such
that nca(x, y) = u. If the original algorithm processes the vertices in postorder with
respect to the DFS, then the R-sets of the descendants of a vertex u just after the
insertions for arcs (x, y) such that nca(x, y) = u are exactly the same as they are in
the simplified algorithm just before it processes u; the simplified algorithm has done
these insertions earlier. It follows that the simplified algorithm is correct.

This idea extends to the linear-time algorithm for interval analysis in section 8,
which can be simplified further by making the maximal path partition of the core
rightmost instead of arbitrary. Then the computation of heads for vertices whose
heads are in the core can be done in a single DFS that also generates the path
partition. Here are the details of this computation. Do set unions to combine the
vertices in each strong component of the fringe into a single set. Redo the DFS that
generated the tree D used to define the fringe and the core, but do the following.
Initialize the current path P , the stack S, and all sets R(u) to be empty. When
retreating along an arc (x, y), if find(y) is not on P add x to R(find(y)); if (x, y) is
a tree arc and y is in the core add y to P and push y onto S. (If find(y) is on P
when retreating along (x, y), (x, y) is a forward arc; as noted in section 8, heads do
not depend on such arcs.) When visiting a core vertex u in postorder, while R(u) is
nonempty do the following. Delete a vertex x from R(u). Let v ← find(x). If v is not
on P , set h(v) ← u, set R(u) ← R(u) ∪ R(v), and do unite(u, v). If v is on P and
v is no less than the top vertex on S, pop from S each vertex w less than or equal
to v, set h(w) ← u, and set R(u) ← R(u) ∪ R(w). When advancing along a tree arc
(x, y), do unite(h(v), v) for each vertex on P but not on S, and then empty P and S.
It is straightforward to show that this algorithm is correct. An analysis like that in
section 8 shows that the algorithm runs in linear time.
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Abstract. To cope with the impossibility of solving agreement problems in asynchronous sys-
tems made up of n processes and prone to t process crashes, system designers tailor their algorithms
to run fast in “normal” circumstances. Two orthogonal notions of “normality” have been studied in
the past through failure detectors that give processes information about process crashes, and through
conditions that restrict the inputs to an agreement problem. This paper investigates how the two
approaches can benefit from each other to solve the k-set agreement problem, where processes must
agree on at most k of their input values (when k = 1 we have the famous consensus problem). It
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1. Introduction. Distributed services have to run efficiently and reliably in
complex environments with unpredictable processing and communication delays, where
components can fail in various ways. It is unavoidable to encounter scenarios where
system performance will degrade, or even manual intervention will be required. There-
fore, system designers tailor their applications to run fast in “normal” circumstances
while having expensive recovery procedures in the rare cases of “abnormal” circum-
stances. Two complementary notions of “normality” have been considered, mirroring
the traditional computer science duality of control and data. On the control side we
have the failure detector approach [8], which abstracts away useful failure pattern
information, available in common operating scenarios. On the data side, we have the
condition-based approach [36], which looks at common input data patterns of a cer-
tain distributed problem we are interested in. The aim of this paper is to study how
the two approaches interact and can benefit from each other, with respect to solving
agreement problems.

1.1. Context of the paper. Distributed services often rely on an underlying
agreement protocol. The most popular and fundamental of the agreement problems is
consensus, which is actually indispensable for a lot of services. This paper investigates
the possibilities and limitations of solving consensus, and other weaker agreement
problems, in a system with failure detectors and conditions.
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Agreement problems. The consensus problem can informally be stated as
follows. Each process proposes a value, and the processes that are not faulty have
to decide the same value such that the value decided is one of the proposed values.
As a familiar example, it is easy to see that the atomic broadcast problem relies on
consensus as it requires that all of the processes deliver the messages they broadcast
in the same order: They have, consequently, to agree in one way or another on the
same message delivery order. However, it is well known that the consensus problem
has no solution in message-passing asynchronous systems made up of n processes that
need to tolerate a single process crash failure [16].

The k-set agreement problem [9] relaxes the consensus requirement to allow up
to k different values, out of the proposed values, to be decided; when k = 1, we
have the consensus problem. Set agreement is an abstraction of problems that are
weaker than consensus. Its discovery was motivated by the search for a problem that is
solvable when k−1 processes can crash, but not when k can crash, in an asynchronous
system. Since then, it has been very valuable in the development of the foundations of
distributed computing. The proofs in [6, 29, 50] showing that k-set agreement is not
solvable in a system of k+1 processes where k can crash uncovered a deep connection
between distributed computing and topology and motivated a significant amount of
subsequent research.

The situation is totally different in synchronous systems, where both consensus
and k-set agreement can be solved for any value of t (the maximum number of process
crashes) [10, 49]. However, there are limitations on how fast these problems can
be solved in a synchronous system, as a function of the number of failures t to be
tolerated. It has been shown that consensus requires t + 1 rounds in the worst case
[15, 33], and there are protocols that meet this lower bound. These results have been
generalized for the set agreement problem in [10, 20, 48].

The following two complementary notions of “normality” have been considered1

to cope with the consensus and set agreement asynchronous impossibility results and
synchronous lower bounds.

Control: Enriching the underlying system. The first approach focuses on
the behavior of the underlying system. In this case “normal circumstance” means
a period during which the system behaves in a relatively synchronous way. Namely,
periods during which upper bounds on process execution speeds and on message trans-
mission delays hold (various such partially synchronous models have been considered,
e.g., [14]), or periods during which message exchange patterns satisfy some properties
(e.g., the notion of winning/losing responses introduced in [35]) that allow solving
consensus. A failure detector abstracts away such low-level assumptions by provid-
ing processes with a primitive they can invoke that returns information on process
failures. One of the noteworthy features of failure detectors is the modular approach
they favor: One can independently, on one side, solve a problem with the help of a
particular class of failure detector, and, on another side, implement the assumed fail-
ure detector with the help of the underlying timing or order assumptions. The design,
transportability, and proof of protocols then become modular and easier to achieve.

Chandra and Toueg introduced the failure detector notion [8] and defined eight
classes that can be used to solve asynchronous consensus. Together with Hadzilacos,
they later showed that one of these classes is the weakest class of failure detectors
to solve consensus when t < n/2 [7] (n being the total number of processes, and t
an upper bound on the number of faulty processes). The weakest failure detector

1There are other approaches, like randomization or stronger shared memory primitives.
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for consensus and any value of t was identified in [12]. These results are of great
theoretical interest because they identify the minimum knowledge about failures that
needs to be abstracted to solve consensus. Failure detectors to solve set agreement
have also been proposed [27, 44, 52], but we do not know yet what is the minimum
knowledge about failures that needs to be abstracted to solve this problem.

The failure detector approach has favored the design of indulgent protocols [21].
A protocol is indulgent with respect to its failure detector if it never violates its
safety property. This means that, when the underlying failure detector satisfies its
specification (normal circumstances) the protocol terminates correctly; and, when the
underlying failure detector does not satisfy its specification (abnormal circumstances),
it is possible that the protocol does not terminate, but if it terminates, it does so
correctly. Various indulgent failure detector-based consensus protocols have been
proposed (e.g., [8, 23, 31, 43, 46, 51]).

Data: Restricting the inputs. The condition-based approach [36] consists in
looking at certain combinations of input values of a given distributed problem. It is
often the case in practice that some combinations of the input values of processes occur
more frequently than others. For example, in an election, it is often the case that the
difference in the number of votes that candidates receive is significant. More precisely,
an input vector contains the values proposed by the processes in an execution. A
condition C is a set of input vectors, each representing a common combination of
inputs to the problem. If a protocol solves k-set agreement for C, then whenever the
input vector belongs to C, all of the correct processes decide. The solution should be
indulgent in the sense that if correct processes decide while the input vector does not
belong to the condition, they do not decide more than k values.

It was discovered in [36] that there is a family of conditions, called x-legal, that tie
together asynchronous and synchronous systems with respect to consensus solvability.
Informally, in an x-legal condition any two input vectors I1, I2 that force different de-
cisions have d(I1, I2) > x (Hamming distance), assuming n > x. Thus, in a sense, x is
the “power” of the condition; larger values of x make it easier to solve consensus. As-
suming up to t process crashes and d ≤ t (d can have a negative value), let S [d]

t be the
set of all x-legal conditions, x = t−d (e.g., S [0]

t consists of the t-legal conditions). Then

S [−t]
t ⊂ · · · ⊂ S[−1]

t ⊂ S [0]
t ⊂ S [1]

t ⊂ · · · ⊂ S[t]
t ,

where S [t]
t includes the condition made up of all of the possible input vectors. For a

condition C ∈ S [d]
t , −t ≤ d ≤ t, and a system prone to t process crashes, we have the

following:
• For values of d ≤ 0, for inputs in C, consensus is solvable by more and more

efficient protocols in a shared memory asynchronous system as we go from
d = 0 to d = −t [40].

• For values of d > 0, consensus is not solvable in an asynchronous system, but,
for inputs in C, it is solvable in a message-passing synchronous system with
more and more rounds, as we go from d = 1 (two rounds) to d = t (t + 1
rounds), and this is tight [37] (namely, when C ∈ S [d]

t and C /∈ S [d−1]
t , (d+1)

rounds are sufficient and necessary in worst case scenarios).
• d = 0 is the borderline case. On one hand, asynchronous consensus can be

solved (despite up to t faulty processes) for a condition C if and only if C is
t-legal [36]. On the other hand, consensus can be solved optimally (2 rounds)
in a message-passing synchronous system [37] for any t-legal condition.
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The condition-based approach has been considered also for set agreement (and
for other problems), but a characterization of the conditions that allow solving set
agreement was not known (see section 1.3 for more about this and other related works).

1.2. Motivation and results. As we have seen, failure detectors and conditions
are two orthogonal approaches to cope with the impossibility of solving agreement
problems in asynchronous systems prone to t process crashes. So, the natural question
that comes to mind is,

What is the relation between the condition-based approach and the
failure detection-based approach when solving asynchronous agree-
ment problems?

More specifically, we are interested in studying how the two approaches can cooperate
to solve set agreement problems. We would like to understand which combinations
of failure detectors and conditions can be used to solve k-set agreement for a given
value of k.

For a given condition C, what is a failure detector that abstracts away
the synchrony needed to solve k-set agreement?

These and similar questions are the topic addressed in the paper.
The paper contains three main contributions. While trying to answer the previous

questions, we discovered a new class of failure detectors. We present an asynchronous
condition-based set agreement protocol based on this kind of failure detector. We
present a lower bound showing that our protocol is optimal. The next three sections
describe these results in more detail.

1.2.1. A new class of failure detectors. The first contribution of the paper is
the definition of a new class of failure detectors that we denote φyt , 0 ≤ y ≤ t. A failure
detector of φyt provides a primitive, denoted queryy(S), that can be invoked by a
process with a set of process identities S to be informed whether they have crashed
or not. Roughly speaking, queryy(S) returns true only when all of the processes in
S have crashed. If at least one process in S is alive, the output should be false. If |S|
is outside the range t− y < |S| ≤ t, the query returns no useful information.

Notice that the nature of our failure detectors is different from the standard failure
detectors of [8], that return a set of processes suspected to have crashed, and accept
no input parameter. The motivation is that often a process pi is interested in the
failures of only a specific part of the network, namely S, while the standard failure
detectors must find out the failure status of all processes in the network, even if pi
cares only about the state of a single process pj.

For each value of y between 0 and t, there is a class of failure detectors, φyt . The
class φyt provides more information on failures than the class φy−1

t . So, the class φtt
is the most powerful, while φ0

t is the weakest (it actually provides no dependable
information on failures). Indeed, as shown in the paper, φyt can be used to solve k-set
agreement for smaller values of k than φy−1

t .
The paper also compares the power of the φyt failure detectors and the power of

the classic failure detector classes introduced by Chandra and Toueg [8]. It is shown
that it is possible to build any class φyt , 0 ≤ y ≤ t, from a perfect failure detector
as defined in [8]. (A perfect failure detector eventually detects all crashed processes
and never suspects erroneously a noncrashed process.) In contrast, none of the other
classes of classic failure detectors can be used to build a failure detector of a class φyt ,
1 ≤ y ≤ t. When we consider the construction in the other direction, we show that
no class φyt , 0 ≤ y < t, can be used to build any of the classic failure detector classes.
When y = t, φtt can be used to build a failure detector of the class P .
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1.2.2. A condition-based set agreement algorithm using failure detec-
tors. A second contribution of the paper is the design of a condition-based set agree-
ment protocol with access to a failure detector of the class φyt , 0 ≤ y ≤ t. The
considered model is the classical asynchronous read/write shared memory distributed
system prone to at most t process crashes. The protocol can be instantiated with any
condition C ∈ S [d]

t , 0 ≤ d ≤ t. As we have seen, x = t− d represents the power of the
condition. That is, once n and t are fixed, the protocol is parameterized by the power
of the failure detector (captured by y) and the power of the condition (captured by
x = t− d).

We use the following terminology. We say that “a protocol solves the k-set agree-
ment problem” if the correct processes always decide; we say that “a protocol solves
the condition-based k-set agreement problem” if the correct processes decide at least
“in normal circumstances,” where “normal circumstances” means when (1) the in-
put vector belongs to the condition C; or when (2) a process decides or less than k
processes crash; or when (3) at least t− d processes crash initially.

The proposed protocol solves the condition-based k-set agreement for k = 1 +
max(0, d−y). Making more explicit the power y of the failure detector and the power
x = t − d of the condition, we have k = 1 + max(0, t − (x + y)). This shows how,
by adding the power of the condition and the power of the failure detector, we can
counterbalance the power t of the “adversary,” in order to reduce the value of k.
When we consider the boundary values of y and d, the protocol solves the following
problems:

• d = t corresponds to the case where there is no additional power provided
by the condition, as then condition C may contain all possible input vectors.
But, as any input vector belongs to this trivial condition, all correct processes
always decide, and, consequently, the protocol solves the k-set agreement
problem. More precisely,

– If y = t (strongest failure detector), the protocol solves the consensus
problem, k = 1.

– If y = 0 (no failure detector), the protocol solves the trivial (t + 1)-set
agreement problem.

– If 0 < y < t, the protocol solves k-set agreement, with k = t+1−y. When
we compare to the previous case, this shows the benefit provided by a
failure detector of the class φyt . The number of decided values linearly de-
creases according to the power of the failure detector, as measured by y.

• d = 0 means that the condition C is t-legal, which means that condition-
based consensus can be solved despite asynchrony and up to t crashes, with
no failure detector. So, at most one value is decided, and all of the correct
processes terminate in normal circumstances. So, the protocol then solves
condition-based consensus. (Let us notice that this is independent of the
value of y.)

• if y = 0 (no failure detector), the protocol then relies only on the condition
and solves the condition-based k-set agreement problem for k = d + 1. No
more than (d + 1) values are decided, and the termination of the correct
processes is guaranteed at least in normal circumstances: The number of
decided values decreases linearly according to the parameter d defining the
condition.
This case is particularly interesting as it exhibits a new link relating syn-
chronous and asynchronous systems. More precisely, when the condition C

belongs to S [d]
t and the input vector belongs to C, (1) it is possible to solve
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consensus in at most (d + 1) rounds in a synchronous system [37]; and (2)
it is possible to solve (d+ 1)-set agreement in an asynchronous system, both
systems being prone to t crashes. The optimal time bound for synchronous
condition-based consensus is equal to the number of decided values in asyn-
chronous condition-based set agreement. This time (in synchronous systems)
versus the number of decided values (in asynchronous systems) relation sheds
a new light on the global picture concerning the relations between synchronous
and asynchronous systems.

When we look at the general case, where the condition-based k-set agreement
problem is solved with k = 1+max(0, d−y), we see that when y ≥ d, condition-based
consensus is solved. This means that, if d is fixed, we need only to take a failure
detector of the class φdt to solve condition-based consensus (failure detectors of any
class φyt , with y > d are stronger than necessary). A similar reasoning can be done
when y is fixed, and we have the choice of the condition class.

The proposed protocol is indulgent [21, 23]: It never violates its safety require-
ment (no more than k = 1 + max(0, d − y) values are decided), and the correct
processes always terminate when the input vector belongs to the condition (“normal
circumstances”). Interestingly, a simple modification provides a protocol version in
which all of the correct processes always terminate. This is obtained at the price of an
increase in the number of values that can be decided when the input vector does not
belong to the (t− d)-legal condition C, namely, up to k′ = t+ 1 − y different values
can then be decided. When the system is equipped with a failure detector of the class
φtt, this protocol variant solves the consensus problem whatever the condition it is
instantiated with.

1.2.3. A lower bound. A third contribution of the paper is a lower bound
result showing that no protocol with access to a failure detector of the class φyt can
solve k-set condition-based agreement for k ≤ max(0, d − y), if the condition is in
S [d]
t . The proof is by reduction to the standard t-resilient k-set agreement problem,

that is known to be impossible if t ≥ k [6, 28, 29, 50]. This lower bound result has
two nice corollaries. One states that (in the absence of a failure detector) there is
no condition-based k-set agreement protocol such that k ≤ d for any (t − d)-legal
condition (a previously open problem). The second one states that, among all of the
failure detector classes of the family (φyt )0≤y≤t, the class φyt is the weakest that allows
solving the k-set agreement problem for k > t− y.

1.3. Related work.

The condition-based approach for consensus and set agreement. The
condition-based approach has been applied to problems other than consensus like
interactive consistency [17] and, more related to our work, set agreement [3, 39]. The
paper [3] characterizes the set of input vectors that allow us to solve (n − 1)-set
agreement, wait-free, namely, when t = n− 1. Their notion of solvability is different
from ours, since they assume that a protocol never receives input vectors outside of
the condition. In [39], another family of conditions for set agreement is defined, but
no general lower bounds were proved. Randomization as a means of circumventing
the set agreement asynchronous impossibility result has been considered in [45].

Failure detectors. Most of the research about failure detectors has been di-
rected at solving consensus, but there have also been proposals of failure detectors
for solving other problems. Failure detectors for implementing various objects and
for solving nonblocking atomic commit have been studied (e.g., [12, 22, 47]). The
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weakest class of failure detectors to solve consensus was identified in [7, 12]. For our
work, weaker classes of failure detectors are especially relevant, since set agreement is
an easier problem than consensus (and if conditions are considered, it becomes even
easier). Weaker classes of failure detectors were considered in [18, 44, 47, 52].

Failure detectors for set agreement. Among the failure detectors which are
not strong enough to solve consensus, the limited scope accuracy failure detectors
[25, 44, 52] have been studied with respect to set agreement. To illustrate this notion,
let us consider the class denoted Sx. A failure detector of that class satisfies the
following two properties. The completeness property states that the processes that
crash are eventually suspected in a permanent way. The limited scope accuracy
property states that there is a correct process that is not suspected by a set—cluster—
of x processes (some of these x processes may be correct, while others may be faulty).
An Sx-based k-set agreement protocol is presented in [44]. This protocol assumes that
t < k+x− 1 (which means that (t+ 1)− (x− 1) is the smallest value of k that it can
tolerate). Using topological methods, it has been shown in [27] that this is actually a
lower bound for any Sx-based k-set agreement protocol (from which it follows that the
previous protocol is optimal with respect to the number of faulty processes that can
be tolerated). When the limited scope accuracy property has to hold only after some
unknown but finite time, we get the class denoted �Sx. It is shown in [27] that any
�Sx-based k-set agreement protocol requires t < min(n/2, k + x − 1). A �Sx-based
protocol meeting this lower bound is also presented in [27]. It is shown in [2] that
t < x is a necessary and sufficient requirement to transform any failure detector of
the class �Sx into a failure detector of the class �Sy for y > x.

The class of anonymously perfect failure detectors. A failure detector of
our class φyt returns a binary output and can be invoked with a parameter S that
contains a set of process identities. In contrast, the classic failure detectors of [8]
return a set of identities, and are invoked with no parameter. A failure detector class
whose output is binary has been introduced by Guerraoui to solve the nonblocking
atomic commit problem [22], but, differently from ours, a failure detector of this class
does not accept a parameter to invoke it. This class, called anonymously perfect failure
detectors and denoted ?P , is defined as follows. Each process has a flag (initially equal
to false) that is eventually set to true if and only if a process has crashed (the identity
of the crashed process is not necessarily known, hence the name “anonymous”).

The definition of ?P has been extended in [18] to take into account the fact that
� processes have crashed (instead of a single one). This class, denoted ?P�, provides
each process with a flag that is eventually set to true if and only if at least � processes
have crashed (observe that ?P is ?P1).

So, a failure detector of the class ?P� answers true only if there is a set S of �
processes that have crashed. The set S is not known to the processes. Differently,
when we consider φyt , the set S is user-defined and specific to each invocation.

A variant of Ω. A generalization of the class of leader failure detectors, de-
noted Ω, has been introduced in [47]. More explicitly, Ωz is the class of all failure
detectors that provide the processes with a primitive leader() satisfying the follow-
ing properties. First, leader() always returns a set of at most z process identities.
Second, there is a time τ such that, after τ , all of the invocations of leader() by
the correct processes return the same set of processes, and this set includes at least
one correct process. It is easy to see that Ω1 is Ω, and Ωn provides no information
on failures. That is, in general, Ωz is weaker than the weakest failure detector for
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consensus. However, Neiger introduced them to study questions about augmenting
the synchronization power of types in the wait-free hierarchy [26], and their relation
to set agreement was not studied.

In a follow-up paper [38], we study the relation of Ωz to set agreement. More-
over, we study our new failure detectors, with respect to �Sx, Ωz, and show which
reductions among these classes are possible and which are not.

1.4. Organization of the paper. The paper is made up of nine sections. After
this introduction and a short section introducing the computation model considered in
the paper, section 3 presents the new failure detector classes φyt . (Section 8 compares
them to classic failure detectors by Chandra and Toueg.) Section 4 provides a quick
overview of the most relevant notions (for this paper) of the condition-based approach,
including a definition of the condition-based k-set agreement problem. Section 5
presents a generic k-set agreement protocol that is based on the combined power of
a failure detector of the class φyt and a condition of the class S [d]

t . The protocol is
discussed in section 6, where, at the price of an increase of the number of decided
values, an always terminating version is presented. Section 7 focuses on the lower
bound result. Finally, section 9 summarizes the content of the paper.

2. About the model of computation. This paper considers the usual asyn-
chronous model with n processes p1, . . . , pn, where at most t can crash 1 ≤ t < n.
The processes communicate through a shared memory made up of single-writer, mul-
tireaders atomic registers.

We assume that processes have access to an oracle that provides possibly unre-
liable information on process failures. A failure detector provides processes with a
primitive they can invoke to get information from the oracle on process failures.

3. The failure detector classes {φy
t }0≤y≤t.

3.1. Definition. This section introduces a new class of failure detectors, pa-
rameterized by an integer y, 0 ≤ y ≤ t, denoted φyt . (A comparison to classic failure
detectors is done in section 8.) The power of a such a failure detector depends on the
value of y. As we are about to see, a failure detector is more powerful for larger values
of y, because it can return information about more specific regions of the network,
namely, about smaller sets S of processes, with |S| > t− y.

More precisely, a failure detector of the class φyt provides a primitive queryy(S)
that returns a boolean answer. A process invokes it with the parameter S, a set of
processes specific to each invocation. Intuitively, if pi invokes queryy(S), the answer
will be true only when all processes in S have crashed. In that sense, these failure
detectors are different from the standard failure detectors, introduced by Chandra and
Toueg [8], that return a set of processes suspected to have crashed, and do not accept
an input parameter.2 The motivation is that often a process pi is interested in the
failures of only a specific sector of the network, namely S, while the Chandra–Toueg
failure detectors must find out the failure state of all processes in the network, even
if pi cares only about the state of only one process pj .

A query queryy(S) such that t−y < |S| ≤ t is relevant, otherwise it is irrelevant.
Intuitively, “relevant” means that it provides dependable information on failures. The
class φyt is defined by the following properties:

2We have shown in [38] that there are transformations between the φ failure detectors and a
version with no input parameter. It is consequently possible to define them according to the failure
pattern only.
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• Triviality property. If |S| ≤ t − y, then queryy(S) returns true. If |S| > t,
then queryy(S) returns false .

• Safety property. If queryy(S) is relevant, then if at least one process in S
has not crashed when queryy(S) is invoked, the invocation returns false.

• Liveness property. Let queryy(S) be a relevant query. Let τ be a time such
that, at time τ , all of the processes in S have crashed. There is a time τ ′ ≥ τ
such that all of the invocations of queryy(S) after τ ′ return true.

The triviality property says that the invoking process gets back a true output
when the set S is too small, because, in this case, the failure detector is not powerful
enough to answer reliably on a region of the network that is too focused. If the set S
is too big, the output is false, because, by definition, no more than t processes can fail.
The safety property states that if the output of a relevant query is true, then all of the
processes in S have crashed. The liveness property states that queryy(S) eventually
outputs true when all of the processes in S have crashed (and the query is relevant).

3.2. Ranking the classes {φy
t }0≤y≤t. A failure detector of the class φ0

t pro-
vides no information related to failures as the invocation queryy(S) answers always
true if |S| ≤ t, and false if |S| > t. At the other extreme, with a failure detector of
the class φtt, a process can query about the failure status of a single specific process,
since queryy(S) may return significant failure information about sets S of any size,
1 ≤ |S| ≤ t. That is, φ0

t and φtt are two extreme classes. This section compares the
power of distinct classes of failure detectors denoted φy1t and φy2t .

Definition 1. For two classes of failure detectors A and B, we denote A ≤ B,
and say that B is at least as strong as A if any failure detector in B can be used to
build a failure detector in A. We also say that B is stronger than A (denoted A < B)
if A ≤ B and B �≤ A. The classes A and B are equivalent, (denoted A ≡ B) if A ≤ B
and B ≤ A.

We shall see that φy1t is stronger than φy2t if y1 > y2, since φy1t provides more
information about failures than φy2t . Given a run of the processes, let queryy(S) be
a failure detector query invocation that, from some time on, is indefinitely repeated.
Let us examine the outputs returned by the infinite sequence of queries when the
failure detector belongs to φy1t and φy2t , respectively. Notice that t − y2 > t − y1
(since y1 > y2).

• Case 1: |S| > t. Both outputs are systematically equal to false.
• Case 2: |S| ≤ t− y1. Both outputs are systematically equal to true.
• Case 3: t − y2 < |S| ≤ t (so, we also have t − y1 < |S| ≤ t) for a relevant

query. If at least one process of S never crashes, both outputs are always
equal to false . If all of the processes of S crash, eventually both outputs are
permanently equal to true.

• Case 4: t − y1 < |S| ≤ t − y2. In this case, the output is always true if the
failure detector belongs to the class Φy2t . If it belongs to Φy1t , the output is
as in Case 3 (it depends on the failures).

The last case, namely, when t−y1 < |S| ≤ t−y2, exhibits a noteworthy difference
between φy1t and φy2t : φy1t provides information on failures while φy2t does not. Indeed,
for y1 > y2, it is impossible to build a failure detector in φy1t from one in φy2t . On the
other hand, any failure detector in φy1t can be used to build a failure detector in φy2t
by returning true if |S| ≤ t− y2, returning false if |S| > t, and returning the output
of φy1t if t− y2 < |S| ≤ t. (Formally, the next theorem is a consequence of Corollary
2 of section 7.)

Theorem 1. (y1 > y2) ⇒ (φy2t < φy1t ).
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4. The condition-based approach. The condition-based approach was intro-
duced in [36] to study conditions restricting the inputs to consensus that make the
problem solvable in an asynchronous system where t processes can crash. This line of
research has been extended to study conditions for other problems and in other dis-
tributed computing models [3, 17, 32, 36, 37, 39, 53]. In this paper, we are interested
in conditions for the set agreement problem in an asynchronous system.

4.1. Conditions. Let V be the set of values that can be proposed by the pro-
cesses. Moreover, let ⊥ /∈ V be a default value. An input vector is a size n vector
over V ∪ {⊥}. The input vector J proposed in an execution has in its ith entry J [i]
the value of V proposed by pi, or ⊥ if pi did not take any step in the execution. We
usually denote by I an input vector with all entries in V , and with J an input vector
that may have some entries equal to ⊥; such a vector J is called a view. The set Vnx
consists of all of the input vectors, with at most x entries equal to ⊥, and Vn = Vn0 .

Definition 2. A condition C is a subset of Vn.
Notation. For any pair of vectors J1, J2 ∈ Vnx , J1 is contained in J2, denoted

J1 ≤ J2, if for all k : J1[k] �= ⊥ ⇒ J1[k] = J2[k]. Moreover, J1 < J2 if J1 ≤ J2 and
J1 �= J2, which means that J2 has at least one non-⊥ value that J1 does not have.
Also, #a(J) denotes the number of occurrences of a value a in the vector J , with
a ∈ V ∪ {⊥}. For a set of input vectors C ⊆ Vn, Cx is the set of all vectors J , with at
most x entries equal to ⊥ and such that J ≤ I for some I ∈ C. Finally, dist(J, J ′) is
the Hamming distance separating J and J ′, where J and J ′ are two vectors of Vnx .

4.2. Legality of a condition. The main result of the condition-based approach
to solve asynchronous consensus is based on the following definition as formulated in
[17, 53].

Definition 3. A condition C is x-legal if there exists a function h : C �→ V with
the following properties:

• for all I ∈ C: h(I) = a⇒ #a(I) > x, and
• for all I1, I2 ∈ C: h(I1) �= h(I2) ⇒ dist(I1, I2) > x.

A fundamental result of the condition-based approach is a characterization of the
conditions C for which consensus can be solved (for a precise definition of solving
consensus for C, see Definition 5, with k = 1).

Theorem 2 (see [36]). There is a t-fault tolerant protocol solving consensus for
C if and only if C is t-legal.

A general method to define t-legal conditions is described in [40], and two natural
t-legal conditions are described in [36].

It is convenient to extend h to vectors J with ⊥ values. The lemma that follows
shows that this is easy, provided J ∈ Cx.

Lemma 1. Let C be an x-legal condition, and I1, I2 ∈ C, J ∈ Cx such that
J ≤ I1 and J ≤ I2. Then h(I1) = h(I2).

Proof. Assume for contradiction that h(I1) �= h(I2). We have dist(I1, I2) > x
because C is x-legal. From the fact that J has at most x entries equal to ⊥ and
J ≤ I1, we have dist(J, I1) ≤ x (similarly, we also have dist(J, I2) ≤ x). From these
inequalities, the fact that the entries of J that differ in I1 and I2 are only its ⊥
entries, and again the fact that J has at most x entries equal to ⊥, we conclude that
dist(I1, I2) ≤ x. A contradiction.

Using this lemma we have a consistent definition.
Definition 4. Let C be an x-legal condition and J be any vector in Cx. The

function h is extended to J by taking any I ∈ C, with J ≤ I and letting h(J) = h(I).
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Assuming up to t process crashes and −t ≤ d ≤ t, let S [d]
t be the set of all

(t−d)-legal conditions (thus S [0]
t consists of the t-legal conditions). It is easy to check

that

S [−t]
t ⊂ · · · ⊂ S[−1]

t ⊂ S [0]
t ⊂ S [1]

t ⊂ · · · ⊂ S[t]
t ,

where S [t]
t includes the condition made up of all of the possible input vectors.

Notation. In the rest of the paper, Cdt denotes a condition that belongs to S [d]
t .

4.3. The k-set agreement problem.

k-set agreement. Consensus is a fundamental problem in distributed computing
that is impossible in an asynchronous system even with a single crash failure. While
consensus requires all processes to decide on the same value, k-set agreement [9]
permits the processes to choose up to k different values. The problem is solvable
when k − 1 processes can crash, but not when k can crash. The proofs [6, 29, 50] of
this result uncovered a deep connection between distributed computing and topology
and motivated a significant amount of subsequent research.

The set of values V that can be proposed is assumed to be such that |V| > k.
Each process starts an execution with an arbitrary input value from V , the value it
proposes, and all correct processes have to decide on a value such that (1) any decided
value has been proposed, and (2) no more than k different values are decided. The
consensus problem is k-set agreement for k = 1.

Condition-based set agreement. We are interested in conditions C that, when
satisfied, make k-set agreement solvable in an asynchronous system where at most t
process can crash. As we shall see, k-set agreement is solvable for C ∈ S [d]

t if k ≥ d+1.
Notice that, if an input vector J ∈ Ct occurs in an execution of a protocol, then

as far as the processes with non-⊥ values in J can tell, the input vector could belong
to I ∈ C, because they cannot distinguish from another execution where the other
processes wake up and propose their values after the former processes have made their
decision. Given C ∈ S [d]

t , we say that C is d-satisfied for input vector J if J ∈ Ct or
#⊥(J) ≥ t− d.

Definition 5. A t-fault tolerant protocol solves the k-set agreement problem for
a condition C ∈ S [d]

t if in every execution with input vector J , the protocol satisfies
the following properties:

• Validity. Every decided value is a proposed value.3

• Agreement. No more than k different values are decided.
• Termination. Every correct process must decide if (1) C is d-satisfied for J

and no more than t processes crash, or (2.a) a process decides, or (2.b) fewer
than k processes crash.

The first two are the safety requirements of the standard set agreement problem,
and they should hold even if the input pattern does not belong to C. The third
item requires termination under “normal” operating scenarios: (1) inputs that could
belong to C or at least t − d processes crash, and (2.a) executions where a process
decides, or (2.b) fewer than k processes crash (a situation where k-set agreement is
solvable without conditions).

3It is shown in [13] that the solvability of k-set agreement is highly sensitive to the validity
property adopted.
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Notice that, if set agreement is solvable for a condition C, then it is solvable for
any C′ contained in C: the same protocol works. As mentioned above, when t < k,
k-set agreement is solvable for Vn, hence for any condition C.

5. Combining conditions with φy
t to solve set agreement. This section

presents a set agreement protocol with access to a failure detector of the class φyt ,
0 ≤ y ≤ t, and instantiated with the function h of a (t− d)-legal condition C ∈ S[d]

t ,
0 ≤ d ≤ t. It is a t-fault tolerant protocol that solves k-set agreement for Cdt , where
k = 1+max(0, d−y) (recall Definition 5). Thus, all of the pairs (d, y) such that d ≤ y
allow solving condition-based consensus.

5.1. Base objects. In order to make the protocol simpler to understand, it is
presented in a modular way. More specifically, it relies on the following base ob-
jects: Three arrays of atomic registers, a consensus object, an adopt–commit-abort
object, and a condition-set agreement object. An adopt–commit-abort object and a
condition-set agreement object can always be implemented on top of base read/write
registers. As far as the consensus object is concerned, as we will see, it can always be
implemented in the particular context in which it is used by the processes.

The shared memory. The shared memory is made up of three arrays (denoted
V [1..n], W [1..n], and DEC [1..n]) of single-writer multireader atomic registers. All
are initialized to [⊥, . . . ,⊥]. The jth entry of an array X [1..n] can be read by any
process, but only pi can write to the ith component X [i]. To simplify the presentation
we assume that, in addition to these atomic read and write operations, a process pi can
also invoke the nonprimitive operation snapshot(X) that allows it to read the content
of all of the registers of the arrayX as if this reading was done instantaneously. (Such
an operation can be implemented in shared memory systems made up of single-writer,
multireader atomic registers despite any number of process crashes (1 ≤ t < n) [1, 4].)
In accordance with the terminology defined in [30], the read, write, and snapshot()
operations are linearizable (i.e., they appear as if they had been executed one after
the other, in agreement with their real-time occurrence order).

The underlying consensus object. A consensus object is accessed by a process
pi when pi invokes the operation alg cons(vi), where vi is the value proposed by pi.
Such an object allows any subset of processes to invoke alg cons(). Its properties are
the following:

• Termination. Any correct participating process decides a value.
• Validity. A decided value is a proposed value.
• Agreement. No two different values are decided.

As we will see, the underlying consensus object is used when more than t − y
process crash. It is shown in Theorem 8 that, in this case, a failure detector of the
class P (the class of perfect failure detectors [8]; see section 8) can be built from
a failure detector of the class φyt (such a construction is described in the proof of
Theorem 8), and consensus can be solved in a single-writer multireader atomic register
asynchronous system enriched with such a failure detector.4

The underlying adopt–commit-abort object. The adopt–commit-abort ob-
ject we use here is a simple variant of the adopt–commit-abort object introduced in
[19, 52] in the context of shared memory systems, and an object introduced in [43]

4A �P-based alg cons() protocol is described in [42]. That protocol uses an underlying adopt–
commit-abort object. (Trivially, any failure detector in P is also in �P.) Other shared memory
consensus algorithms based on failure detectors can be found in [5, 24, 34].
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in the context of message-passing systems.5 Such an object has a single operation,
denoted adopt commit(). A process pi invokes adopt commit(vi), where vi is the value
it proposes to the adopt–commit-abort object and obtains a pair (d, v) as a result,
where d is control tag and v a value. The object is defined by the following properties.

• Termination. Any correct participating process decides a pair (d, v).
• Validity. If a process decides (d, v), then d ∈ {commit, adopt, abort}, and v

is a proposed value.
• Agreement. If a process decides (commit, v), then any other process that

decides, decides (d, v), with d ∈ {commit, adopt}.
• Obligation. If all of the participating processes propose the same value v,

then only the pair (commit, v) can be decided.
Intuitively, the adopt–commit-abort object is an abortable variant of consensus.

Let us observe that a process that decides (abort,−), can conclude that no process
decides (commit,−). However, when a process decides (adopt,−), it cannot conclude
which control tag has been decided by the other processes.

The underlying condition-set agreement object. A condition-set agree-
ment object has a single operation, denoted cond algo(). This object is designed to
solve a set agreement problem with the help of a (t − d)-legal condition C. A pro-
cess uses this object only in the particular context where the input vector J is such
#⊥(J) ≤ t− y.

A process pi invokes cond algo(Vi), where Vi is its local view of the input vector
J (we have then Vi ≤ J and #⊥(Vi) ≤ t−y), and only when the views can be ordered
by containment, Vi ≤ Vj or Vj ≤ Vi for all i, j. If it returns from that invocation, pi
obtains a value v. The object is defined by the following properties.

• Termination. Every correct process decides if (1) J ∈ Ct or #⊥(J) ≥ t − d
(C is d-satisfied for J), or (2.a) a process decides, or (2.b) more than (n− k)
correct processes invoke cond algo().

• Validity. A decided value is a value that has been proposed by a process in
its input view.

• Agreement. At most, k = 1 + max(0, d− y) values are decided.

5.2. The set agreement protocol.

Description of the protocol. The k-set agreement protocol based on a condi-
tion in C ∈ S [d]

t and a failure detector of the class φyt is described in Figure 1. The
variables subscripted with i are local variables of pi. A process is made up of two
tasks: a main task T 1 and a background task T 2. The behavior of the task T 1 can
be decomposed into four parts.

• A process first writes the value vi it proposes into V [i] (line 1). Then, using
the snapshot() operation, it reads the array of proposed values until that array
contains “enough” values (line 2). “Enough” means here that there are no
more than (t−y) missing values, or there are more than (t−y) processes that
have crashed; this is known from the invocation queryy(Si). (Let us recall
that, when |Si| ≤ t− y, queryy(Si) answers always true).

• Then, the behavior of pi depends on the number of values it knows. If there
are too many crashes (line 4), pi sets a local variable propi to the value

5A wait-free implementation of an adopt–commit-abort object from single-writer multireader
atomic registers can be found in [52]. An implementation in message-passing systems, where a
majority of processes is correct, is presented in [43]. For completeness, an implementation of an
adopt–commit-abort object is described in Appendix A.
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Function k-set agreement
[d,y]
n,t (vi)

task T1:
(1) V [i] ← vi;
(2) repeat Vi ← snapshot (V ); Si ← {j | Vi[j] = ⊥}
(3) until queryy (Si) end repeat;
(4) case (#⊥(Vi) > t − y) then propi ← CONS ; wi ← ⊥
(5) (#⊥(Vi) ≤ t − y) then propi ← COND ; wi ← cond algo(Vi)
(6) end case;
(7) W [i] ← wi; (di, resi) ← adopt commit(propi); Wi ← snapshot(W );
(8) case (resi = CONS) ∨ (di = abort)
(9) then DEC [i] ← cond algo(vi); return (DEC [i])
(10) (resi = COND) ∧ (di = commit)
(11) then DEC [i] ← Wi[j] such that Wi[j] �= ⊥; return(DEC [i])
(12) (resi = COND) ∧ (di = adopt)
(13) then esti ← Wi[j] such that Wi[j] �= ⊥;
(14) DEC [i] ← cond algo(esti); return(DEC [i])
(15) end case

task T2:
(16) j ← 0;
(17) repeat forever j ← (j mod n) + 1;
(18) if (DEC [j] �= ⊥) then return(DEC [j]) end if
(19) end repeat

Fig. 1. A k-set agreement protocol with k = 1 + max(0, d − y).

CONS to try to decide a value from the underlying consensus algorithm (let
us remind that, when there are more than (t − y) crashes, it is possible to
solve consensus from φyt ). In the other case, pi knows enough proposed values
to decide from the condition (line 5); pi computes, consequently, a value wi
that could be decided from the condition and sets propi to COND .

• The process then uses the underlying adopt–commit-abort object (line 7) in
order to try agreeing on the same tag, namely, CONS or COND . Moreover,
each pi deposits in the array W [1..n] the value it has computed at line 4 or
line 5 and reads that array with the snapshot() operation.

• The last part depends on the result returned by the adopt–commit-abort
object.

– If pi obtains di = abort or resi = CONS , it concludes that no value
can be decided from the condition. It consequently uses the consensus
object to decide a value (lines 8–9).

– If pi obtains resi = COND , at least one entry of Wi is not equal to
⊥. Then, if, additionally, di = commit, pi concludes that any value
deposited in W can be decided from the condition, and it decides it
(lines 10–11).

– If pi obtains resi = COND together with di = adopt, it does not know
if the other processes pj have obtained dj = commit or dj = abort. So,
to be consistent, pi participates in the underlying consensus to which it
proposes a value that could be decided from the condition (lines 12–14).
It then decides the value returned by the consensus object.

The aim of task T 2 is to guarantee that a correct process always decides as soon
as a process decides. To that end, when a process pj is about to decide in task
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T 1 (execution of the return(v) statement), it first writes v in DEC [j].6 Task T 2
of a process pi is then a simple loop statement that terminates when the predicate
(∃j : DEC [j] �= ⊥) becomes true. The execution of the return() statement by a
process pi terminates its execution of k-set agreement

[d,y]
n,t (vi).

Proof of correctness.
Theorem 3. When instantiated with a failure detector of the class φyt and a

condition C in S[d]
t , the protocol described in Figure 1 solves the condition-based k-set

agreement problem where k = 1 + max(0, d− y).
Proof. Validity property (a decided value has been proposed by a process). Let us

observe that a decided value deci is either an initial value vj proposed to the consensus
by a process pj (line 9) or a value wi obtained by a process pi from the condition-set
agreement object (lines 11 and 14). The validity property follows immediately from
the corresponding validity property of the consensus object and the condition-set
agreement object, and hence line 18 preserves validity.

Agreement property (at most k different values are decided). Let us observe
that, due to the agreement property of the adopt–commit-abort object, it is not
possible for two processes pi and pj that have invoked adopt commit() at line 7 to
be such that both the predicate (resi = CONS) ∨ (di = abort) and the predicate
(resj = COND)∧ (dj = commit) are true. It follows from that observation that it is
not possible for a process pi to execute line 9 while another process pj executes line
11. So, there are only two cases to consider (in addition to the trivial case of line 18).

• No process begins executing line 9 or 14. In that case, these processes decide
the value returned by the consensus object. Due to the consensus agreement
property, there is a single such value.

• No process begins executing line 11 or 14. In that case, these processes
decide a value returned from the condition-set agreement object . Due to the
condition agreement property, there are at most k = 1 + max(0, d − y) such
values, which proves the case.

Termination property. Let J be the input vector. We have to show that every
correct process decides if (1) the condition C is d-satisfied for J , or (2.a) a process
decides, or (2.b) fewer than k processes crash.

Let us notice that, as there are at most t process crashes (model assumption),
the repeat loop of lines 2–3 always terminates. Moreover, let us also observe that,
due to the termination property of the adopt–commit-abort object, any invocation of
adopt commit() issued by a correct process terminates (observation O1).

Let us also observe that the underlying consensus protocol is used only when the
number of crashes is greater than t − y (line 4), i.e., when a failure detector of the
class P can be built from a failure detector of the class φyt (item (3) of Theorem
8). The termination property of the consensus object ensures that all of the correct
processes that invoke cons alg() terminate their operation (observation O2). Let us
now proceed by a case analysis.

• Case (1): We have to show that any correct process decides when the condi-
tion C is d-satisfied for J , where J is the input vector.
In that case, it follows from item (1) of the termination property of the
condition-set agreement object that any invocation cond algo() issued by a

6This write plays the same role as the reliable broadcast of the decided value in message-passing
systems (e.g., see the consensus protocols in [8, 23, 43, 51]). Their aim is to prevent a process from
deadlocking.
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correct process terminates. This, combined with the observations O1 and O2,
allows us to conclude that any correct process terminates when C is d-satisfied
for J .

• Case (2.a): We have to show that any correct process decides, as soon as a
process decides.
This property is trivially guaranteed by the management of the array DEC [1..n]
and task T 2.

• Case (2.b): We have to show that any correct process decides when fewer
than k processes crash.
If no correct process accesses the condition-set agreement object, the fact that
any correct process decides follows from the observations O1 and O2. So, let
us consider the case where correct processes access the condition object. As
k = 1 + max(0, d − y) and fewer than k processes crash, this means that at
most max(0, d−y) processes crash. Moreover, as t ≥ d, we have t−y ≥ d−y.
It follows (from the properties of the failure detector φyt ) that all of the
processes pi that execute the repeat loop (lines 2–3) and do not crash while
executing that loop, eventually exit it, and we have then #⊥(Vi) ≤ t − y.
They consequently all of access the condition-set agreement object at line 5.
It follows that all of the correct processes (there are more than (n − k) of
them) invoke the condition-set agreement object. Due to item (2.b) of the
termination property of the condition-set agreement object, it follows that
any correct process decides in the k-set agreement protocol.

5.3. Implementation of a condition-set agreement object.

Description of the protocol. A t-fault tolerant protocol implementing a
condition-set agreement object is described in Figure 2. This protocol is instantiated
with a function h associated with a (t− d)-legal condition C. It uses a deterministic
function F () and a predicate P (). The function F () takes a view J as a parameter
and returns a non-⊥ value of the vector J . The value � is a default value not in V
and different from ⊥. It is assumed that the function h is extended to all views J of
C, with at most t− d entries equal to ⊥ as in Definition 4. The predicate P () is true
on all such views:

P (Vi) ≡
(
∃I ∈ C such that Vi ≤ I

)
.

Thus, P () is used to test if pi’s current view Vi of the input vector could originate
from a vector of the condition.7

The protocol can be seen as a case analysis. The first step is for pi to check
whether #⊥(Vi) ≤ t− d in order to benefit from the condition. If #⊥(Vi) > t− d, pi
cannot benefit from it and consequently decides a value from its local view Vi at line
18 (the processes executing that line decide at most max(0, d− y) different values).

Otherwise, we have #⊥(Vi) ≤ t − d, and then pi has enough non-⊥ entries in
its view Vi to test if the condition can help it decide. So, pi enters the lines 2–17.
There are three cases. If P (Vi) is satisfied (first case), pi decides the value from the
condition and writes it in the shared array D to help other processes decide (line 4).

If P (Vi) is not satisfied (second case), pi first checks if #⊥(Vi) = t−d. If so (second
case), it knows that no other process will evaluate P to true in the previous line, and

7It is shown in [36] that, for some conditions, there are very efficient ways to compute the
predicate P (). As an example, for the (t − d)-legal condition C1 (defined in section 4.2), we have
P (Vi) ≡ #max(J)(Vi) > (t − d) − #⊥(Vi).
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Function cond algo (Vi) % We have #⊥(Vi) ≤ t − y, and Vi ≤ Vj or Vj ≤ Vi for all i, j %

(1) if (#⊥(Vi) ≤ t − d)
(2) then if P (Vi)
(3) then % The processes executing this line decide the same value %
(4) wi ← h(Vi); D[i] ← wi; return (wi)
(5) else if (#⊥(Vi) = t − d)
(6) then % The processes executing this line decide the same value %
(7) wi ← F (Vi); D[i] ← wi; return (wi)
(8) else % If processes execute these lines, at most k value can be decided %
(9) D[i] ← 	;
(10) repeat Di ←snapshot (D) until

(
(∃j : Di[j] �= ⊥,	) ∨ (#⊥(Di) < k)

)
;

(11) if (∃j : Di[j] �= ⊥,	) then return (Di[j] such that Di[j] �= ⊥,	)
(12) else ∀j : if (Di[j] = 	) then Yi[j] ← V [j]
(13) else Yi[j] ← ⊥ end if;
(14) wi ← F (Yi); D[i] ← wi; return (wi)
(15) end if
(16) end if
(17) end if
(18) else wi ← F (Vi); D[i] ← wi; return (wi) % Here (t − d) < (#⊥(Vi) ≤ t − y) %
(19) % The processes executing that line decide at most max(0, d − y)) values %

end if

Fig. 2. A condition protocol.

that any other process pj , with #⊥(Vj) = t − d has Vi = Vj , so it deterministically
decides F (Vi) (line 7).

In the third case, #⊥(Vi) < t − d, and pi writes � in D[i] to indicate it cannot
decide from its local view Vi (so,D[j] = ⊥ means that pj has not yet finished executing
its protocol or has crashed). Then, as it cannot decide by itself, pi starts the “best
effort termination” part of the protocol (lines 9–15). It enters a loop (line 10), during
which it looks for a decided value (∃j : Di[j] �= ⊥,�) and decides if there is one (line
11) or a configuration where #⊥(Di) < k (this is the only place where k is used in the
protocol). If the condition (� ∃j : Di[j] �= ⊥,�) ∧ (#⊥(Di) < k) is satisfied, pi builds
a local view of the input vector corresponding to the processes that have executed
at least until line 9. As we will see in the proof, if several such views (Yi, Yj , etc.)
are computed, due to the invocations of snapshot(D) at line 10 that precede their
construction, the associated containment property implies that these views (Yi, Yj ,
etc.) are also ordered by containment. The process pi then decides the value F (Yi).
Let us notice that, as #⊥(Di) < k, the vector Yi has at most k − 1 entries equal to
⊥. It follows that at most k different values can be decided at line 14. Let α be the
number of values decided at line 4, 7, 11, and 18, and let β be the number of values
decided at lines 14. The proof will show that α+ β ≤ k.

Correctness proof.
Theorem 4. When instantiated with a (t − d)-legal condition C, the proto-

col described in Figure 2 implements a condition-set agreement object with k = 1 +
max(0, d− y).

Proof. Validity property (a decided value is a value proposed in the input view
of a process). This property follows directly from the fact that both the function h()
and the function F () extract a non-⊥ value from the vector they are applied to.

Agreement property (at most k = 1 + max(0, d− y) different values are decided).
The processes that decide, do it at line 4, 7, 11, 14, or 18. We determine the maxi-
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mum number of values that are decided by the processes at each of these lines of the
protocol.

• Consider the processes that decide at line 4.
These processes pi are such that (#⊥(Vi) ≤ t− d) and P (Vi) is satisfied. We
show that a single value can be decided at line 4.
Let pi and pj be two processes that decide at line 4. Due to the use of a
snapshot operation, we have either Vi ≤ Vj or Vj ≤ Vi. Let us consider that
Vi ≤ Vj .
We then have (1) #⊥(Vi) ≤ t − d and #⊥(Vj) ≤ t − d, (2) both P (Vi) and
P (Vj) are satisfied, i.e., ∃I1 ∈ C such that Vi ≤ I1 and ∃I2 ∈ C such that
Vi ≤ Vj ≤ I2, (3) and the condition is (t − d)-legal. It follows from these
three items and Lemma 1 that h(Vi) = h(Vj) = h(I1) = h(I2). Consequently,
no more than one value can be decided by the processes executing line 4.

• Consider the processes that decide at line 7.
These processes pi are such that (#⊥(Vi) = t−d) and P (Vi) is not satisfied. In
this case, at most one value is decided at line 7, because, due to the snapshot
containment property, all processes that execute this line have exactly the
same view Vi. Moreover, if a process executes this line, no process executes
line 4. This is because any process pj that executes line 4 has a view Vj such
that (#⊥(Vj) ≤ t − d = #⊥(Vi)), and as we have either Vi < Vj or Vj < Vi,
we conclude that Vi < Vj . Consequently, if pi executes line 7, P (Vi) is false,
and hence P (Vj) is also false as Vi ≤ Vj , by definition of the predicate P ().

• Consider the processes that decide at line 18.
These processes pi are such that (t − y ≥ #⊥(Vi) > t − d). We show that
these processes decide at most max(0, d− y) different values.
Due to the containment property on the vectors provided by the snapshot
operation, any pair of processes pi and pj that execute line 18 are such that
Vi ≤ Vj (or Vj ≤ Vi). We conclude from that observation that the processes
that execute line 18 have at most max(0, (t − y) − (t − d))=max(0, d − y)
different vectors. As F is deterministic, at most max(0, d−y) different values
can be decided by the processes that decide at line 18.
It follows that, when we consider the processes that decide at line 4, 7, or 18,
at most k = 1 + max(0, t− d) different values can be decided.

• Consider the processes that decide at line 11.
A process pi that decides at line 11 decides a value (that it retrieves in D[j])
that has been decided by another process pj (pj has deposited that value in
D[j] at line 4, 7, 14, or 18). Consequently, no additional value can be decided
at line 11.

• Finally, consider the processes that decide at line 14.
Let β be the number of different values decided by the processes that execute
line 14. Let α be the number of values decided by the processes that execute
line 4, 7, or 18. We claim that α+ β ≤ k = 1 + max(0, t− d).

It follows from this case analysis that at most k = 1 + max(0, t− d) different values
can be decided, which proves the theorem.

Proof of the claim. Let us consider two time instants t0 and t1 defined as follows:
- t0 = first time instant where #⊥(D) = k − 1 (or +∞ if it never happens),
- t1 = first time instant where ∃ D[j] /∈ {�,⊥} (or +∞ if it never happens).8

8If both t0 and t1 are equal to +∞, no process decides, and the claim is trivially true.
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Let us first consider t1 ≤ t0. Let us notice that a process pi stops the repeat loop
of line 10 as soon as (∃ Di[j] /∈ {�,⊥} ∨ #⊥(Di) < k). As the test that (at line 11)
immediately follows the exit of the repeat loop privileges the case (∃ Di[j] /∈ {�,⊥})
with respect to the case (#⊥(Di) < k) when both are satisfied, it follows that pi
immediately executes the return () statement at line 11. Consequently, when t1 ≤ t0,
any process pi that enters the loop of line 10 and then decides, decides at line 11. We
then have β = 0 (no process decides at line 14).

Let us now consider the case t0 < t1. Let us first observe that, since the function
F () is deterministic and each Yi computed at lines 12–13 contains at most (k − 1)
entries equal to ⊥, it follows that the β values decided at line 14 correspond to (at
least) β different Yi vectors, which means (due to line 12) at least β different Di

vectors.
Due to the containment property of the invocations of the snapshot (D) invoca-

tions at line 10, the previous β Di vectors are totally ordered (see the definition of
“<” in section 4.1), e.g., Di1 < Di2 < · · · < Diβ < · · · and contain only ⊥ and �
entries. Moreover, for any pair of such vectors, there is at least one entry which is
equal to ⊥ in one vector and to � in the other. As D is initialized to [⊥, . . . ,⊥] and
there are at least β different Dix, we conclude that at least (β − 1) values � have
been written into D after t0 (because, due to the snapshot (D) operations, we have
#⊥(Di1) ≤ k − 1 at time t0, #⊥(Di2) ≤ k − 2 at time t′0, t

′
0 > t0, etc.).

Before being decided, the α different values decided at lines 4, 7, and 18 have
been written into the array D (they are decided after t1). Due to the definition of t1,
they have been written into D at or after t1, i.e. (from the case assumption), after t0.

Hence, after t0, α entries of D have been set to proposed values by lines 4, 7, and
18, and (β − 1) entries have been set to �. As, at t0, the number of entries of D
that were equal to ⊥ was equal to (k − 1), it follows that α+ (β − 1) ≤ (k − 1), i.e.,
α+ β ≤ k, which proves the claim when t0 < t1. End of the proof of the claim.

Termination property (let J be the actual input vector). Every correct process
decides if (1) J ∈ Ct or #⊥(J) ≥ t − d -C is d-satisfied for J-, or (2.a) a process
decides, or (2.b) more than (n− k) correct processes invoke cond algo().

If the input vector Vi, Vi ≤ J , is such that #⊥(Vi) > t−d, the process pi trivially
decides at line 18. When #⊥(Vi) = t− d, the test on line 5 leads to termination. On
another side, if #⊥(Vi) ≤ t− d and J ∈ Ct, then P (Vi) is satisfied, and pi decides at
line 4. So, the case (1) is done.

Let us consider case (2.a). Before deciding a value at line 4, 7, 14, or 18, a process
deposits that value in the array D. It follows that, after a process has decided, the
repeat loop of line 10 always terminates, and any process that executes line 11 decides,
which proves the case.

Let us finally consider case (2.b). Let us assume that more than (n− k) correct
processes invoke the object and no one decides. This means that none of them executes
line 4, 7, or 18. They all, consequently, enter the repeat loop at line 10, from which
we conclude that eventually the predicate #⊥(Di) < k becomes true. It follows that
the correct processes exit the repeat loop and decide.

6. Discussion.

6.1. Initial crashes: No condition is needed. The theorem that follows
considers a particular case, namely, the case where the faulty processes crash before
the protocol starts its execution.

Theorem 5. Consider an execution of the protocol described in Figure 1 instan-
tiated with a failure detector of the class φyt . Let us assume that more than (t − y)
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processes have crashed before the protocol starts. The protocol then solves the consen-
sus problem (whatever the (t− d)-legal condition it is instantiated with).

Proof. If more than (t − y) processes have initially crashed, due to the property
of the queryy () invocations at line 3, we have (#⊥(Vi) > t − y) for any process
pi. It follows that, for any process pi, we have propi = CONS (line 4). Due to
the obligation property of the adopt–commit-abort object, every process pi obtains
(commit,CONS). Consequently, all of the processes invoke the underlying consensus
object, which proves the theorem.

Remark 1. The previous theorem considers the case where the faulty processes
have crashed before the protocol starts. It is interesting to observe that a similar result
appears in [16], where a consensus protocol is presented for asynchronous systems
where a majority of processes are correct, and the faulty processes crash before the
protocol starts its execution.

6.2. An always terminating version of the protocol. It is possible to trade
safety for liveness by providing a version of the protocol where every correct process
always decides. This can be obtained at the price of an enlarged set of possibly decided
values. More precisely, let I be an input vector, and let C be the (t−d)-legal condition
the protocol is instantiated with. When I ∈ C, at most k = 1 + max(0, d− y) values
are decided; when I /∈ C, up to k′ = t+1−y values can be decided. Interestingly, this
always terminating version of the protocol provides a new insight into the way the pa-
rameters t, y (power of the failure detection) and d (power of the condition) are related.

In the protocol described in Figure 2, the statement that can prevent a correct
process pi from terminating is the repeat loop at line 10. This occurs when pi enters
lines 9–15, Vi being such that #⊥(Vi) ≤ min(t − y, t − d) (assumption on the input
parameter and line 1), while P (Vi) is equal to false (line 2). The modification to get
an always terminating cond algo() protocol is very simple: It consists in replacing the
lines 9–15 in Figure 2 by a weakened statement that always terminates, namely,

[9-15]’ if (∃j : D[j] �= ⊥) then return (D[j] such that D[j] �= ⊥)
else wi ← F (Vi); D[i] ← wi; return (wi)

end if
Theorem 6. Let us consider the protocol depicted in Figure 2 instantiated with a

(t−d)-legal condition C, where lines 9–15 are replaced by the statement [9–15]’. Every
correct process decides. Let I be an input vector. If I ∈ C, at most k = 1+max(0, d−y)
values are decided. If I /∈ C, at most k′ = t+ 1 − y values can be decided.

Proof. Every correct process trivially terminates, and a decided value comes from
a proposed vector (same proof as in Theorem 4).

As far as the number of values that are decided is concerned, let us first consider
the case where the input vector belongs to the condition. In that case, when a process
pi executes line 2, P (Vi) is trivially satisfied. It follows that the new line [9-15]’ is
never executed. Consequently, Theorem 4 remains valid when I ∈ C, and at most
k = 1 + max(0, d− y) values are then decided.

Considering now the case where the input vector does not belong to the condition,
let us first observe that if a process pi decides at line [9-15]’ a value D[j] such that
D[j] �= ⊥, it does not decide a new value asD[j] is counted as a decided value at line 4,
7, 18 or in the else part of the new if statement. So, let us count the number of values
that can be decided by the processes executing line 4 or the else part of the new line
[9-15]’. For each such process pi, we have #⊥(Vi) ≤ t−max(y, d+1). Moreover (due to
the containment property on the vectors Vi provided by the cond algo() invocations),
we have Vi ≤ Vj (or Vj ≤ Vi) for two processes executing line 4 or the else part of
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line [9-15]’. It then follows that there are at most k1 = t−max(y, d+ 1) + 1 different
vectors Vi for the processes that execute line 4 or the else part of line [9-15]’. Let
us observe that if a process pj decides at line 4, the same vector Vj will not be used
to decide another value at line [9-15]’. Finally, due to that observation and the fact
that F () is deterministic, at most k1 different values can be decided by the processes
executing line 4 or the else part of line [9-15]’. On the other side, the processes that
execute line 18 decide at most k2 = max(0, d − y) different values (the proof is the
same as the corresponding proof in Theorem 4). Recall that all of the processes that
execute line 7 decide the same value. Finally, summing up, we get k′ = k1 + k2 + 1,
i.e., k′ = (t − max(y, d + 1) + 1) + (max(0, d − y) + 1), which can be simplified to
provide k′ = t+ 1 − y.

Let us notice that when the input vector does not belong to the condition, the
maximal number of values that can be decided, namely, k′ = t + 1 − y, does not
depend on d. If the information on failure is maximal (y = t), the protocol solves
consensus. At the other extreme, if there is no information on failures (y = 0) and
there is no power provided by the condition, the protocol solves the trivial version of
the set agreement problem, namely, k′ = t+ 1.

7. A lower bound. This section presents a lower bound matching Theorem 3.
Theorem 7. When instantiated with a failure detector of the class φyt and a

(t− d)-legal condition, no protocol solves the condition-based k-set agreement problem
for k ≤ max(0, d− y).

Proof. Assume for contradiction that a protocol solves the k-set agreement prob-
lem for k ≤ max(0, d − y). Hence, d > y and max(0, d − y) = d − y. Partition
the processes in two groups: the main processes p1, . . . , pn−t+d and the secondary
processes, pn−t+d+1, . . . , pn. Consider the executions where the secondary processes
crash before taking any steps. These are executions with at least t − d failures. By
Definition 5, all correct process must decide whatever the input vector. Now, consider
the subset of these executions with at most d−y additional failures. The total number
of failures is at most t − y failures. Recall that any relevant query is invoked with
a set the size of which is greater than (t − y). So, all relevant invocations queryy()
issued by the main processes will include at least one correct process and thus will
return false, and all other invocations return the trivial output. Thus, in these execu-
tions, the failure detector gives no information, and therefore the main processes have
to solve the standard set agreement problem (i.e., terminate for every input vector),
tolerating d− y failures. The results of [6, 28, 29, 50] (more specifically, Corollary 5.5
in [28]) imply that, in one of these executions, at least d − y + 1 different values are
decided, a contradiction.

The following corollaries are direct consequences of the previous theorem. They
consider the extreme cases where there is either no failure detector (i.e., y = 0) or no
condition (i.e., d = t). The first corollary answers an open problem stated in [3, 39].
The second corollary shows the optimality9 of φyt .

Corollary 1. Let C be a (t − d)-legal condition. There is no condition-based
k-set agreement protocol for C when k ≤ d.

Corollary 2. When considering the family (φyt )0≤y≤t of failure detector classes,
φyt , with y = t−k+1, is the weakest that allows solving the k-set agreement problem.

9This result complements another k-set agreement minimality result [27], which shows that,
among the family (Sx)1≤x≤t+1 of perpetual failure detectors (introduced in [44, 52]), Sx is the
weakest to solve the k-set agreement problem for k > t − x + 1.
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Fig. 3. Relations among Chandra–Toueg’s failure detector classes.

8. Comparing φy
t with Chandra and Toueg’s failure detector classes.

8.1. Chandra and Toueg’s failure detector classes. This section presents
the failure detectors introduced by Chandra and Toueg, used in this paper. These
classes are defined from the following completeness and accuracy properties [8]:
- Strong (Weak) completeness. Eventually, every process that crashes is permanently
suspected by every (some) correct process.
- Perpetual strong accuracy. No process is suspected before it crashes.
- Eventual strong accuracy. There is a time after which no correct process is suspected.
- Perpetual weak accuracy. Some correct process is never suspected.
- Eventual weak accuracy. There is a time after which some correct process is never
suspected.

The classes we are interested in are the following [8]. They are collectively called
“Chandra and Toueg’s failure detector classes” in the rest of the paper.

• P : The class of perfect failure detectors. It includes all of the failure detectors
satisfying strong completeness and perpetual strong accuracy.

• S: The class of strong failure detectors. It includes all of the failure detectors
satisfying strong completeness and perpetual weak accuracy. We have P ⊆ S.

• �P : The class of eventually perfect failure detectors. It includes all of the
failure detectors satisfying strong completeness and eventual strong accuracy.
We have P ⊆ �P .

• �S: The class of eventually strong failure detectors. It includes all of the
failure detectors satisfying strong completeness and eventual weak accuracy.
We have �P ⊆ �S, and S ⊆ �S.

The class �S is the weakest that allows solving the consensus problem and is
equivalent to the class �W in shared memory systems and in message-passing systems
with reliable channels [8, 7]. It has also been shown that �S and the class of leader
failure detectors, denoted Ω, are equivalent in systems where each process initially
knows all of the process identities [7, 11, 41].

Figure 3 summarizes Chandra and Toueg’s failure detector classes. Following
Definition 1, an arrow from A to B means that A ≥ B (any failure detector of the
class A can be used to build a failure detector of the class B). The absence of a path
from A to B means that it is not the case A ≥ B (given any failure detector of the
class A, it is not possible to build a failure detector of the class B). Finally, A ≡ B
if A ≤ B and B ≤ A. The figure follows from [7, 8].

8.2. φy
t with respect to Chandra and Toueg’s failure detector classes.

This section studies the relation between φyt and the classic failure detectors intro-
duced by Chandra and Toueg. We show that φtt allows building a perfect failure
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init: suspectedi ← ∅

repeat forever for all j such that pj ∈ ({p1, . . . , pn} \ suspectedi) do
if queryt({pj}) then suspectedi ← suspectedi ∪ {pj} end if

end repeat

Fig. 4. From φt
t to P (algorithm for pi).

detector, namely, P ≤ φtt (Theorem 8). Therefore, P is equivalent to φtt as φtt ≤ P
(from their definitions).

Theorem 8. (1) P ≡ φtt. Let f denote the actual number of process crashes in a
run. (2) If f ≤ t−y, φyt , 0 ≤ y ≤ t−1 does not allow building a failure detector of any
of Chandra and Toueg’s failure detector classes (e.g., �S,�P, Ω). (3) If f > t − y,
φyt , 0 ≤ y ≤ t− 1 allows building a failure detector of the class P.

Proof. Let us first consider item (1). The construction described in Figure 4
constructs a perfect failure detector from a failure detector of the class φtt. This
construction works as follows. A process that queries the perfect failure detector
obtains the current value of the set suspectedi. As y = t, queryt(S)—where S is
made up of a single process p—eventually returns true if and only if p has crashed.
The strong completeness and strong accuracy properties defining the class P follow.
Moreover, φtt ≤ P follows directly from their definitions. Therefore, P is equivalent
to φtt.

For proving item (2), let us first observe that, an implementation that systemat-
ically suspects all of the processes trivially satisfies the completeness property of any
of Chandra and Toueg’s failure detector classes but prevents its accuracy property
from being satisfied. So, assuming that φyt (0 ≤ y ≤ t − 1) allows implementing the
accuracy property of any of Chandra and Toueg’s failure detector classes, we show
that it does not allow implementing the associated (weak or strong) completeness
property.

Let us consider any run during which no more than x = t−y (1 ≤ x ≤ t) processes
crash. Due to the definition of φyt , we have the following:

• Any queryt(S), where |S| ≤ t − y = x always returns true whatever the x
(≥ 1) processes composing S. This follows from the triviality property of φyt ,
|S| ≤ t− y = x.

• Any queryt(S), where |S| > x always returns false whatever the processes
composing S. This follows from the safety property of φyt , as at least one
process among these processes has not crashed.

These observations show that, when no more than x = t − y (1 ≤ x ≤ t) processes
crash, the boolean value returned by a query depends only on the number of processes
defining S (it depends neither on which processes are in S, nor on the failure pattern).
It follows that, when no more than x = t − y (1 ≤ x ≤ t) processes crash, there is
no way for a process to know if a given process has crashed or not, thereby making
impossible to implement the (weak or strong) completeness property of any of Chandra
and Toueg’s failure detector classes.

The proof of item (3) consists in designing an algorithm that, in runs where
f > t− y, builds a failure detector of the class P from a failure detector of the class
φyt . Let us first observe that, as f > t − y, there is a set S such as |S| = t − y + 1,
and, after some finite time, queryy(S) returns true forever. The algorithm is the
following.

• Each set suspectedi is initialized to ∅. Initially, each process pi issues queryy

(X) for all of the possible sets X of size |X | = t − y + 1 until such a query
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when queryy (S) is invoked by pi:
case (|S| ≤ t − y) then return (true)

(|S| > t) then return (false)
(t − y < |S| ≤ t) then return (S ⊆ suspectedi)

end case

Fig. 5. From P to φy
t (algorithm for pi).

returns true. Due to the fact that all of the queries are relevant (t−y < |X | ≤
t), and the previous observation, this eventually happens. When it occurs, pi
considers the corresponding set (say S) and executes suspectedi ← S.

• Then, for each pj /∈ suspectedi, pi regularly executes queryy(S ∪ {pj}). If
the query returns true, pi can conclude from the property of φyt that pj has
crashed. It consequently adds pj to suspectedi. Otherwise, pi keeps on issuing
queryy(S ∪ {pj}).

It follows from the definition of S and the safety and liveness properties of φyt that the
sets suspectedi of the correct processes eventually include all of the crashed processes
and never includes a “not yet” crashed process, i.e., they satisfy the properties that
define the class P of perfect failure detectors [8].

8.3. From Chandra and Toueg’s failure detectors to φy
t . Figure 5 presents

a simple protocol transforming any failure detector of the class P into a failure detector
of the class φyt . The underlying set suspectedi satisfies (by assumption) the properties
defining the class P . In contrast, we show that there is no protocol transforming any
failure detector of the class φyt , for y < t, into a failure detector of the class P .

Theorem 9. The protocol of Figure 5 transforms any failure detector of the class
P into a failure detector of the class φyt for 0 ≤ y ≤ t.

Proof. The triviality property of φyt is ensured by the first two case statements.
The safety property follows from the fact that, due to the perpetual strong accuracy of
the underlying failure detector, suspectedi contains only crashed processes. Finally,
the liveness property of φyt follows from the fact that, due to the completeness of
the underlying failure detector, the set suspectedi eventually contains all crashed
processes.

The next theorem states that there is no protocol transforming a failure detector
of the class S, �P , �S, or �W into a failure detector of the class φyt for 0 < y.
It is surprising that these failure detectors are not strong enough to implement φyt ,
even when y < t, as in this case φyt cannot solve consensus (Corollary 2), while these
failure detectors can solve consensus. (In the case of y = t, both φtt and those failure
detectors can solve consensus.)

Theorem 10. For 1 ≤ y ≤ t, φyt �≤ S, φyt �≤ �P, φyt �≤ �S, and φyt �≤ �W.
Proof. The impossibility comes from the fact that nothing prevents the sets

suspectedi from containing correct processes for an unbounded amount of time. As
�S < �P and �W < �P , it is sufficient to prove it for �P , as far as �S, �W , and
�P are concerned. The proof for S is verbatim the same as the one for �P (replacing
only �P by S).

The proof consists in assuming (for contradiction) that there is a protocol trans-
forming a failure detector of the class �P into a failure detector of the class φyt . Let
us consider a run where an infinite sequence of relevant queries is issued, all of the
form queryy(S), for the same S, t − y < |S| ≤ t, and suppose that all processes in
S are initially crashed. The answers returned by the protocol define then a sequence
consisting of a finite prefix of false answers followed by an infinite suffix of true an-
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swers (by the safety and liveness property of φyt ). Let τ be a time instant after which
all of the invocations of queryy(S) return true.

However, it could be that no process ever crashes, and no process in S takes a step
until after τ + δ (where δ > 0 is an arbitrary finite period), with �P suspecting each
process exactly as in the previous fault-prone run from the very beginning until τ + δ.

As �P provides each process with the same outputs in both runs until time τ +δ,
it follows that the queries queryy(S) issued between τ and τ + δ returns true in both
runs. This contradicts the safety property of φyt in the failure-free run.

9. Conclusion. This paper focused on the combination of two approaches to
solve the k-set agreement problem, namely, failure detectors and conditions. It has
proposed novel failure detectors for solving the k-set agreement problem, that, when
combined with a condition, establish a new bridge among asynchronous, synchronous,
and partially synchronous systems with respect to agreement problems.

The paper has presented three main contributions. The first is the new class
of failure detectors denoted φyt , 0 ≤ y ≤ t. The processes can invoke a primitive
queryy(S) with any set S of process identities. Roughly speaking, queryy(S) returns
true only when all processes in S have crashed, provided t−y < |S| ≤ t. These failure
detectors seem interesting in their own right. They have been thoroughly investigated
and compared to the classical failure detectors introduced by Chandra and Toueg.

The second contribution of the paper is a condition-based protocol that solves the
k-set agreement problem, with k = 1+max(0, t− (x+ y)), for a condition C of power
x and a failure detector of power y, with termination guaranteed for inputs in C. By
“power” we mean the following: C is x-legal if and only if it can be used to solve
x-fault tolerant asynchronous consensus and the failure detector is in the class φyt ,
0 ≤ y ≤ t. Several noteworthy properties and variants of this protocol (that provides
a new way to solve asynchronous set agreement and, in particular, consensus) have
been studied.

The third contribution is a corresponding lower bound, showing that there is no
φyt -based k-set agreement protocol for (t− d)-legal conditions with k ≤ max(0, d− y).
It follows from this lower bound that there is no condition-based k-set agreement
protocol such that k ≤ d for any (t− d)-legal condition.

Appendix A. An adopt–commit-abort object implementation.
As announced in the paper, this appendix describes an implementation of an

adopt–commit-abort protocol. The implementation described in Figure 6 is a merge
of the one described in [52] (designed for an asynchronous shared memory system)
and the one described in [43] designed for an asynchronous message-passing system).
It uses two arrays of one-writer multireader atomic registers denoted PHASE1[1..n]
and PHASE2[1..n], both initialized to [⊥, . . . ,⊥]. Then, an entry of such an array
contains a pair or remains equal to ⊥.

The behavior of a process pi can be decomposed into three phases.
• Phase 1 (lines 1–2). A process pi first deposits its input value vi in PHASE1[i]

to make public the fact that vi has been proposed to the adopt–commit-abort
object. Then, it reads (asynchronously) the whole array PHASE1[1..n] to
know if other values have been proposed. The local set set1i is used to keep
these values.

• Phase 2 (lines 3–6). During the second phase, if (from its point of view) no
value different from its value vi has been proposed, pi sets PHASE2[i] to the
pair (single, vi), otherwise it sets PHASE2[i] to the pair (several, vi). Then,
pi determines how many pairs (x, v) have been deposited in PHASE2[1..n].
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Function adopt commit (vi)

(1) PHASE1[i] ← vi;
(2) set1i ← {v | PHASE1[j] = v ∧ v �= ⊥ ∧ 1 ≤ j ≤ n};
(3) if (set1i = {vi}) then PHASE2[i] ← (single, vi)
(4) else PHASE2[i] ← (several, vi)
(5) end if ;
(6) set2i ← {(x, v) | PHASE2[j] �= ⊥ ∧ PHASE2[j] = (x, v) ∧ 1 ≤ j ≤ n};
(7) case set2i = {(single, v)} then return (commit, v)
(8) set2i = {(single, v), (several, v′), . . . } then return (adopt, v)
(9) (single, v) /∈ set2i then return (abort, vi)
(10)end case.

Fig. 6. A shared memory adopt-commit protocol.

(Let us recall that we have PHASE2[k] = ⊥ until pk deposits a pair in
PHASE2[k].) These non-⊥ values (pairs) are collected in the set set2i.

• Phase 3 (lines 7–10). Finally, pi computes the final value it will return as the
result of its invocation.

– If set2i contains only the pair (single, v), pi returns (commit, v): it
“commits” the value v.

– If set2i contains several pairs and one of them is (single, v), then pi
“adopts” that value v by returning (adopt, v).

– Finally, when set2i does not contain (single, v), pi has seen no value to
be adopted or committed. It consequently “aborts,” returning the value
vi it has initially proposed.

The proof of the termination, validity, and obligation properties of the adopt–
commit-abort object are trivial. A proof of the agreement property for the shared
memory model can be found in [52]. A proof for a message-passing model can be found
in [43] (that proof assumes a majority of correct processes). That proof consists
in showing that, for any pair of processes pi and pj that execute line 6, we have
set2i = {(single, v)} ⇒ (single, v) ∈ set2j (i.e., line 7 and line 9 are “mutually
exclusive”).
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Abstract. Network design is a fundamental problem for which it is important to understand
the effects of strategic behavior. Given a collection of self-interested agents who want to form a net-
work connecting certain endpoints, the set of stable solutions—the Nash equilibria—may look quite
different from the centrally enforced optimum. We study the quality of the best Nash equilibrium,
and refer to the ratio of its cost to the optimum network cost as the price of stability. The best Nash
equilibrium solution has a natural meaning of stability in this context—it is the optimal solution that
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cost of each edge is divided equally between users whose connections make use of it; this fair-division
scheme can be derived from the Shapley value and has a number of basic economic motivations. We
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dynamics in which users iteratively defect from a starting solution. This establishes that the fair cost
allocation protocol is in fact a useful mechanism for inducing strategic behavior to form near-optimal
equilibria. We discuss connections to the class of potential games defined by Monderer and Shapley,
and extend our results to cases in which users are seeking to balance network design costs with
latencies in the constructed network, with stronger results when the network has only delays and no
construction costs. We also present bounds on the convergence time of best-response dynamics, and
discuss extensions to a weighted game.
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1. Introduction. In many network settings, the system behavior arises from the
actions of a large number of independent agents, each motivated by self-interest and
optimizing an individual objective function. As a result, the global performance of the
system may not be as good as in a case where a central authority can simply dictate
a solution; rather, we need to understand the quality of solutions that are consistent
with self-interested behavior. Recent theoretical work has framed this type of question
in the following general form: How much worse is the solution quality of a Nash
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equilibrium,1 compared to the quality of a centrally enforced optimum? Questions of
this genre have received considerable attention in recent years, for problems including
routing [37, 39, 13], load balancing [14, 15, 27, 38], and facility location [41]; see [34,
Chapters 17–21] for an overview of this literature.

An important issue to explore in this area is the middle ground between centrally
enforced solutions and completely unregulated anarchy. In most networking applica-
tions, it is not the case that agents are completely unrestricted; rather, they interact
with an underlying protocol that essentially proposes a collective solution to all par-
ticipants, each of which can either accept it or defect from it. As a result, it is in the
interest of the protocol designer to seek the best Nash equilibrium; this can naturally
be viewed as the optimum subject to the constraint that the solution is stable, with no
agent having an incentive to unilaterally defect from it once it is offered. Hence, one
can view the ratio of the solution quality at the best Nash equilibrium relative to the
global optimum as a price of stability, since it captures the problem of optimization
subject to this constraint. Some recent work [3, 13] has considered this definition
(termed the “optimistic price of anarchy” in [3]); it stands in contrast to the larger
line of work in algorithmic game theory on the price of anarchy [35]—the ratio of the
worst Nash equilibrium to the optimum—which is more suited to worst-case analysis
of situations with essentially no protocol mediating interactions among the agents.
Indeed, one can view the activity of a protocol designer seeking a good Nash equilib-
rium as being aligned with the general goals of mechanism design [33]—producing a
game that yields good outcomes when players act in their own self-interest.

Network design games. Network design is a natural area in which to explore
the price of stability, given the large body of work in the networking literature on
methods for sharing the cost of a designed network—often a virtual overlay, multicast
tree, or other subnetwork of the Internet—among a collection of participants. (See,
e.g. [19, 22] for overviews of work in this area.)

A cost-sharing mechanism can be viewed as the underlying protocol that deter-
mines how much a network serving several participants will cost to each of them.
Specifically, say that each user i has a pair of nodes (si, ti) that it wishes to connect;
it chooses an si-ti path Si, and the cost-sharing mechanism then charges user i a cost
of Ci(S1, . . . , Sk). (Note that this cost can depend on the choices of the other users
as well.) Although there are in principle many possible cost-sharing mechanisms,
research in this area has converged on a few mechanisms with good theoretical and
empirical behavior; here we focus on the following particularly natural one: the cost
of each edge is shared equally by the set of all users whose paths contain it, so that

Ci(S1, S2, . . . , Sk) =
∑
e∈Si

ce
|{j : e ∈ Sj}|

.

This equal-division mechanism has a number of basic economic motivations; it can be
derived from the Shapley value [32], and it can be shown to be the unique cost-sharing
scheme satisfying a number of different sets of axioms [19, 22, 32]. For the former
reason, we will refer to it as the Shapley cost-sharing mechanism. Note that the total
edge cost of the designed network is equal to the sum of the costs in the union of all
Si, and the costs allocated to users in the Shapley mechanism completely pay for this
total edge cost:

∑k
i=1 Ci(S1, S2, . . . , Sk) =

∑
e∈∪iSi

ce.

1Recall that a Nash equilibrium is a state of the system in which no agent has an interest in
unilaterally changing its own behavior.
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Fig. 1.1. An instance in which the price of stability converges to H(k) = Θ(log k) as ε → 0.

Now, the general question is to determine how this basic cost-sharing mechanism
serves to influence the strategic behavior of the users, and what effect this has on
the structure and overall cost of the network one obtains. Given a solution to the
network design problem consisting of a vector of paths (S1, . . . , Sk) for the k users,
user i would be interested in deviating from this solution if there were an alternate si-
ti path S′

i such that changing to S′
i would lower its cost under the resulting allocation:

Ci(S1, . . . , Si−1, S
′
i, Si+1, . . . , Sk) < Ci(S1, . . . , Si−1, Si, Si+1, . . . , Sk). We say that a

set of paths is a Nash equilibrium if no user has an interest in deviating. As we will see
below, there exists a set of paths in Nash equilibrium for every instance of this network
design game. (In this paper, we will be concerned only with pure Nash equilibria, i.e.,
with equilibria where each user deterministically chooses a single path.)

The goal of a network design protocol is to suggest for each user i a path Si so that
the resulting set of paths is in Nash equilibrium and its total cost exceeds that of an
optimal set of paths by as small a factor as possible; this factor is the price of stability
of the instance. It is useful at this point to consider a simple example that illustrates
how the price of stability can grow to a super-constant value (with k). Suppose k
players wish to connect from the common source s to their respective terminals ti,
and assume player i has its own path of cost 1/i, and all players can share a common
path of cost 1 + ε for some small ε > 0 (see Figure 1.1). The optimal solution would
connect all agents through the common path for a total cost of 1 + ε. However, if
this solution were offered to the users, they would defect from it one by one to their
alternative paths. The unique Nash equilibrium has a cost of

∑k
i=1 1/i = H(k).

While the price of stability in this instance grows with k, it only does so loga-
rithmically. It is thus natural to ask how large the price of stability can be for this
network design problem. If we think about the example in Figure 1.1 further, it is
also interesting to note that a Nash equilibrium is reached by players taking turns up-
dating their paths (in other words, best-response dynamics) starting from an optimal
solution; it is natural to ask to what extent this holds in general.

Our results. Our first main result is that in every instance of the network design
problem with Shapley cost-sharing, there always exists a Nash equilibrium of total
cost at most H(k) times optimal. In other words, the simple example in Figure 1.1 is
in fact the worst possible case.

We prove this result using a potential function method due to Rosenthal [36]
(based on [6]) and later generalized by Monderer and Shapley [30]: One defines a
potential function Φ on possible solutions and shows that every improving move of
one of the users (to lower its own cost) reduces the value of Φ. Since the set of possible
solutions is finite, it follows that every sequence of improving moves leads to a Nash
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equilibrium. The goal of Monderer’s and Shapley’s and Rosenthal’s work was to prove
existence statements of this sort; for our purposes, we make further use of the potential
function to prove a bound on the price of stability. Specifically, we give bounds relating
the value of the potential for a given solution to the overall cost of that solution; if
we then iterate using best-response dynamics starting from an optimal solution, the
potential does not increase, and hence we can bound the cost of any solution that we
reach. Thus, for this network design game, best-response dynamics starting from the
optimum do in fact always lead to a good Nash equilibrium.

We can extend our basic result to a number of more general settings. To begin
with, the H(k) bound on the price of stability extends directly to the case in which
users are selecting arbitrary subsets of a ground set (with elements’ costs shared
according to the Shapley value), rather than paths in a graph; it also extends to the
case in which the cost of each edge is a nondecreasing concave function of the number
of users on it. In addition, our results also hold if we introduce capacities into our
model; each edge e may be used by at most ue players, where ue is the capacity of e.

We arrive at a more technically involved set of extensions if we wish to add
latencies to the network design problem. Here each edge has a concave construction
cost ce(x) when there are x users on the edge, and a latency cost de(x); the cost
experienced by a user is the full latency plus a fair share of the construction cost,
de(x) + ce(x)/x. We give general conditions on the latency functions that allow us
to bound the price of stability in this case by d · H(k), where d depends on the
delay functions used. Moreover, we obtain stronger bounds in the case where users
experience only delays, not construction costs; this includes a result that relates the
cost of a best Nash equilibrium to that of an optimum with twice as many players,
and a result that improves the potential-based bound on the price of stability for the
single-source, delay-only case.

Since a number of our proofs are obtained by following the results of best-response
dynamics via a potential function, it is natural to investigate the speed of convergence
of best-response dynamics for this game. We show that with k players, it can run for
a time exponential in k. Whether there is a way to schedule players’ moves to make
best-response dynamics converge in a polynomial number of steps for this game in
general is an interesting open question.

Finally, we consider a natural generalization of the cost-sharing model that carries
us beyond the potential-function framework. Specifically, suppose each user has a
weight (perhaps corresponding to the amount of traffic it plans to send), and we
change the cost-allocation so that user i’s payment for edge e is equal to the ratio
of its weight to the total weight of all users on e. In addition to being intuitively
natural, this definition is analogous to certain natural generalizations of the Shapley
value [29]. The weighted model, however, is significantly more complicated: There is
no longer a potential function whose value tracks improvements in users’ costs when
they greedily update their solutions. We also show, using a construction involving
user weights that grow exponentially in k, that the price of stability can be as high as
Ω(k). We have obtained some initial positive results here, including the convergence
of best-response dynamics when all users seek to construct a path from a node s to
a node t (the price of stability here is 1), and in the general model of users selecting
sets from a ground set, where each element appears in the sets of at most two users.

Related work. Network design games under a different model were considered by
a subset of the authors in [3]; there the setting was much more “unregulated” in that
users could offer to pay for an arbitrary fraction of any edge in the network. This model
resulted in instances where no pure Nash equilibrium existed, and in many cases in
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[3] when pure Nash equilibria did exist, certain users were able to act as “free riders,”
paying very little or nothing at all. The present model, on the other hand, ensures
that there is always a pure Nash equilibrium within a logarithmic factor of optimal, in
which users pay for a fair portion of the resources they use. Network creation games of
a fairly different flavor—in which users correspond to nodes, and can build subsets of
the edges incident to them—have been considered in [2, 12, 5, 16, 21, 31]. The model
in this paper associates users instead with connection requests, and allows them to
contribute to the cost of any edge that helps them to form a path that they need.

The bulk of the work on cost-sharing (see, e.g., [19, 22] and the references there)
tends to assume a fixed underlying set of edges. Jain and Vazirani [23] and Kent and
Skorin-Kapov [26] consider cost-sharing for a single source network design game. Cost-
sharing games assume that there is a central authority that designs and maintains the
network, and decides appropriate cost-shares for each agent, depending on the graph
and all other agents, via a complex algorithm. The agents’ only role is to report their
utility for being included in the network.

Here, on the other hand, we consider a simple cost-sharing mechanism, the Shap-
ley value, and ask what the strategic implications of a given cost-sharing mechanism
are for the way in which a network will be designed. This question explores the
feedback between the protocol that governs network construction and the behavior
of self-interested agents that interact with this protocol. An approach of a similar
style, though in a different setting, was pursued by Johari and Tsitsiklis [24]; there,
they assumed a network protocol that priced traffic according to a scheme due to
Kelly [25], and asked how this protocol would affect the strategic decisions of self-
interested agents routing connections in the network.

The special case of our game with only delays is closely related to the congestion
games of [39, 37]. They consider a game where the amount of flow carried by an
individual user is infinitesimally small (a nonatomic game), while in this paper we
assume that each user has a unit of flow, which it needs to route on a single path. In
the nonatomic game of [39, 37] the Nash equilibrium is essentially unique (hence there
is no distinction between the price of anarchy and stability), while in our atomic game
there can be many equilibria. Fabrikant, Papadimitriou, and Talwar [17] consider our
atomic game with delays only. They give a polynomial time algorithm to minimize the
potential function Φ in the case that all users share a common source, and show that
finding any equilibrium solution is PLS-complete for multiple source-sink pairs. Our
results extend the price of anarchy results of [39, 37] about nonatomic games to results
on the price of stability for the case of single source atomic games. Subsequent to
our work, further results on the price of anarchy and stability in atomic games with
delays were obtained in [4, 7, 11, 10, 40]. For games without delays, Agarwal and
Charikar [1] give improved bounds on the price of stability in single-source undirected
networks, and Fiat et al. [20] give bounds with the additional assumption that each
vertex is the destination of some player. Other aspects of these and closely related
games were recently explored in [9, 18].

A weighted game similar to ours is presented by Libman and Orda [28], with a
different mechanism for distributing costs among users. They do not consider the
price of stability and instead focus on convergence in parallel networks. Recently,
Chen and Roughgarden [8] proved general results on the price of stability and the
existence of approximate Nash equilibria in the weighted version of our game.

2. Nash equilibria of network design with Shapley cost-sharing. In this
section we consider the Fair Connection Game for k players as defined in the Introduc-
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tion. Let a directed graph G = (V,E) be given, with each edge having a nonnegative
cost ce. Each player i has a set of terminal nodes Ti that he wants to connect. A
strategy of player i is a set of edges Si ⊂ E such that Si connects all nodes in Ti. We
assume that we use the Shapley value to share the cost of the edges; i.e., all players
using an edge split up the cost of the edge equally. Given a vector of players’ strate-
gies S = (S1, . . . , Sk), let xe be the number of agents whose strategy contains edge e.
Then the cost to agent i is Ci(S) =

∑
e∈Si

(ce/xe), and the goal of each agent is to
connect its terminals with minimum total cost.

In the worst case, Nash equilibria can be very expensive in this game, so that the
price of anarchy becomes as large as k. To see this, consider k players with common
source s and sink t, and two parallel edges of cost 1 and k. The worst equilibrium has
all players selecting the more expensive edge, thereby paying k times the cost of the
optimal network. However, we can bound the price of stability by H(k), which is the
harmonic sum 1 + 1

2 + 1
3 + . . .+ 1

k , as follows.
Theorem 2.1. The price of stability of the fair connection game is at most

H(k).
Proof. The fair connection game that we have defined falls into the class of

congestion games as defined by Rosenthal [36], as the cost of edge e to a user i is
fe(x) = ce/x, which depends only on edge e and the number of users x whose strategy
contains e. Rosenthal [36] shows that all congestion games have deterministic Nash
equilibria. He proves this using a potential function Φ, defined as follows.

(2.1) Φ(S) =
∑
e∈E

xe∑
x=1

fe(x)

Rosenthal [36] shows that for any strategy S = (S1, . . . , Sk) if a single player i deviates
to strategy S′

i, then the change in the potential value Φ(S)−Φ(S′) of the new strategy
set S′ = (S1, . . . , S

′
i, . . . , Sk) is exactly the change in the cost to player i. Note that

the change of player i’s strategy affects the cost of many other players j �= i, but
the value of Φ is not affected by the change in the cost of these players, it simply
tracks the cost of the player who changes its strategy. Monderer and Shapley [30]
call a game in which such a function Φ exists a potential game. To show that such
a potential game has a Nash equilibrium, start from any state S = (S1, . . . , Sk) and
consider a sequence of selfish moves (allowing players to change strategies to improve
their costs). In a congestion game any sequence of such improving moves leads to a
Nash equilibrium as each move decreases the potential function Φ, and hence must
lead to a stable state.

Neither Rosenthal nor Monderer and Shapley say anything about the quality
of Nash equilibria with respect to the centralized optimum, but we can use their
potential function to establish our bound. Let xe be defined as above with respect
to S. Now the potential function of (2.1) in our case is Φ(S) =

∑
e∈E ceH(xe).

Consider the strategy S∗ = (S∗
1 , . . . , S

∗
k) defining the optimal centralized solution.

Let OPT =
∑

e∈S∗ ce be the cost of this solution. Then, Φ(S∗) ≤
∑

e∈S∗(ce ·H(k)),
which is exactly H(k) ·OPT . Now we start from strategy S∗ and follow a sequence of
improving self-interested moves. We know that this will result in a Nash equilibrium
S with Φ(S) ≤ Φ(S∗).

Note that the potential value of any solution S is at least the total cost: Φ(S) ≥∑
e∈S ce = cost(S). Therefore, there exists a Nash equilibrium with cost at most

H(k) ·OPT , as desired.
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Recall from the example in Figure 1.1 that the upper bound of Theorem 2.1 is
tight.

Unfortunately, even though Theorem 2.1 says that cheap Nash equilibria exist,
finding them is NP-complete.

Theorem 2.2. Given an instance of a fair connection game and a value C, it is
NP-hard to determine if the game has a Nash equilibrium of cost at most C.

Proof. The reduction is from 3D matching. Given an instance of 3D matching
with node sets X,Y, Z, form a graph G = (V,E) as follows. Form a node for each
node in X , Y , and Z, and also a node vi,j,k for each 3D edge (xi, yj, zk). Also add an
additional node t. Form a directed edge from each node vi,j,k to t with cost function
ce = 3. Form a directed edge from each node v in X,Y, Z to all nodes representing 3D
edges that contain v. Make these edges have a cost ce = 0. Let C = |X | + |Y | + |Z|,
and form a player for each node v in X ∪ Y ∪ Z. This player has two terminals: v
and t.

If there exists a 3D matching in the 3D-matching instance, then there exists a
Nash equilibrium in the above fair connection game of cost C: Take the 3D matching
M , and let Si for the player whose terminals are v and t be the edge from v to the
unique node vi,j,k corresponding to the 3D edge in M, and the edge from this node to
t. Since M is a matching, the cost of S is exactly 3C/3 = C. S is a Nash equilibrium,
since any deviation for a player involves paying for some edge of cost 3 by himself,
while the current amount he is paying is 1.

If no 3D matching exists, then any solution to the fair connection game must
cost more than C. Therefore, no Nash equilibrium can exist of cost at most C. This
finishes the proof.

Notice that the same proof shows that determining if there exists a Nash equilib-
rium that costs as little as OPT is NP-complete.

We can extend the results of Theorem 2.1 to concave cost functions. Consider
the extended fair connection game where instead of a constant cost ce, each edge has
a cost which depends on the number of players using that edge, ce(x). We assume
that ce(x) is a nondecreasing, concave function, modeling the buy-at-bulk economies
of scale of buying edges that can be used by more players. Notice that the cost of an
edge ce(x) might increase with the number of players using it, but the cost per player
fe(x) = ce(x)/x decreases if ce(x) is concave.

Theorem 2.3. Take a fair connection game with each edge having a nondecreas-
ing concave cost function ce(x), where x is the number of players using edge e. Then
the price of stability is at most H(k).

Proof. The proof is analogous to the proof of Theorem 2.1. We use the potential
function Φ(S) defined by (2.1). As before, the change in potential if a player i deviates
equals exactly the change of that player’s payments. We start with the strategy S∗

with minimum total cost, and perform a series of improving deviations until we reach
a Nash equilibrium S with Φ(S) ≤ Φ(S∗). To finish the proof all we need to show
is that cost(S) ≤ Φ(S) ≤ H(k) · cost(S) for all strategies S. The second inequality
follows since ce(x) is nondecreasing, and therefore

∑xe

x=1(ce(x)/x) ≤ H(xe) · ce(xe).
To see that cost(S) ≤ Φ(S) notice that since ce(x) is concave, the cost per player
must decrease with x; i.e., ce(x)/x is a nonincreasing function. Therefore, cost(S) =∑

e∈S ce(xe) =
∑
e∈S xe · (ce(xe)/xe) ≤ Φ(S), which finishes the proof.

Notice that the requirement of cost functions being concave is general enough to
encompass the utility function of a player being a combination of the cost he has to
pay for his edges and the distance between his terminals in the network of bought
edges. If ce is the cost function of an edge, we simply set c′e(x) = ce(x) + x. The
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payment of each player i now becomes |Si|+
∑

e∈Si
(ce(xe)/xe), and c′e is still concave

if ce is concave.
Extensions. The proof of Theorem 2.3 extends to a general congestion game,

where players attempt to share a set of resources R that they need. Instead of having
an underlying graph structure, we now think of each s ∈ R as a resource with a
concave cost function cs(x) of the number of users selecting sets containing s. The
possible strategies of each player i is a set Si of subsets of R. Each player seeks to
select a set Si ∈ Si so as to minimize his cost. Since the proofs above did not rely on
the graph structure, they translate directly to this extension.

We can further extend the results to the case where the cost of a player is a combi-
nation of the cost ce(x)/x, and a function of the selected set, such as the distance be-
tween terminals in the network design case. More precisely, the price of stability is still
at most H(k) if each player is trying to minimize the cost

∑
e∈Si

(ce(xe)/xe) + di(Si),
where ce is monotone increasing and concave, and di is an arbitrary function specific
to player i (e.g., a distance function, or diameter of Si, etc.). The proof is analogous to
Theorem 2.3, except with a new potential Φ(S) =

∑
i di(Si)+

∑
e∈S

∑x=xe

x=1 (ce(x)/x).
Notice that this is technically not a congestion game on the given graph G. Finally
we note that all these results (as well as those subsequent) hold in the presence of
capacities. Adding capacities ue to each edge e and disallowing more than ue players
to use e at any time does not substantially alter any of our proofs.

The case of undirected graphs. While the bound of H(k) is tight for general
directed graphs, it is not tight for undirected graphs. Finding the correct bound is
an interesting open problem; see [20] for some recent progress. In the case of two
players, our bound on the price of stability is H(2) = 3/2. In section 4 we show that
this bound can be improved to 4/3 in the case of two players and a single source. We
also give an example to show that this bound is tight.

3. Dealing with delays. In most of the previous section, we assumed that the
utility of a player depends only on the cost of the edges he uses. What changes if
we introduce latency into the picture? We have extended this to the case when the
players’ cost is a combination of “design” cost and the length of the path selected.
More generally, delay on an edge does not have to be simply the “hop-count,” but
can also depend on congestion, i.e., on the number of players using the edge. In this
section we will consider such a model.

Assume that each edge has both a cost function ce(x) and a latency function de(x),
where ce(x) is the cost of building the edge e for x users and the users will share this
cost equally, while de(x) is the delay suffered by users on edge e if x users are sharing
the edge. The goal of each user will be to minimize the sum of his cost and his latency.
If we assume that both the cost and latency for each edge depend only on the number
of players using that edge, then this fits directly into our model of a congestion game
above: the total cost felt by each user on the edge is fe(x) = ce(x)/x + de(x). If the
function xfe(x) is concave, then Theorem 2.3 applies. But while concave functions
are natural for modeling cost, latency tends to be convex.

3.1. Combining costs and delays. First, we extend the argument in the proof
of Theorem 2.3 to general functions fe. The most general version of this argument is
expressed in the following theorem.

Theorem 3.1. Consider a fair connection game with arbitrary edge-cost func-
tions fe. Suppose that Φ(S) is as in (2.1), with cost(S) ≤ A · Φ(S), and Φ(S) ≤
B · cost(S) for all S. Then, the price of stability is at most A · B.
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Proof. Let S∗ be a strategy such that S∗
i is the set of edges i used in the centralized

optimal solution. We know from above that if we perform a series of improving
deviations on it, we must converge to a Nash equilibrium S′ with potential value at
most Φ(S∗). By our assumptions, cost(S′) ≤ A ·Φ(S′) ≤ A ·Φ(S∗) ≤ AB · cost(S∗) =
AB ·OPT .

Our main interest in this section are functions fe(x) that are the sums of the fair
share of a cost and a delay, i.e., fe(x) = ce(x)/x + de(x). We will assume that de(x)
is monotone increasing, while ce(x) is monotone increasing and concave.

Corollary 3.2. If ce(x) is concave and nondecreasing, de(x) is nondecreasing
for all e, and xede(xe) ≤ A

∑xe

x=1 de(x) for all e and xe, then the price of stability is
at most A · H(k). In particular, if de(x) is a polynomial with degree at most l and
nonnegative coefficients, then the price of stability is at most (l + 1) ·H(k).

Proof. For functions fe(x) = ce(x)/x + de(x), both the cost and potential of a
solution come in two parts corresponding to cost c and delay d.

For the part corresponding to the cost, the potential overestimates the cost by
at most a factor of H(k) as proved in Theorem 2.3. If on the delay, the potential
underestimates the cost by at most a factor of A, then we get the bound of A ·H(k)
for the price of stability by Theorem 3.1.

Therefore, for reasonable delay functions, the price of stability cannot be too
large. In particular, if the utility function of each player depends on a concave cost
and delay that is independent of the number of users on the edge, then we get that the
price of stability is at most H(k) as we have shown at the end of the previous section.
If the delay grows linearly with the number of users, then the price of stability is at
most 2H(k).

3.2. Games with only delays. In this subsection we consider games with only
delay. We assume that the cost of a player for using an edge e used by x players
is fe(x) = de(x), and de is a monotone increasing function of x. This cost function
models delays that are increasing with congestion.

We will mostly consider the special case when there is a common source s. Each
player i has one additional terminal ti, and the player wants to connect s to ti via a
directed path. Fabrikant, Papadimitriou, and Talwar [17] showed that in this case, one
can compute the Nash equilibrium minimizing the potential function Φ via a minimum
cost flow computation. For each edge e they introduce many parallel copies, each with
capacity 1, and cost de(x) for integers x > 0. We will use properties of a minimum
cost flow for establishing our results.

3.2.1. A bicriteria result. First we show a bicriteria bound, and compare the
cost of the cheapest Nash equilibrium to that of the optimum solution with twice as
many players.

Theorem 3.3. Consider the single source case of a congestion game with only
delays. Let S be the minimum cost Nash equilibrium and S∗ be the minimum cost
solution for the problem where each player i is replaced by two players. Then cost(S) ≤
cost(S∗).

Proof. Consider the Nash equilibrium obtained by Fabrikant [17] via a minimum
cost flow computation. Assume that xe is the number of users using edge e at this
equilibrium. By assumption, all users share a common source s. Let D(v) denote the
cost of the minimum cost path in the residual graph from s to v. The length of the
path of user i is at most D(ti) (as otherwise the residual graph would have a negative
cycle), and hence we get that cost(S) ≤

∑
iD(ti).
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Now consider modified delay function d̂e for each edge e = (u, v). Define d̂e(x) =
de(x) if x > xe, and d̂e(x) = D(v) − D(u) if x ≤ xe. Note that for any edge e we
have D(v) −D(u) ≤ de(xe + 1) as edge e = (u, v) is in the residual graph with cost
de(xe+1). This implies that the modified delay d̂ is monotone. For edges with xe �= 0
we also have that de(xe) ≤ D(v) −D(u) as the reverse edge (v, u) is in the residual
graph with cost −de(xe), so the delay of an edge is not decreased.

Now observe that, subject to new delay d̂, the shortest path from s to ti has
length D(ti). The minimum possible cost of two paths from s to ti for the two
users corresponding to user i is then at least 2D(ti) for each player i. Therefore the
minimum cost of a solution with delays d̂ is at least 2

∑
iD(ti).

To bound cost(S∗) we need to bound the difference in cost of a solution when
measured with delays d̂ and d. Note that for any edge e = (u, v) and any number
x we have that xd̂e(x) − xde(x) ≤ xe(D(v) − D(u)), and hence the difference in
total cost is at most

∑
e=(u,v) xe(D(v) −D(u)) =

∑
iD(ti). Using this, we get that

cost(S∗) ≥
∑

iD(ti) ≥ cost(S).
Note that a similar bound is not possible for a model with both costs and delays,

when additional users compensate to some extent for the price of stability. Consider a
problem with two parallel links e and e′ and k users. Assume on link e the cost function
is ce(x) = 1 + ε for a small ε > 0, and the latency function is de(x) = 0. On the other
link e′ the cost is ce′(x) = 0, and the delay with x users is de′ (x) = 1/(k−x+1). The
optimum solution is to use the first edge e, and it costs 1+ ε. Note that the optimum
with any number of extra users costs the same. On the other hand, the only Nash
equilibrium is to have all users on e′, incurring delay 1, for a total cost of k.

3.2.2. Bounding the price of stability with only delays. Note that the
H(k) term in Corollary 3.2 comes from the concave cost c, and so the bound obtained
there improves by an H(k) factor when the cost consists only of the delay. The
results from Corollary 3.2 already tell us that if the delay functions are such that
xede(xe) ≤ A

∑xe

x=1 de(x), the the price of stability is at most A. Specifically, we
know that if the delays are polynomial of degree l, then the price of stability is at
most l + 1, and therefore with linear delays the price of stability is at most 2.

Roughgarden [37] showed a tighter bound for nonatomic games. He assumed that
the delay is monotone increasing, and the total cost of an edge xde(x) is a convex
function of traffic x. He showed that for any class of such functions D containing all
constant functions, the price of anarchy is always obtained on a two-node, two-link
network. Let us call α(D) the price of anarchy for nonatomic games with delays from
the class D (which is also the price of stability, since the Nash equilibrium is unique in
that context). For example, Roughgarden [37] showed that for polynomials of degree
at most l this bound is O(l/ log l), and for linear delays it is 4/3. Here we extend
this result to a single source atomic game, and thereby show tighter bounds than in
Corollary 3.2 for the single source case.

Theorem 3.4. If in a single source fair connection game all costs are delays, and
all delays are from a set D satisfying the above condition, then the price of stability
is at most α(D).

Proof. As in the proof of Theorem 3.3 consider the Nash equilibrium obtained
via a minimum cost flow computation, and let D(v) be the length of the shortest
path from s to v in the residual graph. As before we have that cost(S) ≤

∑
iD(ti).

Further, for each edge e = (u, v) we have that D(v) − D(u) ≤ de(xe + 1), and for
edges with xe �= 0, we also have that de(xe) ≤ D(v) −D(u).
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Give each edge e = (u, v) a capacity of xe, and augment our network by adding a
parallel edge e′ with constant delay D(v)−D(u). Let Ĝ denote the resulting network
flow problem. Note that the new capacity and the added links do not affect the
equilibrium, as de(xe) ≤ D(v)−D(u). For each edge e, the two parallel copies: Edge
e with new capacity xe and edge e′ can carry any number of paths at least as cheaply
as the original edge e could since D(v)−D(u) ≤ de(xe + 1); hence this change in the
network can only improve the minimum possible cost. We will prove the bound in
this new network by comparing the cost of the Nash equilibrium with the minimum
possible cost of a (possibly fractional) flow carrying one unit of flow from s to each of
the terminals ti.

The nice property of Ĝ is that the optimum fractional flow x̂ in Ĝ is easy to
determine. Consider an edge e = (u, v) that is used by xe �= 0 paths in the equilibrium.
We will obtain a fractional flow x̂e by splitting the corresponding xe amount of flow
between the two edges e and e′. For an edge e let �e(x) = de(x) + xd′e(x). By
assumption, de(x) ≤ �e(x) for all x. For an edge e such that �e(xe) ≤ D(v) −D(u),
we set x̂e = xe, and x̂e′ = 0. Otherwise, let x̂e be such that �e(x̂e) = D(v) −D(u),
and let x̂e′ = xe − x̂e.

First, we claim that x̂ is the minimum cost fractional solution in Ĝ. For all edges
e = (u, v) such that x̂e �= xe, we have that �e(x̂e) = D(v)−D(u). When x̂e = xe, then
we have that flow x̂e is equal to the capacity of the edge, and �e(x̂e) ≤ D(v) −D(u).
Therefore, if there is a negative cycle in the residual graph of x̂e with constant edge
costs �e(xe) for e and costs D(v) −D(u) for e′, then this is also a negative cost cycle
in G with constant edge costs D(v) −D(u). This is impossible, however, since xe is
a min-cost flow with those costs. We can now use Lemma 3.5 to see that x̂e is also a
min-cost flow for edge costs xde(x).

The theorem then follows, as on each original edge e ∈ E the cost xede(xe) is at
most α(D) times the cost of the corresponding two edges e and e′ in Ĝ by Lemma
3.6.

To finish the proof of the theorem, we require the following lemmas.
Lemma 3.5. Let G be a network, and xe be a fractional flow sending one unit

of flow from the source s to each sink ti. Let � denote the gradient of the total cost
xde(x), that is, let �e(x) = de(x) + xd′e(x) for each edge e. The flow xe is minimum
cost subject to the cost

∑
e xde(x) if and only if it is a minimum cost flow subject to

the constant cost function ce = �e(xe).
Proof. If the flow xe is not of minimum cost subject to costs ce, then the resid-

ual graph has a negative cycle, and moving a small amount of flow along the cycle
decreases the cost

∑
e xde(x), as the cost ce is exactly the gradient of this objective

function. To see the other direction, we use the fact that the cost function is convex
by assumption, and hence all local optima are also global optima.

Next, it is useful to recall from [37] what is α(D). Consider edge e, with delay
d(x) from class D. Now consider a graph with two parallel links: Edge e, which has
delay d(x), that will carry some r units of flow, and a parallel link e′ with constant
delay d(r) independent of the traffic. Now the unique Nash equilibrium is to route
all r units of flow on e, while we get the optimum by setting x such that the gradient
c(x) = d(x) + xd′(x) is equal to d(r), and sending x units of flow along e, and the
remainder r − x along edge e′. This is because of the following lemma from [37].

Lemma 3.6 ([37]). If a set D of delay functions satisfies the above condition,
then the price of stability is at most α(D) = maxr,x,d∈D rd(r)/(xd(x) + (r − x)d(r)),
and the maximum is achieved by setting x such that d(x) + xd′(x) = d(r).
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4. The undirected case. While the bound of H(k) on the price of stability
is tight for general directed graphs with costs, it is not tight for undirected graphs.
Finding the correct bound is an interesting open problem. In the case of two players,
our bound on the price of stability is H(2) = 3/2. We now show that that this bound
can be improved to 4/3 in the case of two players and a single source.

Here is an example of an undirected two-player game with the price of stability
approaching 4/3. Let G have 3 nodes: s, t1, and t2. Player 1 wants to connect t1 with
s, and player 2 wants to connect t2 with s. There are edges (s, t1) and (s, t2) with
cost 2. There is an edge (t1, t2) with cost 1 + ε. The optimal centralized solution has
cost 3 + ε. However, the cheapest Nash has cost 4. This example implies that the
following claim is tight.

Claim 4.1. The price of stability is at most 4/3 in a fair connection game with
two players in an undirected graph, each having two terminals with one terminal in
common.

Proof. Let s be the common terminal, and let t1 and t2 be the personal terminals.
Consider the optimal centralized solution (S1, S2). Let X1 = S1\S2 be the edges only
being used by player 1, X2 = S2\S1 be the edges only used by player 2, and X3 =
S1 ∩ S2 be the edges shared by the two players. Let (S′

1, S
′
2) be a Nash equilibrium

that a series of improving responses converges to starting with (S1, S2). Similarly,
let Y1 = S′

1\S′
2, Y2 = S′

2\S′
1, and Y3 = S′

1 ∩ S′
2. Finally, set xi = cost(Xi) and

yi = cost(Yi) for 1 ≤ i ≤ 3. By the properties of Φ(S1, S2) from the proof of
Theorem 2.1, we know that Φ(S′

1, S
′
2) ≤ Φ(S1, S2). Substituting in the definition of

Φ, we obtain that

(4.1) y1 + y2 +
3
2
y3 ≤ x1 + x2 +

3
2
x3.

Look at S′
1 and S′

2 as paths instead of sets of edges (there will be no cycles
since then this would not be a Nash). We now show that in (S′

1, S
′
2), as in any

Nash equilibrium, once the paths of the two players merge, they do not separate
again. Suppose to the contrary that this happens. Let v be the first node that S′

1

and S′
2 have in common, and set P1 and P2 be the subpaths of S′

1 and S′
2 after v,

respectively. We know that cost(P1\P2) = cost(P2\P1), since if they were not equal,
say cost(P1\P2) > cost(P2\P1), then player 1 could deviate to P2 instead and pay
strictly less. However, even if they are equal, player 1 could deviate to use P2 instead
of P1, and pay strictly less, since he will pay the same as before on edges in P1 ∩ P2,
and pay only cost(P1\P2)/2 in total on the other edges. Therefore, the only way this
could be a Nash equilibrium is if P1 ∩ P2 = P1 = P2, as desired.

Consider a deviation from (S′
1, S

′
2) that player 1 could make. He could decide to

use X1∪X2∪Y2∪Y3 instead of S′
1 = Y1∪Y3. This is a valid deviation because player

1 still connects his terminals by following X1 until X1 meets with X2, then following
X2 back to t2, and then following S′

2 to s. Since (S′
1, S

′
2) is a Nash equilibrium, this

deviation must cost more to player 1 than his current payments, and so x1 + x2 +
y2/2+ y3/2 ≥ y1 + y3/2. By symmetric reasoning, x1 + x2 + y1/2+ y3/2 ≥ y2 + y3/2.
If we add these inequalities together, we obtain that

(4.2) y1/2 + y2/2 ≤ 2x1 + 2x2.

To show that the price of stability is at most 4/3, it is enough to show that
cost(S′

1, S
′
2) ≤ 4

3cost(S1, S2). Using the above notation, this is the same as showing
3y1 + 3y2 + 3y3 ≤ 4x1 + 4x2 + 4x3. We do this by using Inequalities 4.1 and 4.2 as
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Δ

Δ

Fig. 5.1. The construction of an exponential best-response run. The filled-in nodes are the
sources and sinks of the players.

follows:

3y1 + 3y2 + 3y3 ≤ 3y1 + 3y2 + 4y3

=
1
3
(y1 + y2) +

8
3

(
y1 + y2 +

3
2
y3

)

≤ 4
3
(x1 + x2) +

8
3

(
x1 + x2 +

3
2
x3

)
= 4x1 + 4x2 + 4x3.

5. Convergence of best response. In this section, we show that, in general,
best response dynamics in our game can take a long time to converge to an equilibrium.
Specifically, we construct a sequence of best responses that takes exponential time to
converge to a Nash equilibrium.

Theorem 5.1. Best response dynamics for k players may run in time exponential
in k.

To prove this, we now construct an example (shown in Figure 5.1) in which by
appropriate ordering of the best response of players, we can simulate a Ω(k)-bit binary
counter. The idea is that we have a set of players corresponding to each bit of the
counter. Then we describe a sequence of best response moves that lead to the counter
incrementing from the “all zeros” state onwards. Since with n bits, we can implement
a counter that counts up to 2n, and then as long as we can show that each increment
of the counter corresponds to a sequence of best response moves from the current
configuration, we would have shown an exponentially long best response sequence. In
what follows, we first describe the set of gadgets to construct the counter, and then
show the set of inequalities that result from the increments of the counter.

The graph has 3n players: n “bit” players, each denoted by bit(i), and for each
bit player we also have two “auxiliary” players. The auxiliary players of the bit(i)
player are denoted by A(i) and B(i). We construct the graph as follows. For each
player we form a gadget as shown in Figure 5.1. The gadget for each bit player and
each auxiliary player has only two path options, we call these the 0 path and the 1
path. Figure 5.1 shows the set of edges that belong to each gadget. The gadget for
the ith bit player, for instance, consists of edges α(i), β(i), a set of edges t(j, i), one
for each j > i, and a few unnamed edges as shown in the figure. To construct the
graph, we simply take the union of these gadgets. The labeled edges are shared with
the other gadgets, whereas the unlabeled edges are not. Furthermore, the label Δ
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Table 5.1

Table showing the first 15 steps of the scheduled best response run for two players. The number
“1” represents that this player is taking the 1-path in the current configuration, and “0” represents
that it takes the 0-path. The first, fifth, eleventh, and last configuration correspond to the counter
values of 00, 01, 10, and 11, respectively.

bit2 bit1 B2 A2 B1 A1

0 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 1
0 1 0 0 1 1

0 1 0 0 1 0

1 1 0 0 1 0
1 1 0 1 1 0
1 1 0 1 0 0
1 0 0 1 0 0
1 0 1 1 0 0

1 0 1 0 0 0

1 1 1 0 0 0
1 1 1 0 0 1
1 1 1 0 1 1

1 1 1 0 1 0

actually denotes the cost of the corresponding edges; these edges too are individual
to each gadget.

Thus, each of the α(i) edges are in the gadgets of players A(i) and bit(i), and so
appear in the 1 path of both A(i) and bit(i). Each edge β(i) is in the 1 path of two
players B(i) and bit(i), and each edge e(i) is in the 0 path of A(i) and the 1 path of
B(i). Each edge f(i, j) and t(i, j) is actually shared by two gadgets. For a specific
i and j with i > j, the same edge f(i, j), for instance, is present in the 0-path of
B(j), and also in the 1 path of A(i). In addition to the unnamed edges drawn in the
gadget, assume there are unnamed edges before and after every edge type of f(i, j)
or t(i, j) and these unnamed edges are directed and specific to a particular gadget. In
the above figure, we have not specified the order in which the edges of, for example,
f(j, i) for all j > i in the gadget of bit(i) proceed. In all of these cases, there is one
index that is fixed, and one that is variable, so we assume that these edges appear in
increasing order of the variable index.

We will later prove that no player will ever choose a path in this graph other
than the 0 or the 1 path corresponding to its gadget. This significantly simplifies the
strategy sets of the players, so now we can simply think of each player as choosing
either strategy 0 or 1. Below we describe an exponential-length best-response run
that simulates a binary counter. A sample run of this type is shown in Table 5.1.
The first, fifth, and eleventh steps shown correspond to the values 00, 01, and 10 of
the counter, and indeed these are the values of the strategies of the bit(i) players.
The rest of the steps pictured are intermediate steps, and only exist to get the bit(i)
players into the correct configuration.

In what follows, we abuse notation and represent the cost of an edge by the
label itself, e.g., α(i), f(i, j), and t(i, j) will also be used to denote the cost of the
corresponding edges. All the unnamed edges are zero cost, except for the two sets of
edges, one in each path of A(i) that each have cost Δ, which is large, say 3n times
bigger than the sum of the cost of all the named edges. Thus playerA(i) always pays at
least Δ in order to get to the sink, but never should agree to pay more than Δ+Δ/3n.
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We also refer to the player going on the “one” path as the player being set and
going on the “zero” path as the player being reset. Each player has one source and
one sink and the paths of each player are as shown in the gadgets above. The costs of
the paths of the ith bit player are referred to as x(0)

i and x(1)
i , and those of the player

A(i) and B(i) as a(0)
i , a(1)

i and b
(0)
i , b(1)i , respectively. Note that these denote the

actual costs of these paths, not the cost shares in any configuration. Now we describe
the sequence of best-response moves that lead to the counter incrementing. For the
moves that we will describe to actually be best-response moves, particular inequalities
will have to hold on the edge costs. Below we give a sequence of best-response moves
that is exponential length, together with the inequalities that must hold for these to
be valid best-response moves. We will later show that all of these inequalities can be
satisfied.

Start Step: All the players are reset.
General Step: The bits from 1 to �− 1 are all set. The bits from �+ 1 to n
may be at 0 or 1. The �th bit is currently at 0 and has to be set at 1. Also,
all the A(j) players are reset. The B(j) players are set if and only if the jth
players are set.
Notice that the first, fifth, and last step in Table 5.1 are of this form. We
now show a sequence of best responses which will set the �’th bit, set all the
bits 1 to �− 1 to 0 (which is what should happen in a counter when the �’th
bit is set), and return all the auxiliary players to the form described in the
“General Step” above.

• First, the �th bit sets. At this point, there are no other players using either
of bit �th player’s paths, so for this to happen, we need only the following to
be true.

x
(1)
� < x

(0)
�

implying, α(�) + β(�) <
∑
j>�

t(j, �)

The setting of the bit(�) player will now first trigger A(�) and then B(�), as
follows.

• The cost of the 1 path of A(�) has now decreased by α(�)/2 because of the
player bit(�) using it. A(�) is thus triggered and is allowed to set. Since both
the 0 and 1 path have the Δ cost edges that are to be paid by A(i) alone,
they do not matter in the best response calculations. Thus, for this to be a
valid best response move, it is enough that

a
(1)
� − α(�)/2 < a

(0)
�

implying that, α(�)/2 +
∑
j<�

f(�, j) +
∑
j<�

t(�, j) < e(�)

• The setting of A(�) triggers all the B(i) for i < � to be reset. Recall that the
corresponding A(i) are already reset. We allow these B(i) to reset. Due to
A(�) being on its 1 path, the cost of 0 path has changed by f(�, i)/2. Since
only the player bit(i) is using the edge β(i), then for B(i) to want to reset,
we need that

b
(0)
i − f(�, i)/2 < b

(1)
i − e(i)/2 − β(i)/2

that is,
∑
j>i

f(j, i) − f(�, i)/2 < e(i)/2 + β(i)/2
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• A(�) now also triggers all the bit players bit(i) for all i < l to reset by reducing
the cost of the 0 path of bit(i) by t(�, i)/2. For each such i < �, the bit B(i)
has also just been reset. Thus for this to be a best response move, it should
be the case that

x
(0)
i − t(�, i)/2 < x

(1)
i∑

j>i

t(j, i) − t(�, i)/2 < α(i) + β(i)

• Now because of the setting of the bit(�), the 1 path of B(�) became cheaper
by β(�)/2. B(�) wants to set and is allowed to do so. For this, we need that

b
(1)
� − β(�)/2 < b

(0)
�

e(�) + β(�)/2 <
∑
j>�

f(j, �)

• Lastly, we now want A(�) to reset. As a result of the setting of B(�), the
0 path of A(�) became cheaper by e(�)/2. Edges on the 1-path of A(�) are
shared by players bit(x) and B(x) for x < i, and by the player bit(�). So we
need that the 0-path of A(�) be less expensive to it even if all these players
pay off their corresponding shares on the 1-path. Again since the Δ-cost
edges are present on both sides, they do not matter in the computation of
the best response. That is, we need that

a
(0)
� − e(�)/2 < a

(1)
� −

∑
j<�

(f(�, j)/2 + t(�, j)/2)− α(�)/2

e(�)/2 < α(�)/2 +
∑
j<�

(f(�, j)/2 + t(�, j)/2)

• Now we have the subgame of bit and auxiliary players from 1 to �− 1 being
completely reset, and no other player corresponding to the higher-numbered
bits influencing any of their paths. This corresponds to the first � − 1 bits
of the counter becoming 0 because the �’th bit just became 1. We can now
use the best response run corresponding to incrementing the first � − 1 bits
of the counter from all 0’s to all 1’s again, without any interference from the
players corresponding to the higher-numbered bits. This gets us back to the
configuration in the start of the recursion (the “General Step” above), except
now we need to deal with the (�+ 1)st bit.

Proof of Theorem 5.1. We now prove that the above game has an exponential
best response run under the above best response scheduling.

All we need to show is that the moves described in the scheduling are best re-
sponses. We first argue that each player has only two cheap paths available to him,
which we have described as the zero path and the one path. To complete the con-
struction we next need to come up with a set of values for the links that satisfy the
set of best response inequalities above. Taken together, it follows that the moves are
all best responses and simulate a Ω(k)-size counter.

First note that the 0 path and 1 path of any one particular player are vertex
disjoint. Recall that the unnamed edges, both in the figure and the ones in between the
f(i, j) edges and the t(i, j) edges are all exclusive to each gadget. By our construction,
the unnamed edges also impose the following property on the 0/1-paths of all players:
The 0/1-path of any one player must either have at least one edge in common or must
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be vertex disjoint from the 0/1-path of any other player. We do not have to worry
about the case of just having vertices in common.

We need to argue that each player has only two cheap paths available to him.
Intuitively the argument is as follows. If one player deviates out of his gadget (i.e.,
takes a path other than its 0 or 1 path), it will never be able to come back to his own
sink, or would have to pay an exorbitant amount (Δ) in order to reach its sink. Thus,
the only available cheap strategies to a player are the 0 and 1 paths.

Before going into the details, we first define a function to make the notation
simpler. For any edge e, define the function sink(e) to be the set of all possible sinks
(terminal nodes of players) to which paths from this edge can lead. Note that the
graph only has edges f(x, y) and t(x, y) where x > y; there are no corresponding edges
for x ≤ y. For notational simplicity, for a general tuple (x, y), we define sink(f(x, y))
as follows. Note that f(x, y) can lead to the sink of A(x) and B(y) if x > y, as well
as to sink(f(x+ 1, y)) and sink(f(x, y + 1)). Thus, inductively, if x > y

sink(f(x, y)) = {A(x), . . . , A(n), B(y), . . . , B(n)}

and ∅ otherwise (since the corresponding f(x, y) edges do not appear in the gadget
at all).

Similarly, since for x ≤ y, the edges t(x, y) are not present in the construction,
define sink(t(x, y)) = ∅ for x ≤ y. In order to compute sink(t(x, y)) for x > y, note
that t(x, y) can lead to A(x), bit(y), as well as sink(t(x+1, y)), sink(t(x, y+1)), and
sink(f(x, 1)) (since in the 1 path of A(x), edge t(x, y) can be followed by f(x, 1)).
Thus, if x > y

sink(t(x, y)) = {bit(y), . . . , bit(n), A(x), . . . , A(n), B(1), . . . , B(n)}

and ∅ else.
We now flesh out the argument for each player for each of the two cases, the set-

case and the reset-case. Consider player B(i). If a strategy follows the first unnamed
edge of 1-path, then it reaches β(i). From the end vertex of β(i) it has the option of
choosing the next unnamed edge in 1-path of gadget B(i), or in the 1-path of bit(i).
In the first case the strategy has to go through e(i). But after it crosses e(i) there is
only a zero-cost edge left to be covered to the sink of B(i), and so other deviations
are useless. If the path instead had chosen to enter the gadget of bit(i) after the edges
β(i), then it would have to travel through α(i) and then either get stuck at the sink
of bit(i) or travel through one or more edges of the form {t(i, y), y < i}. But in order
to enter an edge of the form t(i, y) this strategy would have to pay at least Δ/3n to
share the edge priced Δ, which is more than the total cost of B(i). So any strategy
starting on the 1-path of B(i) does not enter the A(i) gadget.

Next consider a strategy starting out on the 0-path of B(i) through the first
unnamed edge. The edges then appearing on this path are of the form {f(x, i), x > i}.
These edges also appear in the gadgets A(x). If this strategy chooses to deviate to
exit the B(i) gadget after the edge f(x, i) and enter the A(x) one, the labeled edge
that it meets next is f(x, i + 1). But no path from f(x, i + 1) leads to the sink of
B(i), as is verified from the sink-function above. So this deviation cannot happen.
We have now shown that the best strategies of B(i) must be the 0 and 1 paths only.

Now, take the A(i) player and a strategy which starts out on the first unnamed
edge of the 1-path. This strategy then has to go through α(i). From the endpoint of
α(i) the only edges are to the sink of bit(i), or continue along the A(i) gadget. The
edges that appear next are of the form {t(i, x), x < i}. If the path does not continue
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along the gadget of A(i), and instead switches to the 0-path of bit(x), then the next
edge it encounters is t(i + 1, x). But according to the sink function, there is no way
to reach the sink of A(i) from t(i + 1, x), so this is not a valid deviation. Next, the
path cannot deviate out of any the {f(i, x), x < i} edges since A(i) does not lie in
any sink(f(i+ 1, x)). Thus strategies of A(i) starting out on the 1-path of A(i) stay
on this path.

Next consider the strategy of A(i) that starts out through the unnamed edge in
the 0-path of A(i). This path cannot deviate after e(i) because it would just get stuck
in the sink of B(i). Thus, we have shown that the best strategies of A(i) must be the
0 and 1 paths only.

Lastly consider the ith bit player. Along 0-path of bit-i, the only shared nodes
and edges of this player are the t(x, i) edges that are each shared with A(x) for all
x > i. Suppose this bit player follows the t(x, i) edge to the gadget of A(x) with
x > i. The next edge is then t(x, i+ 1) which does not lead to bit(i)-sink. Thus the
0-path strategies do not allow any deviations. A path starting with the first edge of
the 1-path of this bit-player can deviate after β(i) and enter edge e(i) of the B(i)
gadget. But from there all paths get stuck at sinks. Thus the 1-path deviations
cannot happen after β(i). But the deviations cannot happen after α(i) either, as the
remaining edge is zero cost.

This concludes the proof that the best strategies of the players always correspond
to the 0 and 1 paths in the gadgets.

For the last part of the construction, we show that it is possible to come up with
a set of values for the links such that the best response inequalities are satisfied. Let
the edge costs be as follows. In all the remaining formulae let c be any constant
greater than 10. Let α(i) = 1, and β(i) = 2ci(n − i) − ci/2 − 3e(i)/2. Also, e(i) =∑

j<i f(i, j) +
∑

j<i t(i, j) + 3/4 for all i. Finally, for all pairs i, j, f(i, j) = cj and
t(i, j) = 2cj. Given these values, we can check that the inequalities above are satisfied
for all i < n, and thereby we can have a run of best responses of length exponential
in the number of players.

6. Weighted players. So far we have assumed that players sharing an edge e
pay equal fractions of e’s cost. We now consider a game with fixed edge costs where
players have weights wi ≥ 1, and players’ payments are proportional to their weight.
More precisely, given a strategy S = (S1, . . . , Sk), define W to be the total weight of
all players, and let We be the sum of the weights of players using e. Then player i’s
payment for edge e will be wi

We
ce.

Note that the potential function Φ(S) used for the unweighted version of the game
is not a potential function once weights are added. In particular, in a weighted game,
improving moves can increase the value of Φ(S), as this is no longer a congestion
game. The following theorem uses a new potential function for a special class of
weighted games.

Theorem 6.1. In a weighted game where each edge e is in the strategy spaces of
at most two players, there exists a potential function for this game, and hence a Nash
equilibrium exists.

Proof. Consider the following potential function. For each edge e used by players
i and j, define

Φe(S) =

⎧⎪⎪⎨
⎪⎪⎩

cewi if player i uses e in S
cewj if player j uses e in S
ceθij if both players i and j use e in S
0 otherwise,
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where θij = (wi + wj − wiwj

wi+wj
). For any edge e with only one player i, simply

set Φe(S) = wice if i uses e and 0 otherwise. Define Φ(S) =
∑
e Φe(S). We now

simply need to argue that if a player makes an improving move, then Φ(S) decreases.
Consider a player i and an edge e that player i joins. If the edge already supported
another player j, then i’s cost for using e is ce wi

wi+wj
, while the change in Φe(S) is

ce(wi −
wiwj
wi + wj

) = ce
wi

2

wi + wj
.

Thus the change in potential when i joins e equals the cost i incurs, scaled up by a
factor of wi. In fact, it is easy to show the more general fact that when player i moves,
the change in Φ(S) is equal to the change in player i’s payments scaled up by wi. This
means that improving moves always decrease Φ(S), thus proving the theorem.

Note that this applies not only to paths, but also to the generalized model in
which players select subsets from some ground set. The analogous condition is that
no ground element appears in the strategy spaces of more than two players.

Corollary 6.2. Any two-player weighted game has a Nash equilibrium.
While the above potential function also implies a bound on the price of stability,

even with only two players this bound is very weak. However, if there are only two
players with weights 1 and w ≥ 1, then we can show that the price of stability is at
most 1 + 1

1+w , and this is tight for all w.
The following result shows the existence of Nash equilibria in weighted single

commodity games.
Theorem 6.3. For any weighted game in which all players have the same source

s and sink t, best response dynamics converge to a Nash equilibrium, and hence Nash
equilibria exist.

Proof. Start with any initial set of strategies S. For every s − t path P define
the marginal cost of P to be c(P ) =

∑
e∈P

ce

We
, where We is the sum of the weights

of players using e in the state S. Observe that if player i currently uses path P , then
i’s payment is wic(P ). Define P (S) to be a tuple of the values c(P ) over all paths P ,
sorted in increasing order. We want to show that the cheapest improving deviation
of any player causes P (S) to strictly decrease lexicographically.

Suppose that one of the best moves for player i is to switch paths from P1 to P2.
Let P denote the set of paths that intersect P1 ∪ P2. For any pair of paths P and
Q, let cP (Q) denote the new value of c(Q) after player i has switched to path P . To
show that P (S) strictly decreases lexicographically, it suffices to show that

(6.1) min
P∈P

cP2(P ) < min
P∈P

c(P ).

Define P ′ = argminP∈P c(P ). Since P2 was i’s best response, cP2(P2) ≤ cP (P ) for all
paths P . In particular, cP2(P2) ≤ cP ′(P ′). We also know that cP ′(P ′) ≤ c(P ′), since
in deviating to P ′, player i adds itself to some edges of P ′. In fact, cP ′(P ′) < c(P ′)
unless P ′ = P1. Assuming P ′ �= P1, we now have that cP2(P2) < c(P ′), which proves
inequality (6.1). If P ′ = P1, then since player i decided to deviate, cP2(P2) < c(P1).
Therefore, we once again have that cP2(P2) < c(P ′), as desired.

In the case where the graph consists of only 2 nodes s and t joined by parallel
links, we can similarly show that any sequence of improving responses converge to a
Nash equilibrium.

Weighted games with three or more players need not have a pure Nash equilib-
rium [8]. The following claim shows that, even when Nash equilibria do exist, the
prices of stability bounds from the unweighted case do not carry over.
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Theorem 6.4. There are weighted games for which the price of stability is
Θ(logW ) and Θ(k).

An example exhibiting this is a modified version of the graph in Figure 1.1.
Change the edge with cost 1 + ε to cost 1, and for all other edges with positive cost,
set the new cost to be 1

2 . For 1 ≤ i ≤ k let player i have weight wi = 2i−1. Since each
player has a greater weight than all smaller weight players combined, the only Nash
equilibrium has cost k

2 = Θ(logW ), while the optimal solution has cost 1.

7. Conclusions and open questions. For the Fair Connection Game, we
showed that the price of stability is always at most H(k), and that this is tight for
directed graphs. However, the case for undirected graphs remains largely unresolved.
The results of section 4 show that, at least for two players, the price of stability for
undirected graphs can be strictly better than that for directed. The largest lower
bound that we know of for the price of stability in undirected networks is 12/7. The
worst-case price of stability in undirected games could be constant, showing that fair
sharing works very well in such games. See [1] for improved price of stability bounds
in the undirected case, as well as Fiat et al. [20] for recent progress on a special case
of this question.

Another open question is whether or not a good Nash equilibrium can be com-
puted in polynomial time for a large number of players. One approach to solv-
ing this problem is to first compute an approximation to the centralized optimum,
and then simulate best-response dynamics to reach a Nash equilibrium with cost at
most O(log k) times that of the initial state. Unfortunately, Theorem 5.1 shows that
arbitrary best-response dynamics can require exponential time to converge. On the
other hand, it is possible that best responses can always be scheduled in a way that
guarantees convergence in polynomial time. A weaker goal is to show how to compute
a (1+ε)-approximate Nash equilibrium, where no player can decrease its cost by more
than a 1 + ε factor, in polynomial time.

For the version of the Fair Connection Game with latencies instead of edge costs,
the main challenge is to provide price of stability results for the general scenario,
rather that just the single-source special case. See [7, 10] for recent results for the
special case of linear latency functions.

Finally, for weighted games (section 6) we have given only preliminary results.
Recently, Chen and Roughgarden [8] proved that pure Nash equilibria need not exist
in such games. They also showed that every weighted game has an O(logwmax)-
approximate Nash equilibrium that costs at most O(logW ) times the centralized
optimum (where wmax is the maximum weight and W is the sum of the weights,
assuming that the minimum weight is 1). These bounds are nearly tight. But the fol-
lowing natural question is still open: What is the price of stability of approximate Nash
equilibria in Weighted Fair Connection Games if all players share a common terminal?

REFERENCES

[1] A. Agarwal and M. Charikar, On the price of stability in undirected networks, unpublished
manuscript.

[2] S. Albers, S. Eilts, E. Even-Dar, Y. Mansour, and L. Roditty, On Nash equilibria for
a network creation game, in Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2006, pp. 89–98.
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1. Introduction. Arithmetic circuits are the standard model for computing
polynomials (see section 1.1 for a definition). Roughly speaking, given a set of vari-
ables X = {x1, . . . , xn}, an arithmetic circuit uses additions and multiplications to
compute a polynomial f in the set of variables X . Given a polynomial f , we are
interested in the number of operations needed to compute f .

The best lower bound known for the size of arithmetic circuits is the classical
Ω(n logn) of Strassen [8] and of Baur and Strassen [1]. Proving better lower bounds
is an outstanding open problem. In this paper, we focus on a restricted class of
arithmetic circuits, the class of syntactically multilinear arithmetic circuits. We prove
an Ω(n4/3/ log2 n) lower bound for the size of syntactically multilinear arithmetic
circuits computing an explicit polynomial.

1.1. Syntactically multilinear arithmetic circuits. An arithmetic circuit Φ
over the field F and the set of variables X = {x1, . . . , xn} is a directed acyclic graph
as follows: Every vertex v in Φ is either of in-degree 0 or of in-degree 2. Every vertex
v in Φ of in-degree 0 is labeled by either a variable in X or a field element in F. Every
vertex v in Φ of in-degree 2 is labeled by either × or +. An arithmetic circuit Φ is
called an arithmetic formula if Φ is a directed binary tree (the edges of an arithmetic
formula are directed from the leaves to the root).

Let Φ be an arithmetic circuit over the field F and the set of variables X . The
vertices of Φ are also called gates. Every gate of in-degree 0 is called an input gate.
Every gate of in-degree 2 labeled by × is called a product gate. Every gate of in-degree
2 labeled by + is called an addition gate. Every gate of out-degree 0 is called an output
gate. For two gates u and v in Φ, if (u, v) is an edge in Φ, then u is called a son of
v, and v is called a father of u. The size of Φ, denoted |Φ|, is the number of edges in
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Φ. Since the in-degree of Φ is at most 2, the size of Φ is at most twice the number of
gates in Φ.

For a gate v in Φ, define Φv to be the subcircuit of Φ rooted at v as follows: The
gates of Φv are all the gates u in Φ such that there exists a directed path from u to
v in Φ. The edges and labels of Φv are the same edges and labels of Φ (restricted to
the set of gates of Φv).

An arithmetic circuit computes a polynomial in a natural way. For a gate v in Φ,
define Φ̂v ∈ F[X ] to be the polynomial computed by Φv as follows: If v is an input
gate labeled by α ∈ F ∪ X , then Φ̂v = α. If v is a product gate with sons v1 and
v2, then Φ̂v = Φ̂v1 · Φ̂v2 . If v is an addition gate with sons v1 and v2, then Φ̂v =
Φ̂v1 + Φ̂v2 . For a polynomial f ∈ F[X ], and a gate v in Φ, we say that v computes
f if f = Φ̂v. For a polynomial f ∈ F[X ], we say that Φ computes f if there exists a
gate u in Φ that computes f .

A polynomial f ∈ F[X ] is called multilinear if the degree of each variable in f is at
most one. An arithmetic circuit Φ is called (semantically) multilinear if every gate in
Φ computes a multilinear polynomial. An arithmetic circuit Φ is called syntactically
multilinear if for every product gate v in Φ with sons v1 and v2, the set of variables
that occur in Φv1 and the set of variables that occur in Φv2 are disjoint.

1.2. Background and motivation. There are two ways to define multilinear
arithmetic circuits—a syntactic definition and a semantic definition—as described
above. The semantic definition is a natural one, but the syntactic definition is more
convenient to work with. Note, for example, that given an arithmetic circuit Φ, de-
ciding whether Φ is syntactically multilinear is straightforward, whereas it is not clear
if one can decide whether Φ is semantically multilinear in deterministic polynomial
time. We note also that similar distinctions between semantic and syntactic definitions
occur in other places in computer science (e.g., read k-times branching programs).

Multilinear arithmetic circuits were defined by Nisan and Wigderson in [4]. The
model of syntactically multilinear arithmetic formulas was defined in [5]. In [5], it
is shown that any multilinear arithmetic formula computing the determinant (or the
permanent) of an n× n matrix must be of size nΩ(log n). Prior to our work, no lower
bounds (better than the Ω(n logn) lower bound of Strassen and of Baur and Strassen)
for the size of syntactically multilinear arithmetic circuits were known.

The techniques of [5] for proving superpolynomial lower bounds for the size of mul-
tilinear arithmetic formulas fail for circuits. In fact, [6] used these techniques to prove
that syntactically multilinear arithmetic circuits are superpolynomially more powerful
than multilinear arithmetic formulas. More specifically, there exists a polynomial f
such that every multilinear arithmetic formula computing f is of size nΩ(logn), and,
on the other hand, there exists a polynomial-size syntactically multilinear arithmetic
circuit computing f .

Every multilinear polynomial f can be computed by a syntactically multilinear
arithmetic circuit Φ, but Φ might not be the smallest arithmetic circuit computing
f . However, computing a multilinear polynomial by an arithmetic circuit that is not
syntactically multilinear is usually less intuitive, as cancellations of monomials are
needed.

A syntactically multilinear arithmetic circuit is semantically multilinear as well.
However, it is still not known whether there is an efficient way to transform a se-
mantically multilinear arithmetic circuit into a syntactically multilinear circuit. We
note that a semantically multilinear arithmetic formula can be transformed without
changing its size into a syntactically multilinear arithmetic formula that computes
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the same polynomial (see section 2 in [5]). We do not know of any significant example
of a semantically multilinear arithmetic circuit that is not syntactically multilinear.

Finally, we note that two known classes of arithmetic circuits are contained in
the class of syntactically multilinear arithmetic circuits: Pure arithmetic circuits (as
defined by Nisan and Wigderson in [4]; see also [7]) are a restricted type of syntactically
multilinear arithmetic circuits. Monotone arithmetic circuits computing a multilinear
polynomial are also syntactically multilinear (see [4]).

1.3. Results and methods. Our main result is a construction of an explicit
polynomial f such that any syntactically multilinear arithmetic circuit computing f
is of size Ω(n4/3/ log2 n). Formally, we have the following theorem.

Theorem 1.1. Let f ∈ F[X,Ω] be the polynomial defined in section 6, where
F is any field, and X and Ω are two sets of variables of size n each. Let Φ be a
syntactically multilinear arithmetic circuit over the field F and the sets of variables X
and Ω computing f . Then,

|Φ| = Ω
(
n4/3

log2 n

)
.

The paper has three main parts: section 3 investigates the method of Baur and
Strassen for computing all partial derivatives of a polynomial. Section 5, which is the
heart of our proof, gives a simple characterization of a polynomial for which our lower
bound applies. Section 6 constructs a polynomial for which the lower bound applies.

In [1], Baur and Strassen showed that given an arithmetic circuit Ψ computing a
polynomial f ∈ F[X ], there exists an arithmetic circuit Ψ′ computing all the partial
derivatives of f , such that |Ψ′| = O(|Ψ|). In section 3, we apply the method of Baur
and Strassen for syntactically multilinear arithmetic circuits. We show that if Ψ is
syntactically multilinear, then Ψ′ is syntactically multilinear as well. Furthermore,
every variable x ∈ X does not occur in the computation of ∂f∂x in Ψ′.

In section 5, we use the results of section 3 to show that the rank of the partial
derivative matrix of a polynomial computed by a “small” syntactically multilinear
arithmetic circuit is not full (see Theorem 5.1). We use techniques that were previously
used in [5] and [6] together with some new ideas. In particular, we use the partial
derivative method of Nisan and Wigderson and the partial derivative matrix of Nisan.
We mainly study the rank of the partial derivative matrix. We also use the notion of
unbalanced gates and the notion of partitions of the variables.

In section 6, we construct a multilinear polynomial f such that the rank of the
partial derivative matrix of f is full. As in [6], to show that the partial derivative
matrix of f has full rank, we think of f as a polynomial over some extension field. We
also show that f is explicit in the sense that f is in the class VNP, which is Valiant’s
algebraic analogue of NP (see section 6.3 for more details).

Our lower bound follows from sections 5 and 6 since the rank of the partial
derivative matrix of a polynomial computed by a “small” syntactically multilinear
arithmetic circuit is not full, and since the rank of the partial derivative matrix of f ,
the polynomial defined in section 6, is full, it follows that any syntactically multilinear
arithmetic circuit computing f is “large.”

2. Preliminaries.

2.1. Notation. For an integer n ∈ N, denote [n] = {1, . . . , n}. For a set B ⊆ [n],
denote B = [n] \B, the complement set of B. Similarly, for a set of variables X , and
a set X ′ ⊆ X , denote X ′ = X \X ′, the complement set of X ′. For a polynomial f in
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the set of variables X , and a variable x ∈ X , denote by dx(f) the degree of x in f .
We say that x occurs in f if dx(f) > 0.

2.2. Arithmetic circuits—some more definitions. Let Φ be an arithmetic
circuit over a field F and a set of variables X . For a variable x ∈ X , we say that x
occurs in Φ if x labels one of the input gates of Φ. Recall that, for a gate v in Φ, we
defined Φv to be the subcircuit of Φ rooted at v. For a gate v in Φ, define Xv to be
the set of variables that occur in Φv. That is,

Xv =

⎧⎨⎩
∅, v is an input gate labeled by a field element,

{x} , v is an input gate labeled by a variable x ∈ X,
Xv1 ∪Xv2 , v has sons v1 and v2

(if u is a son of v, then Xu ⊆ Xv). For a variable x ∈ X and a gate v in Φ, define
dx(v), the algebraic degree of x in v, to be the degree of x in the polynomial Φ̂v. For
a variable x ∈ X and a gate v in Φ, define sdx(v), the syntactic degree of x in v, to
be the degree of x in v when one ignores cancellations of monomials (in other words,
if all the constants in Φ are replaced by 1’s, and the field F is replaced by R, then
the syntactic degree of x in v is the algebraic degree of x in v). More precisely, define
sdx(v) inductively as follows: If v is an input gate labeled by α ∈ F ∪X , then

sdx(v) =
{

1, α = x,
0, α �= x.

If v is a product gate with sons v1 and v2, then sdx(v) = sdx(v1) + sdx(v2). If v
is an addition gate with sons v1 and v2, then sdx(v) = max(sdx(v1), sdx(v2)). The
syntactic degree is a nondecreasing function, while the algebraic degree can decrease
(in addition gates). That is, for every variable x ∈ X and gates u and v in Φ, if there
exists a directed path from u to v in Φ, then sdx(u) ≤ sdx(v). On the other hand, if
v is an addition gate, and u is a son of v, it might be the case that dx(u) > dx(v).

An arithmetic circuit Φ is called a multilinear arithmetic circuit if the polynomial
computed at each gate in Φ is multilinear; that is, if for all x ∈ X and v in Φ, it holds
that dx(v) ≤ 1. An arithmetic circuit Φ is called a syntactically multilinear arithmetic
circuit if, for all x ∈ X and v in Φ, it holds that sdx(v) ≤ 1. By induction, for all
x ∈ X and v in Φ, it holds that dx(v) ≤ sdx(v). Hence, indeed, every syntactically
multilinear arithmetic circuit is a multilinear arithmetic circuit as well.

2.3. Partial derivatives. Let f be a polynomial over the field F and the set of
variables X = {x1, . . . , xn}. For i ∈ [n], define ∂f

∂xi
, the partial derivative of f with

respect to xi, as follows: If f is a monomial in the variables X \ {xi}, then ∂f
∂xi

= 0.
If f is a monomial of the form f = xdi g, where d is a positive integer, and g is a
monomial in the variables X \ {xi}, then

∂f

∂xi
=
∂(xdi g)
∂xi

= (1 + 1 + · · · + 1)︸ ︷︷ ︸
d times

xd−1
i g.

If f is a sum of monomials f =
∑

jmj , where mj is a monomial in F[X ], then
∂f
∂xi

=
∑
j
∂mj

∂xi
.

The following lemma is known as the chain rule of partial derivatives (we state
the lemma without giving a proof).
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Lemma 2.1. Let g be a polynomial over the field F and the set of variables
X = {x1, . . . , xn}. Let h be a polynomial over the field F and the set of variables
X ∪ {x0}. Let f ∈ F[X ] be the polynomial h after substituting x0 by g; that is,
f = h|x0=g. Then, for all i ∈ [n],

∂f

∂xi
=

∂h

∂xi

∣∣∣∣
x0=g

+
∂h

∂x0

∣∣∣∣
x0=g

∂g

∂xi
.

2.4. Multiplication of variables in an arithmetic circuit. Let Ψ be an
arithmetic circuit over the field G and the set of variables X = {x1, . . . , xn}. For a
variable xi ∈ X and a product gate v in Ψ with sons v1 and v2, define Mv(xi), the
set of variables multiplying xi in v, by

Mv(xi) =

⎧⎪⎪⎨⎪⎪⎩
∅, xi �∈ Xv1 , xi �∈ Xv2 ,
Xv2 , xi ∈ Xv1 , xi �∈ Xv2 ,
Xv1 , xi �∈ Xv1 , xi ∈ Xv2 ,

Xv1 ∪Xv2 , xi ∈ Xv1 , xi ∈ Xv2 .

For a variable xi ∈ X , define MΨ(xi), the set of variables multiplying xi in Ψ, by

MΨ(xi) =
⋃
v

Mv(xi),

where the union is over all product gates v in Ψ. For two variables xi, xj ∈ X , if xi
multiplies xj in Ψ, then xj multiplies xi in Ψ, and vice versa; that is,

xi ∈ MΨ(xj) ⇔ xj ∈ MΨ(xi).

Thus, for two variables xi, xj ∈ X , we say that xi and xj are multiplied in Ψ if
xi ∈ MΨ(xj). Note that the following are equivalent:

• Ψ is a syntactically multilinear arithmetic circuit over the set of variables X .
• Ψ is an arithmetic circuit over the set of variables X such that every xi ∈ X

admits xi �∈ MΨ(xi).

2.5. The partial derivative matrix. Let Y = {y1, . . . , ym} and Z = {z1, . . . ,
zm} be two sets of variables. Let f ∈ G[Y, Z] be a multilinear polynomial over the field
G and the variables Y and Z. Define Lf to be the 2m × 2m partial derivative matrix
of f as follows: for p ∈ G(Y ), a monic1 multilinear monomial in Y , and q ∈ G(Z), a
monic multilinear monomial in Z, define Lf(p, q) to be the coefficient of the monomial
p · q in f . Thus, the rows of Lf correspond to monic multilinear monomials in Y , and
the columns of Lf correspond to monic multilinear monomials in Z. We are mainly
interested in the rank of the partial derivative matrix.

The following propositions bound the rank of the partial derivative matrix in
different cases.

Proposition 2.2. Let f ∈ G[Y, Z] be a multilinear polynomial over the field G

and the sets of variables Y ′ ⊆ Y and Z ′ ⊆ Z. Let a = min(|Y ′| , |Z ′|). Then,

Rank(Lf ) ≤ 2a.

Proof. There are two cases:

1A monic monomial is a monomial whose coefficient is 1.
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1. If |Y ′| ≤ |Z ′|, then a = |Y ′|. Thus, Lf has at most 2a nonzero rows.
2. If |Y ′| > |Z ′|, then a = |Z ′|. Thus, Lf has at most 2a nonzero columns.

Proposition 2.3. Let f1, f2 ∈ G[Y, Z] be two multilinear polynomials over the
field G and the sets of variables Y and Z. Then,

Rank(Lf1+f2) ≤ Rank(Lf1) + Rank(Lf2).

Proof. Note that Lf1+f2 = Lf1 + Lf2 . For any two matrices A and B, it holds
that Rank(A+B) ≤ Rank(A) + Rank(B). Thus,

Rank(Lf1+f2) ≤ Rank(Lf1) + Rank(Lf2).

Proposition 2.4. Let f1 ∈ G[Y, Z] be a multilinear polynomial over the field
G and the sets of variables Y1 ⊆ Y and Z1 ⊆ Z. Let f2 ∈ G[Y, Z] be a multilinear
polynomial over the field G and the sets of variables Y2 ⊆ Y and Z2 ⊆ Z. Assume
that Y1 ∩ Y2 = ∅ and Z1 ∩ Z2 = ∅. Then,

Rank(Lf1·f2) = Rank(Lf1) · Rank(Lf2).

Proof. We think of Lf1 as a matrix of size 2|Y1| × 2|Z1| and not of size 2|Y | × 2|Z|

(an entry in Lf1 that corresponds to a monomial that is not in the variables Y1 and
Z1 is zero). Similarly, we think of Lf2 as a matrix of size 2|Y2| × 2|Z2|, and we think
of Lf1·f2 as a matrix of size 2|Y1∪Y2| × 2|Z1∪Z2|. Since Y1 ∩ Y2 = ∅ and Z1 ∩ Z2 = ∅,

Lf1·f2 = Lf1 ⊗ Lf2 ,

where ⊗ denotes a tensor product of matrices. For any two matrices A and B, it
holds that Rank(A⊗B) = Rank(A) · Rank(B). Thus,

Rank(Lf1·f2) = Rank(Lf1) · Rank(Lf2).

Proposition 2.5. Let f ∈ G[Y, Z] be a multilinear polynomial over the field G

and the sets of variables Y and Z, where |Y | = |Z| = m. Let t ∈ Y ∪Z be a variable,
and let g = ∂f

∂t . Assume that Rank(Lf ) = 2m. Then,

Rank(Lg) = 2m−1.

Proof. Assume without loss of generality that t ∈ Z. Assume without loss of
generality that the columns of Lf are ordered such that Lf = (A B), where A is a
2m × 2m−1 matrix whose columns correspond to all monomials q in which t does not
occur, and B is a 2m× 2m−1 matrix whose columns correspond to all monomials q in
which t occurs. Since g = ∂f

∂t , we have Lg = (B 0) (where 0 is a 2m× 2m−1 matrix of
zeros). Since Lf is of full rank, the rank of B is 2m−1. Hence, Rank(Lg) = 2m−1.

Proposition 2.6. Let f ∈ G[Y, Z] be a multilinear polynomial over the field G

and the sets of variables Y and Z, where |Y | = |Z| = m. Assume that the total degree
of f is at most T ∈ N. Then,

Rank(Lf ) ≤ 2(T+1) logm.

Proof. Since the total degree of f is at most T , there are at most
∑T
i=0

(
m
i

)
≤

2(T+1) logm nonzero rows in Lf .
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2.6. Unbalanced gates. Let Ψ be an arithmetic circuit over the field G and the
variables Y = {y1, . . . , ym} and Z = {z1, . . . , zm}. Let v be a gate in Ψ. Define Yv to
be the set of Y variables that occur in Ψv and Zv to be the set of Z variables that occur
in Ψv. Define b(v) to be the average of |Yv| and |Zv|; that is, b(v) = (|Yv| + |Zv|)/2.
Define a(v) to be the minimum of |Yv| and |Zv|; that is, a(v) = min(|Yv| , |Zv|). Define
d(v), the balance gauge of v, by d(v) = b(v)− a(v). For an integer k ∈ N, the gate v is
called k-unbalanced if d(v) ≥ k. Note that if Ψ is a syntactically multilinear arithmetic
circuit, and u is a product gate in Ψ with sons u1 and u2, then b(u) = b(u1) + b(u2).

3. Computing partial derivatives of syntactically multilinear arithmetic
circuits. Let f be a polynomial over the field G and the variables X = {x1, . . . , xn}.
In [1], Baur and Strassen showed that the complexity of computing all n partial deriva-
tives of f is (up to a constant factor) not more than computing f . More precisely,
given an arithmetic circuit Ψ computing f , one can construct an arithmetic circuit
Ψ′ computing ∂f

∂x1
, . . . , ∂f∂xn

such that |Ψ′| = O(|Ψ|) (moreover, the depth2 of Ψ′ is up
to a constant factor the same as the depth of Ψ). Later, Morgenstern [3] simplified
the construction of such a Ψ′.

Let Ψ be a syntactically multilinear arithmetic circuit over the field G and the set
of variables X computing f . Let Ψ′ be the arithmetic circuit computing ∂f

∂x1
, . . . , ∂f∂xn

(as constructed by Baur and Strassen and Morgenstern). For every i ∈ [n], denote
by vi the gate computing ∂f

∂xi
in Ψ′. Since Ψ is a syntactically multilinear arithmetic

circuit, f is a multilinear polynomial. Hence, for all i ∈ [n] the degree of xi in ∂f
∂xi

is
0; that is, dxi(vi) = 0. The next theorem shows the following (in addition to what
Baur and Strassen showed):

• Ψ′ is a syntactically multilinear arithmetic circuit.
• For all i ∈ [n], the syntactic degree of xi in vi is 0; that is, sdxi(vi) = 0. In

other words, for all i ∈ [n] the variable xi does not occur in Ψ′
vi

(recall that
Ψ′
vi

is the subcircuit of Ψ′ rooted at vi); that is, xi �∈ Xvi .
Theorem 3.1. Let Ψ be a syntactically multilinear arithmetic circuit over the

field G and the set of variables X = {x1, . . . , xn} computing f . Then, there exists an
arithmetic circuit Ψ′ over the field G and the set of variables X such that the following
hold:

1. Ψ′ computes all n partial derivatives ∂f
∂x1

, . . . , ∂f∂xn
.

2. |Ψ′| ≤ 5 |Ψ|.
3. Ψ′ is a syntactically multilinear arithmetic circuit.
4. For every i ∈ [n], it holds that xi �∈ Xvi , where vi is the gate computing ∂f

∂xi

in Ψ′.
We defer the proof of Theorem 3.1 to section 3.1. We do not know if Theorem 3.1

holds for multilinear arithmetic circuits (that are not syntactically multilinear).
For the proof of our lower bound (Theorem 1.1) we need the following corollary

of Theorem 3.1. The corollary shows that a gate v in Ψ′ such that Xv is large (that
is, many variables occur in Ψ′

v) is connected by directed paths to few output gates in
Ψ′ (the output gates of Ψ′ are the gates computing ∂f

∂x1
, . . . , ∂f∂xn

).
Corollary 3.2. Let Ψ be a syntactically multilinear arithmetic circuit over

the field G and the set of variables X = {x1, . . . , xn} computing f . Let Ψ′ be the
arithmetic circuit computing ∂f

∂x1
, . . . , ∂f∂xn

, as described in Theorem 3.1. For i ∈ [n],

2The depth of an arithmetic circuit Ψ is the length of the longest directed path in Ψ.
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denote by vi the gate computing ∂f
∂xi

in Ψ′. Then, for every gate v in Ψ′,

|Xv| ≤ n−
∣∣{i ∈ [n] : v is a gate in Ψ′

vi

}∣∣ .
Note that |{i ∈ [n] : v is a gate in Ψ′

vi
}| is the number of output gates that v is con-

nected to by directed paths in Ψ′.
Proof. Let v be a gate in Ψ′. Let i ∈ [n] be such that there exists a directed path

from v to vi in Ψ′; that is, v is a gate in Ψ′
vi

. Thus, Xv ⊆ Xvi . By property 4 of
Theorem 3.1, xi �∈ Xvi . Hence, xi �∈ Xv.

Therefore, Xv ∩ {xi ∈ Xv is a gate in Ψ′
vi
} = ∅. Thus,

|Xv| ≤ |X | −
∣∣{xi ∈ X : v is a gate in Ψ′

vi

}∣∣
= n−

∣∣{i ∈ [n] : v is a gate in Ψ′
vi

}∣∣ .
3.1. Proof of Theorem 3.1. The following lemma is a generalization of The-

orem 3.1.
Lemma 3.3. Let Ψ be an arithmetic circuit over the field G and the set of variables

X computing f . Then, there exists an arithmetic circuit Ψ′ over the field G and the
set of variables X such that the following hold:

1. Ψ′ computes all n partial derivatives ∂f
∂x1

, . . . , ∂f∂xn
.

2. |Ψ′| ≤ 5 |Ψ|.
3. For every i ∈ [n], it holds that MΨ′(xi) ⊆ MΨ(xi).
4. For every i ∈ [n], it holds that Xvi ⊆ MΨ(xi), where vi is the gate computing

∂f
∂xi

in Ψ′.
We defer the proof of Lemma 3.3 to section 3.2. First we give some intuition for

Lemma 3.3. Let Ψ be an arithmetic circuit computing f . Let Ψ′ be the arithmetic
circuit computing all n partial derivatives of f (as constructed by Baur and Strassen,
and Morgenstern).

• Properties 1 and 2 of Lemma 3.3 were shown by Baur and Strassen.
• Property 3 of Lemma 3.3 states that if two variables xi and xj in X are not

multiplied in Ψ, then xi and xj are not multiplied in Ψ′ either.
• Let i ∈ [n]. Denote by vi the gate computing ∂f

∂xi
in Ψ′. Property 4 of

Lemma 3.3 states that Ψ′
vi

depends only on variables that multiply xi in Ψ.
Theorem 3.1 follows from Lemma 3.3.

3.2. Proof of Lemma 3.3.
Proof. Let Ψ be an arithmetic circuit over the field G and the set of variables X

computing f . The proof of the lemma is by induction on the size of Ψ. The proof has
four parts:

1. Induction base.
2. Using Ψ to define a smaller arithmetic circuit Φ. Using induction to conclude

the existence of an arithmetic circuit Φ′ that has properties 1, 2, 3, and 4.
3. Using Φ′ to construct Ψ′.
4. Proving that Ψ′ has all the needed properties.

Induction base. Assume that Ψ has no edges; that is, |Ψ| = 0. Thus, f = α for
some α ∈ G ∪X . Hence, for all i ∈ [n], it holds that ∂f

∂xi
∈ {0, 1}. Define Ψ′ to be

an arithmetic circuit with two input gates: an input gate labeled 1 and an input gate
labeled 0. Then, Ψ′ has properties 1, 2, 3, and 4.

Defining a smaller arithmetic circuit Φ. Let r be the gate computing f in
Ψ. Assume that r is the unique output gate in Ψ (otherwise, consider Ψr). Assume
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that Ψ has at least two edges. Let v∗ in Ψ be a gate with sons v∗1 and v∗2 such that v∗1
and v∗2 are input gates. Let α1 ∈ G ∪X be the label of v∗1 in Ψ. Let α2 ∈ G ∪X be
the label of v∗2 in Ψ. Let x0 be a new variable associated with the gate v∗, and denote
X0 = X ∪ {x0}. Let X∗ be the set of X variables labeling v∗1 and v∗2 in Ψ; that is,
X∗ = {α1, α2} ∩X = Xv∗ . Denote by g the polynomial computed by v∗ in Ψ; that
is, if v∗ is an addition gate in Ψ, then g = α1 + α2, and if v∗ is a product gate in Ψ,
then g = α1 · α2.

If X∗ = ∅, then define a smaller arithmetic circuit Φ computing f as follows: Φ is
obtained from Ψ by deleting the edges (v∗1 , v

∗) and (v∗2 , v
∗), and labeling v∗ (which is

an input gate) by g(α1, α2) ∈ G. Thus, Φ computes f , and |Φ| < |Ψ|. By induction,
there exists an arithmetic circuit Φ′ with properties 1, 2, 3, and 4. Set Ψ′ to be Φ′.
Then, Ψ′ has properties 1, 2, 3, and 4, and the proof is complete.

Hence, we can assume that X∗ �= ∅.
Let Φ be the arithmetic circuit over the field G and the set of variables X0

obtained from Ψ by deleting the edges (v∗1 , v
∗) and (v∗2 , v

∗) and labeling v∗ (which is
an input gate) by x0. For every gate v in Ψ there is a corresponding gate u = u(v) in
Φ, and vice versa. For a gate v in Ψ, we think of the gate u = u(v) in Φ as the same
gate as v.

Let u(r) be the gate corresponding to r in Φ. Set h to be the polynomial computed
by u(r) in Φ. Thus, h is a polynomial in the variablesX0. By the construction of Φ, it
follows that upon substituting x0 by g in h we obtain f ; that is, f(X) = h(X0)|x0=g.

Since |Φ| = |Ψ| − 2, it follows by induction that there exists an arithmetic circuit
Φ′ over the field G and the set of variables X0 such that

1. Φ′ computes all n+ 1 partial derivatives ∂h
∂x0

, ∂h∂x1
, . . . , ∂h∂xn

,
2. |Φ′| ≤ 5|Φ|,
3. for every j ∈ {0, . . . , n}, it holds that MΦ′(xj) ⊆ MΦ(xj), and
4. for every j ∈ {0, . . . , n}, it holds that X0

uj
⊆ MΦ(xj), where uj is the gate

computing ∂h
∂xj

in Φ′.

Using Φ′ to construct Ψ′. We construct Ψ′ by adding a few gates and edges
to Φ′.

Step 1: Gates and edges added to Φ′ to substitute x0 by g, constructing Ψ1.
Assume without loss of generality that in Φ′ there is a unique input gate v′ labeled x0

(otherwise, join all input gates labeled x0 to a single input gate labeled x0). Denote
by Ψ1 the arithmetic circuit obtained by the following changes to Φ′:

• Add two input gates to Φ′: an input gate v′1 labeled α1 and an input gate v′2
labeled α2.

• Add two edges to Φ′: the edge (v′1, v
′) and the edge (v′2, v

′).
• Label v′ by the same label of v∗.

Thus, Ψ1 is an arithmetic circuit over the field G and the set of variablesX . Moreover,
Ψ1 is Φ′ after substituting x0 by g. We note that every gate in Φ′ can also be thought
of as a gate in Ψ1.

Step 2: Gates and edges added to Ψ1 to compute ∂f
∂x1

, . . . , ∂f∂xn
. Fix i ∈ [n]. We

describe what gates and edges are added to Ψ1 in order for Ψ′ to compute ∂f
∂xi

. By
Lemma 2.1 (the chain rule of partial derivatives), since f = h|x0=g,

∂f

∂xi
=

∂h

∂xi

∣∣∣∣
x0=g

+
∂h

∂x0

∣∣∣∣
x0=g

∂g

∂xi
.(3.1)
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As Ψ1 is Φ′ after substituting x0 by g, it follows that ∂h
∂xi

|x0=g is computed by ui (as a
gate in Ψ1), and ∂h

∂x0
|x0=g is computed by u0 (as a gate in Ψ1). Consider the following

four cases.
Case 1: α1 = xi and α2 �= xi. Consider the following two cases:
1. If v∗ is an addition gate, then ∂g

∂xi
= 1. Hence, by (3.1),

∂f

∂xi
=

∂h

∂xi

∣∣∣∣
x0=g

+
∂h

∂x0

∣∣∣∣
x0=g

.

To construct Ψ′ add one gate and two edges as follows: Add an addition gate
vi, and add the edges (u0, vi) and (ui, vi). Thus, vi computes ∂f

∂xi
.

2. If v∗ is a product gate, then ∂g
∂xi

= α2. Hence, by (3.1),

∂f

∂xi
=

∂h

∂xi

∣∣∣∣
x0=g

+
∂h

∂x0

∣∣∣∣
x0=g

α2.

Recall that, v′2 is an input gate labeled α2 in Ψ1. To construct Ψ′ add two
gates and four edges as follows:

• A product gate w1 and the edges (u0, w1) and (v′2, w1). Thus, w1 com-
putes ∂h

∂x0
|x0=gα2.

• An addition gate vi and the edges (ui, vi) and (w1, vi).
Thus, vi computes ∂f

∂xi
.

Case 2: α1 �= xi and α2 = xi. We do the same as in case 1 (replacing 1 and 2).
Note that in this case, when v∗ is a product gate, we add a product gate w2 to Ψ1.

Case 3: α1 = α2 = xi. Consider the following two cases:
1. If v∗ is an addition gate, then ∂g

∂xi
= 1 + 1. Hence, by (3.1),

∂f

∂xi
=

∂h

∂xi

∣∣∣∣
x0=g

+
∂h

∂x0

∣∣∣∣
x0=g

(1 + 1).

To construct Ψ′ add three gates and four edges as follows:
• An input gate w3 labeled by 1 + 1.
• A product gate w4 and the edges (w3, w4) and (u0, w4). Thus, w4 com-

putes ∂h
∂x0

|x0=g(1 + 1).
• An addition gate vi and the edges (ui, vi) and (w4, vi).

Thus, vi computes ∂f
∂xi

.
2. If v∗ is a product gate, then ∂g

∂xi
= (1 + 1)xi. Hence, by (3.1),

∂f

∂xi
=

∂h

∂xi

∣∣∣∣
x0=g

+
∂h

∂x0

∣∣∣∣
x0=g

(1 + 1)xi.

Recall that v′2 is an input gate labeled xi = α2 in Ψ1. To construct Ψ′ add
four gates and six edges as follows:

• An input gate w3 labeled by 1 + 1.
• A product gate w4 and the edges (w3, w4) and (v′2, w4). Thus, w4 com-

putes (1 + 1)xi.
• A product gate w5 and the edges (u0, w5) and (w4, w5). Thus, w5 com-

putes ∂h
∂x0

|x0=g(1 + 1)xi.
• An addition gate vi and the edges (ui, vi) and (w5, vi).
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Thus, vi computes ∂f
∂xi

.
Case 4: α1 �= xi and α2 �= xi. In this case no gates or edges are added. As g

is a function of α1 and α2, it follows that ∂g
∂xi

= 0. Hence, by (3.1), ∂f
∂xi

= ∂h
∂xi

|x0=g.
Denote by vi the gate ui in Ψ′. Thus, vi computes ∂f

∂xi
.

Ψ′ has the needed properties. Let Ψ′ be the arithmetic circuit over the field
G and the set of variables X as constructed above. The following claims show that
Ψ′ has the needed properties. To prove the claims we make use of the following:

• The construction of Φ from Ψ.
• The properties of Φ′ (which we know by induction).
• The construction of Ψ′ from Φ′.

In some of the proofs there are several cases to consider. Some of the cases are similar,
but we consider all the cases for completeness.

The following claim shows that Ψ′ satisfies property 1 of Theorem 3.1.
Claim 3.4. Ψ′ computes all n partial derivatives ∂f

∂x1
, . . . , ∂f∂xn

.
Proof. Let i ∈ [n]. By the construction of Ψ′ there exists a gate vi in Ψ′ computing

∂f
∂xi

.
The following claim shows that Ψ′ satisfies property 2 of Theorem 3.1.
Claim 3.5. |Ψ′| ≤ 5|Ψ|.
Proof. By the construction of Φ from Ψ, it follows that |Φ| = |Ψ| − 2. By

induction, |Φ′| ≤ 5|Φ|. By the construction of Ψ′ from Φ′, there are at most ten more
edges in Ψ′ than in Φ′; that is, |Ψ′| ≤ |Φ′| + 10. Hence,

|Ψ′| ≤ 5(|Ψ| − 2) + 10 = 5|Ψ|.

Let j ∈ {0, . . . , n}. Think of uj both as the gate computing ∂h
∂xj

|x0=g in Ψ′ and as

the gate computing ∂h
∂xj

in Φ′. Thus, Xuj is the set of X variables that occur in Ψ′
uj

,
and X0

uj
is the set of X0 variables that occur in Φ′

uj
. We use the following claim.

Claim 3.6.

1. For every i ∈ [n],

Xui ⊆ MΨ(xi).

2. For every variable α in X∗,

Xu0 ⊆ MΨ(α).

Proof. For every j ∈ {0, . . . , n}, by property 4 of Theorem 3.1 of Φ′, X0
uj

⊆
MΦ(xj), and by the construction of Ψ′,

Xuj =
{

X0
uj
, x0 �∈ X0

uj
,

(X0
uj

\ {x0}) ∪X∗, x0 ∈ X0
uj
.

Proof of 1: Fix i ∈ [n]. Since every variable that multiplies xi in Φ except
(possibly) x0 also multiplies xi in Ψ, it follows that MΦ(xi) \ {x0} ⊆ MΨ(xi). Thus,
since X0

ui
⊆ MΦ(xi), it follows that X0

ui
\ {x0} ⊆ MΨ(xi). Consider the following

two cases:
1. x0 �∈ X0

ui
. Then, Xui = X0

ui
= X0

ui
\ {x0} ⊆ MΨ(xi).

2. x0 ∈ X0
ui

. Since X0
ui

⊆ MΦ(xi), it follows that x0 multiplies xi in Φ; that
is, x0 ∈ MΦ(xi). Thus, X∗ ⊆ MΨ(xi). Hence, Xui = (X0

ui
\ {x0}) ∪X∗ ⊆

MΨ(xi).
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Proof of 2: Fix α ∈ X∗. Since every variable that multiplies x0 in Φ except
(possibly) x0 also multiplies α in Ψ, it follows that MΦ(x0) \ {x0} ⊆ MΨ(α). Thus,
as X0

u0
⊆ MΦ(x0), we have X0

u0
\ {x0} ⊆ MΨ(α). Consider the following two cases:

1. x0 �∈ X0
u0

. Then, Xu0 = X0
u0

= X0
u0

\ {x0} ⊆ MΨ(α).
2. x0 ∈ X0

u0
. Since X0

u0
⊆ MΦ(x0), it follows that x0 multiplies x0 in Φ;

that is, x0 ∈ MΦ(x0). Thus, as α ∈ X∗, we have X∗ ⊆ MΨ(α). Hence,
Xu0 = (X0

u0
\ {x0}) ∪X∗ ⊆ MΨ(α).

The following claim shows that Ψ′ satisfies property 3 of Theorem 3.1.
Claim 3.7. For all i ∈ [n], it holds that MΨ′(xi) ⊆ MΨ(xi).
Proof. Let i, j ∈ [n] be such that xi and xj are multiplied in Ψ′; that is, xi ∈

MΨ′(xj). To prove the claim it is enough to show that xi ∈ MΨ(xj). By property 3
of Theorem 3.1 of Φ′, for all � ∈ {0, . . . , n},

MΦ′(x�) ⊆ MΦ(x�).

Recall that X∗ is the set of X variables that occur in Ψv∗ . Consider two cases.
xi and xj are not in X∗. Assume that xi �∈ X∗ and xj �∈ X∗. Thus, as

xi ∈ MΨ′(xj) and by the construction of Ψ′, it follows that xi and xj are multiplied
in Φ′; that is, xi ∈ MΦ′(xj). Thus, since MΦ′(xj) ⊆ MΦ(xj), it follows that xi
and xj are multiplied in Φ; that is, xi ∈ MΦ(xj). Hence, by the construction of
Φ (as xi �= x0 and xj �= x0), it follows that xi and xj are multiplied in Ψ; that is,
xi ∈ MΨ(xj).

At least one of xi and xj is in X∗. Assume without loss of generality that
xj = α1 (recall that xi ∈ MΨ(xj) ⇔ xj ∈ MΨ(xi). Similar arguments hold for
xj = α2). Let v be a gate in Ψ′ in which xi and xj = α1 are multiplied; that is,
xi ∈ Mv(α1). In the following we think of u0 as the gate computing ∂h

∂x0
|x0=g in Ψ′.

Consider the following cases.
Case 1. v is v′. Since v = v′ is a product gate in Ψ′, we have that v∗ is a

product gate in Ψ. Since v′ and v∗ are the “same” gate, Mv′(α1) = Mv∗(α1). Thus,
xi ∈ Mv′(α1) = Mv∗(α1) ⊆ MΨ(α1).

Case 2. v is w1. Recall that w1 is the product gate added to Ψ1 in order for Ψ′ to
compute ∂f

∂α1
. The two sons of v in Ψ′ are u0 and v′2. Since w1 is added only if α1 �= α2,

it follows that Mv(α1) ⊆ Xv′2
⊆ {α2}. Thus, xi = α2. Hence, since w1 is added only if

v∗ is a product gate (that multiplies α1 and α2) in Ψ, xi = α2 ∈ Mv∗(α1) ⊆ MΨ(α1).
Case 3. v is w2. Recall that w2 is the product gate added to Ψ1 in order for Ψ′

to compute ∂f
∂α2

. The two sons of v in Ψ′ are u0 and v′1, and v computes ∂h
∂x0

|x0=gα1.
By definition of Mv(α1),

Mv(α1) =
{

Xu0 , α1 �∈ Xu0 ,
{α1} ∪Xu0 , α1 ∈ Xu0 .

Thus, Mv(α1) = Xu0 . Hence, by Claim 3.6,

xi ∈ Xu0 ⊆ MΨ(α1).

Case 4. v is w4. Recall that w4 is added to Ψ1 in the case that α1 = α2. Since
one of v’s sons is an input gate labeled by a field element, Mv(α1) = ∅. Hence, this
case cannot happen.

Case 5. v is w5. Recall that w5 is the product gate added to Ψ1 in order for Ψ′

to compute ∂f
∂α1

(when α1 = α2). Thus, v computes ∂h
∂x0

|x0=g(1 + 1)α1. By definition
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of Mv(α1),

Mv(α1) =
{

Xu0 , α1 �∈ Xu0 ,
{α1} ∪Xu0 , α1 ∈ Xu0 .

Thus, Mv(α1) = Xu0 . Hence, by Claim 3.6,

xi ∈ Xu0 ⊆ MΨ(α1).

Case 6. v is also a product gate in Φ′. There are two cases to consider:
1. If xi �∈ MΦ′(α1), then as xi ∈ MΨ′(α1), it holds that xi ∈ MΦ′(x0). Hence,

as MΦ′(x0) ⊆ MΦ(x0), it follows that xi ∈ MΦ(x0). Since every variable
that multiplies x0 except (possibly) x0 in Φ also multiplies α1 in Ψ, we have
MΦ(x0) \ {x0} ⊆ MΨ(α1). Hence, as xi �= x0,

xi ∈ MΨ(α1).

2. If xi ∈ MΦ′(α1), then xi ∈ MΦ′(α1) ⊆ MΦ(α1). Since every variable that
multiplies α1 in Φ except (possibly) x0 also multiplies α1 in Ψ, it follows that
MΦ(α1) \ {x0} ⊆ MΨ(α1). Thus, as xi �= x0,

xi ∈ MΨ(α1).

The following claim shows that Ψ′ satisfies property 4 of Theorem 3.1.
Claim 3.8. For all i ∈ [n], it holds that Xvi ⊆ MΨ(xi).
Proof. Fix i ∈ [n]. For simplicity of notation, denote v = vi, u = ui, and u′ = u0.

We think of u and u′ both as gates in Φ′ and as gates in Ψ′. By the construction of
Ψ′, we have to consider the following cases.

Case 1: α1 = xi or α2 = xi. Note that this case applies both for α1 = α2 and
α1 �= α2. Assume without loss of generality that α1 = xi. Consider the following two
cases.

v∗ is an addition gate in Ψ. Since u and u′ are the sons of v in Ψ′, it follows that
Xv = Xu ∪Xu′ . By Claim 3.6, it follows that Xu ⊆ MΨ(xi) and Xu′ ⊆ MΨ(α1) =
MΨ(xi). Hence,

Xv ⊆ MΨ(xi).

v∗ is a product gate. By the construction of Ψ′ (loosely speaking, the sons of v in
Ψ′ are u, u′, and v′2), it follows that Xv = Xu ∪Xu′ ∪Xv′2

. As v∗ is a product gate
in Ψ (v∗ multiplies xi = α1 and α2), it follows that Xv′2

⊆ MΨ(xi). By Claim 3.6, it
follows that Xu ⊆ MΨ(xi) and Xu′ ⊆ MΨ(α1) = MΨ(xi). Hence,

Xv ⊆ MΨ(xi).

Case 2: α1 �= xi and α2 �= xi. By the construction of Ψ′, it follows that Xv = Xu.
By Claim 3.6, it follows that Xu ⊆ MΨ(xi). Hence,

Xv ⊆ MΨ(xi).

Thus, Ψ′ is an arithmetic circuit over the field G and the set of variables X such
that the following hold:

1. By Claim 3.4, Ψ′ computes all n partial derivatives ∂f
∂x1

, . . . , ∂f∂xn
.

2. By Claim 3.5, |Ψ′| ≤ 5 · |Ψ|.
3. By Claim 3.7, for every i ∈ [n], it holds that MΨ′(xi) ⊆ MΨ(xi).
4. By Claim 3.8, for every i ∈ [n], it holds that Xvi ⊆ MΨ(xi).
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4. Partitions of the variables of an arithmetic circuit. In this section we
define a distribution D on partitions of the variables of an arithmetic circuit. We
show that by the distribution D, a specific gate is unbalanced with high probability.

4.1. Definitions. Let X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and Z = {z1, . . . ,
zm} be three sets of variables (where n = 2m). A one-to-one function A : X → Y ∪Z
is called a partition of X to Y and Z. For a partition A of X to Y and Z and X ′ ⊆ X
a subset of X , denote A(X ′) = {A(x) : x ∈ X ′}.

Let X1 ⊂ X be a subset of X of size n/4. The distribution D(X1) on partitions A
of X to Y and Z is the uniform distribution on all partitions A such that A(X1) ⊂ Y .
We write A ∼ D(X1) if A is a partition of X to Y and Z chosen by the distribution
D(X1).

Let Ψ be an arithmetic circuit over the field G and the set of variables X com-
puting a polynomial f . Let A be a partition of X to Y and Z. Denote by ΨA the
arithmetic circuit Ψ after substituting every x ∈ X by A(x) ∈ Y ∪ Z. Denote by fA

the polynomial f after substituting every x ∈ X by A(x) ∈ Y ∪Z. Note that ΨA is an
arithmetic circuit over the field G and the sets of variables Y and Z computing fA.
For every gate in Ψ there is a corresponding gate in ΨA, and vice versa. We think of
a gate v in Ψ and v’s corresponding gate in ΨA as the same gate, and we denote both
of them by v.

4.2. The probability that a gate is unbalanced. The following proposition
bounds the probability that a gate (with a certain number of variables) is unbalanced.

Proposition 4.1. Let Ψ be an arithmetic circuit over the field G and the set of
variables X = {x1, . . . , xn}. Let Y = {y1, . . . , ym} and Z = {z1, . . . , zm} be two sets
of variables (where n = 2m and m is even). Let X1 ⊂ X be a subset of X of size
n/4. Let A ∼ D(X1) be a random partition of X to Y and Z such that A(X1) ⊂ Y .
Let β be such that 0 < β < 1, and let v be a gate in Ψ such that nβ < |Xv| < n− nβ.
Then, for any integer k ∈ N,

PrA∼D(X1)[v is not k-unbalanced in ΨA] = O
(
kn−β/2

)
.

To prove Proposition 4.1 we need some property of the hypergeometric distribu-
tion. We defer the proof of Proposition 4.1 to section 4.4.

4.3. The hypergeometric distribution. Let N,M1,M2 ∈ N be three integers
such that M1 ≤ N and M2 ≤ N . Denote by H(N,M1,M2) the hypergeometric
distribution with parametersM1,M2, andN ; that is, H(N,M1,M2) is the distribution
of |S1 ∩ S2|, where S1 is a random subset of [N ] of size M1 (chosen uniformly at
random from all subsets of [N ] of size M1), and S2 is a fixed subset of [N ] of size M2.

The following proposition shows that a hypergeometric random variable does not
take any specific value with high probability (for a certain range of the parameters).

Proposition 4.2. Let n ∈ N be an integer such that n/4 is an integer as well. Let
β be such that 0 < β < 1, and let χ be a random variable that has the hypergeometric
distribution H(3n/4, n/4,M), where

nβ/4 < M < 3n/4 − nβ/4.(4.1)

Then, every j ∈ N admits Pr[χ = j] = O(n−β/2).
Proof. Denote jmax = min(M,n/4) the maximal value that χ takes. For every



1638 RAN RAZ, AMIR SHPILKA, AND AMIR YEHUDAYOFF

j ∈ N, denote P (j) = Pr[χ = j]. Thus, for every j ∈ {0, . . . , jmax}, we have

P (j) =

(
M
j

)(
3n/4−M
n/4−j

)
(

3n/4
n/4

) ,(4.2)

and for every j �∈ {0, . . . , jmax}, we have P (j) = 0. Set j∗ ∈ {0, . . . , jmax} to be the
integer that maximizes P (j); that is, every j ∈ N admits P (j) ≤ P (j∗). To find j∗

consider P (j + 1)/P (j). By (4.2), for all j ∈ {0, . . . , jmax − 1},

P (j + 1)
P (j)

=
(M − j)(n/4 − j)

(j + 1)(n/2 −M + j + 1)
,

which implies that

P (j) ≤ P (j + 1) ⇔ j ≤ Mn/4 +M − n/2 − 1
3n/4 + 2

=
M

3
+
M − 3n/2− 3
3(3n/4 + 2)

.

Since 0 < M < 3n/4, we have −1 < (M − 3n/2 − 3)/(3(3n/4 + 2)) < 0. Thus,
j∗ ∈ {�M/3�, �M/3�}.

Using Stirling’s formula, we have(
N

�N/3�

)
= Θ

(
1√
N

2N ·H(1/3)

)
and

(
N

�N/3�

)
= Θ

(
1√
N

2N ·H(1/3)

)
,(4.3)

where H(1/3) = −(1/3) log2(1/3) − (2/3) log2(2/3). Hence, by (4.2), using (4.3) for
N equals M, 3n/4 −M , and 3n/4,

P (j∗) =
Θ
(

1√
M

2M·H(1/3)
)

Θ
(

1√
3n/4−M

2(3n/4−M)·H(1/3)

)
Θ
(

1√
3n/4

2(3n/4)·H(1/3)

)
= Θ

( √
3n/4√

M
√

3n/4 −M

)
= Θ

(
n−β/2

)
,

where the last equality follows from (4.1). Hence, every j ∈ N admits P (j) ≤ P (j∗) =
O(n−β/2).

4.4. Proof of Proposition 4.1.
Proof. If k > nβ/4, then the proposition holds (as kn−β/2 > 1). Thus, assume

that k ≤ nβ/4. Let A ∼ D(X1) be a random partition of X to Y and Z such
that A(X1) ⊂ Y . By the definition of D(X1), we think of A as obtained by the
following randomized process: let X2 be a random subset of X1 = X \ X1 of size
n/4; then let A be a random partition such that A(X1 ∪ X2) = Y . Recall that
Yv is the set of Y variables that occur in the subcircuit of ΨA rooted at v. Thus,
|Yv| = |Xv ∩X1| + |Xv ∩X2|. Hence,

|Xv ∩X1| ≤ |Yv| ≤ |Xv ∩X1| + n/4.

There are three cases to consider. In the first two casesXv either has small intersection
with X1 or has large intersection with X1, and then v is always unbalanced. In the
third case we use Proposition 4.2 to show that v is unbalanced with high probability.
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Case 1. Assume
∣∣Xv ∩X1

∣∣ ≤ nβ/4. Then, |Xv| =
∣∣Xv ∩X1

∣∣ + |Xv ∩X1| ≤
nβ/4 + |Xv ∩X1| . Thus, since |Xv| ≥ nβ, it follows that |Yv| ≥ |Xv ∩X1| ≥ |Xv| −
nβ/4 ≥ |Xv| /2 + nβ/4. Hence, a(v) ≤ |Zv| = |Xv| − |Yv| ≤ |Xv| /2 − nβ/4. Thus,
d(v) = |Xv| /2 − a(v) ≥ nβ/4. Therefore, since k ≤ nβ/4, it follows that v is not
k-unbalanced in ΨA with probability 0.

Case 2. Assume
∣∣Xv ∩X1

∣∣ ≥ 3n/4−nβ/4. Then, |Xv| =
∣∣Xv ∩X1

∣∣+|Xv ∩X1| ≥
3n/4−nβ/4+ |Xv ∩X1| . Hence, a(v) ≤ |Yv| ≤ |Xv ∩X1|+n/4 ≤ |Xv|−n/2+nβ/4.
Thus, since |Xv| ≤ n − nβ , it follows that d(v) = |Xv|/2 − a(v) ≥ −|Xv|/2 + n/2 −
nβ/4 ≥ nβ/4. Thus, since k ≤ nβ/4, it follows that v is not k-unbalanced in ΨA with
probability 0.

Case 3. Assume

nβ/4 <
∣∣Xv ∩X1

∣∣ < 3n/4 − nβ/4.(4.4)

Denote Y1 = Xv ∩X1 and Y2 = Xv ∩X2. Thus, |Yv| = |Y1| + |Y2|. Note that Y1 is a
fixed subset ofX , and |Y2| has the hypergeometric distribution H(|X1|, n/4, |Xv∩X1|).
Thus, by (4.4) and Proposition 4.2, |Y2| takes any specific value with probability
O(n−β/2). Denote μ = |Xv| /2. Hence,

Pr
A∼D(X1)

[v is not k-unbalanced in ΨA] ≤ Pr
A∼D(X1)

[μ− k ≤ |Yv| ≤ μ+ k]

≤
�μ+k	∑
j=
μ−k�

Pr
A∼D(X1)

[|Yv| = j]

= O
(
kn−β/2

)
.

5. Small syntactically multilinear arithmetic circuits compute polyno-
mials of low rank. In this section we prove that a small syntactically multilinear
arithmetic circuit computes a polynomial whose partial derivative matrix is not of full
rank (for some partition of the variables). Formally, we have the following theorem.

Theorem 5.1. Let Ψ be a syntactically multilinear arithmetic circuit over the
field G and the set of variables X = {x1, . . . , xn} computing f . Let Y = {y1, . . . , ym}
and Z = {z1, . . . , zm} be two sets of variables (where n = 2m and m is even). If for
all partitions A of X to Y and Z

Rank
(
LfA

)
= 2m,

then

|Ψ| = Ω
(
n4/3

log2 n

)
.

The rest of this section is devoted for the proof of Theorem 5.1. In section 5.1
we introduce the notion of leveled gates and state a lemma. In section 5.2 we use the
lemma to prove Theorem 5.1.

5.1. Few leveled gates means low rank. Let Φ be a syntactically multilinear
arithmetic circuit over the field G and the variablesX = {x1, . . . , xn}. Fix τ = 3 logn.
Define L(Φ, τ), the set of lower leveled gates in Φ, as L(Φ, τ), the set of all gates u in
Φ, such that 2τ < |Xu| < n− 2τ , and u has a father u′ such that |Xu′ | ≥ n− 2τ .

The following lemma shows that, if the set of lower leveled gates in a circuit is
small, then the partial derivative matrix of a polynomial computed by the circuit is
not of full rank (for some partition of the variables).
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Lemma 5.2. Let Φ be a syntactically multilinear arithmetic circuit over the field
G and the set of variables X = {x1, . . . , xn} computing f . Let Y = {y1, . . . , ym} and
Z = {z1, . . . , zm} be two sets of variables (where n = 2m and m is even). Let τ =
3 logn, and let L = L(Φ, τ) be the set of lower leveled gates in Φ (as defined above).
Let c > 0 be a small enough constant (c = 1/1000 suffices). Assume |L| < c

τ n
1/3.

Then, there exists a partition A of X to Y and Z such that

rank(LfA) < 2m−1.

We defer the proof of Lemma 5.2 to section 5.4. We use Lemma 5.2 to prove
Theorem 5.1.

5.2. Proof of Theorem 5.1.
Proof. Let Ψ′ be the arithmetic circuit computing all n partial derivatives of f

given by Theorem 3.1. Let τ = 3 logn, and let L = L(Ψ′, τ) be the set of lower leveled
gates in Ψ′ (as defined in section 5.1). Define U = U(Ψ′, τ), the set of upper leveled
gates in Ψ′, by

U = {u′ is a gate in Ψ′ : n− 2τ ≤ |Xu′ | and u′ has a son u such that u ∈ L} .

To prove the theorem, we will bound from below the size of U .
Let i ∈ [n]. Set gi = ∂f

∂xi
. Let vi be the gate computing gi in Ψ′. Denote by Ψ′

i

the arithmetic circuit Ψ′
vi

. Define Li = L(Ψ′
i, τ) to be the set of lower leveled gates

in Ψ′
i. The following claim gives two properties of Li.
Claim 5.3. For every i ∈ [n],
1. Li ⊆ L.
2. |Li| ≥ c

τ n
1/3, where c is the constant from Lemma 5.2.

Proof. Proof of 1: Note that for every gate u in Ψ′
i, the set Xu in Ψ′ and in Ψ′

i is
the same set. Let u ∈ Li. Thus, 2τ < |Xu| < n− 2τ and u has a father u′ in Ψ′

i such
that |Xu′ | ≥ n− 2τ . Since u′ is a father of u in Ψ′, we have u ∈ L. Hence, Li ⊆ L.

Proof of 2: For every partition A of X to Y and Z, we have gAi = ( ∂f∂xi
)A = ∂fA

∂A(xi)
,

which implies using Proposition 2.5 (since LfA is of full rank) that Rank(LgA
i
) = 2m−1.

Hence, by Lemma 5.2, since Ψ′
i computes gi, |Li| ≥ c

τ n
1/3, where c is the constant

from Lemma 5.2.
For a gate v in Ψ′, define

Cv = |{i ∈ [n] : v is a gate in Ψ′
i}| .

For i ∈ [n], define

Ui = {u′ ∈ U : u′ is a gate in Ψ′
i} .

Thus, for all i ∈ [n], we have Ui ⊆ U . Hence,∑
i∈[n]

|Ui| = |{(u′, i) : u′ ∈ U and i ∈ [n] are such that u′ is a gate in Ψ′
i}|

=
∑
u′∈U

Cu′ .(5.1)

Let i ∈ [n]. By property 1 of Claim 5.3, Li ⊆ L. Hence, for every gate u ∈ Li,
there is a corresponding gate u′ ∈ Ui, which is a father of u. Thus, since the in-degree
of the gates in Ui is 2, we have

|Li| ≤ 2|Ui|.(5.2)



A LOWER BOUND FOR MULTILINEAR CIRCUITS 1641

Recall that, for all u′ ∈ U , it holds that |Xu′ | ≥ n − 2τ . Thus, by Corollary 3.2,
every u′ ∈ U admits Cu′ ≤ n− |Xu′ | ≤ n− (n− 2τ) = 2τ . Thus, by (5.2), (5.1), and
property 2 of Claim 5.3,

c

τ
n4/3 ≤

∑
i∈[n]

|Li| ≤ 2
∑
i∈[n]

|Ui| = 2
∑
u′∈U

Cu′ ≤ 2|U| · 2τ.

Hence, by property 2 of Theorem 3.1, since τ = 3 logn,

|Ψ| = Ω (|Ψ′|) = Ω (|U|) = Ω
(
n4/3

log2 n

)
.

5.3. Unbalancing the lower leveled gates of a small arithmetic circuit.
In the rest of this section we prove Lemma 5.2. First we prove that the set of lower
leveled gates in a small arithmetic circuit can be made simultaneously unbalanced.

Proposition 5.4. Under the same assumptions as in Lemma 5.2, there exists a
partition A of X to Y and Z such that every u ∈ L is τ-unbalanced in ΦA.

Proof. For a gate v in Φ define X̃v by

X̃v =
{

Xv, |Xv| ≤ n/2,
X \Xv, |Xv| > n/2.

Every partition A of X to Y and Z defines a partition of X̃v to Ỹv and Z̃v:

Ỹv =
{
y ∈ Y : A−1(y) ∈ X̃v

}
and Z̃v =

{
z ∈ Z : A−1(z) ∈ X̃v

}
.

For every partition A of X to Y and Z and for every gate v in ΦA,

d(v) =
|Yv| + |Zv|

2
− min(|Yv|, |Zv|) =

|Ỹv| + |Z̃v|
2

− min(|Ỹv|, |Z̃v|),

which implies that

v is τ -unbalanced in ΦA ⇔ |Ỹv| + |Z̃v|
2

− min(|Ỹv|, |Z̃v|) ≥ τ.(5.3)

Partition L into two sets:

Lsmall =
{
v ∈ L : |X̃v| ≤ n2/3

}
, Lbig = L \ Lsmall =

{
v ∈ L : |X̃v| > n2/3

}
.

For all u ∈ Lsmall, it holds that |X̃u| ≤ n2/3. Define X ′
1 =

⋃
u∈Lsmall

X̃u. Since
|L| < c

τ n
1/3, it follows that |X ′

1| ≤ c
τ n

1/3n2/3 < n/4. Hence, there exists a set
X1 ⊆ X of size n/4 such that, for all u ∈ Lsmall, we have X̃u ⊆ X1 (X1 is some
superset of X ′

1 of size n/4). Let A ∼ D(X1) be a random partition of X to Y and Z
such that A(X1) ⊂ Y (see section 4 for the definition of D(X1)).

For all u ∈ Lsmall, it holds that |Ỹu| + |Z̃u| = |X̃u| ≥ 2τ and Z̃u = ∅ (as
A(X̃u) ⊆ A(X1) ⊂ Y ). Thus, by (5.3), every u ∈ Lsmall is τ -unbalanced in ΦA (with
probability 1). Note that every u ∈ Lbig admits n2/3 < |Xu| < n − n2/3. Thus, by
Proposition 4.1 for β = 2/3, and since |L| < c

τ n
1/3,

E
A∼D(X1)

[|{u ∈ L : u is not τ -unbalanced in ΦA}|] ≤ O
(
|Lbig |τn−1/3

)
< 1

(for c small enough). Hence, there exists a partition A such that every u ∈ L is
τ -unbalanced in ΦA.
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5.4. Proof of Lemma 5.2.
Proof. Let r be a gate computing f in Φ. Assume |Xr| < n − 2. Let A be a

partition of X to Y and Z. Thus, in ΦA we have a(r) ≤ b(r) < m − 1. Hence,
by Proposition 2.2, Rank(LfA) < 2m−1, which proves the lemma. Thus, assume
|Xr| ≥ n− 2.

Since |L| < c
τ n

1/3, by Proposition 5.4 there exists a partition A of X to Y and
Z such that every u ∈ L is τ -unbalanced in ΦA. Denote by Ψ the arithmetic circuit
ΦA. In the rest of the proof we focus on Ψ. Recall that, for a gate u in Ψ, Yu is the
set of Y variables that occur in Ψu, and Zu is the set of Z variables that occur in Ψu.

Define an order on L that respects the order of Ψ; that is, L = {u1, . . . , u�}, where
� = |L|, and for every i, j ∈ [�] such that i < j, there is no directed path from ui to
uj in Ψ. For i ∈ [�], denote hi = Ψ̂ui , the polynomial computed by ui in Ψ, denote
Yi = Yui , and denote Zi = Zui . For a gate v in Ψ, we say that v is substituted by α
(which is a field element or a variable) in Ψ if the edges going into v are deleted, and
v is relabeled by α.

The following proposition shows how to write the polynomial fA ∈ G[Y, Z] (i.e.,
the polynomial computed by r in Ψ) as a function of the polynomials h1, . . . , h� ∈
G[Y, Z] (i.e., the polynomials computed by u1, . . . , u� in Ψ).

Proposition 5.5.

fA =
∑
i∈[�]

gihi + g,

where g, g1, . . . , g� ∈ G[Y, Z] are multilinear polynomials such that
1. for all i ∈ [�], the set of variables that occur in gi and the set Yi ∪ Zi are

disjoint; and
2. g is the polynomial computed by r in Ψ after substituting (in Ψ) each u ∈ L

by 0.
Proof. To prove the proposition we follow an inductive process that is based on

the following claim.
Claim 5.6. Let Υ be a syntactically multilinear arithmetic circuit over the field

G and the sets of variables Y and Z. Let r̃ be a gate in Υ computing a polynomial
f̃ . Let v be a gate in Υ such that Yv ∪ Zv �= ∅. Denote by h̃ = Υ̂v the polynomial
computed by v in Υ. Then, there exist two multilinear polynomials g̃1, g̃2 ∈ G[Y, Z]
such that f̃ = g̃1h̃+ g̃2, where

1. the set of variables that occur in g̃1 and the set Yv ∪ Zv are disjoint; and
2. g̃2 is the polynomial computed by r̃ in Υ after substituting (in Υ) v by 0.

Proof. Let t be a new variable. Let Υ1 be the arithmetic circuit Υ after substitut-
ing (in Υ) v by t. Let G ∈ G[Y, Z, t] be the polynomial computed by r̃ in Υ1. Since Υ
is syntactically multilinear and since Yv ∪Zv �= ∅, it follows that G is linear in t; that
is, G is of the form G = g̃1t+ g̃2, where g̃1 and g̃2 are two multilinear polynomials in
G[Y, Z]. Since f̃ is G after substituting (in G) t by h̃, we have f̃ = g̃1h̃ + g̃2. Recall
that MΥ1(t) is the set of variables that multiply t in Υ1 (see section 2.4). The set of
variables that occur in g̃1 is a subset of MΥ1(t). Since Υ is syntactically multilinear,
the sets MΥ1(t) and Yv ∪Zv are disjoint. Hence, the set of variables that occur in g̃1
and the set Yv ∪Zv are disjoint. Since g̃2 = G

∣∣
t=0

, we have that g̃2 is the polynomial
computed by r̃ in Υ after substituting (in Υ) v by 0.

For i ∈ [�], define Ψi to be the arithmetic circuit Ψ after substituting (in Ψ)
u1, . . . , ui by 0. We now describe the inductive process.
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First step. Recall that r computes fA in Ψ, and u1 computes h1 in Ψ. Hence,
by Claim 5.6 (for Υ = Ψ, r̃ = r, and v = u1), since Y1 ∪ Z1 �= ∅, there exist two
multilinear polynomials g1, g′1 ∈ G[Y, Z] such that

fA = g1h1 + g′1,

where the set of variables that occur in g1 and the set Y1 ∪ Z1 are disjoint, and g′1 is
the polynomial computed by r in Ψ1. We continue in a similar manner.

Inductive step. Assume g1, . . . , gi are already defined (where i ∈ [� − 1]), and
r computes g′i in Ψi. Since there are no directed paths from the gates u1, . . . , ui to
ui+1 in Ψ, the polynomial computed by ui+1 in Ψi is hi+1, and the set of variables
that occur in Ψi

ui+1
is the same as the set of variables that occur in Ψui+1 . Hence, by

Claim 5.6 (for Υ = Ψi, r̃ = r, and v = ui+1), since Yi+1 ∪ Zi+1 �= ∅, there exist two
multilinear polynomials gi+1, g

′
i+1 ∈ G[Y, Z] such that

g′i = gi+1hi+1 + g′i+1,

where the set of variables that occur in gi+1 and the set Yi+1 ∪Zi+1 are disjoint, and
g′i+1 is the polynomial computed by r in Ψi+1.

Thus,

fA = g1h1 + g′1 = g1h1 + g2h2 + g′2 = · · · =
∑
i∈[�]

gihi + g,

where, for all i ∈ [�], the set of variables that occur in gi and the set Yi ∪ Zi are
disjoint, and g = g′� is the polynomial computed by r in Ψ after substituting (in Ψ)
u1, . . . , u� by 0.

The following claim shows that the partial derivative matrices of g1h1, . . . , g�h�
are of low rank.

Claim 5.7. For every i ∈ [�], Rank(Lgihi) ≤ 2m−τ .
Proof. Fix i ∈ [�]. Denote by Y ′ the set of Y variables that occur in gi and by Z ′

the set of Z variables that occur in gi, and denote a′ = min(|Y ′|, |Z ′|). By property
1 of Proposition 5.5, (Y ′ ∪ Z ′) ∩ (Yi ∪ Zi) = ∅. Thus, |Y ′| + |Z ′| ≤ n− 2b(ui), which
implies a′ ≤ m− b(ui). Hence, by Proposition 2.2,

Rank(Lgi) ≤ 2a
′ ≤ 2m−b(ui).

Since ui ∈ L, ui is τ -unbalanced. Thus, d(ui) = b(ui) − a(ui) ≥ τ . Hence, by
Proposition 2.2,

Rank(Lhi) ≤ 2a(ui) ≤ 2b(ui)−τ .

Thus, since (Y ′ ∪ Z ′) ∩ (Yi ∪ Zi) = ∅, by Proposition 2.4,

Rank(Lgihi) ≤ 2m−b(ui)+b(ui)−τ = 2m−τ .

The following proposition shows that the total degree of g is small.
Proposition 5.8. The total degree of g is at most 4τ .
Proof. Denote by Ψ� the arithmetic circuit Ψ after substituting (in Ψ) each gate

u ∈ L by 0. For a gate v in Ψ�, denote by td(v) the total degree of the polynomial
computed by v in Ψ�. Every gate in Ψ� is also a gate in Φ. For a gate v in Ψ�, define
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Xv to be the set of X variables that occur in Φv. Note that every gate v in Ψ� admits
td(v) ≤ |Xv|.

The following claim shows that, if Xv is large, then td(v) is small (where v is a
gate in Ψ�).

Claim 5.9. Let v be a gate in Ψ�, and let k = n − |Xv|. Assume that k ≤ 2τ .
Then, td(v) ≤ 4τ − k.

Proof. The proof is by induction on the structure of Ψ� (that is, we consider a
gate v only after considering v’s two sons). Since |Xv| = n − k ≥ n − 2τ , it follows
that v is not an input gate in Ψ�. Let v1 and v2 be the two sons of v in Ψ�. Let
k1 = n− |Xv1 | and k2 = n− |Xv2 |. Since Xv = Xv1 ∪Xv2 , it follows that k ≤ k1 and
k ≤ k2. Consider the following two cases.

Case 1: v is an addition gate. First, we claim that td(v1) ≤ 4τ − k and td(v2) ≤
4τ − k. Consider v1 without loss of generality. There are three cases.

(a) Assume n − 2τ ≤ |Xv1 |. Thus, k1 ≤ 2τ . Hence, by induction, td(v1) ≤
4τ − k1 ≤ 4τ − k.

(b) Assume 2τ < |Xv1 | < n − 2τ . Since |Xv| ≥ n − 2τ , it follows that v1 ∈ L.
Hence, v1 is an input gate labeled by 0 in Ψ�, which implies td(v1) = 0 ≤ 4τ − k.

(c) Assume |Xv1 | ≤ 2τ . Since k ≤ 2τ , we have td(v1) ≤ |Xv1 | ≤ 2τ ≤ 4τ − k.
Hence, since v is an addition gate, td(v) ≤ max(td(v1), td(v2)) ≤ 4τ − k.
Case 2: v is a product gate. Assume without loss of generality that |Xv1 | ≥ |Xv2 |.

SinceXv = Xv1∪Xv2 , it follows that |Xv1 | ≥ |Xv|/2 > 2τ (for large enough n). Hence,
there are two cases.

(a) Assume n−2τ ≤ |Xv1 |. Thus, k1 ≤ 2τ . Hence, by induction, td(v1) ≤ 4τ−k1.
Since Φ is syntactically multilinear, |Xv| = |Xv1 |+ |Xv2|, which implies |Xv2 | = k1−k.
Thus, td(v2) ≤ |Xv2 | ≤ k1−k. Hence, td(v) = td(v1)+td(v2) ≤ 4τ−k1+k1−k = 4τ−k.

(b) Assume 2τ < |Xv1 | < n − 2τ . Since |Xv| ≥ n − 2τ , it follows that v1 ∈ L.
Hence, v1 is an input gate labeled by 0 in Ψ�, which implies td(v) = 0 ≤ 4τ − k.

Since |Xr| ≥ n− 2, by Claim 5.9, it follows that td(r) ≤ 4τ . Since r computes g
in Ψ�, the proposition follows.

By Propositions 5.8 and 2.6, since τ = 3 logn, we have

Rank(Lg) ≤ 2(4τ+1) logm ≤ 2τ
3
.

By Proposition 5.5, fA =
∑

i∈[�] gihi + g. Thus, by Claim 5.7 and Proposition 2.3,

Rank(LfA) ≤
∑
i∈[�]

2m−τ + 2τ
3
< 2m−1,

where the last inequality holds for large enough n, as � = |L| < c
τ n

1/3 and τ =
3 logn.

6. The construction. For a field F and a set of variables T , we denote by
F[T ] the ring of polynomials over the field F and the set of variables T , and we
denote by F(T ) the field of rational functions over F in the set of variables T . Let
X = {x1, . . . , xn}, Ω = {ω1, . . . , ωn}, Y = {y1, . . . , ym}, and Z = {z1, . . . , zm} be four
sets of variables (where n = 2m). Let F be a field, and let G = F(Ω) be the field of
rational functions over F in the set of variables Ω. Note that a polynomial in F[X,Ω]
can also be thought of as a polynomial in G[X ].

In this section, we construct a polynomial f ∈ F[X,Ω] such that the following
hold:
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• Thinking of f as a polynomial in G[X ], for every partition A of X to Y and
Z, the partial derivative matrix of fA has full rank over G (recall that fA ∈
G[Y, Z] is the polynomial f after substituting every x ∈ X by A(x) ∈ Y ∪Z).

• f is explicit in the sense that f is in the class VNP, which is Valiant’s alge-
braic analogue of NP. Moreover, the coefficient of every monomial in f , as a
polynomial in F[X,Ω], is either 0 or 1.

6.1. Definition of f . For a set B ⊂ [n] of size m, denote by i1, . . . , im the
elements of B in an increasing order (that is, B = {i1, . . . , im} and i1 < · · · < im),
and denote by j1, . . . , jm the elements of [n] \ B in an increasing order (that is,
[n] \ B = {j1, . . . , jm} and j1 < · · · < jm). Define rB, a multilinear monomial
in F[Ω], by rB =

∏
�∈B ω�, and define gB, a multilinear polynomial in F[X ], by

gB =
∏
�∈[m] (xi� + xj�) . Define

f =
∑
B

rBgB,(6.1)

where the sum is over all sets B ⊂ [n] of size m. Thus, f ∈ F[X,Ω] is a multilinear
polynomial over the field F and the sets of variables X and Ω. We think of f also as
a polynomial in G[X ].

6.2. The partial derivative matrix of fA has full rank. The following
theorem states that, thinking of f as a polynomial in G[X ], for any partition A of X
to Y and Z, the partial derivative matrix of fA has full rank. Formally, we have the
following theorem.

Theorem 6.1. Let f ∈ G[X ] be the polynomial defined in (6.1). Then, for any
partition A of X to Y and Z, the partial derivative matrix of fA has full rank (over
G).

We defer the proof of Theorem 6.1 to section 6.4. We remark that, the larger the
set Ω is, the simpler it is to construct a polynomial f that satisfies Theorem 6.1. For
the purpose of our lower bound, we need Ω to be as small as possible (and Ω such
that |Ω| = |X | suffices).

6.3. f is explicit. In [9], Valiant defined an algebraic theory, analogous to the
theory of NP-completeness. The analogue of NP, according to Valiant’s theory, is
called VNP. In this section, we show that f is in the class VNP.

For simplicity, instead of using the formal definition of VNP, we use a criterion
(given by Valiant) for a polynomial to be in VNP. Valiant’s criterion states that
a polynomial f is in VNP if the coefficient of a monomial in f can be computed
efficiently; that is, there exists a polynomial-time Turing machine M such that, given
as input the degrees of the variables in a monomial p, M outputs the coefficient of p
in f . (In fact, Valiant’s criterion is stronger. For more details see Proposition 2.20 in
[2].)

We use Valiant’s criterion to show that f is in VNP. Let r ∈ F[Ω] and g ∈ F[X ] be
two monic multilinear monomials. To prove that f is in VNP, we describe an efficient
algorithm that outputs the coefficient of rg in f . The algorithm is as follows.

If the total degree of r is not m, then the coefficient of rg in f is 0. Therefore,
assume that the total degree of r is m. Thus, r is of the form r =

∏
�∈B ω� for a set

B ⊂ [n] of size m. Let i1, . . . , im be the elements of B in an increasing order, and let
j1, . . . , jm be the elements of [n] \B in an increasing order. Since

gB =
∏
�∈[m]

(xi� + xj�) =
∑
D⊆[m]

∏
�∈D

xi�
∏

�∈[m]\D
xj� ,
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it follows that the coefficient of rg in f is 1 iff g is of the form g =
∏
�∈D xi�

∏
�∈[m]\D xj�

for some D ⊆ [m] (otherwise, the coefficient is 0). Checking whether g is of the form
g =

∏
�∈D xi�

∏
�∈[m]\D xj� is straightforward. Hence, f is in VNP.

6.4. Proof of Theorem 6.1.
Proof. We first prove the following lemma, which is a generalization of Theo-

rem 6.1.
Lemma 6.2. Let T be a set of variables, and let F(T ) be the field of rational

functions over F in the set of variables T . Let k ∈ N. Let s1, . . . , sk ∈ F[T ] be different
monic multilinear monomials. Let h1, . . . , hk ∈ F[Y, Z] be multilinear polynomials.
Denote h =

∑
i∈[k] sihi a polynomial in F[Y, Z, T ]. Thus, h can be viewed also as

a polynomial in F(T )[Y, Z]. Assume that there exists � ∈ [k] such that the partial
derivative matrix of h� has full rank over F. Then, the partial derivative matrix of h
has full rank over F(T ).

Proof. The proof is by induction on the size of T .
Induction base. Assume |T | = 0. Since s1, . . . , sk are different monic monomials

in F[T ] = F, it follows that k = 1 and s1 = 1. Hence, h = h1, and the partial
derivative matrix of h1 has full rank over F = F(T ), which proves the lemma.

The induction step is based on the following claim (the claim is well known, and
we omit its proof).

Claim 6.3. Let P and Q be two M ×M matrices with entries in a field H. Let
t be a variable. Then,

∃ a1, . . . , aM−1 ∈ H : det(tQ+ P ) = tM det(Q) + det(P ) +
M−1∑
d=1

adt
d,

where det(·) is the determinant.
Induction step. Assume |T | > 0. Let t ∈ T be a variable. Denote T ′ = T \ {t},

and denote by F(T ′) the field of rational functions over F in the set of variables
T ′. Since s1, . . . , sk are multilinear monomials, assume without loss of generality
that h = t

∑k′

i=1 s
′
ihi +

∑k
i=k′+1 sihi, where k′ ∈ [k], s′1, . . . , s

′
k′ ∈ F[T ′] are different

monic multilinear monomials, and sk′+1, . . . , sk ∈ F[T ′] are different monic multilinear
monomials. Recall that the partial derivative matrix of h� has full rank over F.
Assume without loss of generality that � ≤ k′ (similar arguments hold for � > k′).
Denote h′ =

∑k′

i=1 s
′
ihi and h′′ =

∑k
i=k′+1 sihi. By induction, it follows that Lh′ has

full rank over F(T ′), which implies that det(Lh′) �= 0. Hence, since Lh = tLh′ + Lh′′ ,
using Claim 6.3 (for M = 2m, Q = Lh′ , P = Lh′′ , and H = F(T ′)), we have that
det(Lh) �= 0, which implies that Lh has full rank over F(T ).

Fix a partition A of X to Y and Z, and let B0 = {i ∈ [n] : A(xi) ∈ Y }. Recall
that gB0 is the polynomial defined in section 6.1. The following claim shows that the
partial derivative matrix of gAB0

is a permutation matrix (a permutation matrix is a
matrix obtained by permuting the rows of the identity matrix).

Claim 6.4. The partial derivative matrix of gAB0
is a permutation matrix.

Proof. Denote by i1, . . . , im the elements of B0 in an increasing order, and denote
by j1, . . . , jm the elements of [n] \B0 in an increasing order. By definition of gB0 ,

gAB0
=
( ∏
�∈[m]

(
xi� + xj�

))A
=
∏
�∈[m]

(
A(xi� ) +A(xj�)

)
.



A LOWER BOUND FOR MULTILINEAR CIRCUITS 1647

Note that, for every � ∈ [m], we have A(xi� ) ∈ Y and A(xj�) ∈ Z. Thus, there exists
a permutation π : [m] → [m] such that gAB0

=
∏
�∈[m]

(
y� + zπ(�)

)
. Hence, the partial

derivative matrix of gAB0
is a permutation matrix.

By Claim 6.4, the set B0 is such that the partial derivative matrix of gAB0
has full

rank over F. Hence, using Lemma 6.2 (for T = Ω), since {rB}B⊂[n]:|B|=m is a set of
different monic multilinear monomials in F[Ω], it follows that the partial derivative
matrix of fA has full rank over the field G. Since A is an arbitrary partition of X to
Y and Z, the theorem follows.

7. The lower bound: Proof of Theorem 1.1.
Proof. Denote G = F(Ω) the field of rational functions over F in the set of variables

Ω. We can think of Φ as a syntactically multilinear arithmetic circuit over the field
G and the set of variables X : every input gate in Φ labeled by ω ∈ Ω is thought of as
labeled by a field element in G, and every other input gate in Φ is labeled by either a
field element in F ⊆ G or a variable in X . The number of variables in Φ is n (instead
of 2n). The polynomial computed by Φ is f , but we think of f as a polynomial in
G[X ]. By Theorem 6.1, for all partitions A of X to Y and Z,

Rank(LfA) = 2m,

where the rank is over G. Hence, by Theorem 5.1,

|Φ| = Ω
(
n4/3

log2 n

)
.
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COST-DISTANCE: TWO METRIC NETWORK DESIGN∗

ADAM MEYERSON†, KAMESH MUNAGALA‡ , AND SERGE PLOTKIN§

Abstract. We present the Cost-Distance problem: finding a Steiner tree which optimizes the
sum of edge costs along one metric and the sum of source-sink distances along an unrelated second
metric. We give the first known O(log k) randomized approximation scheme for Cost-Distance,
where k is the number of sources. We reduce several common network design problems to Cost-

Distance, obtaining (in some cases) the first known logarithmic approximation for them. These
problems include single-sink buy-at-bulk with variable pipe types between different sets of nodes,
facility location with buy-at-bulk–type costs on edges (integrated logistics), constructing single-
source multicast trees with good cost and delay properties, priority Steiner trees, and multilevel
facility location. Our algorithm is also easier to implement and significantly faster than previously
known algorithms for buy-at-bulk design problems.

Key words. approximation algorithms, network design, Steiner trees, facility location
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1. Introduction. Consider designing a network from the ground up. We are
given a set of customers and need to place various servers and network links in order to
cheaply provide sufficient service. If we only need to place the servers, this becomes the
facility location problem [36], and constant-factor approximations are known (please
refer to [28] for a complete list of citations). If a single server handles all customers,
and we impose the additional constraint that the set of available network link types is
the same for every pair of nodes (subject to constant scaling factors on cost), then this
is the single-sink buy-at-bulk problem [35, 4]. We give the first known approximation
for the general version of this problem to optimize both placement of servers and
network topology.

We reduce the network design problem to the following theoretical framework,
which we call the Cost-Distance problem: We are given a graph with a single
distinguished sink node (server). Every edge in this graph can be measured along two
metrics; the first will be called cost, and the second will be length. Note that the two
metrics are entirely unrelated and that there may be any number of parallel edges in
the graph. We are given a set of sources (customers). The objective is to construct a
Steiner tree connecting the sources to the sink while minimizing the combined sum of
the cost of the edges in the tree and sum over sources of the weighted distance (i.e.,
total length) from source to sink. Note that this definition is a direct generalization
of both the shortest path tree and the minimum cost Steiner tree. If costs and lengths
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are proportional, then constant-factor approximations [24, 5] are known.
We obtain the first general approximation algorithm for this problem with un-

related metrics. We prove an expected competitive ratio of O(log |S|) (where S is
the set of sources) for our randomized algorithm. The algorithm is fairly simple to
implement and runs in a relatively fast O(|S|2(m+ n logn)) time bound.

Theoretical significance. In section 5, we show that many standard problems in
network design can be reduced to Cost-Distance, showing that this problem forms
a general theoretical framework for network design. In particular, we describe simple
reductions from single-sink buy-at-bulk and the metric facility location problem. We
demonstrate that a natural combination of facility location and buy-at-bulk can be
solved by reduction to Cost-Distance. In fact, we can generalize single-sink buy-at-
bulk to account for a scenario where not all network link types are available between
every pair of nodes, or where costs do not scale linearly. This better models real-
life situations where certain types of hardware may not be available (or may not
be practical to install) in certain locations. This problem was subsequently called
“integrated logistics” by Ravi and Sinha [34]. Our algorithm provides the first known
approximation for this more general problem. We also obtain among the first known
combinatorial approximations for the metric multilevel uncapacitated facility location
problem [23], the priority Steiner tree problem [11], and for constructing single-source
multicast trees with good cost and average per receiver delay [33].

From a more theoretical standpoint, consider routing single-source traffic through
a graph where each edge has some function relating the total traffic along the edge
to the cost of routing that traffic. If all functions are convex increasing (nondecreas-
ing derivative), then exact solutions are known using min-cost flow techniques. We
present the first approximations for the case where all functions are concave increasing
(nonincreasing derivative). Previous work on buy-at-bulk [4, 3, 35] required that the
concave functions between each pair of nodes be identical up to a constant scaling
factor; we eliminate this requirement. We present all these connections in more detail
in section 5.

Technical contributions. The chief technical contribution is to show that the
Cost-Distance problem can be solved by layered aggregation of demands. We
perform aggregation in pairs by constructing matchings iteratively on a suitably de-
fined complete graph. Our algorithm and analysis exploit the connection of Cost-

Distance to the budgeted version of the problem [29, 26], where the goal is to find
a tree with low cost in the c metric such that the diameter is no more than L in
the l metric. This problem has an O(log |S|, log |S|) bicriteria approximation on the
cost and diameter via layered aggregation by Marathe et al. [29]. We need to make
one nontrivial modification when the objective becomes aggregate distance instead of
diameter—this is discussed in section 3.1 and makes our algorithm randomized.

The technical framework of layered aggregation pervades all subsequent com-
binatorial algorithms for single-sink aggregation problems, such as access network
design [19], single-sink buy-at-bulk [20], and the rent-or-buy problem [21].

In addition to generalizing previous results, our algorithm is easy to implement
and has a small running time. This makes it the algorithm of choice for many of the
problems we have previously described. For example, previous algorithms for single-
sink buy-at-bulk depended on methods of randomly selecting trees which approximate
stretch [6, 7, 9, 10, 16]. The algorithm for access network design [3] depended on a
linear programming relaxation.

Previous results. If the cost and distance metrics are proportional, the offline
version of Cost-Distance has a constant factor approximation [5, 24], and there is
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an online algorithm performing a small number of reroutings of existing paths [17].
If the cost and distance metrics are unrelated, this problem has no previously known
approximation algorithm. Previous results for many related network design problems
are discussed in detail in section 5.

2. The COST-DISTANCE problem. We are given a graph G = (E, V ) along
with a set of source vertices S ⊂ V which need to be connected to a single-sink vertex
t ∈ V . We have two metrics along this graph. We will call the first metric cost
c : E �→ �+ and the second metric length l : E �→ �+. We are also given a weighting
function w : S �→ �+ on the sources. We denote the two metrics on an edge e as
(c(e), l(e)).

We are asked to find a connected subgraph G′ = (E′, V ′) ⊂ G which contains all
sources (S ⊂ V ′) and the sink (t ∈ V ′) such that the following sum is minimized:

∑
e∈E′

c(e) +
∑
s∈S

w(s)L′(s, t).

Here L′(s, t) is the total length of the min-length path from s to t along the edges
of G′.

Our algorithm will give an O(log |S|) approximation to this sum. It is important
to notice that our approximation ratio does not depend on the number of edges, since
there may potentially be a large number of edges connecting the same pair of nodes
(m� n2).

3. The algorithm. The algorithm works by pairing up sources (or pairing
sources with sink) until only the sink remains. At each stage we find a matching
on the nodes and then choose one node from each matched pair to be “center.” We
transport the weight from the noncenter node to the center, paying the appropriate
edge costs and weight times distance costs. We then repeat this process on the centers
until the sink is the only remaining node. Details of the algorithm are as follows:

1. Define S0 = S ∪ {t} and w0 = w. Create empty set E′.
2. Set i = 0.
3. For every pair of nonsink nodes (u, v) ∈ Si:

• Find the shortest u− v path in G according to the distance function on
the edges: Muv(e) = c(e) + 2wi(u)wi(v)

wi(u)+wi(v)
l(e).

• Let Ki(u, v) be the length of this path under the distance function
Muv(e).

4. For every nonsink node u ∈ Si:
• Find the shortest u − t path in G according to the metric Mut(e) =
c(e) + wi(u)l(e).

• Let Ki(u, t) be the length of this path under metric Mut(e).
5. Find a matching between nodes in Si such that the number of unmatched

nodes plus half the number of matched nodes is at most Si/α and the value
of

∑
(u,v)matchedKi(u, v) is at most β times the value of the minimum Ki-cost

perfect matching. We assume α and β are known constants.
6. For each matched pair (u, v) add the edges on the path defining Ki(u, v) to

the set E′.
7. Create an empty set Si+1.
8. For each pair of nonsink matched nodes (u, v):

• Choose u to be the center with probability wi(u)/(wi(u) +wi(v)). Oth-
erwise v will be the center.
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• Add the chosen center to Si+1 and assign the center a weightwi+1(center)
= wi(u) + wi(v).

9. Add all unmatched nodes u ∈ Si to Si+1 and define wi+1(u) = wi(u).
10. Add the sink to Si+1.
11. If Si+1 contains only the sink, we are done. Otherwise increment i and return

to step 3.
12. We return G′ = (E′, V ′), where E′ is the set of edges we constructed and V ′

is the set of adjacent nodes.
Each time through the steps, the size of our set Si is reduced by α. Thus the

process terminates after logα |S| iterations.

3.1. Discussion. The overall algorithm is very similar to that in [29], where the
bicriteria (cost, diameter) version is solved. There is however one very important and
nontrivial difference. Every time there is an aggregation, a choice has to be made
about the “center” for the aggregate demand. In the case of [29], any center works
since they are approximating the diameter of the tree. In our case, such a choice
would be disastrous, and we instead resort to choosing the center at random with
probability proportional to the demand aggregated there (step 8). This method has
been subsequently derandomized by Chekuri, Khanna, and Naor [13] using the dual
of a natural linear programming formulation.

The metric used for constructing the matching is Muv(e) = c(e)+ 2wi(u)wi(v)
wi(u)+wi(v)

l(e).
This is the expected cost of transporting one demand of the pair (u, v) to the other
location, when the choice of which location to transport to is made at random in
proportion to its demand value.

A little more detail is needed in step 5. We could find the min-cost perfect
matching on the set in polynomial time, obtaining α = 2 and β = 1. Polynomial-
time algorithms are known for min-cost perfect matching on nonbipartite graphs [32].
However, these algorithms tend to be impractical.1 The following simpler procedure
will work for us, causing only a small constant loss in our approximation ratio. We
will find the cheapest pair of nodes to connect (minimum Ki(u, v)) and match them.
We then remove these two nodes from consideration and repeat. We continue this
process until half the nodes have been matched. The jth pair which we choose to
match must have had matching cost at most equal to the (2j − 1)st cheapest edge in
the perfect matching, according to the Ki metric. It follows that our total Ki-cost is
at most half the Ki-cost of the perfect matching, guaranteeing α = 4/3 and β = 1/2.

Each iteration of this algorithm finds shortest paths between all pairs in Si. Since
the metric is different for each pair, we cannot use all-pairs shortest-path computa-
tions. Instead we perform |Si|2 single-pair shortest paths. We first take O(m) time to
compute the metric on every edge. Using Dijkstra’s algorithm, we can compute the
shortest path between a single pair of nodes in O(m + n logn) time. The matching
step (step 5) can be performed in O(|Si|2 log |Si|) time. It follows that iteration i
takes at most O(|Si|2(m + n logn)) time. Since the size of Si reduces by constant
α at each iteration, when we sum over iterations the total running time looks like
O(|S|2(m+ n logn)).

4. Analysis. The optimal solution will be a tree, which we will call T ∗. To see
this, notice that we can take any graph and produce the shortest-path (according to
the length metric) tree connecting the sink to all sources. This shortest-path tree

1We could use the O(n2 logn) approximation algorithm in [18] to get β = 2 and α = 2. Here, n
is the total number of nodes in the graph.
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will have total cost at most the total cost of the graph and a distance-to-sink from
every source node equal to the distance-to-sink from the graph. It follows that the
optimal solution must be a tree, since a nontree solution immediately gives rise to a
tree solution with equal or superior total value.

We define the following quantities:
C∗ =

∑
e∈T∗ c(e).

L∗(v) = total length of edges along the path from v to the sink in T ∗.
D∗ =

∑
v∈S w(v)L∗(v).

The total “value” of the optimal solution which we will need to approximate is
C∗ +D∗. At each stage in our algorithm, we have some set of nodes Si which we are
trying to connect. We define the following potential function:

D∗
i =

∑
v∈Si

wi(v)L∗(v).

Notice that D∗
0 = D∗.

Since our algorithm is randomized, we need to analyze the expected performance.
Each stage of the algorithm transports some weight from matched nodes to chosen
centers. We can define the value of stage i to be the total cost of the edges used in
stage i matching plus the cost to transport the weight across the appropriate edges
to the center. The total value of our solution will then be the sum of the values of
the stages.

We first prove a lemma bounding the expected potential function at each stage.
Lemma 4.1. For every stage i, E[D∗

i ] ≤ D∗.
Proof. We will prove this by induction. For i = 0 we know D∗

0 = D∗. Consider
stage i > 0. Suppose we matched u and v in our previous matching. The contribution
of u and v to D∗

i−1 was wi−1(u)L∗(u) + wi−1(v)L∗(v). We choose a random center.
The expected distance from center to sink is now

wi−1(u)L∗(u) + wi−1(v)L∗(v)
wi−1(u) + wi−1(v)

.

The weight of the new center is wi−1(u) + wi−1(v). It follows that the new
center’s expected contribution to D∗

i is also wi−1(u)L∗(u)+wi−1(v)L∗(v). Of course,
unmatched nodes contribute equally to both potentials, and nodes matched with the
source contribute less to D∗

i since their weight will disappear. Thus the expected
value of D∗

i is at most D∗
i−1. It follows that E[D∗

i ] ≤ E[D∗
i−1], and the inductive

hypothesis implies that E[D∗
i ] ≤ D∗.

We will now relate the value of a stage to the metricKi on which we approximated
a min-cost perfect matching. This will allow us to bound the expected value of each
stage. This lemma previously appeared in [29].

Lemma 4.2. Given a tree T = (E, V ) and a set of nodes S ⊆ V , there exists a
perfect matching of the nodes in S which uses each edge of the tree at most once.

Proof. We prove this by induction on the number of edges in the tree. If the tree
includes zero weight edges, then |V | = 1 and the result is trivially true. Consider a
larger tree. Suppose v ∈ V is a leaf of this tree. If v is not included in S, then we can
remove v and the edge connecting it to its parent from the tree to produce a smaller
tree, T ′. We inductively produce a perfect matching of the nodes in S on T ′ and use
the same matching for T . If v is included in S, then we consider v’s parent node. If
the parent node is also in S, then we match v with its parent. We then remove v and
its edge from the tree to produce T ′ and inductively match the rest of S on T ′. If the
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parent node is not in S, we produce S′ by removing v from S and adding v’s parent.
We again produce T ′ and match the nodes. Some node u is matched to v’s parent.
We will use the identical matching to the one on T ′ except that we will match v with
u by adding the edge from v to its parent to the relevant path. This produces the
desired matching.

Lemma 4.3. The expected value of stage i is at most β(2D∗ + C∗).
Proof. Consider the tree T ∗. Using Lemma 4.2, there exists a matching of the

nodes in Si using only edges in T ∗, such that no edge is used more than once. This
matching has edges with total cost at most C∗. The fraction 2wi(u)wi(v)/(wi(u) +
wi(v)) is at most twice the minimum of the two weights. Each edge in our matching
would have to be along the path-to-source in the optimal tree for one of the two
matched nodes. It follows that∑

(u,v)matched

Ki(u, v) ≤ C∗ + 2D∗
i .

The min-cost perfect matching along metric Ki must do at least this well. Since
the matching we actually use has cost at most β times the min-cost perfect matching,
we guarantee a matching of Ki-cost at most β(C∗ +2D∗

i ). We need to relate this cost
to the value of the stage.

The value of the stage is the total cost to transfer weight from matched nodes to
their centers. Suppose we match u and v. If we choose v as the center, then we need
to transport u’s weight over to v. This induces a value of wi(u)l(u, v) in addition to
the value induced by the cost of edges used. On the other hand, if we choose u as
center, then we pay wi(v)l(u, v) plus edge costs. The expected value is thus

wi(v)wi(u)l(u, v) + wi(u)wi(v)l(u, v)
wi(u) + wi(v)

+ c(u, v).

Notice that this expected value is exactly Ki(u, v). It follows that the expected
value of the stage is equal to the total Ki-cost of the matching found—at most
β(C∗ + 2D∗

i ). This of course depends on D∗
i , a random variable with expected value

at most D∗ (as per Lemma 4.1). It follows that the expected value of stage i is at
most β(2D∗ + C∗), as desired.

Theorem 4.1. We obtain approximation ratio 2β logα |S| = O(log |S|) to the
optimal.

Proof. The expected value of our solution is equal to the sum of the expected value
of the stages. This gives us a total value E[V ] ≤

∑
iE[Vi]. Using Lemma 4.3 and our

bound on the total number of stages, we can bound this by E[V ] ≤ β(logα |S|)(2D∗ +
C∗). Since the optimal solution has value D∗ + C∗, this proves the desired approxi-
mation ratio.

Using the described greedy algorithm to find a matching, we will attain ex-
pected approximation ratio log4/3 |S|; exact perfect matchings would improve this
to 2 log2 |S|. There will be a small additional loss in the last stages, where an uneven
number of nodes could cause a few additional steps; however, our total approximation
will remain bounded by an expected O(log |S|).

5. Relation to network design problems. We will demonstrate approxima-
tion-preserving reductions from many commonly encountered network design probems
to special cases of Cost-Distance. We emphasize that for all these problems, our
algorithm produces a logarithmic approximation ratio, while being (in general) simpler
to implement and faster to run than previously known algorithms.
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5.1. Multicast tree design. In this problem, we are given a network G(V,E)
with costs and delays on the edges. We have a source node s ∈ V and receivers
R ⊆ V for multicast data. The goal is to construct a tree T connecting the source
to R so that the sum of the cost of the tree and the delays seen by the receivers is
minimized. This problem is equivalent to Cost-Distance if the distance metric is
the delays. This problem has been extensively studied in the networks community
[8, 15, 22, 25, 27, 33, 39], and many heuristics have been proposed. We present the
first approximation for this problem. Our approximation ratio is O(log |R|).

5.2. Facility location. We are given a weighted undirected graph G(V,E) with
a cost per unit demand c : E → � on the edges, which forms a metric. We have a set
of demand points D ⊆ V with demands di and a set of facility locations F ⊆ V with
facility costs fi. The goal is to open a subset of the facilities and assign demands to
the open facilities so that the sum of the cost of opening the facilities and the cost of
routing the demand to the facilities is minimized.

For edge e in the graph, the bicriteria cost function is (0, c(e)). We add a dummy
sink and connect it to all the facilities. For facility i, the cost of the edge is (fi, 0).
The demand points will be our source vertices (S = D) and their weights will be
equal to the demands (w(v) = dv). The cost of a Cost-Distance solution on this
modified graph is identical to the cost of its corresponding facility-location solution,
so it follows that the reduction is approximation-preserving.

We can also consider the capacitated version of this problem, where facility i has
capacity ui. We can open multiple copies of a facility, but each copy opened at location
i costs fi. Again, we modify the graph exactly as before but assign cost (fi, fi

ui
) on

the edge connecting the sink to facility i. This causes the loss of an additional factor
of two (at most) in the approximation ratio, which is seen as follows. Suppose d > 0
amount of demand is routed to a facility. Then, the cost paid by the Cost-Distance

version is fi(1 + d
ui

), whereas the cost paid by the actual facility location version is
fi� dui

�. Clearly (1 + d
ui

) ≤ 2� dui
�.

We have therefore obtained an O(log(|D|)) approximation to these problems.
Note that several constant-factor approximations are known for this problem. The
best known approximation ratio is 1.52 and is due to Mahdian, Ye, and Zhang [28],
which builds on a long line of previous work. Please refer to this paper for previous
work on this problem.

5.3. Extended single-sink buy-at-bulk. In this problem [35], we are given a
weighted graph G(V,E) with length function l : E → �. A subset S ⊆ V of nodes
has demands di. We have a special sink node t to which all this demand must be
routed. The demand must be routed by choosing a tree and buying pipes along this
tree. There are K types of pipes. The type i pipe has cost ci per unit length and
capacity ui. We assume that K is O(poly(|V |)). The goal is to minimize the total
cost of pipe bought.

We modify the graph as follows. Replace every edge e in the graph with K parallel
edges e1, e2, . . . , eK . The edge ei has bicriteria cost (l(e)ci, l(e) ci

ui
). The weight of a

node is its demand. This new graph is the instance of Cost-Distance that we solve.
Intuitively, l(e)ci is the fixed cost of using pipe i, and l(e) ci

ui
is the incremental cost

of routing demand.
It is implicit in the work of [4, 35] that the optimum tree with the modified

cost function is no more than a factor 2 away from the optimum tree for the origi-
nal problem. This is seen as follows. Suppose that in the original problem, d > 0
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amount of demand was routed on edge e using cables of type i so that the cost paid
is l(e)ci� dui

�. In the Cost-Distance version, the cost paid for routing the same de-
mand is l(e)ci + l(e) ci

ui
d = l(e)ci

(
1 + d

ui

)
. This is clearly at most a factor of 2 away

from l(e)ci� dui
� provided d > 0.

The best previously known approximation for this problem wasO(log |S| log log |S|),
which follows by applying the techniques in [10] to the algorithm in [4]. These algo-
rithms are based on the work in [6, 7, 9, 10], which show how to approximate any
finite metric by a tree metric so that the distance between any two nodes in the graph
is approximated well. For the special case of K = 1, Salman et al. [35] showed a
constant-factor approximation by using previous results [5, 24] on balancing Steiner
trees with shortest-path trees.

Subsequent to our work, several constant-factor approximations have been ob-
tained for this problem; the first one is due to Guha, Meyerson, and Munagala [20],
and the most recent (and best) is due to Gupta, Kumar, and Roughgarden [21].

All previous approximations assumed that all the K pipes are available between
all pairs of nodes; it is straightforward to see that we can do away with this restriction.
This problem arises naturally in network design. There may be a fixed cost of laying
cables which depends on the location but is independent of the type of cable being
laid (perhaps the cost of installing the cable outweighs the cost of the cable itself).
Alternatively, certain types of services might not be available in certain locations.
Our algorithm is the first to handle these generalizations.

5.4. Combining facility location with buy-at-bulk. We can define a com-
bination of the previous problems as follows. We are given the same graph as in the
(capacitated) facility location problem and also a set of K pipe types just as in the
buy-at-bulk problem. We wish to open facilities and construct a forest routing the
demands to the facilities. The demands must be routed by buying pipes along the
edges of the forest. We wish to optimize the sum of the cost of laying out the pipes
and the cost of opening the facilities.

This problem arises, for example, in placing caches over the web and connecting
the demand points to the caches by laying out links of some fixed types (like T1,
OC10, etc.). We wish to optimize the total cost of placing the caches and buying the
links to route the demands.

It should be clear that the combination of the modifications we made in the
previous problems gives an instance of Cost-Distance. The approximation ratio is
therefore O(log |D|). This holds even if the set of available pipes differs for different
pairs of nodes. As far as we are aware, this is the first approximation algorithm for
this problem. Ravi and Sinha [34] subsequently gave improved approximations for
this problem and called it “integrated logistics.”

5.5. Priority Steiner trees. This problem [11] generalizes the Steiner tree
problem in the following way. Each edge e has a priority pe in addition to cost c(e).
Each terminal t also has a priority pt. The goal is to connect these terminals to a
sink using a Steiner tree such that all edges on the path from a terminal t to the sink
have priority at most pt. The goal is to minimize the total cost of the edges used.
Charikar, Naor, and Schieber [11] present an O(log |R|) approximation, where R is
the set of terminals.

This problem is a special case of Cost-Distance, as shown by a reduction due
to Chuzhoy et al. [14] that we outline below. The algorithm presented in section 3
then yields an O(log |R|) approximation, matching the best known guarantee.
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Specifically, a priority Steiner tree instance can be converted in an approximation-
preserving fashion to an instance of the extended single-sink buy-at-bulk problem
defined in section 5.3. Let C = maxe c(e), and assume mine ce ≥ 1 by scaling. Suppose
there are k priority levels. For each node v with priority i, we set its demand dv =
(nC)5(k−i), and for each edge e with priority i, the capacity of the corresponding cable
type is ue = (nC)5(k−i)+2, and its cost per unit cable is c(e). The length of the edge
l(e) = 1. Given a solution to the priority Steiner tree, suppose edge e is used. Then,
purchase one cable along this edge. Suppose this edge has priority i; then the total
demand with priority at least i is at most n

∑
l≥i (nC)5(k−l) ≤ (nC)5(k−i)+2 = ue.

This shows that the purchases yield a feasible solution. This yields a solution to the
buy-at-bulk problem with the same cost as the priority Steiner tree. Conversely, given
a solution to the buy-at-bulk problem, a demand with priority i will be routed only
along edges of priority at most i; otherwise, at least (nC)3 cables of higher priority
need to be purchased along the violated edge, which costs at least (nC)3. However, the
total cost over all demands of purchasing cables along paths that satisfy the priorities
is at most n2C, which is only cheaper. Therefore, in the optimal buy-at-bulk solution,
all demands with priority i are routed on paths such that each edge in the path has
priority at most i; furthermore, only one copy of any edge is purchased. These sets of
edges are feasible for the priority Steiner tree. A solution to the buy-at-bulk instance
can be transformed to obtain a solution for the priority Steiner tree instance, thus
completing the reduction.

5.6. Multilevel facility location. In the k-level facility location problem, we
are given a graph G(V,E) with a cost function c on the edges and a set of demand
nodes D. We have to route each demand through k levels of facilities. The cost of
placing a facility of level i at location v is fiv. The demand first goes to a facility of
level 1, from there to a facility of level 2, and so on until it reaches a facility of level k.
As in the classical facility location problem, the goal is to optimize the total cost of
facility placement and the cost of routing the demands through the levels of facilities.

This problem has been extensively studied in operations research literature [23, 37,
38, 2, 36]. We note that Shmoys, Tardos, and Aardal [36] present a 4 approximation
for the case when the number of levels k is 2, and Aardal, Chudak, and Shmoys [1]
subsequently present a 3 approximation for general k. Both these algorithms are
based on solving linear program relaxations and rounding the resulting solutions.

We present the first known combinatorial approximation for general values of k.
Our approximation ratio is O(log |D|). We reduce the multilevel facility location prob-
lem to Cost-Distance. We first make k copies of G which we denote G1, G2, . . . , Gk.
We construct a new graph G′ from these copies as follows. For an edge e ∈ E, its
bicriteria cost in each of the copies is (0, c(e)). For v ∈ G, we add an edge between its
corresponding vertices in Gi and Gi+1 with cost (fiv, 0). We call these facility edges.
We add a dummy sink node s and connect it to all vertices in Gk with edges of cost
(fkv, 0) for vertex v. The demand nodes D map to the corresponding nodes in G1.

Note that the only way to move from Gi to Gi+1 is to take one of the level i
facility edges. This means that the multilevel facility location problem is equivalent
to Cost-Distance on the graph G′ with sink s and the demands in G1. We therefore
have the following theorem.

Theorem 5.1. The Cost-Distance algorithm yields an O(log |D|) approxi-
mation for the k-level uncapacitated metric facility location problem running in
O(k|D|2(|E| + |V | log k|V |)) time.
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5.7. Concave functions. Suppose we are given a graph and a set of sources
and demands, and we wish to route all the demand to a single-sink node. For every
pair of nodes in the graph, we are given a concave function which determines the
cost of routing between those nodes given the amount of demand to be transported.
Suppose further that this concave function for an edge e is of the form fe(d) =
minre

i=1(aie + bied). We can convert this problem to an instance of Cost-Distance

as follows: For edge e, replace it by re parallel edges e1, e2, . . . , ere , where c(ei) = aie
and l(ei) = bie. Given d amount of demand, it is clear that in the new instance, the
edge with index argmini(aie + bied) will be used, so that the cost of transportation is
precisely mini(aie+ bied). This is precisely the cost of transporting the demand along
edge e in the original instance. Therefore, if the cost of each edge is a piecewise linear
monotonically nondecreasing concave function with polynomially many segments, this
can be converted in polynomial time to an instance of Cost-Distance, hence leading
to an O(log |S|) approximation.

6. Conclusion. We presented a general framework, Cost-Distance, for study-
ing several network design problems which are unified by the themes of economies of
scale and single-sink. We presented a simple to implement and intuitive randomized
algorithm that achieves an O(log |S|) approximation, where S is the set of terminals.
Since the preliminary version [31] appeared, this algorithm has been derandomized [13]
using a linear programming formulation. Meyerson [30] presented a randomized on-
line algorithm with a polylogarithmic competitive ratio. It was shown recently by
Chuzhoy et al. [14] that this problem is Ω(log log |S|) hard to approximate, ruling
out the possibility of a constant-factor approximation. For the multiterminal version
of the problem, Chekuri et al. [12] present a polylogarithmic approximation based
on rounding a natural linear programming relaxation. We note that despite all this
subsequent work, our algorithm still achieves the best known approximation ratio for
the single-terminal Cost-Distance problem.
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Crépeau [J. Comput. System Sci., 37 (1988), pp. 156–189]. In particular, we adopt the instance-
based prover-efficiency paradigm of CS proofs but follow the computational-soundness condition of
argument systems (i.e., we consider only cheating strategies that are implementable by polynomial-
size circuits). We show that universal arguments can be constructed based on standard intractability
assumptions that refer to polynomial-size circuits (rather than based on assumptions that refer to
subexponential-size circuits as used in the construction of CS proofs). Furthermore, these protocols
have a constant number of rounds and are of the public-coin type. As an application of these universal
arguments, we weaken the intractability assumptions used in the non–black-box zero-knowledge
arguments of Barak [in Proceedings of the 42nd IEEE Symposiun on Foundations of Computer
Science, 2001]. Specifically, we only utilize intractability assumptions that refer to polynomial-size
circuits (rather than assumptions that refer to circuits of some “nice” superpolynomial size).

Key words. probabilistic proof systems, computationally sound proof systems, zero-knowledge
proof systems, proofs of knowledge, probabilistic checkable proofs, collision-resistant hashing, witness
indistinguishable proof systems, error-correcting codes, tree hashing

AMS subject classifications. 94A60, 68Q01

DOI. 10.1137/070709244

1. Introduction. Various types of probabilistic proof systems have played a cen-
tral role in the development of computer science in the last two decades. The best
known ones are interactive proofs [20], zero-knowledge proofs [20], and probabilistic
checkable proofs (PCP) [15, 5, 14, 2], but other notions such as various types of com-
putationally sound proofs (e.g., arguments [12] and CS proofs [23]) and multiprover
interactive proofs [11] have made a prominent appearance as well. Do we really need
yet another type of probabilistic proof system?

We believe that the answer is positive: the number of different (related) notions
that “we need” is exactly the number of different notions that are natural, interesting,
and/or useful. Confining ourselves to usefulness, we note that the new type of com-
putationally sound proof system introduced in this paper has emerged in the context
of trying to improve the constructions of non–black-box zero-knowledge arguments of
Barak [6]. Furthermore, this proof system seems inherent to certain diagonalization
techniques used in [6] and (in a different context) in [13].

1.1. Motivation: Applying diagonalization in cryptography. A naive
idea, which was discarded for decades in cryptography, is constructing a cryptographic
scheme by “diagonalization,” for example, enumerating all probabilistic polynomial-

∗Received by the editors November 26, 2007; accepted for publication (in revised form) June 2,
2008; published electronically December 19, 2008. An extended abstract appeared in Proceedings of
the 17th IEEE Conference on Computational Complexity, 2002, pp. 194–203.

http://www.siam.org/journals/sicomp/38-5/70924.html
†Department of Computer Science, Princeton University, Princeton, NJ 08544 (boaz@cs.

princeton.edu). This research was supported by NSF grants CNS-0627526 and CCF-0426582, US-
Israel BSF grant 2004288, and Packard and Sloan fellowships.

‡Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel (oded.
goldreich@weizmann.ac.il). This research was partially supported by the Israel Science Foundation
grant 460/05.

1661



1662 BOAZ BARAK AND ODED GOLDREICH

time adversaries and making sure that each of them fails. The main reason that
this idea was discarded is that the resulting scheme will (necessarily) be more com-
plex than the class of adversaries it defeats, while in cryptography a scheme should
withstand adversaries that are (at least slightly) more complex than the scheme.

Still, as observed by Canetti, Goldreich, and Halevi [13] and Barak [6], a small
twist on diagonalization may be useful in cryptography. The twist is using diago-
nalization in order to build a “trapdoor” so that the trapdoor can be used in some
“imaginary setting” (e.g., by the simulator [6]) but not in the “real” setting (e.g.,
an actual execution of the proof system [6]).1 Thus, the complexity of the imagi-
nary setting is affected by the diagonalization, whereas the complexity of the real
setting is independent of the diagonalization. Specifically, in the context of Barak’s
zero-knowledge arguments [6], the trapdoor is knowledge of the (adversarial) veri-
fier’s strategy, where this strategy (which is the locus of diagonalization) may be any
polynomial-size circuit (where the polynomial is determined only after the proof sys-
tem is specified). In the actual execution, the (zero-knowledge) prover does not use
this trapdoor (but rather uses an NP witness to the real input), and so its complexity
is independent of the complexity of the trapdoor (i.e., the cheating verifier’s strategy).
However, the simulator uses the trapdoor, and so its complexity depends on the latter
(and so every polynomial-size adversary yields a related polynomial-time simulation).

For the foregoing idea to make sense, the verifier should not be able to distinguish
the case in which the (real) prover uses an NP witness to the real input from the
case in which the (simulated) prover uses the trapdoor (i.e., the cheating verifier’s
strategy). Indeed, Barak’s protocol utilizes a witness indistinguishable (WI) proof for
which both the NP witness (to the real input) and the trapdoor (i.e., the verifier’s
strategy) are valid witnesses. Thus, the honest verifier strategy in the WI proof must
be independent of the length of the witness used by the prover. This is because, in
one of the cases, the length of the witness is determined only after the proof system is
specified (i.e., in the simulation, the length of the trapdoor is a polynomial, but this
polynomial is determined and fixed only after the proof system is specified).

We conclude that in order to use diagonalization as described above, we should
have a (WI) proof system that is capable of handling any “NP statement” (and not
merely statements in any a priori fixed NP set). Put in other words, we need a single
proof system that can be used to provide proofs for any set S in NP such that the
running time and communication needed for verifying that x ∈ S is bounded by a
fixed (i.e., single) polynomial in |x|, which does not depend on the set S. In particular,
it may be the case that S ∈ Ntime(p), where p(·) is a polynomial that is larger than
the fixed polynomial bounding the verifier’s complexity. We stress that, in contrast,
typically when the phrase “proof systems for NP” is used, the intended meaning is
that every set S ∈ NP has a different proof system (and the complexity of verifying
that x ∈ S is bounded by an S-dependent polynomial in |x|).

1.2. The notion of universal arguments. For the sake of simplicity, we de-
fine and present proof systems for only the universal set SU defined such that the
tuple (M,x, t) is in SU if M is a nondeterministic machine that accepts x within

1In [13], the “imaginary setting” is an implementation of the random oracle by a function en-
semble (shown not to exist), whereas the “real setting” is the ideal (random oracle model) setting in
which the scheme uses a random oracle. (Indeed, our perspective here is opposite to the one in [13],
where the random oracle is considered “imaginary” and its implementations by function ensembles
are considered “real.”)
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t steps.2 This suffices for handling any NP set via a single protocol, because every
NP set S is linear-time reducible to SU (e.g., via the mapping x �→ (MS , x, 2|x|),
where MS is any fixed nondeterministic polynomial-time machine that decides S).
Thus, a proof system for SU allows us to handle all “NP statements” (in a uniform
manner): for any S ∈ NP , when wishing to verify the assertion “x in S,” the verifier
should just use the proof system of SU on input (MS , x, 2|x|), whereMS is as described
above. (In fact, SU is NE-complete by an analogous linear-time reduction.)3

We also consider the natural witness relation for SU , denoted RU : the pair
((M,x, t), w) is in RU if M (viewed here as a two-input deterministic machine) accepts
(x,w) within t steps. Loosely speaking, a universal argument system (or a universal
argument system for SU) is a two-party protocol (P, V ), for common inputs of the
form (M,x, t), that satisfies the following:

Efficient verification. The total time spent by the (probabilistic) verifier V is
polynomial in length of the common input (i.e., polynomial in |(M,x, t)| =
O(|M | + |x| + log t)). In particular, all messages exchanged in the protocol
have a length that is so bounded.

Completeness by a relatively efficient prover. For every ((M,x, t), w) in RU , on
common input (M,x, t), when P is given auxiliary input w, it always con-
vinces V . Furthermore, the total time spent by P in this case is bounded by
a fixed polynomial in (|M | and) TM (x,w), where TM (x,w) ≤ t is the number
of steps taken by M on the input (x,w).

Computational soundness. For every polynomial-size circuit family {Cn}n∈N and
every (M,x, t) ∈ {0, 1}n\SU , the probability that, on common input (M,x, t),
the (“cheating”) circuit Cn succeeds in fooling V (into accepting (M,x, t)) is
negligible (as a function of n).

(The actual definition appears in section 2.)
Relation to prior notions. Universal arguments are related but different from both

CS proofs (as defined by Micali [23]) and arguments (as defined by Brassard, Chaum,
and Crepeau [12]). Specifically

1. the efficient-verification condition is identical in all definitions (except that
arguments are typically defined only for individual sets in NP);

2. the “completeness by a relatively efficient prover” condition follows the
instance-based paradigm of CS proofs (but provides the prover with an aux-
iliary input);

3. the computational-soundness condition is exactly as it is in argument systems
(and is typically weaker than the one in CS proofs).

Thus, in a sense, universal arguments are a hybrid of arguments and CS proofs.
Indeed, universal arguments are weaker than CS proofs, but the point is that we will
be able to construct a universal argument based on a weaker assumption than the
ones that seem necessary for constructing CS proofs (cf. [23, 6]).

We comment that computational soundness seems unavoidable in any proof sys-
tem for SU that satisfies the efficient-verification condition (even just “uniformly for

2One nice feature of SU is that it comes with a natural measure of the complexity of instances:
the complexity of (M, x, t) is the actual time it takes M to accept x (when using the best sequence
of nondeterministic choices). (Similarly, the complexity of (M, x, t) coupled with the witness w is
the actual time it takes M to accept x when using w as the sequence of nondeterministic choices.)
Such a complexity measure is pivotal to the refined formulation of the prover complexity condition.

3That is, for S ∈ Ntime(e), where e(n) = 2cn for some constant c, we use the reduction x �→
(MS , x, 2c|x|). Furthermore, every set in NEXP is polynomial-time (but not linear-time) reducible
to SU .
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all NP”). In contrast, statistical soundness (coupled with the standard notion of
efficient verification) would have implied that SU (or “just” all NP) is in DSpace(p),
for some fixed polynomial p. (The reason is that the total communication in such a
protocol must be upper bounded by a fixed polynomial p and that an optimal prover
strategy can be implemented in space p.)

On natural applications of universal arguments. A strange-looking aspect of
universal arguments is that, on some yes-instances, the designated prover may run in
more time than allowed to cheating provers (i.e., a fixed polynomial in TM (., .) may be
larger than an arbitrary polynomial in the length of the common input).4 However,
in typical applications (such as ours), the designated prover will never be invoked on
such inputs (i.e., on inputs requiring the prover to run for a time that is superpolyno-
mial in their length). Actually, we shall use only the fact that a universal-argument
system guarantees the following behavior with respect to any polynomial p (which
may be selected after the system is specified):

1. For every (y, w) ∈ RU such that y = (M,x, t) and t ≤ p(|x|), it holds that
(given y and w) the designated prover convinces the verifier to accept y,
and the total time used by the prover is poly(|M | + t) = poly(|y|). Specifi-
cally, there exists a fixed polynomial q0 that is associated with the universal-
argument system such that the running time of the designated prover on
input (M,x, t) (and w) is q0(|M | + t) ≤ q0(|M | + p(|x|)) < (q0 ◦ p)(|y|).

2. For every polynomial q and every sufficiently long y = (M,x, t) �∈ SU , it holds
that no q(|y|)-size circuit can convince the verifier to accept y.

Thus, in this restricted case, the complexity bound considered in the soundness con-
dition (of item 2) may exceed the complexity of the designated prover when handling
yes-inputs of the type mentioned in item 1 (i.e., (M,x, t) ∈ SU such that t ≤ p(|x|)).
Needless to say, the foregoing items cover all NP sets (where a set S ∈ NP is handled
by selecting the polynomial p such that S ∈ Ntime(p) holds).

1.3. The construction of universal arguments. By adapting the construc-
tion of Kilian [21], one can show that the existence of strong collision-resistant hashing
functions implies the existence of universal arguments (and even CS proofs for SU ;
cf. Micali [23]). By strong collision-resistant hashing we mean families of functions for
which collisions are hard to find even by using subexponential-size circuits. The goal,
achieved in this paper, is to construct universal arguments based only on standard
collision-resistant hashing, that is, families of functions for which collisions are hard
to find by polynomial-size circuits. That is, we obtain the following theorem.

Theorem 1.1 (our main result). The existence of (standard) collision-resistant
hashing functions implies the existence of universal arguments. Furthermore, these
proof systems are of the public-coin5 type and use a constant number of rounds.

Our construction of universal arguments adapts Kilian’s construction [21] in a
quite straightforward manner. Our contribution is in the analysis of this construction.
Unlike in previous analyses (as in [21, 23]), when establishing computational soundness

4This phenomena does not occur in arguments [12] and in CS proofs [23]: arguments were defined
only for individual sets in NP, and so the issue never arises. In the case of CS proofs, the definition
of computational soundness relates to cheating provers of size exponential in the security parameter,
which is typically set to be linear in the length of the common input [23]. Thus, the cheating provers
are always allowed more running time than the designated prover (since its running time is always at
most exponential in the length of the common input). However, it seems that allowing the adversaries
time that is exponential in the security parameter requires using intractability assumptions that refer
to exponential (or subexponential) circuits.

5Also known as (a.k.a.) Arthur–Merlin systems (cf. [3]).
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via contradiction, we cannot afford to derive a collision-forming circuit of size that is
polynomial in the worst-case time complexity of the designated prover (because the
designated prover may have (worst-case) complexity that is superpolynomial (in the
input length)).6 We need to derive a collision-forming circuit of size that is polynomial
in the input length. Indeed, doing so allows us to use standard collision-resistant
hashing (rather than strong ones).

The analysis is further complicated by our desire to establish a “proof-of-knowledge”
property, which is needed for our main application. This is discussed next.

1.4. Application to zero-knowledge arguments. Barak’s construction [6] of
non–black-box zero-knowledge arguments (for any set in NP) uses a witness indistin-
guishable (WI) argument of knowledge for RU .7 In his protocol, the prover uses this
WI argument (of knowledge) to prove that it knows either an NP witness for the orig-
inal common input or a program that fits the verifier functionality (as reflected in the
challenge-respond exchange that follows). Thus, as a first step, we need to transform
our universal argument (of knowledge) into a corresponding WI universal argument
(of knowledge). The transformation essentially follows Barak’s transformation [6],
but then we encounter a second place where Barak uses a superpolynomial hardness
assumption: Barak uses a collision-resistant hashing function to hash “SU -witnesses”
(into fixed-length strings), where the length of these witnesses is bounded by some
superpolynomial function (but not by any polynomial). Consequently, a collision on
such long strings yields only the violation of a superpolynomial collision-resistant as-
sumption. To avoid superpolynomial hardness assumptions, we hash these witnesses
by combining “tree hashing” (as in Kilian’s construction [21]) with an error-correcting
code. Specifically, first the witness string is encoded using an error-correcting code,
and then the tree hashing is applied to the result. Thus, if two different strings are
hashed to the same value, then we can form a collision with respect to the basic
hashing function (used in the tree hashing) by considering a uniformly selected leaf
(which is quite likely to be assigned different values under an error-correction coding
of different strings). Combining the foregoing, we obtain the following theorem.

Theorem 1.2 (our main application). The existence of (standard) collision-
resistant hashing functions implies the existence of (non–black-box) zero-knowledge
arguments for any set in NP such that these protocols have the following additional
properties:

1. The protocol has a constant number of rounds and uses only public coins.
2. The simulator runs in strict (rather than expected) probabilistic polynomial

time.
3. The protocol remains zero-knowledge when, say, n2 copies are executed con-

currently.8

6Specifically, Kilian’s construction [21] uses a probabilistic checkable proof (PCP) system, and the
hypothetical violation of its computational soundness is shown to yield a (relatively small) collision-
forming circuit, but this circuit is bigger than the length of the corresponding PCP oracle (which, in
the case of SU , is exponential in the input length). Instead, we show how to obtain a collision-forming
circuit that is smaller than the length of the corresponding PCP oracle.

7In fact, Barak uses a CS proof (of knowledge) for Rf
U ⊂ RU , where f is any “nice” superpoly-

nomial function (e.g., f(n) = nlog2 n) and ((M, x, t), w) is in Rf
U only if t ≤ f(|x|). He constructs

such a CS proof assuming the existence of hashing functions that are resilient with respect to f -size
circuits (rather than subexponential hardness which would have been required for a CS proof for
RU ).

8In fact, we can tolerate p(n) concurrent copies, where p is an arbitrary polynomial that is fixed
a priori; that is, the argument system depends on the polynomial p.
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Recall that, assuming NP �⊆ BPP, each of the three extra properties requires a
non–black-box simulator (and that such protocols were first presented in [6]).9 Thus,
Theorem 1.2 establishes the main result of [6] under a weaker assumption: we only
assume the existence of hashing functions that are resilient with respect to polynomial-
size circuits (rather than with respect to circuits of some superpolynomial size).

1.5. Organization. In section 2 we define universal arguments, and in section 3
we show how to construct them (using any family of collision-resistant hash functions).
The application to the construction of non–black-box zero-knowledge arguments is
presented in section 4. Appendix B contains a revised treatment of the notion of a
nonoblivious commitment scheme, which may be of independent interest (because it
augments the initial treatment provided in [16, section 4.9.2.1] and corrected in [17,
section C.3.3]).

Comment. The current version of this paper differs from prior versions mainly
in section 4.1. The presentation in prior versions (see [8]) relied on the existence of
constant-round, public-coin strong-WI proofs of knowledge for any NP set. Unfortu-
nately, contrary to prior misconceptions (cf. [16, section 4.6]), such protocols are not
known to exist [17, Appendix C.3]. Indeed, this gap can be bypassed—as done in [7]
and in the current version by using a rather ugly patch—but our hope was to bridge
the gap (i.e., prove the existence of the said strong-WI protocols) and maintain the
original presentation. Having failed to do so for several years, we decided to archive
the current version.

2. The definition of universal arguments. Let us start with some general no-
tions. For an integer n, we denote the set {1, . . . , n} by [n]. We denote by μ :N→ [0, 1]
an unspecified negligible function; that is, for every positive polynomial p and all suf-
ficiently large n, it holds that μ(n) < 1/p(n). We say that an event occurs with over-
whelmingly high probability if it occurs with probability at least 1−μ(n), where n is the
relevant security parameter. For a pair of (interactive) strategies denoted by (P, V ),
we denote by (P (w), V )(y) the output of V when interacting with P (w) on common
input y, where P (w) denotes the functionality of P when given auxiliary input w.

In continuation of the discussion in section 1.2, we now define universal argument
systems (for SU ). Recall that SU = {(M,x, t) : ∃w s.t. ((M,x, t), w) ∈ RU}, where
((M,x, t), w)∈RU if M accepts (x,w) within t steps. Let TM (x,w) denote the number
of steps made by M on input (x,w); indeed, if ((M,x, t), w) ∈ RU , then TM (x,w) ≤ t.
Recall that |(M,x, t)| = O(|M | + |x| + log t); that is, t is given in binary. In the
following definition, we incorporate a (weak) proof-of-knowledge property (which was
mentioned in sections 1.3 and 1.4 but not in section 1.2).10

Definition 2.1 (universal argument). A universal-argument system is a pair of
strategies denoted by (P, V ) that satisfies the following properties:

Efficient Verification. There exists a polynomial p such that for any y = (M,x, t),
the total time spent by the (probabilistic) verifier strategy V , on the common
input y, is at most p(|y|). In particular, all messages exchanged in the protocol
have a length smaller than p(|y|).

9Indeed, see [6, 7] for a discussion of various results regarding the impossibility of achieving the
above via a black-box simulator. We stress that the current discussion refers to protocols of negligible
soundness error.

10Indeed, the (weak) proof-of-knowledge property may be considered an auxiliary feature, which
need not be mandated by the basic definition of a “universal argument” (i.e., Definition 2.1). Our
choice to include this property in Definition 2.1 is motivated by the specific context and results of
the present work.
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Completeness via a relatively efficient prover. For every ((M,x, t), w) in RU ,

Pr[(P (w), V )(M,x, t) = 1] = 1.

Furthermore, there exists a polynomial p such that for every ((M,x, t), w) ∈
RU the total time spent by P (w), on the common input (M,x, t), is at most
p(|M | + TM (x,w)) ≤ p(|M | + t).

Computational Soundness. For every polynomial-size circuit family {P̃n}n∈N and
every (M,x, t) ∈ {0, 1}n \ SU ,

Pr
[(
P̃n, V

)
(M,x, t) = 1

]
< μ(n),

where μ : N → [0, 1] is a negligible function.11

A weak proof-of-knowledge property. For every positive polynomial p there exists
a positive polynomial p′ and a probabilistic polynomial-time oracle machine
E such that the following holds:12 for every polynomial-size circuit family
{P̃n}n∈N and every sufficiently long y = (M,x, t) ∈ {0, 1}∗, if Pr[(P̃n, V )(y) =
1] > 1/p(|y|), then

Prr

[ ∃w = w1 · · ·wt∈RU (y)
(∀i∈ [t]) EP̃n

r (y, i) = wi

]
>

1
p′(|y|) ,(2.1)

where RU (y) def= {w : (y, w)∈RU} and EP̃n
r (., .) denotes the function defined

by fixing the random tape of E to equal r and providing the resulting Er with
oracle access to P̃n. The oracle machine E is called a (knowledge) extractor.

A few comments regarding the weak proof-of-knowledge property are in place.
First, note that the condition “∀i ∈ [t] it holds that EP̃n

r (y, i) = wi” means that
EP̃n
r (y, .) is an implicit representation of the string w = w1 · · ·wt (i.e., any specific

bit of w is obtained by instantiating the second input to EP̃n
r (y, .) accordingly). If

Pr[(P̃n, V )(y) = 1] > 1/p(|y|), then at least an 1/p′(|y|) fraction of the possible r’s
yields such implicit representations of some string in RU (y), but these strings are not
necessarily equal (i.e., different r’s may yield different strings in RU (y)). Implicit
(rather than explicit) representation is required here because we want the extractor
to run in polynomial time, whereas the length of the strings in RU(y) may not be
bounded by any polynomial (in |y|). Finally, we note that the weak proof-of-knowledge
property is indeed weaker than the standard definition of a proof of knowledge (cf. [9],
[16, section 4.7], and Footnote 12), but it suffices for the applications that we have in
mind.

3. The construction of universal arguments. As mentioned in section 1.3,
by adapting the construction of Kilian [21], one can easily show that the existence
of strong collision-resistant hashing functions implies the existence of universal ar-
guments (and even CS proofs for SU ; cf. Micali [23]). Here we show how a similar
adaptation, when using only standard collision-resistant hashing functions, yields uni-
versal arguments. Our focus is on demonstrating the computational soundness of this
construction, which should now be established under a weaker assumption than the
one used in [21, 23].

11That is, the function μ is fixed depending on {P̃n}n∈N and on an infinite sequence of inputs
that contains at most one input per each input length. Equivalently, one may fix the function μ
depending only on the polynomial bounding the size of the circuit family.

12Indeed, the polynomial p′ as well as the (polynomial) running time of E may depend on the
polynomial p (which determines the noticeable threshold probability).
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3.1. Motivation. In order to explain the difficulty and its resolution, let us
recall the basic construction of Kilian [21] (used also by Micali [23]), as adapted to
our setting.

Our starting point is a PCP[poly, poly] system for SU ∈NEXP , which is used in
the universal-argument system as follows. The verifier starts by sending the prover
a hashing function. The prover constructs a PCP proof/oracle (corresponding to the
common input and its own auxiliary input), places the bits of this oracle at the leaves
of a polynomial-depth full binary tree, and places in each internal node the hash
value obtained by applying the hashing function to the labels (i.e., contents) of its
children. The prover sends the label of the root to the verifier, which responsed by
sending a random tape of the type used by the PCP verifier. Both parties determine
the queries corresponding to this tape, and the prover responds with the values of
the corresponding leaves, along with the labels of the vertices along the paths from
these leaves to the root (as well as the labels of the siblings of these vertices). The
verifier checks that this sequence of labels matches the corresponding applications of
the hashing function and also emulates the PCP verifier. Ignoring (for a moment) the
issue of the prover’s complexity, the problem we consider next is that of establishing
computational soundness.

The naive approach is to consider how the prover responds to each of the possible
random tapes sent to it. If the prover answers consistently (i.e., with leaf labels that
depend only on the leaf location), then we obtain a PCP oracle, and soundness follows
by the soundness of the PCP scheme. On the other hand, inconsistent labels for the
same leaf yield a (hashing) collision somewhere along the path to the root. However, in
order to find such a collision, we must spend time proportional to the size of the tree,
which yields a contradiction only in the case that the hashing function is supposed
to withstand adversaries that use that much time. Note that the size of the tree is
picked by the (adversarial) prover, and since we wish to handle SU (or merely “only”
all of NP) we do not have an a priori polynomial bound on the size of the tree that
the prover is allowed to use (because no such bound exists for the designated prover).
But in such a case, if the tree is exponential (or even merely super polynomial) in the
security parameter, then we derive a contradiction only when using hashing functions
of subexponential (respectively, superpolynomial) security.

In contrast to the (above) naive approach, the approach taken here is to consider
each leaf separately rather than all leaves together. That is, the naive analysis dis-
tinguishes the case that the prover answers inconsistently on some leaf from the case
that it answers consistently on all leaves. Instead, we consider each leaf separately
and distinguish the case that the prover answers inconsistently on this leaf from the
case that it answers consistently on this leaf. Loosely speaking, we call a leaf good if
the prover answers consistently on it and observe that if a big fraction of the leaves is
good, then soundness follows by the soundness of the PCP scheme (regardless of the
contents of other leaves). On the other hand, if sufficiently many leaves are not good,
then we obtain a collision by picking a random leaf (hoping that it is not good) and
obtaining inconsistent labels for it. This requires being able to uniformly select a ran-
dom tape that causes the PCP verifier to make the corresponding query, a property
which is fortunately enjoyed by the relevant PCP systems.

We warn that the above is merely a rough description of the main idea in our
analysis. Furthermore, in order to establish the proof-of-knowledge property of our
construction, we need to rely on an analogous property of the PCP system (which
again happens to be satisfied by the relevant PCP systems).
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3.2. The PCP system in use. We first recall the basic definition of a PCP
system. Loosely speaking, a probabilistically checkable proof (PCP) system consists
of a probabilistic polynomial-time verifier having access to an oracle which represents
a proof in redundant form. Typically, the verifier accesses only a few of the oracle
bits, and these bit positions are determined by the outcome of the verifier’s coin
tosses. It is required that if the assertion holds, then the verifier always accepts (i.e.,
when given access to an adequate oracle); whereas if the assertion is false, then the
verifier must reject with high probability (as specified in an adequate bound), no
matter which oracle is used. The basic definition of the PCP setting is given in item 1
of Definition 3.1 below. Typically, the complexity measures introduced in item 2 of
Definition 3.1 are of key importance, but this is not the case in the current work.

Definition 3.1 (PCP—basic definition).
1. A probabilistically checkable proof (PCP) system with error bound ε : N →

[0, 1] for a set S is a probabilistic polynomial-time oracle machine (called
verifier), denoted by V satisfying the following:

• Completeness. For every x ∈ S there exists an oracle πx such that V ,
on input x and access to oracle πx, always accepts x.

• Soundness. For every x �∈ S and every oracle π, machine V , on input x
and access to oracle π, rejects x with probability at least 1 − ε(|x|).

2. Let r and q be integer functions. The complexity class PCPε[r(·), q(·)] consists
of sets having a PCP system with error bound ε in which the verifier, on any
input of length n, makes at most r(n) coin tosses and at most q(n) oracle
queries.

Note that if S has a PCP system with error bound ε, then S ∈ PCPε[p(·), p(·)]
for some polynomial p. Here we will care only that SU ∈ NE has a PCP system
with an exponentially decreasing error bound (i.e., ε(n) = 2−n). Instead of caring
about the refined complexity measures (of item 2), we will care about the following
additional properties which are satisfied by some PCP systems, where only some of
these properties were explicitly considered before (see discussion below).

Definition 3.2 (PCP—auxiliary properties). Let V be a PCP verifier with
error ε :N→ [0, 1] for a set S ∈ NEXP , and let R be a corresponding witness relation.
That is, if S ∈ Ntime(t(·)), then we refer to a polynomial-time decidable relation
R satisfying x ∈ S if and only if there exists w of length at most t(|x|) such that
(x,w) ∈ R. We consider the following auxiliary properties:

Relatively efficient oracle construction. This property holds if there exists a poly-
nomial-time algorithm P such that, given any (x,w) ∈ R, algorithm P out-
puts an oracle πx that makes V always accept (i.e., as in the completeness
condition).

Nonadaptive verifier. This property holds if the verifier’s queries are determined
based only on the input and its internal coin tosses, independently of the
answers given to previous queries. That is, V can be decomposed into a pair
of algorithms Q and D such that on input x and random tape r, the verifier
makes the query sequence Q(x, r, 1), Q(x, r, 2), . . . , Q(x, r, p(|x|)), obtains the
answers b1, . . . , bp(|x|), and decides according to D(x, r, b1 · · · bp(|x|)), where p
is some fixed polynomial.

Efficient reverse sampling. This property holds if there exists a probabilistic
polynomial-time algorithm S such that, given any string x and integers i and
j, algorithm S outputs a uniformly distributed r that satisfies Q(x, r, i) = j,
where Q is as defined in the previous item.
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A proof-of-knowledge property. This property holds if there exists a probabilistic
polynomial-time oracle machine E such that the following holds:13 for every
x and π, if Pr[V π(x) = 1] > ε(|x|), then there exists w = w1 · · ·wt such that
(x,w) ∈ R and Pr[Eπ(x, i) = wi] > 2/3 holds for every i ∈ [t].

Nonadaptive PCP verifiers were explicitly considered in several works, and in
fact in some sources PCP is defined in terms of nonadaptive verifiers. (Needless to
say, almost all PCP systems use nonadaptive verifiers.) The oracle-construction and
proof-of-knowledge properties are implicit in some works, and are known to hold for
many PCP systems (although we are not aware of a text that contains a proof of this
fact). To the best of our knowledge, the reverse-sampling property was not considered
before. Nevertheless, it can be verified that any S ∈ NEXP has a PCP system that
satisfies all of the foregoing properties.

Theorem 3.3. For every S ∈ NEXP and for every ε : N→ [0, 1] such that for
some positive polynomial p it holds that ε(n) > 2−p(n) for all n, there exists a PCP
system with error ε for S such that this PCP satisfies the four properties listed in
Definition 3.2.

Proof sketch. For S ∈ Ntime(t(·)), we consider the PCP1/2[O(log t(·)), poly(·)]
system presented by Babai et al. [5] (i.e., the starting point of Arora et al. [2, 1]).
(We stress that this PCP system, unlike the one of Feige et al. [14], uses oracles of
length polynomial in t.) This PCP system is evidently nonadaptive, and it is well
known to satisfy the oracle-construction property. It is also known (alas less known)
that this PCP system satisfies the proof-of-knowledge property. Finally, it is easy to
see that this PCP system (as well as any reasonable PCP system we know of) also
satisfies the reverse-sampling property.14 Further details regarding the proof of all of
the foregoing facts can be found in Appendix A. Thus, we obtain a PCP system with
error 1/2 (for S) that satisfies all of the auxiliary properties listed in Definition 3.2. To
obtain the desired error of ε, we apply straightforward error reduction, while noting
that this process does not affect the oracle, and so the resulting (error-reduced) PCP
preserves all of the auxiliary properties.

3.3. The actual construction. The construction is an adaptation of Kilian’s
construction [21] (used also by Micali [23]). Using Theorem 3.3, we start with a
PCP system with error ε(n) = 2−n for SU that satisfies the auxiliary properties
in Definition 3.2. Actually, the corresponding witness relation will not be RU as
defined in section 1.2 but rather a minor modification of it, denoted R′

U : the pair
((M,x, t), (w, 1t

′
)) is in R′

U if M accepts (x,w) in t′ ≤ t steps. (The purpose of the
modification is to obtain a relation that is decidable in polynomial time, as required in
Definition 3.2.) Let Vpcp denote the aforementioned PCP system (or rather its verifier)
and Ppcp, Qpcp, Dpcp, Spcp, and Epcp denote the auxiliary algorithms (or machines)
guaranteed by Definition 3.2 (i.e., Ppcp is the oracle-constructing procedure, Qpcp

determines the verifier’s queries, Dpcp describes the verifier’s final decision, Spcp

provides reverse sampling, and Epcp is the “witness extractor” guaranteed in the
proof-of-knowledge property).

13For negligible ε (as used below), this proof-of-knowledge property is stronger than the stan-
dard proof-of-knowledge property (as in [9] and [16, section 4.7.1]). Indeed, the proof-of-knowledge
property in Definition 3.2 is analogous to the definition of a strong proof-of-knowledge (as in [16,
section 4.7.6]).

14This property follows from the structure of the standard PCP systems. In our case, the system
consists of a sum check (Lund et al. [22]) and a low-degree test. In both tests, the queries are selected
in a very simple manner, and what is complex (at least in the case of low-degree tests) is the analysis
of the test.
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A second ingredient used in the construction is a family of collision-resistant hash-
ing functions. That is, a collection of (uniformly polynomial-time computable) func-
tions {hα : {0, 1}∗ → {0, 1}|α|} such that for every (nonuniform) family of polynomial-
size circuits {Cn}n∈N

Prα∈{0,1}n [Cn(α) = (x, y) s.t. x �= y and hα(x) = hα(y)] = μ(n),

where μ is a negligible function. Such families can be constructed based on, for exam-
ple, the conjectured intractability of factoring (integers); see, e.g., [17, section 6.2.3].

Construction 3.4 (a universal argument for SU).

Common input: y = (M,x, t), supposedly in SU . Let n def= |y|.
Auxiliary input to the prover: w such that supposedly (y, w) ∈ RU holds.
First verifier step (V1): Uniformly select α ∈ {0, 1}n and send it to the prover.
First prover step (P1): When describing the prover’s actions, we assume that

(y, w) ∈ RU .
1. Preliminary action by the prover. The prover invokes M on input (x,w)

and obtains t′ = TM (x,w). Assuming that (y, w) ∈ RU and letting
w′ = (w, 1t

′
), the prover obtains an R′

U -witness; that is, (y, w′) ∈ R′
U .

2. Oracle construction. Invoking Ppcp on (y, w′), the prover obtains πy =
Ppcp(y, w′).

Assume without loss of generality that |πy | is a power of 2, and let d def=
log2 |πy|.

3. Construction of a hashing tree. The prover constructs a binary tree of
depth d and associates its nodes with binary strings of length at most d
such that the root is associated with the empty string, and an internal
node associated with γ has children associated with γ0 and γ1. Using
the oracle πy (just constructed) and the hashing function hα (sent by the
verifier), the prover labels the nodes of this tree as follows:
• The label of a leaf associated with γ ∈ {0, 1}d is the value of πy at

position γ; that is, this label denoted by �γ equals the answer of the
oracle πy to the query γ.

• The label of an internal node associated with γ ∈ ∪d−1
i=0 {0, 1}i is

the value obtained by applying hα to the string �γ0�γ1. This label is
denoted by �γ.

Thus, the label of the node associated with γ ∈ ∪di=0{0, 1}i is denoted by
�γ.

4. The actual message sent by the prover is the depth of the tree and the
label of its root. That is, the prover sends the pair (d, �λ) to the verifier.

Second verifier step (V2). The verifier selects uniformly a random tape r for the
PCP system and sends r to the prover.

Second prover step (P2). The prover provides the corresponding (PCP) answers,
augmented by proofs of the consistency of these answers with the label of the
root as provided in step (P1).

1. Determining the queries. Invoking Qpcp, the prover determines the se-
quence of queries that the PCP system makes on a random tape r. That
is, for i = 1, . . . ,m, it computes qi = Qpcp(y, r, i), where m def= poly(n)
is the number of queries made by the system.

2. The message sent. For i = 1, . . . ,m and j = 0, . . . , d − 1, the prover
sends the pair (�γi,j0, �γi,j1), where γi,j is the j-bit long prefix of qi.
(Note that this message contains, for every i ∈ [m], the value of �qi as
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well as information that enables the authentication of this value with
respect to �λ.)

Verifier final decision step (V3): The verifier checks that the answers provided
by the prover would have been accepted by the PCP verifier and that the
corresponding proofs of consistency (with the label of the root) are valid. That
is, denoting by �′γ the label provided by the prover for the node associated with
γ, the verifier accepts if and only if all of the following checks pass:

1. Invoking Dpcp, the verifier checks whether, on input y and random tape
r, the PCP verifier would have accepted the answer sequence �′q1 , . . . , �

′
qm

,
where qi = Qpcp(y, r, i) (as in step (P2)). That is, it checks whether
Dpcp(y, r, �′q1 · · · �′qm

) = 1, where r is the random tape chosen in step (V2).
2. Check whether the labels provided are consistent with the label of the

root of the tree as sent in step P1. That is, for i = 1, . . . ,m and j =
0, . . . , d− 1, check whether �′γi,j

= hα(�′γi,j0�
′
γi,j1), where γi,j is the j-bit

long prefix of qi and �′λ
def= �λ.

We denote the foregoing verifier and prover strategies by V and P , respectively.
We highlight the fact that Construction 3.4 uses a constant number of rounds

and is of the public-coin type. Furthermore, Construction 3.4 satisfies the first two
requirements of Definition 2.1; that is, the verifier’s strategy is implementable in prob-
abilistic polynomial time, and completeness holds with respect to a prover strategy
that (when given y = (M,x, t) and w as above) runs in time polynomial in TM (x,w).
We thus focus on establishing the two last requirements of Definition 2.1. In fact,
computational soundness follows from the weak proof-of-knowledge property, because
if some adversary can convince the verifier to accept y with nonnegligible probability,
then the extractor (given oracle access to that adversary) outputs a valid witness for
membership of y in SU (which implies that y is indeed in SU). Thus, it suffices to
establish the latter.

3.4. Establishing the weak proof-of-knowledge property. This subsection
contains the main technical contribution of the current section. The novel aspect in
the analysis is the use of a “local definition of a conflict” (i.e., considering conflicting
values for individual oracle bits rather than conflicting values for the entire oracle)
and the use of reverse sampling for deriving (in polynomial time) hashing collisions
when given a conflict on any bit position in the oracle.

Lemma 3.5. Construction 3.4 satisfies the weak proof-of-knowledge property of
Definition 2.1, provided that the family {hα} is indeed collision-resistant.

Combining Lemma 3.5 with the foregoing discussion, we establish Theorem 1.1.
Proof. Fixing any polynomial p, we present a probabilistic polynomial-time

knowledge extractor that extracts witnesses from any feasible prover strategy that
makes V accept with probability above the threshold specified by p. Specifically, for
any family of (deterministic) polynomial-size circuits representing a possible prover
strategy and for all sufficiently long y’s, if the prover convinces V to accept y with
probability at least 1/p(|y|), then, with noticeable probability (i.e., 1/p′(|y|)), the
knowledge extractor (given oracle access to the strategy) outputs the bits of a corre-
sponding witness.

We fix an arbitrary family {P̃n}n∈N of (deterministic) polynomial-size circuits
representing a possible prover strategy and a generic n and y ∈ {0, 1}n such that
Pr[(P̃n, V )(y) = 1] > ε

def= 1/p(n). We consider a few key notions regarding the
interaction of P̃n and the designated verifier V on common input y. First, we consider
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notions that refer to a specific interaction (corresponding to a fixed sequence of verifier
coins, which consists of a pair of choices (α, r) that the verifier takes in steps (V1)
and (V2), respectively):

• The ith query in such an interaction is qi = Qpcp(y, r, i), where r is the
step (V2) message.

• The ith answer supplied by (the prover) P̃n is the label (i.e., �′qi
) that the

prover has provided (in step (P2)) for the leaf (associated with) the ith query
(i.e., qi = Qpcp(y, r, i)). The corresponding authentication is the correspond-
ing sequence of pairs 〈(�′γi,j0, �

′
γi,j1) : j = 0, . . . , d− 1〉, where γi,j is the j-bit

long prefix of qi.
Note that the various parts of the prover’s message in step (P2) are a function
of α and r, and thus the notation �′γ is actually a shorthand for �′γ(α, r).

• The ith answer supplied by P̃n is said to be proper if the corresponding
authentication passes the verifier’s test (in step (V3)); that is, �′γi,j

=
hα(�′γi,j0�

′
γi,j1) holds, for j = 0, . . . , d − 1 (where γi,j is as described above

and �′λ
def= �λ).

Next, we consider the probability distribution induced by the verifier’s coins. Note
that these coins consist of the pair of choices (α, r) that the verifier takes in steps (V1)
and (V2), respectively. Fixing any α ∈ {0, 1}n, we consider the conditional probability
denoted by py,α that the verifier accepts y when choosing α as step (V1). Clearly, for
at least an ε/2 fraction of the possible α’s, it holds that py,α ≥ ε/2. We fix any such
α for the rest of the discussion. We now consider notions that refer to the residual
probability space induced by a uniformly distributed r ∈ {0, 1}poly(n) (as selected by
the verifier in step (V2)).

• For a query value q∈{0, 1}d, a query index i∈ [m], a possible answer σ∈{0, 1},
and a parameter δ∈ [0, 1], we say that σ is δ-strong for (i, q) if, conditioned
on the ith query being q, the probability that P̃n properly answers the ith
query with σ is at least δ. That is,

Prr[�′q = σ is proper | q = Qpcp(y, r, i)] ≥ δ ,

where �′q = �′Qpcp(y,r,i)(α, r) as well as its being proper are determined based
on α and r.
When i and q are understood from the context, we just say that σ is a δ-strong
answer.

• We say that a query q ∈ {0, 1}d has δ-conflicting answers if there exist i and
j (possibly i = j) such that 0 is δ-strong for (i, q) and 1 is δ-strong for (j, q).

We stress that throughout the rest of the analysis we consider a fixed α ∈ {0, 1}n and
a uniformly distributed r ∈ {0, 1}poly(n).

Our goal is to show that if py,α ≥ ε/2, then we can extract a witness for y by
using P̃n. We first show that using P̃n, we can reconstruct an adequate PCP oracle
that convinces Vpcp (with probability at least poly(ε)), although the strategy of P̃n
need not be consistent with any such oracle. That is, although a priori the strategy
of P̃n may answer queries in an inconsistent fashion, we shall show that in order to
be convincing the answers of P̃n must be “essentially” consistent.

As a preparation to the oracle reconstruction procedure, we first show (in
Claim 3.5.1) that answers that are not adequately strong are quite rare (because
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they are useless for convincing V ). Indeed, the oracle reconstruction will be based on
adequately strong answers (i.e., answers that appear frequently in interactions). Next,
we show (via Claim 3.5.2) that reconstructing the oracle based on strong answers is
essentially well-defined, because queries that have conflicting answers (which are both
adequately strong) occur rarely in the interaction.

Claim 3.5.1. The probability that the verifier accepts while receiving only δ-strong
answers is at least py,α −mδ.

(Recall that m is the number of queries asked by the PCP verifier Vpcp.) Thus,
picking δ = py,α/2m, we may focus on the case that all of the prover’s answers are
δ-strong (since this case occurs with nonnegligible probability).

Proof. The key observation is that whenever the verifier accepts, it is the case
that all answers are proper. Intuitively, answers that are not δ-strong (i.e., are rarely
proper) are unlikely to appear in such interactions. Specifically, we just upper bound
the probability that, for a uniformly distributed r, there exists i ∈ [m] such that
the answer �′Qpcp(y,r,i) is proper but not δ-strong for (i, Qpcp(y, r, i)). Fixing any i

and any possible value of qi, by definition (of being proper but not δ-strong), the
probability that the answer �′qi

is proper but not δ-strong for (i, qi) is smaller than δ.
Averaging over the possible values of qi (as emerging from Qpcp(y, ·, i)) and taking a
union bound over all i ∈ [m], the claim follows.

Claim 3.5.2. There exists a probabilistic polynomial-time oracle machine that,
for any δ, given α and oracle access to P̃n, finds collisions with respect to hα with
a success probability that is polynomially related to δ/m and to the probability that
the verifier makes a query that has δ-conflicting answers. That is, let ηα denote the
probability that (after choosing α in step (V1)) the verifier makes a query that has
δ-conflicting answers. Then, the probability of finding a collision (i.e., z′ �= z′′ such
that hα(z′) = hα(z′′)) is at least ηαδ2/m3.

Thus, on a typical α (or rather on all but a negligible fraction of the α’s) and
for δ > 1/poly(n), the quantity ηα must be negligible, because otherwise we derive a
contradiction to the collision-resistant hypothesis of the family {hα}. Consequently,
for δ = py,α/2m > 1/poly(n), we may focus on the case that the prover’s answers are
not (δ/2)-conflicting.

Proof. We uniformly select r ∈ {0, 1}poly(n) and i ∈ [m], hoping that qi =
Qpcp(y, r, i) is δ-conflicting (which is the case with probability at least ηα/m). Uni-
formly selecting i′, i′′ ∈ [m], and invoking the reverse-sampling algorithm Spcp on
inputs (y, i′, qi) and (y, i′′, qi), respectively, we obtain uniformly distributed r′ and r′′

that satisfy qi = Qpcp(y, r′, i′) and qi = Qpcp(y, r′′, i′′). We now invoke P̃n twice,
feeding it with α and r′ (resp., α and r′′) in the first (resp., second) invocation. As-
suming that qi is δ-conflicting, with probability at least (δ/m)2, both answers to qi will
be proper but with opposite values. Thus, with probability at least (ηα/m) · (δ/m)2,
we have obtained two different proper answers to the same query qi. In such a case,
the authentication information corresponding to these two (proper) answers yields a
collision under hα because of the following considerations:

• Both answers to query qi are authenticated with respect to the same pair
(d, �λ) that was sent by P̃n in step (P1). Note that these different values are
provided as the label of the (same) leaf associated with the string qi ∈ {0, 1}d.

• Each of the different values for the same leaf (associated with qi) is authen-
ticated with respect to the same value of the root (i.e., �λ). This means that
a collision under hα must occur somewhere along the path from the leaf to
the root. The details follow.
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Recall that when invoked with input α and r′ (resp., α and r′′), the circuit P̃n
provides authenticating information corresponding to the leaf qi. This infor-
mation takes the form of a sequence of pairs 〈(�′γi,j0, �

′
γi,j1) : j = 0, . . . , d− 1〉

(resp., 〈(�′′γi,j0, �
′′
γi,j1) : j = 0, . . . , d− 1〉), where γi,j denotes the j-bit long

prefix of qi. Note that �′qi
�= �′′qi

(i.e., the answers to qi are different),
while �′λ = �λ = �′′λ (since both sequences refer to the same root value
�λ). Thus, there exists a j ∈ {0, . . . , d − 1} such that �′γi,j

= �′′γi,j
and

�′γi,j+1
�= �′′γi,j+1

. It follows that hα(�′γi,j0�
′
γi,j1) = �′γi,j

= �′′γi,j
= hα(�′′γi,j0�

′′
γi,j1)

but �′γi,j0�
′
γi,j1 �= �′′γi,j0�

′′
γi,j1.

The claim follows.
Suppose for a moment that (for δ = py,α/2m) all of the prover’s answers are δ-

strong, but none is (δ/2)-conflicting. Then, we can use the prover’s answers in order
to construct (and not merely claim the existence of) an oracle for the PCP system
that makes Vpcp accept with probability at least py,α/2. Specifically, let the qth bit
of the oracle be σ if and only if there exists an i such that σ is δ-strong for (i, q). This
setting of the oracle bits can be determined in probabilistic polynomial time by using
the reverse-sampling algorithm Spcp to generate multiple samples of interactions in
which these specific oracle bits are queried. Specifically, we want to determine the
qth bit we generate, for every i ∈ [m], multiple samples of interactions in which the
ith oracle query equals q and determine the answer by using the gap provided by the
hypothesis that for some i there is an answer that is δ-strong for (i, q), whereas (by
the nonconflicting hypothesis) for every j the opposite answer is not (δ/2)-strong for
(j, q).

Recall that the foregoing outline relies on the simplifying assumption by which
all of the prover’s answers are δ-strong, but none is (δ/2)-conflicting. In general,
some queries may either have no strong answers or be conflicting (although these
cases will occur rarely). In such a case, the procedure may fail to recover the cor-
responding entries in the PCP oracle, but this will not matter much (because with
sufficiently high probability the PCP verifier will not query these badly recovered
locations).

The oracle-recovery procedure. We present a probabilistic polynomial-time oracle
machine that, on input (y, α) and q ∈ {0, 1}d and oracle access to the prover P̃n,
outputs a candidate for the qth bit of a PCP oracle. The procedure operates as
follows, where T def= poly(n/δ) and δ = ε/4m:

1. For i = 1, . . . ,m and j = 1, . . . , T , invoke Spcp on input (y, i, q) and obtain
ri,j .

2. For i = 1, . . . ,m and j = 1, . . . , T , invoke P̃n, feeding it with α and ri,j , and
if the ith answer is proper, then record (i, j) as supporting this answer value.

3. If for some i ∈ [m], there are (2δ/3) · T records for the form (i, ·) supporting
the value σ ∈ {0, 1}, then define σ as a candidate. That is, σ is a candidate if
there exists an i and at least (2δ/3) · T different j’s such that the ith answer
of P̃n(α, ri,j) is proper and has value σ.

4. If a single value of σ ∈ {0, 1} is defined as a candidate, then set the qth bit
accordingly. (Otherwise, do whatever you please.)

We call the query q good if it does not have (δ/2)-conflicting answers and there
exists an i ∈ [m] and a bit value that is δ-strong for (i, q). As shown below, for a good
query, with overwhelmingly high probability, the foregoing procedure will define the
latter value as a unique candidate (less than (δ/2) ·T , for every i′). Let us denote the
PCP oracle induced by the above procedure by π.
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Claim 3.5.3. Let δ = ε/4m, and recall that py,α ≥ ε/2. Suppose that the
probability that V makes a query that has (δ/2)-conflicting answers is at most py,α/4.
Then, with probability at least 1−2−n taken over the reconstruction of π, the probability
that Vpcp

π(y) accepts is lower bounded by py,α/4.
Proof. By definition, for each good query q, there exist i ∈ [m] and σ ∈ {0, 1}

such that σ is δ-strong for (i, q), whereas (for every i′) the opposite bit σ̄ is not
δ/2-strong for (i′, q). It follows that, with probability at least 1 − 2−n

2
, the bit σ

is declared (in step 3) a candidate for the qth oracle bit, because each invocation of
P̃n(α, Spcp(y, i, q)) supports σ with probability at least δ. Similarly, with probability
at least 1 −m · 2−n2

, the bit σ̄ is not declared a candidate (for the qth oracle bit),
because for every i′ each invocation of P̃n(α, Spcp(y, i′, q)) supports σ̄ with probability
at most δ/2. Thus, with probability at least 1 − |π| · (m + 1) · 2−n2

> 1 − 2−n, the
oracle π reconstructed by the procedure is such that for every good q the qth bit of
π equals the (single) answer that is δ-strong. Combining the hypothesis (regarding
(δ/2)-conflicting answers) with Claim 3.5.1, we conclude that with probability at least
(py,α −mδ) − (py,α/4) ≥ py,α/4, taken solely over the choice of the random tape r,
the verifier (of the interactive argument) accepts while making only good queries and
receiving only δ-strong answers. Fixing any such random tape r and recalling that
the (interactive argument) verifier V accepts only if Vpcp accepts the answers that V
obtained, we conclude that in the latter case (i.e., when r is such that V accepts while
making only good queries and receiving only δ-strong answers) it holds that Vpcp

π

accepts too (when using the same r). The claim follows.
Note that so far we have analyzed the behavior of the oracle-recovery procedure

with respect to individual α’s. Specifically, Claim 3.5.3 asserts that in some cases
(i.e., those satisfying the claim’s hypothesis) the procedure succeeds (i.e., yields an
adequate oracle), whereas Claim 3.5.2 asserts that in the remaining relevant cases one
can form collisions under the corresponding hashing function. Using the hypothesis
that the family of hashing functions is collision-resistant, we infer that typically (i.e.,
for a random α) the oracle-recovery procedure works well. The details follow.

We call α useful if it satisfies the hypothesis of Claim 3.5.3 (i.e., if py,α ≥ ε/2
and the probability that V makes a query that has (ε/8m)-conflicting answers is at
most py,α/4). Indeed, Claim 3.5.3 asserts that, for any useful α, with probability
at least 1 − 2−n, the oracle-recovery procedure yields an oracle π such that Vpcp

π(y)
accepts with probability at least py,α/4 ≥ ε/8. By Claim 3.5.2, if the main hypothesis of
Claim 3.5.3 does not hold (for α), then a collision (w.r.t. hα) is formed with probability
at least (py,α/4) · (ε/8m)2/m3. Thus, with overwhelmingly high probability over the
choice of α, either py,α is negligible or the main hypothesis of Claim 3.5.3 holds for
α. Recalling that py,α ≥ ε/2 with probability at least ε/2 (over the choices of α), it
follows that in such a case the hypothesis of Claim 3.5.3 may fail only with negligible
probability (for such a random α). We conclude that a random α is useful with
probability at least (ε/2) − μ(n) > ε/4.

So far we showed that if the interactive argument accepts with nonnegligible prob-
ability, then with similar probability we can reconstruct an oracle that convinces the
PCP verifier with nonnegligible probability. The weak proof-of-knowledge property
(of the interactive argument) now follows from the corresponding property of the PCP
system. Specifically, combining the PCP extractor with the foregoing oracle-recovery
procedure, we obtain the desired extractor (detailed next).

Extractor for the argument system. On input (y, i), where y = (M,x, t) and i ∈ [t],
and access to a prover strategy P̃n, the extractor operates as follows (using δ = ε/4m):
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1. Uniformly select α ∈ {0, 1}n, hoping that α is useful (which holds with prob-
ability at least ε/4). Fix α for the rest of the discussion.

2. Uniformly select coins ω for the oracle-recovery procedure, and fix ω for the
rest of the discussion. Note that the oracle-recovery procedure (implicitly)
provides oracle access to a PCP oracle π, which is determined by (P̃n, y, α,
and ω).
We say that ω is α-useful if the foregoing oracle-recovery procedure defines
an oracle π such that Vpcp

π(y) accepts with probability at least ε/8. Recall
that, by Claim 3.5.3, if α is useful, then, with probability at least 1− 2−n, a
random ω is α-useful.

3. Invoke Epcp(y, i), providing it with oracle access to π. This means that each
time Epcp(y, i) makes a query q, we invoke the oracle-recovery procedure on
input (y, q) (and with α and ω as fixed above) and obtain the qth bit of π,
which we return as an answer to Epcp(y, i). When Epcp(y, i) provides an
answer (supposedly the ith bit of a suitable witness w for y), we just output
this answer.

Recall that if α is useful, and ω is α-useful, then with probability at least 2/3
(over the coins of Epcp), the output of Epcp (and thus of our extractor) will be correct
(i.e., will yield the desired bit of a fixed witness for y). This follows by the proof-of-
knowledge property of the PCP system, which refers to convincing Vpcp with proba-
bility at least 2−n, while here Vpcp is convinced with probability at least ε/8 > 2−n.
Using suitable amplification, we can obtain (for each bit in the witness) the correct
answer with probability at least 1−2−2n (over the coins of Epcp), depending again on
α and ω being useful. Denoting the coins of the amplified Epcp by ρ, we infer that, for
at least a fraction 1−t ·2−2n ≥ 1−2−n of the possible ρ’s, the amplified Epcp provides
correct answers for each of the possible t-bit locations. We call such ρ’s (α, ω)-useful.

Let us denote the foregoing extractor by E. The running time of E is dominated
by the running time of the oracle-recovery procedure, whereas the latter is dominated
by the poly(n/ε) invocations of P̃n (during the oracle-recovery procedure). Using
ε = 1/p(n), it follows that E runs in polynomial time (specifically, the running time
is polynomial in n and p(n)). The random choices of E correspond to the above three
steps; that is, they consist of α, ω, and ρ. Whenever they are all useful (i.e., α is
useful, ω is α-useful, and ρ is (α, ω)-useful), the extractor E recovers correctly each
of the bits of a suitable witness (for y). The event in the condition (i.e., α, ω, and ρ
being adequately useful) occurs with probability at least (ε/4) · (1−2−n) · (1−2−n) >
ε/5 = 1/5p(n). Letting p′(n) = 5p(n), the lemma follows.

4. Application to zero-knowledge arguments. Using Theorem 1.1, we prove
Theorem 1.2 in two steps:

1. Using any constant-round public-coin universal argument, we derive one that
is witness indistinguishable. Here we follow the paradigm of “encrypted in-
teractions” (introduced in [10] and also used in Barak’s paper [6]). The
construction and its analysis, which appear in section 4.1, differ from prior
versions that appeared (or are outlined) in [8, 7, 17].

2. Using the result of the first step, we modify Barak’s main construction [6] of
a zero-knowledge argument (for any S ∈ NP) such that it can be analyzed
based on standard collision-resistant hashing. Specifically, rather than using
any collision-resistant hashing (for the very first message in his protocol),
we use tree hashing (as in step (P1) of Construction 3.4) composed with an
error-correcting code. The construction and its analysis appear in section 4.2.
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The reasons for the various modifications will be discussed in the corresponding
subsections. But before turning to the constructions, we stress that the notion of
witness indistinguishability (which is typically applied to proofs/argument systems
for specific sets in NP) needs to be redefined when applied to universal arguments.
Specifically, this property should apply to any “fragment” of RU that can be rec-
ognized in time that is polynomial in the length of the common input (where the
polynomial is fixed after the universal argument system is specified). That is, we
refer to the following definition.

Definition 4.1 (witness indistinguishable universal argument). A universal
argument system (P, V ) is called witness indistinguishable (WI) if, for every poly-
nomial p, every polynomial-size circuit family {V ∗

n }n∈N, and every three sequences
〈yn = (Mn, xn, tn) : n ∈ N〉, 〈w1

n : n ∈ N〉, and 〈w2
n : n ∈ N〉 such that |yn| = n, tn ≤

p(|xn|), and (yn, w1
n), (yn, w2

n) ∈ RU , the probability ensembles {〈P (w1
n), V ∗〉(yn)}n∈N

and {〈P (w2
n), V

∗〉(yn)}n∈N are computationally indistinguishable, where 〈P (w), V ∗〉(y)
denotes the output of V ∗ when interacting with P (w) on common input y.

Note the analogy to the discussion at the end of section 1.2 (regarding “natural
applications of universal arguments”).

4.1. Constructing witness indistinguishable universal arguments. Our
starting point is any constant-round, public-coin universal argument (for SU ) denoted
by (Pua, Vua). For the sake of simplicity, we assume (without loss of generality) that,
on any n-bit long common input, each message sent by either parties has length
m = poly(n). Using the public-coin clause this means that the protocol proceeds in
rounds, where in each round the verifier selects uniformly an m-bit string, and the
prover responds with an m-bit string determined based on its inputs and the messages
it has received so far. We denote by cua the (constant) number of such rounds; in the
case of Construction 3.4, cua = 2.

A second ingredient used in the construction is a (constant-round, public-coin)
nonoblivious statistically binding commitment scheme. Loosely speaking, such a
scheme allows a sender to “commit” to a value such that the value remains hid-
den from the receiver and still the sender is “committed” to this value. Furthermore,
“statistically binding” means that, with high probability, if the commitment phase is
concluded successfully, then there exists at most one value v that can be later revealed
as a proper decommitment, whereas “nonoblivious” means that the sender actually
knows this value v. For further discussion see Appendix B, where we also show that
such a scheme can be constructed based on the existence of one-way functions. We
denote this commitment scheme by C and the corresponding decommitment verifi-
cation by D. Furthermore, we denote by (d, c) ← C(v) an execution of C in which
the sender enters the value v, the receiver obtains the commitment value c, and the
sender obtains corresponding decommitment information d satisfying D((v, d), c) = 1.
Recall that statistically binding means that, with overwhelmingly high probability,
the protocol yields a commitment c such that if for any v, d, v′, and d′ it holds that
D((v, d), c) = 1 and D((v′, d′), c) = 1, then it must be that v = v′. The nonoblivious
condition means that the sender knows the (at most) one value v for which there
exists d such that D((v, d), c) = 1 holds; that is, there exists a knowledge extractor
(as in the definition of the proofs of knowledge (see, e.g., [16, section 4.7.1])) that can
extract from the sender this value v.

A third (and last) ingredient used in the construction is a (constant-round, public-
coin) zero-knowledge proof of constant soundness error for some NP-complete set.
Such a proof system can be constructed based on the existence of one-way func-
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tions (see, e.g., [16, Chapter 4, Exercise 20]).15 Let us denote such a system by
(Pzk, Vzk).

The construction presented next is based on an “encrypted” emulation of the
execution of the universal argument system (Pua, Vua). That is, the prover in our
protocol responds to the verifier’s messages by sending commitments to the messages
that Pua would have sent. This encrypted form of the prover’s messages does not
impair the new verifier that merely emulates Vua, because Vua is of the public-coin
type. At the end of the emulation phase, the prover provides a zero-knowledge proof
that the committed values correspond to a transcript that Vua would have accepted.
The zero-knowledge property of the foregoing protocol is quite intuitive, and so we
focus on its weak proof-of-knowledge property. Indeed, the fact that the commitment
scheme is nonoblivious is used for extracting the corresponding transcript, but the
acceptability of this transcript is guaranteed only when the new prover convinces the
new verifier with constant probability (which originates in the constant soundness er-
ror of the zero-knowledge proof). To handle any nonnegligible acceptance probability,
we repeat the foregoing protocol for a superlogarithmic number of times, where these
repetitions are performed in parallel (so to maintain a constant number of rounds).
These repetitions do not necessarily preserve the zero-knowledge property of the ba-
sic protocol, but they preserve its witness indistinguishability property. The resulting
protocol is described next.

Construction 4.2 (a witness indistinguishable universal argument).
Common input: y = (M,x, t), supposedly in SU . Let n def= |y|.
Auxiliary input to the prover: w such that supposedly (y, w) ∈ RU holds.
Part 1. Encrypted emulations of (Pua, Vua). The parties perform n parallel emu-

lations of the (Pua, Vua) protocol, where each emulation is performed in a par-
tially encrypted manner. Specifically, the verifier generates random messages
exactly as Vua, but the prover answers with commitments to the corresponding
responses of Pua. That is, for i = 1, . . . , cua, the parties emulate in parallel
n copies of the ith round of (Pua, Vua) as follows:

1. The verifier selects uniformly at random r1i , . . . , r
n
i ∈ {0, 1}m and sends

these strings to the prover.
2. The prover determines the answers of Pua and responds with commit-

ments to them. That is, for j = 1, . . . , n, the prover first determines
aji ← Pua(y, w; rj1, . . . , r

j
i ). Next, the parties invoke n parallel executions

of C, where the prover plays the sender and the verifier plays the re-
ceiver, such that the jth copy yields the output pair (sji , e

j
i ) ← C(aji ).

If the verifier detects improper termination in any of these executions,
then it halts and rejects.

Part 2. Proving that Vua accepts in the encrypted emulations. The parties invoke
the proof system (Pzk, Vzk), where the prover’s goal is proving that the tran-
scripts (rj1, e

j
1, . . . , r

j
cua
, ejcua

) generated in Part 1 correspond to encryptions (or
rather commitments) of accepting (Pua, Vua) transcripts. That is, the parties
run n parallel copies of (Pzk, Vzk) such that, in the jth copy, the NP statement
being proved refers to the input (y, r1, e1, . . . , rcua , ecua) and asserts that there
exists ((aj1, s

j
1), . . . , (a

j
cua
, sjcua

)) such that

15This construct replaces the strong WI proof system of negligible soundness error assumed in [8].
Unfortunately, contrary to prior misconceptions (cf. [16, section 4.6]), such protocols are not known
to exist [17, Appendix C.3]. In fact, in our construction, we may use a strong WI proof system of
constant soundness error (for some NP-complete set), but we do not know of such a protocol that
is not zero-knowledge as well.
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1. for i = 1, . . . , cua, it holds that D((aji , s
j
i ), e

j
i ) = 1;

2. Vua(y; r
j
1, a

j
1, . . . , r

j
cua
, ajcua

) = 1.
Needless to say, the prover executes this copy of Pzk using the NP witness
((aj1, s

j
1), . . . , (a

j
cua
, sjcua

)), where this sequence of pairs is as determined by it
in Part 1.
Note that the length of the NP statement being proven (as well as the length
of the corresponding NP witness) is bounded by a fixed polynomial in n +m
(and thus by a fixed polynomial in n).

We denote the above verifier and prover strategies by V and P , respectively.
Clearly, Construction 4.2 is constant-round and public-coin and satisfies the first

two requirements of Definition 2.1; that is, the verifier’s strategy is implementable in
probabilistic polynomial-time, and completeness holds with respect to a prover strat-
egy that (given y = (M,x, t) and w as above) runs in time polynomial in TM (x,w).
To establish that Construction 4.2 is a WI universal argument, it remains to prove
the following two properties of Construction 4.2:

1. the weak proof-of-knowledge property, which in turn implies also the compu-
tational soundness property;

2. the witness indistinguishability property (as per Definition 4.1).
We mention that (unlike in [8, Lemma 4.2]) the following proofs do not take

advantage of the fact that the basic ingredients are constant-round protocols. We start
with the witness indistinguishability property because its proof is significantly simpler.

Lemma 4.3. Construction 4.2 is WI (as per Definition 4.1), provided that (Pzk, Vzk)
is zero-knowledge and that C is computationally hiding.

Proof. We view Construction 4.2 as the result of n parallel executions of a basic
protocol denoted by (P ′, V ′) such that (P ′, V ′) consists of performing a single en-
crypted execution of (Pua, Vua) followed by a (single) execution of (Pzk, Vzk), which
refers to this encrypted transcript (and is aimed at establishing that this encrypted
transcript encodes an accepting transcript of (Pua, Vua)). Intuitively, this basic proto-
col is zero-knowledge, because it can be simulated by generating dummy commitments
and invoking the simulator of (Pzk, Vzk) on these commitments. The computational
indistinguishability of this simulation from the real execution is argued as follows:

• As a mental experiment, we consider a hybrid distribution in which the sim-
ulator of (Pzk, Vzk) is invoked on an encrypted transcript of (Pua, Vua).

• The computationally hiding property of the commitment scheme implies that
the output of our simulator (which invokes the simulator of (Pzk, Vzk) on
dummy commitments) is computationally indistinguishable from the forego-
ing hybrid distribution (which invokes the same simulator on commitments
that correspond to a transcript of (Pua, Vua)).

• By our hypothesis regarding the simulator of (Pzk, Vzk), the hybrid distri-
bution is computationally indistinguishable from the real execution of the
basic protocol (in which (Pzk, Vzk) is invoked on the encrypted transcript of
(Pua, Vua)).

Having established the zero-knowledge property of the basic protocol, we con-
clude that the basic protocol (i.e., (P ′, V ′)) is WI (in the sense of Definition 4.1).
Furthermore, when confining our attention to common and auxiliary inputs that are
admissible as per Definition 4.1, it is the case that P ′ runs in polynomial time (when
given adequate auxiliary inputs). Thus, the witness indistinguishability of P ′ (on
such inputs) is preserved under parallel composition (cf., e.g., [16, section 4.6.2]).
The lemma follows.
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Lemma 4.4. Construction 4.2 satisfies the weak proof-of-knowledge property of
Definition 2.1, provided that so does (Pua, Vua) and that C is statistically binding and
nonoblivious.

Proof. Here we decompose Construction 4.2 in a different way, considering Part 1
as a whole and Part 2 as a whole. We start with an overview of the proof. Loosely
speaking, the nonoblivious property of the commitment scheme guarantees that we
can extract the cleartext version of all encrypted transcripts (of (Pua, Vua)), but at this
point it is unclear whether any of these transcripts is accepting. Using the statistically
binding property of the commitment scheme, we distinguish the case that some of
these transcripts are accepting from the case that none of them is accepting. Using
the (constant error) soundness of (Pzk, Vzk), we infer that the second case (which
refers to multiple failures) happens with negligible probability, and so we may ignore
it. Thus, either V detects an improper execution of the commitment scheme or we are
able to extract an accepting transcript of (Pua, Vua). It follows that if V is convinced
with some noticeable probability p, then for some j ∈ [n], with probability at least
p/n (or so), the jth transcript is accepting and extractable. At this point the lemma
follows by invoking the weak proof-of-knowledge property of (Pua, Vua). We now turn
to the actual proof.

Fixing an arbitrary prover strategy for Construction 4.2, we shall derive a related
strategy for the underlying universal-argument system such that the circuit complexity
(resp., the success probability) of the resulting strategy will be related to the circuit
complexity (resp., the success probability) of the original strategy. Specifically, let
us consider an arbitrary family {P̃n}n∈N of (deterministic) polynomial-size circuits
representing a possible prover strategy in the system (P, V ). Fixing a generic n

and y ∈ {0, 1}n, we let py
def= Pr[(P̃n, V )(y) = 1]. Using P̃n, we shall construct a

corresponding prover strategy P̃ua that makes Vua accept y with probability Ω((py −
μ(n))/n), where μ is some negligible function. Thus, once we are done constructing
P̃ua, the weak proof-of-knowledge property of Construction 4.2 will follow from the
weak proof-of-knowledge property of the underlying universal argument system.

We thus turn to constructing P̃ua, which starts by uniformly selecting j ∈ [n] and
tries to extract the cleartext messages that are encrypted (or rather committed) in
the transcript of the jth interaction performed by P̃n in Part 1. Specifically, after
selecting j, the strategy P̃ua operates in cua iterations, where in each iteration it
obtains from P̃n a sequence of encrypted messages and extracts from it a (cleartext)
message that it sends to Vua. That is, for i = 1, . . . , cua, the following occurs:

1. The strategy P̃ua obtains from the (real) verifier Vua a (uniformly distributed)
string denoted by ri ∈ {0, 1}m.

2. The strategy P̃ua selects uniformly r1i , . . . , r
j−1
i , rj+1

i , . . . , rni ∈ {0, 1}m and
feeds r1i , . . . , r

j−1
i , ri, r

j+1
i , . . . , rni to P̃n, obtaining a residual sender (i.e., a

committer) for the current round of executions of the nonoblivious commit-
ment scheme. Using this residual sender and the knowledge extractor guar-
anteed for the nonoblivious commitment scheme, the strategy P̃ua extracts
the (unique) cleartext message that may correspond to the jth copy of the
current executions of the nonoblivious commitment scheme. (Note that the
nonoblivious/proof-of-knowledge property is preserved when the protocol is
executed multiple times in parallel.)

3. The strategy P̃ua sends the aforementioned answer to the (real) verifier Vua.
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Note that we do not claim, at this point, that the extracted values correspond to
proper decommitments and furthermore that they yield an accepting transcript. At
this point we wish only to establish that P̃ua extracts the only values that may be
properly decommitted.

We now turn to the analysis of the size of P̃ua and its success probability. These
quantities are determined by the size of P̃n and its success probability denoted by
py. We may indeed focus on the case that py is a noticeable function of n = |y| (i.e.,
py > 1/poly(n)). Recall that P̃n executes cua + 1 subprotocols, where the first cua

protocols are n parallel executions of the nonoblivious commitment scheme and the
last protocol consists of n parallel executions of the (constant-error) zero-knowledge
proof system. (Indeed, we neglect the fact that each of the first cua protocols actually
consists of a random n · m-bit long message sent from the verifier to the prover,
followed by n parallel executions of the nonoblivious commitment scheme.)16 We first
prove that, with probability at least py/2, the entire execution produces a transcript
such that for every i ∈ {0, 1, . . . , cua}, given the partial transcript of the i previous
executions, the next execution is successful with probability at least py/2cua. This
follows from the following general claim.

Claim 4.4.1. For a finite set Ω and an integer m, consider an arbitrary G ⊆ Ωm,
and let ρ = |G|/|Ω|m. For i ∈ [m], a sequence (e1, . . . , em) ∈ Ωm is called i-good if
Pre∈Ω[(e1, . . . , ei−1, e) ∈ Gi] ≥ ρ

2(m−1) , where (e′1, . . . , e′i) ∈ Gi if and only if there
exist e′i+1, . . . , e

′
m ∈ Ω such that (e′1, . . . , e′m) ∈ G. Then, at least half of the sequences

in G are i-good for every i ∈ [m].
Needless to say, the foregoing sequences correspond to the executions of the differ-

ent m = cua + 1 protocols, and i-good sequences correspond to transcripts in which,
given the partial transcript of the i − 1 previous (successful) executions, the next
execution is successful with probability at least py

2(m−1) . Actually, we give up on ex-
ecution transcripts that are not fully successful, and yet for every i ∈ [c + 1], given
the partial transcript of the i−1 previous executions, the next execution is successful
with probability at least py

2(m−1) .
Proof. Let Bi

def= {(e1, . . . , ei−1) ∈ Ωi−1 : Pre∈Ω[(e1, . . . , ei−1, e) ∈ Gi] < ρ/2(m−
1)} be the set of all (i − 1)-long prefixes of sequences that are not i-good. Note
that B1 = ∅, because Pre∈Ω[e ∈ G1] ≥ Pre∈Ωm [e ∈ G] = ρ. Now, on one hand,
every sequence in G that has no prefix in ∪mi=1Bi is i-good for every i. On the other
hand, the number of sequences in G that have a prefix in Bi is less than ρ

2(m−1) ·
|Ω|m, because each such sequence has an i-long prefix (e1, . . . , ei−1, ei) ∈ Gi, whereas
Pre∈Ω[(e1, . . . , ei−1, e) ∈ Gi] < ρ/2(m− 1). The claim follows.

Turning back to Construction 4.2, we note that (by Claim 4.4.1) a py/2 fraction
of all executions is fully successful and furthermore each partial transcript of these
executions leads to success in the next execution with probability at least py/2cua.
Thus, (1) in these executions each of the cua rounds of nonoblivious commitments is
successful with probability at least py/2cua, and (2) the same holds for the interactive
proofs that take place in Part 2.

The first foregoing fact implies that (in these executions), for every choice of j and
for i = 1, . . . , cua, the strategy P̃ua can extract the value committed in the jth copy of
the ith iteration of Part 1 (or rather the only value that can be decommitted as such)
by invoking P̃n for poly(n)

py/2cua
times (and failing with negligible probability). Thus, we

16This ignored (random) message can be viewed as belonging to the previous subprotocol.
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can bound the size of P̃ua by poly(n)/py times the size of P̃n and conclude that (in
these executions) P̃ua answers with messages that equal the values committed in the
corresponding executions of P̃n (or rather the only values that can be decommitted
as such).

Combining the second foregoing fact, which refers to Part 2, with the constant
soundness error of each execution of the proof system, it follows that at least one of
the n parallel executions that took place in Part 1 corresponds (i.e., can be prop-
erly decommitted) to a (Pua, Vua)-transcript that is accepting, because otherwise the
probability that all of these executions of the interactive proof are successful is at
most sn � py/2cua, where s < 1 denotes the constant soundness error of the proof
system. We stress that the proper decommitment requirement guarantees that this
transcript corresponds to the messages sent by P̃ua.

Hence, with probability at least (py/2) − μ(n) > py/3, for every choice of j, the
strategy P̃ua sends messages that correspond to the only possible proper decommit-
ments of the corresponding commitment of P̃n, and at least one of these n possible
transcripts (corresponding to the choice of j ∈ [n]) is accepting. Conditioned on the
foregoing, with probability at least 1/n, the strategy P̃ua selects j such that the re-
covered (Pua, Vua)-transcript is accepting. We conclude that P̃ua convinces Vua with
probability at least py/3n, and the lemma follows.

Remarks. We stress again that Construction 4.2 is different from the correspond-
ing construction presented in [8]. It is also different from the patch described in [7,
Appendix A.4] and the one outlined in [17, Appendix C.3.3]. An important difference
is that the current proof of Lemma 4.4 does not rely on the fact that the protocols
employed have a constant number of rounds. We also mention that the main analysis
of Construction 4.2, which is provided in the proofs of Lemmas 4.3 and 4.4, proceeds
by decomposing the construction in two different ways. A similar strategy is employed
in Appendix B (see the proof of Claims B.2.1 and B.2.2).

4.2. Modifying Barak’s zero-knowledge argument. Here our starting point
is any (constant-round, public-coin) strong WI universal argument (for SU) denoted
by (Pwi-ua, Vwi-ua).

A second ingredient used in the construction is a tree-hashing scheme denoted by
TH, as used in Construction 3.4. Loosely speaking, such a scheme can be applied to
arbitrary long strings and allows for the verification of the value of a particular bit in
the string within time polynomial in the hash value (and possibly polylogarithmic in
the length of the string). We stress that the verification does not require presenting
the entire string to which the hashing was applied (but rather only auxiliary authen-
tication information that is specific to that bit position). Recall that tree hashing
is constructed based on some “basic” hashing function (which maps 2n-bit strings
to n-bit strings), and that conflicting values assigned to any bit position in the tree
hashing yield a collision in the basic hashing. Specifically, when using a basic hashing
function indexed by α and applying the tree-hashing procedure to an m-bit long string
z that is placed at the leaves of the (log2m-deep) tree, we denote the resulting label
of the root by THα(z) and denote the corresponding sequence of m authenticators by
authα(z).17

17That is, THα(z) = �λ, where �i is the ith bit of z and �γ = hα(�γ0�γ1). Actually, here

it is more natural to let THα(z) = �0,0, where �d,i is the ith bit of z ∈ {0, 1}2d
and �j,i =

hα(�j+1,2i�j+1,2i+1). Similarly, the ith sequence in authα(z) is (�d,2�i/2�, �d,2�i/2�+1, �d−1,2�i/4�,
�d−1,2�i/4�+1, . . . , �1,2�i/2d�, �1,2�i/2d�+1).
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In addition, we use a standard statistically binding commitment scheme denoted
by C and a binary error-correcting code of constant relative distance and polynomial-
time encoding algorithm denoted by ECC. Recall that a commitment scheme as de-
scribed above can be constructed based on any one-way function (see, e.g., [16, sec-
tion 4.4.1]), whereas even stronger forms of error-correcting codes are known to exist
unconditionally (e.g., consider a concatenation code that combines a Reed–Solomon
code with the encoding of the small field elements by a Hadamard code). As in Con-
struction B.2, we let Cs(z) denote the receiver’s view of the commitment phase (of C)
when the sender inputs the value z and uses randomness s.

The key idea in our modification of Barak’s construction [6] is replacing an arbi-
trary collision-resistant hashing of strings by the following two-step (hashing) process:

1. Apply the error-correcting code to the input string.
2. Apply the tree hashing to the resulting code word.

The advantage of this two-step (hashing) process over standard hashing is that
if two different strings are hashed to the same value, then we can quickly obtain a
collision in the basic hashing function (underlying the tree hashing). We stress that
this collision is found in time that is polynomial in the hash value (which may be
polylogarithmic in the length of the strings being hashed). The reason is that, with
(positive) constant probability, a uniformly selected bit position in the code word
will have different values in the two code words, and in this case we obtain from
the corresponding authentications a collision in the basic hashing. (The foregoing
motivational discussion will be clarified by the proof of Lemma 4.6.)

Construction 4.5 (a zero-knowledge argument for S ∈ NP (with a correspond-
ing witness relation RS)).

Common input: x, supposedly in S. Let n def= |x|.
Auxiliary input to the prover: w such that supposedly (x,w) ∈ RS holds.
Part 1. Introducing a trapdoor for the simulation. The prover commits to a

dummy value that allows cheating in the case that this value provides a de-
scription of the supposedly random value that is sent by the verifier after
getting the said commitment. This is done as follows:

1. The verifier uniformly selects α ∈ {0, 1}n (i.e., a basic hash function)
and sends it to the prover.

2. The prover sends a dummy commitment (i.e., a commitment to the value
02n); that is, it sends c def= Cs(02n) to the verifier, where s denotes the
sender’s randomness in this execution of the commitment scheme.

3. The verifier uniformly selects r ∈ {0, 1}n and sends it to the prover.
Cheating in Part 2 will become possible if and only if r agrees with c in
the sense that one may present a circuit Π such that Π(c) = r and c =
Cs(|ECC(Π)|, THα(ECC(Π))).

Part 2. Effectively proving that x ∈ S. Specifically, the prover will prove that he
knows either a witness w for x ∈ S (i.e., (x,w) ∈ RS) or a circuit Π such
that Π(c) = r and c = Cs(|ECC(Π)|, THα(ECC(Π))). This is done as follows:
Loosely speaking, the parties invoke the proof system (Pwi-ua, Vwi-ua) on com-
mon input (x, α, c, r), where the prover intends to prove that it knows a tuple
(w,m, η, γ, s) such that either (x,w) ∈ RS or (η, γ, s) encodes authentication
and decommitment information for a circuit Π such that Π(c) = r, where the
encoding clause means that it holds that η = ECC(Π) ∈ {0, 1}m, γ = authα(η),
and c = Cs(|η|, THα(η)).18 Actually, the parties reduce the above instance

18The reason that we include (in the witness) the authentication information (i.e., auth(ECC(Π)))
rather than including Π itself will become clear in the proof of Lemma 4.6. Furthermore, for simplicity
and clarity, we explicitly include in the witness both ECC(Π) and its length.
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(x, α, c, r) to the triplet y = (M ′
S , (x, α, c, r), 2

n), where y ∈ {0, 1}poly(n) is
supposedly in SU and M ′

S is such that M ′
S((x, α, c, r), (w,m, η, γ, s)) def= 1 if

and only if at least one of the following two conditions holds:
1. (x,w) ∈ RS.
2. m = |η|, c = Cs(m, THα(η)), γ = authα(η), and Π(c) = r, where Π ←

ECC−1(η) is a description of a circuit (i.e., η = ECC(Π)).
When invoking Pwi-ua, the prover provides it with the witness (w,m0, η0, γ0, s0),
where m0 = n and η0 = γ0 = s0

def= 0n are (short) dummy values.
Note that the first condition can be evaluated in (fixed) polynomial time (in
|x|), whereas the complexity of evaluating the second condition is dominated
by the running time of Π on input c. Furthermore, if (x,w) ∈ RS, then
(y, (w,m0, η0, γ0, s0)) ∈ RU and the running time of Pwi-ua on (y, (w,m0, η0,
γ0, s0)) is a fixed polynomial in |x|. We stress that, in any case, the length of
the statement being proven is bounded by a fixed polynomial in |x|.

We denote the above verifier and prover strategies by V and P , respectively.
Clearly, Construction 4.5 is constant-round and public-coin and employs a proba-

bilistic polynomial-time verifier strategy. Furthermore, the designated prover satisfies
the completeness property while running in polynomial time, given x and w as de-
scribed above. Demonstrating that Construction 4.5 is zero-knowledge is done by
following the ideas of [6]. We start with a rough sketch of this proof and then turn to
establish the computational soundness property of Construction 4.5.

Construction 4.5 is zero-knowledge. We present a non–black-box simulator that,
given the code of any feasible cheating verifier (represented by a polynomial-size
circuit family {Ṽn}n∈N), simulates the interaction of P with that verifier. Specifi-
cally, given Ṽn, the simulator emulates Part 1 of the protocol, except that it sets
c← Cs(|ECC(Ṽn)|, THα(ECC(Ṽn))) instead of c← Cs(02n). Next, the simulator emulates
Part 2 of the protocol by using the witness (w0, |ECC(Ṽn)|, ECC(Ṽn), authα(ECC(Ṽn)), s),
where w0 = 0n is a (short) dummy value, s was selected by the simulator when emu-
lating Part 1, and Ṽn was given to it as an (auxiliary) input.

Needless to say, given Ṽn, the simulator computes η ← ECC(Ṽn) as well as the
tree-hash value THα(η) and the corresponding sequence of authenticators authα(η)
in polynomial time. It follows that, for every polynomial bounding the size of the
verifier’s strategy (i.e., Ṽn), the simulator runs in poly(n)-time. It is thus left to show
that, for every polynomial bounding the size of the verifier’s strategy (i.e., Ṽn), the
simulator’s output (produced when given Ṽn as auxiliary input) is computationally
indistinguishable from a real execution (as in Construction 4.5). The proof proceeds
as follows:

• As a mental experiment, we consider a hybrid distribution in which Part 1
is performed as in the simulation (i.e., by committing to the tree hashing of
the encoding of Ṽn) but Part 2 is performed as in the real execution (i.e., by
using a witness w to the common input x).

• Combining the computationally hiding property of the commitment scheme
and the fact that P (when given w) runs in poly(n) time, it follows that
the hybrid distribution is computationally indistinguishable from the real
execution of the protocol.

• The witness indistinguishability property of Pwi-ua implies that the simula-
tor’s output (in which the witness Ṽn is used) is computationally indistin-
guishable from the hybrid distribution (in which the witness w is used). We
stress that, when using the witness indistinguishability property of Pwi-ua,
we refer to witnesses that are verifiable in fixed polynomial (in n) time (be-
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cause the polynomial bounding the size of Ṽn has been fixed for the current
discussion).

Thus, the zero-knowledge feature follows.
Construction 4.5 is computationally sound. We show that any feasible cheating

strategy for the prover yields a feasible algorithm that forms collisions with respect
to the basic hashing family {hα :{0, 1}2|α|→{0, 1}|α|}α∈{0,1}∗ . The main idea is using
the (weak) proof-of-knowledge property of Vwi-ua in order to implicitly reconstruct
error-correcting code words that encode (different) valid witnesses that correspond to
different executions of Part 1. We stress that since there is no a priori polynomial
bound on the length of such witnesses, we cannot afford to explicitly reconstruct them
(as done in [6], where only a contradiction to superpolynomial hardness is derived).
However, implicit reconstruction of valid code words will suffice, because different
witnesses will be encoded by code words that differ on a constant fraction of the bit
locations.

Lemma 4.6. Construction 4.5 is computationally sound (w.r.t. S), provided that
the family {hα} is indeed collision resistant.

Proof. Suppose towards the contradiction that there exists a feasible prover strat-
egy that fools V with nonnegligible probability (to accept inputs not in S). Specif-
ically, let {P̃n}n∈N be such a family and p be a polynomial such that for infinitely
many x �∈S it holds that px

def= Pr[(P̃n, V )(x) = 1] > 1/p(|x|). Let us fix a generic n
and x ∈ {0, 1}n\S such that px > 1/p(n). For simplicity, we incorporate this x in P̃n.
Using {P̃n}n∈N, we present a family of circuits {Cn}n∈N that try to form collisions.
On input α ∈ {0, 1}n, the circuit Cn proceeds as follows:

1. Invoking P̃n, on input α, the circuit Cn obtains c← P̃n(α). This is supposedly
a commitment produced by the cheating prover (in the second step of Part 1
of the protocol).

2. Uniformly selecting r ∈ {0, 1}n and feeding it to P̃n yields a residual prover
P̃n(α, r) for Part 2 of the protocol. That is, ˜Pwi-ua

def= P̃n(α, r) is a prover
strategy for the (WI) universal-argument system (Pwi-ua, Vwi-ua).
We shall focus on the case that ˜Pwi-ua convinces Vwi-ua to accept (x, α, c, r)
with probability at least px/4 > 1/4p(n). In this case, the (weak) proof-of-
knowledge property guarantees that we can implicitly reconstruct a witness
(w,m, η, γ, s) that satisfies the second condition in Part 2 (because x �∈ S
makes it impossible to satisfy the first condition (i.e., the condition (x,w) ∈
RS)). Recall that the second condition implies that η encodes a circuit Π
such that Π(c) = r and futhermore that m = |η|, c = Cs(m, THα(η)), and
γ = authα(η). In the following two steps, we shall first use the foregoing
(implicit) reconstruction procedure to obtain m and next use it to obtain the
ith bit of η as well as the corresponding (authentication) segment of γ, for a
uniformly selected i ∈ [m].

3. Invoking the knowledge extractor guaranteed for the system (Pwi-ua, Vwi-ua),
while providing it with oracle access to ˜Pwi-ua, we reconstruct the values at
bit locations n + 1, . . . , 2n in the witness (i.e., the integer m that indicates
the length of a code word).
Recall that the values at bit locations 2n+1, . . . , 2n+m are an error-correcting
encoding of Π, and the subsequent m strings consist of authentication infor-
mation for the corresponding bits.

4. The circuit Cn uniformly selects i ∈ [m]. Invoking the knowledge extractor
again with oracle access to ˜Pwi-ua, it reconstructs the value of the ith bit of
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the code word as well as the values in the bit locations that correspond to
the authenticator of the ith bit in the code word.

5. We repeat Steps 2 and 4 with a new uniformly selected r′ ∈ {0, 1}n but with
the same value of i as selected in Step 4. That is, analogously to Step 2,
we first obtain a corresponding prover strategy ˜P ′

wi-ua
def= P̃n(α, r′) (for the

(WI) universal argument system (Pwi-ua, Vwi-ua)). We need not repeat Step 3
because the statistically binding property of C guarantees the uniqueness of
m (obtained in Step 3). Analogously to Step 4, we invoke the knowledge
extractor with oracle access to ˜P ′

wi-ua and obtain the value of the ith bit of
a code word (which encodes a circuit Π′ such that Π′(c) = r′) as well as the
values in the bit locations that correspond to the authenticator of this bit.
Recall that, since x /∈ S, the witness used by ˜P ′

wi-ua must encode a program
Π′ such that Π′(c) = r′. Since (with probability 1− 2−n it holds that) r �= r′

(and Π(c) = r), it must be the case that Π′ �= Π (whereas |ECC(Π)| = m =
|ECC(Π′)|). We hope that ECC(Π) and ECC(Π′) differ on the ith bit (which hap-
pens with constant probability), in which case we obtain authenticators for
conflicting values (with respect to the same label of the root of the tree (where
the uniqueness of this label is due to the statistically binding property of C)).

6. The circuit Cn examines the authenticators obtained in Steps 4 and 5. If
they authenticate conflicting values, then the circuit derives a collision under
hα (as in the proof of Claim 3.5.2).

The foregoing circuit family has a polynomial size (because each Cn is imple-
mentable by the same probabilistic polynomial-time oracle machine, which in turn is
given access to the polynomial-size P̃n). We now turn to analyze the success proba-
bility of Cn.

Claim 4.6.1. Given a uniformly distributed α ∈ {0, 1}n, with probability at least
1/poly(n), the circuit Cn outputs a collision with respect to hα.

Proof. Recall that P̃n makes V accept x with probability px > 1/p(n), where the
probability is taken over V ’s random choices in the two parts of Construction 4.5.
Moreover, V ’s choices in Part 1 are (α, r), where α (resp., r) is uniformly selected in
{0, 1}n.

We call α good if the probability that P̃n makes V accept x, conditioned on V
selecting α in the first step of Part 1, is at least px/2. Clearly, at least a px/2 fraction
of the α’s is good, and we focus on any such good α.

Similarly, we say that r is α-good if the probability that P̃n makes V accept x,
conditioned on V selecting α and r in Part 1, is at least px/4. We denote by G = Gα
the set of α-good strings and note that |G| > (px/4) · 2n (since α is good). That
is, for every r ∈ G, the residual prover P̃n(α, r) convinces Vwi-ua with probability
at least px/4 > 1/4p(n), and therefore the knowledge extractor (given oracle access
to P̃n(α, r)) implicitly extracts the corresponding witness with probability at least
qn

def= 1/poly(n), where the polynomial depends on the polynomial p.
Observe that, with probability at least (px/4)2, both r and r′ selected in Steps 2

and 5, respectively, reside in G. Conditioned on this event, we (implicitly) extract
both of the corresponding witnesses with probability at least q2n. We stress that the
two witnesses must be of the same length by virtue of their lengths being committed
to in c (sent by the prover in the second step of Part 1). Finally, with constant
probability, these witnesses differ in bit position i (selected in Step 4), in which case
Cn succeeds in forming a collision under hα.
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We conclude that, for any good α, the circuit Cn succeeds in forming a collision
under hα with probability at least (px/4)2 · q2n · Ω(1) = 1/poly(n). Recalling that at
least px/2 = 1/poly(n) of the α’s are good, the claim follows.

Using Claim 4.6.1, we derive a contradiction to the hypothesis that {hα} is
collision-resistant. The lemma follows.

Achieving bounded concurrent zero knowledge. We have shown that Construc-
tion 4.5 satisfies the first two extra properties asserted in Theorem 1.2. To establish
the third extra property, we slightly modify the construction (analogously to the way
this is done in [7, Chapter 4], which constitutes the full version of [6]). Specifically, for
a suitably chosen polynomial �, in Part 1 we select r uniformly in {0, 1}�(n)+n (rather
than in {0, 1}n), and in Part 2 we relax the second condition (or case) such that now
we require that there exists a string z ∈ {0, 1}�(n) such that Π(c, z) = r (rather than
requiring that Π(c) = r). The extra string z allows us to encode information from n2

concurrent executions of the protocol (see details in [7, section 4.4]) and so enables
the simulator strategy to insert a “trapdoor” into the second step of Part 1 of the
current execution (and thus proceed in an “execution-by-execution” manner). When
demonstrating computational soundness, we merely observe that, for a uniformly dis-
tributed r′ ∈ {0, 1}�(n)+n (chosen in Step 5), it is unlikely that Π, which is (implicitly)
recovered (in Step 4) obliviously of r′, will satisfy Π(c, z′) = r′ for some z′ ∈ {0, 1}�(n).

Appendix A. Auxiliary properties of popular PCP systems. We claim
that the PCP system of Babai et al. [5] satisfies all of the auxiliary properties listed
in Definition 3.2. As stated in the main text, it is clear that this PCP system is
nonadaptive, and thus we turn to establish the following remaining properties:19

Relatively efficient oracle construction. The oracle in this PCP system consists of
two parts: (1) a low-degree extension of a multivariate function that encodes
the original witness, and (2) various partial sums of the values of this poly-
nomial, where the number of these partial sums is smaller than the size of
the domain of the low-degree extension. The low-degree polynomial can be
constructed in time that is polynomial in the length of the explicit description
of the aforementioned function, and the same holds with respect to each of
the partial sums.

Efficient reverse sampling. The queries in this PCP system are either evaluations
of the aforementioned polynomial at various points or queries regarding some
partial sums of such values. Specifically, the queries belong either to the low-
degree test or to the sum check, respectively. The queries of the low-degree
test are points along a random line, while the queries of the sum check are
prefixes of a random point. Thus, given i and q, it is easy to select uniformly
a random tape for the verifier such that the ith query of the verifier (on this
random tape) equals q.

A proof-of-knowledge property. The standard analysis of this PCP system actually
establishes that if the verifier rejects with probability smaller than 1/2, then
part of the oracle is (very) close to a low-degree polynomial that extends
a multivariate function that encodes a valid witness. Thus, by standard
self-correction, we may (probabilistically) recover each bit in this witness in
polynomial time. Hence, we obtain a polynomial-time oracle machine E such
that for every x and π that satisfy Pr[V π(x) = 1] > 1/2 it follows that there

19Needless to say, we assume some familiarity with the work of Babai et al. [5]. In particular, the
high-level overview provided in [18, section 9.3.2.2] suffices.
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exists w = w1 · · ·wt such that (x,w) ∈ R and Pr[Eπ(x, i) = wi] > 2/3 holds
for every i.

As stated in the main text, to obtain the desired error of ε, we apply straightforward
error reduction (on the PCP system) while noting that this process does not affect
the oracle, and so the resulting (error-reduced) PCP preserves all of the auxiliary
properties (including a proof-of-knowledge property that refers to a lower level of
error). This completes the proof of Theorem 3.3.

We comment that the foregoing considerations are not specific to the PCP system
of [5] but rather hold also with respect to many other PCP systems.

Appendix B. Nonoblivious commitment schemes. We first recall the def-
inition of nonoblivious commitment schemes, following [16, section 4.9.2.1] and [17,
section C.3.3]. This definition augments the definition of a standard commitment
scheme as presented in [16, section 4.4.1.1]. The latter definition (i.e., [16, Defini-
tion 4.4.1]) refers to a scheme that is computationally hiding and statistically bind-
ing. Loosely speaking, such a commitment scheme is an efficient two-phase two-party
protocol through which one party, called the sender, can commit itself to a value so
that the following two conflicting requirements are satisfied:

Hiding. At the end of the first phase, the other party, called the receiver, does
not gain any knowledge of the sender’s value. This requirement has to be
satisfied even if the receiver tries to cheat. The computational version asserts
that the receiver’s views of interactions regarding any two values used by the
sender are computational indistinguishable.

Binding. Given the transcript of the interaction in the first phase, there exists at
most one value that the receiver may later (i.e., in the second phase) accept
as a legal “opening” of the commitment. This requirement has to be satisfied
even if the sender tries to cheat. The statistical version asserts that this
property holds with overwhelmingly high probability (even if the sender is
compuationally unbounded), where the probability is taken solely over the
receiver’s randomness.

In addition, one should require that the protocol is viable in the sense that if both
parties follow it, then, at the end of the second phase, the receiver gets the value
committed to by the sender. Throughout this appendix we refer to commitment
schemes that are computationally hiding and statistically binding. Actually, for the
sake of simplicity, we assume that the binding propery is perfect (i.e., it holds with
probability 1).20

It is indeed time to define formally the notion of a proper opening of a com-
mitment, which is also known as proper decommitment. Typically, one considers
a canonical decommitment, which consists of all randomness used by the sender in
the commit phase. In this case, the value v and the sender’s randomness s may be
considered a proper decommitment to the receiver’s view of the commitment phase
if it is consistent with that view (i.e., using these values along with the receiver’s
randomness yields the transcript of messages seen by the receiver). However, a more

20We mention that such (perfectly binding) commitment schemes can be constructed based on
any one-way permutation [16, section 4.4.1.2], but only commitment schemes with nonperfect sta-
tistical binding are known to be constructible based on any one-way function [16, section 4.4.1.3].
Definition B.1 can be extended (from the case of perfectly binding commitment schemes) to the
case of statistically binding commitment schemes by referring to a proof of knowledge for a promise
problem, where the promise set consists of all interaction transcripts that can be opened in at most
one way (i.e., yielding one value).
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general notion of proper decommitment may be beneficial. Specifically, we refer to an
arbitrary algorithm D that satisfies the following two conditions:

1. If the commitment phase is performed properly using the sender’s value v
and the outcome is a pair (s, c), where s is given to the sender and c is given
to the receiver, then D((v, s), c) = 1. This means that (v, s) is accepted as a
proper decommitment to c.

2. If the receiver follows the commitment phase properly, then the receiver out-
put c is such that there exists at most one value of v such that the set
{s : D((v, s), c) = 1} is nonempty.

Needless to say, the aforementioned canonical decommitment gives rise to such
an algorithm D. In what follows, we shall assume (without loss of generality) that the
commitment c is contained in the information s has given to the sender.

Recall that the foregoing condition 2 mandates that, even when the sender cheats,
there exists at most one value v that can be properly decommitted for the output c
(i.e., at most one v satisfies {s : D((v, s), c) = 1} �= ∅). This does not mean that
the sender necessarily knows v, and furthermore such a v may not exist at all (i.e.,
{s : D((v′, s), c) = 1} = ∅ may hold for every v′). The following nonobliviousness
requirement mandates that the sender “knows” the set of values for which proper
decommitment is impossible; that is, if the receiver does not detect cheating, then
it is the case that the sender knows v such that for every v′ �= v there is no proper
decommitment to c that yields the value v′ (i.e., {s : D((v′, s), c) = 1} = ∅ holds).

Definition B.1 (nonoblivious commitment schemes). A commitment scheme
is called nonoblivious if its commit phase consists of two subphases such that the
first subphase is an ordinary commitment phase and the second subphase is a proof
of knowledge of the only possible value that can be properly decommitted with respect
to the first subphase. That is, the commitment scheme (S,R) decomposes into S =
(S1, S2) and R = (R1, R2) such that

1. (S1, R1) is a commitment scheme with a decommitment-verification algorithm
D;

2. (S2, R2) is a proof-of-knowledge system (with negligible error—see [16, sec-
tion 4.7.1]) for the relation

{(c, v) : ∀v′ �=v ∀s′ D((v′, s′), c) �= 1},(B.1)

and this proof system is invoked on common input c and the prover’s auxiliary
input (v, s), where (s, c) is a result of applying (S1, R1) to the value v.

Note that the relation defined in (B.1) is not necessarily an NP-witness relation
(i.e., it is not necessarily polynomial-time recognizable), but the definition of a proof
of knowledge applies nevertheless (see [16, section 4.7.1] and further discussions in
[9]). A seemingly stronger notion (of nonoblivious commitment schemes) requires a
proof of knowledge for an NP-witness relation R′ such that (c, v) satisfies (B.1) if and
only if there exists w ∈ {0, 1}poly(|c|) such that (c, (v, w)) ∈ R′ holds. We comment
that Construction B.2 (below) satisfies this stronger definition.

We mention that, in [17, section C.3.3], Definition B.1 is referred to as a relaxed
version of the notion of a nonoblivious commitment scheme, whereas in the nonrelaxed
notion the second subphase is required to prove knowledge of the input as well as of
the proper decommitment information. That is, in the strict (i.e., nonrelaxed) notion
of nonoblivious commitment schemes (outlined in [17, section C.3.3]), the second
subphase is a proof of knowledge of an input and decommitment information that
are consistent with the receiver’s view of the first subphase (i.e., a proof-of-knowledge
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system for the relation {(c, (v, s)) : D((v, s), c) = 1}). (In particular, this implies that
this stage is a proof of membership for the corresponding language, hence proving
that there does in fact exist a value v that can be properly decommitted.) Originally,
we thought that we could provide a constant-round public-coin implementation of
the strict notion, but a flaw in our reasoning was discovered by Haitner, Rosen, and
Shaltiel. Although the relaxed notion suffices for our applications (as well as for other
natural applications (see, e.g., [16, section 4.9.2.2])), we believe that the question
of whether the strict notion can be implemented by a constant-round public-coin
protocol is of independent interest.

Constructing nonoblivious commitment schemes. Our construction follows the
outline provided in [17, section C.3.3]. The basic idea is augmenting a standard
commitment scheme with an adequate zero-knowledge proof of knowledge, but the
problem is that such a proof of knowledge that is also constant-round and public-
coin is not known. As observed in [16, section 4.9.2.1], it suffices to use a strong-WI
proof of knowledge, but such a protocol is not known either (see [17, section C.3]).
We stress that in both cases we have referred to protocols with negligible soundness
error and that corresponding protocols with constant soundness error do exist. The
solution suggested in [17, section C.3.3] is using multiple commitments (via the stan-
dard scheme) and applying a strong-WI proof of knowledge of constant soundness
error to each of the different commitments. In this setting (of statistically indepen-
dent inputs), the strong-WI property is preserved under parallel executions (cf. [17,
Lemma C.3.1]). The following construction merely spells out this suggestion.

Construction B.2 (a nonoblivious commitment scheme). Let C be a standard
statistically binding commitment scheme, and let Cs(x) denote the receiver’s view of
the commitment phase when the sender inputs the value x and uses randomness s. The
following description refers to committing to the value v under the security parameter
n, where |v| ≤ poly(n):

First commit subphase. The parties invoke C, in parallel, for n times. In all
invocations the sender enters the value v, and in the ith invocation the receiver
obtains the value ci = Csi(v), where si denotes the sender’s randomness.
These n invocations yield a standard commitment scheme with a decommit-
ment algorithm D that accepts the value v if it is supported by n proper decom-
mitments with respect to the basic commitment scheme; that is, D((v, s′), c) =
1 if c = (c1, . . . , cn) and s′ = (s′1, . . . , s′n) such that for every i ∈ [n] it holds
that ci = Cs′i(v).

Second commit subphase. The parties perform, in parallel, n copies of the follow-
ing protocol. In the ith copy, the sender proves in zero knowledge that it knows
the values v and si that were used in the corresponding copy of the first sub-
phase. That is, the sender proves that it knows (v, si) such that ci = Csi(v).
Each of these proofs of knowledge has constant soundness error. If the re-
ceiver detects cheating in any of these executions, then it aborts, indicating
that the sender is cheating. Otherwise, the receiver accepts the commitment
(c1, . . . , cn).

A proper decommitment to the value v with respect to a transcript c = (c1, . . . , cn) of
the first subphase consists of a sequence of n strings (s′1, . . . , s

′
n) such that for every

i ∈ [n] it holds that ci = Cs′i(v).
Construction B.2 inherits the statistical-binding property of the standard com-

mitment C (since a proper decommitment in Construction B.2 requires proper decom-
mitments of C to the same value). We first show that, although the zero-knowledge
property may not be preserved in the parallel executions that take place in the second
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commit subphase, this subphase preserves the computational-hiding property of the
standard commitment C.

Claim B.2.1. Construction B.2 is computationally hiding.
Proof. We view Construction B.2 as consisting of n parallel executions of a basic

protocol in which the sender first commits to v and then proves (in zero knowledge)
that it knows a proper decommitment. This basic protocol is computationally hiding
because it consists of producing a computationally hiding commitment and running
a zero-knowledge proof regarding this commitment.21 Thus, it suffices to prove that
any computationally hiding commitment scheme preserves this property under parallel
executions. Indeed, the proof proceeds by a hybrid argument and is very similar to
the proof of Lemma C.3.1 in [17].

It is left to establish the nonoblivious property of Construction B.2. To this end,
we assume that the proof of knowledge employed is such that the verifier tosses a
single coin (and indeed has knowledge error 1/2).22 We note that such protocols (of
constant soundness error) exist; see, e.g., [16, Chapter 4, Exercise 28.1].

Claim B.2.2. Construction B.2, when implemented using a proof of knowledge
in which the verifier tosses a single coin, is nonoblivious.

Proof. We fix an arbitrary execution of the first (commit) subphase and consider a
random execution of the second (commit) subphase, which amounts to n parallel exe-
cutions of the proof-of-knowledge protocol. Fixing an arbitrary (deterministic) sender
strategy, the underlying probability space consists of the n random (bit) choices made
in the corresponding executions. We denote by p the probability that the receiver is
convinced by all of these proofs, where here the probability is taken uniformly over
all of the receiver’s n (binary) choices. We call the ith copy good if, for each choice of
the verifier bit in this copy, the receiver is convinced (in this copy) with probability at
least p/n, where the probability is taken over the receiver’s choices in all of the other
n− 1 copies. The current claim follows by combining two facts:

1. If p > 2−n, then at least one of the indices is good.
Otherwise, we reach a contraction by upper bounding the number of points
in the probability space that cause the receiver to be convinced. Specifically,
if all indices are not good, then for every i ∈ [n] there exists a bit σi such
that the number of convincing points in which the ith bit equals 1 − σi is
less than (p/n) · 2n−1. Thus, the total number of convincing points is less
than 1 + n · (p/n)2n−1, because the set of convincing points denoted by C is
a subset of

{σ1 · · ·σn} ∪ {α1 · · ·αn ∈ C : ∃i∈ [n] s.t. αi = 1 − σi}.
It follows that p · 2n < 1 + p · 2n−1, which yields p < 2−(n−1). Recalling
that p is defined with respect to a probability space of size 2n, it follows that
p ≤ 2−n, in contradiction to the hypothesis p > 2−n.

2. If i is good, then the corresponding knowledge (i.e., a pair (vi, si) such that
ci = Csi(vi)) can be extracted in poly(n)/p steps.
By making O(n/p) trials, we can generate a convincing transcript for each of
the (two) possible choices of the verifier’s random bit in the execution of the
ith copy. This implies extraction (by the definition of a proof of knowledge).

21Indeed, it is instructive to note that the zero-knowledge property implies the strong-WI property
(see [16, section 4.6.1.1]), whereas the latter property preserves the computational indistinguishability
of C-commitments (to different values).

22We believe that the argument can be extended to the general case (or at least to all standard
proof-of-knowledge protocols). See the related discussion in [9, Appendix C.2].
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Thus, assuming p > 2−n, we can extract the relevant decommitment information
(i.e., v as well as at least one corresponding si such that ci = Csi(v)) in time that is
inversely proportional to the probability that the receiver is convinced in the second
commit subphase. This information guarantess that the corresponding value (i.e., v)
is the only value for which a proper decommitment exists. It follows that the second
commit subphase (of Construction B.2) constitutes a proof of knowledge, with error
2−n, of the only possible value that can be properly decommitted with respect to the
first subphase. The claim follows.

Recalling that all ingredients used in Construction B.2 can be implemented based
on any one-way function (via constant-round public-coin protocols), we get the fol-
lowing theorem.

Theorem B.3. The existence of one-way functions implies the existence of
nonoblivious commitment schemes. Furthermore, these systems are of the public-coin
type and use a constant number of rounds.

We also mention that the properties of nonoblivious commitment schemes are pre-
served when many copies of the scheme are executed in parallel (or even concurrently
under arbitrary scheduling). The preservation of the standard properties of a commit-
ment scheme follows by a hybrid argument (as employed in the proof of Claim B.2.1).
The preservation of the nonoblivious (or rather the proof-of-knowledge) property fol-
lows by focusing on each individual copy and considering an auxiliary sender that
emulates all of the other copies. (We stress that we do not claim here a reduction in
the soundness error of the proof-of-knowledge property but rather a preservation of
the proof-of-knowledge property at the same level of soundness error.)

Acknowledgments. We are grateful to the anonymous referees for their careful
review and for numerous corrections and suggestions. We are indebted to Iftach Hait-
ner, Alon Rosen, and Ronen Shaltiel for discovering a flaw in a previous presentation
(see Appendix B).
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[12] G. Brassard, D. Chaum, and C. Crépeau, Minimum disclosure proofs of knowledge, J.
Comput. System Sci., 37 (1988), pp. 156–189.

[13] R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodology, revisited, J.
ACM, 51 (2004), pp. 557–594.

[14] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, Approximating clique is
almost NP-complete, J. ACM, 43 (1996), pp. 268–292.

[15] L. Fortnow, J. Rompel, and M. Sipser, On the power of multi-prover interactive protocols,
Theoret. Comput. Sci., 134 (1994), pp. 545–557.

[16] O. Goldreich, Foundation of Cryptography – Basic Tools, Cambridge University Press, Cam-
bridge, 2001.

[17] O. Goldreich, Foundation of Cryptography – Basic Applications, Cambridge University Press,
Cambridge, 2004.

[18] O. Goldreich, Computational Complexity: A Conceptual Perspective, Cambridge University
Press, Cambridge, 2008.

[19] O. Goldreich, S. Micali, and A. Wigderson, Proofs that yield nothing but their validity or
all languages in NP have zero-knowledge proof systems, J. ACM, 38 (1991), pp. 691–729.

[20] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proof
systems, SIAM Comput., 18 (1989), pp. 186–208.

[21] J. Kilian, A note on efficient zero-knowledge proofs and arguments, in Proceedings of the 24th
Symposium on Theory of Computing, Victoria, Canada, 1992, pp. 723–732.

[22] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, Algebraic methods for interactive proof
systems, J. ACM, 39 (1992), pp. 859–868.

[23] S. Micali, Computationally sound proofs, SIAM J. Comput., 30 (2000), pp. 1253–1298.



SIAM J. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 38, No. 5, pp. 1695–1708

EXPONENTIAL SEPARATION FOR ONE-WAY QUANTUM
COMMUNICATION COMPLEXITY, WITH APPLICATIONS TO

CRYPTOGRAPHY∗

DMITRY GAVINSKY† , JULIA KEMPE‡, IORDANIS KERENIDIS§ , RAN RAZ¶, AND

RONALD DE WOLF‖
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cation protocols for a partial Boolean function (a variant of the Boolean hidden matching problem of
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1. Introduction. One of the main goals of quantum computing is to exhibit
problems where quantum computers are much faster (or otherwise better) than clas-
sical computers, preferably exponentially better. The most famous example, Shor’s
efficient quantum factoring algorithm [32], constitutes a separation only if one is will-
ing to believe that efficient factoring is impossible on a classical computer—proving
this would, of course, imply P �= NP. One of the few areas where one can establish
unconditional exponential separations is communication complexity.

Communication complexity is a central model of computation, first defined by
Yao [36]. It has found applications in many areas [20]. In this model, two parties, Alice
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with input x and Bob with input y, collaborate to solve some computational problem
that depends on both x and y. Their goal is to do this with minimal communication.
The problem to be solved could be a function f(x, y) or some relational problem
where for each x and y several outputs are valid. The protocols could be interactive
(two-way), in which case Alice and Bob take turns sending messages to each other;
one-way, in which case Alice sends a single message to Bob, who then determines
the output; or simultaneous, where Alice and Bob each pass one message to a third
party (the referee) who determines the output. The bounded-error communication
complexity of the problem is the worst-case communication of the best protocol that
gives (for every input x and y) a correct output with probability at least 1 − ε for
some fixed constant ε ∈ [0, 1/2), usually ε = 1/3.

Allowing the players to use quantum resources can reduce the communication
complexity significantly. Examples of problems where quantum communication gives
exponential savings were given by Buhrman, Cleve, and Wigderson for one-way and
interactive protocols with zero error probability [8]; by Raz for bounded-error inter-
active protocols [28]; and by Buhrman et al. for bounded-error simultaneous proto-
cols [9]. The first two problems are partial Boolean functions, while the third one is
a total Boolean function. However, the latter separation does not hold in the pres-
ence of public coins.1 Bar-Yossef, Jayram, and Kerenidis [4] showed an exponential
separation for one-way protocols and simultaneous protocols with public coins, but
they achieved this only for a relational problem, called the hidden matching problem.
This problem can be solved efficiently by one quantum message of logn qubits, while
classical one-way protocols need to send nearly

√
n bits to solve it. However, Boolean

functions are much more natural objects than relations both in the model of commu-
nication complexity and in the cryptographic settings that we consider later in this
paper. Bar-Yossef et al. stated a Boolean version of their problem (a partial Boolean
function) and conjectured that the same quantum-classical gap holds for this problem
as well.

1.1. Exponential separation for a variant of Boolean hidden matching.
In this paper we prove an exponential quantum-classical one-way communication gap
for a variant of the Boolean hidden matching problem of [4]. Let us first state a non-
Boolean communication problem. Suppose Alice has an n-bit string x, and Bob has
a sequence M of αn disjoint pairs (i1, j1), (i2, j2), . . . , (iαn, jαn) ∈ [n] × [n] for some
parameter α ∈ (0, 1/2]. This M may be viewed as a partial matching on the graph
whose vertices are the n bits x1, . . . , xn. We call this an α-matching. Together, x and
M induce an αn-bit string z defined by the parities of the αn edges:

z = z(x,M) = (xi1 ⊕ xj1), (xi2 ⊕ xj2), . . . , (xiαn ⊕ xjαn).

Suppose Bob wants to learn some information about z. Let x ∈ {0, 1}n be uniformly
distributed, and let M be uniform over the set Mαn of all α-matchings. Note that
for any fixed M , a uniform distribution on x induces a uniform distribution on z.
Hence Bob (knowing M but not x) knows nothing about z: from his perspective it
is uniformly distributed. But now suppose Alice can send Bob a short message. How
much can Bob learn about z, given that message and M?

The answer is very different depending on whether the message is quantum or
classical. To state this difference, we need to introduce some terminology. For prob-

1In fact, whether there exists a superpolynomial separation for a total Boolean function in the
presence of public coins is one of the main open questions in the area of quantum communication
complexity.



EXPONENTIAL SEPARATION FOR QUANTUM COMMUNICATION 1697

ability distributions p and q whose supports are subsets of a set S, define their total
variation distance as

(1) ‖ p− q ‖tvd =
∑
i∈S

|p(i) − q(i)|.

This distance is 0 if and only if p = q; it is 2 if and only if p and q have disjoint supports;
and the value lies between 0 and 2 otherwise. Suppose we want to distinguish p from q,
given a sample from one of the two. The best probability with which we can succeed
is 1

2 + ||p−q||tvd

4 . This well-known fact gives a clear intuitive meaning to the notion of
total variation distance. Modifying the protocol of [4], it is easy to show that a short
quantum message of about log(n)/2α qubits allows Bob to learn a bit at a random
position in the string z. This already puts a lower bound of 1 on the total variation
distance between Bob’s distribution on z and the uniform αn-bit distribution.

What about a short classical message? Using the birthday paradox, one can
show that if Alice sends Bob about

√
n/α bits of x, then with constant probability

there will be one edge (i�, j�) for which Bob receives both bits xi� and xj� . Since
z� = xi� ⊕ xj� , this gives Bob a bit of information about z. Our key theorem says
that this classical upper bound is essentially optimal: if Alice sends much fewer bits,
then from Bob’s perspective the string z will be close (in total variation distance) to
uniformly distributed, so he does not even know one bit of z.

In order to be able to state this precisely, suppose Alice is deterministic and sends
c bits of communication. Then her message partitions the set of 2n x’s into 2c sets,
one for each message. A typical message will correspond to a set A of about 2n−c

x’s. Given this message, Bob knows the random variable X is drawn uniformly from
this set A and he knows M , which is his input. Hence his knowledge of the random
variable Z = z(X,M) is fully described by the distribution

pM (z) = Pr[Z = z | given M and Alice’s message] =
|{x ∈ A | z(x,M) = z}|

|A| .

Our main technical result says that if the communication c is much less than
√
n/α

bits, then for a typical message and averaged over all matchings M , this distribution
is very close to uniform in total variation distance. In other words, most of the time
Bob knows essentially nothing about z.

Theorem 1. Let x be uniformly distributed over a set A ⊆ {0, 1}n of size
|A| ≥ 2n−c for some c ≥ 1, and let M be uniformly distributed over the set Mαn

of all α-matchings, for some α ∈ (0, 1/4]. There exists a universal constant γ > 0
(independent of n, c, and α), such that for all ε ∈ (0, 2], if c ≤ γε

√
n/α, then

EM [‖ pM − U ‖tvd] ≤ ε.

Note that the ε in this theorem is not the error probability of a protocol for a
Boolean function, but an upper bound on the expected distance between Bob’s dis-
tribution pM and the uniform distribution. We prove Theorem 1 using the Fourier
coefficients inequality of Kahn, Kalai, and Linial [16], which is a special case of the
Bonami–Beckner inequality [7, 5]. We remark that Fourier analysis has been previ-
ously used in communication complexity by Raz [27] and Klauck [17].

This result allows us to turn the above communication problem into a partial
Boolean function, as follows. Again we give Alice input x ∈ {0, 1}n, while Bob now
receives two inputs: a partial matching M as before and an αn-bit string w. The
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promise on the input is that w is either equal to z = z(x,M) or to its complement z
(i.e., z with all bits flipped). The goal is to find out which of these two possibilities
is the case. We call this communication problem αPM, for α-partial matching. As
mentioned before, Alice can allow Bob to learn a random bit of z with high probability
by sending him an O(log(n)/α)-qubit message. Knowing one bit z� of z suffices to
compute the Boolean function: just compare z� with w�. In contrast, if Alice sends
Bob much less than

√
n/α classical bits, then Bob still knows essentially nothing

about z. In particular, he cannot decide whether w = z or w = z ! This gives
the following separation result for the classical and quantum one-way communication
complexities (with error probability fixed to 1/3, say).

Theorem 2. Let α ∈ (0, 1/4]. The classical bounded-error one-way communica-
tion complexity of the α-PM problem is R1(αPM) = Θ(

√
n/α), while the quantum

bounded-error one-way complexity is Q1(αPM) = O(log(n)/α).
Fixing α to 1/4, we obtain the promised exponential quantum-classical separation

for one-way communication complexity of O(log n) qubits vs. Ω(
√
n) classical bits.

As noted by Aaronson [1, section 5], Theorem 2 implies that his general simulation
of bounded-error one-way quantum protocols by deterministic one-way protocols,

D1(f) = O(mQ1(f) logQ1(f)),

is tight up to a polylogarithmic factor. Here m is the length of Bob’s input. This
simulation works for any partial Boolean function f . Taking f to be our αPM for
α = 1/4, one can show that D1(f) = Θ(n), m = Θ(n logn), and Q1(f) = O(log n).
It also implies that his simulation of quantum bounded-error one-way protocols by
classical bounded-error one-way protocols,

R1(f) = O(mQ1(f)),

cannot be considerably improved. In particular, the product on the right cannot be
replaced by the sum: if we take f = αPM with α = 1/

√
n, then by Theorem 2 we

have R1(f) ≈ n3/4, m ≈
√
n logn, and Q1(f) = O(

√
n logn).

Remarks. The earlier conference version of this paper [13] had two different
communication problems, establishing an exponential one-way separation for both
of them in quite different ways. The present paper unifies these two approaches to
something substantially simpler.

The original Boolean hidden matching problem stated in [4] is our αPM with
α = 1/2 (i.e., M is a perfect matching). Theorem 2, on the other hand, assumes
α ≤ 1/4 for technical reasons. By doing the analysis in section 3 a bit more carefully,
we can prove Theorem 2 for every α that is bounded away from 1/2. Note that if
α = 1/2, then the parity of z = z(x,M) equals the parity of x, so by communicating
the parity of x in one bit, Alice can give Bob one bit of information about z. The
conference version of this paper showed that one can prove a separation for the case
whereM is a perfect matching if the promise is that w is “close” to z or its complement
(instead of being equal to z or its complement). One can think of w in this case as a
“noisy” version of z = z(x,M) (or its complement), while the w of our current version
can be thought of as starting from a perfect matching M ′, and then “erasing” some
of the n/2 bits of the string z(x,M ′) to get the αn-bit string z (or its complement).

The separation given here can be modified to a separation in the simultaneous
message passing model, between the models of classical communication with shared
entanglement and classical communication with shared randomness. Earlier, such a
separation was known only for a relational problem [4, 12], not for a Boolean function.
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1.2. Application: Privacy amplification. Randomness extractors extract al-
most uniform randomness from an imperfect (i.e., nonuniform) source of randomness
X with the help of an independent uniform seed Y . With a bit of extra work (see
section 4), Theorem 1 actually implies that our function z : {0, 1}n×Mαn → {0, 1}αn
is an extractor:

If X ∈ {0, 1}n is a random variable with min-entropy at least n −
γε

√
n/α (i.e., maxx Pr[X = x] ≤ 2−(n−γε

√
n/α)) and Y is a random

variable uniformly distributed over Mαn, then the random variable
Z := z(X,Y ) is ε-close to the uniform distribution on {0, 1}αn.

It is in fact a strong extractor: the pair (Y, Z) is ε-close to the uniform distribution
on Mαn × {0, 1}αn.2 Informally, this says that if there is a lot of uncertainty about
X , then Z will be close to uniform even if Y is known.3

Extractors have found numerous applications in computer science, in particular
in complexity theory (see, e.g., [31] and the references therein) and cryptography.
One important cryptographic application is that of privacy amplification, introduced
in [6, 15]. In this setting two parties called Alice and Bob start with a shared random
variable X , about which an adversary has partial knowledge. The parties’ goal is to
generate a secret key Z, about which the adversary would have very little information.

They can achieve this by communicating an independent uniform seed Y over
a public channel, and using a strong extractor to generate the key Z(X,Y ). Our
extractor guarantees that if the shared variable X , conditioned upon the adversary’s
knowledge, has min-entropy at least n− γε

√
n/α, then the generated αn-bit key Z,

conditioned upon adversary’s knowledge, is ε-close to uniform. On the other hand,
we show that this scheme is insecure against a quantum adversary who uses only
O(log n) qubits of storage. This is the first example of a privacy amplification scheme
that is safe against classical adversaries with up to Θ(

√
n) bits of storage (with some

small constant in the Θ(·)), but not against quantum adversaries with exponentially
less quantum storage.

This dependence on whether the adversary has quantum or classical memory is
quite surprising, particularly in light of the following two facts. First, privacy am-
plification based on two-universal hashing provides exactly the same security against
classical and quantum adversaries. The length of the key that can be extracted is given
by the min-entropy both in the classical [6, 15] and the quantum case (see [19, 30],
[29, Chapter 5]). Second, König and Terhal [18] have shown that for protocols that
extract just one bit, the level of security against a classical and a quantum adversary
(with the same information bound) is comparable.

1.3. Application: Key-expansion in the bounded-storage model. In pri-
vacy amplification, we can ensure that the adversary has much uncertainty about the
random variable X by assuming that he has only bounded storage. The idea of basing
cryptography on storage limitations of the adversary was introduced by Maurer [23]
with the aim of implementing information-theoretically secure key-expansion. In this

2Note that EM

[
‖ pM − U ‖tvd

]
= ‖ (Y, Z) − U ‖tvd, where U on the left and right is uniform

over different domains.
3It should be noted that the parameters of our extractor are quite bad, as far as these things go.

First, the uniform input seed Y takes about αn log n bits to describe, which is more than the αn bits
that the extractor outputs; in a good extractor, we want the seed length to be much shorter than
the output length. Second, our assumed lower bound on the initial min-entropy is quite stringent.
Finally, the distance from uniform can be made polynomially small in n (by putting an n − n1/2−η

lower bound on the min-entropy of X) but not exponentially small, which is definitely a drawback
in cryptographic contexts. Still, this extractor suffices for our purposes here.



1700 D. GAVINSKY, J. KEMPE, I. KERENIDIS, R. RAZ, AND R. DE WOLF

setting, a large random variable X is publicly but only temporarily available. Alice
and Bob use a shared secret key Y to extract an additional key Z = Z(X,Y ) from X ,
in such a way that the adversary has only limited information about the pair (Y, Z).
“Limited information” means that the distribution on (Y, Z) is ε-close to uniform even
when conditioned on the information about X that the adversary stored. Thus Alice
and Bob have expanded their shared secret key from Y to (Y, Z). Aumann, Ding,
and Rabin [3] were the first to prove a bounded-storage scheme secure, and essentially
tight constructions have subsequently been found [11, 22, 33].

It is an important open question whether any of these constructions remain secure
if the adversary is allowed to store quantum information. One may even conjecture
that a bounded-storage protocol secure against classical adversaries with a certain
amount of memory should be roughly as secure against quantum adversaries with
roughly the same memory bound. After all, Holevo’s theorem [14] tells us that k qubits
cannot contain more information than k classical bits. However, a key-expansion
scheme based on our extractor refutes this conjecture. The scheme is essentially the
same as the above privacy amplification scheme, but we describe it separately because
the context is a bit different. Alice and Bob will compute Z := z(X,Y ) by applying
our extractor to X and Y . If the adversary’s memory is bounded by γε

√
n/α bits,

then Z will be ε-close to uniform from the adversary’s perspective. On the other hand,
O(log n) qubits of storage suffice to learn one or more bits of information about Z,
given Y , which shows that (Y, Z) is not good as a key against a quantum adversary.
Thus we have an example of a key-expansion scheme that is secure against classical
adversaries with nearly

√
n bits of storage, but insecure against quantum adversaries

even with exponentially less quantum storage.

1.4. Application: A separation in the streaming model. In the streaming
model of computation, the input is given as a stream of bits and the algorithm is
supposed to compute or approximate some function of the input, having only space
of size S available. See, for instance, [2, 24].

There is a well-established connection between one-way communication complex-
ity and the streaming model: if we view the input as consisting of two consecutive
parts x and y, then the content of the memory after x has been processed, together
with y, contains enough information to compute f(x, y). Hence, a space-S stream-
ing algorithm for f implies a one-way protocol for f of communication S with the
same success probability. The classical lower bound for our Boolean communication
complexity problem, together with the observation that our quantum protocol can be
implemented in the streaming model, implies a separation between the quantum and
classical streaming model. Namely, there is a partial Boolean function f that can be
computed in the streaming model with small error probability using quantum space
of O(log n) qubits, but requiring Ω(

√
n) bits if the space is classical.

Le Gall [21] constructed a problem that can be solved in the streaming model using
O(log n) qubits of space, while any classical algorithm needs Ω(n1/3) classical bits.
His logn-vs.-n1/3 separation is a bit smaller than our logn-vs.-

√
n, but his separation

is for a total Boolean function while ours is only partial (i.e., requires some promise
on the input). Le Gall’s result predates ours, though we learned about it only after
finishing the conference version of our paper. We remark also that Le Gall’s separation
holds only in the streaming model variant where the bits arrive in order, while ours
holds in the more general model where we allow the different pieces of the input to
arrive in any order.

The algorithm for solving our problem in the streaming model starts out with a
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logn-qubit superposition 1√
n

∑n
i=1 |i〉. Whenever a bit xi streams by in the input,

the algorithm unitarily multiplies basis state |i〉 with a phase (−1)xi. Whenever an
edge (i�, j�) streams by, the algorithm measures with operators E1 = |i�〉〈i�|+ |j�〉〈j�|
and E0 = I − E1; in case of outcome E1, the algorithm records the values i� and j�
(note that E1 can be obtained at most once, as the edges are pairwise disjoint). And
whenever a bit (i�, j�, w�) streams by, the algorithm unitarily multiplies basis state
|min(i�, j�)〉 with a phase (−1)w� . At the end, with probability 2α the algorithm
is left with a classical record of (i�, j�) ∈ M and the corresponding quantum state
1√
2
((−1)xi�

⊕w� |i�〉 + (−1)xj� |j�〉). The algorithm can learn the function value xi� ⊕
xj� ⊕ w� from this by a final measurement.

2. The problem and its quantum and classical upper bounds. We as-
sume basic knowledge of quantum computation [26] and (quantum) communication
complexity [20, 34].

Before giving the definition of our variant of the Boolean hidden matching prob-
lem, we fix some notation. Part of Bob’s input will be a sequence M of αn disjoint
edges (i1, j1), . . . , (iαn, jαn) over [n], which we call an α-matching. We use Mαn to
denote the set of all such matchings. If α = 1/2, then the matching is perfect ; if
α < 1/2, then the matching is partial. We can view M as an αn × n matrix over
GF (2), where the �th row has exactly two 1’s, at positions i� and j�. Let x ∈ {0, 1}n.
Then the matrix-vector product Mx is an αn-bit string z = z1, . . . , z�, . . . , zαn where
z� = xi� ⊕ xj� . Using this notation, we define the following αPM problem, whose
one-way communication complexity we will study.

Alice: x ∈ {0, 1}n
Bob: an α-matching M and a string w ∈ {0, 1}αn
Promise on the input: there is a bit b such that w = Mx⊕ bαn (equivalently,

w = z or w = z)
Function value: b

Actually, most of our analysis will not be concerned with Bob’s second input
w. Rather, we will show that, given only a short message about x, Bob will know
essentially nothing about z = Mx. Note that to compute b, it suffices that Bob learns
one bit z� of the string z, since b = z� ⊕ w�. We will first give quantum and classical
upper bounds on the message length needed for this.

Quantum upper bound. Suppose Alice sends a uniform superposition of her
bits to Bob:

|ψ〉 =
1√
n

n∑
i=1

(−1)xi|i〉.

Bob completes his αn edges to a perfect matching in an arbitrary way, and measures
with the corresponding set of n/2 2-dimensional projectors. With probability 2α he
will get one of the edges (i�, j�) of his input M . The state then collapses to

1√
2

((−1)xi� |i�〉 + (−1)xj� |j�〉) ,

from which Bob can obtain the bit z� = xi� ⊕ xj� by measuring in the corresponding
|±〉-basis. Note that this protocol has so-called zero-sided error: Bob knows when he
didn’t learn any bit z�. If Bob is givenO(k/α) copies of |ψ〉, then with high probability
(at least while k � αn) he can learn k distinct bits of z.
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Remark. This protocol can be modified to a protocol in the simultaneous mes-
sage passing model in a standard way, first suggested by Buhrman (see [12]). Alice
and Bob share the maximally entangled state 1√

n

∑
i |i, i〉. Alice implements the

transformation |i〉 → (−1)xi|i〉 on her half. Bob performs the measurement with his
projectors on his half. If he gets one of the edges of his input, he sends the resulting
(i�, j�) and w� to the referee. Now Alice and Bob perform a Hadamard transform
on their halves, and measure and send the result to the referee, who has enough
information to reconstruct z�.

Classical upper bound. We sketch an O(
√
n/α) classical upper bound. Sup-

pose Alice uniformly picks a subset of d ≈
√
n/α bits of x to send to Bob. By the

birthday paradox, with high probability Bob will have both endpoints of at least one
of his αn edges and so he can compute a bit of z (and hence the function value b)
with good probability. In this protocol Alice would need to send about d logn bits
to Bob, since she needs to describe the d indices as well as their bit values. However,
by Newman’s theorem [25], Alice can actually restrict her random choice to picking
one out of O(n) possible d-bit subsets, instead of one out of all

(
n
d

)
possible subsets.

Hence d+ O(log n) bits of communication suffice. This matches our lower bound up
to constant factors.

3. Main proof. In this section we prove our main technical result (Theorem 1),
which shows that Bob knows hardly anything about the string z = Mx unless Alice
sends him a long message.

3.1. Preliminaries. We begin by providing a few standard definitions from
Fourier analysis on the Boolean cube. For functions f, g : {0, 1}n → R we define
their inner product and �2-norm by

(2) 〈f, g〉 =
1
2n

∑
x∈{0,1}n

f(x)g(x), ‖ f ‖2
2 = 〈f, f〉 =

1
2n

∑
x∈{0,1}n

|f(x)|2.

The Fourier transform of f is a function f̂ : {0, 1}n → R defined by

f̂(s) = 〈f, χs〉 =
1
2n

∑
y∈{0,1}n

f(y)χs(y),

where χs : {0, 1}n → R is the character χs(y) = (−1)y·s, with “·” being the scalar
product; f̂(s) is the Fourier coefficient of f corresponding to s. We have the following
relation between f and f̂ :

f =
∑

s∈{0,1}n

f̂(s)χs.

We will use two tools in our analysis, Parseval’s identity and the Kahn–Kalai–Linial
lemma.

Lemma 3 (Parseval). For every function f : {0, 1}n → R we have ‖ f ‖2
2 =∑

s∈{0,1}n f̂(s)2.
Note in particular that if f is an arbitrary probability distribution on {0, 1}n and

U is the uniform distribution on {0, 1}n, then f̂(0n) = Û(0n) = 1/2n and Û(s) = 0
for nonzero s, hence

(3) ‖ f − U ‖2
2 =

∑
s∈{0,1}n

(f̂(s) − Û(s))2 =
∑

s∈{0,1}n\{0n}
f̂(s)2.
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Lemma 4 (Kahn–Kalai–Linial [16]). Let f be a function f : {0, 1}n → {−1, 0, 1}.
Let A = {x | f(x) �= 0}, and let |s| denote the Hamming weight of s ∈ {0, 1}n. Then
for every δ ∈ [0, 1] we have

∑
s∈{0,1}n

δ|s|f̂(s)2 ≤
(
|A|
2n

) 2
1+δ

.

We also need the following combinatorial lemma about uniformly chosen match-
ings.4

Lemma 5. Let v ∈ {0, 1}n. If |v| = k for even k, then

Pr
M

[∃ s ∈ {0, 1}αn s .t . MT s = v] =

(
αn
k/2

)
(
n
k

) ,

where the probability is taken uniformly over all α-matchings M .
Proof. We can assume without loss of generality that v = 1k0n−k. We will

compute the fraction of matchings M for which there exists such an s. The total
number of matchings M of αn edges is n!/(2αn(αn)!(n− 2αn)!). This can be seen as
follows: Pick a permutation of n, view the first αn pairs as αn edges, and ignore the
ordering within each edge, the ordering of the αn edges, and the ordering of the last
n− 2αn vertices. Note that ∃ s s.t. MT s = v if and only if M has exactly k/2 edges
in [k] and αn−k/2 edges in [n]\[k]. The number of ways to pick k/2 edges in [k] (i.e.,
a perfect matching) is k!/(2k/2(k/2)!). The number of ways to pick αn − k/2 edges
in [n] − [k] is (n− k)!/(2αn−k/2(αn − k/2)!(n− 2αn)!). Hence the probability in the
lemma equals

k!/(2k/2(k/2)!) · (n− k)!/(2αn−k/2(αn− k/2)!(n− 2αn)!)
n!/(2αn(αn)!(n − 2αn)!)

=

(
αn
k/2

)
(
n
k

) .

This probability is exponentially small in k if α < 1/2, but it equals 1 if α = 1/2
and v = 1n.

3.2. Proof of Theorem 1. In order to prove Theorem 1, consider any set
A ⊆ {0, 1}n with |A| ≥ 2n−c and let f : {0, 1}n → {0, 1} be its characteristic function
(i.e., f(x) = 1 if and only if x ∈ A). Let ε ∈ (0, 2], α ∈ (0, 1/4], and 1 ≤ c ≤ γε

√
n/α

for some γ to be determined later.
With x uniformly distributed over A, we can write down Bob’s induced distribu-

tion on z as

pM (z) =
|{x ∈ A |Mx = z}|

|A| .

We want to show that pM is close to uniform for most M . By (3), we can achieve this
by bounding the Fourier coefficients of pM . These are closely related to the Fourier
coefficients of f :

p̂M (s) =
1

2αn
∑

z∈{0,1}αn

pM (z)(−1)z·s

=
1

|A|2αn (|{x ∈ A | (Mx) · s = 0}| − |{x ∈ A | (Mx) · s = 1}|)

4We use the standard convention
(a

b

)
= 0 whenever b > a.
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=
1

|A|2αn
(
|{x ∈ A | x · (MT s) = 0}| − |{x ∈ A | x · (MT s) = 1}|

)

=
1

|A|2αn
∑

x∈{0,1}n

f(x)(−1)x·(M
T s)

=
2n

|A|2αn · f̂(MT s).(4)

Note that the Hamming weight of v = MT s ∈ {0, 1}n is twice the Hamming weight
of s ∈ {0, 1}αn.

Using the Kahn–Kalai–Linial lemma, we get the following bound on the level sets
of the Fourier transform of f .

Lemma 6. For every k ∈ {1, . . . , 4c} we have 22n

|A|2
∑

v:|v|=k f̂(v)2 ≤
(

4
√

2c
k

)k
.

Proof. By the Kahn–Kalai–Linial inequality (Lemma 4), for every δ ∈ [0, 1] we
have

22n

|A|2
∑

v:|v|=k
f̂(v)2 ≤ 22n

|A|2
1
δk

(
|A|
2n

)2/(1+δ)

=
1
δk

(
2n

|A|

)2δ/(1+δ)

≤ 1
δk

(
2n

|A|

)2δ

≤ 22δc

δk
.

Plugging in δ = k/4c (which is in [0, 1] by our assumption on the value of k) gives the
lemma.

We bound the expected squared total variation distance between pM and U as
follows:

EM [‖ pM − U ‖2
tvd] ≤ 22αn

EM

[
‖ pM − U ‖2

2

]

= 22αn
EM

⎡
⎣ ∑
s∈{0,1}αn\{0αn}

p̂M (s)2

⎤
⎦

=
22n

|A|2 EM

⎡
⎣ ∑
s∈{0,1}αn\{0αn}

f̂(MT s)2

⎤
⎦ ,

where we used, respectively, the Cauchy–Schwarz inequality (recall that our definition
of ‖ · ‖2

2 in (2) already includes a factor 1/2αn), (3), and (4). Note that for each
v ∈ {0, 1}n, there is at most one s ∈ {0, 1}αn for which MT s = v (and the only s that
makes MT s = 0n is s = 0αn). This allows us to change the expectation over M into
a probability and use Lemma 5:

=
22n

|A|2 EM

⎡
⎣ ∑
v∈{0,1}n\{0n}

|{s ∈ {0, 1}αn |MT s = v}| · f̂(v)2

⎤
⎦

=
22n

|A|2
∑

v∈{0,1}n\{0n}
Pr
M

[
∃ s ∈ {0, 1}αn s.t. MT s = v

]
· f̂(v)2

=
22n

|A|2
2αn∑

evenk=2

(
αn
k/2

)
(
n
k

) ∑
v:|v|=k

f̂(v)2.

We first upper bound the part of this sum with k < 4c. Applying Lemma 6 for each
k, and using the standard estimates (n/k)k ≤

(
n
k

)
≤ (en/k)k and our upper bound
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c ≤ γε
√
n/α, we get

22n

|A|2
4c−2∑

even k=2

(
αn
k/2

)
(
n
k

) ∑
v:|v|=k

f̂(v)2≤
4c−2∑

evenk=2

(2eαn/k)k/2

(n/k)k

(
4
√

2c
k

)k

≤
4c−2∑

evenk=2

(
64eγ2ε2

k

)k/2
.

Picking γ a sufficiently small constant, this is at most ε2/2 (note that the sum starts
at k = 2).

In order to bound the part of the sum with k ≥ 4c, note that the function
g(k) :=

(
αn
k/2

)
/
(
n
k

)
is decreasing for the range of even k up to 2αn (which is ≤ n/2

because α ≤ 1/4):

g(k − 2)
g(k)

=

(
αn

k/2−1

)
/
(
n
k−2

)
(
αn
k/2

)
/
(
n
k

)

=
(n− k + 2)(n− k + 1)k/2
(αn− k/2 + 1)(k − 1)k

=
(n− k + 2)(n− k + 1)
(2αn− k + 2)(k − 1)

≥ n− k + 1
k − 1

≥ 1.

We also have
∑

v∈{0,1}n f̂(v)2 = |A|
2n by Parseval (Lemma 3), and 2n

|A| ≤ 2c by assump-
tion. Hence

22n

|A|2
2αn∑

even k=4c

g(k)
∑

v:|v|=k
f̂(v)2 ≤ 2cg(4c) ≤

(
8
√

2eαc
n

)2c

≤
(

8
√

2eγε
√
α

n

)2c

≤ ε2/2,

where in the last step we used α/n ≤ 1 and c ≥ 1, and picked γ a sufficiently small
constant.

Hence we have shown EM [‖ pM − U ‖2
tvd] ≤ ε2. By Jensen’s inequality we have

EM [‖ pM − U ‖tvd] ≤
√

EM [‖ pM − U ‖2
tvd] ≤ ε.

This concludes the proof of Theorem 1. Let x be uniformly distributed over a set
A ⊆ {0, 1}n of size |A| ≥ 2n−c for some c ≥ 1, and let M be uniformly distributed
over the set Mαn of all α-matchings for some α ∈ (0, 1/4]. There exists a universal
constant γ > 0 (independent of n, c, and α), such that for all ε ∈ (0, 2], if c ≤ γε

√
n/α,

then

EM [‖ pM − U ‖tvd] ≤ ε.

The ε2 upper bound on EM [‖ pM − U ‖2
tvd] is essentially tight. This can be seen

in the communication setting as follows. With probability Ω(ε2) over the choice of
M , at least one edge of M will have both endpoints in the first c = ε

√
n/α bits. Then

if Alice just sends the first c bits of x to Bob, she gives him a bit of z. This makes
‖ pM − U ‖tvd at least 1, hence EM [‖ pM − U ‖2

tvd] = Ω(ε2).

3.3. Proof of Theorem 2. Our Theorem 2, stated in the introduction, easily
follows from Theorem 1. By the Yao principle [35], it suffices to analyze deterministic
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protocols under some “hard” input distribution. Our input distribution will be uni-
form over x ∈ {0, 1}n and M ∈ Mαn. The inputs x and M together determine the
αn-bit string z = Mx. To complete the input distribution, with probability 1/2 we
set w = z and with probability 1/2 we set w to z’s complement z.

Fix ε > 0 to a small constant, say 1/1000. Let c = γε
√
n/α, and consider

any classical deterministic protocol that communicates at most C = c − log(1/ε)
bits. This protocol partitions the set of 2n x’s into 2C sets A1, . . . , A2C , one for each
possible message. On average, these sets have size 2n−C . Moreover, by a simple
counting argument, at most a 2−�-fraction of all x ∈ {0, 1}n can sit in sets of size
≤ 2n−C−�. Hence with probability at least 1 − ε, the message that Alice sends
corresponds to a set A ⊆ {0, 1}n of size at least 2n−C−log(1/ε) = 2n−c. In that case,
by Theorem 1 and Markov’s inequality, for at least a (1 −

√
ε)-fraction of all M , the

random variable Z = MX (with X uniformly distributed over A) is
√
ε-close to the

uniform distribution U . Given w, Bob needs to decide whether w = Z or w = Z.
In other words, he is given one sample w, and needs to decide whether it came from
distribution Z or Z. As we mentioned after (1), he can do this only if the distributions
of Z and Z have large total variation distance. But by the triangle inequality

‖ Z − Z ‖tvd ≤ ‖ Z − U ‖tvd + ‖ Z − U ‖tvd = 2‖ Z − U ‖tvd ≤ 2
√
ε.

Hence Bob’s advantage over randomly guessing the function value will be at most ε
(for the unlikely event that A is very small) plus

√
ε (for the unlikely event that M

is such that MX is more than
√
ε away from uniform) plus

√
ε/2 (for the advantage

over random guessing when ‖ Z − U ‖ ≤
√
ε). To sum up, if the communication is

much less than
√
n/α bits, then Bob cannot decide the function value with probability

significantly better than 1/2.

4. Viewing our construction as an extractor. So far, we have proved that
if the n-bit string X is uniformly distributed over a set A with |A| ≥ 2n−c (i.e., a
flat distribution on A), and Y is uniformly distributed over all α-matchings, then
(Y, Z(X,Y )) is close to uniform. In order to conclude the result about extractors
mentioned in section 1.2, we need to prove the same result in the more general situation
when X has min-entropy at least n−c (instead of just being uniform on a set of size at
least 2n−c). However, a result by Chor and Goldreich [10, Lemma 5], based on the fact
that any distribution can be thought of as a convex combination of flat distributions,
shows that the second statement follows from the first: flat distributions are the
“worst distributions” for extractors.

5. Conclusion. In this paper we presented an extractor that is reasonably good
when some small amount of classical information is known about the random source
X (technically: Hmin(X) ≥ n − O(

√
n/α)), but that fails miserably if even a very

small (logarithmic) amount of quantum information is known about X . We gave the
following applications of this:

1. An exponential quantum-classical separation for one-way communication com-
plexity for a Boolean function (which, in particular, implies near-optimality
of Aaronson’s classical simulations of quantum one-way protocols).

2. A classically-secure privacy amplification scheme that is insecure against a
quantum adversary.

3. A key-expansion scheme that is secure against memory-bounded classical ad-
versaries, but not against memory-bounded quantum adversaries.

4. An exponential quantum-classical separation in the streaming model of com-
putation.
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They all can be viewed as examples where quantum memory is much more power-
ful than classical. This contrasts, for instance, with the results about privacy am-
plification based on two-universal hashing [19, 30], where quantum memory is not
significantly more powerful than classical memory.
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Abstract. We explore problems related to computing graph distances in the data-stream model.
The goal is to design algorithms that can process the edges of a graph in an arbitrary order given only
a limited amount of working memory. We are motivated by both the practical challenge of processing
massive graphs such as the web graph and the desire for a better theoretical understanding of the data-
stream model. In particular, we are interested in the trade-offs between model parameters such as per-
data-item processing time, total space, and the number of passes that may be taken over the stream.
These trade-offs are more apparent when considering graph problems than they were in previous
streaming work that solved problems of a statistical nature. Our results include the following:
(1) Spanner construction: There exists a single-pass, Õ(tn1+1/t)-space, Õ(t2n1/t)-time-per-edge
algorithm that constructs a (2t + 1)-spanner. For t = Ω(log n/log log n), the algorithm satisfies the
semistreaming space restriction of O(n polylog n) and has per-edge processing time O(polylog n).
This resolves an open question from [J. Feigenbaum et al., Theoret. Comput. Sci., 348 (2005),
pp. 207–216]. (2) Breadth-first-search (BFS) trees: For any even constant k, we show that any
algorithm that computes the first k layers of a BFS tree from a prescribed node with probability at
least 2/3 requires either greater than k/2 passes or Ω̃(n1+1/k) space. Since constructing BFS trees is
an important subroutine in many traditional graph algorithms, this demonstrates the need for new
algorithmic techniques when processing graphs in the data-stream model. (3) Graph-distance lower
bounds: Any t-approximation of the distance between two nodes requires Ω(n1+1/t) space. We also
prove lower bounds for determining the length of the shortest cycle and other graph properties. (4)
Techniques for decreasing per-edge processing: We discuss two general techniques for speeding up
the per-edge computation time of streaming algorithms while increasing the space by only a small
factor.
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1. Introduction. In recent years, streaming has become an active area of re-
search and an important paradigm for processing massive data sets [4, 23, 27]. Much
of the existing work has focused on computing statistics of a stream of data elements,
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e.g., frequency moments [4, 29], �p distances [23, 28], histograms [24, 26], and quan-
tiles [25]. More recently, there have been extensions of the streaming research to the
study of graph problems [6, 22, 27]. Solving graph problems in this model has raised
new challenges, because many existing approaches to the design of graph algorithms
are rendered useless by the sequential-access limitation and the space limitation of
the streaming model.

Massive graphs arise naturally in many real-world scenarios. Two examples are
the call graph and the web graph. In the call graph, nodes represent telephone numbers
and edges correspond to calls placed during some time interval. In the web graph,
nodes represent web pages, and the edges correspond to hyperlinks between pages.
Also, massive graphs appear in structured data mining, where the relationships among
the data items in the data set are represented as graphs. When processing these graphs
it is often appropriate to use the streaming model. For example, the graph may be
revealed by a web crawler or the graph may be stored on external-memory devices,
where being able to process the edges in an arbitrary order improves I/O efficiency.
Indeed, the authors of [33] argue that one of the major drawbacks of standard graph
algorithms, when applied to massive graphs such as the web, is their need to have
random access to the edge set.

In general it seems that most graph algorithms need to access the data in a very
adaptive fashion. Since we cannot store the entire graph, emulating a traditional al-
gorithm may necessitate an excessive number of passes over the data. There has been
some success in estimating quantities that are of a statistical nature, e.g., counting
triangles [6, 11, 31] or estimating frequency and entropy moments of the degrees in a
multigraph [12, 15]. However, it seemed for a while that more “complicated” com-
putation was not possible in this model. For example, Buchsbaum, Giancarlo, and
Westbrook [10] demonstrated the intrinsic difficulty of computing common neighbor-
hoods in the streaming model with small space. One possible way to ameliorate the
situation is to consider algorithms that use Θ(n polylogn) space, i.e., space roughly
proportional to the number of nodes rather than the number of edges. This space
restriction was identified as an apparent “sweet-spot” for graph streaming in a survey
article by Muthukrishnan [37] and dubbed the semistreaming space restriction. This
spurred further research on algorithms for graph problems in the streaming model
such as distance estimation [19, 22], matchings [22, 36], and connectivity [21, 41], in-
cluding the work described here. We will provide further discussion of the results on
distance estimation in the next section.

A related model is the semiexternal model. This was introduced by Abello, Buchs-
baum, and Westbrook [1] for computations on massive graphs. In this model, the
vertex set can be stored in memory, but the edge set cannot. However, unlike in our
model, random access to the edges, although expensive, was allowed. Finally, graph
problems have been considered in a model that extends the stream model by allowing
the algorithm to write to the stream during each pass [2, 16]. These annotations can
then be utilized by the algorithm during successive passes. Aggarwal et al. [2] go fur-
ther and suggest a model in which sorting passes are permitted, and the data-stream
is sorted according to a key encoded by the annotations.

Designing algorithms for computing graph distances is a very well studied prob-
lem, and graph distances are a natural quantity to study when trying to understand
properties of massive graphs such as the diameter of the world wide web [3]. We start
with a formal definition of the relevant terms.

Definition 1.1 (graph distance, diameter, and girth). For an undirected, un-
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weighted graph G = (V,E), we define a distance function dG : V ×V → {0, . . . , n−1},
where dG(u, v) is the length of the shortest path in G between u and v. The diameter
of G is the length of the longest shortest path, i.e.,

Diam(G) = max
u,v∈V

dG(u, v).

The girth of G is the length of the shortest cycle in G, i.e.,

Girth(G) = 1 + min
(u,v)∈E

dG\(u,v)(u, v).

Classic algorithms such as Dijkstra, Bellman–Ford, and Floyd–Warshall are taught
widely [14]. Recent research has focused on computing approximate graph distances [5,
7, 17, 40]. Unfortunately, these algorithms seem to be inherently unsuitable for com-
puting distances in the streaming model; an important subroutine of many of the
existing algorithms is the construction of breadth-first-search (BFS) trees, and one of
our main results is a lower bound on the computational resources required to com-
pute a BFS tree. For example, Thorup and Zwick provide a construction of distance
oracles for approximating distances in graphs [40]. Although all-pairs-shortest-path
distances can be approximated using this oracle, their oracle construction requires the
computation of shortest-path trees for certain vertices. Indeed, many constructions
of distance oracles have this requirement, i.e., they need to compute some distances
between certain pairs of vertices in order to build a data structure from which the
all-pairs-shortest-path distances can be approximated.

A common method for approximating graph distances is via the construction of
spanners.

Definition 1.2 (spanners). A subgraph H = (V,E′) is an (α, β)-spanner of
G = (V,E) if, for any vertices x, y ∈ V ,

dG(x, y) ≤ dH(x, y) ≤ αdG(x, y) + β.

When β = 0, we call the spanner a multiplicative-spanner and refer to α as the stretch
factor of the spanner.

In [22], a simple semistreaming spanner construction is presented. That algorithm
constructs a (logn)-spanner in one pass using O(n polylogn) space. However, this
algorithm needs O(n) time to process each edge in the input stream. Such a per-edge
processing time is prohibitive, especially in the streaming model when edges may be
arriving in quick succession. The work of [19] studies the construction of (1 + ε, β)
spanners in the streaming model. However, the algorithm of [19] requires multiple
passes over the input stream, while our construction needs only one pass.

Notation and terminology. We refer to an event’s occurring “with high probabil-
ity” if the probability of the event is at least 1−1/nΩ(1). We denote the set {1, . . . , t}
by [t]. Let P (S) denote the power set of S, i.e., {S′ : S′ ⊂ S}.

1.1. Our results. Our results include the following.
1. Spanner construction: There exists a single-pass O(tn1+1/t log2 n) space,
O(t2n1/t logn) time-per-edge algorithm that constructs a (2t + 1)-spanner.
For t = Ω(logn/log logn), the algorithm satisfies the semistreaming space
restriction of O(n polylogn) and has per-edge processing time O(polylog n).
The algorithm is presented in section 3. This result resolves an open question
from [22].
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2. BFS trees: For any even constant k, any algorithm that computes the first
k layers of a BFS tree from a prescribed node with probability at least 2/3
requires either greater than k/2 passes or Ω̃(n1+1/k) space. This result is
proved in section 4. Since constructing BFS trees is an important subroutine
in many traditional graph algorithms, this demonstrates the need for new
algorithmic techniques when processing graphs in the data-stream model.

3. Lower bounds: In section 5, we present lower bounds for the following prob-
lems:
(a) Connectivity and other balanced properties: We show that testing any of

a large class of graph properties, which we refer to as balanced properties,
in one pass requires Ω(n) space. This class includes properties such as
connectivity and bipartiteness. This result provides a formal motivation
for the semistreaming space restriction, where algorithms are permitted
O(n polylogn) space.

(b) Graph distances and graph diameter: We show that any single-pass al-
gorithm that returns a t-approximation of the graph distance between
two given nodes with probability at least 3/4 requires Ω(n1+1/t) bits of
space. Furthermore, this bound also applies to estimating the diame-
ter of the graph. Therefore, approximating a distance using the above
spanner construction is only about a factor of 2 from optimal in terms
of the approximation factor achievable for a given space restriction.

(c) Girth: Any p-pass algorithm that ascertains whether the length of the
shortest cycle is longer than g requires Ω

(
p−1(n/g)1+4/(3g−4)

)
bits of

space.
4. Techniques for decreasing per-edge processing: In section 6, we present a

method for local amortization of per-data-item complexity. We also present
a technique for adapting existing partially dynamic graph algorithms to the
semistreaming model.

The above results indicate various trade-offs between model parameters and accu-
racy. These include the smooth trade-off between the space a single-pass algorithm is
permitted and the accuracy achievable when estimating graph distances. For multiple-
pass algorithms, a smooth trade-off between passes and space is evident when trying
to compute the girth of a graph. This trade-off is, in a sense, fundamental as it
indicates that the only way to get away with using half the amount of space is es-
sentially to make half as much progress in each pass. The trade-off between space
and passes when computing BFS trees indicates that, as we restrict the space, no
algorithm can do much better than emulating a trivial traditional graph algorithm
and will consequently require an excessive number of passes.

Recent developments. Since the preliminary version of this paper appeared, im-
proved spanner construction algorithms were presented by Baswana [8] and Elkin [18].
Extensions of ideas in section 6 have been developed by Zelke [41, 42].

2. Preliminaries. In this section, we give a formal definition of a graph stream.
Definition 2.1 (graph stream). For a data-stream A = 〈a1, a2, . . . , am〉, where

aj ∈ [n] × [n], we define a graph G on n vertices V = {v1, . . . , vn} with edges E =
{(vi, vk) : aj = (i, k) for some j ∈ [m]}.

We usually assume that each aj is distinct, but this assumption is often not
necessary. When the data items are not distinct, the model can naturally be extended
to consider multigraphs; i.e., an edge (vi, vk) has multiplicity equal to |{j : aj =
(i, k)}|. Similarly, we consider undirected graphs, but the definition can be generalized
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to define digraph streams. Sometimes we will consider weighted graphs, and in this
case aj ∈ [n]× [n]×N, where the third component of the data item indicates a weight
associated with the edge. Note that some authors have also considered a special
case of the model, the adjacency-list model, in which all incident edges are grouped
together in the stream [6]. We will be interested in the fully general model.

3. Spanners. In this section, we present a single-pass streaming algorithm that
constructs a (2t + 1)-spanner for an unweighted, undirected graph. The algorithm
uses some of the ideas from [7] and adapts them for use in the data-stream model.
We then extend this algorithm to construct (1 + ε)(2t + 1)-spanners for weighted,
undirected graphs using a geometric grouping technique.

Overview of the algorithm. Intuitively, we want to cover each “dense subgraph”
of the graph by a tree of small depth, i.e., one of depth O(log n), rooted at some node.
If there are many edges between two such dense subgraphs, only one representative
edge needs to be remembered. Edges between vertices that are not part of such dense
subgraphs also need to be remembered, but we will argue that there are not too many
of them. The construction requires a delicate balance between trying to include as
many nodes as possible in a small number of dense subgraphs and ensuring that the
depth of the spanning tree covering each dense subgraph is O(log n).

Our clusters are similar to those used in [5, 7, 17]. However, the constructions of
the clusters in [5, 7, 17] all employ an approach similar to BFS; i.e., the clusters are
constructed layer by layer. Such a layer-by-layer process is important to ensure that
the clusters constructed in [5,7,17] have small diameters. In the streaming model, this
would necessitate multiple passes over the input stream. Our labeling scheme employs
a different strategy to control the clusters’ diameters, thus bypassing the BFS.

In more detail, in the case in which we are constructing O(log n)-spanners, we
consider logn/2 levels. Each node is present at the bottom level and is “promoted”
to each successively higher level with probability 1/2. Whenever a node is present at
level i, a cluster at level i is dynamically grown around it as we process the edges. The
expected number of clusters at level i + 1 is half of the expected number of clusters
at level i. At the top level, the expected number of clusters is

√
n. As the algorithm

goes through the input stream of edges, a node in a lower-level cluster may join a
higher-level cluster. The constructed spanner consists of three types of edges: (1) a
small-diameter spanning tree for each cluster, (2) one edge between each pair of top-
level clusters whose vertex sets have at least one edge between them, and (3) a small
number of “other” edges that do not fit into either of these two categories and are
necessary to preserve the spanner property.

The above ideas are applicable mutatis mutandis when a t-spanner is sought for
other values of t. The description below is for arbitrary t.

The algorithm. A label l used in our construction is a positive integer. Given
two parameters n and t, the set of labels L used by our algorithm is generated in the
following way. Initially, we have labels [n]. We denote by L0 this set of labels and
call them the level-0 labels. Independently, and with probability n−1/t, each label
l ∈ L0 will be put into a set S0 and marked as selected. From each label l in S0, we
generate a new label l′ = l + n. We denote by L1 the set of newly generated labels
and call them the level-1 labels. We then apply the above selection and new-label-
generation procedure on L1 to get the set of level-2 labels L2. We continue this until
the level-	t/2
 labels L�t/2� are generated. If a level-(i+ 1) label l is generated from
a level-i label l′, we call l the successor of l′ and denote it by Succ(l′) = l. The set of
labels we will use in our algorithm is the union of labels of levels 0, 1, 2, . . . , 	t/2
, i.e.,
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L =
⋃�t/2�

0 Li. Note that L can be generated before the algorithm sees the edges in
the stream. But, in order to generate the labels in L, except in the case t = Θ(logn),
the algorithm needs to know n, the number of vertices in the graph, before seeing
the edges in the input stream. For t = Θ(logn), a simple modification of the above
method can be used to generate L without knowing n, because the probability for a
label to be selected is constant.

At first glance, it might appear that our labeling scheme resembles the sequences
of sets initially constructed by the algorithm of Thorup and Zwick [40]. In our con-
struction, the generation of the clusters of vertices depends on both the labels and the
edge set. Thorup and Zwick, however, generate their sequence of sets independently
of the edges. But, this is just the first step in their algorithm. Subsequently, their
algorithm computes the exact distance between a fixed vertex and each of the sets of
vertices in the sequence. Computing the exact distances between a pair of vertices
is difficult in the streaming model. Our algorithm takes a very different approach
from [40] to avoid this difficulty.

While going through the stream, our algorithm will label each vertex with labels
chosen from L. The algorithm may label a vertex v with multiple labels; however, v
will be labeled by at most one label from Li for i ∈ [	t/2
]. Moreover, if v is labeled
by a label l, and l is selected, the algorithm will also label v with the label Succ(l).

Denote by li a label of level i, i.e., li ∈ Li. Let L(v) = {l0, lk1 , lk2 , . . . , lkj} be the
collection of labels that has been assigned to the vertex v, where 0 < k1 < · · · < kj ≤
	t/2
. Let

Height(v) = max{j|lj ∈ L(v)}

and Top(v) = lk ∈ L(v) s.t. k = Height(v). Let C(l) be the collection of vertices that
are labeled with the label l.

The sets L(v) and C(l) will grow while the algorithm goes through the stream
and labels the vertices. For each C(l), our algorithm stores a tree, Tree(l), on the
vertices of C(l) and the tree is rooted on the first vertex that gets labeled by l. We
say an edge (u, v) connects C(l) and C(l′) if u is labeled with l and v is labeled with
l′. For some pairs of labels l, l′ ∈ L�t/2�, our algorithm will store edges that connect
C(l) and C(l′). We denote by H the set of such edges stored by our algorithm. In
addition, for each vertex v, we denote by M(v) the other edges incident to v that
are stored by our algorithm. Intuitively, the subgraph induced by ∪v∈VM(v) is the
sparse part of the graph G. The spanner constructed by the algorithm is the union
of the rooted trees for all the labels, M(v) for all the vertices, and the set H . The
detailed algorithm is given in Figure 3.1.

Analysis. We start with two preliminary lemmas showing that, with high proba-
bility, the spanner construction requires only a small amount of working space. Note
that randomness is introduced in the generation of the labels in Algorithm 1; that is
the reason that the bounds stated in both lemmas are true with high probability.

Lemma 3.1. With high probability, for all v ∈ V , |M(v)| = O(tn1/t logn).
Proof. Let M (i)(v) ⊆M(v) be the set of edges added to M(v) during the period

when Height(v) = i. Let L(M(v)) = ∪(u,v)∈M(v)L(u) be the set of labels that have
been assigned to the vertices in M(v). An edge (u, v) is added to M(v) only in step
2(b)ii. Note that, in this case, 	 t2
 ≥ Height(u) ≥ Height(v). Hence, the set Lv(u)
is not empty. Also, by the condition in step 2(b)ii, an edge (u, v) is added only
when none of the labels in Lv(u) appears in L(M(v)). Thus, if we add the edge in
this step, we will introduce/add the label(s) in Lv(u) to L(M(v)). Because Lv(u)



GRAPH DISTANCES IN THE DATA-STREAM MODEL 1715

Algorithm 1 (efficient one pass spanner construction).
The input to the algorithm is an unweighted, undirected graph G = (V,E),
presented as a stream of edges, and two positive integer parameters n and t.

1. Generate the set L of labels as described. ∀ vi ∈ V , label vertex vi with
label i ∈ L0. If i is selected, label vi with Succ(i). Continue this until we
encounter a label that is not selected. Set M(vi) ← ∅ and H ← ∅.

2. Upon seeing an edge (u, v) in the stream, if L(v) ∩ L(u) �= ∅, drop the
edge. Otherwise, consider the following cases:
(a) If Height(v) = Height(u) = 	t/2
, and there is no edge in H that

connects C(Top(v)) and C(Top(u)), set H ← H ∪ {(u, v)}.
(b) Otherwise, assume, without loss of generality, that 	t/2
 ≥

Height(u) ≥ Height(v). Consider the collection of labels

Lv(u) = {lk1 , lk2 , . . . , lHeight(u)} ⊆ L(u),

where Height(v) ≤ k1 ≤ k2 ≤ · · · ≤ Height(u). Let l ∈ Lv(u) be the
selected label whose level is the lowest among the selected labels in
Lv(u).

i. If such a label l exists, label the vertex v with the successor
l′ = Succ(l) of l, i.e.,

L(v) ← L(v) ∪ {l′}.

Incorporate the edge in the rooted tree Tree(l′). If l′ is selected,
label v with l′′ = Succ(l′) and incorporate the edge in the tree
Tree(l′′). Continue until we see a label that is not marked as
selected. (Note that Height(v) is increased by this process.)

ii. If no such label l exists and there is no edge (u′, v) in M(v) such
that u, u′ are labeled with the same label l ∈ Lv(u), add (u, v)
to M(v).

3. After seeing all the edges in the stream, output the union of the rooted
trees for all the labels, M(v) for all the vertices, and the set H as the
spanner.

Fig. 3.1. An efficient, one-pass algorithm for computing sparse spanners. See the descriptions
before Lemma 3.1 for the definitions of H, M(v), L(v), C(l), Tree(l), Succ(l), Top(v), and Height(v).

is nonempty, it adds at least one new label to L(M(v)). This is the case for every
edge in M (i)(v). Let B be the set of distinct labels that M (i)(v) adds to L(M(v)).
Furthermore, because each edge in M (i)(v) adds at least one new label, the size of B
is at least |M (i)(v)|. Note that the labels in B are not marked as selected. Otherwise,
the algorithm would have taken step 2(b)i instead of step 2(b)ii. Hence, the size of B
satisfies

Pr (|B| = k) ≤ (1 − 1/n1/t)k.

Thus, with high probability, |M (i)(v)| = O(n1/t logn). Because i can take only O(t)
values, with high probability,

|M(v)| =
∑
i

|M (i)(v)| = O(tn1/t logn).
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Lemma 3.2. With high probability, the algorithm stores O(tn1+1/t logn) edges.
Proof. The algorithm stores edges in the set H , in the rooted trees for each

cluster C(l), and in the sets M(v), for all v ∈ V . By the Chernoff bound and the
union bound, with high probability the number of clusters at level t/2 is O(

√
n), and

the size of the set H is O(n).
For each label l, the algorithm stores a rooted tree for the set of vertices C(l).

The rooted tree is formed by the set of edges added when the vertices in C(l) get
labeled by the label l. This happens in step 2(b)i. In this step, we add an edge only
at the time when a vertex becomes a member of C(l). Therefore, the set of edges
forms a tree on C(l). We call this tree the rooted tree of C(l). Note that two vertices
u and v in C(l) may share some other label l′ of a different level. In this case, they
both also belong to C(l′). The tree of C(l′) may have a path connecting u and v.
Hence the subgraph of the spanner induced by the vertices in C(l) is not necessarily
a tree. When we say “the rooted tree of C(l),” we refer only to the edges added when
the vertices in C(l) get labeled by l.

Note that, for each level i ∈ [	t/2
], a vertex is labeled with at most one label in
Li. Hence,

∑
l∈Li |C(l)| ≤ |V |. Thus, the number of edges summed over the rooted

trees for the labels at level i is O(n), and the total number of edges in all the rooted
trees is O(tn). Finally, by Lemma 3.1, with high probability, |M(v)| = O(tn1/t logn).
By the union bound, with high probability,

∑
v∈V |M(v)| = O(tn1+1/t logn).

Theorem 3.3. Let G be an unweighted graph. There exists a single-pass
O(tn1+1/t log2 n) space algorithm that constructs a (2t + 1)-spanner of G with high
probability and processes each edge in O(t2n1/t logn) time.

Proof. Consider Algorithm 1 in Figure 3.1. At the beginning of the algorithm, for
all the labels l ∈ L0, C(l) is a singleton set, and the depth of the rooted tree for C(l)
is zero. We now bound, for label li, where i > 0, the depth of the rooted tree T i on
the vertices in C(li). A tree grows when an edge (u, v) is incorporated into the tree
in step 2(b)i. In this case, li is a successor of some label li−1 of level i− 1. Assume
that the depth dT i(v) of the vertex v in the tree is one more than the depth dT i(u) of
the vertex u. Then u ∈ C(li−1), and the depth dT i−1(u) of u in the rooted tree T i−1

of C(li−1) is the same as dT i(u). Hence, dT i(v) = dT i−1(u) + 1, where T i is a tree
of level i, and T i−1 is a tree of level i− 1. Given that dT 0(x) = 0 for all x ∈ V , the
depth of a rooted tree for C(l), where l is a label of level i, is at most i.

We proceed to show that, for any edge that the algorithm does not store, there
is a path of length at most 2t+ 1 that connects the two endpoints of the edge. The
algorithm ignores three types of edges. First, if L(u) ∩ L(v) �= ∅, the edge (u, v) is
ignored. In this case, let l be one of the label(s) in L(u) ∩ L(v). The nodes u and
v are both on the rooted tree for C(l); hence, there is a path of length at most t
connecting u and v. Second, (u, v) will be ignored if Height(v) = Height(u) = 	t/2
,
and there is already an edge connecting C(Top(u)) and C(Top(v)). In this case, the
path connecting u and v has length at most 2t+ 1. Finally, in step 2(b)ii, (u, v) will
be ignored if there is already another edge in M(v) that connects v to some u′ ∈ C(l),
where l ∈ L(u). Note that u and u′ are both on the rooted tree of C(l). Hence, there
is a path of length at most t+ 1 connecting u and v.

Hence, the stretch factor of the spanner constructed by Algorithm 1 is 2t + 1.
By Lemma 3.2, with high probability, the algorithm stores O(tn1+1/t logn) edges
and requires O(tn1+1/t log2 n) bits of space. Also note that the bottleneck in the
processing of each edge lies in step 2(b)ii, where, for each label in Lv(u), we need to
examine the whole set of M(v). This takes O(t2n1/t logn) time.
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Extensions. Once the spanner is constructed, all-pairs-shortest-distances of the
graph can be computed from the spanner. This computation does not need to access
the input stream and thus can be viewed as postprocessing. We also note that the
above algorithm can be used to construct a spanner of a weighted graph G = (V,E)
using a geometric grouping technique [13,22]. Namely, we can round each edge weight
ω′ up to min{ω(1+ ε)i : i ∈ Z, ω(1+ ε)i ≥ ω′}, where ω is the weight of the first edge,
and ε > 0 is a user-defined accuracy parameter. Let Gi = (V,Ei) be the graph formed
from G by removing all edges not of weight ω(1 + ε)i. For each Gi, we construct a
spanner in parallel and take the union of these spanners. This leads to the following
theorem.

Theorem 3.4. Let G be a weighted graph and W be the ratio between the max-
imum and minimum weights. There exists a single-pass O(ε−1tn1+1/t logW log2 n)
space algorithm that constructs a (1 + ε)(2t + 1)-spanner of G with high probability
and processes each edge in O(t2n1/t logn) time.

In the case where t = logn/log logn, Algorithm 1 computes a (2logn/log logn+
1)-spanner in one pass using O(n log4 n) bits of space and processing each edge in
O(log4 n) time. This answers an open question we posed in [22]. Finally, note that
constructing a (2t+ 1)-spanner gives a (2t+ 1)-approximation for the diameter and,
indirectly, a (2t+ 2)/3-approximation of the girth. The diameter result is immediate.
For the girth approximation, note that, if the constructed spanner is a strict subgraph
of G, then the girth of G must have been between 3 and 2t+ 2.

4. BFS trees lower bound. In this section, we prove a lower bound on the
number of passes required to construct the first l layers of a BFS tree in the streaming
model. The result is proved using a reduction from the communication-complexity
problem “multivalued pointer chasing.” This is a natural generalization of the pointer-
chasing problem considered by Nisan and Wigderson [38].

Overview of proof. Nisan and Wigderson [38] considered the problem in which
Alice and Bob have functions fA : [m] → [m] and fB : [m] → [m], respectively.
The k-round pointer-chasing problem is to output the result of starting from 1 and
alternatively applying fA and fB a total of k times, starting with fA. Nisan and
Wigderson proved that, if Bob speaks first, the communication complexity of any
k-round communication protocol to solve this problem is Ω(m/k2 − k logm). Jain,
Radhakrishnan, and Sen [30] gave a direct sum extension showing that, if there are d
pairs of functions and the goal is to perform k-round pointer chasing as above on each
pair, the communication-complexity lower bound is approximately d times the bound
of [38]. More precisely, they showed a lower bound of Ω(dm/k3 − dk logm− 2d) for
the problem.

We show how the lower bound of [30] implies a lower bound on the communication
complexity of pointer chasing with “d-valued functions,” i.e., functions that map i ∈
[m] to a subset of [m] of size at most d. If fA and fB are such functions, then the
result of pointer chasing starting from 1 produces a set of size at most dk. The key
difference between this problem and the problem of [30] is that in the latter, one is
concerned only with chasing “like” pointers. That is, if one gets to an element j using
the function fA,i, one can continue only with fB,i. (We will present an example after
the formal definition of the appropriate terms.) Nevertheless, we give a reduction that
shows that the two problems have fairly similar communication complexity.

Finally, we create a an l-layered graph in which alternate layers have edges cor-
responding to d-valued functions fA and fB. In order to construct the BFS tree, we
must solve the l-round, d-valued pointer-chasing problem and then apply the afore-
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mentioned lower bound. This will lead to the following theorem.
Theorem 4.1 (BFS lower bound). For any constant k, any algorithm that com-

putes the first k layers of a BFS tree with probability at least 2/3 requires either k/2
passes or Ω(n1+1/k/(logn)1/k) space.

We now present the above argument formally. Let Fd be the set of functions
f : P ([m]) → P ([m]) such that

∀i ∈ [m], |f(i)| ≤ d and ∀A ⊂ [m], f(A) =
⋃
i∈A

f(i).

Throughout the rest of this section, we abuse notation and denote the singleton set
{i} by i when it appears as the input or the output of a function f ∈ Fd.

Definition 4.2. Define gk,d : Fd × Fd → P ([m]) inductively as

g0,d(fA, fB) = {1} and gi,d(fA, fB) =
{
fA(gi−1,d(fA, fB)) if i odd,
fB(gi−1,d(fA, fB)) if i even.

Define hk,d as the d-fold direct sum of gk,1, i.e.,

hk,d(〈fA,1, . . . , fA,d〉, 〈fB,1, . . . , fB,d〉) = 〈gk,1(fA,1, fB,1), . . . , gk,1(fA,d, fB,d)〉.

Example 4.3. Consider fA,1, fA,2, fB,1, fB,2 ∈ F1, where

fA,1 :1 → 1 fA,2 :1 → 2 fB,1 :1 → 1 fB,2 :1 → 3
2 → 2 2 → 3 2 → 2 2 → 1
3 → 3, 3 → 1, 3 → 3, 3 → 2.

Let fA, fB ∈ F2 be defined by fA(j) := fA,1(j)∪fA,2(j) and fB(j) := fB,1(j)∪fB,2(j).
Then

h2,2(〈fA,1, fA,2〉, 〈fB,1, fB,2〉) = 〈1, 1〉, whereas g2,2(fA, fB) = {1, 2, 3}.

Let Alice have function fA and Bob have function fB. Let Rrδ(gd,k) be the r-round
randomized communication complexity of gd,k where Bob speaks first, i.e., the number
of bits sent in the worst case (over all inputs and random coin tosses) by the best
r-round protocol Π in which, with probability at least 1− δ, both Alice and Bob learn
gd,k. The following theorem for hk,d was proved in [30] using an information-theoretic
argument in combination with a result by Nisan and Wigderson [38].

Theorem 4.4 (see Jain, Radhakrishnan, and Sen [30]). Rk1/3(h
k,d) = Ω(dmk−3−

dk logm− 2d).
We now use the above result to prove a bound on the communication complexity

of gk,d.
Theorem 4.5. Rk1/3(g

k,d) = Ω(dm/(k + 1)3 − d(k + 1) logm− 2d− 6dk+1 lgm)
if k is even.

Proof. The proof uses a reduction from hk,d. Let (〈fA,1, . . . , fA,d〉, 〈fB,1, . . . , fB,d〉)
be an instance of hk,d. Define f∗

A and f∗
B as follows:

f∗
A(j) := {fA,i(j) : i ∈ [d]} and f∗

B(j) := {fB,i(j) : i ∈ [d]}.

Assume that there exists a k-round protocol Π for gk,d that fails with probability at
most 1/3 and communicates o(dm/(k+1)3 − d(k+1) logm− 2d− 12dk+1 lgm− km)
bits in the worst case. We will show how to transform Π into a (k+1)-round protocol
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Π′ for hk+1,d that fails with probability at most 1/3 and communicates o(dm/(k +
1)3 − d(k + 1) logm − 2d) bits in the worst case. This contradicts Theorem 4.4 and
hence shows that there is no such protocol Π.

Let Π′ be a protocol that simulates Π and, in addition, on the jth message
(1 < j ≤ k + 1), sends the following set of triples:1

Tj−1 = {〈a, b, fC,a(b)〉 : b ∈ gj−2,d(f∗
A, f

∗
B)}, where C =

{
A if j is even,
B if j is odd.

Π is shown to be correct by an inductive argument and requires at most 3dj−1 logm
additional bits of communication per message, because b ∈ gj−2,d(f∗

A, f
∗
B) and

|gj−2,d(f∗
A, f

∗
B)| ≤ dj−2, a ∈ [d], and each 〈a, b, fC,a(b)〉 can be encoded with at most

3 logm bits. However, if Π is successful, then the player who sends the kth message
(which is Alice by assumption that k is even and Bob speaks first) of Π also knows
gk,d(f∗

A, f
∗
B). Hence, she can also send

Tk+1 = {〈a, b, fA,a(b)〉 : b ∈ gk,d(f∗
A, f

∗
B)}.

Hence, after (k + 1) rounds,
⋃
i∈[k+1] Ti is known to both parties with probability at

least 2/3 and can be used to deduce gk+1,d. The total amount of extra communica-
tion required to transmit

⋃
i∈[k+1] Ti is

∑
i∈[k+1] 3d

i logm ≤ 6dk+1 logm. Hence Π′

communicates o(dm/(k + 1)3 − d(k + 1) logm− 2d) bits in the worst case.
We are now in a position to prove Theorem 4.1.
Proof. The proof is a reduction from d-valued pointer chasing. Let m = n/(k+1),

and let d = c(m/ logm)1/k for some small constant c. Then, since k is constant by
Theorem 4.5, Rk1/3(g

k,d) = Ω(n1+1/k/(logn)1/k).
Consider an instance (fA, fB) of gk,d. The graph described by the stream is on

the following set V of n = (k + 1)m nodes:

V =
⋃

0≤i≤k
{vi1, . . . , vim}.

For i ∈ [k], we define a set of edges E(i) between {vi−1
1 , . . . , vi−1

m } and {vi1, . . . , vim}
in the following way:

E(i) =
{

{(vi−1
j , vi�) : � ∈ fA(j)} if i is odd,

{(vi−1
j , vi�) : � ∈ fB(j)} if i is even.

Suppose there exists an algorithm A that computes the first k layers of the BFS
tree from v1

1 in p passes using memory M . Let Lr be set of nodes that are at distance
exactly r from v1

1 . Note that, for all r ∈ [k],

gr,d = Lr ∩ {vr1, . . . , vrm}.

By simulating A on a stream starting with
⋃

0≤i≤k:evenE(i) and concluding with⋃
i∈[k]:oddE(i) in the natural way, we deduce that there exists a (2p)-round commu-

nication protocol for gk,d that uses only 2pM communication. (Note that 2p rounds
of communication rather than (2p− 1) rounds are required, because we required both
parties to learn gk,d.) Hence, either 2p > k or M = Ω(n1+1/k).

1Note that on the (k + 1)th message there is no message of Π to simulate and only Tk is trans-
mitted.
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5. Other lower bounds. In this section, we present lower bounds on the space
required to estimate graph distances, test whether a graph is connected, and compute
the girth of a graph. Our lower bounds are reductions from problems in commu-
nication complexity. In the Set-Disjointness problem, Alice has a length-n bi-
nary string x ∈ {0, 1}n, and Bob has a length-n binary string y ∈ {0, 1}n, where∑

i∈[n] xi =
∑

i∈[n] yi = 	n/4
. If Bob is to compute

Set-Disjointness(x, y) =
{

1 if x · y = 0,
0 if x · y ≥ 1

(where x · y =
∑

i∈[n] xiyi) with probability at least 3/4, then it is known that Ω(n)
bits must be communicated between Alice and Bob [32, 39]. In the Index problem,
Alice has x ∈ {0, 1}n, and Bob has j ∈ [n]. If Bob is to compute Index(x, j) = xj
with probability at least 3/4 after a single message from Alice, then it is known that
this message must contain Ω(n) bits (e.g., [34]). To relate our graph-stream problems
to these communication problems, we use reductions based upon results from random-
graph theory and extremal combinatorics.

5.1. Connectivity and balanced properties. Our first result shows that a
large class of problems, including connectivity, cannot be solved by single-pass stream-
ing algorithms in small space. Specifically, we identify a general type of graph prop-
erty2 and show that testing any such graph property requires Ω(n) space.

Definition 5.1 (balanced properties). We say a graph property P is balanced
if there exists a constant c > 0 such that, for all sufficiently large n, there exists a
graph G = (V,E) with |V | = n and u ∈ V such that

min{|{v : (V,E ∪ {(u, v)}) has P}|, |{v : (V,E ∪ {(u, v)}) has ¬P}| } ≥ cn.

In other words, there are Ω(n) vertices v such that (V,E ∪ {(u, v)}) has P and Ω(n)
vertices v such that (V,E ∪ {(u, v)}) does not have P.

Many interesting properties are balanced, including connectivity, bipartiteness,
and whether there exists a vertex of a certain degree.

Theorem 5.2. Testing for any balanced graph property P with probability 3/4 in
a single pass requires Ω(n) space.

Proof. Let c be a constant, G = (V,E) be a graph on n vertices, and u ∈ V
be a vertex satisfying the relevant conditions. The proof is by a reduction to the
communication complexity of Index. Let (x, j) ∈ {0, 1}cn × [cn] be an instance of
Index. Let G(x) be a relabeling of the vertices of G such that u = vn and, for i ∈ [cn],
(V,E∪{(vn, vi)}) has P if and only if xi = 1. Such a relabeling is possible, because P
does not depend on the labeling of the vertices. Let e(j) = (vj , vn). Hence the graph
determined by the edges of G(x) and e(j) has P if and only if xj = 1. Therefore,
any single-pass algorithm for testing P using M bits of work space gives rise to a
one-message protocol for solving Index, and this implies that M = Ω(n).

For some balanced graph properties, the above theorem can be generalized. For
example, it is possible to show that any p-pass algorithm that determines whether a
graph is connected requires Ω(np−1) bits of space [27].

2A graph property is a boolean function whose inputs are the elements of the adjacency matrix
of the graph but whose output is independent of the labeling of the nodes of the graph.
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5.2. Graph distances and graph diameter. If we are interested only in es-
timating the distance between two nodes u and v, it may appear that constructing a
graph spanner that gives no special attention to u or v, but rather approximates all
distances, is an unnecessarily crude approach. In this section, however, we show that
the spanner-construction approach yields an approximation at most a factor 2 from
optimal. Our result is a generalization of one in [22] that applied to the semistreaming
case. Integral to our proof is the notion of a k-critical edge.

Definition 5.3. In a graph G = (V,E), an edge e = (u, v) ∈ E is k-critical if
dG\(u,v)(u, v) ≥ k.

In Lemma 5.4, we show the existence of a graph G with a large subset of edges
E′ such that each edge in E′ is k-critical, but the removal of all edges in E′ leaves a
graph with relatively small diameter. The proof uses a probabilistic method.

Lemma 5.4. For sufficiently large n and 3 ≤ k = o(logn/ log logn), there exists
a set E of edges partitioned into two disjoint sets E1 and E2 on a set of n nodes V
such that

1. |E2| =
⌈
n1+1/k/144

⌉
,

2. every edge in E2 is k-critical for G = (V,E), and
3. Diam(G1) ≤ k + 1, where G1 = (V,E1).

Proof. Let γ = 1/k. Consider choosing a random graph G′ = (V,E′) on n nodes
where each edge is (independently) present with probability p = 1/(2n1−γ). This is
commonly denoted as G′ ∼ Gn,p. We will then construct G1 = (V,E1) by deleting
each edge in G′ with probability 1/2. We will show that, with nonzero probability,
the sets E1 and E2 = {e ∈ E′ \ E1 : e is k-critical for G′} satisfy the three required
properties.

The second property is satisfied by construction. It follows from the fact that, if
an edge is k-critical in a graph G, then it is also k-critical in any subgraph of G. We
now argue that the third property is satisfied with probability at least 99/100. First
note that the process that generates G1 is identical to picking G1 ∼ Gn,p/2. It can be
shown that, with high probability, the diameter of such a graph is less than 1/γ + 1
for sufficiently large n [9, Corollary 10.12].

We now show that the first property is satisfied with probability at least 8/100.
Applying the Chernoff bound and the union bound proves that, with probability at
least 99/100, the degree of every vertex in G′ is between nγ/4 and 3nγ/4.

Now consider choosing a random graph and a random edge in that graph simulta-
neously, i.e., G′ = (V,E′) ∼ Gn,p and an edge (u, v) ∈R E′. We prove a lower bound on
the probability that (u, v) is k-critical inG′. Let Γi(v) = {w ∈ V : dG′\(u,v)(v, w) ≤ i}.
For sufficiently large n, conditioned on the event that the maximum degree is at most
3nγ/4,

|Γk(v)| ≤
∑

0≤i≤k
(3n/4)iγ ≤ 1.01(3n/4)kγ ≤ 4(n− 1)/5.

As G′ varies over all possible graphs, by symmetry, each vertex is equally likely to
be in Γk(v). Thus the probability that u is not in this set is at least 1/5. By Markov’s
inequality,

Pr
(
|{(u, v) ∈ E′ : dG′\(u,v)(u, v) ≥ k}| ≥ |E′|/9

)
≥ 1/10.

Note that, if the degree of every vertex in G′ is at least nγ/4, then |E′| ≥ n1+γ/8.
Hence,

Pr
(
|{(u, v) ∈ E′ : dG′\(u,v)(u, v) ≥ k}| ≥ n1+γ/72

)
≥ 9/100.
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s
t

V2V1 Vr

...

Fig. 5.1. Diameter lower-bound construction. Edges Ex are dotted, Ej are dashed, and Em

are solid.

Given that each edge in E′ is deleted independently with probability 1/2 to form E1,
by a further application of the Chernoff bound we deduce that

Pr
(
|{(u, v) ∈ E′ \ E1 : dG′\(u,v)(u, v) ≥ k}| ≥ n1+γ/144

)
≥ 8/100.

From this set of k-critical edges, we can choose a subset whose size is exactly⌈
n1+γ/144

⌉
, as required by statement 1. Therefore, all three properties hold with

probability at least 1 − 92/100− 1/100 = 7/100.
Theorem 5.5. For 3 ≤ k = o(log n/ log logn), any single-pass algorithm that,

with probability at least 3/4, returns D̃ such that

Diam(G) ≤ D̃ ≤ (k − 1)Diam(G),

where G is a weighted graph on n nodes, requires Ω̃(n1+1/k) space.
Proof. Let (x, j) ∈ {0, 1}t × [t] be an instance of the Index problem. We will

show how to transform an algorithm A for approximating the diameter of a graph
into a protocol for Index.

Let G = (V,E = E1 ∪ E2) be a graph on n′ = (144t)1/(1+γ) nodes with the
properties listed in Lemma 5.4. We assume that both Alice and Bob know G and
that, moreover, they agree on an ordered list e1, . . . , et of the edges that are in E2.
This may be assumed, because Alice and Bob can generate identical enumerations of
all graphs on n′ nodes and all partitions of the edges of each graph into E1 and E2,
test each graph and partition for the necessary properties, and use the first that passes
all of the tests. Finding such a G may take exponential time, but that is all right,
because it is only the communication complexity of the resulting Index protocol, not
the time complexity, that concerns us.

Alice forms the graph Gx = (V,Em ∪ Ex), where Ex = {ei ∈ E2 : xi = 1} and
Em = E1. She then creates the prefix of a stream by taking r (to be determined
later) copies of Gx, i.e., a graph on n′r vertices {v1

1 , . . . , v
1
n′ , v2

1 , . . . , v
2
n′ , v3

1 , . . . , v
r
n′}

and with edge set {(vij , vik) : i ∈ [r], (vj , vk) ∈ Ex}. All these edges have unit weight.
Let j be the index in the instance of Index, and let ej = (a, b). Bob determines

the remaining edges Ej as follows: r−1 edges of zero weight, {(vib, vi+1
a ) : i ∈ [r−1]},

and two edges of weight k + 1, (s, v1
a) and (vrb , t). See Figure 5.1 for a diagram of the

construction.
Note that, regardless of the values of x and j, the diameter of the graph described

by the stream equals dG(s, t). Note that xj = 1 implies that dG(s, t) = r + 2k + 2.
However, if xj = 0, then dG(s, t) = kr + 2k + 2. Hence, for r = 2k2, the ratio
between kr + 2k + 2 and r + 2k + 2 is at least k − 1. Therefore, any single-pass
algorithm that approximates the diameter to within a factor of k − 1 gives rise to a
one-way protocol for solving Index. This implies that any such algorithm requires
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... ...

V2V1 V3 Vg

Fig. 5.2. Girth lower-bound construction. Edges Ex are dotted, Ey are dashed, and Em are solid.

Ω(n1+1/k) bits of space, because the total number of nodes in the construction is
n = O((144t)1/(1+1/k)k2).

5.3. Girth. In this section, we prove a lower bound on the space required by a
(multipass) algorithm that tests whether a graph has girth at most g. We shall make
use of the following result from [35].

Lemma 5.6 (see Lazebnik, Ustimenko, and Woldar [35]). Let k ≥ 1 be an odd
integer, t = 	k+2

4 
, and q be a prime power. There exists a bipartite, q-regular graph
with at most 2qk−t+1 nodes and girth at least k + 5.

The following lower bound is established with a construction based on Lemma
5.6 that yields a reduction from Set-Disjointness to girth estimation.

Theorem 5.7. For g ≥ 5, any p-pass algorithm that tests whether the girth of
an unweighted graph is at most g requires Ω

(
p−1(n/g)1+4/(3g−4)

)
space. If g is odd,

this can be strengthened to Ω
(
p−1(n/g)1+4/(3g−7)

)
space.

Proof. Let q be a prime power; let k = g − 4 if g is odd, and k = g − 3 if g is
even. Let t = 	k+2

4 
. Then,

k − t+ 1 ≤ k − k + 2
4

+ 3/4 + 1 ≤
{

(3g − 7)/4 if g is odd,
(3g − 4)/4 if g is even.

Lemma 5.6 implies that there exists a q-regular graph G′ = (L ∪ R,E′) with at
most 2n′ ≤ 2qk−t+1 nodes and girth at least g + 1. Let L = {l1, . . . , ln′} and R =
{r1, . . . , rn′} and, for each i ∈ [n′], Di = Γ(li).

We let (x, y) ∈ {0, 1}r × {0, 1}r be an instance of Set-Disjointness where r =
n′q. It will be convenient to write x = x1 . . . xn

′
and y = y1 . . . yn

′
, where xi, yj ∈

{0, 1}q. We will show how to transform a p-pass algorithm A for testing whether the
girth of a graph is at most g into a protocol for Set-Disjointness. If A usesM bits of
working memory, then the protocol will transmit O(pM) bits. Hence M = Ω(p−1n′q).

Alice and Bob construct a graph G based upon G′, x, and y as follows. For i ∈ [g],
let Vi = {vi1, . . . , vin′}. For each i ∈ [n′], let Di(x) ⊂ Di be the subset of Di whose
characteristic vector is xi. Di(y) is defined similarly. There are three sets of edges on
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these nodes:

Em =
g⋃

j=�g/2�+1

{(vji , v
j+1
i ) : i ∈ [n′]},

Ex = {(v1
i , v

2
j ) : j ∈ Di(x), i ∈ [n′]}, and

Ey = {(v�g/2�j , v
�g/2�+1
i ) : j ∈ Di(y), i ∈ [n′]}.

See Figure 5.2 for a diagram of the construction.
Note that Girth(G) = g if there exists i such that Di(x) ∩ Di(y) �= ∅, i.e., x

and y are not disjoint. However, if x and y are disjoint, then the shortest cycle is of
length at least 4 + 2	 g−2

2 
 ≥ g + 1. Hence, determining whether the girth is at most
g determines whether x and y are disjoint.

6. Toward fast per-item processing. In section 3, we gave a spanner con-
struction that processes each edge much faster than previous spanner-construction
algorithms. In this section, we explore two general methods for decreasing the per-
edge computation time of a streaming algorithm. As a consequence, we will show how
some results from [20] give rise to efficient graph-stream algorithms.

Our first observation is that we can locally amortize per-edge processing by us-
ing some of our storage space as a buffer for incoming edges. While the algorithm
processes a time-consuming edge, subsequent edges can be buffered subject to the
availability of space. This yields a potential decrease in the minimum allowable time
between the arrival of consecutive pairs of incoming edges.

Theorem 6.1. Consider a streaming algorithm that runs in space S(n) and uses
computation time τ(m,n) to process the entire stream. This streaming algorithm can
be simulated by a one-pass streaming algorithm that uses O(S(n) log n) storage space
and has worst-case time per-edge τ(m,n)/S(n).

Next we turn to capitalizing on work done to speed up dynamic graph algorithms.
Dynamic graph algorithms allow edges to be inserted and deleted in any order and
the current graph to be queried for a property P at any point. Partially dynamic
algorithms, on the other hand, are those that allow only edge insertions and querying.
In [20], the authors describe a technique called sparsification and use it to speed
up existing dynamic graph algorithms that decide whether a graph has property P .
Sparsification is based on maintaining strong certificates throughout the updates to
the graph.

Definition 6.2. For any graph property P and graph G, a strong certificate for
G is a graph G′ on the same vertex set such that, for any H, G ∪H has property P
if and only if G′ ∪H has it as well.

It is easy to see that strong certificates obey a transitivity property: If G′ is a
strong certificate of property P for graph G, and G′′ is a strong certificate for G′,
then G′′ is a strong certificate for G. Strong certificates also obey a compositional
property. If G′ and H ′ are strong certificates of P for G and H , then G′ ∪ H ′ is a
strong certificate for G ∪H .

In order to achieve their speedup, the authors of [20] ensure that the certificates
they maintain are not only strong but also sparse. A property is said to have sparse
certificates if there is some constant c such that for every graph G on an n-vertex set,
we can find a strong certificate for G with at most cn edges. Maintaining P over a
sparse certificate allows an algorithm to run on a dense graph, using the (smaller)
computational time required for a sparse graph.
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Table 6.1

One-pass, O(npolylog n) space streaming algorithms given by Theorem 6.3.

Problem Time/edge

Bipartiteness α(n)
Connected comps. α(n)

2-vertex connected comps. α(n)
3-vertex connected comps. α(n)
4-vertex connected comps. log n

MST log n
2-edge connected comps. α(n)
3-edge connected comps. α(n)
4-edge connected comps. nα(n)

Constant edge connected comps. n log n

In the streaming model, we are concerned only with edge insertion and need only
query the property at the end of the stream. Moreover, observe that a sparse certificate
fits in space O(n polylogn). The following theorem states that any algorithm that
could be sped up via the three major techniques described in [20] yields a one-pass,
O(n polylogn) space, streaming algorithm with the improved running time per input
edge.

Theorem 6.3. Let P be a property for which we can find a sparse certificate in
time f(n,m). Then there exists a one-pass, semistreaming algorithm that maintains
a sparse certificate for P using f(n,O(n))/n time per edge.

Proof. Let the edges in the stream be denoted e1, e2, . . . , em. Let Gi denote the
subgraph given by e1, e2, . . . , ei. Inductively, assume we have a sparse certificate Cjn
for Gjn, where 1 ≤ j ≤ 	m/n
, constructed in time f(n,O(n))/n per edge. Also,
inductively assume that we have buffered the next n edges, ejn+1, ejn+2, . . . , e(j+1)n.
Let T = Cjn∪{ejn+1, ejn+2, . . . , e(j+1)n}. By the composability of strong certificates,
T is a strong certificate for G(j+1)n. Let C(j+1)n be the sparse certificate of T . By the
transitivity of strong certificates, C(j+1)n is a sparse certificate of G(j+1)n. Since Cjn
is sparse, |T | = (c+1)n. Thus, computing C(j+1)n takes time f(n,O(n)). By Theorem
6.1, this results in f(n,O(n))/n time per edge, charged over ejn+1, ejn+2, . . . , e(j+1)n.
This computation can be done while the next n edges are being buffered. If k =
n	m/n
, then the final sparse certificate will be Ck ∪ {ek+1, ek+2, . . . , em}.

We note that, for f(n,m) that is linear or sublinear in m, a better speedup may
be achieved by buffering more than n edges, which is possible when we have more
space. In [20], the authors provide many algorithms for computing various graph
properties which they speed up using sparsification. Applying Theorem 6.3 to these
algorithms yields the list of streaming algorithms outlined in Table 6.1. For l ≥ 2, the
l-vertex and l-edge connectivity problems either have not been explicitly considered
in the streaming model or have algorithms with significantly slower time per edge [22].
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Abstract. Many approximation algorithms have been presented in the last decades for NP-
hard search problems. The focus of this paper is on cryptographic applications, where it is desirable
to design algorithms which do not leak unnecessary information. Specifically, we are interested in
private approximation algorithms—efficient approximation algorithms whose output does not leak
information not implied by the optimal solutions to the search problems. Privacy requirements add
constraints on the approximation algorithms; in particular, known approximation algorithms usually
leak a lot of information. For functions, Feigenbaum et al. [ACM Trans. Algorithms, 2 (2006),
pp. 435–472] presented a natural requirement that a private algorithm should not leak information
not implied by the original function. Generalizing this requirement to relations is not straightforward
as an input may have many different outputs. We present a new definition that captures a minimal
privacy requirement from such algorithms; applied to an input instance, it should not leak any
information that is not implied by its collection of exact solutions. We argue that our privacy
requirement is natural and quite minimal. We show that, even under this minimal definition of
privacy, for well-studied problems such as vertex cover and max exact 3SAT, private approximation
algorithms are unlikely to exist even for poor approximation ratios. Similarly to Halevi et al. [in
Proceedings of the 33rd ACM Symposium on Theory of Computing, ACM, New York, 2001, pp.
550–559], we define a relaxed notion of approximation algorithms that leak (a little) information,
and demonstrate the applicability of this notion by showing near optimal approximation algorithms
for max exact 3SAT that leak a little information.
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1. Introduction. Approximation algorithms are currently one of the main re-
search fields in theoretical computer science. The design of algorithms for approxi-
mating computationally hard problems has attracted substantial attention in the last
few decades, as has the research on proving hardness of approximation. Frequently,
approximation algorithms are applied to sensitive data, as in the distributed crypto-
graphic setup of secure computation. In this paper we study privacy issues related to
approximation algorithms of search problems.

We consider an abstract client-server setting. This scenario, besides being inter-
esting on its own, is important since the multiparty distributed setting can be reduced
to this model using secure function evaluation protocols [28, 12] (see the discussion
below). In the client-server setting, the server S is willing to let the client C learn a
specific functionality f of its input. The standard requirement in this setting is that
no other information would be leaked to C. For concreteness, assume that S holds a
graph G and consider the following examples:
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1. If f(G) is the diameter of G, then S can simply compute f(G) and send it to
C. It is clear that C learns f(G) but no other information about G.

2. If f(G) is the number of perfect matchings in G, which is a well-known #P-
complete problem, then C and S have to settle for an approximation f̂ . This
raises the question of which approximation to use, as S is willing to reveal
only f(G), but f̂ may leak some other information. This was the setting
in the work by Feigenbaum et al. [10]. They defined the notion of private
approximation that combines two requirements: (i) approximation: f̂ is an
approximation to f ; and (ii) functional privacy: f̂(G) can be simulated given
f(G). In particular, functional privacy implies that if f(x) = f(y), then
f̂(x) and f̂(y) are indistinguishable. It turns out that an efficient private
approximation algorithm exists for the number of perfect matchings in a
graph [10].

3. A more general and more typical case is when the server C needs to learn a
“solution” for an optimization problem, rather than the value of the objective
function.1 For example, one is usually interested in finding a vertex cover of
minimum size in G, rather than just learning the size of the minimum vertex
cover. Even if C and S are willing to settle for an approximation (i.e., finding
a cover which is not much larger than the minimum), it is not clear which
cover C should learn; the framework of private approximations of functions
does not address this problem as there may be many solutions to the search
problem.

This more general case, where one seeks a computation not of a function but of a
solution to an optimization problem, is the focus of this work.

1.1. Our contribution. Our main conceptual contribution is supplying a mini-
mal definition of private approximation of search problems. The generalization of the
definition of (functional) private approximation to search problems is not straightfor-
ward. As one input may have many different outputs, it is not clear in which cases
we need f̂(x) and f̂(y) to be indistinguishable. For our example of vertex cover, it
seems that a minimal requirement is that a private approximation algorithm should
not distinguish between graphs G1, G2 that are equivalent in the sense that they have
exactly the same set of solutions; i.e., every minimum cover for G1 is also a mini-
mum cover for G2 and vice versa. Note that this is a rather weak requirement, as it
does not restrict the approximation algorithm with respect to nonequivalent graphs.2

Furthermore, it might reveal more information than a single solution to the problem.
In general, given a search problem, we say that two inputs are equivalent if they

have the same set of solutions; an algorithm is private if it does not distinguish be-
tween equivalent inputs. This definition is a generalization of the privacy requirement
in secure function evaluation where each input has a single solution and the proto-
col should not distinguish between inputs with the same solution. Furthermore, this
definition is a generalization of the requirement for private approximation of func-
tions [10]. Thus, we believe that our definition is natural. Furthermore, it is minimal

1An optimization problem is a problem where for each input there is a set of feasible solutions and
there is an objective function; the goal is given an input to find a feasible solution with a minimum
(or maximum) objective vale.

2For the vertex cover problem, the number of equivalence classes of graphs is exponential in |V |;
thus, there may be many equivalence classes that contain only a few graphs. This is in sharp contrast
with privacy of the vertex cover problem size that divides the graphs to only |V | equivalence classes,
as there are |V | possible answers to the function.
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in the sense that weakening it will result in algorithms that cannot be considered
private. It is plausible that there are meaningful definitions of privacy for search
problems that are incomparable to our definition.

Impossibility results for private approximation of the optimization objective value
for several NP-hard problems (e.g., approximating the size of a minimum vertex
cover) were proven by Halevi et al. [16] (a detailed summary of their results appears
in section 1.2). In view of the result of [16], it seems that we already know all there is to
know about private approximation of optimization problems. However, impossibility
results for private approximation of the optimization objective value (e.g., approxi-
mating the size of a minimum vertex cover) do not imply impossibility results for the
task of finding a feasible solution with near optimal optimization value (e.g., finding
a small vertex cover). For nonprivate computation, if there is an efficient algorithm
whose output is a near optimal solution, then one can compute its value. However,
this reduction does not preserve privacy as it leaks more information than implied by
the optimization value. Furthermore, for private approximation the above two tasks
are incomparable as the privacy requirement of “not learning information” is applied
to a different output. For example, consider two graphs G1 and G2 such that the sizes
of minimum vertex covers of G1 and G2 are the same, but the sets of minimum covers
are different. A private approximation algorithm for the search problem of vertex
cover can return covers of different size, while a private approximation algorithm for
the size of the vertex cover must return the same answer for G1 and G2.

Impossibility of private approximation. To understand the nature of private ap-
proximation of search problems, we concentrate in this work on two optimization
problems with different characteristics—vertex cover and max exact 3SAT. The first
problem is a minimization problem, while the second is a maximization problem. More
importantly, for vertex cover we want a solution satisfying all constraints (covering all
edges), and we compromise by allowing a solution whose size is not optimal. In con-
trast, for max exact 3SAT we seek a solution satisfying most constraints (i.e., clauses).
The same methods we present in this paper for these two problems are applicable for
other optimization problems (e.g., max-cut). Our first technical contribution is an
impossibility result for private approximation of vertex cover.

Informal Theorem. If RP �= NP, then vertex cover cannot be approximated
privately even within an approximation ratio as poor as n1−ε.

A similar result is shown for max exact 3SAT. This means that although our
notion of privacy is minimal and it seems that any reasonable notion of privacy for
search problems should imply it, there are natural problems for which it is too strong.

Our proof techniques for the impossibility results are different from those used for
obtaining the inapproximability results for the functional version of the problem [16].
We show how to use a private approximation algorithm for a problem in order to
solve the problem exactly in polynomial time. All our lower bounds have the same
structure, where a solution is constructed in an iterative manner. For example, for
vertex cover, in each iteration a node is examined. If that node appears in some
optimal solution, we add it to the solution and remove it and its neighbors from
the graph. If there exists some optimal solution that does not include this node, we
remove it from the graph. When both conditions are met, we choose one of them
arbitrarily. The crux of the algorithm is that the private approximation algorithm is
used for deciding which of the conditions hold.

Algorithms that leak a little information. In view of the impossibility results, it is
natural to look for a relaxation of the definition. In the setting of functional privacy,
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Halevi et al. [16] defined the notion of almost private algorithms that are allowed to
leak (a little) information beyond what is disclosed by the exact functionality. This
notion falls elegantly within our definitional framework, where it is generalized to
search problems. We say that an algorithm leaks at most k bits if it refines each
equivalence class by dividing it to at most 2k subclasses. That is, the algorithm
leaks only the subclass, which can be described by k bits. For max exact 3SAT, this
relaxation results in a tremendous improvement.

Informal Theorem. There exists an efficient deterministic approximation al-
gorithm for max exact 3SAT with a near optimal approximation ratio of 7/8− ε that
leaks only O(log logn) bits of information (where the exact constant in the “O” nota-
tion depends on ε).

Interestingly, the algorithm for max exact 3SAT and the algorithm we describe
for vertex cover fall into a class of approximation algorithms that we call solution-
list algorithms. This class of algorithms provides much stronger privacy guarantees.
Intuitively, for every input size n, the solution-list algorithm determines in advance
(before seeing the input) a list of possible outcomes. Upon seeing the actual input, the
algorithm is restricted to output a solution from the list. Thus, the number of bits the
algorithm leaks is at most the logarithm of the size of the list. Solution-list algorithms
provide stronger privacy guarantees as they protect every pair of inputs (not only pairs
of equivalent inputs). For max exact 3SAT, our algorithm efficiently computes a list
of poly((log n)/ε) assignments such that for every exact 3CNF (conjunctive normal
form) formula φ there exists an assignment in the list that is a good approximation
for φ; hence the algorithm leaks O(log logn + log 1/ε) bits. For vertex cover, we
obtain a solution-list algorithm that is also interesting, but not as dramatic as that
for max exact 3SAT, and we obtain a tradeoff between the amount of leakage and
approximation quality.

We also show an impossibility result for approximating vertex cover while leaking
information.

Informal Theorem. If RP �= NP, then vertex cover cannot be approximated
within an approximation ratio as poor as n1−ε while leaking at most O(ε logn) bits.

The above result was improved in [5], where it was proven that any algorithm
that n1−ε-approximates vertex cover must leak Ω(nε) bits. This implies that the
solution-list algorithm for the problem is optimal up to a constant factor.

Private computation of search problems in P. The notion of private search is
applicable also to search problems in P . For example, suppose a server holds a graph
G and a client wants to learn a maximum matching of this graph. What kind of
information can the client derive from the server’s output? Can the client rule out
many input graphs given the answer? It is somewhat surprising that the problem of
private computation of search problems in P was not considered in previous papers.
For many problems in P , there is an efficient private algorithm solving the search
problem while satisfying our minimal definition of privacy. One option is choosing the
lexicographically first exact solution (e.g., for maximum matching and shortest path).
Another option is constructing a randomized algorithm that chooses a random exact
solution according to some distribution. Both approaches are somewhat problematic.
Following our work, in [6] two stronger definitions of private computation of search
problems were suggested and discussed, and algorithmic techniques were developed
for constructing algorithms satisfying these stronger definitions.

For some problems finding a solution privately imposes additional constraints on
the algorithm. We show that these constraints can make the problem much harder.
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Informal Theorem. There exists a search problem which can be efficiently
solved without privacy constraints but cannot be efficiently and privately solved un-
less NP ⊆ P/poly.

Multiparty approximations of search problems. As mentioned before, the abstract
client-server setting we consider in this paper is important since the multiparty dis-
tributed setting can be reduced to this model. Consider the following scenario in the
multiparty model: There is some secret input shared by the parties (that is, all parties
together can compute the input, while smaller sets of parties have no information on
the input). The parties want to solve some search problem on the input and make the
output public without disclosing extra information. Clearly, our impossibility results
hold for this model as well. Furthermore, using general secure function evaluation
protocols [28, 12], efficient private algorithms in the server/client model can be trans-
formed into protocols in the multiparty model. That is, the efficient algorithm and
the sharing of the secret input imply that there is a small circuit, whose inputs are
the inputs of the parties, computing the private functionality. Using the constructions
of [28, 12], there is a private protocol computing this private functionality.

1.2. Related work. Feigenbaum et al. [10] initiated the discussion of private
approximation of functions. They observed that combining approximation algorithms
and secure function evaluation protocols might result in protocols that are not private
as the output of the approximation algorithm might leak information. The definition
of functional privacy put forward by [10] is a simulation-based definition, where the
simulator’s input is the exact value f(x) and its output distribution is computation-
ally indistinguishable from f̂(x). Under this definition, they provided a protocol for
approximating the Hamming distance of two n-bit strings with communication com-
plexity Õ(

√
n), and polynomial-time solutions for approximating the permanent and

other natural #P problems. Other private approximation protocols published since
include [11, 22, 19]. In particular, Indyk and Woodruff [19] provide a polylogarithmic
communication approximation for the Hamming distance and a secure approximation
of the nearest neighbor search problem.

Inapproximability results for computing the size of a minimum vertex cover within
approximation n1−ε were proved by Halevi et al. [16]. Their proof uses a special
sliding-window reduction that given a SAT instance φ and an integer z constructs an
instance G of vertex cover such that if φ is satisfiable, then G has a vertex cover of
size z, and otherwise any vertex cover for G is of size at least z+ 1. These techniques
do not apply in our setting, as the large number of equivalence classes does not allow
a simple averaging argument such as that used in [16].

The notion of almost private approximation was introduced in [16]. Their defini-
tion modifies that of [10] by allowing the simulator to consult a deterministic predicate
of the input. They showed that by this slight compromise in privacy, one can get fairly
good approximations for any problem that admits a good deterministic approxima-
tion. For the functional version of vertex cover this yields an approximation ratio
4 while leaking one bit (more generally, there is a tradeoff between the leakage and
the approximation ratio). A similar relaxation of privacy is the notion of additional
information in secure two-party protocols [3]. Related ideas can be found in the study
of knowledge complexity [15, 14, 7, 13, 27].

We next compare the possibility and impossibility results for vertex cover and
max exact 3SAT to nonprivate computation and privately approximating the size of
the solutions.
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Vertex cover. Vertex cover can be (nonprivately) (2−o(1))-approximated in deter-
ministic polynomial time [24, 4, 17], and if P �= NP , then there is no polynomial-time
1.3606-approximation algorithm for vertex cover [9].3 Furthermore, if NP �⊆ BPP,
then for every constant ε > 0 there is no private n1−ε-approximation algorithm for the
size of the minimum vertex cover [16]. However, there is a 4-approximation algorithm
for the size of the minimum vertex cover which leaks one bit, and more generally,
there is a tradeoff between the leakage and the approximation ratio [16]. In contrast,
we show that if RP �= NP , then this problem cannot be privately n1−ε-approximated
even if a leakage of (ε logn)/6 bits is allowed. In [5] this result was improved showing
that every algorithm n1−ε-approximating the vertex cover problem must leak Ω(nε)
bits.

Max exact 3SAT. The max exact 3SAT problem can be 7/8-approximated [20],
and if P �= NP there is no polynomial-time (7/8 + ε)-approximation algorithm for
it [18]. The trivial algorithm that returns 7/8 is a private 7/8-approximation algorithm
for the functional version of max exact 3SAT. We show that if RP �= NP , then the
search problem of max exact 3SAT cannot be privately n1−ε-approximated; however,
with O(log logn+ log 1/ε) leakage there is a (7/8− ε)-approximation algorithm for it.

Organization. In section 2 we define private algorithms for search problems. In
section 3 we provide impossibility results for the minimum vertex cover and the max
exact 3SAT search problems. In section 4 we discuss algorithms that leak (a little)
information and describe such algorithms for both search problems. Later, in sec-
tion 5, we prove our strongest impossibility result, showing vertex cover cannot be
privately approximated even if a leakage of O(log n) bits is allowed. In section 6, we
present an impossibility result for a search problem in P . In Appendix A, we discuss
an equivalent definition for private algorithms for search problems. In Appendices B
and C, we complete the proofs of the impossibility results.

2. Definition of private algorithms with respect to a privacy structure.
There are two different aspects of private algorithms—the utility of the algorithm
(what should be computed) and the privacy requirement (what should be protected,
that is, what information should not be revealed by the computation). In computing
functions this is quite straightforward; we want to compute (or approximate) a func-
tion, and we want to protect inputs with the same output. For search algorithms,
we know what should be computed. However, since these algorithms may output
different outputs on the same input, it is less clear what should be protected. We
thus separate the specification of what we want to protect from what we compute. In
general, we require the output of the algorithm on certain pairs of inputs to be indis-
tinguishable. In this section we define the pairs of inputs that should be protected by
a private algorithm.

Definition 2.1 (privacy structure). A privacy structure R ⊆ {0, 1}∗ × {0, 1}∗
is an equivalence relation on instances. For 〈x, y〉 ∈ R, we use the notation x ≡R y.

We will discuss only privacy structures of the form R = ∪n∈NRn, where Rn is
an equivalence relation between instances of size n, such as graphs on n vertices or
Boolean formulae over n variables. We say that an algorithm A is private with respect
to a privacy structure R if the results of executing A on two R-equivalent inputs are
computationally indistinguishable.

3A hardness result with a larger nonapproximability factor was proved in [21]: Assuming the
unique games conjecture, there is no polynomial-time (2 − ε)-approximation algorithm for vertex
cover for every constant ε > 0.
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Definition 2.2 (private algorithm). Let R be a privacy structure. A randomized
polynomial-time algorithm A is private with respect to R if for every randomized
polynomial-time algorithm D and for every positive polynomial p(·) there exists some
n0 ∈ N such that for every x, y ∈ {0, 1}∗ such that x ≡R y and |x| = |y| ≥ n0∣∣∣Pr[D(A(x), x, y) = 1] − Pr[D(A(y), x, y) = 1]

∣∣∣ ≤ 1
p(|x|) ,

where the probabilities are taken over the random choices of A and D. That is, when
x ≡R y, an algorithm D given an output of A cannot distinguish whether the input of
A is x or y.

Example 2.3. Let f : {0, 1}∗ → N be a function. Define

Rf = {〈x, y〉 : |x| = |y|, f(x) = f(y)} .

The relation Rf is the relation implicitly considered when discussing private compu-
tation of functions. Furthermore, this is the relation implicitly considered in [10, 16]
when considering private approximation of the objective function, where the privacy
requirement is with respect to inputs with the same objective value.

In Appendix A, we present equivalent definitions of privacy which require “se-
mantic security” and prove that these definitions are equivalent to Definition 2.2.

We next recall the definition of a search problem and define the privacy structure
associated with it.

Definition 2.4. A bivariate relation Q is polynomially bounded if there exists
a constant c such that |w| ≤ |x|c for every 〈x,w〉 ∈ Q. The decision problem for Q
is, given an input x, to decide if there exists a w such that 〈x,w〉 ∈ Q or not. The
search problem for Q is, given an input x, to find a w such that 〈x,w〉 ∈ Q if such a
w exists.

Search problems are the more common algorithmic task of finding a solution to a
problem (rather than deciding whether the problem has a solution or not). To define
a private solution or private approximation of a search problem, one must determine
the privacy structure the algorithm should respect. It is a minimal requirement
to demand that if two inputs have the same set of answers to the search problem,
the output of the approximation algorithm should not enable distinguishing between
them.

Definition 2.5 (privacy structure of a search problem). The privacy structure
RQ related to a relation Q is defined as follows: x ≡RQ y iff

• |x| = |y|, and
• 〈x,w〉 ∈ Q iff 〈y, w〉 ∈ Q for every w.

That is, x ≡RQ y if they have the same set of solutions.
We first give an example of a search problem in P .
Example 2.6. Let maxMatch be the maximum matching relation; that is, 〈G,M〉

∈ maxMatch if M is a maximum matching in G. In this case, RmaxMatch contains all
pairs of graphs G1 = 〈V,E1〉, G2 = 〈V,E2〉 for which M is a maximum matching for
G1 iff it is a maximum matching for G2.

We give two examples of privacy structures, for specific relations, that would be
the focus of this paper.

Example 2.7. A vertex cover of an undirected graph G = (V,E) is a set C ⊆ V
that covers all edges in G; that is, C ∩ {u, v} �= ∅ for every (u, v) ∈ E. Let minVC be
the minimum vertex cover relation; that is, 〈G,C〉 ∈ minVC if C is a minimum vertex
cover in G. In this case, RminVC contains all pairs of graphs G1 = 〈V,E1〉, G2 =
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〈V,E2〉 for which C ⊆ V is a minimum vertex cover for G1 iff it is a minimum vertex
cover for G2.

To understand the difference between privately approximating the size of the
vertex and privately finding an approximated minimum vertex cover, consider two
isomorphic graphs. The size of the minimum vertex cover in these two graphs is the
same; thus, a private algorithm approximating the minimum vertex cover size has to
“protect” them. However, in general, these two graphs have different sets of minimum
vertex covers; thus, an algorithm finding an approximated minimum vertex cover can
behave differently on these graphs.

Example 2.8. An exact 3CNF formula is a CNF formula that contains exactly
three different literals in each clause. Let maxE3SAT be the max exact 3SAT relation;
that is, 〈φ, a〉 ∈ maxE3SAT if φ is an exact 3CNF formula over n variables, and a is an
assignment to the n variables that satisfies the maximum possible number of clauses
in φ. In this case, the privacy structure RmaxE3SAT contains all pairs of exact 3CNF
formulae φ1, φ2 over n variables for which an assignment a satisfies the maximum
possible number of clauses in φ1 iff it satisfies the maximum possible number of
clauses in φ2. We stress that these two assignments need not satisfy the same number
of clauses in φ1 and φ2.

We note that a related definition of private approximation was recently presented
in the context of the nearest neighbor problem [19]. Their privacy requirement is that
instances with identical sets of approximate solutions should not be told apart by
the private approximation algorithm. This definition may be cast in our framework
by constructing a privacy structure where instances that have the same collection of
approximate solutions are considered equivalent.

Approximation algorithms. We next define approximation algorithms for a min-
imization problem (the definition for maximization problems is analogous). Given a
bivariate relation Q and an objective function f : {0, 1}n → R we define

OPT(x) = min {f(w) : 〈x,w〉 ∈ Q} .

We consider the minimization problem that given an input x finds a solution w such
that 〈x,w〉 ∈ Q and f(w) = OPT(x). The c(n)-approximation version of the problem
is to find a solution w such that f(w) ≤ c(n)·OPT(x). Formally, we have the following
definition.

Definition 2.9. For a function c : N → R, we say that a randomized algorithm
A is a c(n)-approximation algorithm for a minimization problem 〈Q, f〉 if for every
input x with probability one it finds a solution w such that 〈x,w〉 ∈ Q and f(w) ≤
c(n) · OPT(x) (if x has a solution).

A weaker definition of approximation requires that E(f(A(x))) ≤ c(n) · OPT(x);
namely, the expected value of the function f applied to the solution returned by the
approximation algorithm is bounded by c(n) · OPT(x). Our impossibility result for
vertex cover holds also for this definition. However, for maxE3SAT, the behavior
with respect to the two definitions is different. The algorithm that returns a random
assignment is a private algorithm for maxE3SAT in which the expected fraction of
clauses satisfied is 7/8. In contrast, we prove that every private randomized approxi-
mation algorithm according to Definition 2.9 has an approximation ratio at least n1−ε

for every constant ε > 0.

3. Impossibility results for private approximation.
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3.1. Impossibility results for private approximation of vertex cover. In
this section we show that private approximation of the vertex cover search problem
with respect to RminVC (defined in Example 2.7) is a hard task. We start with defining
private approximation of vertex cover and then prove impossibility results for both
the deterministic and the randomized settings.

Definition 3.1 (private approximation of vertex cover). An algorithm A is a
private c(n)-approximation algorithm for minVC if (i) A runs in polynomial time;
(ii) A is a c(n)-approximation algorithm for minVC, that is, for every graph G with
n vertices, it returns with probability 1 a vertex cover whose size is at most c(n) times
the size of the smallest vertex cover of G; (iii) A is private with respect to RminVC.

To illustrate our definitions, we present a private (n/ logn)-approximation algo-
rithm for the vertex cover problem. This algorithm is based on the polynomial-time
algorithm of [26] that returns a minimum vertex cover if the size of the vertex cover
is at most logn. Actually, in this case there are at most n2 such covers,4 and the
algorithm can efficiently compute all of them. Thus, we can define any rule to choose
one of them (e.g., the lexicographically first, a random vertex cover, or a cover chosen
such that it satisfies the stronger definitions of privacy given in [6]). To approximate
minVC we do the following:

If there is a cover of size at most logn,
then return the lexicographically first minimum vertex cover.
Otherwise, return the entire set of vertices.

We show impossibility results for privately approximating vertex cover in the
deterministic and in the randomized setting.

Theorem 3.2. Let ε > 0 be a constant.
1. If P �= NP, then there is no deterministic private n1−ε-approximation algo-

rithm for the search problem of minVC.
2. If RP �= NP, then there is no randomized private n1−ε-approximation algo-

rithm for the search problem of minVC.
Part 1 of Theorem 3.2 is proven in the rest of this section. Part 2 of Theorem 3.2

is a special case of Theorem 5.1 proven in Appendix B.

3.1.1. Relevant and critical vertices. The framework for proving Theorem 3.2
is the following: We assume the existence of the appropriate private approximation al-
gorithm and derive a greedy algorithm that solves vertex cover exactly. The following
definitions are central for both the deterministic and the randomized cases.

Definition 3.3 (critical vertices and relevant vertices). Let G = 〈V,E〉 be a
graph and v ∈ V be a vertex of G. We say that v is critical for G if every minimum
vertex cover of G contains v. We say that v is relevant for G if there exists a minimum
vertex cover of G that contains v.

Observation 3.4. Every vertex is relevant or noncritical (or both).
Example 3.5. To illustrate the relation RminVC we show a pair of graphs that are

equivalent under the relation. One way to create such a pair is to pick a graph and
identify a vertex that is critical for this graph. For example, vertex v3 in Figure 3.1(a)
is a critical vertex. To get the second graph we connect the critical vertex to some

4The algorithm of [26] first finds a maximal matching of size at most log n (the size of any
matching is a lower bound on the size of a vertex cover). Let P be the endpoints of the edges in this
matching (thus, |P | ≤ 2 log n). In [26] it is proven that any minimum cover is composed of a subset
P ′ ⊆ P and all the neighbors of P \ P ′. As there are at most n2 subsets of P , there are at most n2

minimum vertex covers for the graph.
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(a)

v5v4

(b)

v6

v3

v1 v2

v5v4

v6

v3

v1 v2

Fig. 3.1. A pair of graphs equivalent under RminVC.

other vertex. In Figure 3.1(b), vertex v3 is connected to v6. It is easy to verify that
the set of minimum covers in both graphs is {{v3, v2} , {v3, v5}}. The equivalence can
also be derived from Claim 3.8 below.

We design a greedy algorithm for exactly solving the vertex cover problem that
in each step solves the following problem.

Definition 3.6 (the relevant-noncritical problem).

Input: A graph G = 〈V,E〉 and a vertex v ∈ V .
Output: One of the following: (i) v is relevant for G. (ii) v is noncritical for G.

Algorithm Greedy Vertex Cover

Input: A graph G = 〈V, E〉.
Output: A minimum vertex cover of G.

1. If V = ∅, return ∅.
2. Pick a vertex v ∈ V and execute Algorithm Relevant-Noncritical on G

and v.

3. If the answer is “RELEVANT”:

(a) Run Greedy Vertex Cover on the graph G\ {v}. Denote the answer
by Cv.

(b) Return Cv ∪ {v}.
4. If the answer is “NONCRITICAL”:

(a) Let N(v) be the neighbors of v in G, that is, N(v) = {u : (u, v) ∈ E}.
(b) Run Greedy Vertex Cover on the graph G\({v} ∪ N(v)). Denote

the answer by CN(v).
(c) Return CN(v) ∪ N(v).

Fig. 3.2. A greedy algorithm using Algorithm Relevant-Noncritical to find a minimum vertex
cover.

In Figure 3.2, we describe a greedy algorithm for vertex cover that in each step uses
an algorithm that solves the Relevant-Noncritical problem. In subsequent sections,
we solve the latter using oracle access to private approximation algorithms for vertex
cover. The following claim asserts the correctness of the greedy algorithm.

Claim 3.7. If Algorithm Relevant-Noncritical is correct and runs in polyno-
mial time, then Algorithm Greedy Vertex Cover is correct and runs in polynomial
time.

Proof. The proof is by induction on |V |. The algorithm is trivially correct for
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V = ∅. Now suppose V �= ∅, and we start from the case where v is relevant. In this
case, there is a minimum cover C for G that contains v. Denote d = |C|, and note
that the set C\ {v} is a cover of size d − 1 for the graph G\ {v}. By the induction
hypothesis, the set Cv is a minimum cover for G\ {v}. We claim that Cv ∪ {v} is a
minimum cover for G. First note that it is indeed a cover of G as any edge adjacent
to v is covered by v, and all the rest are covered by Cv. Since Cv is a minimum cover
of G\ {v}, it is of size at most d− 1. Therefore, the size of Cv ∪ {v} is d, and it is a
minimum cover of G.

In the other case, v is not critical for G. Thus, there is a minimum cover C′

for G that does not contain v and therefore contains all vertices in N(v). Denote
d′ = |C′| and h = |N(v)|. In this case the set C′\N(v) is a cover of size d′ − h of
the graph G\(N(v) ∪ {v}). By the induction hypothesis, the set CN(v) is a minimum
cover for G\(N(v) ∪ {v}). We claim that CN(v) ∪ N(v) is a minimum cover for G.
First note that it is indeed a cover of G as any edge adjacent to N(v)∪{v} is covered
by N(v), and all other edges are covered by CN(v). Since CN(v) is a minimum cover
of G\(N(v) ∪ {v}), it is of size at most d′ − h. Therefore, the size of CN(v) ∪N(v) is
d′, and it is a minimum cover of G.

It is straightforward to verify that if Relevant-Noncritical runs in polynomial
time, then the greedy algorithm runs in polynomial time.

3.1.2. Combinatorial claims. The following combinatorial claims are helpful
in designing algorithms for the Relevant-Noncritical problem in both the deterministic
and the randomized settings. Intuitively, a private approximation algorithm must be
“sensitive” to small changes in the set of minimum vertex covers of its input graph.
We study the connection between the RminVC relation and the set of critical and
relevant vertices in a graph.

Claim 3.8. Let G = 〈V,E〉 be a graph, u, v ∈ V such that (u, v) /∈ E, and
G∗ = 〈V,E∗〉, where E∗ = E ∪ (u, v). If u is critical for G, then G ≡RminVC G

∗.
Proof. We first show that every minimum vertex cover of G is a minimum vertex

cover of G∗. Let C be a minimum cover of G. As u is critical for G, we deduce that
u ∈ C. Therefore, C covers the edge (u, v), and thus it is a cover of G∗. Note that
every cover of G∗ is also a cover of G, and thus C is a minimum cover of G∗.

For the other direction, let C∗ be a minimum cover of G∗. Let c be the size of a
minimum cover of G. As u appears in at least one minimum cover of G, which is also
a cover of G∗, the size of C∗ is at most c. On the other hand, as E⊆E∗, the set C∗

is also a cover of G, and thus the size of C∗ is exactly c. Therefore, C∗ is a minimum
cover of G.

We will later see that if a vertex u is not in the result of the private approximation
algorithm A, then it is noncritical for the input graph G. However, if the vertex cover
size of the input graph is large, the approximation algorithm may return the entire set
V as its result. To avoid this, we add a large set of isolated vertices to G. (The size
of this set is a function of the approximation ratio.) The mere fact that an isolated
vertex is noncritical for G is of course not helpful. Nevertheless, we gain information
by connecting this isolated vertex to the vertex v and running A on the new graph.
It will also be helpful to consider duplicating the graph G and connecting the isolated
vertex to both copies of the original vertex v.

Definition 3.9 (the graphs G2 and G
(

i
∧
)
). Let G = 〈V,E〉 be a graph, v ∈ V be

a vertex, I be a set of vertices, and i ∈ I. The graph G2 is defined as G2 = 〈V2, E2〉,
where V2

def= (V × {1, 2}) ∪ I and E2
def= {(〈u, j〉, 〈w, j〉) : (u,w) ∈ E, j ∈ {1, 2}} . The

graph G
(

i
∧
)
is defined as G

(
i
∧
)

= 〈V2, E( i
∧)〉, where E( i

∧) def= E2∪{(〈v, j〉, i) : j ∈ {1, 2}} .
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Fig. 3.3. The graphs G2 and G(
i
∧).

The graphs G2 and G
(

i
∧
)

are illustrated in Figure 3.3. The following claims
summarize the properties of G2 and G

(
i
∧
)
.

Claim 3.10. If v is critical for G, then G2 ≡RminVC G
(

i
∧
)
.

Proof. Since G2 contains two separate copies of G and v is critical for G, the
vertices 〈v, 1〉 and 〈v, 2〉 are critical for G2. Hence, by Claim 3.8, adding the edges
(〈v, 1〉, i) and (〈v, 2〉, i) does not change the set of minimum vertex covers of the
graph.

Claim 3.11. If v is not relevant for G, then i is critical for G
(

i
∧
)
.

Proof. Assume toward contradiction that the vertex i is noncritical for G
(

i
∧
)
.

Hence, there must be a minimum cover C( i
∧) of G

(
i
∧
)

that contains 〈v, 1〉 and 〈v, 2〉.
The intersection of C( i

∧) with each copy of G contains a cover of G that contains the
appropriate copy of v. As v is not relevant for G, these covers are not optimal. Let c
be the size of a minimum vertex cover of G. Then

∣∣C( i
∧)
∣∣ ≥ 2(c+ 1) = 2c+ 2. On the

other hand, let C be a minimum cover of G of size c. Then, the set (C ×{1, 2})∪ {i}
is a cover of G

(
i
∧
)

of size 2c+ 1, in a contradiction to the minimality of C( i
∧). Hence,

i is critical for G
(

i
∧
)
.

3.1.3. Impossibility result for deterministic private approximation. In
this section we show an algorithm that solves the Relevant-Noncritical problem, given
an oracle access to a deterministic private approximation algorithm for minVC.

Claim 3.12. Let A be a deterministic private approximation algorithm for
minVC, let G = 〈V,E〉 be a graph, and denote W = A(G). Then for any two different
vertices v1, v2 ∈ V \W , the vertex v1 is not critical for G (and, similarly, v2 is not
critical).

Proof. As v1 and v2 are not inW , andW is a cover of G, we infer that (v1, v2) /∈ E.
Let E∗ = E ∪ {(v1, v2)}, and define G∗ = 〈V,E∗〉. We now consider a hypothetical
execution of the algorithm A on G∗ and denote W ∗ = A(G∗). The set W ∗ must cover
the edge (v1, v2) and thus W ∗ �= W .

If v1 is critical for G, then, by Claim 3.8, the sets of minimum-size vertex cover
of G and G∗ are equal. However, since A is deterministic and private, and W �= W ∗,
the set of minimum vertex covers of G and G∗ must be different. Therefore, v1 is not
critical for G.

In Figure 3.4, we present Algorithm Relevant-Noncritical. It takes a graph
G = 〈V,E〉 and a vertex v ∈ V as inputs and uses a private n1−ε-approximation
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algorithm A to solve the Relevant-Noncritical problem.

Algorithm Relevant-Noncritical

Input and Output: See Definition 3.6.

1. Let I be a set of vertices of size (4n)1/ε − 2n.

2. Construct the graph G2 from G and I as in Definition 3.9.

3. Execute A on G2 and denote W2 = A(G2).

4. Choose any vertex v′ ∈ I\W2 (there must be at least two such vertices as
the approximation algorithm cannot return all the sets I).

5. Construct G( v′
∧ ) from G, I , and v′ as in Definition 3.9.

6. Execute A on G( v′
∧ ) and denote W ( v′

∧ ) = A(G( v′
∧ )).

7. If W2 �= W ( v′
∧ ) return “NOT CRITICAL.” Else return “RELEVANT.”

Fig. 3.4. Algorithm Relevant-Noncritical for a private deterministic A.

The correctness of Algorithm Relevant-Noncritical stems from the following
claims.

Claim 3.13. If W2 �= W ( v′
∧ ), then v is not critical for G.

Proof. Assume toward contradiction that v is critical for G. By Claim 3.10, the
graphs G2 and G

(
v′
∧

)
have the same set of minimum vertex covers. Hence, from

the privacy of A, we get that W2 = A(G2) = A
(
G
(

v′
∧

))
= W ( v′

∧ ), contradicting

W2 �= W ( v′
∧ ).

We next show that there are at least two vertices we can choose in step 4 of the
algorithm.

Claim 3.14. Let ε > 0 be a constant. There exist at least two vertices in I \W2.
Proof. Let N = |I| + 2n = (4n)1/ε be the number of vertices in G2. The size of

the minimum vertex cover of G2 is twice the size of the minimum vertex cover of G;
thus, it is at most 2(n− 1). Since A is an N1−ε-approximation algorithm for vertex
cover, the size of W2 = A(G2) is at most

2(n− 1) ·N1−ε ≤ 2n ·N1−ε − 2 = 2n · ((4n)1/ε)1−ε − 2 =
(4n)1/ε

2
− 2

≤ (4n)1/ε − 2n− 2 = |I| − 2.

Consequently, there are at least two vertices in I \W2.
Claim 3.15. If W2 = W ( v′

∧ ), then v is relevant for G.
Proof. As W2 = W ( v′

∧ ) and v′ /∈ W2, we get v′ /∈ W ( v′
∧ ). Since there are at least

two vertices in I \W2, we can apply Claim 3.12 and deduce that the vertex v′ is not
critical for G

(
v′
∧

)
. Applying Claim 3.11, we infer that v is relevant for G.

We extend the techniques described in this section to get an impossibility result
with respect to a weaker notion of private approximation defined in section 4 (see
Theorem 5.1).

3.2. Impossibility results for private approximation of exact 3SAT.
Similar results are obtained for private approximation of maxE3SAT as stated in
the following theorem.
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Theorem 3.16. Let ε > 0 be a constant.
1. If P �= NP, then there is no deterministic private 1/n1−ε-approximation

algorithm for the search problem of maxE3SAT.
2. If RP �= NP, then there is no randomized private 1/n1−ε-approximation

algorithm for the search problem of maxE3SAT.
See Appendix C for a proof of the deterministic case. The proof of the randomized

case follows, with modifications similar to those made in Appendix B for minVC.

4. Algorithms that leak a little information. As demonstrated in the pre-
vious section, in some cases it is impossible to design an efficient algorithm which is
private with respect to a privacy structure R. However, letting R′ be a refinement
of R, we view a private algorithm with respect to R′ as a private algorithm with
respect to R that leaks information. The amount of information leaked is quantified
according to the relation between R and R′.

Definition 4.1 (k-refinement). Let R and R′ be two privacy structures over
{0, 1}∗ and k : N → N. We say that R′ is a k(n)-refinement of R if R′⊆R and for
every n ∈ N every equivalence class of R of strings of size n is a union of at most
2k(n) equivalence classes of R′.

Definition 4.2 (algorithms leaking k(n)-bits). Let R be a privacy structure. A
randomized polynomial-time algorithm A leaks at most k(n) bits with respect to R if
there exists a privacy structure R′ such that (i) R′ is a k(n)-refinement of R, and (ii)
A is private with respect to R′.

Informally, the algorithm leaks only the subclass of the equivalence class of the
input; this subclass can be described by k bits; thus, the algorithm leaks at most k
bits.

4.1. Solution-list algorithms. Solution-list algorithms are algorithms whose
outcome is always in a small predetermined set, that is, in a set that is a function of
|x| but not of x itself. With respect to privacy, solution-list algorithms are valuable as
they leak only a few bits with respect to any privacy structure—at most logarithmic
in the number of their possible outcomes.

Definition 4.3 (solution-list algorithm). We say that a deterministic algorithm
A is a K(n)-solution-list algorithm if for every n ∈ N

|{ y : ∃x ∈ {0, 1}n such that A(x) = y }| ≤ K(n).

That is, a solution-list algorithm is an algorithm that, for every input size n,
“chooses” its outputs from a set of at most K(n) possible outcomes.

We define the universal relation, denoted U∗ = ∪n∈NU∗
n, as the privacy structure

where every two instances of the same size are equivalent. Note that any privacy
structure is a refinement of U∗; hence if an algorithm is private with respect to U∗, it
is also private with respect to any privacy structure,5 and similarly, if an algorithm
leaks at most k bits with respect to U∗, then such is the case with respect to any
privacy structure.

Observation 4.4. Any K(n)-solution-list algorithm leaks at most logK(n) bits
with respect to U∗, and, in particular, the algorithm leaks at most logK(n) bits with
respect to every privacy structure.

5An algorithm A is private with respect to U∗ if only the instance size may be learned from its
outcome.
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4.2. Solution-list algorithms for exact 3SAT. In this section we present a
(7/8− ε)-approximation algorithm for maximum satisfiability on exact 3CNF formu-
lae that leaks a little information, i.e., O(log logn+ log 1/ε) bits. The algorithm is a
solution-list algorithm as defined in Definition 4.3. The approximation in our algo-
rithm is nearly optimal, as by the result of H̊astad [18], if P �= NP , then there is no
polynomial-time (7/8 + ε)-approximation algorithm for this problem.6

We start with a simple motivating example. Consider the following simple algo-
rithm for the max-SAT problem.

If 0n satisfies at least half of the clauses in φ, return 0n. Otherwise, return 1n.
For every clause, either 0n or 1n satisfy the clause. Thus, 0n or 1n satisfy at least

half of the clauses in φ, and this is a 1/2-approximation of max-SAT. Since there are
only two possible answers, this algorithm leaks at most one bit.

Claim 4.5. There is a 7/8-approximation algorithm for maxE3SAT that leaks at
most O(log n) bits with respect to RmaxE3SAT. Furthermore, for every ε > 0, there is
a (7/8 − ε)-approximation algorithm for maxE3SAT that leaks at most O(log logn+
log 1/ε) bits with respect to RmaxE3SAT.

Proof. We first describe the 7/8-approximation algorithm. Toward this goal, we
construct for every n a list of poly(n) assignments such that for every exact 3CNF
formula with n variables there is an assignment in the list that satisfies at least 7/8 of
the clauses of the formula. Furthermore, there is an efficient algorithm that generates
this list. Thus, the 7/8-approximation algorithm, with input φ, a formula with n
variables, constructs this list and chooses the first assignment in the list that satisfies
at least 7/8 of the clauses in φ.

We next explain how to construct the list, using ideas of the randomized 7/8-
approximation algorithm of Johnson [20]. Fix a clause with three different literals. If
we pick an assignment at random, then with probability at least 7/8 it satisfies the
clause. Now, fix any exact 3CNF formula. If we pick an assignment at random, then
the expected fraction of satisfied clauses is at least 7/8. Thus, there exists at least one
assignment that satisfies a fraction of at least 7/8 of the clauses in the formula. This
is true even if we pick the assignments from a 3-wise independent space. As there is
a 3-wise independent space of size O(n3), this implies the existence of the list. To
generate the assignments we can use any of the constructions of 3-wise independent
spaces, e.g., the construction based on polynomials (see, e.g., [23, 1, 8]).

We next describe the (7/8 − ε)-approximation algorithm. As in the previous
case, it suffices to show how to efficiently construct, for every n and ε > 0, a list
of poly( log n

ε ) assignments such that for every exact 3CNF formula with n variables
there is an assignment in the list that satisfies at least 7/8 − ε of the clauses of the
formula. To construct the list, notice that if we pick an assignment from an almost
3-wise independent space, that is, from an (ε, 3)-wise independent space, then the
probability that a given clause is satisfied is at least 7/8 − ε. Thus, the expected
fraction of satisfied clauses is at least 7/8− ε, and there exists at least one assignment
that satisfies a fraction of at least 7/8 − ε of the clauses in the formula. There are
(ε, 3)-wise independent spaces of size poly( log n

ε ). To generate the assignments we can
use any of the constructions of [25, 2].

The next claim shows that the size of the solution list used in the proof of Claim 4.5
is nearly optimal.

6Any (7/8 + ε)-approximation solution-list algorithm that uses poly(n) solutions would imply
that NP ⊆ P/poly even if the list cannot be efficiently constructed.
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Claim 4.6. Every solution-list algorithm for maxE3SAT that achieves approxi-
mation ratio better than 1/2 uses at least logn− 1 solutions.

Proof. Assume a solution-list algorithm for maxE3SAT, and let a1, . . . , at, where
t < logn − 1, be its list of possible output assignments on formulae over n variables
x1, . . . , xn. To each variable xi we assign a label that is the concatenation of the truth
values assigned to xi by the t assignments 〈a1(xi), . . . , at(xi)〉. As there are at most
2t different labels and n/2t > 2, there exist three distinct variables xi1 , xi2 , xi3 that
share the same label; i.e., for all 1 ≤ j ≤ t it holds that aj(xi1 ) = aj(xi2) = aj(xi3 ).

Consider the formula φ = (xi1 ∨ xi2 ∨ xi3) ∧ (¬xi1 ∨ ¬xi2 ∨ ¬xi3 ). It is easy to
see that φ is satisfied by exactly those assignments which do not assign the same
truth value to all three variables xi1 , xi2 , xi3 . However, as this is not the case for
any of the t assignments, each of them satisfies exactly one clause in φ, achieving an
approximation factor of at most 1/2.

4.3. Solution-list algorithms for vertex cover. In this section we present
almost private search algorithms for minimum vertex cover. These algorithms are
interesting but not as dramatic as the algorithms for maxE3SAT. For any 0 < ε < 1,
there is an n1−ε-approximation algorithm that leaks 2nε bits. The algorithms are
solution-list algorithms, and we will prove that no solution-list algorithm can do better
for this problem.

Claim 4.7. For every 0 < ε < 1, there is an n1−ε-approximation algorithm for
the minimum vertex cover problem which leaks at most 2nε bits.

Proof. The algorithm proceeds as follows:

Input: A graph G with n vertices.
1. Execute any deterministic 2-approximation algorithm for VC on
G, and get a cover C.

2. Let �← 2nε.
3. Partition the n vertices into � fixed sets, V1, . . . , V�, each of size
n/� = n1−ε/2.

4. Let C′ ←
⋃

{i:Vi∩C �=∅} Vi.
5. Return C′.

The algorithm first finds a small cover. Then, if Vi contains at least one vertex in this
cover, the algorithm returns the entire set Vi. This implies that the size of C′ is at
most |C|n1−ε/2, and since |C| is at most twice the size of the minimum vertex cover,
this algorithm is an n1−ε-approximation algorithm.

Notice that the algorithm has 2� possible outputs (it chooses only which of the
sets Vi is in its output). That is, this is a solution-list algorithm with a list of size 2�;
thus, it leaks at most � = 2nε bits.

The private algorithms for maxE3SAT and for minVC that we presented are
solution-list algorithms. For maxE3SAT, the algorithm generates the entire list and
chooses the best candidate in the list. For minVC this is not possible as the size of
the list is big. The deterministic algorithm generates a “good” candidate from the
list without generating the entire list.

We next claim that any solution-list algorithm for minVC cannot use a shorter
list than the algorithm we presented (up to a constant factor).

Claim 4.8. Any solution-list algorithm that n1−ε-approximates minVC uses at
least 2n

ε/6 solutions.
Proof. Assume that there is a list of covers that n1−ε-approximates minVC; that

is, for every graph with n vertices and minimum vertex cover of size d, there exists
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a cover of size at most n1−εd in the list. We construct a “big” family of graphs and
show that every cover in the list covers “a few” graphs in the family; thus the size of
the list must be “big.”

Consider the following family of graphs. Each graph is defined by a subset I of
size d def= nε/6. The graph GI contains all edges between I and V \ I. Notice that the
number of graphs in this family is (

n

d

)
≥ (n/d)d.(4.1)

The set I of size d is a vertex cover of the graph GI . Since we assume that the list
n1−ε-approximates minVC, there is a cover in the list that covers GI and contains at
most n1−εd = n1−εnε/6 = n/6 vertices. However, every vertex cover of GI contains
either all vertices in I (and possibly vertices from V \ I) or all vertices of V \ I (and
possibly vertices from I). Since |V \ I| = n − d > n/6, this cover must contain I.
The number of graphs in the family that a given cover of size at most n/6 covers is
at most (

n/6
d

)
≤
(
en/6
d

)d
.(4.2)

Thus, by (4.1) and (4.2), the number of covers in the list is at least

(n/d)d

(en/6d)d
≥ 2d = 2n

ε/6.

We emphasize that Claim 4.8 applies only to the size of lists used by solution-list
algorithms and does not imply that there are no polynomial-time n1−ε-approximation
algorithms that leak o(nε) bits.7 However, it was proven in [5] that such approximation
algorithms do not exist if RP �= NP .

5. Impossibility result for vertex cover approximation that leaks log n
bits. In this section we show that it is unlikely that there is an efficient approximation
algorithm for minVC that leaks logn bits of information. Specifically, if there is such
an n1−ε-approximation algorithm A that leaks at most ε

6 logn bits, then RP = NP .
Theorem 5.1. Let ε > 0 be a constant. If RP �= NP, then there is no ran-

domized n1−ε-approximation algorithm for the search problem of minVC that leaks
at most ε

6 logn bits.
As in the proof of Theorem 3.2, we assume the existence of such an approximation

algorithm and deduce an algorithm that solves vertex cover. Again, we do this by de-
signing an algorithm that solves the Relevant-Noncritical problem (see Definition 3.6)
and thus, by Claim 3.7, solves vertex cover. This algorithm, given the input G and
v and an oracle access to an approximation algorithm A that leaks k bits, applies
A on a set of inputs and decides whether v is relevant or noncritical for G accord-
ing to the results. Note that Algorithm Relevant-Noncritical for the (perfectly)
private case is not applicable; here, even assuming A is deterministic, the fact that
A(G1) �= A(G2) does not directly imply that G1 and G2 are not equal under RminVC.
However, as A leaks at most k bits, if there are 2k + 1 graphs with different outputs,
then at least two of them are not equivalent.

7It can be proved that the algorithm we presented leaks Ω(nε) bits.
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We first deal in section 5.1 with a deterministic A that leaks at most one bit;
then we deal in section 5.2 with a deterministic A that leaks at most O(log n) bits.
The proof of the impossibility result for a randomized A that leaks at most O(log n)
bits is deferred to Appendix B. We believe that presenting the proof through these
stages is helpful for the reader.

Our inputs for Algorithm Relevant-Noncritical are generally constructed from
a number of copies of the original input graph G and a big set of isolated vertices I.
In each such graph we connect the different copies of the input vertex v with vertices
from I and sometimes connect two different vertices from I. We will use the following
notation to address these graphs.

Definition 5.2. Let G = 〈V,E〉 be a graph, v ∈ V be some fixed vertex, I
be a set of vertices (where I ∩ V = ∅), t,m be indices such that 0 ≤ t ≤ m, and
i1, . . . , im, j1, . . . , j2t ∈ I be distinct vertices. The graph

G
(

j1j2
∨
i1

· · ·
j2t−1j2t

∨
it

it+1
∧ · · · im

∧

)
is defined as follows: its vertex set is (V × {1, . . . , 2m}) ∪ I, and its edges are E =
Em ∪ E∨ ∪ E∧, where

Em
def= {(〈u, �〉, 〈w, �〉) : (u,w) ∈ E, � ∈ {1, . . . ,m}} ,

E∨
def= {(i�, j2�−1), (i�, j2�) : � ∈ {1, . . . , t}} , and

E∧
def= {(〈v, 2�− 1〉, i�), (〈v, 2�〉, i�) : � ∈ {t+ 1, . . . ,m}} .

Informally, the graph has 2m copies of G (see Figure 5.1). It has t “vees,” where
the �th vee is associated with copies 2�− 1 and 2� of G. It has m− t “wedges,” where
the �th wedge connects i� to the copies of v in copies 2�−1 and 2� of G, for t < � ≤ m.

We next present two combinatorial lemmas, whose role is similar to Claims 3.10
and 3.11 in the case where A was perfectly private.

Claim 5.3. Let 1 ≤ t ≤ m, and i1, . . . , im, j1, . . . , j2t, i′t+1, . . . , i
′
m ∈ I be distinct

vertices. Furthermore, let

H
def= G

(
j1j2
∨
i1

· · ·
j2t−1j2t

∨
it

it+1
∧ · · · im

∧

)
and H ′ def= G

(
j1j2
∨
i1

· · ·
j2t−1j2t

∨
it

i′
t+1
∧ · · · i′m∧

)
.

If v is critical for G, then H ≡RminVC H
′.

Proof. By Claim 3.10, the graphs H and H ′ are unions of graphs that are equiv-
alent; thus, H and H ′ are equivalent.

Claim 5.4. Let 0 ≤ t′ < t ≤ m and i1, . . . , im, j1, . . . , j2t ∈ I be distinct vertices.
Furthermore, let

H
def= G(

j1j2
∨
i1

· · ·
j2t′−1j2t′

∨
i
t′

· · ·
j2t−1j2t

∨
it

it+1
∧ · · · im∧ ) and

H ′ def= G(
j1j2
∨
i1

· · ·
j2t′−1j2t′

∨
i
t′

i
t′+1
∧ · · · im

∧ ).

If v is nonrelevant for G, then H ≡RminVC H
′.

Proof. Note that the vertices i1, . . . , im are critical for both H and H ′: It is

straightforward that i� is critical for
j2�−1j2�

∨
i�

. By Claim 3.11, vertex i� is critical for i�∧ .
Therefore, the two graphs have the same set of minimum vertex covers; hence they
are equivalent under RminVC.
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v

i1

v v v v

v v v

G

im

j2j1 j2tj2t−1

G G

it

G G

. . .

it+1

. . .

G G G

Fig. 5.1. The graph G(
j1j2
∨
i1

· · ·
j2t−1j2t

∨
it

it+1
∧ · · · im

∧ ).

In both claims we have the same graph H . In Claim 5.3, the graph H ′ has the
same “vees” as H ; however, the “wedges” have different vertices from I (namely,
i′1, . . . , i

′
t−1). In Claim 5.4, the sequence of i’s is the same in H and H ′; however,

there are “vees” in H ′ in some places where there are “wedges” in H .

5.1. Handling one bit leakage. To simplify our presentation, we first present
Algorithm RelNonCrit—one bit in Figure 5.2. This algorithm assumes that the
deterministic algorithm A leaks at most one bit. This case is simpler and describes
some of the ideas used for the logn bits leakage case.

Claim 5.5. Algorithm RelNonCrit—one bit is correct.
Proof. By Claim 5.3, if v is critical for G, then all graphs considered in step 1

of the algorithm are equivalent. As A leaks at most 1 bit, there can be at most two
different answers on equivalent graphs. Hence, if there are more than two different
answers in step 1, vertex v is noncritical for G. Similarly, if there are more than
two different answers in step 2, vertex v is noncritical for G. Thus, if the algorithm
outputs “Noncritical,” vertex v is noncritical for G, and the algorithm is correct.

Else, let i1, j1, j2 be the vertices chosen in step 2 of the algorithm, and fix any
i2, j3, j4 ∈ I that did not appear in the result of any execution of A in Algorithm
RelNonCrit—one bit (both in step 1 and in step 2), and note the following.

1. A(G
(

i1
∧

i2
∧

)
) does not contain any of {i1, j1, j2} (by the choice of the algo-

rithm in step 2) and does not contain any of {i2, j3, j4}.
2. A(G(

j1j2
∨
i1

i2
∧ )) contains at least one of {i1, j1} (since the graph contains the

edge (i1, j1)) and does not contain any of {i2, j3, j4}.
3. A(G(

j1j2
∨
i1

j3j4
∨
i2

)) contains at least one of {i2, j3} (since the graph contains the
edge (i2, j3)).
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Algorithm RelNonCrit—one bit

Input: A graph G = 〈V, E〉 and a vertex v ∈ V .
Output: One of the following: (i) The vertex v is relevant for G. (ii) The vertex
v is not critical for G.

1. Execute A on all the graphs of the form G(
i1
∧

i2
∧ ), where i1, i2 ∈ I .

(a) If these executions result in more than two different answers, return
“Noncritical,”

(b) Else, remove from I all the vertices that appeared in any of the above
results.

2. Pick arbitrary i1, j1, j2 ∈ I and execute A on all the graphs of the form

G(
j1j2
∨
i1

i2
∧ ), where i2 ∈ I\ {i1, j1, j2}.

(a) If these executions result in more than two different answers, return
“Noncritical.”

(b) Else, return “Relevant.”

Fig. 5.2. Algorithm RelNonCrit—one bit.

Thus, these three results of A are all different. However, by Claim 5.4, if the vertex
v is not relevant for G, then the three graphs are equivalent. Since A leaks at most
one bit, there cannot be three different answers on three equivalent graphs. Thus,
if the algorithm outputs “Relevant,” vertex v is relevant for G, and the algorithm is
correct.

Similarly to the case where A is perfectly private, it is enough to set |I| =
O((4n)1/ε − 2n) to ensure there are enough vertices in I that are not returned by
A (see Claim 3.14). As |I| is polynomial in n, the number of calls to A in the algo-
rithm is polynomial in n, and each execution of A runs in polynomial time. Thus,
we have proved that if P �= NP , then there is no deterministic n1−ε-approximation
algorithm for vertex cover that leaks at most one bit.

5.2. Handling log n-bits leakage. We next want to accommodate a determin-
istic algorithm A that leaks logn bits. Using an algorithm similar to that used in
the one-bit leakage case with graphs that contain more copies of G, we can handle
Algorithm A which leaks more bits. However, if A leaks ω(1) bits, the number of
executions of A will be too big. To reduce the number of calls to A, we choose the
vertices from I at random.

In Figure 5.3, we present Algorithm RelNonCrit—log n bits, which assumes
that Algorithm A is a deterministic n1−ε-approximation algorithm that leaks at most
ε
6 logn bits. Algorithm RelNonCrit—log n bits is a randomized algorithm which
returns a correct answer with probability at least 1 − δ for some 0 < δ < 1. Given a
graph G with n vertices, we construct the graphs from Definition 5.2. These graphs
have N def= (12n/δ)2/ε vertices, 2m copies of G, and a disjoint set of vertices I. We
choose the number of copies to be 2m, where

(5.1) m
def= N ε/6 = (12n/δ)1/3.

The size of the set I is |I| = N − 2mn. In the proof of Claim 5.7 it will become clear
why we made these choices.

In the following we assume that, on graphs with n vertices, A leaks at most
k(n) = ε

6 logn bits. Recall that we execute A on graphs with N vertices; thus, the



1748 A. BEIMEL, P. CARMI, K. NISSIM, AND E. WEINREB

Algorithm RelNonCrit—log n bits

Input: A graph G = 〈V, E〉, a vertex v ∈ V , and a number 0 < δ < 1.
Output: One of the following: (i) The vertex v is relevant for G. (ii) The vertex
v is not critical for G. The algorithms errs with probability at most δ.

1. Choose distinct i1, . . . , im, j1, . . . , j2m at random from I .

2. For t = 0 to m − 1 do:

(a) Let Gt = G(
j1j2
∨
i1

· · ·
j2t−1j2t

∨
it

it+1
∧ · · · im

∧ ).
(b) If A(Gt) ∩ {it+1, j2t+1} �= ∅, then return “Noncritical.”

3. (∗ all m sets do not contain the two vertices ∗)
RETURN “Relevant.”

Fig. 5.3. Algorithm RelNonCrit—log n bits.

approximation ratio is N1−ε, and the leakage is bounded by k(N) = ε
6 logN = logm.

The next sequence of claims asserts the correctness of Algorithm RelNonCrit—log n
bits.

Claim 5.6. If v is nonrelevant, then Algorithm RelNonCrit—log n bits does
not return “Relevant.”

Proof. Let Gm = G(
j1j2
∨
i1

· · ·
j2m−1j2m

∨
im

). If the algorithms returns “Relevant,” then
the for loop finishes. Thus, the sets A(G0), . . . ,A(Gm) are m+1 = 2k(n) +1 different
sets; for t′ < t the cover A(Gt) must contain at least one of the vertices it′+1, j2t′+1

(as it must cover the edge (it′+1, j2t′+1)), while A(Gt′) contains none of them. Thus,
there are 2k(n) + 1 graphs with pairwise different answers of A, and, since A leaks at
most k(n) bits, at least two of the graphs are not equivalent according to RminVC.
Thus, by Claim 5.4, the vertex v is relevant for G.

Claim 5.7. Let 0 ≤ t ≤ m. For every i1, . . . , it, j1, . . . , j2t ∈ I, consider the fol-
lowing experiment: choose it+1, . . . , im and j2t+1 at random with uniform distribution
from I and return 1 if

A
(
G
(

j1j2
∨
i1

· · ·
j2t−1j2t

∨
it

it+1
∧ · · · im

∧

))
∩ {it+1, j2t+1} �= ∅.

If v is critical, then the probability that this experiment returns 1 is at most δ/m.
Proof. We first prove that we chose N , the number of vertices in the graphs

we construct, such that the size of each cover A returns is at most |I|/α, where
α

def= 2m2/δ. We will need the following requirement for our computations:

(5.2) |I| = N − 2mn ≥ N/2.

That is, we need to show that N/2 ≥ 2mn. As m = N ε/6 ≤ N1/6, it suffices to
require that N ≥ (4n)6/5. By the choice of N

N = (12n/δ)2/ε ≥ (12n)2 ≥ (4n)6/5

(since 0 < δ, ε ≤ 1); thus (5.2) holds.
We next upper-bound the size of the covers that A outputs. The size of a minimum

vertex cover of these graphs is at most (2n + 1)m ≤ 3nm. Since A is an N1−ε-
approximation algorithm for vertex cover, the size of its output is at most 3·nm·N1−ε.
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Recall that N = (12n
δ )2/ε and m = N ε/6, and thus, by (5.1),

(5.3) 12nm3 = δ(12n/δ) ·N ε/2 = δ((12n/δ)2/ε)ε/2 ·N ε/2 = δN ε/2N ε/2 = δN ε.

Therefore, the size of the cover returned by A is at most

3 · nm ·N1−ε =
3nmN
N ε

≤ 6nm|I|
N ε

=
12nm3

δN ε
· δ|I|
2m2

=
δ|I|
2m2

=
|I|
α
,

where the inequality above follows from (5.2) and the last two equalities follow (5.3)
and the definition of α. Thus, with probability at most 1/α, a random vertex from I
is in a given answer.

We now analyze the probability that the experiment returns 1. If v is critical, then,
by Claim 5.3, every two choices of it+1, . . . , im result in equivalent graphs according
to RminVC. Since A leaks at most k(N) = ε

6 logN = logm bits, there are at most
2k(N) = m different answers for all the different choices of it+1, . . . , im. Thus, the size
of the union of all the answers is at most m|I|

α . The probability that at least one of
the vertices it+1, j2t+1 is in the union of the m answers is, by the union bound, at
most 2m

α . Thus, the probability of the experiment returning 1 is at most 2m
α = δ/m,

as required.
Claim 5.8. If vertex v is critical, then the probability that Algorithm RelNonCrit—

log n bits returns “Noncritical” is at most δ.
Proof. Algorithm RelNonCrit—log n bits repeats the experiment of Claim 5.7

m times and returns “Noncritical” if one of the experiments returns 1. Thus, by
Claim 5.7 and the union bound, if vertex v is critical, then the probability that
Algorithm RelNonCrit—log n bits returns “Noncritical” is at most δ.

Algorithm RelNonCrit—log n bits executes the polynomial-time algorithm A m
times on graphs with N vertices, where N = (12n/δ)2/ε. Thus, we have the following
claim.

Claim 5.9. If A runs in polynomial time and 0 ≤ ε < 1 is a constant, then the
running time of Algorithm RelNonCrit—log n bits is poly(n/δ).

We summarize the results of this section in the next lemma.
Lemma 5.10. Let ε > 0 be a constant. If RP �= NP, then there is no determin-

istic n1−ε-approximation algorithm for the search problem of vertex cover that leaks
at most ε

6 logn bits.
Proof. Algorithm Greedy Vertex Cover, which solves vertex cover, executes at

most n times Algorithm RelNonCrit—log n bits with graphs of size at most n. We
execute these calls with δ = 1

4n (where n is the original number of vertices in G); thus,
all together, the error is at most 1/4. By Claim 5.9, the running time of Algorithm
Greedy Vertex Cover is polynomial. Thus, if there is an n1−ε-approximation algo-
rithm for the search problem of vertex cover that leaks at most k(n) = ε

6 logn bits,
then there is a polynomial-time randomized algorithm for minimum vertex cover that
errs with probability 1/4. This implies that NP ⊆ BPP.

To contradict RP �= NP , this algorithm is transformed to a one-sided error
algorithm for the decision problem of vertex cover: Given 〈G, s〉, decide if G has a
vertex cover of size at most s. The transformation is simple; execute the algorithm
for the search problem of vertex cover. If this algorithm returns a set that covers G
and its size is at most s, return “yes”; otherwise return “no.”

6. Impossibility result for private computation of a search problem in
P. An algorithm solving a search problem can return any solution to the problem.
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An algorithm solving a search problem privately has additional requirements on the
solutions that it returns. In this section, we show that these additional requirements
can make the problem much harder. That is, we show that there is a relation Q whose
search problem is in P ; however, unless NP ⊆ P/poly, there is no polynomial-time
private algorithm for Q with respect to RQ.

Definition 6.1. Let G be a graph and C1, C2 ⊆ V . We define the relation Q as
follows: 〈G,C1〉 and C2 are in Q (that is, 〈〈G,C1〉, C2〉 ∈ Q) if |C1| = |C2| and C1

and C2 are cliques in G.
Clearly, the search problem of Q is easy; given 〈G,C1〉, return C1. Assume that

there is a private algorithm for RQ. That is, if C1 and C2 are two disjoint cliques of
the same size in a graph G, then a private algorithm has to return the same output
distribution on 〈G,C1〉 and 〈G,C2〉. Intuitively, this implies that given a clique in the
graph, there is an efficient algorithm that finds another clique. We will prove that
this is impossible unless NP ⊆ P/poly.

Theorem 6.2. If NP �⊆ P/poly, then there is no polynomial-time private algo-
rithm for the search problem of Q with respect to the privacy structure RQ.

Proof. We assume toward contradiction that there exists a polynomial-time ran-
domized private algorithm A for the search problem of Q with respect to the privacy
structure RQ. We will use A to prove that the NP-complete problem CLIQUE is in
P/poly. That is, we construct a sequence of polynomial-length advice strings 〈an〉n∈N

and a polynomial-time algorithm B such that, given a graph G with n vertices, an
integer k, and the advice an, Algorithm B decides if G contains a clique of size k.

Given two graphs G0 = 〈V0, E0〉 and G1 = 〈V1, E1〉, where V1 ∩ V2 = ∅, we
define their disjoint union G0 ∪ G1 as the graph G = 〈V,E〉, where V = V0 ∪ V1

and E = E0 ∪ E1. Every clique in G0 ∪ G1 is either a clique in G0 or a clique in
G1. Assume that C0 and C1 are cliques of size k in G0 and G1, respectively. Then,
〈G0 ∪ G1, C0〉 and 〈G0 ∪ G1, C1〉 have the same set of cliques of size k; that is, they
are in RQ.

Algorithm A′

Input: Two graphs G0, G1 with disjoint sets of vertices and a set C.
Promise: C is a clique in G0 ∪ G1.

1. Execute A on 〈G0 ∪ G1, C〉
(a) Let j be the index such that A returns a clique in Gj .
(b) Return j.

Fig. 6.1. Algorithm A′, which gets two graphs and a clique, executes A on their union, and
checks in which graph A returns a clique.

As a first step, we construct in Figure 6.1 an algorithm A′ that will be used to
construct Algorithm B and the advice strings. This algorithm gets two graphs G0, G1

and a clique C in one of them, executes A on their union, and checks in which graph A
returns a clique. If only one graph Gi has a clique of size |C|, then, by the correctness
requirement of A, Algorithm A′ must return i. However, if both graphs have a clique
of size |C|, then, by the privacy requirement of A, the output distribution of A′ is
approximately the same when C is a clique in G0 and when C is a clique in G1. That
is, there is an integer n0 such that for every pair of graphs with at least n0 vertices,
the difference between the probabilities that A′ returns 0 in the two cases is small—
for concreteness, at most 1/3 (the probabilities are taken over the random inputs of
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algorithm A).
We construct the advice string an as the concatenation of advice strings an,1, . . . ,

an,n, where an,k is used to decide if a graph G with n vertices has a clique of size k.
Fix an integer n and an integer k, where n ≥ n0 and 1 ≤ k ≤ n. For every graph G
with n vertices that has a clique of size k, we fix some clique CG of size k in G. Let
G0 and G1 be two graphs that have a clique of size k.

Definition 6.3. We say that G0 loses to G1 if Algorithm A′ returns 1 on input
〈G0, G1, CG0〉 with probability at least 1/3.

That is, G0 loses to G1 if, when given a clique in G0, Algorithm A “magically”
manages to return with probability 1/3 a clique in the graph G1; thus, G0, CG0 can
aid in finding a clique in G1.

If G0 does not lose to G1, then A′ returns 0 with probability at least 2/3, and
by the privacy requirement, with probability at least 1/3 Algorithm A′ returns 0 on
input 〈G0, G1, CG1〉.

Observation 6.4. Let G0 and G1 be two graphs with n vertices that have a
clique of size k. If G0 does not lose to G1, then G1 loses to G0. (It is possible that
G0 loses to G1 and G1 loses to G0.)

Thus, for every set of graphs with n vertices and a clique of size k, there exists a
graph G0 in the set that loses to at least half the graphs in the set. This is the idea
of constructing the advice string an,k.

Construction of an,k
1. an,k ← ∅.
2. Initialize L as the set of all graphs with n vertices that have a

clique of size k.
3. While L �= ∅ do:

(a) Choose a graph G in L that loses to at least half of the
graphs in L.

(b) an,k ← an,k ∪ {〈G,CG〉}.
(c) L← L \ {G1 : G loses to G1}.

Since there are 2O(n2) graphs with n vertices, the advice an,k contains O(n2)
graphs. We are ready to describe the nonuniform algorithm B that, given a graph G
with n vertices, an integer k, and the advice an, decides if G contains a clique of size
k.

Algorithm B
Input: G, k, and an,k.

1. For every G0 in an,k execute A′ on 〈G0, G,CG0〉.
2. If there exists an execution of A′ which returns 1, return “G has

a clique of size k,”
3. Otherwise, return “FAIL.”

If G does not have a clique of size k, then, by the correctness of A, Algorithm A′ always
returns 0, and B always returns “FAIL.” If G has a clique of size k, then there exists
a graph G0 in an,k that loses to G; thus, with probability at least 1/3, Algorithm A′

returns 1 on input 〈G0, G,CG0〉, and, thus, with probability at least 1/3, Algorithm B
returns “G has a clique of size k.” That is, B is a randomized algorithm with advice
strings that decides if 〈G, k〉 ∈ CLIQUE with a one-sided error of 2/3. By a standard
amplification and union-bound arguments, we can get a deterministic polynomial-time
nonuniform algorithm that decides if 〈G, k〉 ∈ CLIQUE without error.
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Appendix A. Semantic-security flavored definitions of private algo-
rithms. In Definition 2.2, private algorithms are defined as those whose outputs on
R-equivalent instances are computationally indistinguishable. To shed a little more
light on this definition we now compare it with two other definitions. Definition A.1
is of semantically secure private algorithms, where the outcome of the private algo-
rithm A on x is simulated by an efficient simulator that is given access to an arbitrary
representative y of the equivalence class of x. Definition A.2 is a (seeming) weakening
of this definition, where the simulator is potentially much more powerful. Here, the
simulator is given access to an arbitrary oracle O of its choice that answers queries
about the equivalence class of x. For example, one may choose an oracle O that
enumerates in lexicographic order the values y such that x ≡R y, hence empowering
the simulator to perform computations that may be otherwise intractable. It turns
out that Definitions 2.2, A.1, and A.2 are equivalent. This gives a further indication
that Definition 2.2 is a rather minimal notion of privacy.

Definition A.1 (private algorithm—semantic security). Let R be a privacy
structure. A randomized polynomial-time algorithm A is semantically private with
respect to R if there exists a randomized polynomial-time simulator S, such that for
every randomized polynomial-time algorithm D and for every positive polynomial p(·),
there exists some n0 ∈ N such that for every x, y ∈ {0, 1}∗, where x ≡R y and
|x| = |y| ≥ n0,∣∣Pr[D(A(x), x, y) = 1] − Pr[D(S(y), x, y) = 1]

∣∣ ≤ 1
p(|x|) .

That is, the simulator, on input y, outputs a distribution that is indistinguishable from
the output of A on x.

For a string y ∈ {0, 1}∗ define Eq(y) = {z : y ≡R z} to be its equivalence class.
Let O : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an oracle. We use the notation O(Eq(y), ·) to
denote the oracle obtained fromO by “hardwiring” its first input to Eq(y). Informally,
O is a collection of oracles—one per each equivalence class. The oracle O(Eq(y), ·)
answers queries about the equivalence class of y. For an oracle machine S, we use
SO(Eq(y),·) to denote the Turing machine S with oracle access to O(Eq(y), ·). This
way, S may use O to learn facts about the equivalence class of y.

Definition A.2 (private algorithm—weak semantic security). Let R be a pri-
vacy structure. A randomized polynomial-time algorithm A is weakly semantically
private with respect to R if there exist an oracle O : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ and
a randomized polynomial-time oracle machine8 S (the simulator), such that for every
randomized polynomial-time algorithm D and for every positive polynomial p(·), there
exists some n0 ∈ N such that, for every x, y ∈ {0, 1}∗ such that |x| = |y| ≥ n0 and
x ≡R y, ∣∣Pr[D(A(x), x, y) = 1] − Pr[D(SO(Eq(y),·), x, y) = 1]

∣∣ ≤ 1
p(|x|) .

That is, the simulator with oracle access to O(Eq(y), ·) outputs a distribution that is
indistinguishable from the output of A on x.

Theorem A.3. Definitions 2.2, A.1, and A.2 are equivalent.
Proof. Let A be an algorithm that is private with respect to a privacy structure

R according to Definition 2.2. Taking the simulator S to be A itself shows that A

8The choice of randomized polynomial-time is arbitrary, as S can delegate computations to the
oracle O.
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is private according to Definition A.1 as well. Privacy under Definition A.1 implies
privacy under Definition A.2, as any simulator S in view of Definition A.1 can be
transformed into an oracle simulator that asks for a representative of the class and
proceeds like S.

Finally, we prove that privacy under Definition A.2 implies privacy under Defini-
tion 2.2. Let A be an algorithm that is private under Definition A.2. Let x and y be
inputs such that x ≡R y, S be the corresponding simulator, and D be a distinguish-
ing algorithm. By privacy under Definition A.2, the advantage of D in distinguishing
(A(x), x, y) and (SO(Eq(y),·), x, y) is negligible. Furthermore, replacing the roles of x
and y, the advantage of D in distinguishing (A(y), x, y) and (SO(Eq(x),·), x, y) is negli-
gible. Therefore, as Eq(x) = Eq(y), we get that the advantage of D in distinguishing
(A(x), x, y) and (A(y), x, y) is also negligible, satisfying Definition 2.2.

Appendix B. Impossibility result for randomized private approxima-
tion of vertex cover. In this section, we generalize the inapproximability results of
section 5.2 to randomized private protocols that leak O(ε log n) bits. We follow a strat-
egy similar to that in the proof of Lemma 5.10 for deterministic private protocols that
leak O(ε log n) bits. In that proof we checked if A(Gt) ∩ {it+1, j2t+1} �= ∅. Here, we
execute A(Gt) many times and estimate the probability that A(Gt)∩{it+1, j2t+1} �= ∅.

In Figure B.1, we present Algorithm RelNonCrit—randomized log n bits, which
assumes that Algorithm A is a possibly randomized n1−ε-approximation algorithm
that leaks at most ε

6 logn bits. Algorithm RelNonCrit—randomized log n bits is a
randomized algorithm which returns a correct answer with probability at least 1 − δ
for a given 0 < δ < 1. Given a graph G with n vertices, we construct the graphs from
Definition 5.2. These graphs have N = (120n/δ)2/ε vertices, 2m copies of G, and a
disjoint set of vertices I. We choose the number of copies to be 2m, where

(B.1) m
def= N ε/6 = (120n/δ)1/4.

Therefore, the size of the set I is |I| = N − 2mn. In the proof of Claim B.4 it will
become clear why we made these choices.

Algorithm RelNonCrit—randomized log n bits

Input: A graph G = 〈V, E〉, a vertex v ∈ V , and a number 0 < δ < 1.
Output: One of the following: (i) The vertex v is relevant for G. (ii) The vertex
v is not critical for G. The algorithm errs with probability at most δ.

1. Choose distinct i1, . . . , im, j1, . . . , j2m at random from I .

2. For t = 0 to m − 1 do:

(a) Let Gt = G(
j1j2
∨
i1

· · ·
j2t−1j2t

∨
it

it+1
∧ · · · im

∧ ).
(b) Execute n times A(Gt).
(c) If one of the vertices it+1, j2t+1 appears in more than 0.3n of the n

answers of A, then return “Noncritical.”

3. RETURN “Relevant.”

Fig. B.1. Algorithm RelNonCrit—randomized log n bits.

In the following we assume that, on graphs with n vertices, A leaks at most
k(n) = ε

6 log n bits. Recall that we execute A on graphs with N vertices; thus,
the approximation ratio is N1−ε, and the leakage is bounded by k(N) = ε

6 logN =
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logm. The next sequence of claims asserts the correctness of Algorithm RelNonCrit—
randomized log n bits.

Let 0 ≤ p ≤ 1. We say that a vertex v is p-light for a graph H if Pr[v ∈ A(H)] < p
and v is p-heavy for H if Pr[v ∈ A(H)] ≥ p. Let R′ be a privacy structure that is
a k(N)-refinement of RminVC such that A is private with respect to R′. The next
observation follows from Chernoff’s inequality.

Observation B.1. Assume we execute n times A(H).
• If a vertex u is 0.4-heavy for H, then the probability that u appears in at most

0.3n of the n answers of A is 2−O(n).
• If a vertex u is 0.2-light for H, then the probability that u appears in more

than 0.3n of the n answers of A is 2−O(n).
A distinguishing algorithm can approximate the probability that a vertex is in

A(H). Hence, for every two graphs H0, H1 such that H0 ≡R′ H1 and for every vertex
u the probability that u ∈ A(H0) is approximately the same as the probability that
u ∈ A(H1). This is formalized in the following claim.

Claim B.2. Let 0 ≤ p < 1 and 0 < γ < 1 − p be constants. Then, there exists
n0 ∈ N such that if H0 and H1 are two graphs with n ≥ n0 vertices and there exists a
vertex w that is p-light for H0 and is (p+ γ)-heavy for H1, then H0 and H1 are not
equivalent according to R′.

Proof. Consider the following distinguishing algorithm D.

Input: Two graphs Γ0,Γ1 and a cover C = A(Γj) for some j ∈ {0, 1}.
1. For i ∈ {0, 1}, execute n times A(Γi).
2. For every u ∈ V and i ∈ {0, 1}, let p̃iu be the fraction of execu-

tions in which u appears in the answers of A(Γi).
3. Choose a vertex u such that p̃1

u− p̃0
u > 2γ/3 (if no such u exists,

return 1).
4. If u ∈ C, return 1; otherwise return 0.

For every v ∈ V and i ∈ {0, 1} define piv
def= Pr[v ∈ A(Γi)]. By Chernoff’s

inequality, with probability 1 − 2−O(n), for every v ∈ V and i ∈ {0, 1},

(B.2) |piv − p̃iv| < γ/6.

Now consider an execution of D on the graphsH0 and H1, and consider the vertex
w guaranteed by the claim. Assume that (B.2) holds for every vertex in the graph.
In particular,

p̃1
w − p̃0

w = p1
w − p0

w − (p1
w − p̃1

w) − (p̃0
w − p0

w) ≥ γ − 2γ/6 = 2γ/3.

Thus, the probability that there is no such u in step 3 is negligible. Furthermore, for
the u chosen in step 3, with overwhelming probability p1

u − p0
u = p̃1

w − p̃0
w − (p̃1

w −
p1
w) − (p0

w − p̃0
w) ≥ γ/3. Therefore,

|Pr[D(A(Γ1),Γ0,Γ1) = 1] − Pr[D(A(Γ0),Γ0,Γ1) = 1]| ≥ γ/3 − 2−O(n).

This implies that H0 and H1 are not equivalent according to R′, since A is private
with respect to R′.

The following claim is analogous to Claim 5.6 for the deterministic case.
Claim B.3. If a vertex v is nonrelevant, then the probability that Algorithm

RelNonCrit—randomized log n bits returns “Relevant” is negligible.
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Proof. Let Gm = G(
j1j2
∨
i1

· · ·
j2m−1j2m

∨
im

). Since the vertex v is nonrelevant for G, by
Claim 5.4, for every 0 ≤ t′ < t ≤ m the graphs Gt′ and Gt are equivalent according to
RminVC. As A leaks at most k(n) = logm bits, every equivalence class of RminVC is
partitioned into at most m equivalence classes of R′. Since there are m+ 1 = 2k + 1
graphs G0, . . . , Gm, there are two indices 0 ≤ t′ < t ≤ m, such that Gt′ and Gt are
equivalent according to R′.

As every cover of Gt must cover the edge (it′+1, j2t′+1), at least one of it′+1, j2t′+1

is 0.5-heavy for Gt. Applying Claim B.2 to Gt and Gt′ , at least one of the vertices
it′+1, j2t′+1 is 0.4-heavy for Gt′ . Thus, by Observation B.1, with high probability this
vertex will appear at least 0.3n times in the answers of A(Gt′ ), and the algorithm will
return “Noncritical.”

To prove that Algorithm RelNonCrit—randomized log n bits is correct when v
is critical, we need the following claim.

Claim B.4. Let 0 ≤ t < m. For every i1, . . . , it, j1, . . . , j2t ∈ I, consider the
following experiment: choose it+1, . . . , im and j2t+1 at random and with uniform dis-
tribution from I and return 1 if at least one of the vertices it+1, j2t+1 is 0.2-heavy for

G(
j1j2
∨
i1

· · ·
j2t−1j2t

∨
it

it+1
∧ · · · im

∧ ). If v is critical, then the probability that this experiment
returns 1 is at most δ/m.

Proof. We chose N , the number of vertices in the graphs we construct, such that
the size of each cover A returns is at most |I|/(10α) for α def= 2m2/δ. To show this,
we shall need the following requirement:

(B.3) |I| = N − 2mn ≥ N/2.

That is, we need N ≥ 4mn. As m = N ε/6 ≤ N1/6, it suffices to require N ≥ (4n)6/5.
By the choice of N ,

N = (120n/δ)2/ε ≥ (120n)2 ≥ (4n)6/5

(since 0 < δ, ε ≤ 1); thus (B.3) holds.
We next upper-bound the size of the covers that A outputs. The size of a minimum

vertex cover of these graphs is at most (2 · n + 1)m ≤ 3nm. Since A is an N1−ε-
approximation algorithm for vertex cover, the size of its output is at most 3·nm·N1−ε.
Recall that N = (120n

δ )2/ε and m = N ε/6, and thus, using (B.1),

(B.4) 120nm3 = δ(120n/δ) ·N ε/2 = δ((120n/δ)2/ε)ε/2 ·N ε/2 = δN ε/2N ε/2 = δN ε.

Therefore, the size of the cover returned by A is at most

3 · nm ·N1−ε =
3nmN
N ε

≤ 6nm|I|
N ε

=
120nm3

δN ε
· δ|I|
20m2

=
δ|I|

20m2
=

|I|
10α

,

where the inequality above follows from (B.3) and the last two equalities follow from
(B.4) and the definition of α. Therefore, for every choice of it+1, . . . , im, j2t+1, . . . , j2m

there are at most |I|/α vertices that are 0.1-heavy for G(
j1j2
∨
i1

· · ·
j2t−1j2t

∨
it

it+1
∧ · · · im

∧ ).
We will show that if v is critical, then the number of vertices that are 0.2-heavy

for G(
j1j2
∨
i1

· · ·
j2t−1j2t

∨
it

it+1
∧ · · · im

∧ ) for at least one choice of it+1, . . . , im, j2t+1, . . . , j2m is
at most m|I|/α.

We first prove an upper bound on the number of 0.2 heavy vertices in a given
equivalence class of R′. Fix it+1, . . . , im, j2t+1, . . . , j2m and let

H0 = G
(

j1j2
∨
i1

· · ·
j2t−1j2t

∨
it

it+1
∧ · · · im

∧

)
.
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If a vertex u is 0.2-heavy for some H such that H ≡R′ H0, then by Claim B.2, it is
(at least) 0.1-heavy for H0. Thus, there are at most |I|/α vertices that are 0.2-heavy
for at least one of the graphs in the equivalence class of H0 with respect to ≡R′ .

We next bound the number of vertices that are 0.2-heavy vertices for at least

one graph of the form G(
j1j2
∨
i1

· · ·
j2t−1j2t

∨
it

it+1
∧ · · · im

∧ ). If v is critical, then, by Claim 5.3,
every two choices of it+1, . . . , im result in equivalent graphs according to RminVC.
Since A leaks at most k(N) = ε

6 logN = logm bits, there are at most 2k(N) =
m equivalence classes of R′ for the different choices of it+1, . . . , im, j2t+1, . . . , j2m.
Thus, there are at most m|I|/α vertices that are 0.2-heavy for at least one graph

G(
j1j2
∨
i1

· · ·
j2t−1j2t

∨
it

it+1
∧ · · · im

∧ ) for some it+1, . . . , im, j2t+1, . . . , j2m.
We now analyze the probability that the experiment returns 1. The probability

that at least one of the vertices it+1, j2t+1 is 0.2-heavy for some graph is, by the union
bound, at most 2m

α . Therefore, the probability of the experiment returning 1 is at
most 2m

α = δ/m, as required.
Claim B.5. If v is critical, then the probability that Algorithm RelNonCrit—

randomized log n bits returns “Noncritical” is at most δ.
Proof. Assume v is critical. By Claim B.4, the probability that we choose

i1, . . . , im, j1, . . . , j2m such that for some 0 ≤ t < m at least one of the vertices

it+1, . . . , im, j2t+1, . . . , j2m is 0.2-heavy for G(
j1j2
∨
i1

· · ·
j2t−1j2t

∨
it

it+1
∧ · · · im

∧ ) is at most δ.
By Observation B.1, the probability that Algorithm RelNonCrit—randomized log n
bits returns “Noncritical” in this case is, therefore, negligible.

Algorithm RelNonCrit—randomized log n bits executes nm times the
polynomial-time algorithm A on graphs with N vertices, where N = (120n/δ)2/ε.
Therefore, we have proved the following claim.

Claim B.6. If A runs in polynomial time and 0 ≤ ε < 1 is a constant, then the
running time of Algorithm RelNonCrit—randomized log n bits is poly(n/δ).

We are ready to prove Theorem 5.1 (similarly to the proof of Lemma 5.10).
Theorem 5.1 Let ε > 0 be a constant. If RP �= NP, then there is no n1−ε-

approximation algorithm for the search problem of vertex cover that leaks at most
ε
6 logn bits.

Proof. Algorithm Greedy Vertex Cover, which solves vertex cover, executes at
most n times Algorithm RelNonCrit—randomized log n bits with graphs of size at
most n. We execute these calls with δ = 1

4n (where n is the original number of vertices
in G); thus, all together, the error is at most 1/4. By Claim B.6, the running time of
Algorithm Greedy Vertex Cover is polynomial.

Thus, if there is an n1−ε-approximation algorithm for the search problem of ver-
tex cover that leaks at most k(n) = ε

6 log n bits, then there is a polynomial-time
randomized algorithm for minimum vertex cover that errs with probability 1/4. This
implies that NP ⊆ BPP.

To contradict RP �= NP , this algorithm is transformed into a one-sided error
algorithm for the decision problem of vertex cover: Given 〈G, s〉, decide if G has a
vertex cover of size at most s. The transformation is simple; execute the algorithm
for the search problem of vertex cover. If this algorithm returns a set that covers G
and its size is at most s, return “yes.”

Appendix C. Negative result for private approximation of exact 3SAT.
Recall that the privacy structure RmaxE3SAT contains all pairs of exact 3CNF formulae
φ1, φ2 over n variables for which an assignment a satisfies the maximum possible
number of clauses in φ1 iff it satisfies the maximum possible number of clauses in φ2.
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Definition C.1 (private approximation of maxE3SAT). An algorithm A is a
private c(n) approximation algorithm for maxE3SAT if (i) A runs in polynomial time;
(ii) A is a c(n)-approximation algorithm for maxE3SAT, that is, for every exact 3CNF
formula φ over n variables it returns with probability 1 an assignment that satisfies
at least c(n) times the maximum possible number of clauses that are simultaneously
satisfiable in φ; (iii) A is private with respect to the privacy structure RmaxE3SAT.

We now prove Theorem 3.16, part 1.
Theorem 3.16 (part 1). Let ε > 0 be a constant. If P �= NP, then there is

no deterministic private 1/n1−ε-approximation algorithm for the search problem of
maxE3SAT.

Sketch of proof. Similarly to the proof of Theorem 3.2, we will assume the ex-
istence of a deterministic private 1/n1−ε-approximation algorithm A, and use A to
construct a deterministic algorithm for deciding the satisfiability of exact 3CNF for-
mulae. We emphasize that we are solving the decision problem of satisfiability and
not the optimization problem of maximum satisfiability.

Definition C.2 (relevant assignment to a variable). Let φ be an exact 3CNF
formula over Boolean variables x1, . . . , xn. We say that a variable xi is σ-relevant
(where σ ∈ {0, 1}) if there exists an assignment a that satisfies the maximum possible
number of clauses in φ such that a(xi) = σ.

Note that for every satisfiable formula, every variable is 0-relevant or 1-relevant
(or both). Furthermore, if a variable is not σ-relevant, then, in each assignment that
satisfies the formula, its value is ¬σ; that is, the variable is “¬σ-critical.”

We will first assume an algorithm Relevant Variable-Assignment that, given
an exact 3CNF formula φ over variables x1, . . . , xn and y1, . . . , yn, outputs an in-
dex i and a bit σ such that xi is σ-relevant. The variables y1, . . . , yn are auxil-
iary variables that we add to the formula to ensure that the formula remains an
exact 3CNF formula. Algorithm Relevant Variable-Assignment returns an index
of a variable xi (it never returns a variable yi). For technical reasons, Relevant
Variable-Assignment needs that φ includes at least 3 variables from x1, . . . , xn
(negated or nonnegated). Algorithm Greedy E3SAT, described in Figure C.1, uses
Algorithm Relevant Variable-Assignment to decide E3SAT.

Note that the algorithm terminates in at most n− 2 iterations, as every iteration
reduces the number of x variables in φ̂ by at least one. The final length of φ̂ is at
most eight times that of φ as the replacement steps 2(c)ii and 2(c)iii are applied only
to clauses including x variables, resulting in one less x variable in each of the two
replacement clauses. Hence, if Algorithm Relevant Variable-Assignment runs in
polynomial time, so does Greedy E3SAT.

We now prove the correctness of Algorithm Greedy E3SAT. Clearly, the only way
Greedy E3SAT can err is by outputting 0 on a satisfiable formula φ; hence we assume
from now on that φ is satisfiable and show that executing Greedy E3SAT results in
outputting 1. Before proving the correctness of the algorithm, we will try to give the
intuition behind it. In each step of the algorithm we have a partial assignment to
φ that can be extended to an assignment that satisfies φ. On one hand, this partial
assignment already satisfies some clauses in φ, and therefore we deleted them from
φ̂. On the other hand, some literals in various clauses are not satisfied by the partial
assignment. We would have liked to delete these literals from the clauses that they
appear in, and continue. However, this might result in a 3CNF formula that is not
an exact 3CNF formula. We therefore replace the literal �i that is not satisfied by
an auxiliary variable yi. By replacing each clause (�i ∨ �j ∨ �k) (where �j and �k are
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Algorithm Greedy E3SAT

Input: An exact 3CNF formula φ on n variables x1, . . . , xn.
Output: 1 if φ is satisfiable and 0 otherwise.

1. Let φ̂ = φ.

2. While φ̂ contains at least three variables in x1, . . . , xn do:

(a) Execute Algorithm Relevant Variable-Assignment on φ̂. Denote
the answer 〈i, σ〉.

(b) Assign ai ← σ.
(c) Modify φ̂ as follows:

i. Leave in φ̂ every clause that does not include xi or ¬xi.
ii. If σ = 0, then replace every clause (xi ∨ �j ∨ �k) in φ̂ by the

clauses (yi ∨ �j ∨ �k) and (¬yi ∨ �j ∨ �k). Remove all clauses that
include ¬xi.

iii. If σ = 1, then replace every clause (¬xi ∨ �j ∨ �k) in φ̂ by the
clauses (yi ∨ �j ∨ �k) and (¬yi ∨ �j ∨ �k). Remove all clauses that
include xi.

3. For every variable xi that is not in φ̂ and was not assigned a value in
step 2b, assign ai ← 0.

4. Exhaustively check all four assignments a that agree with the assignments
made in step 2b and step 3. If at least one of these assignments satisfies
φ, return 1; otherwise return 0.

Fig. C.1. Algorithm Greedy E3SAT.

literals—variables or negations) with two clauses (yi ∨ �j ∨ �k) and (¬(yi) ∨ �j ∨ �k),
one with yi and one with ¬yi, we ensure that a satisfying assignment to φ̂ must satisfy
�j ∨ �k.

The formal proof is by induction on the number of iterations in Greedy E3SAT:
After executing the main iteration in Algorithm Greedy E3SAT for k times (i) φ̂ is
satisfiable; (ii) k variables are assigned values in step 2(b); (iii) φ̂ does not contain
these variables; and (iv) any assignment that extends the k assigned variables satisfies
φ iff it satisfies φ̂.

To conclude the proof, we present Algorithm Relevant Variable-Assignment.
On input φ, the algorithm uses a private 1/n1−ε-approximation algorithm A to pro-
duce an index i and a bit σ such that xi is σ-relevant.

By our choice of �1, �2, �3, the clause (�1 ∨ �2 ∨ �3) is not satisfied by the as-
signment a. Hence, as A is a 1/n1−ε-approximation algorithm, at least one of
x1, x2, x3 changes assignments between a and a′. Thus, step 5 in Algorithm Relevant
Variable-Assignment is always possible. Furthermore, as A respects the privacy
structure RmaxE3SAT, we conclude that the formulae φ and φ′ differ on their sets
of maximum assignments. The following claim implies the correctness of Algorithm
Relevant Variable-Assignment.

Claim C.3. If a′(xi) �= a(xi) for some i ∈ {1, 2, 3}, then xi is a(xi)-relevant.
Proof. Assume the contrary, i.e., that every assignment that satisfies the max-

imum possible number of clauses of φ assigns a′(xi) to xi. It is easy to see that
every such assignment of φ is also an assignment that satisfies the maximum possible
number of clauses of φ′ as it satisfies the added clauses (�1 ∨ �2 ∨ �3). In the reverse
direction, note that every assignment that satisfies the maximum possible number of
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Algorithm Relevant Variable-Assignment

Input: An exact 3CNF formula φ over Boolean variables x1, . . . , xn and y1, . . . , yn.
Without loss of generality, all variables x1, x2, x3 appear in φ. Let m denote the
number of clauses in φ.
Output: An index i ∈ {1, 2, 3} and a bit σ such that xi is σ-relevant.

1. Execute A on φ and denote a = A(φ).

2. For i ∈ {1, 2, 3}, let �i = xi if a(xi) = 0 and �i = ¬xi otherwise.

3. Set φ′ = φ∧ (�1 ∨ �2 ∨ �3)∧· · ·∧ (�1 ∨ �2 ∨ �3), where the clause (�1∨ �2 ∨ �3)
is added n1−ε · (m + 1) times.

4. Execute A on φ′ and denote a′ = A(φ′).

5. Choose i ∈ {1, 2, 3} such that a′(xi) �= a(xi). Let σ = a(xi).

6. Return 〈i, σ〉.

clauses of φ′ also satisfies the maximum possible number of φ as the assignment to
the two other variables from x1, x2, x3 does not affect the satisfiability of the clause
(�1 ∨ �2 ∨ �3). We get that 〈φ, φ′〉 ∈ RmaxE3SAT, contradicting A(φ) �= A(φ′).
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Abstract. Given a graph G and a spanning tree T of G, we say that T is a tree t-spanner
of G if the distance between every pair of vertices in T is at most t times their distance in G.
The problem of finding a tree t-spanner minimizing t is referred to as the Minimum Max-Stretch
spanning Tree (MMST) problem. This paper concerns the MMST problem on unweighted graphs.
The problem is known to be NP-hard, and the paper presents an O(log n)-approximation algorithm
for it. Furthermore, it is established that unless P = NP, the problem cannot be approximated
additively by any o(n) term.
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1. Introduction.

1.1. The problem. Consider a connected n-vertex graph G. Let T be a span-
ning tree of G and let x and y be two vertices in G. The stretch of x and y in T ,
denoted strT (x, y), is the ratio of the distance between x and y in T to their distance
in G. The maximum stretch1 of T , denoted max-str(T ), is defined as the maximum
of strT (x, y), taken over all pairs of vertices x, y in G. The problem of finding a
spanning tree T minimizing max-str(T ) is referred to as the Minimum Max-Stretch
spanning Tree (MMST) problem. In this paper we study the MMST problem on un-
weighted graphs. This problem is known to be NP-hard [5], and this paper presents
the first nontrivial approximation algorithm for it, achieving an approximation ra-
tio of O(log n). Our algorithm is inspired by the algorithm presented in [16] for the
Minimum Restricted Diameter spanning Tree (MRDT) problem. We then establish
a hardness of approximation result, showing that it is NP-hard to approximate the
problem additively by a term of o(n).

The MMST problem finds applications in network design and, in particular, in the
context of distributed systems. One such application is the arrow distributed directory
protocol introduced in [7]. This protocol supports the location of mobile objects in a
distributed network. It is implemented over a spanning tree T that spans the network,
and, as shown in [19], the worst case overhead ratio of the protocol is proportional
to the maximum stretch of T . Therefore, a good candidate for the backbone of the
arrow protocol is a spanning tree with low maximum stretch (see also [17]).

1.2. Related work. The notion of stretch can be defined for any spanning
subgraph. Formally, given a graph G, a spanning subgraph H of G, and a pair of

∗Received by the editors July 27, 2006; accepted for publication (in revised form) September
15, 2008; published electronically December 19, 2008. An extended abstract appeared in [11]. This
research was supported in part by a grant from the Israel Science Foundation.
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†Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science,

Rehovot, 76100 Israel (yuval.emek@weizmann.ac.il, david.peleg@weizmann.ac.il).
1In some papers the notion of stretch refers to the maximum taken over all vertex pairs. To avoid

misunderstanding, we distinguish between stretch, defined in the current paper for a specific vertex
pair, and maximum stretch, defined for the whole tree.
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vertices x, y in G, the stretch of x and y in H is defined as the ratio of the distance
between x and y in H to their distance in G. A spanning subgraph with maximum
stretch t is called a t-spanner. Spanners for general graphs were first introduced in
[22]. Sparse spanners (namely, spanners with a small number of edges) were first
studied in [20], where the problem of determining for a given graph G and a positive
integer m whether G has a t-spanner with at most m edges is shown to be NP-
complete for t = 2 while a polynomial time construction is presented for a (4t + 1)-
spanner with O

(
n1+1/t

)
edges for every n-vertex graph and t ≥ 1. Simple algorithms

for constructing sparse spanners for arbitrary weighted graphs are presented in [2],
including the construction of a (2t+1)-spanner with at most n

⌈
n1/t

⌉
edges for every

n-vertex graph and t > 0. For any fixed t ≥ 3 the problem of determining, for an
arbitrary graph G and a positive integer m, whether G has a t-spanner with at most
m edges is proved to be NP-complete in [4]. A polynomial time construction for a
3-spanner with O

(
n3/2

)
edges is presented in [9].

Cast in this terminology, the MMST problem can therefore be redefined as the at-
tempt to find a tree t-spanner minimizing t. The NP-hardness of the MMST problem,
even on unweighted graphs, is established in [5], where it is proved that determining
whether an arbitrary weighted (respectively, unweighted) graph has a tree t-spanner is
NP-complete for every fixed t > 1 (respectively, t ≥ 4). The same paper also presents
a polynomial time algorithm for constructing a tree 1-spanner in a weighted graph
(if such a spanner exists) and a polynomial time algorithm for constructing a tree
2-spanner in an unweighted graph (if such a spanner exists).

Low stretch spanning trees in planar graphs were first studied in [12], where it is
proved that finding a spanning tree T with minimum max-str(T ) is NP-hard even for
unweighted planar graphs. Polynomial time algorithms are presented therein for the
problem of deciding for a fixed parameter t whether a planar unweighted graph with
bounded face length has a tree t-spanner and for the problem of deciding whether an
arbitrary unweighted planar graph has a tree 3-spanner. A polynomial time algorithm
for the MMST problem on outerplanar graphs is presented in [21].

Hardness of approximation is established in [19], where it is shown that approxi-
mating the MMST problem within a factor better than (1 +

√
5)/2 is NP-hard. This

is improved in [18] by observing that the 2− ε inapproximabilty result established in
[14] for the min-max strictly fundamental cycle basis problem also holds in the context
of the MMST problem on unweighted graphs. A number of papers have studied the
related but easier problem of finding a spanning tree with good average stretch factor
[1, 3, 13, 10].

Given a complete graphG = (V (G),E (G)) with edge weights obeying the triangle
inequality and a subset R ⊆ E (G) called the requirements of G, the MRDT problem
is to find a spanning tree T of G that minimizes the restricted diameter of T defined
as the diameter of T restricted to vertex pairs in R. The MRDT problem is presented
and proved to be NP-hard in [16]. The same paper presents anO(log n)-approximation
algorithm for this problem. It can be shown that the MMST problem on complete
graphs with edge weights arising from the distances in some unweighted graph is a
special case of the MRDT problem.

1.3. A brief description of the technique. Our main result is the first non-
trivial approximation algorithm for the MMST problem on unweighted graphs. This
algorithm relies on a graph decomposition technique that, given an unweighted graph
G of size n, breaks it into disjoint connected components, each of size at most n/2, by
discarding the edges internal to some ball B of radius proportional to the maximum
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stretch ρ of an optimal solution to the MMST problem on G. The spanning trees gen-
erated by recursive invocations of the algorithm on each such connected component
are combined with a single source shortest paths spanning tree of B to produce a
spanning tree T of G.

Consider an arbitrary edge (x, y) in G. Our analysis relies on observing that the
number of edges added to the unique path between x and y in T on each recursive
level is O(ρ). Since there are at most logn recursive levels (as the size of the graph
decreases by a factor of 2 on each recursive level), the stretch of x and y in T is
O(log n).

The technique presented in [16] for the approximation algorithm of the MRDT
problem is similar to that described above. The novel approach in this paper is the
adaptation of this technique to graphs which are not necessarily complete.

1.4. Outline of the paper. In section 2 we present the basic notation and defi-
nitions used throughout this paper. Two lower bounds on the minimum max-stretch of
unweighted graphs are established in section 3. Our approximation algorithm, named
Algorithm Construct Tree, is presented in section 4. In section 5 we prove that the
output of Algorithm Construct Tree is a spanning tree, and in section 6 we analyze
the performance guarantee of the algorithm, establishing an O(log n) upper bound on
the approximation ratio. Our analysis is based on the lower bounds of section 3. In
section 7 we prove that the analysis of the performance guarantee of the algorithm
is tight. The hardness of approximating the MMST problem on unweighted graphs is
studied in section 8, proving that unless P = NP, the problem cannot be approximated
additively by a term of o(n).

2. Preliminaries. Throughout, we consider a connected unweighted undirected
n-vertex graph G. Let V (G) and E (G) denote the vertex and edge sets of G, respec-
tively. The length of a path P in the graph is the number of edges in the path, denoted
by len(P ). For two vertices u, v in V (G), let distG(u, v) denote the distance between
them in G, i.e., the length of a shortest path between u and v. The definition of dis-
tance is extended to vertex subsets as follows. Let U and W be two subsets of V (G).
The distance between U and W is the minimum distance between any pair of vertices
in U and W , denoted by distG(U,W ) = min{distG(u,w) | u ∈ U and w ∈ W}.

For a subset U ⊆ V (G), let G(U) denote the subgraph of G induced by U , that
is, V (G(U)) = U and E (G(U)) = E (G) ∩ (U × U). Denote the set of edges internal
to U by E (U) = E (G(U)).

Although the notion of stretch can be defined for every spanning subgraph, our
focus in the current paper is on spanning trees only. Consider some spanning tree T
of G. Denote the stretch of u and v in T with respect to G by

strT,G(u, v) =
distT (u, v)
distG(u, v)

.

Denote the maximum stretch of T with respect to G by

max-str(T,G) = max
x,y∈V (G)

{strT,G(x, y)}.

When the graphG is clear from the context we may omit it and write simply strT (u, v)
and max-str(T ). Denote the minimum max-stretch of G by

max-str(G) = min {max-str(T,G) | T is a spanning tree of G}.
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Consider two metrics τ and δ over the vertices V . We say that τ dominates δ if
τ(u, v) ≥ δ(u, v) for every u, v ∈ V . We say that τ is a tree metric2 if τ is induced by
the distances in some weighted tree over V . We extend the definitions of stretch and
maximum stretch for tree metrics as follows. For every two vertices u, v ∈ V , denote
the stretch of u and v in τ with respect to δ by

strτ,δ(u, v) =
τ(u, v)
δ(u, v)

.

The maximum stretch of τ with respect to δ, denoted max-str(τ, δ), is defined accord-
ingly.

Consider some metric δ over the vertices V . Given a vertex set U ⊆ V , we define
the diameter of U with respect to δ as

diamδ(U) = max{δ(u, v) | u, v ∈ U}.

Given a vertex u ∈ V and some positive real ρ, we denote the ball centered at u of
radius ρ with respect to δ by Bδ(u, ρ) = {v ∈ V (G) | δ(u, v) ≤ ρ}.

A partition of a set S is a collection P = {U1, . . . , Uk}, where Ui ∩ Uj = ∅ for
every 1 ≤ i < j ≤ k and

⋃
1≤i≤k Ui = S. Unless stated otherwise, we assume that Ui

is nonempty for every 1 ≤ i ≤ k. If S is the set of vertices of some graph, then the
subsets U1, . . . , Uk are called the clusters of the partition. (Note that our definition
does not require a cluster to be connected in G.)

For a partition P = {U1, . . . , Uk} of V (G), let E (P ) denote the set of edges
internal to the clusters of P , i.e., E (P ) =

⋃
Ui∈P E (Ui). Denote the set of edges

external to P , namely, the edges connecting vertices in two different clusters, by
E (P ) = E (G)−E (P ). Every edge set F ⊆ E (P ) induces a logical cluster graph on P ,
obtained by contracting each cluster in P into a single node and replacing each edge
(u, v) ∈ F , where u ∈ Ui and v ∈ Uj , by the edge (Ui, Uj). We say that F induces a
tree on P if the cluster graph induced by F on P is a tree. For a subset X ⊆ V (G),
denote the set of clusters in P that intersect X by I(P,X) = {Ui ∈ P | Ui ∩X 	= ∅}.

A central tool in our construction is a graph decomposition based on eliminating
the edges of some ball of radius ρ. This decomposition is obtained as follows. For a
metric δ over V (G), a vertex u ∈ V (G), and a positive integer ρ, erase from G the
internal edges (but not the vertices) of the ball centered at u of radius ρ with respect
to δ, E (Bδ(u, ρ)), and let G1, . . . , Gr be the connected components in the remaining
graph. The collection {G1, . . . , Gr} is referred to as the (u, ρ, δ)-decomposition of G.
Figure 1 illustrates the (u, 2, distG(·, ·))-decomposition of a graph G. We say that the
vertex u is a ρ-center with respect to G and δ if |V (Gi)| ≤ n/2 for every 1 ≤ i ≤ r.

3. Lower bounds on the minimum max-stretch. In this section we establish
some general lower bounds on the minimum max-stretch of a graph G. These lower
bounds are used in section 6 to yield the performance guarantee of our approximation
algorithm.

We begin with correlating the existence of a ρ-center with the minimum max-
stretch of the graph.

Theorem 3.1. Consider a graph G and a connected vertex induced subgraph H
of G, and let δ be the restriction of distG(·, ·) to the vertices of H. Then H admits a
(2κ)-center with respect to δ, where κ = max-str(G).

2Our definition of a tree metric differs from the standard definition, where τ is induced by the
distances between pairs of vertices from V in some weighted tree over a superset of V . Clearly, a tree
metric according to our definition is also a tree metric according to the standard definition.
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Fig. 1. The decomposition of G with respect to distG(·, ·), u, and ρ = 2. The dashed circle
represents BdistG(·,·)(u, 2).

Proof. Clearly, every spanning tree of G induces a tree metric over V (G) that
dominates the distances in G. In particular, there exists such a tree metric τ with
max-str(τ, distG(·, ·)) = κ. In [15] it is proved that a tree metric τ over the vertex set
V can be transformed into a tree metric τ ′ over an arbitrary vertex subset U ⊆ V ,
such that τ(x, y) ≤ τ ′(x, y) ≤ 8 τ(x, y) for every two vertices x, y in U . This result is
improved in [16] for the special case where τ arises from the distances in an unweighted
tree over V so that τ(x, y) ≤ τ ′(x, y) ≤ 4 τ(x, y). It follows that there exists a tree
metric τ ′ over V (H) that dominates δ such that max-str(τ ′, δ) ≤ 4κ. We next show
that this implies that H admits a (2κ)-center with respect to δ.

Recall that in every n-vertex tree T , there exists a vertex u, named the centroid
of T , such that the removal of all edges incident with u disconnects T to subtrees of
size at most n/2 each. Consider the tree T over V (H) that corresponds to τ ′, and let
u be a centroid of T . (Observe that T is not necessarily a spanning tree of H .) Let
T1, . . . , Tk be the subtrees of T obtained from the removal of all edges incident with
u.

Let {H1, . . . , Hr} be the (u, 2κ, δ)-decomposition of H , namely, the connected
components of H after erasing the internal edges of Bδ(u, 2κ). We claim that for
every 1 ≤ i ≤ r, there exists some 1 ≤ j ≤ k such that V (Hi) ⊆ V (Tj); hence u is
a (2κ)-center of H and the theorem holds. Assume by way of contradiction that the
claim is false, and let Hi be a subgraph of H that falsifies the claim, i.e., such that
V (Hi) � V (Tj) for any 1 ≤ j ≤ k. Since Hi is connected, it follows that there exists
an edge (x, y) ∈ E (Hi) such that x ∈ V (Tj) and y ∈ V (Tj′ ) for some 1 ≤ j < j′ ≤ k.
The edge (x, y) was not removed by the (u, 2κ, δ)-decomposition of H ; thus δ(u, x) ≥
2κ and δ(u, y) ≥ 2κ, where at least one of these two inequalities is strict. Therefore,
δ(u, x) + δ(u, y) > 4κ. Since τ ′ dominates δ, it follows that τ ′(u, x) + τ ′(u, y) > 4κ.
But x and y are in different subtrees obtained from the removal of the edges incident
with u; therefore, τ ′(x, y) = τ ′(u, x) + τ ′(u, y) > 4κ, in contradiction to the fact that
max-str(τ ′, δ) ≤ 4κ. The theorem follows.

Consider a graph G, and let H be a connected vertex induced subgraph of G. Let
H̄ be the subgraph induced on G by V (G)−V (H). Denote the set of edges that cross
between H and H̄ by F (H) = {(x, y) ∈ E (G) | x ∈ V (H) and y ∈ V (H̄)}. Let W (H)
be the set of endpoints of edges in F (H). We say that H is a κ-outspread subgraph
of G if F (H) can be partitioned into two remote parts F1 and F2 with endpoints W1
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Fig. 2. A κ-outspread subgraph H. The vertices x1 and x2 are connected in H̄.

and W2, respectively, such that
• distG(W1,W2) ≥ κ and
• there exist two vertices x1 ∈ W1 ∩ V (H̄) and x2 ∈ W2 ∩ V (H̄) such that H̄

admits a simple path between x1 and x2.
Note that H̄ is not necessarily connected, but it is assumed to have some “con-
nectivity” between endpoints of F1 and endpoints of F2. In what follows, we define
W+
i = Wi ∩ V (H) and W−

i = Wi ∩ V (H̄) for i = 1, 2. A κ-outspread subgraph is
illustrated in Figure 2. The existence of an outspread subgraph in a graph implies a
lower bound on its minimum max-stretch, as established in the following theorem.

Theorem 3.2. If a graph G admits a κ-outspread subgraph, then max-str(G) > κ.
Proof. Consider a graph G, and let H be a κ-outspread subgraph of G, with

remote parts F1 and F2 with endpoints W1 and W2. Let T be a spanning tree of G
and suppose, toward deriving contradiction, that max-str(T ) ≤ κ.

We begin by strengthening the second requirement of a κ-outspread subgraph
and proving that W−

1 and W−
2 are connected by a path fully contained in T ∩ H̄. To

show this, we prove that T contains a subtree T ′ such that
• V (T ′) ∩W−

1 	= ∅;
• V (T ′) ∩W−

2 	= ∅;
• T ′ lies entirely in H̄ ; and
• T ′ is maximal; namely, if T ′′ is a subtree of T and V (T ′) ⊂ V (T ′′), then

V (T ′′) ∩ V (H) 	= ∅.
By definition, since H is a κ-outspread subgraph of G, the subgraph H̄ admits a
simple path between W−

1 and W−
2 . Let ψ = (x0

1, x
1
1, . . . , x

s
1, x

t
2, x

t−1
2 , . . . , x0

2) be the
shortest such path, where x0

1 ∈ W−
1 , x0

2 ∈ W−
2 , κ ≤ len(ψ) = s+ t + 1, and len(ψ)

2 −
1 ≤ s ≤ t ≤ len(ψ)

2 . Since ψ is a shortest path between W−
1 and W−

2 , it follows
that distG(xji ,W

−
i ) = j for i = 1, 2 and every vertex xji in ψ. By the definition

of a κ-outspread subgraph, we have distG(xji ,W
+
i ) = j + 1 and distG(xji ,W

+
3−i) ≥

min{κ+ j+1, s+ t+2− j} for i = 1, 2 and every xji in ψ. Therefore, distG(xs1,W
+
i )+

distG(xt2,W
+
i ) > κ for i = 1, 2. Consequently, the unique path between xs1 and xt2 in T

does not contain any vertex in W+
1 ∪W+

2 , as, otherwise, it is of length greater than κ,
in contradiction to the assumption that max-str(T ) ≤ κ. Moreover, distG(xji ,W

+
3−i)+

distG(xj−1
i ,W+

3−i) > κ for i = 1, 2 and every xji and xj−1
i in ψ; hence the unique path

between xji and xj−1
i in T does not contain any vertex in W+

3−i.
Let πs,t be the unique path between xs1 and xt2 in T . As πs,t does not contain

any vertex in W+
1 ∪W+

2 , it must lie entirely in H̄ . We would like to develop πs,t into
a subtree T ′ as described above. For i = 1, 2, apply the following process to extend
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πs,t up to a vertex in W−
i without adding any edge of F (H). Initialize the variable

subtree Υ to be the path πs,t. Initialize the variable integer jmin by jmin = min{j |
xji ∈ V (Υ)} (jmin is well defined, as xs1 and xt2 are in Υ). If jmin = 0, then we are
done since the subtree Υ now contains a W−

i vertex and V (Υ) ⊆ V (H̄).
Otherwise, apply a “developing step” as follows. Let χ be the unique path between

xj
min

i and xj
min−1
i in T . The path χ does not contain any edge in F3−i since, otherwise,

it also contains a vertex in W+
3−i. If χ contains an edge in Fi, then it must contain a

vertex in W−
i right before that edge, in which case the subtree Υ can be extended up

to a vertex in W−
i without adding any F (H) edge, and we are done. Otherwise, the

path χ does not contain any F (H) edge at all; thus Υ can be extended so that jmin

decreases by a positive integral term without adding any edge in F (H). We repeat the
“developing step” until jmin = 0. Applying this process for i = 1, 2 yields a subtree T ′

of T such that T ′ contains a vertex in W−
1 and a vertex in W−

2 and E (T ′)∩F (H) = ∅;
hence T ′ lies entirely in H̄ . If T ′ is not maximal, then extend it by adding adjacent
edges of E (T ) ∩ E (H̄) as long as possible.

We now turn to label the vertices of H by their location in T with respect to the
subtree T ′. Pick an arbitrary vertex r ∈ V (T ′) and direct the edges of T toward r.
Consider a vertex v in V (H), and let πv be the unique path from v to r in T . If u is
the first vertex on πv such that u ∈ V (T ′), then we say that v is covered by u with
respect to T ′. Since T ′ is maximal, if v is covered by u, then the edge entering u on
πv is in F and u must lie in W−

i for some i ∈ {1, 2}. For i = 1, 2, let

Ui = {v ∈ V (H) | v is covered by some vertex u ∈ W−
i with respect to T ′}.

Note that {U1, U2} is a partition of V (H). For two vertices x, y ∈ V (H), we say
that x and y are separated by T ′ if x ∈ U1 and y ∈ U2 (or vice versa). Observe that
this implies that the unique path between x and y in (the undirected) T contains an
edge in F1 and an edge in F2; thus its length is at least κ+ 2. It follows that for an
edge (x, y) in E (H), the vertices x and y cannot be separated by T ′ since, otherwise,
we have max-str(T ) > κ. But, by definition, the subgraph H is connected; therefore,
V (H) = Ui for some i ∈ {1, 2} and U3−i = ∅. Without loss of generality, suppose that
V (H) = U1.

Let y−2 be a vertex in V (T ′) ∩W−
2 , and consider a neighbor y+

2 ∈ W+
2 of y in

G. As y+
2 is in U1, it is covered by some vertex y−1 ∈ W−

1 ; hence distT (y−2 , y
+
2 ) =

distT (y−2 , y
−
1 ) + distT (y+

2 , y
−
1 ). Since distG(W1,W2) ≥ κ, and since the distances in T

dominate the distances in G, it follows that distT (y−2 , y
+
2 ) ≥ 2κ, in contradiction to

the assumption that max-str(T ) ≤ κ. The theorem follows.

4. The approximation algorithm.

4.1. Overview. The main idea behind our algorithm is that, given an n-vertex
graph Ĝ with max-str(Ĝ) = κ, there exists (as proved in Theorem 3.1) a vertex
u ∈ V (Ĝ) with the property that discarding the internal edges of the ball centered at
u of radius 2κ decomposes the graph into several connected components, each of size
at most n/2, with no edges crossing between them. Using this fact, our algorithm is
invoked on the integer test values ρ ∈ (1, 2n], suspected of being 2κ. For every such
test value, the algorithm tries to construct the output spanning tree T̂ by looking for
a vertex u and a decomposition as above and merging a spanning tree Tlocal of the
ball centered at u of radius 3ρ/2 (a superset of the ball of radius ρ) with the spanning
trees returned from the recursive calls made for every connected component of the
decomposition. The ρ/2 gap between the radius of the ball used for decomposing
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the graph and the radius of the ball being spanned by the tree Tlocal guarantees the
connectivity of the spanning tree produced by the algorithm. A detailed description
of this process is presented in the following sections.

4.2. Algorithm Construct Tree. We present an algorithm named Algorithm
Construct Tree, that, given an n-vertex graph Ĝ and integral test value ρ, constructs
a spanning tree T̂ of Ĝ with maximum stretch at most 3ρ logn or reports failure. In
section 6 we prove that the algorithm does not fail if ρ ≥ 2max-str(Ĝ). Since the
minimum max-stretch of Ĝ is an integer in [1, n], a test value ρ ≤ 2max-str(Ĝ) on
which the algorithm does not fail can be guessed in O(log n) attempts, to yield a
(6 logn)-approximation algorithm.

Algorithm Construct Tree works in a “divide and conquer” (recursive) approach.
Throughout the execution of the algorithm, we maintain a forest (i.e., a cycle-free
subgraph containing all the vertices) F of the input graph Ĝ. The forest is a global data
structure shared by all recursive invocations of the algorithm. Initially, the forest F is
empty (does not contain any edge), and, upon termination of the algorithm, F contains
the spanning tree T̂ of Ĝ. On each recursive invocation, Algorithm Construct Tree
gets a vertex induced subgraph G of Ĝ as input and adds some edges of G to F .
Upon termination of the recursive invocation on G, the vertices of V (G) all belong
to a single tree in F (each connected component in F is a tree).

Consider a recursive invocation of Algorithm Construct Tree on the vertex in-
duced subgraph G of Ĝ. Due to some earlier recursive invocations, the forest F may
already contain some edges of G. Let P be the partition of V (G) that corresponds
to the connected components of F ; that is, each cluster in P is a subset of V (G),
and two vertices x, y ∈ V (G) are in the same cluster in P if and only if F admits
a path between x and y. We refer to the partition P as the connectivity partition
of V (G) with respect to F . To prevent the possibility of creating cycles in F , the
algorithm will add an edge e ∈ E (G) to F only if e is external to P . Let U be an
arbitrary cluster in P . Note that the vertex induced subgraph G(U) is not necessarily
connected, although every two vertices in U are connected by a path in F (it may be
the case that some of the vertices of this path are missing in G).

Throughout we denote the metric defined by distances in Ĝ by δ̂. Let δ be the re-
striction of δ̂ to the vertices of G. Algorithm Construct Tree works as follows. It first
finds a ρ-center u with respect to δ and identifies the set of clusters I(P ,Bδ(u, 3ρ/2)),
namely, the clusters of P that intersect the ball centered at u of radius 3ρ/2. If a
ρ-center cannot be found, then the algorithm halts and reports “failure.” Next, a
subset of the external edges of the partition P that induces a tree (referred to as the
local tree Tlocal) on these clusters is added to F . The choice of the subset of edges
that induces the local tree on the clusters I(P ,Bδ(u, 3ρ/2)) is made by Procedure
Construct Local Tree. The edges internal to the ball centered at u of radius ρ (but
not the vertices) are discarded from the graph, and subsequently the graph decom-
poses3 into separate connected components G1, . . . , Gr. A recursive call is then made
on the graph4 G(V (Gi)) for every 1 ≤ i ≤ r.

Let F ′ be the forest F after the edges of the local tree were added to it, and let
P ′ be the connectivity partition of V (G) with respect to F ′. Observe that the connec-

3The connected components of this graph decomposition should not be confused with the clusters
of the connectivity partition P.

4Observe that G(V (Gi)) is not necessarily identical to Gi, as some of the edges in G(V (Gi)) may
be internal to Bδ(u, ρ). Such edges were discarded in the decomposition process, and they cannot be
found in Gi.
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tivity partition P ′ is obtained from the connectivity partition P (that corresponds to
F before the edges of the local tree were added) by merging all clusters that intersect
Bδ(u, 3ρ/2) into a single cluster, referred to as the kernel cluster U ′. It is easy to
verify (a stronger claim is proved later on) that the kernel cluster disintegrates into
several connected components of the graph decomposition G1, . . . , Gr. Consequently,
a pair of vertices in the kernel cluster may be separated on this recursive invocation.
However, it is crucial for the correctness of Algorithm Construct Tree that all other
clusters in P ′ remain intact (see section 5). In fact, assuming that ρ ≥ 2max-str(Ĝ),
the ρ/2 gap between the radius of the ball used for decomposing the graph and that
being spanned by the local tree ensures (as proved in section 6.1) that this is indeed
the case.

Formally, we say that the connectivity partition P ′ is a hub with respect to the
connected components G1, . . . , Gr of the graph decomposition if, for every cluster U ∈
P ′−{U ′}, there exists a connected component Gi, 1 ≤ i ≤ r, such that U ⊆ V (Gi). In
other words, there is at most one cluster in P ′ that disintegrates into several connected
components of the graph decomposition. (Recall that the connectivity partition is
defined with respect to the global forest regardless of the connectivity in G; hence the
subgraphs induced on G by its clusters are not necessarily connected to begin with. A
cluster that induces a nonconnected subgraph on G may be disintegrated into several
connected components even if none of its internal edges were discarded in the graph
decomposition.) If P ′ is not a hub with respect to G1, . . . , Gr, then the algorithm
halts and reports “failure.”

The current recursive invocation of the algorithm is said to succeed if it manages
to avoid the two failures, namely, if it finds a ρ-center and P ′ is a hub. Otherwise,
we say that the current recursive invocation fails, in which case the algorithm should
be reinvoked on Ĝ with a larger test value ρ. A formal description of Algorithm
Construct Tree is given in Table 1.

Table 1

Algorithm Construct Tree.

Input: A vertex induced subgraph G of Ĝ.
Let δ be the restriction of δ̂ to the vertices V (G).

1. If |V (G)| = 1, then return.
2. Find a ρ-center u with respect to G and δ.

If none exists, then halt and report “failure.”
3. Tlocal ← Construct Local Tree(G, u).
4. Set F ← F ∪ Tlocal.
5. Let G1, . . . , Gr be the connected components of the graph remaining from G after

discarding the edges in E(Bδ(u, ρ)).
6. Let P ′ be the connectivity partition of V (G) with respect to the (modified) forest F .
7. If P ′ is not a hub with respect to G1, . . . , Gr, then halt and report “failure.”
8. For every 1 ≤ i ≤ r, invoke Construct Tree(G(V (Gi))).

Since the connected components G1, . . . , Gr of the (u, ρ, δ)-decomposition of G
are formed by discarding the edges internal to Bδ(u, ρ), we have the following.

Observation 4.1. The vertex set Bδ(u, ρ) intersects Gi for every 1 ≤ i ≤ r.

4.3. Procedure Construct Local Tree. Consider a graph G. Let ξ be a metric
over V (G), and let P = {U1, . . . , Uk} be a partition of V (G). We say that the graph
R is the transitive graph of G with respect to P and ξ if each cluster in P is completed
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(b) After

ρ

(a) Before

localT

2
u3

Fig. 3. The operation of Procedure Construct Local Tree. (a) The clusters of P and the ball
centered at u of radius 3ρ/2. (b) Tlocal induces a tree on the clusters of I(P,Bδ(u, 3ρ/2)). The shaded
area forms the kernel cluster U ′.

into a clique in R, namely,
• V (R) = V (G) and
• E (R) = E (P ) ∪

⋃
1≤i≤k (Ui × Ui).

The graph R is weighted with edge lengths �(e) = ξ(e) for every e ∈ E (R). (Distances
in a weighted graph are defined with respect to the length of the edges.)

Recall that P is the connectivity partition of V (G) with respect to the forest F
and that δ is the restriction of δ̂ to the vertices V (G). The purpose of the following
procedure, named Construct Local Tree, is to find a subset Tlocal of external edges
from E (P) that induces a tree on the clusters of I(P ,Bδ(u, 3ρ/2)). Let P ′ be the
connectivity partition of V (G) with respect to F ∪ Tlocal. Note that by the choice of
Tlocal, it follows that P ′ − P contains a single cluster, named the kernel cluster U ′,
which is the union of all the clusters in P that intersect Bδ(u, 3ρ/2). (See Figure 3.)
The subset Tlocal should be chosen so that the diameter of the kernel cluster is not
much greater than the sum of diameters of the P-clusters it replaces (this requirement
is presented formally in section 6).

In principle, this task can be achieved by using a depth-(3ρ/2) shortest path tree
rooted at u on the transitive graph R. However, a naive choice of such a short-
est path tree might create cycles in the cluster graph induced on P . Procedure
Construct Local Tree carefully avoids this complication. The procedure begins by
constructing the transitive graph R of G with respect to P and δ. Next, the vertex set
U ′ is initiated to consist of the cluster of u in P , and the edge set Tlocal is initiated to
be empty. The vertices of R are then processed in increasing order of distances from
the vertex u. In section 5 we prove that whenever Procedure Construct Local Tree
is invoked, the distances in R agree with δ; hence if the procedure processes the vertex
x before it processes the vertex y, then δ(u, x) ≤ δ(u, y).

Consider a vertex v when it is processed by the procedure, and let Ui be v’s cluster
in the partition P . If v /∈ U ′, then the procedure adds the vertices of Ui to U ′ and
adds the edge (w, v) to Tlocal, where w is the predecessor of v in some shortest path
from u to v. Note that (w, v) is an edge in E (G). This is justified since v must be the
first vertex in Ui to be processed by the procedure (as otherwise, it was already in
U ′), and since w was processed before v (as distR(u,w) < distR(u, v)). The procedure
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halts when all vertices at distance at most 3ρ/2 from u are processed and returns the
edge set Tlocal. A formal description of Procedure Construct Local Tree is given in
Table 2. Procedure Construct Local Tree can be implemented as a simple variant
of the well-known Dijkstra algorithm for finding shortest paths from a single source
[8, 6].

Table 2

Procedure Construct Local Tree.

Input: A vertex induced subgraph G of Ĝ and a vertex u ∈ V (G).
Output: An edge set Tlocal ⊆ E(P) that induces a tree on the clusters of I(P,Bδ(u, 3ρ/2)).

1. Construct the transitive graph R of G with respect to P and δ.
2. Let U be u’s cluster in P.
3. Set U ′ ← U and Tlocal ← ∅.
4. Let v1, . . . , vn be the vertices of R in increasing order of distances from u, namely,

v1 = u and distR(vi, u) ≤ distR(vi+1, u) for every 1 ≤ i < n.

5. For i = 2, . . . , n, and as long as distR(vi, u) ≤ 3ρ
2

, do:
(a) Let Ui be vi’s cluster in P.
(b) If vi /∈ U ′, then do:

i. Set U ′ ← U ′ ∪ Ui.
ii. Let π be a shortest path from u to vi in R. Let w be the predecessor of vi

in π.
iii. Set Tlocal ← Tlocal ∪ (w, vi).

6. return Tlocal.

Observation 4.2. The edge set Tlocal output by the procedure induces a tree on
the clusters of I(P , U ′).

5. Correctness. In this section we prove that Algorithm Construct Tree gen-
erates a spanning tree of the given graph. In what follows, Ĝ and T̂ stand for the
unweighted n-vertex connected graph input to the first invocation of the algorithm
and the subgraph stored in F upon termination of the algorithm, respectively. In or-
der to analyze the recursive algorithm, we shall label each recursive invocation with a
string in N∗. The labeling is done in an inductive manner. The top recursive invocation
(on the graph Ĝ) is labeled with the empty string ω. Consider a recursive invocation
labeled with the string σ on the graph G (which is a vertex induced subgraph of Ĝ) for
some σ ∈ N∗, and let G1, . . . , Gr be the connected components of the graph decompo-
sition of G (see line 5 of Algorithm Construct Tree)). Then the recursive invocation
on the graph G(V (Gi)) is labeled with the string σi for every 1 ≤ i ≤ r. We refer to
the recursive invocation labeled with the string σ as the σ-recursive invocation.

We shall use subscript σ to denote the various ingredients of the σ-recursive
invocation. Let Gσ, δσ, and uσ denote the input graph G, the restriction of δ̂ to the
vertices V (G), and the center vertex u, respectively, in the σ-recursive invocation.
Observe that the original graph Ĝ input to the top recursive invocation is denoted by
Gω. Let Fσ and F ′

σ be snapshots of the forest F at the beginning of the execution
of the σ-recursive invocation and after the addition of the local tree, respectively. Let
Pσ and P ′

σ denote the connectivity partitions of V (Gσ) with respect to Fσ and F ′
σ,

respectively. Let U ′
σ be the single cluster in P ′

σ − Pσ (the kernel cluster). Finally, let
Rσ be the transitive graph of Gσ with respect to Pσ and δσ.

We begin with establishing a few fundamental facts regarding the execution of
our algorithm.

Lemma 5.1. Consider the σ-recursive invocation for some string σ in N∗.
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1. If there exists a path π between some two vertices x and y in the graph Ĝ
such that len(π) > 1 and V (π) ∩ V (Gσ) = {x, y}, then both x and y are in
the same cluster in Pσ. In fact, if |σ| > 0, then both x and y are in the same
cluster in P ′

σ−1
, where σ−1 is the longest proper prefix of σ.

2. The distances in the transitive graph Rσ agree with δσ.
Proof. We prove the two claims simultaneously by induction on the length of the

string σ. On the top recursive invocation, which is labeled with the empty string ω,
we have the following.

1. The graphs Gω and Ĝ are identical; hence such a path π does not exist and
the first claim holds vacuously.

2. The graphs Rω and Ĝ are identical and the second claim holds trivially.
Now assume that the claims hold for the σ−1-recursive invocation, where σ−1 is

the longest proper prefix of σ, and consider the σ-recursive invocation. We first prove
claim 1. Consider a path π between the vertices x and y as in the claim. If all internal
vertices of the path π (namely, vertices other than the endpoints x and y) were already
missing on the previous recursion level, i.e., if V (π) ∩ V (Gσ−1 ) = {x, y}, then, due
to the inductive hypothesis, x and y are in the same tree in Fσ−1 ; thus they remain
in the same tree in F ′

σ−1
(and in Fσ) and the assertion holds. Otherwise, there must

be some internal vertices of the path π that have existed in the graph Gσ−1 on the
previous recursion level.

We argue that vertex x must be in the kernel cluster U ′
σ−1

. The same line of
reasoning shows that y ∈ U ′

σ−1
as well; hence both x and y are in the same tree in

F ′
σ−1

(and they remain in the same tree in Fσ) so that the assertion holds. Let w be
the internal vertex of π that still existed in Gσ−1 which is closest to x in π; that is, the
vertex w satisfies distπ(w, x) ≤ distπ(w′, x) for any vertex w′ ∈ V (π) ∩ V (Gσ−1 ) −
{x, y}. We consider two cases (illustrated in Figure 4).

Case (a). If (x,w) is an edge in E (Ĝ), then since w does not exist in Gσ, it follows
that both w and x were in Bδσ−1

(uσ−1 , ρ); hence δσ−1(uσ−1 , x) ≤ ρ. By the inductive
hypothesis on claim 2, the distances in Rσ−1 agree with δσ−1 ; thus distRσ−1

(uσ−1 , x) ≤
ρ. Therefore, since Procedure Construct Local Tree halted at distance 3ρ/2 from the
center vertex uσ−1 (see line 5 of the procedure), it follows that x is in the kernel cluster
U ′
σ−1

.
Case (b). If (x,w) is not an edge in E (Ĝ), then let Uw be w’s cluster in the

partition Pσ−1 . By the inductive hypothesis, the vertex x is in Uw as well (due to the
subpath of π that starts at x and ends at w); thus w and x are in the same cluster
in Pσ−1 and they remain in the same cluster Ūw in P ′

σ−1
. Since w is not a vertex in

Gσ, it follows that the cluster Ūw disintegrated into different connected components
in the decomposition of the graph Gσ−1 . Therefore, the cluster Ūw must be the kernel
cluster U ′

σ−1
since, otherwise, the recursive invocation of Algorithm Construct Tree

on Gσ−1 would have failed as P ′
σ−1

is not a hub (see line 7 of the algorithm).
We now turn to prove claim 2. Consider the transitive graph Rσ as in the claim.

Let x and y be any two vertices in V (Gσ), and let π be a shortest path between x

and y in Ĝ. Some segments of the path π (namely, some consecutive sequences of
vertices and edges between them) may be missing in the graph Gσ. Consider such a
missing segment, and let x′ and y′ be the vertices in π right before and right after that
missing segment, respectively; i.e., the path π consists of a segment between x and x′, a
segment between x′ and y′, and a segment between y′ and y, where the internal vertices
of the segment between x′ and y′ are all missing in Gσ. By claim 1, the vertices x′ and
y′ must be in the same tree in Fσ (see Figure 5); hence they are in the same cluster in
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Fig. 4. The two cases in the proof of Lemma 5.1’s claim 1. In both cases, the vertex x is in the
kernel cluster U ′

σ−1
.

σ

σ

vertex not in
vertex in

G
G

x y

same tree same tree

Fig. 5. Proof of claim 2 of Lemma 5.1. The path π contains some missing segments.

the partition Pσ, and by the definition of the transitive graph Rσ, we conclude that
distRσ (x′, y′) = δσ(x′, y′). The assertion follows as δσ(x, y) = len(π).

By claim 2 of the last lemma and since Procedure Construct Local Tree halts
at distance 3ρ/2 from the source vertex u (see line 5 of Procedure Construct Local
Tree), we have the following.

Corollary 5.2. Consider the σ-recursive invocation for some string σ in N∗.
The kernel cluster U ′

σ satisfies

Bδσ (uσ, ρ) ⊆ Bδσ (uσ, 3ρ/2) ⊆ U ′
σ.

Next, we prove that the subgraph T̂ output by the algorithm is indeed a spanning
tree of Ĝ.

Proposition 5.3. Consider an edge (x, y) ∈ E (Ĝ). There exists some string σ
in N∗ such that both x and y are in the kernel cluster U ′

σ.
Proof. Let σ be the longest string in N∗ such that both x and y are in Gσ. This

means that x and y are separated in the graph decomposition on the σ-recursive
invocation; hence x, y ∈ Bδσ (uσ, ρ). The assertion follows as Corollary 5.2 guarantees
that Bδσ (uσ, ρ) ⊆ U ′

σ.
Since edges are added to F only if they are external to the connectivity partition

P (see Procedure Construct Local Tree), it follows that T̂ is cycle-free. To see that
T̂ is connected, consider an arbitrary edge (x, y) ∈ E (Ĝ). By Proposition 5.3, at some
stage during the execution of the algorithm, both x and y belong to the kernel cluster
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Fig. 6. The cluster U decomposes into the connected components G1 and G2 of the graph
decomposition.

U ′; hence the forest F at that stage admits a path between x and y. Therefore, T̂
admits a path between x and y. As Ĝ is connected, we have the following.

Theorem 5.4. The graph T̂ output by Algorithm Construct Tree is a spanning
tree of the input graph Ĝ.

6. Analysis. In this section we analyze the performance of our algorithm. In
section 6.1 we prove that the recursive invocations of Algorithm Construct Tree
on all vertex induced subgraphs of Ĝ succeed as long as the test value ρ is at least
2max-str(Ĝ). The approximation ratio guaranteed by our algorithm is then established
in section 6.2, where we prove that if the algorithm succeeds to generate a spanning
tree T̂ with test value ρ, then max-str(T̂ ) ≤ 3ρ�logn. In section 6.3 we analyze the
running time of the algorithm.

6.1. Successful recursive invocation. Consider some invocation of Algorithm
Construct Tree on the vertex induced subgraphG of Ĝwith test value ρ ≥ 2max-str(Ĝ).
The proof that a ρ-center can be found (see line 2 of the algorithm) follows directly
from Theorem 3.1. Let G1, . . . , Gr be the connected components of the graph decom-
position on this recursion level. In order to prove that the connectivity partition P ′ of
V (G) with respect to F ′ is a hub (see line 7 of the algorithm), we have to show that
the kernel cluster is the only cluster in P ′ that decomposes into several connected
components.

Suppose toward deriving contradiction that there exists a cluster U in P ′ − {U ′}
that decomposes into several connected components of the graph decomposition. (The
execution of the algorithm halts at that stage.) Formally, let Xi = U ∩V (Gi), where
without loss of generality Xi 	= ∅ for 1 ≤ i ≤ t and Xi = ∅ for t < i ≤ r, and suppose
that t ≥ 2. Figure 6 illustrates a cluster U ∈ P − {U ′} that decomposes into two
connected components.

Let δ be the restriction of δ̂ to the vertices of G, and let u be the current ρ-center.
By the definition of the graph decomposition, every edge e in E (G) that crosses
between V (Gi) and V (Gj), where 1 ≤ i < j ≤ r, satisfies e ∈ Bδ(u, ρ) × Bδ(u, ρ).
Thus, by Observation 4.1 and Corollary 5.2, we have the following.

Observation 6.1. Every edge e that crosses between V (Gi) and V (Gj), where
1 ≤ i < j ≤ r, is in U ′×U ′. Furthermore, the kernel cluster U ′ satisfies U ′∩V (Gi) 	= ∅
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for every 1 ≤ i ≤ r.

Let T be the tree in F that corresponds to the cluster U , and let H be the
subgraph induced on Ĝ by V (T ). We prove that H is a ρ/2-outspread subgraph of
Ĝ (refer to section 3 for the definition of an outspread subgraph), in contradiction to
Theorem 3.2.

Following the notation of section 3, let H̄ denote the subgraph induced on Ĝ
by the vertices in V (Ĝ) − V (T ). Let F (H) be the set of edges in E (Ĝ) that cross
between H and H̄ , and let W (H) be the set of endpoints of edges in F (H). Let
F1 = {e ∈ F (H) | e ∈ E (G1)}; namely, the edge set F1 consists of the edges that
cross between U vertices and other vertices in the connected component G1 of the
decomposition of G. Let F2 = F (H)−F1. By the choice of U and by Observation 6.1,
the connected components G1, . . . , Gt contain some vertices in U and some vertices
not in U ; thus F1 and F2 are nonempty.

Let Wi be the endpoints of edges in Fi for i = 1, 2. Let W+
i = Wi ∩ V (H) and

W−
i = Wi ∩ V (H̄). In order to prove that H is a ρ/2-outspread subgraph of Ĝ, we

have to show that the distance between W1 and W2 in Ĝ is large and to establish
some connectivity properties of H and H̄ . We start with the latter.

Clearly, the vertex induced subgraph H is connected (as T is a tree in F). For H̄
we have the following proposition.

Proposition 6.2. There exist two vertices x1 ∈ W−
1 and x2 ∈ W−

2 such that H̄
admits a simple path between x1 and x2.

Proof. Let T ′ be the tree in F that corresponds to the cluster U ′. Consider the
subgraph G′ induced on Ĝ by V (T ′) ∪ (V (G) − U). This subgraph is not necessarily
connected; however, the vertices of T ′ all belong to the same connected component
G′′ of G′ as T ′ is connected by its own rights. Since U ′ ⊆ V (T ′) ⊆ V (G′′), it follows
due to Observation 6.1 that V (G′′)∩V (Gj) 	= ∅ for every 1 ≤ j ≤ t. Therefore, there
exists a vertex xi in W−

i ∩ V (G′′) for i = 1, 2. The proposition follows as G′′ is a
(connected) subgraph of H̄ .

We now turn to prove that distĜ(W1,W2) ≥ ρ/2. We first argue that if two
adjacent vertices were separated in the graph decomposition on some recursive invo-
cation, then on the subsequent recursive invocations, they both lie far away from the
boundary of their corresponding clusters.

Proposition 6.3. Consider the σ-recursive invocation for some string σ in N∗.
Let x be a vertex in V (Gσ), and let Ux be its cluster in the connectivity partition Pσ.
If x admits a neighbor y in Ĝ such that y /∈ V (Gσ), then Bδσ (x, ρ/2) ⊆ Ux.

Proof. Let α be the longest string in N∗ such that both x and y are in Gα. The
vertices x and y must have been separated in the graph decomposition on the α-
recursive invocation (α is a proper prefix of σ). As (x, y) ∈ E (Gα), this could have
happened only if both x and y were in Bδα(uα, ρ). By Corollary 5.2, the kernel cluster
U ′
α satisfies Bδα(uα, 3ρ/2) ⊆ U ′

α; thus w ∈ U ′
α for every vertex w ∈ V (Gα) such

that distĜ(w, x) = δα(w, x) ≤ ρ/2, and w remains in x’s tree in the forest from that
moment on. Therefore, if such a vertex w still exists in the graph Gσ, then it must lie
in Ux.

Recall that the vertex set W1 consists of the endpoints of edges in F1. Since every
edge in F1 crosses between different clusters of the connectivity partition P , we have
the following.
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Corollary 6.4. Every vertex x ∈ V (Ĝ) such that distĜ(x,W1) ≤ ρ/2 is in
V (G).

Assume by way of contradiction that distĜ(W1,W2) < ρ/2. Let π be a shortest
path in Ĝ between any vertex in W1 and any vertex in W2. Since F is a cut, it follows
that π lies entirely in H or in H̄ , but it does not cross between them (as, otherwise,
π is not shortest). Corollary 6.4 implies that π lies entirely in the graph G as every
vertex in π is at distance less than ρ/2 from W1. By Observation 6.1, every path from
W1 to W2 in G must intersect U ′. Since V (H) ∩ V (G) = U , it follows that π cannot
lie entirely in H ; thus π connects between W−

1 and W−
2 in the subgraph induced by

V (G) − U on G (and, in particular, in H̄).
Recall that Algorithm Construct Tree employs the ball centered at u of radius

ρ to decompose the graph (see line 5 of the algorithm), while the ball of radius (3ρ/2)
is contained in the kernel cluster U ′ (see Corollary 5.2). Since every vertex in W−

i

has a neighbor outside U ′ for i = 1, 2, we conclude that distĜ(W−
i ,Bδ(u, ρ)) ≥ ρ/2.

As len(π) < ρ/2, π cannot contain any edge internal to Bδ(u, ρ). But this implies
that the all vertices of π should have been in the same connected component of the
(u, ρ, δ)-decomposition of G, in contradiction to the fact that π has one endpoint in
G1 and another in Gj for some 1 < j ≤ t. This establishes the following theorem.

Theorem 6.5. Given an input graph Ĝ and a test value ρ ≥ 2max-str(Ĝ), Algo-
rithm Construct Tree succeeds on each recursive invocation.

6.2. Approximation ratio. In this section we prove that if Algorithm
Construct Tree succeeds on each recursive invocation when invoked with test value
ρ, then the output spanning tree T̂ satisfies distT̂ (x, y) ≤ 3ρ�logn for every edge
(x, y) in E (Ĝ) (recall that n is the number of vertices in the input graph Ĝ). By
Proposition 5.3, we know that at some stage during the execution of the algorithm,
the vertices x and y are both in the kernel cluster. Consequently we would like to
bound the diameter of the kernel cluster with respect to the distances in the output
spanning tree T̂ . In an attempt to establish such a bound, we will actually prove a
stronger claim, stating that the sum of the diameters of many clusters, the kernel
cluster being one of them, is sufficiently small.

Let τ̂ be the metric defined by the distances in the output tree T̂ . For a collection
of vertex subsets Λ = {U1, . . . , Uk}, let

ϕ(Λ) =
∑

1≤i≤k
diamτ̂ (Ui).

Our subsequent analysis revolves on bounding the measure ϕ(P ′
σ) as a function of the

length of the string σ ∈ N∗.
Proposition 6.6. Consider the σ-recursive invocation for some string σ in N∗.

The kernel cluster U ′
σ satisfies

diamτ̂ (U ′
σ) ≤ 3ρ+ ϕ(I(Pσ , U ′

σ)).

Proof. The execution of Procedure Construct Local Tree halts at distance 3ρ/2
from the source vertex uσ (see line 5 of the procedure). Therefore, the tree induced
by Tlocal on the clusters of I(Pσ, U ′

σ) is of depth at most 3ρ/2 (when the cluster
containing uσ is considered to be the root). Consider some two vertices x, y ∈ U ′

σ,
and let π be the unique path between x and y in T̂ . The path π contains at most
2 · (3ρ/2) = 3ρ edges from the local tree Tlocal. Let π′ = π − Tlocal be the rest of the
path π. Since π′ is a collection of segments internal to the Pσ-clusters replaced by U ′

σ,
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it follows that len(π′) ≤ ϕ(I(Pσ , U ′
σ)). Therefore, len(π) ≤ 3ρ + ϕ(I(Pσ , U ′

σ)), and
the assertion holds.

The next proposition enables us to bound the sum of the diameters of the clusters
in I(Pσ, U ′

σ).
Lemma 6.7. Consider the σ-recursive invocation for some string σ = αi, where

α ∈ N∗ and i ∈ N. For every cluster U in Pσ, there exists a cluster Ū in P ′
α such that

U ⊆ Ū .
Proof. Suppose toward deriving contradiction that there exists a cluster U ∈ Pσ

such that U � Ū for any cluster Ū in P ′
α. This implies that Fσ contains a path π

between some two vertices x, y ∈ U that are not in the same cluster in P ′
α. Let π be

such a path of minimum length. The path π must satisfy V (π) ∩ V (Gσ) = {x, y},
since, otherwise, there exists some subpath of π with endpoints x′, y′ ∈ U , where x′

and y′ are in different clusters in P ′
α, in contradiction to π being the shortest such

path.
The path π must contain some edges that do not exist in F ′

α. Every such edge was
added to F by some αjβ-recursive invocation, where j 	= i and β ∈ N∗. The graph
Gαjβ must contain some internal vertices of the path π; thus len(π) > 1. Therefore,
Lemma 5.1, when applied to the σ-recursive invocation, implies that x and y are in
the same cluster in P ′

α, which derives a contradiction. The assertion follows.
We are now ready to establish the main lemma of this section.
Lemma 6.8. Consider the σ-recursive invocation for some string σ in N∗. The

connectivity partition Pσ satisfies

ϕ(Pσ) ≤ 3ρ(|σ| + 1).

Proof. We prove the assertion by induction on the length of the string σ. The only
nonsingleton cluster in the connectivity partition Pω is the kernel cluster U ′

ω, whose
diameter with respect to the distances in T̂ is at most 3ρ. The diameter of a singleton
cluster is 0. Therefore, the sum of the diameters of all clusters in Pω is at most 3ρ, and
the assertion holds. Let σ−1 ∈ N∗ be the longest proper prefix of σ, and assume that
the assertion holds for σ−1. Lemma 6.7 implies that for every cluster U ∈ P ′

σ −{U ′
σ},

there exists a cluster Ū ∈ P ′
σ−1

− I(P ′
σ−1

, U ′
σ) such that U ⊆ Ū . Since diamτ̂ (U) is

monotone under set inclusion, i.e., U ⊆ Ū implies diamτ̂ (U) ≤ diamτ̂ (Ū), it follows
that

ϕ(P ′
σ) − diamτ̂ (U ′

σ) = ϕ(P ′
σ − {U ′

σ}) ≤ ϕ(P ′
σ−1

− I(P ′
σ−1

, U ′
σ))

= ϕ(P ′
σ−1

) − ϕ(I(P ′
σ−1

, U ′
σ)).

Thus

ϕ(P ′
σ) ≤ diamτ̂ (U ′

σ) − ϕ(I(P ′
σ−1

, U ′
σ)) + ϕ(P ′

σ−1
).

Another application of Lemma 6.7 guarantees that for every cluster U ∈ I(Pσ, U ′
σ),

there exists a cluster Ū ∈ I(P ′
σ−1

, U ′
σ) such that U ⊆ Ū ; hence ϕ(I(Pσ , U ′

σ)) ≤
ϕ(I(P ′

σ−1
, U ′

σ)), and we can bound

ϕ(P ′
σ) ≤ diamτ̂ (U ′

σ) − ϕ(I(P ′
σ, U

′
σ)) + ϕ(P ′

σ−1
).

Proposition 6.6 is employed to deduce that

ϕ(P ′
σ) ≤ 3ρ+ ϕ(P ′

σ−1
).

The assertion follows by the inductive hypothesis as |σ−1| = |σ| − 1.
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Let (x, y) be an arbitrary edge in E (Ĝ). By Proposition 5.3, there exists a string
σ ∈ N∗ such that both x and y are in the kernel cluster U ′

σ. Therefore,

distT̂ (x, y) ≤ diamτ̂ (U ′
σ) ≤ ϕ(P ′

σ).

By Lemma 6.8, and since the depth of the recursion is at most �logn (as the size of
each graph input to the recursive algorithm decreases by a factor of at least 2), we
conclude that

distT̂ (x, y) ≤ 3ρ(|σ| + 1) ≤ 3ρ�logn.

As the maximum stretch of a spanning tree is always obtained on a pair of vertices
that form an edge in the original graph [5], Theorems 5.4 and 6.5 imply the following.

Theorem 6.9. Given an n-vertex graph Ĝ, Algorithm Construct Tree can be
invoked with O(log n) different test values to generate a spanning tree T̂ of Ĝ satisfying
max-str(T̂ ) = O(log n) · max-str(Ĝ).

6.3. Running time. We now turn to analyze the running time of Algorithm
Construct Tree when invoked with test value ρ on input graph Ĝ with n̂ vertices
and m̂ edges. The distance metric δ̂ is constructed in a preprocessing stage in time
O(n̂m̂) (a trivial implementation); thus in what follows we assume that δ̂ and its
restrictions to subsets of V (Ĝ) are known.

Consider a recursive invocation of the algorithm on vertex induced subgraph G
of Ĝ, and let δ be the restriction of δ̂ to the vertices V (G). Denote n = |V (G)| and
m = |E (G)|. Given a vertex u ∈ V (G), we can construct the graph G′ remaining
from G after the edges in E (Bδ(u, ρ)) are discarded in time O(m). Identifying the
connected components of G′ can be done in time O(m) as well; hence we can decide
whether u is a ρ-center with respect to G and δ in time O(m). By repeating this
process for every vertex u ∈ V (G), a ρ-center is found (if one exists) in time O(nm).

Procedure Construct Local Tree is merely a variant of Dijkstra’s single source
shortest paths algorithm on the transitive graph R that has O(n2) edges; hence it
can be implemented to run in time O(n2). Using a disjoint-set data structure [6],
connectivity queries in the forest F are answered in near-constant time, and the
condition that the connectivity partition P ′ is a hub is verified in near-linear time.
Therefore, the dominant term in the running time of the recursive invocation on G
is proportional to nm. Accounting for all recursive invocations, the running time of
Algorithm Construct Tree is O(min{n̂m̂ log n̂, n̂3}).

7. Tightness of the analysis. In this section we prove that the analysis pre-
sented in section 6 is tight. Recall that our approximation algorithm invokes Algorithm
Construct Tree with different test values ρ ∈ (1, 2n], finally returning the output of
a successful invocation with the smallest ρ. For the sake of the analysis, in this section
we assume that the approximation algorithm ignores the spanning trees output by
successful invocations with larger test values, although some of these spanning trees
may admit smaller maximum stretch.

Lemma 7.1. For every d ∈ N>0 there exists an unweighted graph Gd with n(d) =
Θ(2d) vertices such that max-str(Gd) is constant while Algorithm Construct Tree,
when invoked on Gd with test value ρ = 2, constructs a spanning tree with maximum
stretch Ω(log n).

Proof. Given an integer d ≥ 1, construct the unweighted graph Gd as follows. Let
T and T ′ be two complete binary trees of depth d, with roots r and r′, respectively.
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r’r edges of

edges of

T

T’

bridge edges

Fig. 7. Gd for d = 4.

Connect the two trees to each other by adding a bridge edge between every pair of
corresponding vertices. Split every edge (x, y) in T by adding a new vertex z and
replacing (x, y) with new edges (x, z) and (y, z). Figure 7 illustrates the construction
of G4.

Since the number of vertices in a depth d complete binary tree is 2d+1 − 1 and
since the number of new vertices added to T is 2d+1−2 (equal to the number of edges
in a depth d complete binary tree), it follows that

n(d) = |V (Gd)| = 2 (2d+1 − 1) + 2d+1 − 2 = 6 · 2d − 4.

It is easy to verify that the spanning tree obtained by removing the edges of T ′ and
remaining with the edges of T plus the bridge edges has maximum stretch 4. On the
other hand, when Algorithm Construct Tree is invoked on Gd with test value ρ = 2,
if the “original” vertices of T (those that existed in T before splitting the edges) are
chosen to be the 2-centers on each recursive invocation, then the spanning tree T̂
returned by the algorithm is merely the union of T and T ′ with their roots connected
by an edge, i.e., E (T̂ ) = E (T ) ∪ E (T ′) ∪ {(r, r′)}.

Let l be an arbitrary leaf in T , and let l′ be its corresponding leaf in T ′. The unique
path between l and l′ in T̂ goes via the edge (r, r′), and it is of length 2d+1+d = 3d+1.
Therefore, T̂ has maximum stretch Ω(d) = Ω(log (n(d))).

8. Hardness of approximation. As mentioned in section 1.2, it is NP-hard
to decide, for an arbitrary unweighted graph G, whether or not max-str(G) ≤ 4 [5].
Moreover, since the maximum stretch of a tree on an unweighted graph is always
obtained on a pair of vertices that form an edge in the original graph, it follows that
max-str(G) must be an integer. Therefore, we have the following.

Corollary 8.1. It is NP-hard to approximate the MMST problem on unweighted
graphs by a ratio better than 5/4.

We show that unless P = NP, the problem cannot be approximated additively by
a term of o(n).

Lemma 8.2. It is NP-hard to distinguish between unweighted graphs with mini-
mum max-stretch at most 5k− 1 and those with minimum max-stretch at least 6k− 1
for any positive integer k.

Proof. The proof is by reduction from the problem of deciding whether an arbitrary
unweighted graph has minimum max-stretch at most 4. Consider some positive integer
k. Given an arbitrary unweighted graph G, construct the unweighted graph G′

k by
replacing every edge (u, v) ∈ E (G) with a unique path Pu,v of length k between u
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and v. Observe that every spanning tree T ′ of G′
k corresponds to a spanning tree T

of G where the edge (u, v) is in E (T ) if and only if all the edges of Pu,v are in E (T ′).
Moreover, if the spanning tree T ′ of G′

k corresponds to the spanning tree T of G,
then, since T ′ is connected, it follows that

|E (T ′) ∩ E (Pu,v)| =
{
k if (u, v) ∈ E (T ),
k − 1 otherwise

for every (u, v) ∈ E (G); i.e., the tree T ′ is missing at most a single edge from every
such path Pu,v. Therefore, max-str(T ′, G′

k) = k · (max-str(T,G) + 1) − 1. Thus if G
has minimum max-stretch at most 4, then G′

k has minimum max-stretch at most
5k − 1. Otherwise, if G has minimum max-stretch at least 5, then G′

k has minimum
max-stretch at least 6k − 1.

Given an approximation algorithm A for the MMST problem on unweighted
graphs and an unweighted graph G, let A(G) denote the tree returned by A when
invoked on G.

Corollary 8.3. If there exist some real δ = o(n) and ε > 0 and an approximation
algorithm A for the MMST problem on unweighted graphs with performance guarantee

max-str(A(G), G) ≤ δ + (6/5 − ε) · max-str(G)

for every unweighted graph G, then P = NP.
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THE CSP DICHOTOMY HOLDS FOR DIGRAPHS WITH NO
SOURCES AND NO SINKS (A POSITIVE ANSWER TO A

CONJECTURE OF BANG-JENSEN AND HELL)∗
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Abstract. Bang-Jensen and Hell conjectured in 1990 (using the language of graph homomor-
phisms) a constraint satisfaction problem (CSP) dichotomy for digraphs with no sources or sinks.
The conjecture states that the CSP for such a digraph is tractable if each component of its core is a
cycle and is NP -complete otherwise. In this paper we prove this conjecture and, as a consequence, a
conjecture of Bang-Jensen, Hell, and MacGillivray from 1995 classifying hereditarily hard digraphs.
Further, we show that the CSP dichotomy for digraphs with no sources or sinks agrees with the
algebraic characterization conjectured by Bulatov, Jeavons, and Krokhin in 2005.
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1. Introduction. The history of the constraint satisfaction problem (CSP) goes
back more than thirty years and begins with the work of Montanari [Mon74] and
Mackworth [Mac77]. Since that time many combinatorial problems in artificial in-
telligence and other areas of computer science have been formulated in the language
of CSPs. The study of such problems, under this common framework, has applica-
tions in database theory [Var00], machine vision recognition [Mon74], temporal and
spatial reasoning [SV98], truth maintenance [DD96], technical design [NL], schedul-
ing [LALW98], natural language comprehension [All94], and programming language
comprehension [Nad]. Numerous attempts to understand the structure of different
CSPs has been undertaken, and a wide variety of tools ranging from statistical phy-
sics (e.g., [ANP05, KMRT+07]) to universal algebra (e.g., [JCG97]) has been em-
ployed. Methods and results developed in seemingly disconnected branches of math-
ematics transformed the area. The conjecture proved in this paper resisted the ap-
proaches based in combinatorics and theoretical computer science for nearly twenty
years. Only recent developments in the structural theory of finite algebras provided
tools strong enough to solve this problem.

For the last ten years the study of CSPs has also been a driving force in theoretical
computer science. The dichotomy conjecture of Feder and Vardi, published in [FV99],
has origins going back to 1993. The conjecture states that a CSP, for any fixed
language, is solvable in polynomial time or NP -complete. Therefore the class of CSPs
would be a subclass of NP avoiding problems of intermediate difficulty. The logical
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characterization of the class of CSPs (see [FV99] and [Kun]) provides arguments in
support of the dichotomy; nevertheless the conjecture remains open.

One of the results of [FV99] shows that the CSP dichotomy conjecture is equiv-
alent to the CSP dichotomy conjecture restricted to digraphs. Therefore the CSPs
can be defined in terms of the (di)graph homomorphisms studied in graph theory
for over forty years (cf. [Sab61, HP64, Lev73]). It adds a new dimension to a well-
established problem and shows the importance of solving CSPs for digraphs. The
classification of the complexity of the H-coloring problems for undirected graphs,
discovered by Hell and Nešetřil [HN90], is an important step and provides a start-
ing point towards proving, or refuting, the CSP dichotomy conjecture. There have
since appeared many papers on the complexity of digraph coloring problems (see,
e.g., [BJH90, BJHM95, Fed01, GWW92, HNZ96a, HNZ96b, HNZ96c, HZZ93, Mac91,
Zhu95]), but as yet, no plausible conjecture on a graph theoretical classification has
been proposed. Bang-Jensen and Hell [BJH90] did, however, conjecture a classifica-
tion (implying the dichotomy) for the class of digraphs with no sources or sinks. Their
conjecture significantly generalizes the result of Hell and Nešetřil.

In 1995, Bang-Jensen, Hell, and MacGillivray (in [BJHM95]) introduced the no-
tion of hereditarily hard digraphs and conjectured their classification. Surprisingly,
they were able to show that this conjecture and the one given in [BJH90] are equiv-
alent. In this paper we prove the conjecture of Bang-Jensen and Hell and, as a
consequence, the conjecture of Bang-Jensen, Hell, and MacGillivray.

Our paper relies on the interconnection between the CSP and algebra as first dis-
covered by Jeavons, Cohen, and Gyssens in [JCG97] and refined by Bulatov, Jeavons,
and Krokhin in [BJK05]. Using this connection, Bulatov, Jeavons, and Krokhin con-
jectured a full classification of the NP -complete CSPs. For a small taste of results in
the direction of proving this classification, see [BIM+06, Bul06, Dal05, Dal06, KV07].
A particularly interesting example, demonstrating the potency of the algebraic ap-
proach, is Bulatov’s proof of the result of Hell and Nešetřil (see [Bul05]). A recent,
purely algebraic result of Maróti and McKenzie [MM07] is one of the key ingredients
in the proof of the conjecture of Bang-Jensen and Hell. This provides further evidence
supporting the extremely strong bond between the CSP and universal algebra.

2. Preliminaries. We assume that the reader possesses a basic knowledge of
universal algebra and graph theory. For an easy introduction to the notions of uni-
versal algebra that are not defined in this paper, we invite the reader to consult the
monographs [BS81] and [MMT87]. Further information concerning the structural the-
ory of finite algebras (called tame congruence theory) can be found in [HM88]. For
an explanation of the basic terms in graph theory and graph homomorphisms, we
recommend [HN04]. Finally, for an introduction to the connections between universal
algebra and the CSP, we recommend [BJK05].

Throughout the paper we deviate from the standard definition of the CSP, with
respect to a fixed language (found in, e.g., [BKJ00]), in favor of an equivalent definition
from [FV99, LZ06]. The definitions of a relational structure, a homomorphism, or a
polymorphism are presented further in this section in their full generality as well as
in restriction to directed graphs.

A directed graph (or digraph) is a pair G = (V,E), where V is a set of vertices
and E ⊆ V × V is a set of edges. More generally a relational structure T = (T,R)
is an ordered pair, where T is a finite nonempty set and R is a finite set of finitary
relations on T indexed by a set J . Let dj denote the arity of the relation Rj ∈ R.
The indexed set of all the dj constitutes the signature of T .
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A vertex of a digraph is called a source (resp., a sink) if it has no incoming (resp.,
outgoing) edges. An oriented walk is a sequence of vertices (v0, . . . , vn−1) such that
(vi, vi+1) ∈ E or (vi+1, vi) ∈ E for any i < n − 1 and the length of such a walk is
n− 1. A walk is an oriented walk such that (vi, vi+1) ∈ E for any i < n− 1. A closed
walk is a walk such that v0 = vn−1. Given a digraph G, we sometimes denote the
set of vertices of G by V (G) and similarly the edges of G by E(G). A graph with
n vertices is a cycle if its vertices can be ordered (i.e., V = {v0, . . . , vn−1}) in such a
way that E = {(vi, vj)| j = i+ 1 mod n}.

A graph homomorphism is a function between sets of vertices of two graphs map-
ping edges to edges. A graph is 3-colorable if and only if it maps homomorphically
to the complete graph on three vertices (without loops). The notion of colorability
is generalized using graph homomorphisms: a digraph, say G, is H-colorable if there
exists a homomorphism mapping G to H. For two relational structures of the same
signature, say T = (T,R) and U = (U,S), a map h : T → U is a homomorphism if
h(Tj) ⊆ Rj for all j ∈ J (where h(Tj) is computed pointwise).

A digraph polymorphism is a homomorphism from a finite Cartesian power of a
graph to the graph itself. Precisely, for a digraph G = (V,E) a function h : V n → V
is a polymorphism of G if, for any vertices a0, . . . , an−1, b0, . . . , bn−1 ∈ V ,

if (ai, bi) ∈ E for all i < n, then (h(a0, . . . , an−1), h(b0, . . . , bn−1)) ∈ E.

The notion of a polymorphism is defined for relational structures as well. A polymor-
phism h of T is an operation h : T n → T such that, for all relations R ∈ R of arity
m, if

(ai,0, ai,1, . . . , ai,m−1) ∈ R for all i < n,

then

(h(a0,0, a1,0, . . . , an−1,0), . . . , h(a0,m−1, a1,m−1, . . . , an−1,m−1)) ∈ R.

A digraph G = (V,E) retracts to an induced subgraph H = (W,F ) if there is an
endomorphism h : V → V such that h(V ) = W and h(a) = a for all a ∈ W . Such
a map h is called a retraction. A core of a digraph is a minimal induced subgraph
to which the digraph retracts. The definition of retraction and core clearly generalize
to relational structures. It is a trivial fact that, for any digraph H, and for a core
of H, say H′, the set of H-colorable digraphs coincides with the set of H′-colorable
digraphs.

An algebra is a tuple A = (A, f0, . . . ) consisting of a nonempty set A (called
a universe of A) and operations on A. An operation fi is an ni-ary function fi :
Ani → A. With each operation we associate an operation symbol and, by an abuse of
notation, denote it also by fi. A set B ⊆ A is a subuniverse of an algebra A if, for any
number i, the operation fi restricted to Bni has all the results in B. For a nonempty
subuniverse B of an algebra A the algebra B = (B, f ′

0, . . . ) (where f ′
i is a restriction

of fi to Bni) is a subalgebra of A. A power of an algebra A has a universe Ak and
the operations f ′′

i derived from the operations of A by computing coordinatewise. A
subalgebra of a power of an algebra is often called a subpower. A term function of an
algebra is any function that can be obtained by a composition using the operations
of the algebra together with all the projections. A term is a formal way of denoting
such a composition; i.e., a term function is attached to an algebra, but a term can be
computed in a subalgebra or a power as well as in the original algebra. A set C ⊆ A
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generates a subuniverse B in an algebra A if B is the smallest subuniverse containing
C—such a subuniverse always exists and can be obtained by applying all the term
functions of the algebra A to all the choices of arguments coming from C.

In this paper all relational structures, digraphs, and algebras are assumed to be
finite.

3. The main result. For a relational structure T = (T,R) we define the lan-
guage CSP(T ), of relational structures with the same signature as T , to be

CSP(T ) = { U | there is a homomorphism from U to T }.
Alternatively we can view CSP(T ) as a decision problem:

INPUT: a relational structure U with the same signature as T
QUESTION: does there exist a homomorphism from U to T ?

In either approach we are concerned with the computational complexity (of member-
ship of the language, or of the decision problem, respectively) for a given relational
structure. The CSP dichotomy conjecture proposed in [FV99] can be stated as follows.

The CSP dichotomy conjecture. For a relational structure T the problem
CSP(T ) is solvable in polynomial time or NP-complete.

The (di)graph coloring problems can be viewed as special cases of the CSP. Al-
though a digraph H = (W,F ) is technically different from a relational structure, the
set of H-colorable digraphs is obviously polynomially equivalent to the CSP for an
appropriate relational structure, and therefore we denote the class of all H-colorable
digraphs by CSP(H). Due to the reduction presented in [FV99], every CSP is poly-
nomially equivalent to a digraph homomorphism problem. Thus we can restate the
CSP dichotomy conjecture in the following way.

The CSP dichotomy conjecture. For a fixed digraph H, deciding whether a
given digraph is H-colorable is either NP-complete or solvable in polynomial time.

This brings us to the main problem of the paper, a conjecture nearly ten years
older than the CSP dichotomy conjecture, and a special case of it. It deals with
digraphs with no sources or sinks and was first formulated by Bang-Jensen and Hell
in [BJH90].

The conjecture of Bang-Jensen and Hell. Let H be a digraph without
sources or sinks. If each component of the core of H is a cycle, then CSP(H) is
polynomially decidable. Otherwise CSP(H) is NP-complete.

Note that the above conjecture is a substantial generalization of the H-coloring
result of Hell and Nešetřil [HN90].

The notion of hereditarily hard digraphs was introduced by Bang-Jensen, Hell,
and MacGillivray in [BJHM95]. A digraph H is said to be hereditarily hard if the
H′-coloring problem is NP -complete for all loopless digraphs H′ that contain H as a
subgraph (not necessarily induced). The following conjecture was posed and shown
to be equivalent to the Bang-Jensen and Hell conjecture in [BJHM95].

The conjecture of Bang-Jensen, Hell, and MacGillivray. Let H be a
digraph. If the digraph R(H) (which is obtained by iteratively removing the sources
and sinks from H until none remain) does not admit a homomorphism to a cycle of
length greater than one, then H is hereditarily hard. Otherwise there exists a loopless
digraph H′ containing H (as a not necessarily induced subgraph) such that H′-coloring
is solvable in a polynomial time.

In this section we prove the Bang-Jensen and Hell conjecture and therefore the
conjecture of Bang-Jensen, Hell, and MacGillivray. In this proof we assume Theo-
rem 3.1, which will be proved in the subsequent sections of the paper. The reasoning
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uses weak near unanimity operations1 and Taylor operations (used only to connect
Theorems 3.2 and 3.3, and therefore not defined here [HM88, Tay77, LZ06]).

Theorem 3.1. If a digraph without sources or sinks admits a weak near unanim-
ity polymorphism, then it retracts to the disjoint union of cycles.

It is easy to see that the colorability by digraphs retracting to a disjoint union of
cycles is tractable (see, e.g., [BJH90]). It remains to prove the NP-completeness of the
digraphs not retracting to such a union. Before we do so, we recall two fundamental
results.

It follows from [HM88, Lemma 9.4 and Theorem 9.6] that a part of the result of
Máróti and McKenzie [MM07, Theorem 1.1] can be stated as follows.

Theorem 3.2 (see [MM07]). A finite relational structure T admits a Taylor
polymorphism if and only if it admits a weak near unanimity polymorphism.

The following result was originally proved in [BKJ00] and [LZ03] and, as stated
below, can be found in [LZ06, Theorem 2.3]. It relies on a connection between rela-
tional structures and varieties generated by algebras of their polymorphisms. A lack
of a Taylor polymorphism in such an algebra implies an existence of a “trivial” algebra
in a variety and NP-completeness of the associated CSP.

Theorem 3.3 (see [LZ06]). Let T be a relational structure which is a core. If T
does not admit a Taylor polymorphism, then CSP(T ) is NP -complete.

If a digraph H without sources or sinks does not retract to a disjoint union of
cycles, then its core H′ also does not. Thus, by Theorem 3.1, it follows that H′

does not admit a weak near unanimity polymorphism, and by Theorems 3.2 and 3.3
it follows that CSP(H′) is NP -complete, completing the proof of the conjecture of
Bang-Jensen and Hell.

The conjecture (posed in [BKJ00]), classifying the CSPs from the algebraic point
of view, can be stated as follows (see, e.g., [LZ06]).

The algebraic CSP dichotomy conjecture. Let T be a relational structure
that is a core. If T admits a Taylor polymorphism, then CSP(T ) is polynomial time
solvable. Otherwise CSP(T ) is NP -complete.

Note that the proof of the conjecture of Bang-Jensen and Hell immediately implies
that the structure of the NP -complete digraph coloring problems agrees with the
algebraic CSP dichotomy conjecture. The remainder of the paper is dedicated to the
proof of the Theorem 3.1.

4. Notation. In this section we introduce the notation required throughout the
remainder of the paper.

4.1. Neighborhoods in graphs. For a fixed digraph G = (V,E) we denote
(a, b) ∈ E by a → b, and we use a k−→ b to say that there is a directed walk from a
to b of length precisely k. More generally we call a digraph H a pattern if V (H) =
{0, . . . , n − 1} and (u, v) ∈ E if and only if |u − v| = 1 and (v, u) /∈ E. We denote
patterns by lowercase Greek letters and, for a pattern α, we write a α−→ b if there
exists a homomorphism φ from α into G such that φ(0) = a and φ(n − 1) = b. In
such a case we say that a and b can be connected via the pattern α. The oriented
walk connecting vertices a and b and consisting of the images of elements of α under
φ is a realization of the pattern. For any W ⊆ V we define

W+n = {v ∈ V | (∃w ∈W ) w n−→ v}
1A weak near unanimity operation is a function such that, for any choice of arguments a, b,

w(b, a, . . . , a) = w(a, b, . . . , a) = · · · = w(a, a, . . . , b) and w(a, . . . , a) = a. These operations are
described in more detail in section 4.
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and similarly

W−n = {v ∈ V | (∃w ∈W ) v n−→ w}.

We defineW 0 = W , and write a+n (resp., a−n, a0) instead of {a}+n (resp., {a}−n, {a}0)
for any a ∈ V . More generally, for a pattern α, we write

Wα = {v ∈ V | (∃w ∈W ) w α−→ v}.

As before, we use aα for {a}α. Sometimes, for ease of presentation, we write a
k,n−−→ b

to denote a k−→ b and a n−→ b.

4.2. Digraph path powers. Let G = (V,E) be a digraph and α be a pattern.
We define a path power of the digraph G, which we denote by Gα, in the following way:
the vertices of the power are the vertices of the digraph G, and a pair (c, d) ∈ V 2 is an
edge in Gα if and only if c α−→ d in G. Moreover, we set G+n = Gα for the pattern α
consisting of n arrows pointing forward. Note that if f : V m → V is a polymorphism
of G, then it is also a polymorphism of any path power of this digraph. Path powers
are special cases of primitive positive definitions (used in, e.g., [Bul05]) or indicator
constructions introduced in [HN90] in order to deal with the colorability problem for
undirected graphs.

4.3. Components. A connected digraph is a digraph such that there exists an
oriented walk, consisting of at least one edge, between every choice of two vertices. A
strongly connected digraph is a digraph such that, for every choice of two vertices, there
is a walk connecting them. By a component (resp., strong component) of a digraph G,
we mean a maximal (under inclusion) induced subgraph that is connected (resp.,
strongly connected). Note that, according to this definition, a single vertex with
the empty set of edges is not connected, and thus not every digraph decomposes
into a union of components (or strong components). Given a digraph G with no
sources or sinks, we say that a strong component H of G is a top component if
V (H)+1 = V (H). Similarly, we say that a strong component H of G is a bottom
component if V (H)−1 = V (H).

4.4. Algebraic length. The following definition is taken from [HNZ96b]. For
a pattern α we define the algebraic length al(α) to be

al(α) = |{edges going forward in α}| − |{edges going backward in α}|.

An algebraic length of an oriented walk is a shorthand expression for an algebraic
length of a pattern which can be realized as such an oriented walk—the pattern is
always clear from the context. For a digraph G = (V,E) we set

al(G) = min{i > 0 | (∃v ∈ V ) (∃ a pattern α) v α−→ v and al(α) = i}

whenever the set on the right-hand side is nonempty and ∞ otherwise. In case of
strongly connected digraphs in section 7 the algebraic length can be equivalently
defined (cf. Corollary 5.7) as the greatest common divisor of the lengths of closed
walks in a digraph. We note that for digraphs with no sources or sinks (or with a
closed walk) the algebraic length of a nonempty digraph is always a natural number.
It is folklore (cf. [HN04, Proposition 5.19]) that a connected digraph G retracts to a
cycle if and only if it contains a closed walk of length al(G).
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4.5. Algebraic notation. By a we denote the tuple (a, a, . . . , a) (the arity will
always be clear by the context), and by −→a we denote the tuple (a0, a1, . . . , an). Fur-
ther, we extend the notation a to the sets in the following way. For a set W let W
be an appropriate Cartesian power of W . Thus, for example, given a vertex a of a
digraph G, the set a+n is the collection of all tuples whose coordinates are vertices
reachable by a walk of length n from a.

An idempotent operation on a set A is an operation, say f : An → A, such
that f(a) = a for all a ∈ A. In accordance with [MM07], by a weak near unanimity
operation we understand an idempotent operation w(x0, . . . , xn−1) that satisfies

w(y, x, . . . , x) = w(x, y, . . . , x) = · · · = w(x, x, . . . , y),

for any choice of x and y in the underlying set. Moreover, for a term t of arity n, we
define

t(i)(x0, x1, . . . , xn−1) = t(xn−i, xn−i+1, . . . , x0, x1, . . . , xn−i−1),

for each 0 ≤ i < n, where addition on the indices is performed modulo n.

5. Preliminary results on digraphs. We start with a number of basic results
describing the connection between digraphs and their path powers. The following
lemma reveals the behavior of the algebraic lengths of oriented walks in powers of a
digraph.

Lemma 5.1. Let G be a digraph without sources or sinks. Let α be a pattern of
algebraic length k, and let a α−→ b in G. Then a

β−→ b in G+k for some pattern β of
algebraic length one.

Proof. For a fixed, large enough number j, consider all oriented walks in G of
the form a

l1−→ a1
l2←− a2

l3−→ · · · � alj = b, where l1 − l2 + · · · ± lj = k. We will
show that at least one of these walks has all the li’s divisible by k. Let us choose an
oriented walk in which k divides all the li in a maximal initial segment of the i, and
let li0 be the last element of this segment. If i0 + 1 < j, then (assuming without loss
of generality that i0 is odd) the walk

a
l1−→ · · ·

li0−−→ ai0
li0+1←−−− ai0+1

li0+2−−−→ ai0+2 · · ·

can be altered, using the fact that ai0+1 (and possibly other vertices) is not a source,
to obtain

a
l1−→ · · ·

li0−−→ ai0
l′i0+1←−−− a′i0+1

l′i0+2−−−→ ai0+2 · · · ,

where l′i0+1 is greater than li0+1 and is divisible by k. This contradicts the choice of
i0.

If, on the other hand, i0 + 1 = j, the number k divides l1 − l2 + · · · ± li0 and,
using the fact that l1 − l2 + · · · ± li0 ∓ li0+1 = k, we infer that k divides li0+1,
again contradicting the choice of i0. Thus i0 = j and we can find an oriented walk
a

l1−→ a1
l2←− a2

l3−→ · · ·alj = b with l1 − l2 + · · · ± lj = k, where each li is divisible
by k. This shows that a is connected to b via a pattern of algebraic length one in
G+k.

As a consequence we obtain the following fact.
Corollary 5.2. Let G be a digraph, without sources or sinks, such that al(G) =

1. Then al(G+k) = 1 for any natural number k.
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Proof. Let a α−→ a, where α is a pattern of algebraic length one. Then, by following
a realization of α k-many times, we obtain a

β−→ a in G for a pattern β of algebraic
length k. Now the statement follows from the previous lemma.

Theorem 3.1 is proved in section 7 for strongly connected digraphs first, and
therefore we need some preliminary results on such digraphs. The following very
simple lemma is needed to prove some of the further corollaries in this section.

Lemma 5.3. Let c be a vertex in a strongly connected digraph. Then the greatest
common divisor (GCD) of the lengths of the closed walks in this digraph is equal to
the GCD of the lengths of the closed walks containing c.

Proof. Suppose, for contradiction, that the GCD, say n′, of the lengths of the
closed walks containing c is bigger than the GCD of the lengths of the closed walks
for the entire digraph. Then there exists a walk d l−→ d of length l such that n′ does

not divide l. On the other hand, since the digraph is strongly connected, c l′−→ d and

d
l′′−→ c for some numbers l′, l′′. The number n′, by definition, divides l′ + l′′ and

l′ + l + l′′ and thus divides l, a contradiction.
Moreover, the following easy proposition holds.
Proposition 5.4. Let G be a connected digraph G and α be a pattern. If a α−→ a

for a vertex a in G, then the number al(G) divides al(α).
Proof. Let G be a connected digraph and, for some vertex a, a α−→ a via a pattern

α. Let b be a vertex in G such that b
β−→ b for a pattern β satisfying al(β) = al(G).

Since G is connected there is a pattern γ such that b
γ−→ a and thus b

γ−→ a
α−→ a

γ′

−→ b
with al(γ′) = −al(γ). Following appropriate walks, we can obtain an oriented walk,
from b to b, of algebraic length al(α) − k · al(G), for any number k. The minimality
of al(G) implies that al(G) divides al(α).

The following lemma is heavily used in the proof of Theorem 3.1 for strongly
connected digraphs in section 7.

Lemma 5.5. If, for a strongly connected digraph G = (V,E), the GCD of the
lengths of the closed walks in G is equal to one, then

(∃m) (∀a, b ∈ V ) (∀n) if n ≥ m, then a n−→ b.

Proof. Fix an arbitrary element c ∈ V . By Lemma 5.3 we find some closed
walks containing c such that their lengths k1, . . . , ki satisfy GCD(k1, . . . , ki) = 1.
Thus c is contained in a closed walk of length l whenever l is a linear combination
of k1, . . . , ki with nonnegative integer coefficients. It is easy to see that there is a
natural number m′ such that, for every n′ ≥ m′, n′ can be expressed as such a linear
combination; hence c is in a closed walk of length n′ for each such n′. Now it suffices
to set m = m′ + 2|V | since, for arbitrary vertices a, b ∈ V , there are walks of length
at most |V | from a to c and from c to b.

The following easy corollary follows.
Corollary 5.6. For a strongly connected digraph G with GCD of the lengths

of the closed walks equal to one, and for any number n, the digraph G+n is strongly
connected.

For strongly connected digraphs, the GCD of the lengths of the closed walks and
the algebraic length of the digraph coincide.

Corollary 5.7. For a strongly connected digraph, the GCD of the lengths of the
closed walks is equal to the algebraic length of the digraph.
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Proof. Let us fix a digraph G = (V,E) and denote by n the GCD of the lengths
of the closed walks in G. Since, by Proposition 5.4, the algebraic length of G divides
the length of every closed walk in G, al(G) divides n.

Conversely, let a = a0
l0−→ b0

k0←− a1
l1−→ · · · km−1←−−− am = a be a realization of a

pattern of algebraic length al(G). Let k′i be such that bi
ki←− ai+1

k′i←− bi for all i. Note
that n divides ki + k′i and

∑
i<m li +

∑
i<m k

′
i. Thus n divides

∑
i<m li −

∑
i<m ki =

al(G), which shows that n ≤ al(G), and the lemma is proved.
Finally, we remark that if α is a pattern of algebraic length one and G has

no sources and no sinks, then E(Gα) ⊇ E(G). In particular, if al(G) = 1, then
al(Gα) = 1.

6. A connection between graphs and algebra. In this section we present
basic definitions and results concerning the connection between digraphs and alge-
bras. Let G = (V,E) be a digraph admitting a weak near unanimity polymorphism
w(x0, x1, . . . , xh−1). We associate with G an algebra A = (V,w) and note that E is
a subuniverse of A2. Note that for any subuniverse of A, say W , we can define the
digraph G|W = (W,E ∩W ×W ) (or (W,E|W )) which admits the weak near unanim-
ity polymorphism w|Wh , and the algebra (W,w|Wh) is a subalgebra of A. For the
remainder of this section we assume that G and A are as above.

The first lemma describes the influence of the structure of the digraph on the
subuniverses of the algebra.

Lemma 6.1. For any subuniverse W of A the sets W+1 and W−1 are subuni-
verses of A.

Proof. Take any elements a0, . . . , ah−1 from W+1 and choose b0, . . . , bh−1 ∈ W
such that bi → ai for all i. Then w(b0, . . . , bh−1) → w(a0, . . . , ah−1) showing that
w(a0, . . . , ah−1) ∈W+1, and the claim is proved. The proof for W−1 is similar.

Since the weak near unanimity operation is idempotent, all the one element sub-
sets of V are subuniverses of A. Using the previous lemma, the following result follows
trivially.

Corollary 6.2. For any a ∈ V , any pattern α, and any number n, the sets
a+n, a−n, and aα are subuniverses of A.

Subuniverses of A can also be obtained in another way.
Lemma 6.3. Let H be a strong component of G. Assume that the GCD of the

lengths of the cycles in H is equal to one. Then V (H) is a subuniverse of A.
Proof. Using Lemma 5.5, we find a number m such that there is a walk b m−→ c in

H for all b, c ∈ V (H). Fix a vertex a ∈ V (H). There is a walk a m−→ b for all b ∈ V (H)
and a walk c m−→ a for all c ∈ V (H). Thus, V (H) = a+m∩a−m is a subuniverse.

We present a second construction leading to a subuniverse of the algebra.
Lemma 6.4. If H = (W,F ) is the largest induced subgraph of G without sources

or sinks, then W is a subuniverse of A.
Proof. Clearly, the vertices of H can be described as those having arbitrarily long

walks to and from them. Since G is finite, there exists a natural number k such that

W = {w | (∃v, v′ ∈ V ) v k−→ w and w
k−→ v′}.

Thus W = V +k ∩ V −k, and we are done, since both sets on the right-hand side are
subuniverses.

7. Strongly connected digraphs. In this section we present a proof Theo-
rem 3.1 in the case of strongly connected digraphs.
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Theorem 7.1. If a strongly connected digraph of algebraic length k admits a
weak near unanimity polymorphism, then it contains a closed walk of length k (and
thus retracts to a cycle of length k).

Using Corollary 5.7, the result can be restated in terms of the GCD of the lengths
of closed walks in G, and we will freely use this duality. Theorem 7.1 is a consequence
of the following result.

Theorem 7.2. If a strongly connected digraph G of algebraic length one admits
a weak near unanimity polymorphism, then it contains a loop.

We present a proof of Theorem 7.1, assuming Theorem 7.2, and devote the re-
mainder of this section to proving Theorem 7.2.

Proof of Theorem 7.1. Fix an arbitrary vertex c in a strongly connected digraph
of algebraic length k. Using Lemma 5.3 and Corollary 5.7, we obtain closed walks
containing c with the GCD of their lengths equal to k. Thus, in the path power
G+k, the GCD of lengths of closed walks containing c is equal to one. Let H be the
strong component of G+k containing c. Using Lemma 6.3, we infer that V (H) is a
subuniverse of the algebra (V (G+k), w), and thus H admits a weak near unanimity
polymorphism. The algebraic length of H (again by Corollary 5.7) is one, and there-
fore by Theorem 7.2 it follows that there is a loop in G+k. This trivially implies a
closed walk of length k in G, and the theorem is proved using the folklore proposition
from section 4.4.

The remaining part of this section is devoted to the proof of Theorem 7.2. We
start by choosing a digraph G = (V,E) to be a minimal (with respect to the number
of vertices) counterexample to Theorem 7.2. We fix a weak near unanimity polymor-
phism w(x0, . . . , xh−1) of this digraph and associate with it the algebra A = (V,w).
The proof will proceed by a number of claims.

Claim 7.3. The digraph G can be chosen to contain a closed walk of length 2.
Proof. Using Lemma 5.5, we find a minimal k such that a closed walk of length

2k is contained in G. Consider the path power G+2k−1
. It contains a closed walk of

length 2 and admits a weak near unanimity polymorphism. Moreover, since k was
chosen to be minimal and G did not contain a loop, the path power G+2k−1

does not
contain a loop either. By Corollary 5.6 the path power is strongly connected, and
by Corollary 5.2 it has algebraic length equal to one. Thus, the digraph G+2k−1

is
also a counterexample to Theorem 7.2 (with the same number of vertices as G), and
therefore we can use it as a substitute for G.

From this point on we assume that G contains a closed walk of length 2 (an
undirected edge). The next claim allows us to choose and fix an undirected edge with
special properties.

Claim 7.4. There are vertices a, b ∈ V forming an undirected edge in G and a
binary term t of A such that a = t(w(a, b), w(b, a)).

Proof. Let M ⊆ V be a minimal (under inclusion) subuniverse of A containing an
undirected edge, and let a, b ∈ M be vertices in such an edge. Since vertices w(a, b),
w(b, a) ∈ M form an undirected edge in G, the set {w(a, b), w(b, a)} generates, in
the algebraic sense, the set M (by the minimality of M). Since every vertex in a
subuniverse is a result of an application of some term function to the generators of
the subuniverse, there exists a term t such that t(w(a, b), w(b, a)) = a.

In the following claims we fix vertices a, b and a term t(x, y) such that a →
b → a and a = t(w(a, b), w(b, a)) (provided by the previous claim). Note that, by
the definition of the operation w(x0, . . . , xh−1), for any numbers i, j < h, we obtain
a = t(w(i)(a, b), w(j)(b, a)).
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Using Lemma 5.5, we find and fix a minimal number n such that a+(n+1) = V .
We put W = a+n and F = (W ×W )∩E so that H = (W,F ) is an induced subgraph
of the digraph G. Using Corollary 6.2, we infer that W is a subuniverse of A and thus
H admits a weak near unanimity polymorphism. In the following claims we will show
that the algebraic length of some strong component of H is one, which will contradict
the minimality of G.

Claim 7.5. For any vertex in W there exists a closed walk in H and a walk (also
in H) connecting the closed walk to this vertex.

Proof. Let d0 denote an arbitrary vertex of W . Since a+(n+1) = W+1 = V there
is d1 ∈ W such that d1 → d0. Similarly, there exists d2 ∈ W such that d2 → d1. By
repeating this procedure, we get both statements of the claim.

The next claim will allow us to fix some more vertices necessary for further con-
struction.

Claim 7.6. There exist vertices c, c′ ∈W and a number k such that
1. c′ → a,
2. c k−→ c in H, and
3. c k−n−1−−−−−→ c′ in H.

Proof. Since W+1 = V there exists c′ ∈W such that c′ → a. Let l be the length
of a closed walk provided by Claim 7.5 for c′ ∈W . For a sufficiently large multiple k
of l there is a walk in H of length k − n− 1 from some vertex of the closed walk to
c′; we call this vertex c. This finishes the proof.

From this point on we fix vertices c and c′ in W and a number k to satisfy the
conditions of the last claim. The following claims focus on uncovering the structure
of the strong component containing c in H.

Claim 7.7. For any m ≤ n either a+m ⊆ a+n or a+m ⊆ b+n.
Proof. Since a is in a closed walk of length 2, we obviously have a+n ⊇ a+(n−2) ⊇

a+(n−4) · · · , which proves the claim for even m’s. If, on the other hand, m is odd, we
have b+n ⊇ a+(n−1) ⊇ a+(n−3) · · · , completing the proof.

The next two claims are of major importance for the proof of Theorem 7.2. They
are used to show that the algebraic length of the strong component of H containing c
is one.

Claim 7.8. For any m ≤ n and for any 0 ≤ i, j < h the following inclusion
holds:

t(w(i)(a+n, a+m), w(j)(a+m, a+n)) ⊆ a+n.

Proof. Note that a = t(w(i)(a, b), w(j)(b, a)) and therefore, for any choice of
arguments of the term reachable by walks of length n from corresponding arguments
of t(w(i)(a, b), w(j)(b, a)), the result is reachable by a walk of the same length from a,
i.e.,

a+n ⊇ t(w(i)(a+n, b+n), w(j)(b+n, a+n)).

By the same token, using a = t(w(i)(a, a), w(j)(a, a)) provided by the idempotency of
the terms, we obtain

a+n ⊇ t(w(i)(a+n, a+n), w(j)(a+n, a+n)).

Now the claim follows directly from Claim 7.7.
The following technical claim will allow us to find walks in the strong component

of H containing c.



CSP DICHOTOMY HOLDS FOR SMOOTH DIGRAPHS 1793

Claim 7.9. The following implication holds in H (i.e., all the walks and vertices
lie inside H). For any numbers 0 ≤ i, j < h and all e, e′, f ∈ W and

−→
d ,

−→
d′ ,−→g ∈ W ,

if
e
k
��

e′
and

dl
k
��

d′l

for all l, then
t(w(i)(

−→
d , c), w(j)(c, e))

k
��

t(w(i)(
−→
d′ , f), w(j)(−→g , e′)).

Proof. Note that, by looking at the tuples of vertices pointwise, we can find the
following walks in G:

−→
d

k

��

c

k−n−1
��

c
k−n−1
��

e

k

��

c′

��

c′

��

a
n
��

a
n
��−→

d′ f −→g e′

where the walks from c to c′ are provided by Claim 7.6 and lie entirely in H. Ap-
plying the appropriate term to the consecutive vertices of the walks (rows in the
diagram above), we obtain a walk of length k connecting t(w(i)(

−→
d , c), w(j)(c, e)) to

t(w(i)(
−→
d′ , f), w(j)(−→g , e′)). It remains to prove that all the vertices of this walk are in

W . The first k − n− 1 vertices of the walks are in W , since W is a subuniverse and
they are results of an application of a term to vertices of the subuniverse. For m ≥ 0,
the (k−n+m)th vertex of the walk is a member of t(w(i)(a+n, a+m), w(j)(a+m, a+n))
and thus in W by Claim 7.8.

We now construct a closed walk in H, that contains c, of length coprime to k.

Claim 7.10. There exists a closed walk c
(h+1)k−1−−−−−−→ c in digraph H.

Proof. In the proof of this claim we use only vertices and walks that lie inside
H. Fix d ∈ W (provided by Claim 7.6) such that c → d

k−1−−→ c in H. By repeatedly
applying Claim 7.9 we obtain

t(w(c, . . . , c, c, c), w(c, c . . . , c))
k
��

t(w(c, . . . , c, c, d), w(d, c, . . . , c)) = t(w(1)(c, . . . , c, d, c), w(1)(c, . . . , c, d))
k
��

t(w(2)(c, . . . , d, d, c), w(1)(c, . . . , c, d))

��

= t(w(1)(c, . . . , c, d, d), w(1)(c, . . . , c, d))

= t(w(h−1)(d, . . . , d, d, c), w(1)(c, . . . , c, d))
k
��

t(w(h−1)(d, . . . , d, d, d), w(1)(d, . . . , d, d))

and since the algebra is idempotent, the starting point of this walk is c and the
ending point is d. Thus c hk−→ d (for h the arity of the operation w(x0, . . . , xh−1)),
which immediately gives us the claim.
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By Claims 7.6 and 7.10, the strong component of H containing c has GCD of
the lengths of its closed walks equal to one, and thus, by Lemma 6.3, its vertex set
forms a subuniverse of the algebra A. As a digraph it admits a weak near unanimity
polymorphism. By Corollary 5.7 it has algebraic length one, and (as an induced
subgraph of G) it has no loops. Since H was chosen to be strictly smaller than G
we obtain a contradiction with the minimality of G, and the proof of Theorem 7.2 is
complete.

8. The general case. In this section we prove Theorem 3.1 in its full generality.
Nevertheless the majority of this section is devoted to the proof of the following result.

Theorem 8.1. If a digraph with no sources or sinks has algebraic length one and
admits a weak near unanimity polymorphism, then it contains a loop.

Using the above result, we prove the core theorem of the paper, Theorem 3.1.
Proof of Theorem 3.1. Let G be a digraph with no sources or sinks which admits

a weak near unanimity polymorphism. Let n be the algebraic length of some com-
ponent of G. The path power G+n admits a weak near unanimity polymorphism,
has no sources or sinks, and, by Lemma 5.1, has algebraic length equal to one. Thus,
Theorem 8.1 applied to G+n provides a loop in the path power and therefore a closed
walk of length n in G.

Let n be minimal, under divisibility, in the set of algebraic lengths of components
of G. Since the algebraic length of a component divides (by Proposition 5.4) the length
of any closed walk in it, every closed walk of length n (for such a minimal n) forms a
subgraph which is a cycle. Moreover, by the same reasoning, cycles obtained for two
different minimal n’s cannot belong to the same component. Thus each component
of G maps homomorphically to an n-cycle (for any minimal n dividing the algebraic
length of this component), and it is not difficult to see that these homomorphisms
can be chosen so that their union is a retraction. This proves the theorem.

Therefore the only missing piece of the proof to the conjecture of Bang-Jensen
and Hell is Theorem 8.1. We prove this result by way of contradiction. Suppose that
G = (V,E) is a minimal (with respect to the number of vertices) counterexample to
Theorem 8.1, and let A = (V,w(x0, . . . , xh−1)) be the algebra associated with G, in
the sense of section 6, for some weak near unanimity polymorphism w(x0, . . . , xh−1).

The first part of the proof is dedicated to finding a particular counterexam-
ple satisfying more restrictive conditions than G. To do so we need to define a
special family of digraphs called tambourines. The n-tambourine is the digraph
({d0, . . . , dn−1, u0, . . . , un−1}, Fn) such that

Fn =
⋃
i

{(di, di+1), (di, ui), (di, ui+1), (ui, ui+1)},

where the addition on the indices is computed modulo n. The 12-tambourine can be
found in Figure 1. We begin the proof of the theorem with the following claim.

Claim 8.2. We can choose a digraph G and a number n such that
1. the n-tambourine maps homomorphically to G,
2. every vertex of G is in a closed walk of length n, and
3. G+(mn+1) = G for any number m.

To prove this claim, we begin with an easy subclaim and work towards replacing
G with a particular path power of G which satisfies the additional conditions. Note
that, for any pattern α, the path powerGα admits w(x0, . . . , xh−1) as a polymorphism
and has no sources or sinks. If such a path power has algebraic length one and does
not contain a loop, then it can be taken as a substitute for G.
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Fig. 1. The 12-tambourine.

Subclaim 8.2.1. The digraph G contains vertices d and u such that d
|V |,|V |+1−−−−−−→

u.
Proof. Let α be the pattern

→ · · · →︸ ︷︷ ︸
|V |+1

← · · · ←︸ ︷︷ ︸
|V |

.

Using the fact that al(α) = 1 and that G has no sources or sinks, it follows that
E(G) ⊆ E(Gα). Moreover, let a, b be vertices in G such that b is contained in a

closed walk and a
k−→ b for some k. Then a

k′−→ b for some k′ ≤ |V |, and choosing

b′ (from the closed walk containing b) such that b′ k′+1−−−→ b, we obtain

b′
k′+1−−−→ b

(|V |+1)−(k′+1)−−−−−−−−−−→ c
(|V |+1)−(k′+1)←−−−−−−−−−− b

k′←− a for some c.

Thus b′ α−→ a, and this implies that every component of G becomes a strong component
of Gα.

Let H = (W,F ) be a component of G with a closed walk realizing a pattern
of algebraic length one. Then, for an appropriate F ′, containing F , the digraph
H′ = (W,F ′) is a strong component of Gα. The digraph H′ contains H as a subgraph,
and therefore its algebraic length is one. The path power Gα admits w(x0, . . . , xh−1)
as a polymorphism, and thus, by Lemma 6.3, the digraph H′ admits an appropriate
restriction of w(x0, . . . , xh−1). Theorem 7.2 provides a loop in H′, which in turn

implies the existence of vertices d, u ∈W such that d
|V |,|V |+1−−−−−−→ u in G.

Proof of Claim 8.2. We fix n = |V |! and argue that, for some k, the path power
Gk = G+(kn+1) satisfies the assertions of the claim and therefore can be taken as a
substitute for G. Note that, for any number k, the digraph Gk admits w(x0, . . . , xh−1)
as a polymorphism, has no sources or sinks, and, by Corollary 5.2, has algebraic length
one.
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We first prove that, for all k, the digraph Gk does not contain a loop. If Gk

does contain a loop, then there exists a closed walk of length kn+ 1 in some strong
component of G. In the same strong component in G there exists a closed walk of
length smaller than n and thus coprime to kn+ 1; therefore the GCD of the lengths
of closed walks in this strong component is one, and, using Corollary 5.7, Lemma 6.3,
and Theorem 7.2, we obtain a loop in this strong component and therefore also in G,
a contradiction. Thus, to prove the claim, it remains to verify the additional required
properties.

We now show that, for the fixed number n, the n-tambourine maps homomorphi-
cally to Gk for k ≥ 4. Let d, u be vertices of G provided by Subclaim 8.2.1. Since G
has no sources or sinks, we can find vertices d′, u′, each contained in a closed walk,
such that d′ is connected by a walk to d and u is connected by a walk to u′. By
following the closed walks containing d′ and u′ multiple times, we get d′0, u

′
0, each

contained in a closed walk, such that d′0
3n,3n+1−−−−−→ u′0. Moreover, again following the

closed walks multiple times, we obtain

d′0
n−→ d′0

3n,3n+1−−−−−→ u′0
n−→ u′0.

Let d′i denote the ith vertex of the closed walk d′0
n−→ d′0 and, similarly, u′i the ith

vertex of the closed walk u′0
n−→ u′0. Then, for any number k ≥ 4 and any i < n, we

have d′i
kn+1−−−→ u′i and d′i

kn+1−−−→ u′(i+1) mod n. On the other hand, d′i
kn+1−−−→ d′(i+1) mod n

and u′i
kn+1−−−→ u′(i+1) mod n. Thus, for any k ≥ 4, the map di �→ d′i, ui �→ u′i is a

homomorphism from the n-tambourine in the path power Gk.
To prove the second assertion of the claim we need to show that if k ≥ 4, then

any vertex of Gk is in a closed walk of length n. We fix such a number k and let
W ⊂ V be the subuniverse of A generated by {d′0, . . . , d′n−1, u

′
0, . . . , u

′
n−1}. Let G′

k be
the subgraph induced by Gk on W . The digraph G′

k obviously admits a restriction
of w(x0, . . . , xh−1) and (since the n-tambourine maps homomorphically to it) has
algebraic length one. Choose an arbitrary a ∈ W . Then, by the definition of W , we
have a term t(x0, . . . , xn−1, y0, . . . , yn−1) such that a = t(d′0, . . . , d

′
n−1, u

′
0, . . . , u

′
n−1).

Therefore,

t(d′0, . . . , d
′
n−2, d

′
n−1, u

′
0, . . . , u

′
n−2, u

′
n−1)

��

t(d′1, . . . , d′n−1, d
′
0, u

′
1, . . . , u

′
n−1, u

′
0)

��

t(d′n−1, . . . , d
′
n−3, d

′
n−2, u

′
n−1, . . . , u

′
n−3, u

′
n−2)

��

t(d′0, . . . , d
′
n−2, d

′
n−1, u

′
0, . . . , u

′
n−2, u

′
n−1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
n,

and thus a is in a closed walk of length n. This proves that G′
k has no sources and no

sinks, and since it cannot be a counterexample smaller than G, we infer that W = V .
Therefore the second assertion holds for all the digraphs Gk with k ≥ 4.

In the digraph G4 every vertex is in a closed walk of length n, and therefore
E(G4

+(nm+1)) ⊆ E(G4
+(n(m+1)+1)) for any number m. Thus, there is a number l

such that for any m ≥ l we have G4
+(nm+1) = G4

+(nl+1). Take

G′ = G4
+(nl+1) = G+(4n+1)(nl+1) = G(4nl+l+4)n+1
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and note that, according to the previous paragraphs of this proof, such a digraph sat-
isfies all but the last assertion of the claim. Let m be arbitrary. Then (G′)+(mn+1) =
G4

+((mnl+l+m)n+1) = G4
+(nl+1) = G′, and thus G′ can be taken to substitute for G

and the claim is proved.
From this point on we substitute G with a digraph provided by the previous claim

and fix it together with the number n. For ease of notation we denote the number
modulo n using brackets (e.g., [n+ 1] = 1). We already know that the n-tambourine
maps homomorphically to G, but we must choose such a homomorphism carefully.

Claim 8.3. The n-tambourine can be mapped homomorphically to G in such a
way that, for some term t(x0, . . . , xn−1) of algebra A,

d′i = t(i)(w(d′0, d
′
1), w(d′1, d

′
2), . . . , w(d′n−1, d

′
0)) for all i < n,

where d′i is the image of di.
Proof. Let di �→ d′i, ui �→ u′i be a homomorphism from the n-tambourine to G.

Then, for any i, we have

w(u′i, u
′
[i+1]) "" w(u′[i+1], u

′
[i+2]) "" · · ·

w(d′i, d
′
[i+1])

�� ����������
"" w(d′[i+1], d

′
[i+2]) ""

��

· · ·
· · ·

and thus di �→ w(d′i, d
′
[i+1]), ui �→ w(u′i, u

′
[i+1]) is also a homomorphism from the n-

tambourine to G. By repeating this procedure, we obtain an infinite sequence of
homomorphisms from the n-tambourine to G, and thus some homomorphism has
to appear twice in this sequence. This homomorphism satisfies the claim, since the
term t(x0, . . . , xn−1) can be easily obtained as a composition of the polymorphism
w(x0, . . . , xh−1) used in the construction of the sequence.

In the remaining part of the proof we fix vertices d′0, . . . , d
′
n−1, u

′
0, . . . , u

′
n−1 pro-

vided by the previous claim and a term t(x0, . . . , xn−1) associated with them. Let ϕk
be the pattern 0

ϕk−−→ k

0 2 4

1 3
· · ·

(k − 1)

k
##���
�����

##���
�����

##
##���

��

with exactly k edges. (The last edge of the pattern is pointing forward for odd k, as
in the above picture, and backward for even k.)

Claim 8.4. The neighborhood (d′0)ϕn contains all vertices of G.
Proof. Note that, in the n-tambourine, we have

(d0)
ϕn = {d0, . . . , dn−1, u0, . . . , un−1},

and thus in the digraph G we have

(d′0)
ϕn ⊇ {d′0, . . . , d′n−1, u

′
0, . . . , u

′
n−1}.

Let G′ denote the subgraph of G induced on the set (d′0)
ϕn . Then, by Corollary 6.2,

G′ admits a restriction of w(x0, . . . , xh−1) as a polymorphism and has algebraic length
one. Further restricting the digraph G′, denote the largest induced subgraph of G′

without sources or sinks by G′′. By Lemma 6.4 G′′ admits a weak near unanimity
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polymorphism. Moreover, the vertices {d′0, . . . , d′n−1, u
′
0, . . . , u

′
n−1} are among the

vertices of G′′. Thus G′′ is a counterexample to Theorem 8.1 and therefore has to be
equal to G. This proves the claim.

We choose (and fix) k to be a minimal number such that (d′0)
ϕk+1 = V . Define

Wi = (d′i)
ϕk , for each i < n. We set

W =
⋂
i<n

Wi,

and since W is an intersection of subuniverses of A, by Corollary 6.2, it is itself a
subuniverse of A. We denote by H the subgraph of G induced by W and prove that
H is a counterexample to Theorem 8.1, contradicting the minimality of G.

The most involved part of the proof deals with constructing a closed realization
of a pattern with the algebraic length one in H. Two following claims introduce tools
for “projecting” certain walks from G to H.

Claim 8.5. There exists a term s(x0, . . . , xp−1) of algebra A such that for every
coordinate q < p there exists i such that

s(q)(Wl,W, . . . ,W ) ⊆W[i−l] ∩W[i−l+1] for any l < n.

Proof. Let p = hn and let s(x0, . . . , xp−1) be defined by

t
(
w(x0, . . . , xh−1), w(xh, . . . , x2h−1), . . . , w(x(n−1)h, . . . , xhn−1)

)
.

For all q < p, let i be maximal such that q = ih+ q′′ for some nonnegative q′′. Then,
for all l < n

s(q)(Wl,W ) ⊆ t(i)
(
w(q′′)(Wl,W ), w(W ), . . . , w(W )

)
⊆ t(i)

(
w(q′′)(Wl,W[l+1]), w(W[l+1],W[l+2]), . . . , w(W[l+n−1],Wl)

)
= t([i−l])

(
w(W0,W1), . . . , w(q′′)(Wl,W[l+1]), . . . , w(Wn−1,W0)

)
⊆W[i−l],

where the last inclusion follows from Claim 8.3 and the fact that

d′[i−l] = t([i−l])(w(d′0, d
′
1), . . . , w(d′l, d

′
[l+1]), . . . , w(d′n−1, d

′
0))

= t([i−l])(w(d′0, d
′
1), . . . , w

(q′′)(d′l, d
′
[l+1]), . . . , w(d′n−1, d

′
0)).

Similar reasoning shows that

s(q)(Wl,W ) ⊆ t(i)
(
w(q′′)(Wl,W ), w(W ), . . . , w(W )

)
⊆ t(i)

(
w(q′′)(Wl,W[l−1]), w(W[l+1],Wl), . . . , w(W[l+n−1],W[l+n−2])

)
= t[i−l+1]

(
w(W1,W0), . . . , w(q′′)(Wl,W[l−1]), . . . , w(W0,Wn−1)

)
⊆W[i−l+1],

and the proof is finished.
Further, using the term constructed in the last claim, we can construct a term

satisfying stronger conditions.
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Claim 8.6. There exists a term r(x0, . . . , xm−1) of algebra A such that for every
coordinate q < m

r(q)

(⋃
l<n

Wl,W, . . . ,W

)
⊆W.

Proof. Let s(x0, . . . , xp−1) be the p-ary term provided by the previous claim.
Note that the term

s2(x0, x1, . . . , xp2−1) = s(s(x0, . . . , xp−1), . . . , s(xp2−p, . . . , xp2−1))

has the property that for every coordinate q < p2 − 1 there exists an i such that

s
(q)
2 (Wl,W ) ⊆W[i−l] ∩W[i−l+1] ∩W[i−l+2].

To prove a more general statement we recursively define a sequence of terms
• s1(x0, . . . , xp−1) = s(x0, . . . , xp−1) and
• sj+1(x0, . . . , xpj−1) = s(sj(x0, . . . , xpj−1−1), . . . , sj(x(p−1)pj−1 , . . . , xpj−1)).

We claim that for any j, any q < pj , and any l < n there is an i such that

s
(q)
j

(
Wl,W, . . . ,W

)
⊆W[i−l] ∩ · · · ∩W[i−l+j].

We prove this fact by induction on j. The first step of the induction holds via
Claim 8.5. Assume that the fact holds for j; then for any l (setting q′ to be the result
of integer division of q by pj−1, and q′′ the remainder of this division) there exist i
and i′ such that

s
(q)
j+1(Wl,W ) ⊆ s(q

′)
(
s
(q′′)
j (Wl,W ), sj(W ), . . . , sj(W )

)
⊆ s(q

′)
(
W[i−l] ∩ · · · ∩W[i−l+j],W

)
⊆W[i′+i−l] ∩ · · · ∩W[i′+i−l+(j+1)],

where the second inclusion follows from the induction step and the last one from
Claim 8.5. Setting r(x0, . . . , xm−1) equal to sn−1(x0, . . . , xpn−1) proves the claim.

From this point on we fix a term r(x0, . . . , xm−1) (of arity m) provided by the
previous claim. To prove additional properties of the set W (e.g., the fact that it is
not empty) we require the following easy claim.

Claim 8.7. Let α be a pattern, and let a0 → a1 and b0 → b1 be edges that belong
to closed walks. If a0

α−→ b0, then a1
α−→ b1.

Proof. We prove the claim by induction with respect to the number of edges in α.
Let the vertices a0, a1, b0, b1 be as in the statement of the claim. Assume that a0 → b0.
If i is the length of the closed walk containing the edge a0 → a1, then, following this
walk almost n times, a1

in−1−−−→ a0 → b0 → b1 and, by Claim 8.2, a1 → b1. The same
reasoning can be applied to the case of a0 ← b0, and the first step of the induction is
proved.

For a pattern α consisting of more than one edge we can assume, without loss of

generality, that the last edge is going forward. Then a0
α′
−→ a′0 → b0 for some vertex

a′0 (where α′ is the pattern obtained by removing the last edge of α). By Claim 8.2, it
follows that a′0 is in a closed walk of length n, and therefore a′0 → a′1

n−1−−−→ a′0 for some

a′1. By the induction hypothesis, a1
α′
−→ a′1 and, by the first step of the induction,

a′1 → b1, which proves the claim.
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We recall the definition of the top and bottom components of the graph from
subsection 4.3 and prove some basic properties of W .

Claim 8.8. The digraph H has no sources and no sinks and
1. if k is even, then every bottom component is contained in W , and
2. if k is odd, then every top component is contained in W .

Proof. First we show that, for any vertices a, b such that a i−→ b
j−→ a in G for

some i, j,

if a ∈ Wl, then b ∈ W[l+i].

To see this note that if d′l
ϕk−−→ a and a → b

j−→ a, then, using Claim 8.7 and the edge
d′l → d′[l+1], we infer that d′[l+1]

ϕk−−→ b. The same procedure repeated i-many times
provides the result for arbitrary i.

Let a ∈ W be arbitrary and b be such that a i−→ b
j−→ a for some numbers i, j.

Since a ∈ W it follows, using the note above, that b ∈
⋂
l<nW[l+i] = W , and this

implies that W is a union of strong components. Since, by Claim 8.2, every vertex in
G belongs to a closed walk of length n, the digraph H has no sources or sinks.

Let k be even and let a be a member of a bottom component. Since every
vertex of the graph, by Claim 8.2, belongs to a closed walk, there exists b in the
bottom component containing a such that a → b. Since (d′0)

ϕk+1 = V , we have
d′0

ϕk−1−−−→ c ← a′ → b for some a′ and c. The vertex a is in a bottom component,
and therefore a′ must be a member of the same bottom component. This implies
that a′ → b

i−→ a′, for some i, and following the closed walk containing b almost n

times, a → b
n(i+1)−1−−−−−−→ a′ → c. Thus, by Claim 8.2, we have a → c and a ∈ W0.

Therefore every bottom component is contained in W0. To see that every a from a
bottom component is contained in an arbitrary Wl we find a b satisfying a l−→ b

i−→ a
for some i and apply the note from the beginning of the proof of the claim. The claim
is proved for even k’s, and the same reasoning provides a proof for odd k and top
components.

Now we are ready to prove the final claim of this section.
Claim 8.9. The algebraic length of H is one.
Proof. In the case where k is odd, we want to find a, b, c ∈ W and e ∈ W0 such

that

a b c

e

"" ""
������

##����

To find such vertices we set e = d′1 and find, using Claim 8.8, b ∈ W from a top
component such that u′[2]

in−1−−−→ b for some i. There exist a and c in the same com-

ponent (and thus in W by Claim 8.8) such that a → b → c. Since d′1
1,2−−→ u′[2], we

have e in+1−−−→ b and e
in+1−−−→ c, and therefore, by Claim 8.2, the vertices a, b, c, and

e satisfy the required properties. Then, using the term r(x0, . . . , xm−1), we produce
the following oriented walk:

•
b = r(b)

•
r(e, a)

•
r(c, b) = r(1)(b, c)

•
r(1)(e, a, b)

•
r(1)(c, b, c) = r(2)(b, c, c)

. . .

•
r(n−1)(c) = c

��������

$$�����������

%%�����������

$$�����������

�� &&
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By Claim 8.6, all the vertices of this walk belong to W . Thus we have constructed
an oriented walk in H realizing a pattern of algebraic length zero connecting b to c.
Since b→ c we immediately obtain that the algebraic length of H is one.

In the case where k is even, we similarly find a, b, c ∈ W and e ∈ W0 (using u′1
for e) such that

a b c

e

'' ''

##����

������

The construction of a closed oriented walk realizing a pattern of algebraic length one
is the same as it is for odd k, with the exception that the direction of the edges is
reversed.

Thus H is a digraph without sources or sinks (by Claim 8.8), admitting a weak
near unanimity polymorphism and, by the last claim, having algebraic length equal
to one. Since, by the definition of W , the number of vertices in H is strictly smaller
than the number of vertices in G, we obtain a contradiction with the minimality of
G, and Theorem 8.1 is proved.
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Abstract. We address the following problem: Given a complete k-partite geometric graph K
whose vertex set is a set of n points in R

d, compute a spanner of K that has a “small” stretch factor
and “few” edges. We present two algorithms for this problem. The first algorithm computes a (5+ε)-
spanner of K with O(n) edges in O(n log n) time. The second algorithm computes a (3 + ε)-spanner
of K with O(n log n) edges in O(n log n) time. The latter result is optimal: We show that for any
2 ≤ k ≤ n − Θ(

√
n log n), spanners with O(n log n) edges and stretch factor less than 3 do not exist

for all complete k-partite geometric graphs.
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1. Introduction. Let S be a set of n points in R
d. A geometric graph with vertex

set S is an undirected graph H whose edges are line segments pq that are weighted
by the Euclidean distance |pq| between p and q. For any two points p and q in S, we
denote by δH(p, q) the length of a shortest path in H between p and q. For a real
number t ≥ 1, a subgraph G of H is said to be a t-spanner of H if δG(p, q) ≤ t·δH(p, q)
for all points p and q in S. The smallest t for which this property holds is called the
stretch factor of G. Thus, a subgraph G of H with stretch factor t approximates
the

(
n
2

)
pairwise shortest-path lengths in H within a factor of t. If H is the complete

geometric graph with vertex set S, then G is also called a t-spanner of the point set S.
Most of the work on constructing spanners has been done for the case when H

is the complete graph. It is well known that, for any set S of n points in R
d and for

any real constant ε > 0, there exists a (1 + ε)-spanner of S containing O(n) edges.
Moreover, such spanners can be computed in O(n log n) time; see Salowe [8] and
Vaidya [9]. For a detailed overview of results on spanners for point sets, see the book
by Narasimhan and Smid [6].

For spanners of arbitrary geometric graphs, much less is known. Althöfer et al. [1]
have shown that, for any t > 1, every weighted graph H with n vertices contains a
subgraph with O(n1+2/(t−1)) edges, which is a t-spanner of H . Observe that this
result holds for any weighted graph; in particular, it is valid for any geometric graph.
For geometric graphs, a lower bound was given by Gudmundsson and Smid [5]: They
proved that, for every real number t with 1 < t < 1

4 logn, there exists a geometric
graph H with n vertices, such that every t-spanner of H contains Ω(n1+1/t) edges.
Thus, if we are looking for spanners with O(n) edges of arbitrary geometric graphs,
then the best stretch factor we can obtain is Θ(logn).

In this paper, we consider the case when the input graph is a complete k-partite
geometric graph. Let S be a set of n points in R

d, and let S be partitioned into
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subsets C1, C2, . . . , Ck. Let KC1...Ck
denote the complete k-partite graph on S. This

graph has S as its vertex set, and two points p and q are connected by an edge (of
length |pq|) if and only if p and q are in different subsets of the partition. The problem
we address is formally defined as follows.

Problem 1.1. Let k ≥ 2 be an integer, let S be a set of n points in R
d, and let

S be partitioned into k subsets C1, C2, . . . , Ck. Compute a t-spanner of the complete
k-partite graph KC1...Ck

that has a “small” number of edges and whose stretch factor
t is “small.”

The main contribution of this paper is to present an algorithm that computes such
a t-spanner with O(n) edges in O(n log n) time, where t = 5+ε for any constant ε > 0.
We also show that if one is willing to use O(n log n) edges, then our algorithm adapts
easily to reach a stretch factor of t = 3 + ε. Finally, we show that the latter result is
optimal: For any k with 2 ≤ k ≤ n−Θ(

√
n logn), spanners with O(n log n) edges and

stretch factor less than 3 do not exist for all complete k-partite geometric graphs.
We remark that, in a recent paper, Bose et al. [2] considered the problem of

constructing spanners of point sets that have O(n) edges and whose chromatic number
is at most k. This problem is different from ours: Bose et al. compute a spanner of the
complete graph, and their algorithm can choose a “good” k-partition of the vertices.
In our problem, the k-partition is given, and we want to compute a spanner of the
complete k-partite graph.

Possible applications of our algorithm are in wireless networks having the property
that communicating nodes are partitioned into sets such that two nodes can commu-
nicate if and only if they do not belong to the same set. This would be the case,
for example, when time division multiplexing (TDMA) is used. Since the wireless
medium prohibits simultaneous transmission and reception at one node, two nodes
communicating during the same time slots cannot communicate with each other. For
more details, we refer to Raman and Chebrolu [7]; see also Bose et al. [2].

The rest of this paper is organized as follows. In section 2, we recall properties
of the well-separated pair decomposition (WSPD) that we use in our algorithm. In
section 3, we provide an algorithm that solves the problem of constructing a spanner
of the complete k-partite graph. In section 4, we show that the spanner constructed
by this algorithm has O(n) edges and that its stretch factor is bounded from above
by a constant that depends only on the dimension d. In section 5, we show how a
simple modification to our algorithm improves the stretch factor to 5 + ε while still
having O(n) edges. In section 6, we show how to achieve a stretch factor of 3 + ε
using O(n log n) edges. We also prove that the latter result is optimal. We conclude
in section 7.

2. The well-separated pair decomposition. In this section, we recall crucial
properties of the WSPD of Callahan and Kosaraju [4] that we use for our construc-
tion. The reader who is familiar with the WSPD may go directly to section 3. Our
presentation follows the one in Narasimhan and Smid [6]. Intuitively, a WSPD is
a partition of the edges of a complete geometric graph such that all edges that are
grouped together are approximately equal. To give a formal definition of the WSPD,
we first need to define what it means for two sets to be well separated.

Definition 2.1. Let S be a set of points in R
d. The bounding box β(S) of S is

the smallest axes-parallel hyperrectangle that contains S.
Definition 2.2. Let X and Y be two sets of points in R

d and let s > 0 be a real
number. We say that X and Y are well separated with respect to s if there exist two
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balls B1 and B2 such that
1. B1 and B2 have the same radius, say ρ,
2. B1 contains the bounding box of X,
3. B2 contains the bounding box of Y , and
4. the distance min{|xy| : x ∈ B1, y ∈ B2} between B1 and B2 is at least sρ.

Definition 2.3. Let S be a set of points in R
d and let s > 0 be a real number.

A WSPD of S with separation constant s is a set of unordered pairs of subsets of S
that are well separated with respect to s such that for any two distinct points p, q ∈ S
there is a unique pair {X,Y } in the WSPD such that p ∈ X and q ∈ Y .

Lemma 2.4 (Lemma 9.1.2 in [6]). Let s > 0 be a real number and let X and Y
be two-point sets that are well separated with respect to s.

1. If p, p′, p′′ ∈ X and q ∈ Y , then |p′p′′| ≤ (2/s)|pq|.
2. If p, p′ ∈ X and q, q′ ∈ Y , then |p′q′| ≤ (1 + 4/s)|pq|.

The first part of this lemma states that distances within one set are very small
compared to distances between pairs of points having one endpoint in each set. The
second part states that all pairs of points having one endpoint in each set have ap-
proximately the same distance.

Callahan and Kosaraju [3] have shown how to construct a t-spanner of S from
a WSPD: All one has to do is pick from each pair {X,Y } an arbitrary edge (p, q)
with p ∈ X and q ∈ Y . Using induction on the rank of the length of the edges in
the complete graph KS, it can be shown that, when s > 4, this process leads to a
((s+ 4)/(s− 4))-spanner. Thus, by choosing s to be a sufficiently large constant, the
stretch factor can be made arbitrarily close to 1.

In order to compute a spanner of S that has a linear number of edges, one needs
a WSPD that has a linear number of pairs. Callahan and Kosaraju [4] showed that
a WSPD with a linear number of pairs always exists and can be computed in time
O(n log n). Their algorithm uses a split-tree.

Definition 2.5. Let S be a nonempty set of points in R
d. The split-tree of S

is defined as follows: If S contains only one point, then the split-tree is a single node
that stores that point. Otherwise, the split-tree has a root that stores the bounding box
β(S) of S, as well as an arbitrary point of S called the representative of S and denoted
by rep(S). Split β(S) into two hyperrectangles by cutting its longest interval into two
equal parts, and let S1 and S2 be the subsets of S contained in the two hyperrectangles.
The root of the split-tree of S has two subtrees, which are recursively defined split-trees
of S1 and S2.

The precise way Callahan and Kosaraju used the split-tree to compute a WSPD
with a linear number of pairs is of no importance to us. The only important aspect we
need to retain is that each pair is uniquely determined by a pair of nodes in the tree.
More precisely, for each pair {X,Y } in the WSPD that is output by their algorithm,
there are unique internal nodes u and v in the split-tree such that the sets Su and Sv
of points stored at the leaves of the subtrees rooted at u and v are precisely X and
Y . Since there is such a unique correspondence, we will denote pairs in the WSPD by
{Su, Sv}, meaning that u and v are the nodes corresponding to the sets X = Su and
Y = Sv. Also, although the WSPD of a point set is not unique, when we talk about
the WSPD, we mean the WSPD that is computed by the algorithm of Callahan and
Kosaraju.

Before we present our algorithm, we give the statement of the following lemmas
that we use to analyze our algorithm in section 4. If R is an axes-parallel hyperrect-
angle in R

d, then we use Lmax(R) to denote the length of a longest side of R.
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Lemma 2.6 (Lemma 9.5.3 in [6]). Let u be a node in the split-tree and let u′ be
a node in the subtree of u such that the path between them contains at least d edges.
Then

Lmax(β(Su′ )) ≤ 1
2
· Lmax(β(Su)).

Lemma 2.7 (Lemma 11.3.1 in [6]). Let {Su, Sv} be a pair in the WSPD, let � be
the distance between the centers of β(Su) and β(Sv), and let π(u) be the parent of u
in the split-tree. Then

Lmax(β(Sπ(u))) ≥
2�√

d(s+ 4)
.

3. A first algorithm. We now show how the WSPD can be used to address the
problem of computing a spanner of a complete k-partite graph. In this section, we
introduce an algorithm that outputs a graph with constant stretch factor and O(n)
edges. The analysis of this algorithm is presented in section 4. In section 5, we show
how this algorithm can be improved to achieve a stretch factor of 5 + ε.

The input set S ⊆ R
d is the disjoint union of k sets C1, C2, . . . , Ck. We say that

the elements of Cc have “color” c. The graph K = KC1...Ck
is the complete k-partite

geometric graph.
Definition 3.1. Let T be the split-tree of S that is used to compute the WSPD

of S.
1. For any node u in T , we denote by Su the set of all points in the subtree

rooted at u.
2. We define MWSPD to be the subset of the WSPD obtained by removing all

pairs {Su, Sv} for which all points of Su ∪ Sv have the same color.
3. A node u in T is called multichromatic if there exist points p and q in Su

and a node v in T such that p and q have different colors and {Su, Sv} is in
the MWSPD.

4. A node u in T is called a c-node if all points of Su have color c and there
exists a node v in T such that {Su, Sv} is in the MWSPD.

5. A c-node u in T is called a c-root if it does not have a proper ancestor that
is a c-node in T .

6. A c-node u in T is called a c-leaf if it does not have another c-node in its
subtree.

7. A c-node u′ in T is called a c-child of a c-node u in T if u′ is in the subtree
rooted at u and there is no c-node on the path strictly between u and u′. In
this case, we also say that u is a c-parent of u′.

8. For each color c and for each c-node u in T , rep(Su) denotes a fixed arbitrary
point in Su.

9. For each multichromatic node u in T , rep(Su) and rep′(Su) denote two fixed
arbitrary points in Su that have different colors.

10. The distance between two sets Sv and Sw, denoted by dist(Sv, Sw), is defined
to be the distance between the centers of their bounding boxes.

11. Let u be a c-node in T . Consider all pairs {Sv, Sw} in the MWSPD, where
v is a c-node on the path in T from u to the root (this path includes u). Let
{Sv, Sw} be such a pair for which dist(Sv, Sw) is minimum. We define cl(Su)
to be the set Sw.

Algorithm 1 computes a spanner of a complete k-partite geometric graph K =
KC1...Ck

. The intuition behind this algorithm is the following. First, the algorithm



SPANNERS OF COMPLETE k-PARTITE GEOMETRIC GRAPHS 1807

but not all points are of the same color.

Both sets are multichromatic.

At least one set only contains points of only one color

Fig. 1. The two cases of Algorithm 1.

computes the MWSPD. Then, it considers each pair {Su, Sv} of the MWSPD and
decides whether or not to add an edge between Su and Sv. The outcome of this
decision is based on the following two cases, which are illustrated in Figures 1 and 2.

Case 1. Both Su and Sv are multichromatic. In this case, Algorithm 1 adds one
edge between Su and Sv to the spanner; see lines 28–29. Observe that the two vertices
of this edge do not have the same color. This edge will allow us to approximate each
edge (p, q) of K, where p ∈ Su, q ∈ Sv, and p and q have different colors.

Case 2. All points in Su are of the same color c. In this case, an edge is added
between rep(Su) and a representative of Sv whose color is not c; see lines 17–18. In
order to approximate each edge of K having one vertex (of color c) in Su and the
other vertex (of a different color) in Sv, more edges have to be added. This is done
in such a way that our final graph contains a “short” path between every point p of
Su and the representative rep(Su) of Su. Observe that this path must contain points
whose color is not equal to c; thus, these points are not in Su. One way to achieve this
is to add an edge between each point of Su and a representative of cl(Su) whose color
is not c; we call this construction a star. However, since the subtree rooted at u may
contain other c-nodes, many edges may be added for each point in Su, which could
possibly lead to a quadratic number of edges in the final graph. To guarantee that
the algorithm does not add too many edges, it introduces a star only if u is a c-leaf;
see lines 8–11. If u is a c-node, the algorithm adds only one edge between rep(Su) and
a representative of cl(Su) whose color is not c; see lines 14–15. Then, the algorithm
links each c-node u′′ that is not a c-root to its c-parent u′. This is done through an
edge between rep(Su′′) and a representative of cl(Su′) whose color is not c; see lines
21–22. This second case is illustrated in Figure 2.

4. Analysis of Algorithm 1.
Lemma 4.1. The graph G computed by Algorithm 1 has O(|S|) edges.
Proof. For each color c and for each c-leaf u′, the algorithm adds |Su′ | edges to G

in lines 9–10. Since the sets Su′ , where u′ ranges over all c-leaves and c ranges over
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p1

p2

p3

p4

p5

S1 = {p1, p2, p3, p4, p5}

S2 = {p1, p2} S3 = {p3, p4, p5}

S4 = {p3, p5} S5 = {p4}

cl(S1)

cl(S3)

rep

rep rep

rep rep

rep

rep

Fig. 2. Handling a c-node.

all colors, are pairwise disjoint, the total number of edges that are added in lines 9–10
is O(|S|).

The total number of edges that are added in lines 17–18 and 28–29 is at most the
number of pairs in the MWSPD. Since the WSPD contains O(|S|) pairs (see [4]), the
same upper bound holds for the number of edges added in lines 17–18 and 28–29.

The total number of edges that are added in lines 14–15 and 21–22 is at most
twice the number of nodes in the split-tree, which is O(|S|).

Lemma 4.2. Let G be the graph computed by Algorithm 1. Let p and q be two
points of S with different colors, and let {Su, Sv} be the pair in the MWSPD for which
p ∈ Su and q ∈ Sv. Assume that u is a c-node for some color c. Then there is a path
in G between p and rep(Su) whose length is at most t′|pq|, where

t′ = 4
√
d(μd+ 1)(1 + 4/s)3,

μ =
⌈
log

(√
d(1 + 4/s)

)⌉
+ 1,

and s is the separation constant of the WSPD.
Proof. Let w be the c-leaf such that p ∈ Sw, and let w = w0, . . . , wk = u be the

sequence of c-nodes that are on the path in T from w to u.
Recall from Definition 3.1 that each set Swi , 0 ≤ i ≤ k, has a representative

rep(Swi) (of color c) associated with it. Also, recall the definition of the sets cl(Swi),
0 ≤ i ≤ k; see Definition 3.1. If cl(Swi) is a c′-node for some color c′, then this set has
one representative rep(cl(Swi)) associated with it. Otherwise, cl(Swi) is multichro-
matic, and this set has two representatives rep(cl(Swi)) and rep′(cl(Swi)) of different
colors associated with it. We may assume without loss of generality that, for all
0 ≤ i ≤ k, the color of rep(cl(Swi)) is not equal to c.

Let Π be the path

p → rep(cl(Sw0)) → rep(Sw0)
→ rep(cl(Sw1)) → rep(Sw1)
...

...
→ rep(cl(Swk

)) → rep(Swk
) = rep(Su).

Even though we use arrows to define this path, we remark that the graph G and,
therefore, the path Π, is undirected.
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Algorithm 1: Computing a sparse subgraph ofKC1...Ck
whose stretch factor

is bounded by a constant.
Input: A set S of points in R

d, which is partitioned into k subsets C1, . . . , Ck.
Output: A spanner G = (S, E) of the complete k-partite graph KC1...Ck .

compute the split-tree T of S;1

using T , compute the WSPD with respect to a separation constant s > 0;2

using the WSPD, compute the MWSPD;3

E ← ∅;4

for each color c in {1, 2, . . . , k} do5

for each c-root u in T do6

for each c-leaf u′ in the subtree of u do7

for each p ∈ Su′ do8

if rep(cl(Su′)) does not have color c, then add (p, rep(cl(Su′))) to E;9

else add (p, rep′(cl(Su′))) to E;10

end11

end12

for each c-node u′ that is in the subtree of u (including u) do13

if rep(cl(Su′)) does not have color c, then add (rep(Su′), rep(cl(Su′))) to14

E;
else add (rep(Su′), rep′(cl(Su′))) to E;15

for each pair {Su′ , Sv′} in the MWSPD do16

if rep(Sv′) does not have color c, then add (rep(Su′), rep(Sv′)) to E;17

else add (rep(Su′), rep′(Sv′)) to E;18

end19

for each c-child u′′ of u′ do20

if rep(cl(Su′)) does not have color c, then add21

(rep(Su′′), rep(cl(Su′))) to E;
else add (rep(Su′′), rep′(cl(Su′))) to E;22

end23

end24

end25

end26

for each {Su, Sv} in the MWSPD for which both u and v are multichromatic do27

if rep(Su) and rep(Sv) have distinct colors, then add (rep(Su), rep(Sv)) to E;28

else add (rep(Su), rep′(Sv)) to E;29

end30

return the graph G = (S,E)31

The first edge on the path Π, i.e., (p, rep(cl(Sw0))), is added to the graph G in
lines 9–10 of the algorithm. The edges (rep(cl(Swi)), rep(Swi)), 0 ≤ i ≤ k, are added
to G in lines 14–15. Finally, the edges (rep(Swi−1), rep(cl(Swi))), 1 ≤ i ≤ k, are added
to G in lines 21–22. It follows that Π is a path in G between p and rep(Su). In the
rest of the proof, we will show that the length of Π is at most t′|pq|.

Let i be an integer with 0 ≤ i ≤ k. Recall the definition of cl(Swi); see Defini-
tion 3.1: We consider all pairs {Sx, Sy} in the MWSPD, where x is a c-node on the
path in T from wi to the root, and pick the pair for which dist(Sx, Sy) is minimum.
We denote the pair picked by (Sxi , Syi). Thus, xi is a c-node on the path in T from
wi to the root, {Sxi , Syi} is a pair in the MWSPD, and cl(Swi) = Syi . We define

�i = dist(Sxi , Syi).
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We start by proving an upper bound on the length of Π in terms of �0, �1, . . . , �k.
Consider the first edge (p, rep(cl(Sw0))) on the path Π. Since p ∈ Sw0 ⊆ Sx0 and
rep(cl(Sw0)) ∈ Sy0 , it follows from Lemma 2.4 that

|p, rep(cl(Sw0))| ≤ (1 + 4/s) · dist(Sx0 , Sy0) = (1 + 4/s)�0.

Let 0 ≤ i ≤ k and consider the edge (rep(cl(Swi)), rep(Swi)) on Π. Since rep(Swi) ∈
Swi ⊆ Sxi and rep(cl(Swi)) ∈ Syi , it follows from Lemma 2.4 that

(4.1) |rep(cl(Swi)), rep(Swi)| ≤ (1 + 4/s) · dist(Sxi , Syi) = (1 + 4/s)�i.

Let 1 ≤ i ≤ k and consider the edge (rep(Swi−1), rep(cl(Swi))) on Π. Since rep(Swi−1) ∈
Swi−1 ⊆ Sxi and rep(cl(Swi)) ∈ Syi , it follows from Lemma 2.4 that

|rep(Swi−1), rep(cl(Swi))| ≤ (1 + 4/s) · dist(Sxi , Syi) = (1 + 4/s)�i.

Thus, the length of the path Π is at most

k∑
i=0

2(1 + 4/s)�i.

Therefore, it is sufficient to prove that

k∑
i=0

�i ≤ 2
√
d(μd+ 1)(1 + 4/s)2|pq|.

Next, we prove an upper bound on �k in terms of |pq|. As a result, we will obtain
an inequality (see (4.3) below) which implies the above inequality.

It follows from the definition of cl(Su) = cl(Swk
) that

�k = dist(Sxk
, Syk

) ≤ dist(Su, Sv).

Since, by Lemma 2.4, dist(Su, Sv) ≤ (1 + 4/s)|pq|, it follows that

(4.2) �k ≤ (1 + 4/s)|pq|.

Thus, it is sufficient to prove that

(4.3)
k∑
i=0

�i ≤ 2
√
d(μd+ 1)(1 + 4/s)�k.

For each i with 0 ≤ i ≤ k, we define

ai = Lmax(β(Swi));

i.e., ai is the length of a longest side of the bounding box of Swi .
We now present an outline of the rest of the proof (which consists of proving

(4.3)). As we will see below, Lemma 2.4 implies that (i) ai ≤ 2
s �i. It follows from

Lemma 2.6 that (ii) ai ≤ 1
2ai+d. Finally, we will show that Lemma 2.7 implies that

(iii) �i ≤
√
d(s+4)

2 ai+1. By combining (i), (ii), and (iii), we obtain the inequality
�i ≤ 1

2�i+1+μd, where μ is defined in the statement of the lemma. This allows us
to split the summation

∑k
i=0 �i into μd + 1 geometric series. The final step is then



SPANNERS OF COMPLETE k-PARTITE GEOMETRIC GRAPHS 1811

to prove that the total sum of these geometric series is at most the quantity on the
right-hand side in (4.3). This approach makes sense only if k is sufficiently large. For
small values of k, we will prove (4.3) by a direct argument.

We now present the details. If k = 0, then (4.3) obviously holds. Assume from
now on that k ≥ 1. Let 0 ≤ i ≤ k. It follows from Lemma 2.4 that

Lmax(β(Sxi)) ≤
2
s
�i.

Since wi is in the subtree of xi, we have Lmax(β(Swi)) ≤ Lmax(β(Sxi)). Thus, we
have

(4.4) ai ≤
2
s
�i for 0 ≤ i ≤ k.

Lemma 2.6 states that

(4.5) ai ≤
1
2
ai+d for 0 ≤ i ≤ k − d.

Let 0 ≤ i ≤ k − 1. Since wi is a c-node, there is a node w′
i such that {Swi , Sw′

i
} is a

pair in the MWSPD. Then it follows from the definition of cl(Swi) that

�i = dist(Sxi , Syi) ≤ dist(Swi , Sw′
i
).

By applying Lemma 2.7, we obtain

dist(Swi , Sw′
i
) ≤

√
d(s+ 4)

2
Lmax(β(Sπ(wi)))

≤
√
d(s+ 4)

2
Lmax(β(Swi+1))

=

√
d(s+ 4)

2
ai+1.

Thus, we have

(4.6) �i ≤
√
d(s+ 4)

2
ai+1 for 0 ≤ i ≤ k − 1.

Recall the integer μ as defined in the statement of the lemma. First assume that
1 ≤ k ≤ μd. Let 0 ≤ i ≤ k−1. By using (4.6), the fact that the sequence a0, a1, . . . , ak
is nondecreasing, and (4.4), we obtain

�i ≤
√
d(s+ 4)

2
ai+1 ≤

√
d(s+ 4)

2
ak ≤

√
d

(
1 +

4
s

)
�k.

Therefore,

k∑
i=0

�i ≤ k
√
d(1 + 4/s)�k + �k ≤ (k + 1)

√
d(1 + 4/s)�k ≤ (μd+ 1)

√
d(1 + 4/s)�k,

which is less than the right-hand side in (4.3).
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It remains to consider the case when k > μd. Let i ≥ 0 and j ≥ 0 be integers
such that i + 1 + jd ≤ k. By applying (4.6) once, (4.5) j times, and (4.4) once, we
obtain

�i ≤
√
d(s+ 4)

2
ai+1 ≤

√
d(s+ 4)

2

(
1
2

)j
ai+1+jd ≤

√
d

(
1 +

4
s

)(
1
2

)j
�i+1+jd.

For j = μ = 	log(
√
d(1 + 4/s))
 + 1, this implies that, for 0 ≤ i ≤ k − 1 − μd,

(4.7) �i ≤
1
2
�i+1+μd.

By rearranging the terms in the summation in (4.3), we obtain

k∑
i=0

�i =
μd∑
h=0

�(k−h)/(μd+1)�∑
j=0

�k−h−j(μd+1).

Let j be such that 0 ≤ j ≤ �(k − h)/(μd+ 1)�. By applying (4.7) j times, we obtain

�k−h−j(μd+1) ≤
(

1
2

)j
�k−h.

It follows that

�(k−h)/(μd+1)�∑
j=0

�k−h−j(μd+1) ≤
∞∑
j=0

(
1
2

)j
�k−h = 2�k−h.

Thus, we have

k∑
i=0

�i ≤ 2
μd∑
h=0

�k−h.

By applying (4.6) and the fact that the sequence a0, a1, . . . , ak is nondecreasing, fol-
lowed by (4.4), we obtain, for 0 ≤ i ≤ k − 1 and 1 ≤ j ≤ k − i,

�i ≤
√
d(s+ 4)

2
ai+1 ≤

√
d(s+ 4)

2
ai+j ≤

√
d

(
1 +

4
s

)
�i+j .

Obviously, the inequality �i ≤
√
d(1+4/s)�i+j also holds for j = 0. Thus, for i = k−h

and j = h, we get

�k−h ≤
√
d(1 + 4/s)�k for 0 ≤ h ≤ μd.

It follows that

k∑
i=0

�i ≤ 2
μd∑
h=0

√
d(1 + 4/s)�k = 2

√
d(μd+ 1)(1 + 4/s)�k,

completing the proof that (4.3) holds.
Lemma 4.3. Assuming that the separation constant s of the WSPD is chosen

sufficiently large, the graph G computed by Algorithm 1 is a t-spanner of the complete
k-partite graph KC1...Ck

, where t = 2t′ + 1 + 4/s and t′ is as in Lemma 4.2.
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Proof. We denote the graph KC1...Ck
by K. It suffices to show that for each edge

(p, q) of K, the graph G contains a path between p and q of length at most t|pq|. We
will prove this by induction on the lengths of the edges in K.

Let p and q be two points of S with different colors, and let {Su, Sv} be the pair
in the MWSPD for which p ∈ Su and q ∈ Sv.

The base case is when (p, q) is a shortest edge in K. Since s > 2, it follows from
Lemma 2.4 that u is a c-node and v is a c′-node, for some colors c and c′ with c = c′. In
line 17 of Algorithm 1, the edge (rep(Su), rep(Sv)) is added to G. By Lemma 2.4, the
length of this edge is at most (1 + 4/s)|pq|. The claim follows from two applications
of Lemma 4.2 to get from p to rep(Su) and from rep(Sv) to q.

In the induction step, we distinguish four cases.
Case 1. u is a c-node and v is a c′-node, for some colors c and c′ with c = c′.
This case is identical to the base case.
Case 2. u is a c-node for some color c and v is a multichromatic node.
In lines 17–18, the edge (rep(Su), rep(Sv)) or (rep(Su), rep(S′

v)) is added to G.
We may assume without loss of generality that (rep(Su), rep(Sv)) is added. By
Lemma 2.4, the length of this edge is at most (1 + 4/s)|pq|.

By Lemma 4.2, there is a path in G between p and rep(Su) whose length is at
most t′|pq|.

First assume that q and rep(Sv) have the same color. Let r be a point in Sv
that has a color different from q’s color. Since s > 2, it follows from Lemma 2.4 that
|qr| < |pq|. Thus, by induction, there is a path in G between q and r whose length
is at most t|qr|, which, by Lemma 2.4, is at most (2t/s)|pq|. By a similar argument,
since |r, rep(Sv)| < |pq|, there is a path in G between r and rep(Sv) whose length is
at most (2t/s)|pq|. Thus, G contains a path between q and rep(Sv) of length at most
(4t/s)|pq|. If q and rep(Sv) have different colors, then, by induction, there is a path
in G between q and rep(Sv) whose length is at most (2t/s)|pq| < (4t/s)|pq|.

Thus, the graph G contains a path between q and rep(Sv) of length at most
(4t/s)|pq|.

We have shown that there is a path in G between p and q whose length is at most

(4.8) (t′ + (1 + 4/s) + 4t/s) |pq|.

By choosing s sufficiently large, this quantity is at most t|pq|.
Case 3. u is a multichromatic node and v is a c-node for some color c.
This case is symmetric to Case 2.
Case 4. Both u and v are multichromatic nodes.
In lines 28–29, the edge (rep(Su), rep(Sv)) or (rep(Su), rep(S′

v)) is added to G.
We may assume without loss of generality that (rep(Su), rep(Sv)) is added. By
Lemma 2.4, the length of this edge is at most (1 + 4/s)|pq|.

As in Case 2, the graph G contains a path between p and rep(Su) of length at
most (4t/s)|pq| and a path between q and rep(Sv) of length at most (4t/s)|pq|.

It follows that there is a path in G between p and q whose length is at most

(4.9) ((1 + 4/s) + 8t/s) |pq|.

By choosing s sufficiently large, this quantity is at most t|pq|.
Lemma 4.4. The running time of Algorithm 1 is O(n log n), where n = |S|.
Proof. Using the results of Callahan and Kosaraju [4], the split-tree T and the

WSPD can be computed in O(n log n) time. The representatives of all sets Su and
all sets cl(Su) can be computed in O(n) time by traversing the split-tree in postorder
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and preorder, respectively. The time for the rest of the algorithm, i.e., lines 3–31,
is proportional to the sum of the size of T , the number of pairs in the WSPD, and
the number of edges in the graph G. Thus, the rest of the algorithm takes O(n)
time.

To summarize, we have shown the following: For any complete k-partite geometric
graph K whose vertex set has size n, Algorithm 1 computes a t-spanner of K having
O(n) edges, where t is given in Lemma 4.3. The running time of this algorithm is
O(n log n). By choosing the separation constant s sufficiently large, the stretch factor
t converges to

8
√
d

(
d

⌈
1
2

log d
⌉

+ d+ 1
)

+ 1.

In the next section, we show how to modify the algorithm so that the bound in
Lemma 4.2 is reduced, thus improving the stretch factor. The price to pay is in the
number of edges in G; however, it is still O(n).

5. An improved algorithm. As before, we are given a set S of n points in R
d

which is partitioned into k subsets C1, C2, . . . , Ck. Intuitively, the way to improve the
bound of Lemma 4.2 is by adding shortcuts along the path from each c-leaf to the
c-root above it. More precisely, from (4.7) in the proof of Lemma 4.2, we know that
if we go 1 + μd levels up in the split-tree T , then the length of the edge along the
path doubles. Thus, for each c-node in T , we will add edges to all 2δ(1 + μd) c-nodes
above it in T . Here, δ is an integer constant that is chosen such that the best result
is obtained in the improved bound.

Definition 5.1. Let c ∈ {1, 2, . . . , k}, and let u and u′ be c-nodes in the split-tree
T such that u′ is in the subtree rooted at u. For any integer ζ ≥ 1, we say that u is
ζ levels above u′ if there are exactly ζ − 1 c-nodes on the path strictly between u and
u′. We say that u′ is a ζ-level c-child of u if u is at most ζ levels above u′.

The improved algorithm is given as Algorithm 2. The following lemma generalizes
Lemma 4.2.

Lemma 5.2. Let G be the graph computed by Algorithm 2. Let p and q be two
points of S with different colors, and let {Su, Sv} be the pair in the MWSPD for which
p ∈ Su and q ∈ Sv. Assume that u is a c-node for some color c. Then there is a path
in G between p and rep(Su) whose length is at most (2 + ε/3)|pq|.

Proof. Let w be the c-leaf such that p ∈ Sw, and let w = w0, w1, . . . , wk = u be
the sequence of c-nodes that are on the path in T from w to u. As in the proof of
Lemma 4.2, we assume without loss of generality that, for all 0 ≤ i ≤ k, the color of
rep(cl(Swi)) is not equal to c.

Throughout the proof, we will use the variables xi, yi, �i, and ai, for 0 ≤ i ≤ k,
that were introduced in the proof of Lemma 4.2.

We first assume that 0 ≤ k ≤ 2δ(μd+ 1). Let Π be the path

p→ rep(cl(Sw)) → rep(Su).

It follows from Algorithm 2 that Π is a path in G. We have to prove that the length
of Π is at most (2 + ε/3)|pq|.

Since p ∈ Sw = Sw0 ⊆ Sx0 and rep(cl(Sw)) = rep(cl(Sw0)) ∈ Sy0 , it follows from
Lemma 2.4 that

(5.1) |p, rep(cl(Sw))| ≤ (1 + 4/s) · dist(Sx0 , Sy0) = (1 + 4/s)�0.
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Algorithm 2: Computing a sparse (5 + ε)-spanner of KC1...Ck
.

Input: A set S of points in R
d, which is partitioned into k subsets C1, . . . , Ck,

and a real constant 0 < ε < 1.
Output: A (5 + ε)-spanner G = (S,E) of the complete k-partite graph

KC1...Ck
.

Choose a separation constant s such that s ≥ 12/ε and (1 + 4/s)2 ≤ 1 + ε/36
and choose an integer constant δ such that 2δ

2δ−1
≤ 1 + ε/36.

The rest of the algorithm is the same as Algorithm 1, except for lines 20–23,
which are replaced by the following:

ζ ← 2δ(μd+ 1);
for each ζ-level c-child u′′ of u′ do

if rep(cl(Su′)) does not have color c, then add (rep(Su′′), rep(cl(Su′))) to
E;
else add (rep(Su′′ ), rep′(cl(Su′))) to E;
if rep(cl(Su′′)) does not have color c, then add (rep(cl(Su′′)), rep(Su′)) to
E;
else add (rep′(cl(Su′′)), rep(Su′)) to E;

end

Since {Su, Sv} is one of the pairs that is considered in the definition of cl(Sw0), we
have dist(Sx0 , Sy0) ≤ dist(Su, Sv). Again by Lemma 2.4, we have dist(Su, Sv) ≤
(1 + 4/s)|pq|. Thus, we have shown that

|p, rep(cl(Sw))| ≤ (1 + 4/s)2|pq|.

By the triangle inequality, we have

|rep(cl(Sw)), rep(Su)| ≤ |rep(cl(Sw)), p| + |p, rep(Su)|.

Since p and rep(Su) are both contained in Su, it follows from Lemma 2.4 that
|p, rep(Su)| ≤ (2/s)|pq|. Thus, we have

|rep(cl(Sw)), rep(Su)| ≤ (1 + 4/s)2|pq| + (2/s)|pq|.

We have shown that the length of the path Π is at most(
2(1 + 4/s)2 + 2/s

)
|pq|,

which is at most (2 + ε/3)|pq| by our choice of s in Algorithm 2.
In the rest of the proof, we assume that k > 2δ(μd+ 1). We define

m = k mod (δ(μd+ 1))

and

m′ =
k −m

δ(μd+ 1)
.

In the proof of Lemma 4.2, we defined the path Π between p and rep(Su) by using
all c-nodes w = w0, w1, . . . , wk = u. Since Algorithm 2 adds shortcuts, it suffices to
define Π using only the sequence

w = w0, wδ(μd+1)+m, w2δ(μd+1)+m, w3δ(μd+1)+m, . . . , wk = u
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of c-nodes. We define Π to be the path

p → rep(cl(Sw0)) → rep(Swδ(μd+1)+m
)

→ rep(cl(Sw2δ(μd+1)+m
)) → rep(Sw2δ(μd+1)+m

)
→ rep(cl(Sw3δ(μd+1)+m

)) → rep(Sw3δ(μd+1)+m
)

...
...

→ rep(cl(Swk
)) → rep(Swk

) = rep(Su).

It follows from Algorithm 2 that Π is a path in G. Thus, it remains to show that the
length of this path is at most (2 + ε/3)|pq|.

We start by proving an upper bound on the length of Π in terms of |pq|, �δ(μd+1)+m,
�2δ(μd+1)+m, �3δ(μd+1)+m, . . . , �k.

We have already shown (see (5.1)) that the length of the first edge on Π satisfies

|p, rep(cl(Sw0))| ≤ (1 + 4/s)�0.

The length of the second edge satisfies

|rep(cl(Sw0)), rep(Swδ(μd+1)+m
)| ≤ |rep(cl(Sw0)), p| + |p, rep(Swδ(μd+1)+m

)|
≤ (1 + 4/s)�0 + |p, rep(Swδ(μd+1)+m

)|.

Since p and rep(Swδ(μd+1)+m
) are both contained in Su, it follows from Lemma 2.4

that

|p, rep(Swδ(μd+1)+m
)| ≤ (2/s)|pq|.

Thus, the length of the second edge on Π satisfies

|rep(cl(Sw0)), rep(Swδ(μd+1)+m
)| ≤ (1 + 4/s)�0 + (2/s)|pq|.

Let 2 ≤ j ≤ m′. We have seen in (4.1) in the proof of Lemma 4.2 that the length of
the edge

(rep(cl(Swjδ(μd+1)+m
)), rep(Swjδ(μd+1)+m

))

satisfies

|rep(cl(Swjδ(μd+1)+m
)), rep(Swjδ(μd+1)+m

)| ≤ (1 + 4/s)�jδ(μd+1)+m.

Again, let 2 ≤ j ≤ m′. Since

rep(Sw(j−1)δ(μd+1)+m
) ∈ Swjδ(μd+1)+m

⊆ Sxjδ(μd+1)+m

and

rep(cl(Swjδ(μd+1)+m
)) ∈ Syjδ(μd+1)+m

,

it follows from Lemma 2.4 that the length of the edge

(rep(Sw(j−1)δ(μd+1)+m
), rep(cl(Swjδ(μd+1)+m

)))

satisfies

|rep(Sw(j−1)δ(μd+1)+m
), rep(cl(Swjδ(μd+1)+m

))| ≤ (1 + 4/s)�jδ(μd+1)+m.
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We have shown that the length of Π is at most

(2/s)|pq| + 2(1 + 4/s)

⎛
⎝�0 +

m′∑
j=2

�jδ(μd+1)+m

⎞
⎠ .

The definition of �0, �1, . . . , �k implies that this sequence is nondecreasing. Thus,
�0 ≤ �δ(μd+1)+m, and it follows that the length of Π is at most

(2/s)|pq| + 2(1 + 4/s)
m′∑
j=1

�jδ(μd+1)+m.

Thus, it suffices to show that the above expression is at most (2 + ε/3)|pq|. In
the rest of the proof, we repeatedly apply inequality (4.7) in the proof of Lemma 4.2.
As we will see, this allows us to estimate the summation in the above expression by
a geometric series which evaluates to 2δ

2δ−1
�k. We then apply inequality (4.2) in the

proof of Lemma 4.2, which estimates �k in terms of |pq|. By putting all these estimates
together, it then follows that the length of Π is at most (2 + ε/3)|pq|.

We now present the details. Recall inequality (4.7) in the proof of Lemma 4.2,
which states that

�i ≤
1
2
�i+μd+1.

By applying this inequality δ times, we obtain

�i ≤
(

1
2

)δ
�i+δ(μd+1).

For i = jδ(μd+ 1) +m, this becomes

�jδ(μd+1)+m ≤
(

1
2

)δ
�(j+1)δ(μd+1)+m.

By repeatedly applying this inequality, we obtain, for h ≥ j,

�jδ(μd+1)+m ≤
(

1
2

)(h−j)δ
�hδ(μd+1)+m.

For h = m′, the latter inequality becomes

�jδ(μd+1)+m ≤
(

1
2

)(m′−j)δ
�k.

It follows that
m′∑
j=1

�jδ(μd+1)+m ≤
m′∑
j=1

(
1
2

)(m′−j)δ
�k

=
m′−1∑
i=0

(
1
2

)iδ
�k

≤
∞∑
i=0

(
1
2δ

)i
�k

=
2δ

2δ − 1
�k.
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According to (4.2) in the proof of Lemma 4.2, we have

�k ≤ (1 + 4/s)|pq|.

We have shown that the length of the path Π is at most
(

2
s

+ 2
(

1 +
4
s

)2 2δ

2δ − 1

)
|pq|.

Our choices of s and δ (see Algorithm 2) imply that 2/s ≤ ε/6, (1 + 4/s)2 ≤ 1 + ε/36,
and 2δ

2δ−1 ≤ 1 + ε/36. Therefore, the length of Π is at most

(
ε/6 + 2(1 + ε/36)2

)
|pq| ≤ (2 + ε/3)|pq|,

where the latter inequality follows from our assumption that 0 < ε < 1. This com-
pletes the proof.

Lemma 5.3. Let n = |S|. The graph G computed by Algorithm 2 is a (5 + ε)-
spanner of the complete k-partite graph KC1...Ck

, and the number of edges of this
graph is O(n). The running time of Algorithm 2 is O(n logn).

Proof. The proof for the upper bound on the stretch factor is similar to the one
of Lemma 4.3. The difference is that instead of the value t′ that was used in the proof
of Lemma 4.3, we now use the value t′ = 2 + ε/3 of Lemma 5.2. Thus, the stretch
factor for the base case of the induction and for Case 1 is at most

(1 + 4/s) + 2t′ = 5 + 4/s+ 2ε/3,

which is at most 5 + ε, because of our choice for s in Algorithm 2. For Cases 2 and 3,
the stretch factor is at most (see (4.8) in the proof of Lemma 4.3, where t = 5 + ε)

t′ + (1 + 4/s) + 4t/s = 3 + ε/3 + (4/s)(6 + ε),

which is at most 5 + ε, again because of our choice for s. Finally, the stretch factor
for Case 4 is at most (see (4.9) in the proof of Lemma 4.3, where t = 5 + ε)

(1 + 4/s) + 8t/s = 1 + (4/s)(11 + 2ε),

which is at most 5 + ε, because of our choice for s.
The analysis for the number of edges is the same as in Lemma 4.1, except that the

number of edges that are added to each c-node in the modified for-loop is 2δ(μd+ 1)
instead of 1 as in Algorithm 1. Finally, the analysis of the running time is the same
as in Lemma 4.4.

We have proved the following result.
Theorem 5.4. Let k ≥ 2 be an integer, let S be a set of n points in R

d which
is partitioned into k subsets C1, C2, . . . , Ck, and let 0 < ε < 1 be a real constant. In
O(n log n) time, we can compute a (5 + ε)-spanner of the complete k-partite graph
KC1...Ck

having O(n) edges.

6. Improving the stretch factor. We have shown how to compute a (5 + ε)-
spanner with O(n) edges of any complete k-partite graph. In this section, we show
that if we are willing to use O(n log n) edges, the stretch factor can be reduced to
3 + ε. We start by showing that a stretch factor less than 3, while using O(n log n)
edges, is not possible.
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Theorem 6.1. Let c > 0 be a constant and let n and k be positive integers with
2 ≤ k ≤ n − 2c

√
n logn. For every real number 0 < ε < 1, there exists a complete

k-partite geometric graph K with n vertices such that the following is true: If G is
any subgraph of K with at most c2n logn edges, then the stretch factor of G is at least
3 − ε.

Proof. Let D1, D2, and D3 be three disks of radius ε/12 centered at the points
(0, 0), (1 + ε/6, 0), and (2 + ε/3, 0), respectively. We place (n − k + 2)/2 red points
inside D1 and (n − k + 2)/2 blue points inside D2. The remaining k − 2 points are
placed inside D3, and each of these points has a distinct color (which is neither red
nor blue). Let K be the complete k-partite geometric graph defined by these n points.
We claim that K satisfies the claim in the theorem.

Let G be an arbitrary subgraph ofK and assume that G contains at most c2n logn
edges. We will show that the stretch factor of G is at least 3 − ε.

Assume that G contains all red-blue edges. Then the number of edges in G is at
least ((n−k+2)/2)2. Since k ≤ n−2c

√
n logn, this quantity is larger than c2n logn.

Thus, there is a red point r and a blue point b, such that (r, b) is not an edge in G.
The length of a shortest path in G between r and b is at least 3. Since |rb| ≤ 1 + ε/3,
it follows that the stretch factor of G is at least 3

1+ε/3 , which is at least 3 − ε.
Theorem 6.2. Let k ≥ 2 be an integer, let S be a set of n points in R

d which
is partitioned into k subsets C1, C2, . . . , Ck, and let 0 < ε < 1 be a real constant. In
O(n log n) time, we can compute a (3 + ε)-spanner of the complete k-partite graph
KC1...Ck

having O(n logn) edges.
Proof. Consider the following variant of the WSPD. For every pair {X,Y } in the

standard WSPD, where |X | ≤ |Y |, we replace this pair by the |X | pairs {{x}, Y },
where x ranges over all points of X . Thus, in this new WSPD, each pair contains
at least one singleton set. Callahan and Kosaraju [4] showed that this new WSPD
consists of O(n log n) pairs.

We run Algorithm 2 on the set S, using this new WSPD. Let G be the graph
that is computed by this algorithm. Observe that Lemma 5.2 still holds for G. In the
proof of Lemma 5.3 of the upper bound on the stretch factor of G, we have to apply
Lemma 5.2 only once. Therefore, the stretch factor of G is at most 3 + ε.

7. Conclusion. We have shown that, for every complete k-partite geometric
graph K in R

d with n vertices and for every constant ε > 0,
1. a (5+ε)-spanner of K having O(n) edges can be computed in O(n logn) time,
2. a (3+ ε)-spanner of K having O(n log n) edges can be computed in O(n log n)

time.
The latter result is optimal for 2 ≤ k ≤ n − Θ(

√
n logn), because a spanner of K

having stretch factor less than 3 and having O(n log n) edges does not exist for all
complete k-partite geometric graphs.

We leave open the problem of determining the best stretch factor that can be
obtained by using O(n) edges.

Future work may include verifying other properties that are known for the general
geometric spanner problem. For example, is there a spanner of a complete k-partite
geometric graph that has bounded degree? Is there a spanner of a complete k-partite
geometric graph that is planar? From a more general point of view, it seems that
little is known about geometric spanners of graphs other than the complete graph.
The unit disk graph has received much attention, but there is a large family of other
graphs that also deserve attention.
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PROFILES OF TRIES∗

GAHYUN PARK† , HSIEN-KUEI HWANG‡ , PIERRE NICODÈME§ , AND

WOJCIECH SZPANKOWSKI¶

Abstract. Tries (from retrieval) are one of the most popular data structures on words. They are
pertinent to the (internal) structure of stored words and several splitting procedures used in diverse
contexts. The profile of a trie is a parameter that represents the number of nodes (either internal or
external) with the same distance from the root. It is a function of the number of strings stored in a
trie and the distance from the root. Several, if not all, trie parameters such as height, size, depth,
shortest path, and fill-up level can be uniformly analyzed through the (external and internal) profiles.
Although profiles represent one of the most fundamental parameters of tries, they have hardly been
studied in the past. The analysis of profiles is surprisingly arduous, but once it is carried out it
reveals unusually intriguing and interesting behavior. We present a detailed study of the distribution
of the profiles in a trie built over random strings generated by a memoryless source. We first derive
recurrences satisfied by the expected profiles and solve them asymptotically for all possible ranges
of the distance from the root. It appears that profiles of tries exhibit several fascinating phenomena.
When moving from the root to the leaves of a trie, the growth of the expected profiles varies. Near
the root, the external profiles tend to zero at an exponential rate, and then the rate gradually rises
to being logarithmic; the external profiles then abruptly tend to infinity, first logarithmically and
then polynomially; they then tend polynomially to zero again. Furthermore, the expected profiles of
asymmetric tries are oscillating in a range where profiles grow polynomially, while symmetric tries
are nonoscillating, in contrast to most shape parameters of random tries studied previously. Such a
periodic behavior for asymmetric tries implies that the depth satisfies a central limit theorem but
not a local limit theorem of the usual form. Also the widest levels in symmetric tries contain a
linear number of nodes, differing from the order n/

√
log n for asymmetric tries, n being the size of

the trees. Finally, it is observed that profiles satisfy central limit theorems when the variance goes
unbounded, while near the height they are distributed according to Poisson laws. As a consequence
of these results we find typical behaviors of the height, shortest path, fill-up level, and depth. These
results are derived here by methods of analytic algorithmics such as generating functions, Mellin
transform, Poissonization and de-Poissonization, the saddle-point method, singularity analysis, and
uniform asymptotic analysis.

Key words. digital trees, tries, profile, depth, height, shortest path, fill-up level, analytic
Poissonization, Mellin transform, saddle-point method, singularity analysis
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1. Introduction. Tries are prototype data structures useful for many indexing
and retrieval purposes. They were first proposed by de la Briandais [9] in the late
1950s for information processing; Fredkin [27] suggested the current name as it is

∗Received by the editors March 19, 2007; accepted for publication (in revised form) August 19,
2008; published electronically January 9, 2009.

http://www.siam.org/journals/sicomp/38-5/68553.html
†Department of Computer Science, State University of New York at Geneseo, Geneseo, NY 14454

(park@geneseo.edu).
‡Institute of Statistical Science, Academia Sinica, 11529 Taipei, Taiwan (hkhwang@stat.sinica.

edu.tw). This author’s work was partially supported by a grant from the National Science Council
of Taiwan.
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part of retrieval. Tries are multiway trees whose nodes are vectors of characters or
digits. Due to their simplicity and efficiency, tries found widespread use in diverse
applications including document taxonomy, IP address lookup, data compression, dy-
namic hashing, partial-match queries, speech recognition, leader election algorithms,
and distributed hashing tables (see [29, 50, 53, 79]). In this paper, we are concerned
with probabilistic properties of the profiles of tries, where the profile of a tree is the
sequence of numbers each corresponding to the number of nodes with the same dis-
tance from the root. We discover several new phenomena in the profiles of tries built
over strings generated by a random memoryless source, and develop asymptotic tools
to describe them.

Structure and usefulness of tries. Tries are a natural choice of data structure
when the input records involve a notion of alphabets or digits. They are often used
to store such data so that future retrieval can be made efficient. Given a sequence of
n words over the alphabet {a1, . . . , am}, m ≥ 2, we can construct a trie as follows. If
n = 0, then the trie is empty. If n = 1, then a single (external) node holding the word
is allocated. If n ≥ 1, then the trie consists of a root (internal) node directing words
to the m subtrees according to the first alphabet of each word, and words directed to
the same subtree are themselves tries (see [50, 53, 79] for more details). For simplicity,
we deal only with binary tries in this paper. Unlike other search trees such as digital
search trees and binary search trees where records or keys are stored at the internal
nodes, the internal nodes in tries are branching nodes used merely to direct records
to each subtrie, with all records stored in external nodes that are leaves of such tries.
A trie has more internal nodes than external nodes (fixed to be n throughout this
paper), differing from almost all other search trees. In Figure 1 we plot a binary trie
of five strings.

The simple organizing procedure used to construct tries and the general efficiency
they achieve make tries one of the most popular digital search trees. Since their
invention, tries have found frequent use in many computer science applications. For
example, tries are widely used in algorithms for automatically correcting words in
texts (see [51]) and in algorithms for taxonomies and toolkits of regular language (see
the Ph.D. thesis [80]); they are also used to represent the event history in datarace
detection for multithreaded object-oriented programs (see [6]); another example is the
Internet IP address lookup problem (see [60, 74]), where the search time for the IP
address problem is directly related to the distribution of the fill-up level (see below
for a more precise definition) and other trie parameters. For applications to other
problems in searching, sorting, dynamic hashing, coding, polynomial factorization,
Lempel–Ziv compression schemes, and molecular biology, see [29, 79].

The structure of tries also has a close connection to several splitting procedures
using coin-flipping; these include algorithms for resolving collisions in multiaccess (or
broadcast) communication models, algorithms for loser selection or leader election,
etc.; see [45]. Thus most shape parameters in tries have direct interpretations in
terms of other related objects.

Random tries under the Bernoulli model. Throughout the paper, we write Bn,k to
denote the number of external nodes (leaves) at distance k from the root; the number
of internal nodes at distance k from the root is denoted by In,k. For simplicity, we will
refer to Bn,k as the external profile and In,k as the internal profile. Figure 1 shows a
trie and its profiles.

In this paper we study the profiles of a trie built over n binary strings generated
by a memoryless source. More precisely, we assume that the input is a sequence of n
independent and identically distributed random variables, each being composed of an
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Bn,0 = 0, In,0 = 1

Bn,1 = 0, In,1 = 2

Bn,2 = 1, In,2 = 2

Bn,3 = 2, In,3 = 1

Bn,4 = 2, In,4 = 0

Fig. 1. A trie of n = 5 records and its profiles: the circles represent internal nodes, and
rectangles holding the records are external nodes.

infinite sequence of Bernoulli random variables with mean p, where 0 < p < 1 is the
probability of a “1” and q := 1− p is the probability of a “0.” The corresponding trie
constructed from these n binary strings is called a random trie. This simple model may
seem too idealized for practical purposes; however, the typical behaviors under such a
model often hold under more general models such as Markovian or dynamical sources,
although the technicalities are usually more involved (see, for example, [8, 12, 15, 35]).

The motivation of studying the profiles is multifold. First, they are fine shape
measures closely connected to many other cost measures on tries; some of them are
indicated below. Second, they are also asymptotically close to the profiles of suffix
trees, which in turn have a direct combinatorial interpretation in terms of words; see
[36, 59, 78, 79] for more information and another interpretation in terms of urn models.
Third, not only are the analytic problems mathematically challenging, but the diverse
new phenomena they exhibit are highly interesting and unusual. Fourth, our findings
imply several new results on other shape parameters (see section 8). Finally, most
properties of random tries have also a prototype character and are expected to hold
for other varieties of digital search trees (and under more general random models),
although the proofs are generally more complicated.

Major cost measures on random tries. Due to the usefulness of tries, many cost
measures, discussed below, on random tries have been studied in the literature since
the early 1970s, and most of these measures can be expressed and analyzed through
the profiles studied in this paper:

• depth: the distance from the root to a randomly selected node; its distribution
is given by the expected external profile divided by n; see [10, 12, 13, 20, 24,
33, 36, 42, 46, 52, 65, 69, 71, 75, 76];

• total path length: the sum of distances between nodes and the root, or, equiv-
alently,

∑
j jIn,j ; see [8, 11, 24, 44, 58, 57, 70, 71, 72, 73, 75];

• size: the total number of internal nodes, or
∑

j In,j ; see [8, 24, 34, 36, 40, 41,
43, 47, 50, 57, 67, 68, 69, 70, 71, 72, 73];

• height : the length of the longest path from the root, or max{j : Bn,j > 0};
see [8, 11, 12, 13, 14, 22, 26, 33, 48, 64, 65, 77];

• shortest path: the length of the shortest path from the root to an external
node, or min{j : Bn,j > 0}; see [64, 65];
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• fill-up (or saturation) level : the largest full level, or max{j : In,j = 2j}, where
the levels of a tree denote the sets of nodes with the same distance from the
root; see [49];

• Horton–Strahler number and stack-size: certain notions of heights related to
the traversal of tries; see [4, 17, 54, 55, 56];

• distance of two randomly chosen nodes ; see [1, 7];
• pattern occurrences in tries (including page usage or b-tries); see [22, 42, 43,

58, 71, 76];
• one-sided height (or leader election or loser selection); see [21, 39, 66, 81, 82].

The reader is referred to the book [79] and the papers [15, 37, 71] for a systematic
treatment of several of these quantities.

The general analytic context. The major difference between most previous study
and the current paper is that we are dealing with the asymptotics of bivariate recur-
rence, in contrast to univariate recurrences (with or without maximization or mini-
mization) addressed in the literature.

To be more precise, we observe that, by assumption of the model, the probability
generating function Pn,k(y) := E(yBn,k) of the external profile satisfies the recurrence

Pn,k(y) =
∑

0≤j≤n

(
n

j

)
pjqn−jPj,k−1(y)Pn−j,k−1(y) (n ≥ 2; k ≥ 1)(1)

with the initial conditions Pn,k(y) = 1 + δn,1δk,0(y − 1) when either n ≤ 1 and k ≥ 0
or k = 0 and n ≥ 0, where δa,b is the Kronecker symbol. Observe that this recurrence
depends on two parameters n and k, which makes the analysis quite challenging,
as we will demonstrate in this paper. The probability generating functions of the
internal profile satisfy the same recurrence (1) but with different initial conditions;
see section 6.

From (1), the moments of Bn,k and In,k (centered or not) are seen to satisfy a
recurrence of the form

xn,k = an,k +
∑

0≤j≤n

(
n

j

)
pjqn−j (xj,k−1 + xn−j,k−1)

with suitable initial conditions, where an,k are known (either explicitly or induc-
tively). A standard approach is to consider the Poisson generating function f̃k(z) :=
e−z

∑
n xn,kz

n/n!, which in turn satisfies the functional equation

f̃k(z) = g̃k(z) + f̃k−1(pz) + f̃k−1(qz)

with a suitable g̃k(z). This equation can be solved explicitly by a simple iteration
argument and asymptotically by using the Mellin transform (see [23, 79]). The final
step is to invert from the asymptotics of the Poisson generating function f̃k(z) to
recover the asymptotics of xn,k. This last step is guided by the Poisson heuristic,
which roughly states that

if a sequence {xn}n is “smooth enough,” then xn ∼ e−n
∑

j≥0 xjn
j/j!,(2)

where xn ∼ yn if limn→∞ xn/yn = 1. Such a Poisson heuristic has appeared in diverse
contexts under different forms such as Borel summability and Tauberian theorems;
it dates back at least to Ramanujan’s Notebooks; see the book by Berndt [3, pp.
57–66] for more details. It is known as analytic de-Poissonization when justified
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by complex analysis and the saddle-point method, and was the subject of intensive
analysis, resulting in a robust solution presented in [37].

By means of the Poisson heuristic (2), we expect that μn,k ∼ e−n
∑

j≥0 μj,kn
j/j!.

However, as we will see, such a heuristic holds in our case when q2kn → 0 but fails
otherwise. The reason is that μn,k is too small in this range. Also it should be
mentioned that the asymptotic analysis of the above functional equation is in general
more intricate because we have an additional parameter k to be taken into account
and we need uniformity for our asymptotic approximations in k (varying with n) and
in z (in some region in the complex plane) in order to invert the results to obtain xn,k
by suitable complex analysis.

Known results for profiles. As far as probabilistic properties of the profiles of ran-
dom tries are concerned, very little is known in the literature. Since the distribution of
the depth Dn in random tries is given by P(Dn = k) = μn,k/n, where μn,k := E(Bn,k),
the asymptotics of the expected profile μn,k for n→ ∞ and varying k = k(n) can be
regarded as local limit theorems for Dn. Although many papers have addressed the
limiting behaviors of the depth, none has dealt with the local limit theorem of Dn and
the asymptotics of μn,k for varying k. We will see in section 8 that our result implies
an unusual type of local limit theorem for Dn. However, it should be mentioned that
the central limit theorem for the depth was developed in [13, 34, 35].

On the other hand, Pittel [65] showed that the distribution of the number of pairs
of input-strings having a common prefix of length at least k is asymptotically Poisson
when k is close to the height. Devroye [14] showed that

if
E(Bn,k)√

n
→ ∞, then

Bn,k
E(Bn,k)

→ 1 in probability;

if E(In,k) → ∞, then
In,k

E(In,k)
→ 1 in probability,

under very general assumptions on the underlying models (see also [15] for further
refinements). References [65] and [14] represent known results concerning profiles. We
will see that convergence in probability in the two “if statements” holds as long as
the variance tends to infinity.

Sketch of the major phenomena. In the next section we present an in-depth dis-
cussion of our results. Here, we briefly summarize our main findings. We focus
mostly on the profiles of asymmetric tries (when p �= q) since the symmetric tries
(when p = q = 1/2) are comparatively easier. We will first derive asymptotic approx-
imations to the average external profile μn,k for all ranges of k.

Our results show inter alia that for k ≤ (1 − ε) logn/ log(1/q) the average profile
μn,k is exponentially small where ε > 0 is small. When k increases and lies in the
range (log n− log log logn+O(1))/ log(1/q), then μn,k decays to zero logarithmically
until k > k∗ for a specific threshold k∗ in this range beyond which μn,k suddenly
grows unbounded at a logarithmic rate. The rate becomes polynomial Θ(nυ) for
some 0 < υ ≤ 1 when

1
log(1/q)

(1 + ε) logn ≤ k ≤ 2
log(1/(p2 + q2))

(1 − ε) logn.

Surprisingly enough, for this range of k an oscillating factor emerges in the expected
profile behavior; that is, E(Bn,k) ≈ G(logp/q pkn)nv/

√
logn, where G is a bounded

periodic function. Such behavior is a consequence of an infinite number of saddle-
points appearing in the integrand of the associated Mellin integral transform. This
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was first observed by Nicodème [59]. For larger values of k, these oscillations disappear
since the behavior of the expected profile is dominated by a polar singularity.

Analogous results also hold for the internal profile. In addition, we prove that
the variances of both profiles are asymptotically of the same order as their expected
values. This suggests a central limit theorem for both external and internal profiles
for a wide range of k. We show that this is indeed true; furthermore, we also show
that for k near the height the limiting distribution of the profiles becomes Poisson.
Some of these results were already anticipated in [63] and constitute the Ph.D. thesis
of the first author [62].

Profiles of digital and nondigital log trees. In passing, we observe that most ran-
dom trees in the discrete probability literature fall into two major categories according
to their expected height being of order

√
n (referred to as square-root trees for brevity)

or of order logn (referred to as log trees), where n is the tree size. While most random
square-root trees were introduced in combinatorics and probability, the majority of
log trees arise from data structures and computer algorithms.

We can further classify log trees into “digital-type” and “nondigital-type” log
trees, according to the nature of construction (or search) of the tree. Profiles of
nondigital-type search trees of logarithmic height for which binary search trees are
representative have received much recent attention and are shown to exhibit several
interesting phenomena such as bimodality of the variance and multifaceted behaviors
of the limiting distributions; see [5, 18, 19, 28, 31] for more information. In con-
trast, profiles of digital-type search trees have not been addressed as much, and most
properties remain unknown; see [14, 15, 65] for tries and [2, 38] for digital search
trees. We will show that the limiting behaviors of the profiles are very different
from those of nondigital search trees. In particular, while in no range will the nor-
malized profiles in random binary search trees lead to asymptotic normality (in the
sense of convergence in distribution), profiles of random tries, when properly centered
and normalized, all converge to the standard normal law when the variance goes un-
bounded in the limit. As is often the case for proving asymptotic normality, we need
more precise asymptotic approximation to the variance, rendering our analysis more
complicated.

Organization of the paper. The paper is organized as follows. In the next section,
we present (rather informally) a more detailed summary of our main findings. This
section is to help the reader to comprehend the richness of our results in their fullness
but without resorting to rather abstruse mathematical formulations. Sections 3–8 are
devoted to precise formulations of our results. This paper contains two major parts:
The first, section 3, develops the asymptotic tools we need for deriving the diverse
asymptotic approximations to the expected external profile μn,k. Most proofs of the
second part (sections 4–8) are then sketched because they extend the same methods
of proof as in the first part. Except for sections 7 and 8, we assume p �= q throughout
this paper. Among these sections, section 4 derives the asymptotics of the variance of
Bn,k, the corresponding results of convergence in distribution being given in section 5.
The internal profiles are addressed in section 6, and results for symmetric tries are
given in section 7. Consequences of our findings are discussed in section 8, where
we establish typical behaviors of the height, the width, the shortest path, the fill-up
level, and the right-profile, as well as a rather atypical local limit theorem for the
depth.

2. Summary of main results. In this section we discuss informally our main
results. We focus here on describing the major phenomena arising in the analysis of
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profiles rather than presenting the precise and complicated results to which we devote
the remaining sections of this paper.

Crucial to our analysis of the profiles is the asymptotics of the expected profiles.
Not only are the results fundamental and highly interesting, but the analytic methods
we used are also of certain generality.

From (1), we see that the expected external profile μn,k := E(Bn,k) satisfies the
following recurrence:

(3) μn,k =
∑

0≤j≤n

(
n

j

)
pjqn−j(μj,k−1 + μn−j,k−1)

for n ≥ 2 and k ≥ 1 with the initial values μn,0 = 0 for all n �= 1 and 1 for n = 1.
Furthermore, μ0,k = 0, k ≥ 0, and μ1,k = 0 for k ≥ 1 and is equal to 1 when k = 0.
Throughout we assume that p > q = 1 − p unless stated otherwise.

The polynomial growth of μn,k. In section 3, we solve asymptotically (3) for var-
ious ranges of k when p �= q; a crude description of the asymptotics of μn,k is as
follows:

logμn,k
logn

→

⎧⎪⎪⎨⎪⎪⎩
0 if α ≤ α1,
−ρ+ α log(p−ρ + q−ρ) if α1 ≤ α ≤ α2,
2 + α log(p2 + q2) if α2 ≤ α ≤ α3,
0 if α ≥ α3,

(4)

where

α1 :=
1

log(1/q)
, α2 :=

p2 + q2

p2 log(1/p) + q2 log(1/q)
, and α3 :=

2
log(1/(p2 + q2))

(5)

are delimiters of α := limn k/ logn (k = k(n)), and

ρ :=
1

log(p/q)
log
(

1 − α log(1/p)
α log(1/q) − 1

)
.

Note that α1 ≤ α2; see Figure 2. The limiting estimate (4) gives a rough picture of
μn,k as follows: μn,k is of polynomial growth rate when α1 + ε ≤ α ≤ α3 − ε and is
smaller than any polynomial powers when 0 ≤ α ≤ α1 − ε and α ≥ α3 + ε. Near
the two boundaries α1 and α3, the behaviors of μn,k will undergo phase changes from
being subpolynomial to being polynomial or the other way around.

More refined asymptotics. To derive more precise asymptotics of μn,k than the
phase transitions (4) of the polynomial order of μn,k, we divide all possible values of
k into four overlapping ranges.

(I) Elementary range: 1 ≤ k ≤ α1(logn− log log logn+O(1)).
(II) Saddle-point range: α1(logn−log log logn+Kn) ≤ k ≤ α2(logn−Kn

√
logn).

(III) Gaussian transitional range: k = α2 logn+ o((log n)2/3).
(IV) Polar singularity range: k ≥ α2 logn+Kn

√
logn,

where, throughout this paper, Kn ≥ 1 represents a (generic) sequence tending to
infinity.

More precisely, in Theorem 1 we prove that for k lying in range (I) the expected
external profile μn,k first decays exponentially fast (asymptotic to qkn(1 − qk)n−1).
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Fig. 2. Left: a plot of α1, α2, and α3 (defined in (5)) as functions of p. Right: the (nonzero)
limiting order of log μn,k/ log n plotted against α = limn k/ log n for p = 0.55, 0.6, . . . , 0.9 (the spans
of the curves increase as p grows). The vertical lines represent the positions of α2 (to the right of
which the curves are straight lines); see (4).

Then, when k is around α1(logn− log log logn+ log(p/q− 1) +m log(p/q)) for some
integer m ≥ 0,

μn,k ∼ km

m!
pmqk−mne−np

mqk−m

,

which is of order

μn,k = O

(
log log n
logξ−m n

)
for some ξ. Thus, for m < ξ the expected external profile decays only logarithmically,
but for m ≥ ξ it increases logarithmically.

The behavior of μn,k in range (II) is described in Theorem 2. The situation
becomes highly nontrivial and interesting. More precisely, for α1(1 + ε) logn ≤ k ≤
α2(1 − ε) logn, we find that

μn,k ∼ G1

(
ρ; logp/q p

kn
) pρqρ(p−ρ + q−ρ)√

2παn,k log(p/q)
· nυ1

√
logn

,

where (αn,k := k/ logn)

υ1 = −ρ+ αn,k log(p−ρ + q−ρ),

ρ = − 1
log(p/q)

log
(
−1 − αn,k log q
1 + αn,k log p

)
,

and G1(ρ;x) is a periodic function. We plot in Figures 3 and 4 the periodic parts
of G1(−1, x) for a few values of p and ρ, respectively. Analytically, these oscillations
are consequences of an infinite number of saddle-points appearing in the integrand
of the associated Mellin transform of the expected profile, but visually they look like
certain sine waves due to the fact that the corresponding Fourier expansions involve a
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−6 × 10−3

1 p = 0.75
p = 0.85

p = 0.95

Fig. 3. The fluctuating part around the mean of the periodic function G1(−1; x) for p =
0.55, 0.65, . . . , 0.95 and for x in the unit interval; its amplitude tends to zero when p → 0.5+.

1.5 × 10−11

1.5 × 10−11

1

ρ = −1.5 3 × 10−6

3 × 10−6

1

ρ = 3.5 10

−10

1

ρ = 8.5

Fig. 4. The fluctuating part around the mean of the periodic function G1(ρ; x) for ρ ∈
{−1.5, 3.5, 8.5} and x ∈ [0, 1]. The amplitude increases as ρ grows.

Gamma function with increasing parameters, which decreases very fast along a fixed
vertical line for an increasing imaginary part, so that only a few terms dominate.

Finally, in Theorem 3 we prove that for k in range (IV)

μn,k ∼ 2pqn2(p2 + q2)k−1 =
2pq

p2 + q2
nυ2 ,

where υ2 = 2+αn,k log(p2 + q2), and the periodic function disappears. In this region,
the asymptotic behavior of the expected profile is dictated by the expected number
of pairs (of input-strings) having common prefixes of length at least k. This property
is analytically reflected by a polar singularity in the associated Mellin transform.
The asymptotics of μn,k in range (III) for k = α2 logn + o(log2/3 n) are presented
in Theorem 4. In this transitional range, the saddle-point coalesces with the polar
singularity, so we use the Gaussian integral to describe the behavior of μn,k.

In summary, our results roughly state that μn,k → 0 when 1 ≤ k ≤ k∗ for some
k∗ close to α1(logn− log log logn+O(1)), and then μn,k tends abruptly to infinity at
a logarithmic rate when k > k∗. Such an abrupt change has already been observed in
the literature for the shortest path and the fill-up level (see [49, 65]), but not much
is known for μn,k beyond that. Then we show that μn,k grows polynomially when k
lies in the range α1(1 + ε) logn ≤ k ≤ α3(1 − ε) logn, reaching the peak where it is
of order n/

√
logn; it decays at a slower rate afterwards until it tends to zero again

when k ≥ α3(logn + Kn). A salient feature here is the presence of an oscillating
function in the asymptotic approximation when p �= q.1 In Figure 5, a plot of the
rough silhouettes of μn,k is presented.

1The expected values of many shape characteristics of random tries often exhibit the asymptotic
pattern: ∼ F (logc n)n if log p/ log q is rational for some periodic function F and constant c expressible
in terms of p, and ∼ Cn if log p/ log q is irrational; see [37, 71, 79].
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α1 log n
log log n +O(1)

α0 log n

log n+O(1)
p log(1/p)+q log(1/q)

α2 log n
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α1 log n
log log n +O(1)

log n+O(1)
p log(1/p)+q log(1/q)

α2 log n

α3 log n+O(1)

Fig. 5. The silhouettes of the expected external (left) and internal (right) profiles of an asym-
metric trie (p = 0.75). Note that the right subtrees of the asymmetric trie have more nodes than
their left siblings since p > 1/2. Also, the first few levels contain almost no external nodes but are
almost full of internal nodes.

Asymptotics of the expected internal profile. The expected value of the internal
profile E(In,k) is discussed in section 6. In particular, the expected internal profile is
asymptotically equivalent to 2k for k ≤ α0(logn−Kn

√
logn), where α0 := 2/(log(1/p)

+ log(1/q)). When k ≥ α2(log n + Kn

√
logn), then E(In,k) ∼ (p2 + q2)E(Bn,k)/pq.

Between these two ranges, it is again the infinite number of saddle-points that yield
the dominant asymptotic approximation. Unlike μn,k, an additional phase transition
appears in the asymptotics of the E(In,k) when k = α0 logn + O(

√
logn), reflecting

the structural change of the internal nodes from being asymptotically full to being
of the same order as the number of external nodes. The silhouettes of the expected
internal profiles for a symmetric trie and an asymmetric (p = 0.75) trie are presented
in Figure 6.

Variance and limiting distributions. In section 4 we deal with the variance of
the profile. In particular, in Theorem 7 we derive asymptotic approximations to the
variance of the profile, which asymptotically turns out to be of the same order as the
expected value for all ranges of k ≥ 1; namely, V(Bn,k) = Θ(E(Bn,k)). In fact, we
show that V(Bn,k) ∼ E(Bn,k) in range (I), for range (IV) V(Bn,k) ∼ 2E(Bn,k), and in
range (II) (polynomial growth) the variance and the expected profile differ only by the
oscillating functions. The variance of the internal profile behaves almost identically
to the variance of the external profile; roughly, V(In,k) = Θ(V(Bn,k)) for all k. The
methods used to derive these results are the same as those used in section 3.

We then prove, in section 5, that both internal and external profiles, after proper
normalization, are asymptotically normally distributed iff the variance tends to infin-
ity (see Theorems 8 and 9). The limiting distribution is Poisson when the variance
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Fig. 6. The silhouettes of the expected external and internal profiles of a symmetric; compare
Figure 5.

remains bounded away from zero and infinity. In particular, we will prove that when
V(Bn,k) = Θ(1),

P (Bn,k = 2m) =
λm0
m!

e−λ0 + o(1) and P (Bn,k = 2m+ 1) = o(1),

where λ0 := pqn2(p2 + q2)k−1, while for V(In,k) = Θ(1), we find

P(In,k = m) =
λm1
m!

e−λ1 + o(1) (m = 0, 1, . . . ),

where λ1 := n2(p2 + q2)k/2. These results hold for both symmetric and asymmetric
tries, but the ranges where the variances become unbounded are different.

Symmetric tries. For the symmetric case, we have α1 = α2 = 1/ log 2. This
means that the two ranges separated by α2 coalesce into one for symmetric tries; see
Figure 2. The analysis then becomes simpler as shown in section 7. An interesting
property is that unlike for asymmetric tries, the fattest levels of profiles of symmetric
tries contain a linear number of nodes. The global picture of a random symmetric
trie is roughly as follows (α1 = 1/ log 2):

• When 1 ≤ k ≤ α1(log n − log log n + O((log n)−1)), each level is almost full
of internal nodes (In,k ≈ 2k), the number of external nodes tending to zero;
in particular, the variances of both profiles tend to zero.

• When α1(log n− log logn+ Kn/ logn) ≤ k ≤ 2α1(logn −Kn), where Kn is
any sequence tending to infinity, the variances of both profiles tend to infinity,
and we prove the asymptotic normality of both profiles.

• When k = 2α1(log n + O(1)), both profiles are asymptotically Poisson dis-
tributed, but Bn,k assumes only even values.

• When k ≥ α1(logn+Kn), then nodes appear very unlikely.
Section 8 describes some consequences of our main results. In particular, we

point out a rather unusual form of the local limit theorem for the depth due to the
oscillating factor in the expected profile. Then we apply our results to rederive typical
behavior for the height, the shortest path, and the fill-up level. Also, the width and
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the right-profile (counting only right branches and neglecting the left ones) are briefly
discussed.

This completes the summary of our main results. Precise formulations and proofs
are presented in the next five sections. Enjoy the reading!

3. Expected external profile. We derive asymptotic approximations to the
expected external profile μn,k in this section, starting with a few useful expressions
for μn,k.

Notation. Throughout this paper, p ∈ [1/2, 1) is fixed and q = 1−p. Let k = k(n)
and α := limn k/ logn, whenever the limit exists. The constants α1, α2, and α3 are
defined in (5). For convenience, we also write

Ln := logn, LLn := log logn, LLLn := log log logn.

The generic symbol ε is always used to represent a suitably small constant whose value
may vary from one occurrence to another, and Kn denotes any sequence tending to
infinity. The symbol f(n) = Θ(g(n)) means that there are positive constants C and
C′ such that C|g(n)| ≤ |f(n)| ≤ C′|g(n)|.

3.1. Exact expressions and integral representations. Denote byMk(z) the
probability generating function

∑
n≥0 μn,kz

n/n! of μn,k and by M̃k(z) the correspond-
ing Poisson generating function M̃k(z) := e−zMk(z).

Lemma 1. The Poisson generating function M̃k(z) satisfies the integral represen-
tation

M̃k(z) =
1

2πi

∫
(ρ)

z−sΓ(s+ 1)g(s)
(
p−s + q−s

)k ds(6)

for k ≥ 1 and �(z) > 0, where Γ denotes the Gamma function, g(s) := 1 − 1/(p−s +
q−s), and

∫
(ρ) stands for the integral

∫ ρ+i∞
ρ−i∞ . The integral with ρ > −2 is absolutely

convergent for �(z) > 0.
Proof. By taking the derivative with respect to y on both sides of (1) and then

substituting y = 1, we see that μn,k satisfies the recurrence (3) with the initial con-
ditions μn,k = δn,1δk,0 when either n ≤ 1 and k ≥ 0 or k = 0 and n ≥ 0. Note
that

μn,1 = n
(
pqn−1 + qpn−1

)
(n ≥ 2).

It follows that

Mk(z) = eqzMk−1(pz) + epzMk−1(qz) (k ≥ 2),

with M1(z) = z(peqz + qepz − 1). Thus M̃k(z) satisfies

M̃k(z) = M̃k−1(pz) + M̃k−1(qz).(7)

Iterating this equation yields

M̃k(z) =
∑

0≤j<k

(
k − 1
j

)
M̃1(pjqk−1−jz),(8)

from which (6) follows since the Mellin transform

M∗
1 (s) =

∫ ∞

0

zs−1M̃1(z)dz
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of M̃1(z) = pze−pz + qze−qz − ze−z equals

M∗
1 (s) = Γ(s+ 1)(p−s + q−s − 1),

where �(s) > −2, and the Mellin transform ofM1(pjqk−1−jz) is p−sjq−s(k−1−j)M∗
1 (s)

(see [23, 79]).
To justify the absolute convergence of the integral, we apply the Stirling formula

for the Gamma function (with complex parameter)

Γ(s+ 1) =
√

2πs
(s
e

)s (
1 +O

(
|s|−1

))
,

uniformly as |s| → ∞ and | arg s| ≤ π − ε, which implies that

|Γ(ρ+ it)| = Θ(|t|ρ−1/2e−π|t|/2),(9)

uniformly for |t| → ∞ and ρ = o(|t|2/3).
The integrand in (6) is analytic for �(s) > −2 and bounded above by

z−ρ−itΓ(ρ+ 1 + it)g(ρ+ it)
(
p−ρ−it + q−ρ−it

)k
= O

(
|z|−ρ|t|ρ+1/2e−π|t|/2+arg(z)t(p−ρ + q−ρ)k

)
for large |t|. This completes the proof of the lemma.

Corollary 1. The expected external profile μn,k satisfies, for n, k ≥ 1,

μn,k =
∑

0≤j≤k

(
k

j

)
pjqk−jn

(
1 − pjqk−j

)n−1

−
∑

0≤j<k

(
k − 1
j

)
pjqk−1−jn

(
1 − pjqk−1−j)n−1

(10)

and the integral representation

μn,k =
1

2πi

∫
(ρ)

Γ(n+ 1)Γ(s+ 1)
Γ(n+ 1 + s)

g(s)
(
p−s + q−s

)k ds (ρ > −2),(11)

where g(s) = 1 − 1/(p−s + q−s).
Proof. By definition and (8)

Mk(z)=
∑

0≤j<k

(
k − 1
j

)
pjqk−1−jz

(
pe(1−p

j+1qk−1−j)z + qe(1−p
jqk−j)z − e(1−p

jqk−1−j)z
)
.

Thus (the symbol [zn]f(z) denoting the coefficient of zn in the Taylor expansion of
f(z)),

μn,k = n![zn]Mk(z)

=
∑

0≤j<k

(
k − 1
j

)(
pj+1qk−1−jn

(
1 − pj+1qk−1−j)n−1

+ pjqk−jn
(
1 − pjqk−j

)n−1
)

−
∑

0≤j<k

(
k − 1
j

)
pjqk−1−jn

(
1 − pjqk−1−j)n−1

.
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Rearranging the indices of the first sum, we obtain (10).
On the other hand, it also follows from (7) that, denoting by μ̃n,k := n![zn]M̃k(z),

μ̃n,k = (pn + qn)μ̃n,k−1 (k ≥ 2),

with

μ̃n,1 =
∑

2≤j≤n

(
n

j

)
(−1)n−jμj,1 = (−1)nn (1 − pn − qn) (n ≥ 1).

Iterating this recurrence yields

μ̃n,k = (−1)nn (1 − pn − qn) (pn + qn)k−1 (n, k ≥ 1).

By definition, we have for n ≥ 2

μn,k =
∑

0≤j≤n

(
n

j

)
μ̃j,k =

∑
2≤j≤n

(
n

j

)
(−1)jj

(
1 − pj − qj

) (
pj + qj

)k−1
.(12)

The last sum falls under the so-called Rice integral representation for finite differences
(see [25, 79]) from which we conclude

μn,k =
1

2πi

∫
(ρ)

Γ(n+ 1)Γ(−s)
Γ(n+ 1 − s)

s (1 − ps − qs) (ps + qs)k−1 ds.

This gives (11). Absolute convergence of the integral in (11) when �(s) > −2 is
justified as above. Note that g(−1) = 0.

Remarks. The integral representation (11) follows formally from interchanging
the Cauchy and Mellin integrals as shown below:

μn,k =
n!
2πi

∫
z−n−1ezM̃k(z)dz(13)

=
n!
2πi

∫
z−n−1ez

(
1

2πi

∫
z−sΓ(s+ 1)g(s)

(
p−s + q−s

)k ds
)

dz

=
n!
2πi

∫
Γ(s+ 1)g(s)

(
p−s + q−s

)k ( 1
2πi

∫
z−n−1−sezdz

)
ds

=
n!
2πi

∫
Γ(s+ 1)

Γ(n+ s+ 1)
g(s)

(
p−s + q−s

)k ds.

Although all steps here can be justified by analytic properties of the functions involved
(which are essentially the estimates needed by the saddle-point method), the way we
proved (11), based solely on finite differences, does not rely on any analytic properties.

Note that since the Mellin transform of x(1− x)n−1, x ∈ (0, 1), equals Γ(n)Γ(s+
1)/Γ(n+ 1+ s), the exact expression (10) also follows from (11) by expanding (p−s+
q−s)k and then integrating term by term. For numerical purposes, the expression (10)
is preferable to (12), especially when k is not too large.

On the other hand, the closed-form expression (10) can also be proved directly by
either a direct combinatorial argument (see [65] for similar details) or an urn model
argument (see [59]).
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3.2. Road map of the proof through de-Poissonization. From the pre-
ceding analysis, we have a choice of two different integral representations: the Rice
integral (11) and the Cauchy integral (13). The approach via the Rice integral (11)
is simpler than that via the Cauchy and Mellin integrals (13), but the latter can be
easily amended for computing the variance and limiting distribution as will be evident
from sections 4 and 5. It is for this reason that we use here the route via the Cauchy
and Mellin integrals.

By the Poisson heuristic (2), we anticipate the asymptotic equivalence μn,k ∼
M̃k(n). We will see that this holds when q2kn→ 0 but requires suitable modification
when q2kn �→ 0.

A simple analytic de-Poissonization result. Define a sequence of (Charlier) poly-
nomials τ�(n) by

τ�(n) := n![zn]ez(z − n)� = �![z�](1 + z)ne−nz (� = 0, 1, . . . ).

Then τ0(n) = 1, τ1(n) = 0, τ2(n) = −n, τ3(n) = 2n, and τ4(n) = 3n2 − 6n. Note that
τ�(n) is a polynomial in n of degree ��/2.

Proposition 1. Let f(z) :=
∑

n anz
n/n! be an entire function, where an is a

given sequence, and let f̃(z) := e−zf(z). Write z = reiθ. If

|f(z)| ≤ f(r)e−crθ
2

(14)

holds uniformly for r ≥ 0, c > 0, and |θ| ≤ π, where f(r) ≥ 0, and

f̃ (�)(neiθ) = O
(
δ(n)�f̃(n)

)
(� = 0, 1, . . . )(15)

holds uniformly for |θ| ≤ θ1, where θ1 ≥ n−1/2+ε and δ(n) = o(n−1/2), then for any
�0 ≥ 2

an =
∑

0≤�<�0

f̃ (�)(n)
�!

τ�(n) +O
(
n�0/2δ(n)�0 f̃(n)

)
.(16)

Proof. By the Cauchy formula and the condition (14), we have

(17) an =
n!
2πi

∫
|z|=n

| arg(z)|≤θ0

z−n−1ez f̃(z)dz +O

(
n!n−nf(n)

∫ ∞

θ0

e−cnθ
2
dθ
)
,

where θ0 = n−2/5. By Stirling’s formula, we see that the O-term in (17) is bounded
above by

(18) O
(
n1/2f̃(n)n−1/2e−cn

1/5
)

= O
(
e−cn

1/5
f̃(n)

)
,

which is negligible in comparison to the main term f̃(n). It remains to evaluate the
first term in (17). To that purpose, we expand f̃(z) at z = n and then integrate term
by term, the error term introduced being of the form

n!
2πi(�0 − 1)!

∫
|z|=n

| arg(z)|≤n−2/5

z−n−1ez(z − n)�0
∫ 1

0

(1 − t)�0−1f̃ (�0)(n+ (z − n)t)dtdz,
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for any �0 ≥ 1, which is easily seen, by (15), to be bounded above by the O-term in
(16); see [30] for similar details. Since δ(n) = o(n−1/2), this proves the asymptotic
nature of (16).

Remark. In particular, we have

an = f̃(n) +O(nδ2(n)f̃(n)),

an = f̃(n) − n

2
f̃ ′′(n) +O

(
n2δ4(n)f̃(n)

)
(19)

for large n.
The theorem indicates that, when the regularity condition (14) and the smooth-

ness condition (15) both hold for M̃k(z), the asymptotics of μn,k are reduced to those
of their Poisson generating function M̃k(z) for large z near the real axis. Our effort
in this section is mostly devoted to finding the uniform bounds for justifying the de-
Poissonization result (16), which holds for μn,k when q2kn → 0. Note that although
the condition (14) may seem too strong for our purposes, it can be checked rather
systematically in the cases studied in this paper; see [37] for weaker conditions.

On the other hand, we show that when (16) fails (which is the case when q2kn �→
0), the same proof given above through the Cauchy integral (17) can be appropriately
amended because (18) also holds in this case. Thus when deriving our asymptotic esti-
mates for μn,k, we will either follow the de-Poissonization route through Proposition 1
or evaluate the integral (13) directly using (17).

3.3. Range (I): An elementary analysis. We show in this section that when
1 ≤ k ≤ α1(Ln − LLLn + O(1)), the asymptotics of μn,k are dictated by one or two
terms in the first sum of (10). Although the asymptotics of μn,k in this range can
be easily derived by (10) using only elementary arguments, we will use a lengthier
analytic approach based on Cauchy’s integral representation since this approach is
readily amended later for the asymptotics of the variance. Define

km := α1

(
Ln − LLLn + log

(
p

q
− 1
)

+m log
p

q

)
(m ≥ 0),(20)

Sn,k,j :=
(
k

j

)
pjqk−jn

(
1 − pjqk−j

)n−1
(0 ≤ j ≤ k).

For convenience, define k−1 = 0.
Our first result says that μn,k is asymptotic to Sn,k,m when km−1 < k < km

except when k is close to the boundaries, where the corresponding neighboring term
(either Sn,k,m−1 or Sn,k,m+1) is of the same order.

Theorem 1 (asymptotics of μn,k in range (I)). Assume m ≥ 0. If

km−1 +
α1Kn

LLn
≤ k ≤ km − α1Kn

LLn
,(21)

then

μn,k = Sn,k,m
(
1 +O((m + 1)e−Kn)

)
.(22)

If k = km + α1x/LLn, where x = o(
√
LLn), then

μn,k = Sn,k,m

(
1 +

pα1e
x

q(m+ 1)

)(
1 +O

(
x2LL−1

n + (m+ 1)L−(1−q/p)
n

))
.(23)
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Remark. Since log(p/q) < 1 for p ∈ (1/2, e/(e+1)), the interval (21) may contain
no integer.

By Theorem 1, the proofs of the following special cases are straightforward.
Corollary 2. If k ≥ 1 and qkn→ ∞, then

μn,k ∼ qkn(1 − qk)n−1;

if q2kn→ 0 and k ≤ α1(Ln − LLLn +Kn), then

Sn,k,m ∼ km

m!
pmqk−mne−p

mqk−mn (m ≥ 0).

On the other hand, the estimate

μn,k = Θ(Sn,k,m)(24)

holds uniformly for km−1 ≤ k ≤ km, m ≥ 0.
The proof of Theorem 1 is based on evaluating the Cauchy integral (13) along the

circle |z| = n by the same arguments used in the proof of Proposition 1 (see (18)).
Observe that

μn,k =
n!
2πi

∫
|z|=n

| arg(z)|≤θ0

z−n−1ezM̃k(z)dz +O
(
e−cn

1/5
M̃k(n)

)
,(25)

where the O-term is justified by applying the following estimate for Mk(z).
Lemma 2. Uniformly for r ≥ 0 and |θ| ≤ π

|Mk(reiθ)| ≤Mk(r)e−crθ
2

(r > 0; |θ| ≤ π)(26)

for all k = k(n) ≥ 1 and some constant c > 0.
The proof of (26) follows directly from the next proposition in view of (8) and

[zn]M1(z) ≥ 0.
Proposition 2. Let f(z) be an entire function and let z = reiθ, where r ≥ 0

and |θ| ≤ π. If

|ezf(z)| ≤ erf(r) (r ≥ 0; |θ| ≤ π),(27)

where f(r) ≥ 0, then the sum fk(z) :=
∑

0≤j≤k
(
k
j

)
f(pjqk−jz) satisfies

|ezfk(z)| ≤ erfk(r)e−crθ
2
,(28)

uniformly for k ≥ 0, r ≥ 0, and |θ| ≤ π, where c > 0 is independent of z and k.
Proof. By (27) and the elementary inequality

1 − cos θ ≥ 2
π2

θ2 (|θ| ≤ π),(29)

we obtain

|ezfk(z)| ≤
∑

0≤j≤k

(
k

j

)
e(1−p

iqk−j)r cos θep
jqk−jrf(pjqk−jr)

≤
∑

0≤j≤k

(
k

j

)
e(1−p

iqk−j)r(1−2θ2/π2)ep
jqk−jrf(pjqk−jr)

≤ e−2rθ2(1−pk)/π2
erfk(r).

This proves (28) with, say, c = 2(1 − p)/π2.
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Proof of (22) in Theorem 1. We next evaluate M̃k(z) more precisely in the fol-
lowing lemma whose proof is presented in Appendix A.

Let

Sk,m(z) :=
(
k − 1
m

)
pmqk−mze−p

mqk−mz.

Lemma 3. (i) (m = 0). If 1 ≤ k ≤ k0 − α1Kn/LLn, then

M̃k(z) = qkze−q
kz
(
1 +O(e−Kn)

)
,(30)

uniformly for |z| = n and arg(z) = o(LL−1/2
n ).

(ii) (m ≥ 1). If

k = α1 (Ln − LLLn + log(p/q − 1) +m log(p/q) − η) ,(31)

where m ≥ 1 and

Kn

LLn
≤ η ≤ log(p/q) − Kn

LLn
,

then

M̃k(z) = Sk,m(z)
(
1 +O(me−Kn)

)
,(32)

uniformly for |z| = n and arg(z) = o(LL−1/2
n ).

Using the above lemma, we now prove Theorem 1. It remains to evaluate the
integral in (25). We first consider the case m = 0. By substituting (30) into the
integral in (25), and by completing the arc | arg(z)| ≤ θ0 to a full circle, we see that

n!
2πi

∫
|z|=n

| arg(z)|≤θ0

z−n−1ezM̃k(z)dz =
qkn!
2πi

∫
|z|=n

| arg(z)|≤θ0

z−ne(1−q
k)zdz +O(E1)

= qkn![zn−1]e(1−q
k)z +O(E2) +O(E1),

where

E1 := e−Knn!n−nqkn

∫ θ0

−θ0
e(1−q

k)n cos θdθ,

E2 := qkn!n1−n
∫ π

θ0

e(1−q
k)n cos θdθ.

By inequality (29), we have

E1 = O

(
e−Knn1/2qkne−q

kn

∫ ∞

−∞
e−2n(1−qk)θ2/π2

dθ
)

= O
(
e−Knqkne−q

kn
)
.

Similarly,

E2 = O
(
qkne−q

knn−1/10e−2n1/5/π2
)
.

This completes the proof of (22) when m = 0. For m ≥ 1, we proceed in a similar
manner but using part (ii) of Lemma 3.
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Proof of (23) in Theorem 1. We now consider the remaining gaps when k is of
the form (31) with η = x/LLn, where x = o(

√
LLn). In this case, the same analysis as

above shows that both terms Sk,m(z) and Sk,m+1(z) are asymptotically close so that

M̃k(z) = (Sk,m(z) + Sk,m+1(z)) (1 +O(E3)) ,(33)

where the error E3 introduced is bounded above by

E3 = O

⎛⎝ ∑
0≤j<m

∣∣∣∣ Sk,j(z)Sk,m(z)

∣∣∣∣+ ∑
m+2≤j≤k

∣∣∣∣ Sk,j(z)Sk,m(z)

∣∣∣∣
⎞⎠

= O
(
(m+ 1)L−(1−qeη cos θ/p)

n

)
+O

⎛⎝m!
∑
j≥2

(pα1/q)j

(j +m)!
L
j− (p/q)j−1

p/q−1 eη cos θ
n

⎞⎠
= O

(
(m+ 1)L−(1−q/p)

n + (m+ 1)−1L−(p/q−1)
n

)
= O

(
(m+ 1)L−(1−q/p)

n

)
,

since 1 − q/p ≤ p/q − 1, where we used the inequality

tj − 1
t− 1

≥ t+ 1
2

j (t > 1; j ≥ 2),

and θ = o(LL−1/2
n ). Thus the same analysis as above gives

μn,k =
km

m!
pmqk−mne−p

mqk−mn

(
1 +

pL1−eη

n

q(m+ 1) log(1/q)

)(
1 +O

(
(m+ 1)L−(1−q/p)

n

))
,

which implies (23).

3.4. Range (II): A saddle-point analysis. We now assume that

α1 (Ln − LLLn +Kn) ≤ k ≤ α2(Ln −Kn

√
Ln),(34)

and proceed by the saddle-point method (see [79, 83]) to derive the following main
result of this subsection.

Theorem 2 (asymptotics of μn,k in range (II)). If k satisfies (34), then

μn,k = G1

(
ρ; logp/q p

kn
) n−ρ (p−ρ + q−ρ)k√

2πβ2(ρ)k

(
1 +O

(
1

k(p/q)ρ
+

1
k(ρ+ 2)2

))
,(35)

where ρ = ρ(n, k) > −2 is chosen to satisfy the saddle-point equation⎧⎪⎪⎨⎪⎪⎩
d
dρ
(
ρρe−ρn−ρ(p−ρ + q−ρ)k

)
= 0 if ρ ≥ 1,

d
dρ
(
n−ρ(p−ρ + q−ρ)k

)
= 0 if ρ ≤ 1,

(36)

and

β2(ρ) :=
p−ρq−ρ log(p/q)2

(p−ρ + q−ρ)2
,(37)

G1(ρ;x) =
∑
j∈Z

g(ρ+ itj)Γ(ρ+ 1 + itj)e−2jπix (tj := 2jπ/ log(p/q))
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with g(s) = 1 − 1/(p−s + q−s), and G1(ρ, x) is a 1-periodic function (see Figures 3
and 4).

We devote the rest of this subsection to the proof of Theorem 2.

3.4.1. Two-step saddle-point method. Here we outline the main steps of the
proof of Theorem 2. The approach may be called a two-step saddle-point method since
the saddle-point method will be applied twice. First, we start from the Mellin integral
(6) and apply the saddle-point method to obtain precise asymptotics of M̃k(reiθ) for
small θ (i.e., around the real axis) and large r. The proof here is complicated by the
fact that ∣∣p−ρ−it + q−ρ−it

∣∣ = p−ρ + q−ρ(38)

when t = tj = 2πj/ log(p/q), j ∈ Z, which implies that the number of saddle-points
with the same real part is infinite, yielding the 1-periodic function G1(ρ;x).

This first application of the saddle-point method yields a good approximation to
M̃k(z) for z large and near the real axis; then we de-Poissonize M̃k(z) by another
application of the saddle-point method and establish that μn,k ∼ M̃k(n). Ultimately,
we will use the de-Poissonization result of Proposition 1; however, in the first approx-
imation we do de-Poissonization by “bare hands” by applying the argument already
used in the proof of Proposition 1, namely, (17) and (18). Thus we focus on the
evaluation of the Cauchy integral (13) but with |θ| ≤ n−2/5 (the first integral of (25)).

3.4.2. Location of saddle-points. The integrand z−sΓ(s+1)g(s) (p−s + q−s)k

of the integral in (6) has simple poles at s = −j, j = 2, 3, . . . , the rightmost (dominant)
one being at s = −2; it also has saddle-points, which are the zeros of the equation

(39)
d
ds
(
Γ(s+ 1)n−s(p−s + q−s)k

)
= 0

(note that g(s) is uniformly bounded for all s). In view of (38), there are infinitely
many saddle-points of the form ρ+ itj/ log(p/q) (j = 0,±1, . . .), where the real part
ρ satisfies (39). Also it is easy to see that{

ρ→ +∞ if k
Ln

↓ 1
log(1/q) ,

ρ→ −∞ if k
Ln

↑ 1
log(1/p) .

We distinguish between two cases ρ ≥ 1 and −2 < ρ < 1. In the former, the
saddle-points are asymptotically determined, by Stirling’s formula for the Gamma
function, by the first equation in (36), which is simpler than (39), while in the latter
case they are asymptotically determined by the second equation of (36) since Γ(ρ+1)
is uniformly bounded and thus does not contribute significantly to the saddle-point
location.

More precisely, first consider the case when ρ ≥ 1 (the choice of 1 being arbitrary).
In this case, by (36), we obtain

k

Ln − log ρ
=

p−ρ + q−ρ

p−ρ log(1/p) + q−ρ log(1/q)
,

which can be written in the form

ρ =
1

log(p/q)
log
(
Ln − log ρ− k log(1/p)
k log(1/q) − Ln + log ρ

)
,
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whenever Ln − log ρ < k log(1/q), which will be seen to be the case when k satisfies
(34).

On the other hand, when ρ ≤ 1, we consider the second equation in (36) or

k

Ln
=

p−ρ + q−ρ

p−ρ log(1/p) + q−ρ log(1/q)
,

which is solved to be

ρ =
1

log(p/q)
log
(
Ln − k log(1/p)
k log(1/q) − Ln

)
.(40)

It follows that if k satisfies (34), then

ρ ≤ 1
log(p/q)

(
LLn − logKn + log

log(p/q)
log(1/q)

+ o(1)
)
,(41)

implying, in particular, that ρ = O(LLn). Also, if k = α1(Ln −LLLn + log log(p/q) +
Kn), then

ρ =
1

log(p/q)

(
LLn − logKn + log

log(p/q)
log(1/q)

+O(K−1
n )
)
.

However, if k is close to the right boundary of (34), more precisely, k = α2(1− εn)Ln,
where εn = o(1), then

ρ = −2 +
εn

α2β2(−2)
+O(ε2n).

Thus ρ = O(1).
From (41), we see that if ρ ≥ 1 and k satisfies (34), then kβ2(ρ) = Θ(k(p/q)ρ)

and

k(p/q)ρ ≥ Kn

log(p/q)
+ o(1);

on the other hand, if ρ ≥ −2 +KnL
−1/2
n , then k(ρ+ 2)2 ≥ K2

n. Thus the O-term in
(35) is small if we choose Kn sufficiently large.

3.4.3. More transparent behaviors of μn,k. Before we present a formal proof
of Theorem 2, we first discuss more transparent behaviors of μn,k in some specified
ranges.

The central range: α ∈ [α1 + ε, α2 − ε]. In this case, G1 is bounded andG1(ρ;x) ∼
G1(ρ′;x), where

(42) ρ′ :=
1

log(p/q)
log
(

1 − α log(1/p)
α log(1/q) − 1

)
;

also β2(ρ) ∼ β2(ρ′). Note that g(ρ+ itj) = 1 − pitj/(p−ρ + q−ρ) and

G1

(
ρ; logp/q p

kn
)

= G1

(
ρ; logp/q q

kn
)
.
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More precisely, if k = α(Ln + x
√
αβ2(ρ′)Ln), where α ∈ [α1 + ε, α2 − ε] and

x = o(L1/6
n ), then

μn,k = G1

(
ρ′; logp/q p

kn
) n−ρ′

(
p−ρ

′
+ q−ρ

′
)k

√
2παβ2(ρ′)Ln

e−x
2/2

(
1 +O

(
1 + |x|3√

Ln

))
,

uniformly in x. In particular, when α = 1/h, where h := p log(1/p)+ q log(1/q) is the
entropy of the Bernoulli variate, then ρ′ = −1, and it follows that

μn,k =

√
hG1

(
−1; logp/q pkn

)
log(p/q)

√
2πpq

· n√
Ln

e−x
2/2

(
1 +O

(
1 + |x|3√

Ln

))
,(43)

uniformly for x = o(L1/6
n ). Other approximations can be derived for L1/6

n � x =
o(
√
Ln). Thus μn,k reaches the maximum for k near Ln/h+O(1); also, μn,k increases

with k when α < 1/h and decreases with k when α > 1/h; see Figure 2. See also
Figure 3 for a plot of G1(−1;x) for a few p’s.

The left boundary: ρ → −2+ and ρ + 2 � L
−1/2
n . In this case, the dominant

periodicity vanishes because

G1(ρ;x) ∼
|g(−2)|
ρ+ 2

=
2pq

(p2 + q2)(ρ+ 2)
;

thus

μn,k ∼ 2√
2π log(p/q)(ρ+ 2)

k−1/2n−ρ (p−ρ + q−ρ
)k
.(44)

The right boundary: k/Ln → 1/ log(1/q)+. In this case, ρ→ ∞ and ρ = O(LLn).
The periodicity in the leading term of (35) does not vanish because we have

G1(ρ;x) ∼
∑
j∈Z

Γ(ρ+ 1 + itj)e−2jπix,

and G1 is not bounded. Indeed, the periodicity becomes more pronounced for increas-
ing ρ since ∣∣∣∣Γ(ρ+ 1 + it)

Γ(ρ+ 1)

∣∣∣∣ = O
(
e−t

2/(2ρ)+O(t4/ρ3)
)

for large ρ and t = o(ρ); see Figure 4. This estimate also implies that

G1(ρ;x) = O

⎛⎝∑
j∈Z

|Γ(ρ+ 1 + itj)|

⎞⎠ = O
(
e−ρρρ+1

)
= O

(
ρ1/2Γ(ρ+ 1)

)
.

The order is tight. This means that even if we normalizeG1(ρ;x) by Γ(ρ+1), |G1(ρ;x)|
still goes to infinity with ρ.
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3.4.4. Proof of Theorem 2. In view of (25) (more generally, de-Poissonization
Proposition 1), we need only evaluate M̃k(n) and obtain precise local expansions for
M̃k(neiθ) when |θ| ≤ θ0 in order to estimate the first integral of (25). We first focus
on estimating M̃k(n) and then extend the same approach to derive the asymptotics
of M̃k(neiθ). This suffices to prove that μn,k ∼ M̃k(n). Later in subsection 3.8 we
refine this analysis to obtain a better error term.

In order to evaluate M̃k(n) by the inverse Mellin transform, first we move the line
of integration of (6) to �(s) = ρ so that

M̃k(n) =
1
2π

∫ ∞

−∞
Jk(n; ρ+ it)dt,(45)

where ρ > −2 is the saddle-point chosen according to (36) and Jk(n; s) := n−sΓ(s+
1)g(s)(p−s+q−s)k. We now show that the above integral with |t| ≥

√
Ln is asymptot-

ically smaller than the dominant term in (35) and then assess the main contribution
of saddle-points falling into the range |t| ≤

√
Ln.

Estimate of the integral when |t| ≥
√
Ln. Assume from now on that ρ is chosen

as described above in (36).
Since our ρ > −2 satisfies (40), we have, by (9),

1
2π

∫
|t|≥

√
Ln

Jk(n; ρ+ it)dt = O

(
n−ρ(p−ρ + q−ρ)k

∫ ∞

√
Ln

|Γ(ρ+ 1 + it)|dt
)

= O

(
n−ρ(p−ρ + q−ρ)k

∫ ∞

√
Ln

tρ+1/2e−πt/2dt
)

= O
(
Lρ/2+1/4
n e−π

√
Ln/2n−ρ(p−ρ + q−ρ)k

)
.

On the other hand, since ρ = O(LLn) and ρ ≥ −2 +KnL
−1/2
n , we then obtain

Lρ/2+1/4
n e−π

√
Ln/2 = O

(
e−π

√
Ln/2+O(LL2

n)
)

= O
(
Γ(ρ+ 2)e−

√
Ln

)
for large enough n; the last O-term holds uniformly for ρ ≥ −2 + KnL

−1/2
n and ρ

satisfying (41).
Contribution from each saddle-point. Let j0 be the largest integer j for which

2jπ/ log(p/q) ≤
√
Ln. Then we can split the integral over

∫
|t|≤

√
Ln

as follows:∫
|t|≤

√
Ln

Jk(n; ρ+ it)dt =
∑

|j|<j0

∫
|t−tj |≤π/ log(p/q)

Jk(n; ρ+ it)dt

+
∫
tj0≤|t|≤

√
Ln

Jk(n; ρ+ it)dt.

The last integral is bounded above by

O
(
Γ(ρ+ 2)n−ρ(p−ρ + q−ρ)ke−

√
Ln

)
,

by the same argument used above. It remains to evaluate the integrals

Tj :=
1
2π

∫
|t−tj |≤π/ log(p/q)

Jk(n; ρ+ it)dt

for |j| < j0.
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We first derive a uniform bound for |p−ρ−it+ q−ρ−it|. By the elementary inequal-
ities (29) and

√
1 − x ≤ 1 − x

2
(x ∈ [0, 1]),

we have

∣∣p−ρ−it + q−ρ−it
∣∣ =

(
p−ρ + q−ρ

)√
1 − 2p−ρq−ρ

(p−ρ + q−ρ)2

(
1 − cos

(
t log

(
p

q

)))
≤
(
p−ρ + q−ρ

)(
1 − p−ρq−ρ

(p−ρ + q−ρ)2

(
1 − cos

(
(t− tj) log

(
p

q

))))
≤
(
p−ρ + q−ρ

)(
1 − 2p−ρq−ρ

π2(p−ρ + q−ρ)2
(t− tj)2 log

(
p

q

)2
)

≤
(
p−ρ + q−ρ

)
e−c0(t−tj)

2
,(46)

uniformly for |t− tj | ≤ π/ log(p/q), where

c0 = c0(ρ) :=
2p−ρq−ρ log(p/q)2

π2(p−ρ + q−ρ)2
=

2
π2

β2(ρ).

We now take

v0 :=
{
k−2/5 if − 2 < ρ ≤ 1,
(c0k)−2/5 if ρ ≥ 1,

and split the integration range into two parts: |t − tj | ≤ v0 and v0 < |t − tj | ≤
π/ log(p/q). (We assume that k is so large that v0 < π/ log(p/q).)

First consider the case when −2 < ρ ≤ 1. From the inequality (46), it follows
that

T ′′
j :=

1
2π

∫
v0≤|t−tj |≤π/ log(p/q)

Jk(n; ρ+ it)dt(47)

= O

(
|Γ(ρ+ 2 + itj)|n−ρ (p−ρ + q−ρ

)k ∫ ∞

k−2/5
e−c0kv

2
dv
)

= O

(
n−ρ (p−ρ + q−ρ

)k
k−3/5e−c0k

1/5 ×
{

|Γ(ρ+ 1 + itj)| if j �= 0
1 if j = 0

)
for each |j| ≤ j0.

When ρ ≥ 1 and satisfies (34), we have

T ′′
j = O

(
|Γ(ρ+ 1 + itj)|n−ρ (p−ρ + q−ρ

)k ∫ ∞

(c0k)−2/5
e−c0kv

2
dv

)
= O

(
|Γ(ρ+ 1 + itj)|n−ρ (p−ρ + q−ρ

)k (c0k)−3/5e−(c0k)
1/5
)

for |j| ≤ j0.
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The dominant terms. It remains to evaluate the integrals Tj for t in the range
|t− tj| ≤ v0. Note that, by our choice of tj ,

p−ρ−itj + q−ρ−itj = p−itj
(
p−ρ + q−ρ

)
= q−itj

(
p−ρ + q−ρ

)
,

so that

p−ρ−it + q−ρ−it

p−ρ−itj + q−ρ−itj
= 1 +

∑
�≥1

i�(t− tj)�

�!
· p

−ρ−itj log(1/p)� + q−ρ−itj log(1/q)�

p−ρ−itj + q−ρ−itj

= 1 +
∑
�≥1

i�(t− tj)�

�!
· p

−ρ log(1/p)� + q−ρ log(1/q)�

p−ρ + q−ρ
,

where we recall that tj = 2πj/ log(p/q).
It follows that

log
(
p−ρ−it + q−ρ−it

)
= log

(
p−ρ−itj + q−ρ−itj

)
+
∑
�≥1

β�(ρ)
�!

i�(t− tj)�,

where, in particular,

β1(ρ) =
p−ρ log(1/p) + q−ρ log(1/q)

p−ρ + q−ρ
.

The remaining manipulation by using the saddle-point method is then straight-
forward. We use the local expansions

(
p−ρ−it + q−ρ−it

p−ρ−itj + q−ρ−itj

)k
= exp

⎛⎝k ∑
1≤�≤3

β�(ρ)
�!

i�(t− tj)� +O(k|β4(ρ)||t− tj |4)

⎞⎠
and

Γ(ρ+ 1 + it)g(ρ+ it)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C0 + C1i(t− tj) +O

(
(t− tj)2

(ρ+ 2)2

)
if − 2 < ρ ≤ 1,

Γ(ρ+ 1 + itj)e(log ρ)i(t−tj)
(
1 + C2i(t− tj) +O(|C2|3|t− tj |2)

)
×
(
g(ρ+ itj) + g′(ρ+ itj)i(t− tj) +O

(
|t− tj|2

))
if ρ ≥ 1,

where{
C0 := Γ(ρ+ 1 + itj)g(ρ+ itj),
C1 := g(ρ+ itj)Γ(ρ+ 1 + itj)ψ(ρ+ 1 + itj) + g′(ρ+ itj)Γ(ρ+ 1 + itj),

ψ(s) = Γ′(s)/Γ(s) being the logarithmic derivative of the Gamma function, and

C2 := ψ(ρ+ 1 + itj) − log ρ (ρ ≥ 1).

Here C0 and C1 are defined to be their limits when ρ = −1 and j = 0, namely,{
C0 := p log(1/p) + q log(1/q),
C1 := − 2p−1

2

(
p log(p)2 − q log(q)2

)
− C0γ − 2pq log(p) log(q).
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Note that ψ(ρ+ 1 + itj) − log ρ = O(log(1 + |tj |)). It follows that for |j| < j0

Tj =
g(ρ+ itj)√
2πβ2(ρ)k

Γ(ρ+ 1 + itj)n−ρ−itj (p−ρ + q−ρ
)k
p−iktj

×
(

1 +O

(
1

kβ2(ρ)
+

1
k(ρ+ 2)2

))
.

Summing over all |j| < j0 and collecting all estimates, we obtain

M̃k(n) =
n−ρ (p−ρ + q−ρ)k√

2πβ2(ρ)k

∑
|j|<j0

g(ρ+ itj)Γ(ρ+ 1 + itj)(pkn)−itj

×
(

1 +O

(
1

k(p/q)ρ
+

1
k(ρ+ 2)2

))
.

An asymptotic approximation to M̃k(z). To complete the de-Poissonization, we
need a more precise expansion of M̃k(neiθ) for small θ. The above proof by the saddle-
point method can be easily extended mutatis mutandis to M̃k(z) for complex values
of z lying in the right half-plane since we can write (7) as

M̃k(neiθ) =
1

2πi

∫
(ρ)

n−se−iθsΓ(s+ 1)g(s)
(
p−s + q−s

)k ds,

where ρ > −2 and |θ| ≤ π/2 − ε. The result is

M̃k(neiθ) =
(p−σ + q−σ)k√

2πβ2(ρ)k

∑
|j|<j0

g(σ + itj)Γ(σ + 1 + itj)(neiθ)−ρ−itjp−iktj

×
(

1 +O

(
1

k(p/q)ρ
+

1
k(ρ+ 2)2

))
,(48)

uniformly for |θ| ≤ π/2 − ε and k lying in the range (34). Note that the index of the
sum can be extended to infinity, but it is easier to manipulate a finite sum than an
infinite series since we substitute the right-hand side into the Cauchy integral (13)
and then integrate term by term. This completes the proof of (35).

3.5. Range (IV): A singularity analysis. We consider range (IV) first, leav-
ing to the next subsection the analysis in the transitional range when k = α2Ln +
o(L2/3

n ).
We show that, for k ≥ α2Ln + Kn

√
Ln, the asymptotics of the expected profile

M̃k(n) are dictated by the simple pole at s = −2 in (6) or, structurally, by the number
of pairs of input-strings sharing the same prefixes of length at least k.

Theorem 3. If

k ≥ α2

(
Ln +Kn

√
α2β2(−2)Ln

)
,(49)

where β2 is defined in (37), then

μn,k = 2pqn2(p2 + q2)k−1
(
1 +O

(
K−1
n e−K

2
n/2+O(K3

n/
√
Ln)
))

,(50)

uniformly for 1 � Kn = o(
√
Ln).
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Proof. To prove (50), we move the line of integration (by absolute convergence of
the integral) of the integral in (6) to �(s) = �, where

� := −2 − Kn√
α2β2(−2)Ln

.

Thus M̃k(neiθ) equals the residue of the integrand at s = −2 (the dominant term in
(50)) plus the integral along �(s) = �:

M̃k(neiθ) = |g(−2)|n2e2iθ(p2 + q2)k +
1
2π

∫ ∞

−∞
Jk(neiθ; �+ it)dt,

where |g(−2)| = 2pq/(p2 + q2). It remains only to estimate the last integral. By the
same analysis used for T ′′

j (see (47)) and the inequality (46), we have

1
2π

⎛⎝∫
|t|≤π/ log(p/q)

+
∑
|j|≥1

∫
|t−tj |≤π/ log(p/q)

⎞⎠ Jk(neiθ; �+ it)dt

= O

(
|Γ(�+ 1)|n−� (p−� + q−�

)k ∫
|t|≤π/ log(p/q)

e−c0kt
2
dt

)

+O

⎛⎝n−� (p−� + q−�
)k ∑

|j|≥1

∣∣∣∣Γ(�+ 1 +
2|j| − 1
log(p/q)

πi

)∣∣∣∣ e(2|j|+1)π|θ|/ log(p/q)

×
∫
|t−tj |≤π/ log(p/q)

e−c0k(t−tj)2dt

)

= O

(
k−1/2

|�+ 2| n
−� (p−� + q−�

)k)
= O

(
K−1
n n−� (p−� + q−�

)k)
,

where we used (9) to bound the sum∑
|j|≥1

∣∣∣∣Γ(�+ 1 +
2|j| − 1
log(p/q)

πi

)∣∣∣∣ e(2|j|+1)π|θ|/ log(p/q)

= O

⎛⎝∑
|j|≥1

(2|j| − 1)�+1/2 exp
(
−π

2(2|j| − 1)
2 log(p/q)

+
(2|j| + 1)π|θ|

log(p/q)

)⎞⎠
= O(1),

uniformly for |θ| ≤ π/2 − ε.
By our choice of � and by straightforward expansion, we have

K−1
n n−� (p−� + q−�)k

n2 (p2 + q2)k
= O

(
K−1
n e−Ln(�+2)+ k

α2
(�+2)+ k

2 β2(−2)(�+2)2+O(k|�+2|3)
)

= O
(
K−1
n e−K

2
n/2+O(K3

n/
√
Ln)
)
.

Thus

M̃k(neiθ) = |g(−2)|(neiθ)2(p2 + q2)k
(
1 +O

(
K−1
n e−K

2
n/2+O(K3

n/
√
Ln)
))

,(51)
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uniformly for |θ| ≤ π/2 − ε. Substituting this into (25), we deduce the desired result
(50).

Remarks. (i) When Kn ≥ ε
√
Ln, we can either take Kn = ε

√
Ln or refine the

analysis to give a better error term.
(ii) The asymptotic approximation (50) can also be derived from the exact ex-

pression (10) by using only elementary arguments.
(iii) Also note that the range (49) implies that the saddle-point ρ satisfies ρ ≤

−2−Kn/
√
Ln, but the contribution from this saddle-point is asymptotically negligible

(compared to the polar singularity).

3.6. Range (III): A uniform analysis. We consider in this subsection the
transitional range k = α2Ln+o(L2/3

n ) and show that the transitional behavior of μn,k
in this range is well described by a Gaussian distribution function.

Theorem 4. If

k = α2

(
Ln + ξ

√
α2β2(−2)Ln

)
,(52)

where ξ = ξn,k = o(L1/6
n ), then

μn,k = |g(−2)|Φ(ξ)n2
(
p2 + q2

)k (
1 +O

(
1 + |ξ|3√

Ln

))
,(53)

uniformly in ξ, where Φ(ξ) = (2π)−1/2
∫ ξ
−∞ e−t

2/2dt.
Proof. We assume first that k satisfies (52) and k < α2L (or ξ < 0). We move the

line of integration of the integral in (11) to �(s) = ρ, where ρ is taken to be of the
same form as in (40); asymptotically

ρ = −2 − ξ√
α2β2(−2)Ln

+O
(
ξ2L−1

n

)
.(54)

By a similar analysis as the proof of Theorem 3, we obtain

M̃k(neiθ) =
1
2π

∫
|t|≤L−2/5

n

Jk(neiθ; ρ+ it)dt

+O
(
|Γ(ρ+ 1 + iL−2/5

n )|n−ρ (p−ρ + q−ρ
)k
e−c0L

1/5
n

)
+O

(
k−1/2n−ρ (p−ρ + q−ρ

)k)
,

where |θ| < π/2. By (54), we have

|Γ(ρ+ 1 + iL−2/5
n )| = O

(
1

|ξ|L−1/2
n + L

−2/5
n

)
= O(L2/5

n ).

It follows that

M̃k(neiθ) =
1
2π

∫
|t|≤L−2/5

n

Jk(neiθ; ρ+ it)dt+O
(
k−1/2n−ρ (p−ρ + q−ρ

)k)
.

Note that since s �→ Γ(s+ 1) + 1/(s+ 2) is analytic for |s+ 2| ≤ 1 − ε, we have

M̃k(neiθ) =
|g(−2)|

2π

∫
|t|≤L−2/5

n

n−ρ−ite−iθ(ρ+it)

ρ+ 2 + it

(
p−ρ−it + q−ρ−it

)k
dt

+O
(
k−1/2n−ρ (p−ρ + q−ρ

)k)
.
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The integral on the right-hand side is evaluated as follows:

|g(−2)|
2π

∫
|t|≤L−2/5

n

n−ρ−ite−iθ(ρ+it)

ρ+ 2 + it

(
p−ρ−it + q−ρ−it

)k
dt

=
|g(−2)|

2π
n−ρe−iθρ

(
p−ρ + q−ρ

)k ∫
|t|≤L−2/5

n

eθt−β2(ρ)kt
2/2+O(k|t|3)

ρ+ 2 + it
dt

=
|g(−2)|

2π
n−ρe−iθρ

(
p−ρ + q−ρ

)k ∫ ∞

−∞

e−t
2/2

ξ0 + it

(
1 +O

(
|t| + |t|3√

Ln

))
dt,(55)

where

ξ0 := (ρ+ 2)
√
β2(ρ)k > 0.

Note that ξ0 = −ξ +O
(
ξ2L

−1/2
n

)
by (52) and (54). Since ξ0 > 0, we have

1
2π

∫ ∞

−∞

e−t
2/2

ξ0 + it
dt =

1
2π

∫ ∞

−∞
e−t

2/2

∫ ∞

0

e−v(ξ0+it)dvdt

=
1
2π

∫ ∞

0

e−vξ0
∫ ∞

−∞
e−t

2/2−itvdtdv

=
1√
2π

∫ ∞

0

e−v
2/2−vξ0dv

= eξ
2
0/2Φ(−ξ0).

The error term in (55) is estimated similarly and satisfies

L−1/2
n

∫ ∞

−∞

(|t| + |t|3)e−t2/2

|(ρ+ 2)
√
β2(ρ)k + it|

dt = O

(
L−1/2
n

∫ ∞

0

(v + v3)e−v
2/2−vξ0dv

)
.

Observe that

ex
2/2Φ(−x) =

{
O
(
x−1

)
if x→ ∞,

O
(
ex

2/2
)

if x→ −∞.
(56)

Also ∫ ∞

0

(v + v3)e−v
2/2−vxdv =

{
O
(
x−2

)
if x→ ∞,

O
(
|x|3ex2/2

)
if x→ −∞,

so that ∫ ∞

0

v3e−v
2/2−vxdv = O

(
ex

2/2Φ(−x)(1 + |x|3)
)
.

Thus

M̃k(neiθ) = |g(−2)|(neiθ)−ρ
(
p−ρ + q−ρ

)k
eξ

2
0/2Φ(−ξ0)

(
1 +O

(
1 + |ξ|3√

Ln

))
+O

(
k−1/2n−ρ (p−ρ + q−ρ

)k)
,(57)
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uniformly for |θ| ≤ π/2 − ε. Substituting this in (25) and using the expansions

n−ρ (p−ρ + q−ρ
)k = n2

(
p2 + q2

)k
e−ξ

2/2+O(|ξ|3L−1/2
n ),

eξ
2
0/2Φ(ξ0) = eξ

2/2Φ(ξ)
(
1 +O

(
|ξ|3L−1/2

n

))
,

we deduce (53) when ξ < 0.
The restriction that ξ < 0 can now be removed by continuity (when ξ0 = 0 the

integral path has to be properly indented) or by a similar analysis. This proves (53).
One can easily check, by (56), that the asymptotic estimate (53) coincides with

the two estimates (44) and (50) when ξ → −∞ and ξ → ∞, respectively.
Remark. The appearance of the normal distribution function is typical when a

saddle-point coalesces with a simple pole; see [83]. Also, the polynomial order (4) of
μn,k now follows from (35), (50), and (53).

3.7. The range where the expected profile grows unbounded. An impor-
tant consequence of the preceding results is the following characterization of the range
where μn,k → ∞, which also will be seen to be the range where Bn,k is asymptotically
normally distributed.

Theorem 5. Define

m0 :=
⌈

1
p/q − 1

⌉
and α3 :=

2
log 1

p2+q2

.

Then μn,k → ∞ iff

α1

(
Ln − LLLn − logm0 +m0 log

(
p

q

)
− LLLn −Kn

m0LLn

)
≤ k ≤ α3 (Ln −Kn)

as n→ ∞.
Proof. Consider first the upper bound. If k ≤ α3Ln − x, then

n2(p2 + q2)k ≥ (p2 + q2)−x,

which tends to infinity if x→ ∞; on the other hand, if k ≥ α3Ln−x, then the reverse
inequality holds and the right-hand side remains bounded if x is less than a positive
constant.

For the lower bound, we use the estimate (24). First, if k ≤ k0 = α − 1
(Ln − LLLn + log(p/q − 1)) (see (20)), then

μn,k = Θ(qkne−q
kn) = o(1).

Next, if km−1 ≤ k ≤ km, m ≥ 1, then by (24)

μn,k = Θ(Sn,k,m) = Θ(Lm−eη/(p/q−1)
n LLn),

where k is written in the form (31). Since η ∈ [0, log(p/q)], we have

m− p

p− q
≤ m− eη

p/q − 1
≤ m− q

p− q
.

Also, by the definition of m0, we have the inequalities

m0 − 1 <
q

p− q
=

1
p/q − 1

≤ m0.
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Thus if m ≤ m0 − 1, then

m− eη

p/q − 1
≤ m− q

p− q
< m−m0 + 1 ≤ 0,

implying that μn,k → 0 for k ≤ km0−1. Similarly, since

m0 ≤ p

p− q
< m0 + 1,

we have

m− eη

p/q − 1
≥ m− p

p− q
> m−m0 − 1 ≥ 0,

when m ≥ m0 + 1. Therefore, μn,k → ∞ if k ≥ km0 (and remains in the range
k ≤ α1(Ln − LLLn +Kn)).

The remaining range is km0−1 ≤ k ≤ km0 in which μn,k = Θ(Lm0−eη/(p/q−1)
n LLn),

where

k = α1(Ln − LLLn + log(p/q − 1) +m0 log(p/q) − η).

We distinguish three cases: (i) if

η ≥ logm0 + log(p/q − 1) +
LLLn +Kn

m0LLn
,

then μn,k = Θ(Lm−eη/(p/q−1)
n LLn) and

Lm−eη/(p/q−1)
n LLn ≤ e−Kn → 0;

(ii) if

η = logm0 + log(p/q − 1) +
LLLn + x

m0LLn
,

then

μn,k ∼ Sn,k,m0 ∼ αm0
1

(m0 − 1)!
e−x,

uniformly for x = O(1); and
(iii) if

η ≤ logm0 + log(p/q − 1) +
LLLn −Kn

m0LLn
,

then μn,k = Θ(Lm−eη/(p/q−1)
n LLn) and

Lm−eη/(p/q−1)
n LLn ≥ eKn → ∞.

Thus μn,k is bounded away from zero and infinity in the second case.
This proves the theorem when k lies in ranges (I) and (IV). The remaining cases

follow easily from (35) and (53).
Let {x} denote the fractional part of x. The lower bound can be further refined

as follows.
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Corollary 3. Let

k̂ := α1

(
Ln − LLLn − logm0 +m0 log(p/q) − LLLn

m0LLn

)
,(58)

where m0 = �1/(p/q − 1)�. Then (i) μn,k → ∞ for �k̂� ≤ k ≤ α3(Ln − Kn); (ii)
μn,k → 0 for k ≤ �k̂� − 2; and (iii)

μn,�k̂�−1

{
= Θ(1) if {k̂} = O(LL−1

n ),
→ 0 otherwise.

Proof. The proof is similar to that of Theorem 5. We consider only the last case.
First write

�k̂� − 1 = k̂ − {k̂} = α1 (Ln − LLLn + log(p/q − 1) +m0 log(p/q) − η′) ,

where

η′ = logm0 + log
(
p

q
− 1
)

+ {k̂}/α1 +
LLLn
m0LLn

.

(We assume that k̂ is not an integer.) Then we follow the same proof as above by
distinguishing three cases. In particular, the case when k̂ is an integer is also covered
by the bounded case.

The result is to be compared with Pittel’s result in [65], which says that the
probability that the shortest path equals either 〈κn〉 or 〈κn〉+1 tends to 1, where 〈x〉
denotes the nearest integer to x and

κn = α1

(
Ln − LLLn − log max

j≥1
j(q/p)j

)
.

Note that

− logmax
j≥1

j(q/p)j = − logm0 +m0 log(p/q).

Our result is slightly more precise; see section 8.

3.8. Refinement of μn,k by de-Poissonization. All expansions for μn,k that
we have derived so far are in terms of slowly decreasing powers of L−1

n or LL−1
n ,

which will turn out to be insufficient for the asymptotics of the variance because
of cancellation of dominant terms. Thus in this section we derive a more effective
expansion for μn,k in terms of M̃k(n) and its higher derivatives; namely, we derive an
expression of the form (19). The major difference here is that we do not substitute
the asymptotic expansions for M̃k(n) into the Cauchy integral representation for μn,k,
resulting in a less explicit asymptotic approximation to μn,k but with a much better
error term.

We start with a lemma in which we again use k0 = α1(Ln−LLLn+ log(p/q− 1)).
Lemma 4. Define

ρ0 :=

⎧⎨⎩
qkn if 1 ≤ k ≤ k0,
ρ if ρ ≥ 1 and k ≥ k0,
1 if ρ ≤ 1,

(59)
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where ρ is given by (36). Then

M̃
(�)
k (neiθ) = O

(
ρ�0n

−�M̃k(n)
)
,(60)

uniformly for θ = o(LL−1/2
n ).

Proof. If � ≥ 1, then, by (8),

M̃
(�)
k (z) =

∑
0≤j<k

(
k − 1
j

)
(pjqk−1−j)�M̃ (�)

1 (z)

=
∑

0≤j<k

(
k − 1
j

)
(pjqk−j)�+1ze−p

jqk−jz
(
1 +O

(
|z|−1

))
as |z| → ∞ and �(z) > 0. If 1 ≤ k ≤ k0 (see (20)), then a proof similar to (and
simpler than) that of (30) shows that

M̃
(�)
k (neiθ) = O

(
qk(�+1)ne−q

kn cos θ
)

= O
(
ρ�0n

−�M̃k(n)
)
,

uniformly for θ = o(LL−1/2
n ). If km−1 ≤ k ≤ km, where m ≥ 1, then the proof of (30)

is also easily amended and we obtain

M̃
(�)
k (neiθ) = O

(
km(pmqk−m)�+1ne−p

mqk−mn cos θ
)

= O
(
LL�nn

−�M̃k(n)
)
,

uniformly for θ = o(LL−1/2
n ). Note that ρ = O(LLn) when km−1 ≤ k ≤ km, m ≥ 1.

For the proof of (60) in the remaining ranges of k, we use the integral representation

M̃
(�)
k (z) =

(−1)�

2πi

∫
(ρ)

s(s+ 1) · · · (s+ �− 1)z−s−�Γ(s+ 1)g(s)
(
p−s + q−s

)k ds

and a simpler analysis than that given above for M̃k(z). In particular, when k lies in
the saddle-point range (II) and ρ ≥ 1, we have, by the same analysis used for (46),

M̃
(�)
k (neiθ)

= O

⎛⎝n−ρ−�
∑
j∈Z

|ρ+ itj |� |Γ(ρ+ 1 + itj)|
∫
|t−tj |≤π/ log(p/q)

∣∣(p−ρ−it + q−ρ−it)k
∣∣dt
⎞⎠

= O

⎛⎝k−1/2(q/p)ρ/2(p−ρ + q−ρ)kn−ρ−�ρ�
∑
j∈Z

|1 + itj |�|Γ(ρ+ 1 + itj)|

⎞⎠
= O

(
k−1/2(q/p)ρ/2(p−ρ + q−ρ)kn−ρ−�ρ�

)
= O

(
ρ�n−�M̃k(n)

)
,

uniformly for |θ| ≤ π/2 − ε. The other cases are treated similarly. Alternatively, we
can use the estimates (48), (51), and (57) for M̃k(neiθ) and the integral formula

M̃
(�)
k (z) =

�!
2πi

∫
|w−z|≤ε|z|/ρ0

M̃k(w)
(w − z)�+1

dw,
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following a standard analysis (referred to as Ritt’s theorem in [61, pp. 9–10]).
An application of Proposition 1 (analytic de-Poissonization) and the above lemma

leads to our refinement.
Theorem 6. If q2kn→ 0, then

μn,k = M̃k(n) − n

2
M̃ ′′
k (n) +O

(
ρ4
0n

−2M̃k(n)
)
,(61)

where ρ0 is given in (59).
Proof. By (26) and (60), we can take δ(n) = ρ0/n, which is o(n−1/2) if q2k

n→ 0.
Remark. The condition that q2kn→ 0 is also necessary for μn,k ∼ M̃k(n) because

otherwise μn,k ∼ qkn(1 − qk)n−1, which is not asymptotically equivalent to M̃k(n).
Note also that (61) and (60) imply that μn,k = M̃k(n)

(
1 +O(ρ2

0n
−1)
)
.

4. Variance of the external profile. Asymptotic approximations to σ2
n,k :=

V(Bn,k) are derived in this section. It turns out that the variance is of the same order
as the mean in all ranges, implying that the standard deviation is small; therefore
we expect asymptotic normality when the variance tends to infinity with n. The
calculations here are more involved due to the cancellation of dominant orders of
μ2
n,k. The key idea is a suitable manipulation of the corresponding de-Poissonized

approximations for the mean and the second moments.

4.1. Recurrence and generating functions of the second moment. Let
νn,k := E(B2

n,k) denote the second moment of Bn,k. By (1), we have the recurrence

νn,k =
∑

0≤j≤n

(
n

j

)
pjqn−j (νj,k−1 + νn−j,k−1) + ωn,k

for n, k ≥ 1 with νn,0 = δn,1, where

ωn,k := 2
∑

0≤j≤n

(
n

j

)
pjqn−jμj,k−1μn−j,k−1.

Generating functions. Let Nk(z) :=
∑

n νn,kz
n/n!. Then Nk(z) satisfies

Nk(z) = eqzNk−1(pz) + epzNk−1(qz) + ωk(z) (k ≥ 2)

with N1(z) = 2pqz2 + M1(z), where ωk(z) := 2Mk−1(pz)Mk−1(qz). It follows that
the Poisson generating function Ñk(z) := e−zNk(z) satisfies

Ñk(z) = Ñk−1(pz) + Ñk−1(qz) + ω̃k(z),

where ω̃k(z) = 2M̃k−1(pz)M̃k−1(qz). By iterating this functional equation, we obtain

Ñk(z) =
∑

0≤�<k

(
k − 1
�

)
Ñ1(p�qk−1−�z) +

∑
0≤m≤k−2

∑
0≤�≤m

(
m

�

)
ω̃k−m(p�qm−�z)

for k ≥ 2.
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Regularity of Nk(z). The following estimate is useful in justifying the application
of the saddle-point method and the de-Poissonization procedure.

Lemma 5. Let z = reiθ, where r ≥ 0 and |θ| ≤ π. Then the estimate

|Nk(z)| ≤ Nk(r)e−crθ
2

(62)

holds for r ≥ 0 and |θ| ≤ π for some constant c independent of r, k, and θ.
Proof. We start from

Nk(z)

= ez
∑

0≤�<k

(
k − 1
�

)
Ñ1(p�qk−1−�z) + ωk(z) + ez

∑
1≤m≤k−2

∑
0≤�≤m

(
m

�

)
ω̃k−m(p�qm−�z)

and apply Lemma 2 to the first sum. For the second term, we observe first that, by
(26),

|ωk(z)| ≤ 2Mk−1(pr)Mk−1(qr)e−crθ
2

= ωk(r)e−crθ
2
,

uniformly for r ≥ 0 and |θ| ≤ π. It remains to estimate the last sum∣∣∣∣∣∣ez
∑

1≤m≤k−2

∑
0≤�≤m

(
m

�

)
ω̃k−m(p�qm−�z)

∣∣∣∣∣∣ ,
for which we apply the same argument as that used in the proof of Lemma 2, yielding
an estimate of the type (28). Collecting the three parts gives (62).

An auxiliary function for asymptotic variance. As a good approximation to V(Bn,k),
define Ṽk(z) := Ñk(z) − M̃2

k (z). Then Ṽk(z) satisfies

Ṽk(z) = Ṽk−1(pz) + Ṽk−1(qz) (k ≥ 2),

which, by iteration, yields

Ṽk(z) =
∑

0≤j<k

(
k − 1
j

)
Ṽ1(pjqk−1−jz),(63)

where

Ṽ1(z) = M̃1(z) + 2pqz2e−z − M̃2
1 (z).

It follows that

Ṽk(z) =
1

2πi

∫
(ρ)

z−sΓ(s+ 1)h(s)
(
p−s + q−s

)k ds,(64)

where ρ > −2 and

h(s) := 1 − 1
p−s + q−s

− s+ 1
p−s + q−s

(
p−s + q−s + 1

2s+2
− 2p

(1 + p)s+2
− 2q

(1 + q)s+2

)
;

compare (6).
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4.2. Asymptotics of σ2
n,k. In this section we show that the variance σ2

n,k :=
V(Bn,k) is asymptotically equivalent to μn,k when k lies in range (I) and 2μn,k when
k lies in ranges (III) and (IV), and is of the same order as μn,k in the central range
(II).

Theorem 7. (i) If 1 ≤ k ≤ α1(1 + o(1))Ln, then

(65) σ2
n,k ∼ μn,k.

(ii) If α1(Ln − LLLn +Kn) ≤ k ≤ α2(Ln −Kn

√
Ln), then

σ2
n,k = G2

(
ρ; logp/q p

kn
) n−ρ (p−ρ + q−ρ)k√

2πβ2(ρ)k

(
1 +O

(
1

k(p/q)ρ
+

1
k(ρ+ 2)2

))
,(66)

where ρ = ρ(n, k) > −2 is given in (36) and

G2(ρ;x) =
∑
j∈Z

h(ρ+ itj)Γ(ρ+ 1 + itj)e−2jπix (tj := 2jπ/ log(p/q)).

(iii) If k ≥ α2(1 − o(1))Ln, then

(67) σ2
n,k ∼ 2μn,k.

Proof. Since most details are similar to those for μn,k, only the key differences
will be highlighted. We separate the analysis into two overlapping cases: 1 ≤ k ≤
k0 = α1(Ln − LLLn + log(p/q − 1)) and q2kn→ 0.

Consider the first case when 1 ≤ k ≤ k0. In this range, M̃k(neiθ) → 0 for
θ = o(LL−1/2

n ) by (30) and (33). By (63) and the same proof of (30), we have

Ṽk(neiθ) = M̃k(neiθ)
(
1 +O

(
qkne−q

kn cos θ
))

,

uniformly for θ = o(LL−1/2
n ). Then since

νn,k = n![zn]Nk(z) = n![zn]ez
(
Ṽk(z) + M̃2

k (z)
)
,

and μn,k → 0, it is straightforward to show, by (30), (62), and the proof of (22), that
σ2
n,k ∼ μn,k in this case, which establishes (65).

We now consider the range q2kn → 0 that will cover the other two cases. We
will show that V(Bn,k) ∼ Ṽk(n), which in turn will imply (66) and (67) (indeed,
|h(−2)| = 2|g(−2)| = 4pq/(p2 + q2)).

In this case, by the integral representation (64) and the same method of proof for
M̃k(z), we have

Ṽ
(�)
k (neiθ) = O

(
ρ�0n

−�Ṽk(n)
)
,(68)

uniformly for θ = o(LL−1/2
n ) whenever q2kn → 0. On the other hand, since M̃k(z)

satisfies the estimate (60), we have

d�

dz�
M̃2
k (z)

∣∣∣
z=neiθ

= O
(
ρ�0n

−�M̃2
k (n)

)
(� = 0, 1, . . . ),
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uniformly for θ = o(LL−1/2
n ). Thus Ñk(z) = Ṽk(z) + M̃2

k (z) also satisfies condition
(15) of Proposition 1. Therefore, by (19) of Proposition 1 we have

νn,k = Ñk(n) − n

2
Ñ ′′
k (n) +O

(
ρ4
0n

−2Ñk(n)
)

for k ≥ k0. Note that Ñk(n) = Θ(μ2
n,k) when μn,k → ∞, but Ñk(n) = Θ(μn,k) when

μn,k → 0.
On the other hand, by (61),

μ2
n,k = M̃2

k (n) − nM̃k(n)M̃ ′′
k (n) +O

(
ρ4
0n

−2M̃2
k (n)

)
.

Therefore

σ2
n,k = Ṽk(n)

(
1 +O(ρ2

0n
−1μn,k)

)
,

whenever q2kn → 0. Note that the O-term is at most of order LL2
nL

−1/2
n . In fact, a

further refinement (see (16 or [37]) shows that

σ2
n,k = Ṽk(n) − nM̃ ′

k(n)2 − n

2
Ṽ ′′
k (n) +O

(
ρ4
0n

−2Ñk(n)
)
.

It remains to derive asymptotic approximations to Ṽk(n), which follow the same meth-
ods of proof used for M̃k(n), the only difference being changing all occurrences of g(s)
to h(s). In particular, G2(ρ;x) ∼ G1(ρ;x) when ρ → ∞, which corresponds to
k ≤ α1(1 + o(1))Ln; also |h(−2)| = 2|g(−2)| = 4pq/(p2 + q2). This proves (66) and
(67).

We conclude this section with two corollaries.
Corollary 4. As n→ ∞, the variance σ2

n,k → ∞ iff the mean μn,k → ∞.
Corollary 5. If μn,k → ∞, then Bn,k/μn,k → 1 in probability.
Proof. The proof follows from Theorem 7 and Chebyshev’s inequality.

5. Limiting distribution. We prove in this section that the limiting distribu-
tion of Bn,k is normal if σn,k → ∞ and is Poisson if the variance remains bounded.
Since the mean and the variance are asymptotically of the same order, the conditions
can also be stated by replacing σn,k → ∞ by μn,k → ∞. These results cover the
range when k ≥ α1(Ln − LLn + O(1)) and k ≤ α2(Ln + O(1)). Outside this range,
μn,k → 0, so Bn,k → 0 in probability.

Theorem 8. (i) If σn,k → ∞, then

Bn,k − μn,k
σn,k

d−→ N (0, 1),(69)

where N (0, 1) denotes a standard normal random variable and d−→ stands for conver-
gence in distribution.

(ii) If σn,k = Θ(1), then{
P (Bn,k = 2m) =

λm0
m!

e−λ0 + o(1),

P (Bn,k = 2m+ 1) = o(1),
(70)

uniformly for (finite) m ≥ 0, where λ0 := pqn2(p2 + q2)k−1.
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Note that (70) implies that Bn,k takes asymptotically only even numbers when
the mean is bounded. This indeed holds in the wider range when

k ≥ 3
log(1/(p3 + q3))

(Ln +Kn).

Intuitively, this is the range where
(
n
j

)
(pj+ qj)k → 0 for all j ≥ 3, where

(
n
j

)
(pj + qj)k

is the expected number of groups of j input-strings having common prefixes of length
at least k; since

∑
j≥3

(
n
j

)
(pj + qj)k → 0, all nodes appearing at levels ≥ k are most

likely only in pairs (see [32] for more precise local limit theorems for Bn,k).

Let σ̃n,k :=
√
Ṽk(n) − nM̃ ′

k(n)2 (see Theorem 7). We will prove, by extending
the above de-Poissonization procedure, that

E exp

(
Bn,k − M̃k(n)

σ̃n,k
iϕ

)
= e−ϕ

2/2

(
1 + O

(
1 + |ϕ|3
σn,k

))
,(71)

uniformly for ϕ = o(σ1/5
n,k ), which implies (69) by Lévy’s continuity theorem since

μn,k ∼ M̃k(n) and σn,k ∼ σ̃n,k when μn,k → ∞. Note that as far as the central limit
theorem is concerned, the validity of (71) in the range ϕ = O(1) suffices; observe also
that centering Bn,k by the exact mean or normalizing Bn,k by the exact variance will
result in a poorer error term.

Our method of proof of (71) is roughly as follows. We start by deriving a closed-
form expression for the bivariate generating function Pk(z, y) =

∑
n≥0 Pn,k(y)z

n/n!
by using the recurrence (1). We then will apply the Cauchy integral representation
to prove (71), for which we need, as in the analytic de-Poissonization used above, a
crude estimate for |Pk(neiθ, eiϕ)| for |θ| away from zero, as well as a more precise local
expansion when |θ| is very close to zero. The proof for the Poisson limit law (70) is
similar.

5.1. An exact expression for Pk(z, y). By (1), we have the functional equa-
tion

Pk(z, y) = Pk−1(pz, y)Pk−1(qz, y) (k ≥ 2)

with

P1(z, y) = ez + (y − 1)z (p(eqz − 1) + q(epz − 1)) + pq(y − 1)2z2.

By iterating this functional equation, we obtain

Pk(z, y) =
∏

0≤j<k
P1(pjqk−1−jz, y)(

k−1
j ) (k ≥ 1).(72)

This expression, although explicit, is less transparent from an asymptotic viewpoint.

5.2. A uniform estimate for |Pk(reiθ, y)|. We first prove a uniform bound
on |Pk(reiθ , y)| that is necessary for the proof of Theorem 8.

Proposition 3. Uniformly for k ≥ 1, r ≥ 0, |θ| ≤ π and |y| = 1,

|Pk(reiθ , y)| ≤ er−crθ
2

(73)

for some constant c > 0 independent of k, r, and θ.
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In order to prove the above proposition we need a lemma.
Lemma 6. If z = reiθ, where r ≥ 0 and |θ| ≤ π, then

|ez − 1 − z| ≤ (er − 1 − r)e−c1rθ
2
,(74)

where c1 := 2/(3π2). On the other hand, if r ≥ r0, where r0 ≈ 1.37 solves the equation
er − r = er/3 + 1, then

|ez − z| ≤ (er − r)e−c1rθ
2/2 (|θ| ≤ π).(75)

Proof. The first inequality is a special case of Pittel’s inequality (see [65])∣∣∣∣∣∣ez −
∑

0≤j<m

zj

j!

∣∣∣∣∣∣ ≤
⎛⎝er − ∑

0≤j<m

rj

j!

⎞⎠ e−2rθ2/(π2(m+1)) (r ≥ 0; |θ| ≤ π).

A simple proof of (74) (following [65]) is as follows:

|ez − 1 − z| = |ez/3|
∣∣∣e2z/3 − (1 + z)e−z/3

∣∣∣
= er cos(θ)/3

∣∣∣∣∣∣
∑
j≥2

zj

j!3j
(
2j + (−1)j(3j − 1)

)∣∣∣∣∣∣
≤ er cos(θ)/3(e2r/3 − (1 + r)e−r/3),

since 2j + (−1)j(3j − 1) ≥ 0 for j ≥ 2. Thus (74) follows from (29).
For the proof of inequality (75), we have

|ez − z| ≤ |ez − 1 − z| + 1

≤ (er − 1 − r)e−c1rθ
2
+ 1

≤ (er − r)e−c1rθ
2/2,

since the last inequality is equivalent to

1 − e−c1rθ
2 ≤ (er − r)e−c1rθ

2/2
(
1 − e−c1rθ

2/2
)
,

or ec1rθ
2/2 + 1 ≤ er − r, which follows from our choice of r in view of the inequalities

ec1rθ
2/2 + 1 ≤ er/3 + 1 ≤ er − r.
Proof of Proposition 3. We separate the proof into two cases: r ≤ r0 and r ≥ r0,

where we recall that r0 ≈ 1.37 solves the equation er − r = er/3 + 1. In the first case,
we use the expansion

P1(z, y) = 1 + z +
z2

2
(
1 − 2pq(1 − y2)

)
+
∑
j≥2

zj

j!
(
1 − j(pqj−1 + qpj−1)(1 − y)

)
,

which yields

|P1(reiθ , eiϕ)| ≤ |1 + reiθ| +
∑
j≥2

rj

j!

≤ er − 2rθ2

π2(1 + r)

≤ er−c2rθ
2
,(76)
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uniformly for 0 ≤ r ≤ r0 and |θ| ≤ π, where we used again (29) and c2 := 2/(π2(1 +
r0)2er0).

Assume now r ≥ r0. We can write P1(z, y) as follows:

P1(z, y) = a1(pz)a1(qz) + z + (qza2(pz) + pza2(qz))y + pqz2y2,

where a1(z) := ez − z and a2(z) := ez − 1 − z. Note that P1(z, 1) = ez. By applying
the two inequalities (74) and (75), we have∣∣P1(reiθ , eiϕ)

∣∣ ≤ a1(pr)a1(qr)e−c1rθ
2/2 + r + qra2(pr)e−c1prθ

2

+ pra2(qr)e−c1qrθ
2
+ pqr2

≤
(
er − r − pqr2

)
e−c1qrθ

2
+ r + pqr2

≤ er−c1qrθ
2/2,(77)

the last inequality following from an argument similar to the proof of (75). Indeed, it
is equivalent to

(r + pqr2)(ec1qrθ
2/2 + 1) ≤ er,

but the left-hand side is less than (r + r2/4)(er/6 + 1), which is in turn less than er

for r ≥ 0.99.
Collecting the two inequalities (76) and (77), we obtain

|P1(reiθ , eiϕ)| ≤ er−crθ
2

(c = min{c1, c2}),

uniformly for r ≥ 0 and |θ| ≤ π. This implies (73) by (72).

5.3. Local expansion of Pk(reiθ, eiϕ). Recall that θ0 := n−2/5 and ρ0 is
defined in (59).

Proposition 4. Assume that μn,k → ∞. Then uniformly for |θ| ≤ θ0 and
ϕ = o(σ−2/3

n,k )

Pk(neiθ, eiϕ) = exp

(
n− n

2
θ2 + M̃k(n)iϕ− nM̃ ′

k(n)ϕθ − Ṽk(n)
2

ϕ2 +O(E4)

)
,

(78)

where

E4 := n|θ|3 + ρ2
0σ

2
n,k|ϕ|θ2 + ρ0σ

2
n,kϕ

2|θ| + σ2
n,k|ϕ|3.

Proof. Define

Q(z, y) := log e−zP1(z, y) = log
(
1 + a3(z)(y − 1) + a4(z)(y − 1)2

)
,

where a3(z) := pze−pz + qze−qz − ze−z and a4(z) := pqz2e−z. Let

Qk(z, y) :=
∑

0≤j<k

(
k − 1
j

)
Q(pjqk−1−jz, y) = log e−zPk(z, y).

First, we prove in Lemma 7 of Appendix B that P1(reiθ , eiϕ) is away from zero for
r ≥ 0 and |θ| ≤ ε, implying that Qk(z, y) is well defined when | arg(z)| ≤ ε.
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Then since μn,k → ∞, we need only consider k ≥ k0. To that purpose, we start
from the expansion

Q(z, y) =
{
pq(y2 − 1)z2 +O(|y − 1||z|3) as z → 0,
q(y − 1)ze−qz

(
1 +O(e−(p−q)(z))

)
as z → ∞, | arg(z)| ≤ ε.

(79)

By (79), we have

Qk(z, y) =
1

2πi

∫
(ρ)

z−sQ∗(s, y)(p−s + q−s)k−1ds,(80)

where ρ > −2 and Q∗(s, y) :=
∫∞
0
zs−1Q(z, y)dz is well defined for �(s) > −2. Note

that

Q(z, y) = a3(z)(y − 1) +
2a4(z) − a3(z)2

2
(y − 1)2 + Q̄(z, y)(y − 1)3,

where by Taylor’s remainder formula

Q̄(z, y) :=
∫ 1

0

(1 − t)2(a3(z) + 2a4(z)(y − 1)t)

× (a3(z)2 − 3a4(z) + a3(z)a4(z)(y − 1)t+ a4(z)2(y − 1)2t2)
(1 + a3(z)(y − 1)t+ a4(z)(y − 1)2t2)3

dt.

The exact form is of less importance here; we need instead the estimates Q̄(z, y) =
O(|z|4) = O(|z|2) as z → 0 and

Q̄(z, y) = O
(
|z|3e−3q(z)

)
= O

(
|z|e−q(z)

)
as z → ∞ in the sector {z : | arg(z)| ≤ ε}. This expansion gives

Qk(z, y) = M̃k(z)(y − 1) +
Ṽk(z) − M̃k(z)

2
(y − 1)2 + Q̄k(z, y)(y − 1)3,

where

Q̄k(z, y) :=
∑

0≤j<k

(
k − 1
j

)
Q̄(pjqk−1−jz, y).

An application of Lemma 8 presented in Appendix C yields, with z = neiθ,

Qk(z, y) = M̃k(z)(y − 1) +
Ṽk(z) − M̃k(z)

2
(y − 1)2 +O

(
|y − 1|3|M̃k(neiθ)|

)
,

where the O-term holds uniformly for |θ| ≤ ε and |y − 1| = o(1). Since σ2
n,k =

Θ(μn,k) → ∞, this leads to (78) by expansions of M̃k(neiθ) and Ṽk(neiθ) at θ = 0,
using the estimates (60) and (68). This completes the proof of Proposition 4.

5.4. Proof of Theorem 8. We are now ready to prove Theorem 8.
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Proof of the central limit theorem (69). By Cauchy’s integral formula and the two
estimates (73) and (78), we have, similar to (25),

E
(
eBn,kiϕ

)
=

n!
2πi

∫
|z|=n

z−n−1Pk(z, y)dz

=
n!n−n

2π
en+M̃k(n)iϕ−Ṽk(n)ϕ2/2

×
∫ θ0

−θ0
e−nθ

2/2−nM̃ ′
k(n)ϕθ (1 +O(E4)) dθ +O

(
n−1/10e−cn

1/5
)
,

since E4 → 0 in the range of integration and when ϕ = o(σ−4/5
n,k ). Applying Stirling’s

formula, extending the integration limits to ±∞, and making the change of variables
θ �→ θn−1/2, we obtain

E
(
eBn,kiϕ

)
=
eM̃k(n)iϕ−σ̃2

n,kϕ
2/2

√
2π

∫ ∞

−∞
e−(θ+

√
n M̃ ′

k(n)ϕ)2/2

×
(

1 +O

(
1 + |θ|3√

n
+
θ2

n
ρ2
0σ

2
n,k|ϕ| +

|θ|√
n
ρ0σ

2
n,kϕ

2 + σ2
n,k|ϕ|3

))
dθ,

uniformly in ϕ. A straightforward evaluation of the integral gives (71). This completes
the proof of (69).

Proof of the Poisson limit theorem (70). The proof of (70) is similar to the pre-
vious proof but proceeds slightly differently. We first show that

Qk(neiθ, y) := log e−zPk(z, y) = λ0(y2 − 1)e2iθ +O
(
|y − 1|n−e(p)

)
,(81)

uniformly for |y| = 1 and |θ| ≤ ε, where e(p) := 2 log(p3 + q3)/ log(p2 + q2)−3 ∈ (0, 1)
for p ∈ (1/2, 1).

This follows from the Mellin inversion integral (80) since the Mellin transform
Q∗(s, y) has a simple pole at s = −2 with residue pq(y2 − 1) and can be meromorphi-
cally continued into the whole s-plane. Indeed, by moving the line of integration of
the integral in (80) to �(s) = −3 − ε, we obtain

Qk(neiθ, y) = λ0(y2 − 1)e2iθ +O
(
|y − 1|n3(p3 + q3)k

)
,

whenever |θ| ≤ π/2 − ε and

k ≥ Ln +Kn

log((p2 + q2)/(p3 + q3))
.

Since μn,k = Θ(1), we know that k = α3Ln +O(1), and for such values of k, we have
n3(p3 + q3)k = Θ(n−e(p)). Thus (81) follows.

By (81) and the same choice of θ0 and (73), we then deduce that

E
(
eBn,kiϕ

)
=
eλ0(e

2iϕ−1)

√
2π

∫ n1/10

−n1/10
e−θ

2/2
(
1 +O

(
n−e(p)|ϕ|

))
×
(

1 +
12λ0(e2iϕ − 1)iθ − iθ3

6
√
n

+O

(
1 + λ0|ϕ|θ2 + θ6

n

))
dθ

= eλ0(e
2iϕ−1) (1 +O(E5)) ,
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uniformly for |ϕ| ≤ π, where E5 := |ϕ|n−e(p) + (1 + λ0|ϕ|)n−1. Thus

P

(
Bn,k

2
= m

)
=

1
2π

∫ π

−π
e−imϕ+λ0(e

iϕ−1) (1 +O(E5)) dϕ,

from which the even case in (70) follows since, by (50), μn,k ∼ 2λ0. The odd case is
similar.

Remark. Note that λ0 is periodic in nature since k = α3Ln + O(1) ∈ Z; indeed,
we can write

k = �α3Ln + � = α3Ln + �− {α3Ln} (� ∈ Z),

so that

n2(p2 + q2)k = exp
(
− 2
α3

(�− {α3Ln})
)
.

This is why we did not state the Poisson convergence (70) in the usual form: if
λ0 → λ < ∞, then Bn,k converges in distribution to 2Po(λ), where Po(λ) denotes a
Poisson variate with parameter λ.

6. The internal profile. We consider the internal profile in this section. All
asymptotic results follow the same footsteps as in the proof we used for Bn,k; details
will thus be omitted. The main differences are that E(In,k) and V(In,k) are not of
the same order for all ranges of k, and In,k assumes both odd and even values when
k = α3Ln + O(1). These are intuitively clear since most levels close to the root are
full and internal nodes do not necessarily appear in pairs near the fringes of the tree.

Let P [I]
n,k(y) = E(yIn,k) be the probability generating function of In,k. Then

P
[I]
n,k(y) =

∑
0≤j≤n

(
n

j

)
pjqn−jP

[I]
j,k−1(y)P

[I]
n−j,k−1(y) (n ≥ 2; k ≥ 1),(82)

with the initial conditions

P
[I]
n,k(y) =

{
y if n ≥ 2 and k = 0,
1 if n ≤ 1 and k ≥ 0.

From this, we obtain, defining P [I]
k (z, y) :=

∑
n P

[I]
n,k(y)z

n/n!,

P [I]
k (z, y) =

∏
0≤j≤k

P [I]
0 (pjqk−jz, y)(

k
j) (k ≥ 0),(83)

with P [I]
0 (z, y) = yez + (1 − y)(1 + z). This suggests that we consider

Īn,k := 2k − In,k,

so that the bivariate generating function P [Ī]
k (z, y) :=

∑
n P

[Ī]
n,k(y)z

n/n! is given by

P [Ī]
k (z, y) =

∏
0≤j≤k

P [Ī]
0 (pjqk−jz, y)(

k
j) (k ≥ 0),

with P [Ī]
0 (z, y) = ez + (y−1 − 1)(1 + z).
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6.1. Expected internal profile. We state without proof the asymptotics of
E(In,k) in this subsection. By (82) or (83), we deduce that the Poisson generating
function

M̃
[I]
k (z) := e−z

∑
n≥0

E(In,k)
n!

zn

satisfies

M̃
[I]
k (z) = 2k −

∑
0≤j≤k

(
k

j

)
M̃

[I]
0 (pjqk−jz)(84)

= 2k − 1
2πi

∫
(ρ)

z−s(s+ 1)Γ(s)(p−s + q−s)kds,(85)

where ρ > 0 and M̃ [I]
0 (z) = (1 + z)e−z. Thus, in particular,

E(In,k) = 2k −
∑

0≤j≤k

(
k

j

)(
1 + pjqk−j(n− 1)

) (
1 − pjqk−j

)n−1
.

Due to the presence of 2k or the simple pole at s = 0 in (85), we have an additional
phase transition for E(In,k) at ρ = 0 or, equivalently, at k ∼ α0Ln, where

α0 :=
2

log(1/p) + log(1/q)
.

We now list asymptotic approximations of E(In,k) for various ranges of k (without
proofs since they follow the same lines as the derivations presented above for the
external profile).

Asymptotics of E(In,k) when 1 ≤ k ≤ α1(1 + o(1))Ln. Since

M̃
[I]
1 (z) = 2k − (1 + pz)e−pz + (1 + qz)e−qz = 2k − qze−qz

(
1 +O(|z|−1)

)
as |z| → ∞ in the sector | arg(z)| ≤ π/2 − ε, we see immediately that in this range

E(In,k) = 2k − E(Bn,k)(1 + o(1)),(86)

uniformly in k.
Asymptotics of E(In,k) when α1(Ln − LLLn +Kn) ≤ k ≤ α0(Ln −Kn

√
Ln). By

applying the saddle-point method to the Mellin inversion integral in (85) and then
de-Poissonizing, we deduce that in this range

E(In,k) = 2k −G3

(
ρ; logp/q p

kn
) n−ρ (p−ρ + q−ρ)k√

2πβ2(ρ)k

(
1 +O

(
1

k(p/q)ρ
+

1
kρ2

))
,

where ρ = ρ(n, k) > 0 satisfies the saddle-point equation (36), β2(ρ) is the same as in
(37), and

G3(ρ;x) =
∑
j∈Z

(ρ+ 1 + itj)Γ(ρ+ itj)e−2jπix,

where tj := 2jπ/ log(p/q).
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Asymptotics of E(In,k) when k = α0(Ln + o(L2/3
n )). In this range, we write

k = α0(Ln + ξ
√
α0β2(0)Ln),

where α0β2(0) = 2(log(1/p)+log(1/q))/ log(p/q)2 and ξ = o(L1/6
n ). The same uniform

asymptotic analysis we used for proving (53) gives

E(In,k) = 2kΦ(−ξ)
(

1 +O

(
1 + |ξ|3√

Ln

))
,

uniformly in ξ, where Φ(x) denotes the standard normal distribution function.
Asymptotics of E(In,k) when α0(Ln + Kn

√
Ln) ≤ k ≤ α2(Ln − Kn

√
Ln). The

same saddle-point method and de-Poissonization procedure yield

E(In,k) = G3

(
ρ; logp/q p

kn
) n−ρ (p−ρ + q−ρ)k√

2πβ2(ρ)k

(
1 +O

(
1

k(p/q)ρ
+

1
k(ρ+ 2)2

))
,

(87)

with ρ, β2(ρ), and G3 as defined above.
Asymptotics of E(In,k) when k = α2(Ln + o(L2/3

n )). In this case, we write

k = α0(Ln + ξ
√
α2β2(−2)Ln),

and we have

E(In,k) =
1
2
Φ(ξ)n2(p2 + q2)k

(
1 +O

(
1 + |ξ|3√

Ln

))
,

uniformly for ξ = o(L1/6
n ).

Asymptotics of E(In,k) when k ≥ α2(Ln +Kn

√
Ln). In this case, the simple pole

at s = −2 in the integrand of (85) dominates, and we have

E(In,k) =
1
2
n2(p2 + q2)k

(
1 +O

(
K−1
n e−K

2
n/2+O(K3

nL
−1/2
n )

))
as n→ ∞.

6.2. Asymptotics of V(In,k). Since V(In,k) = V(Īn,k), we can apply the same
analysis used for proving Theorem 7 to derive asymptotic approximations to V(In,k).
The auxiliary function we need is

Ṽ
[I]
k (z) := e−z

∑
n≥0

E(Ī2
n,k)
n!

zn −

⎛⎝e−z∑
n≥0

E(Īn,k)
n!

zn

⎞⎠2

,

which satisfies

Ṽ
[I]
k (z) =

∑
0≤j≤k

(
k

j

)
Ṽ

[I]
0 (pjqk−jz) (k ≥ 0),(88)

where Ṽ [I]
0 (z) = (1 + z)e−z(1 − (1 + z)e−z). Thus we have

Ṽ
[I]
k (z) =

1
2πi

∫
(ρ)

z−s(s+ 1)Γ(s)
(
1 − 2−s − s2−s−2

)
(p−s + q−s)kds,

where ρ > −2.
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Asymptotics of V(In,k) when 1 ≤ k ≤ α1(1 + o(1))Ln. In this range, we have

V(In,k) ∼ V(Bn,k) ∼ E(Bn,k).

Asymptotics of V(In,k) when α1(Ln − LLLn +Kn) ≤ k ≤ α2(Ln −Kn

√
Ln). We

have

V(In,k) = G4

(
ρ; logp/q p

kn
) n−ρ (p−ρ + q−ρ)k√

2πβ2(ρ)k

(
1 +O

(
1

k(p/q)ρ
+

1
k(ρ+ 2)2

))
,

where ρ = ρ(n, k) > −2 satisfies the saddle-point equation (36) and

G4(ρ;x) =
∑
j∈Z

(ρ+ 1 + itj)Γ(ρ+ itj)
(
1 − 2−ρ−itj − (ρ+ itj)2−ρ−2−itj ) e−2jπix.

Asymptotics of V(In,k) when k ≥ α2(Ln+Kn

√
Ln). In this case, the simple pole

at s = −2 again dominates, and we have

V(In,k) ∼ E(In,k).

Observe that, unlike for the external profile, the variance of the internal profile is
asymptotically equivalent to the mean of the internal profile near the height of a trie.

From these asymptotic estimates and from Chebyshev’s inequality, we see that
In,k/E(In,k) → 1 in probability if E(In,k) → ∞; see [15].

6.3. Limiting distributions. The same limiting Gaussian–Poisson behavior for
Bn,k holds for In,k. We state formally our main result for the internal profile in the
following theorem. The proof is indeed simpler than that for Theorem 8 since the
base function P [I]

0 (z, y) has a simpler form than P0(z, y).
Theorem 9. (i) If V(In,k) → ∞, then

In,k − E(In,k)√
V(In,k)

d−→ N (0, 1).

(ii) If V(In,k) = Θ(1), then, with λ1 := n2(p2 + q2)/2,

P(In,k = m) =
λm1
m!

e−λ1 + o(1)(89)

for all m ≥ 0.
The theorem states that asymptotic normality (in the sense of convergence in

distribution) holds as long as

�k̂� ≤ k ≤ α3Ln −Kn

for any sequence Kn → ∞, where k̂ is defined in (58).
On the other hand, In,k is asymptotically Poisson distributed when k = α3Ln +

O(1). A result related to (89) was given in [65] by a method of moments, as a key
step in deriving the asymptotic distribution of the height.

7. Profiles under the unbiased Bernoulli model. All exact expressions we
have derived up to now, as well as most asymptotic approximations, also hold when
p = q = 1/2. The major difference is reflected by the fact that α1 = α2 (see Figure 2),
so that the saddle-point range between α1 and α2 does not exist, and most of the
analysis we give above becomes much simpler. For simplicity of presentation, we omit
all error terms in our asymptotic estimates.
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Expected external profile. By (8), the Poisson generating function of E(Bn,k) is
given exactly by

M̃k(z) = z
(
e−z/2

k − e−z/2
k−1
)

(k ≥ 1).(90)

From this we deduce, by our de-Poissonization procedures, that

E(Bn,k) ∼
{

n
(
1 − 2−k

)n−1
if 2−kn→ ∞,

M̃k(n) if 4−kn→ 0,
(91)

where the condition 4−kn→ 0 is due to the properties that

M̃
(�)
k (z) = O

(
2−k�|M̃k(z)|

)
(| arg(z)| ≤ π/2 − ε)

and 2−k = o(n−1/2); see Proposition 1 and compare with (61). In particular,

E(Bn,k) ∼
{
ne−t

(
1 − e−t

)
if 2−kn→ t ∈ (0,∞),

2−kn2 if 2−kn→ 0.

Note that these approximations can also be easily derived by the exact formula

E(Bn,k) = n
(
1 − 2−k

)n−1 − n
(
1 − 21−k)n−1

,(92)

by (90) or (10). But such an elementary approach becomes messier for the calculation
of the variance. Also

max
k

E(Bn,k) ∼
n

4
,

which is reached when k ∼ log2 n− 1.
Expected internal profile. In a similar manner, we have, by (84),

M̃
[I]
k (z) = 2k − (2k + z)e−z/2

k

(k ≥ 0).

Therefore, the expected internal profiles satisfy

E(In,k) ∼
{

2k − n
(
1 − 2−k

)n−1
if 2−kn→ ∞,

M̃
[I]
k (n) if 4−kn→ 0.

Consequently,

E(In,k) ∼
{

2k
(
1 − (1 + t)e−t

)
if 2−kn→ t ∈ (0,∞),

2−k−1n2 if 2−kn→ 0.

Note that

E(In,k) = 2k
(
1 −

(
1 − 2−k

)n)− n
(
1 − 2−k

)n−1

and

max
k

E(In,k) ∼ c3n,(93)

where c3 ≈ 0.298 denotes the maximum value achieved by the function (1 − (1 +
x)e−x)/x for x ∈ R

+.
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Asymptotics of the variances. Similarly, by (63) and (88), we have

Ṽk(z) = z
(
e−z/2

k − e−z/2
k−1
)

+ 2−kz2e−z/2
k−1 − 21−kz2

(
e−z/2

k − e−z/2
k−1
)2

,

Ṽ
[I]
k (z) = (2k + z)e−z/2

k − 2k
(
1 + 2−k

)2
e−z/2

k−1
;

accordingly, if n/2k → ∞, then

V(Bn,k) ∼ V(In,k) ∼ E(Bn,k) ∼ n
(
1 − 2−k

)n−1
,

and if n/4k → 0, then

V(Bn,k) ∼ Ṽk(n) and V(In,k) ∼ Ṽ
[I]
k (n),

uniformly in k. These approximations imply that

V(Bn,k) ∼
{
ne−t

(
1 − (1 + t)e−t + 2te−2t(2 − e−t)

)
if 2−kn→ t ∈ (0,∞),

2E(Bn,k) ∼ 21−kn2 if 2−kn→ 0
(94)

and

V(In,k) ∼
{

2k(1 + t)e−t
(
1 − (1 + t)e−t

)
if 2−kn→ t ∈ (0,∞),

E(In,k) ∼ 2−k−1n2 if 2−kn→ 0.

Limiting distributions. Both Theorems 8 and 9 (asymptotic normality of Bn,k
and In,k, respectively) hold when p = q = 1/2 by the same method of proof. Note
that both bivariate generating functions become simpler (see (72) and (83)):

Pk(z, y) =
(
ez/2

k−1
+ (y − 1)

z

2k−1

(
ez/2

k − 1
)

+ (y − 1)2
z2

4k

)2k−1

,

P [I]
k (z, y) =

(
yez/2

k

+ (1 − y)
(
1 +

z

2k
))2k

.

Observe that, as n→ ∞, E(Bn,k) → ∞ iff V(Bn,k) → ∞ iff V(In,k) → ∞ iff

1
log 2

(
Ln − LLn +

Kn

Ln

)
≤ k ≤ 2

log 2
(Ln −Kn)(95)

for any sequence Kn → ∞ with n; compare Theorem 5 for the asymmetric case.
Theorem 10. (i) If k lies in the range (95), then

Bn,k − E(Bn,k)√
V(Bn,k)

d−→ N (0, 1),
In,k − E(In,k)√

V(In,k)
d−→ N (0, 1).

(ii) If k = 2(Ln +O(1))/ log 2, then, with λ2 := 2−k−1n2,⎧⎪⎪⎨⎪⎪⎩
P(Bn,k = 2m) =

λm2
m!

e−λ2 + o(1), P(Bn,k = 2m+ 1) = o(1),

P(In,k = m) =
λm2
m!

e−λ2 + o(1),

uniformly for m ≥ 0.
Note that when p = q, λ0 = λ1 = λ2.
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8. Applications of results. In this section, we briefly discuss a few properties
of some shape characteristics of random tries, as implied either by our results or by
our approaches. We consider only depth, height, shortest path, fill-up level, width,
and right-profile.

Depth. The distribution of the depth Dn is given by P(Dn = k) = μn,k/n. Our
asymptotic approximations for μn,k give very precise results for the distribution ofDn.
First consider the case when p �= q. By definition, we see that the result (4) for the
limiting behaviors of logμn,k/ logn also describes those of −1 + log P(Dn = k)/ logn,
or essentially the large deviations of the distribution of Dn.

Furthermore, (43) can be regarded as a local limit theorem for Dn. Indeed, we
have, for k = h−1(Ln + x

√
h−1β2(−1)Ln), where h := p log(1/p) + q log(1/q) is the

entropy rate,

(96) P(Dn = k) = G1

(
−1; logp/q p

kn
) e−x

2/2√
2πV(Dn)

(
1 +O

(
1 + |x|3√

Ln

))
,

uniformly for x = o(L1/6
n ), where V(Dn) ∼ (h2 − h2)/h3 logn, with h2 := p log2 p +

q log2 q (see [33, 76]), is also rederived below in (97). Because of the appearance of
the uncommon periodic function G1, we see that Dn satisfies a central limit theorem
but not a local limit theorem (of the usual form). It can be shown that the right-hand
side indeed sums (over all k) asymptotically to 1. The result (96) is new.

If p = q, then, by the exact formula (92), we have

P(Dn = k) =
(
1 − 2−k

)n−1 −
(
1 − 21−k)n−1

,

which implies that

P(Dn = �log2 n + �) =
(
e−2−�+{log2 n}

− e−21−�+{log2 n}
) (

1 +O
(
n−12−�

))
,

uniformly for � ∈ Z, where {x} denotes the fractional part of x.
On the other hand, if one is interested in the cumulative distribution functions

or tail probabilities, then, by (6) and by partial summation,

P(Dn ≤ k) = (n− 1)![zn]
ez

2πi

∫
(ρ)

z−sΓ(s+ 1)
(
p−s + q−s

)k ds

for k ≥ 1, where ρ > −1. Equivalently, by (11), we have (see [35])

P(Dn ≤ k) =
1

2πi

∫
(ρ)

Γ(n)Γ(s+ 1)
Γ(n+ 1 + s)

(
p−s + q−s

)k ds,

where ρ > −1. Asymptotics of such integrals can be treated by our approaches, which
give not only the central limit theorem of Dn with convergence rate (since there is a
simple pole at s = −1) but also precise estimates for tail probabilities. Indeed, we
have

P

(
Dn ≤ h−1(Ln + x

√
h−1β2(−1)Ln)

)
= Φ(x)

(
1 +O

(
1 + |x|3√

Ln

))
,
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uniformly for x = o(L1/6
n ), as already shown in [33, 35] (but without rate). Further-

more,

− log P(Dn ≤ αLn)
logn

→ ρ′ + 1 − α log(p−ρ
′
+ q−ρ

′
) (α1 ≤ α ≤ h−1),

− log P(Dn ≥ αLn)
logn

→
{
ρ′ + 1 − α log(p−ρ

′
+ q−ρ

′
) if h−1 ≤ α ≤ α2,

−1 − α log(p2 + q2) if α2 ≤ α ≤ α3,

both tails being asymptotic to −1 for smaller and larger α, respectively, where ρ′ is
given in (42). These results imply, in particular, that E(Dn) ∼ Ln/h and

(97) V(Dn) ∼ β2(−1)h−3Ln =
pq log2(p/q)

(p log(1/p) + q log(1/q))3
Ln =

h2 − h2

h3
Ln,

where h2 := p log2 p+ q log2 q; see [13, 76]. Note that the constant on the right-hand
side becomes zero when p = q.

Width. The width of tries Wn is defined to be Wn := maxk In,k, or the size
of the most abundant level(s). As a natural lower bound for E(Wn), we consider
maxk E(In,k). By (87) and a similar analysis for (43), we have, when p �= q,

E(In,k) =

√
hG3

(
−1; logp/q pkn

)
log(p/q)

√
2πpq

× n√
Ln

(
1 +O(L−1/2

n )
)
,

uniformly for k = Ln/h +O(1). This approximation, together with the estimates for
E(In,k) in other ranges given in section 6.1, yields

E(Wn) ≥ max
k

E(In,k) = Θ(nL−1/2
n ),

when p �= q. Indeed, we have

E(Wn) = Θ(nL−1/2
n ).

The upper bound can be proved by applying the arguments used in [16], which start
from the inequality

E(Wn) ≤ Mn +
∑

|k−Ln/h|≤εL2/3
n

V(In,k)
Mn − E(In,k)

+
∑

|k−Ln/h|>εL2/3
n

E(In,k),

where Mn : maxk E(In,k), and then using the asymptotics of E(In,k) and V(In,k)
given in section 6.1. Details are omitted here. Finer results for E(Wn) can be derived,
but the proof is more involved due to the presence of the periodic function G3 (whose
parameter involves k).

For symmetric tries, we easily have E(Wn) = Θ(n), by (93) and the trivial bound
E(Wn) ≤ n. Thus random symmetric tries are “fatter,” and most nodes lie near the
most abundant levels k = log2 n+O(1).

Height. We next derive an estimate for the height of random tries, as a conse-
quence of our estimates for the external profiles together with the use of the first and
second moment methods (see [79]).

Corollary 6 (height of a trie). Let Hn := max{k : Bn,k > 0} be the height of
a random trie. Then Hn/ logn→ α3 in probability.
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Proof. Let kH := α3Ln. First we derive an upper bound for Hn as follows:

P(Hn > (1 + ε)kH) ≤ P(Bn,k ≥ 1) (for some k ≥ (1 + ε)kH)
≤ E(Bn,k) → 0,

where the last inequality follows from Theorem 3 when p �= q and (91) when p = q.
For the lower bound, we use the second moment method (see [79]) to find

P(Hn < (1 − ε)kH) ≤ P(Bn,�(1−ε)kH� = 0)

≤
V(Bn,�(1−ε)kH�)

(E(Bn,�(1−ε)kH�))2

= O

(
1

E(Bn,�(1−ε)kH�)

)
→ 0

by Theorems 3 and 7 and (94). Combining the two estimates, we obtain the required
result.

Corollary 6 is not new and has already been derived in Devroye [12], Pittel [64, 65],
and Szpankowski [77].

Shortest path. The shortest path Sn := min{j : Bn,j > 0} of a random trie,
discussed next, has attracted much less attention than the height (see [79]) in the
literature. It is closely related to the behaviors of the external profile in range (I)
near k = α1(Ln − LLLn + O(1)) as discussed in Theorem 1 and its refinement in
Corollary 3.

Define

k̂ :=

⎧⎨⎩ α1

(
Ln − LLLn − logm0 +m0 log(p/q) − LLLn

m0LLn

)
if p �= q,

α1(Ln − LLn) if p = q,

where m0 := �1/(p/q − 1)�, and

kS :=
{

�k̂� if p �= q,

�k̂ if p = q.

Corollary 7 (shortest path length of tries). If p �= q, then

Sn =
{
kS if {k̂}LLn → ∞,

kS or kS − 1 if {k̂}LLn = O(1)

with high probability;2 if p = q = 1/2, then

Sn =
{
kS + 1 if {k̂}Ln → ∞,

kS or kS + 1 if {k̂}Ln = O(1)

with high probability.
Proof. Assume p �= q. Consider first the case {k̂}LLn → ∞. In this case we have,

by Corollary 3, {
μn,kS → ∞,
μn,k → 0 for k ≤ kS − 1.

2We say that an event holds with high probability if it holds with probability tending to 1 as
n → ∞.
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Thus, again by the second moment method,

P(Sn > kS) ≤ P(Bn,kS = 0) ≤ V(Bn,kS )
(E(Bn,kS ))2

= O

(
1

μn,kS

)
→ 0.

On the other hand, by using the first moment method, we have

P(Sn < kS) ≤ P(Bn,k ≥ 1) (for some k < kS)
≤ μn,k → 0.

These two estimates imply that P(Sn = kS) → 1.
Now if {k̂}LLn = O(1), then, again by Corollary 3,⎧⎨⎩

μn,kS → ∞,
μn,kS−1 = Θ(1),
μn,k → 0 for k ≤ kS − 2.

Thus applying mutatis mutandis the same proof gives

P(Sn = kS) + P(Sn = kS − 1) → 1.

The proof for the symmetric case is similar, because μn,k → ∞ when k lies in the
range (95), and from this result we deduce that μn,kS+1 → ∞, μn,kS−1 → 0, and

μn,kS

{
→ 0 if {k̂}Ln → ∞,

= Θ(1) if {k̂}Ln = O(1).

This completes the proof.
Fill-up level. We now consider the fill-up level Fn = max{k : In,k = 2k} of a

random trie, which was also analyzed previously by Devroye [12], Pittel [64, 65], and
Knessl and Szpankowski [49].

Corollary 8 (fill-up level of a trie). If p �= q, then

Fn =
{
kS − 1 if {k̂}LLn → ∞,

kS − 2 or kS − 1 if {k̂}LLn = O(1)

with high probability; if p = q = 1/2, then

Fn =
{
kS if {k̂}Ln → ∞,

kS or kS − 1 if {k̂}Ln = O(1).

Proof. Observe that

Fn = max{k : Īn,k = 0} = min{k : Īn,k > 0} − 1.

By (86), we have E(Īn,k) ∼ μn,k when k ≤ α1(1 + o(1))Ln. Thus the proof of
Corollary 7 applies with little modification.

Profile enumerating only right branches. We consider the random variable Rn,k,
which denotes the number of external nodes in random tries that are away from
the root by k right branches. Since a right branch means a “1” in the input-string,
Rn,k enumerates the number of strings with exactly k 1’s; it also has other concrete
interpretations in splitting processes and conflict resolution algorithms. All of our
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tools can be extended to Rn,k, although Rn,k exhibits very different behaviors. For
example, unlike Bn,k or In,k, there is no need to distinguish between symmetric and
asymmetric tries, all results being uniform in p; also, the Poisson heuristic holds for
all k ≥ 0. This example further reveals the power of our approaches.

The probability generating function Fn,k(y) := E(yRn,k) of Rn,k satisfies the
recurrence

Fn,k(y) =
∑

0≤j≤n

(
n

j

)
pjqn−jFj,k−1(y)Fn−j,k(y) (n ≥ 2; k ≥ 0),

with the initial conditions Fn,k(y) = 1 for n ≤ 1 or k < 0 and F2,1(y) = y. Thus the
bivariate generating function Fk(z, y) :=

∑
n Fn,k(y)z

n/n! satisfies

Fk(z, y) = Fk(qz, y)Fk−1(pz, y) =
∏
j≥0

F0(pkqjz, y)(
k+j−1

j ),

where

F0(z, y) = epzF0(qz, y) + p(1 − p/2)(y − 1)z2,

which is further solved to be

F0(z, y) = ez + p(1 − p/2)(y − 1)
∑
j≥0

(qjz)2e(1−q
j)z.(98)

From this we deduce that the expected right-profile is given by

E(Rn,k) = p(1 − p/2)n![zn]
ez

2πi

∫
(ρ)

z−sΓ(s+ 2)
p−ks

(1 − q−s)k+1
ds,

where −2 < ρ < 0. The integral is not of the same type as (6) but is similar, and our
methods of proof easily extend. It has simple poles at s = −2,−3, . . . and poles of
order k+1 at s = 2jπi/ log(1/q), j ∈ Z. Thus the asymptotics of E(Rn,k) are divided
into four overlapping ranges.

• If 0 ≤ k = o(log n), then the residues of the poles on the imaginary lines are
dominant, and we have

E(Rn,k) ∼ p(1 − p/2)
(log pkn)k

k!(log(1/q))k+1

⎛⎝1 +
∑
j �=0

Γ(1 + χj)(pkn)−χj

⎞⎠ ,

uniformly in k, where χj := 2jπi/ log(1/q).

• If k → ∞ and k ≤ α∗(Ln −Kn

√
Ln), where Kn → ∞ and

α∗ :=
1 − q2

(1 − q2) log(1/p) − q2 log(1/q)
,

then by the saddle-point method

E(Rn,k) ∼
p(1 − p/2)qρ/2√

2πk log(1/q)
(pkn)−ρ(1 − q−ρ)−k

∑
j∈Z

Γ(ρ+ 1 + χj)(pkn)−χj ,

uniformly in k, where

ρ = log1/q

log(pkn)
log(pkn/qk)

.
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• If k = α∗Ln + x
√
α∗(1 + α∗ log(p/q))(1 + α∗ log p)Ln, then

E(Rn,k) ∼
1
2
Φ(x)(pkn)2(1 − q2)−k,

uniformly for x = o(L1/6
n ).

• If k ≥ α∗Ln +Kn

√
α∗(1 + α∗ log(p/q))(1 + α log p)Ln, then

E(Rn,k) ∼
1
2
(pkn)2(1 − q2)−k.

These results imply that, as n→ ∞, E(Rn,k) → ∞ iff

1 ≤ k ≤ 2
log 2−p

p

Ln −Kn,

where Kn → ∞ with n. Note that

log e−zF0(z, y) = log(1 + (y − 1)τ(z)),

where τ(z) := p(1 − p/2)
∑
j≥0(q

jz)2e−q
jz satisfies τ(z) = O(|z|2) as z → 0, and,

by Mellin transform, τ(z) = O(1) as |z| → ∞ in a small sector containing the real
axis. This yields, by a straightforward modification of our approaches, that V(Rn,k) =
Θ(E(Rn,k)) for all k = k(n) ≥ 0 and that

Rn,k − E(Rn,k)√
V(Rn,k)

d−→ N (0, 1)

whenever E(Rn,k) or V(Rn,k) → ∞. Two remaining cases are k = 0 and k =
2Ln/ log 2−p

p + O(1). In the first case, Rn,0 by (98) is Bernoulli distributed with
mean equal to τ(n), which is asymptotic to the periodic function

1
log(1/q)

⎛⎝1 +
∑
j �=0

Γ(2 − χj)n−χj

⎞⎠ ,

and in the second case,

P(Rn,k = m) =
λm3
m!

e−λ3 + o(1),

where λ3 := (pkn)2(1 − q2)−k/2.

Appendix A: Proof of Lemma 3. In this appendix, we prove Lemma 3. For
part (i) let z = neiθ, where θ = o(LL−1/2

n ). By (8)

M̃k(z) =
∑

0≤j<k

(
k − 1
j

)
pjqk−jze−p

jqk−jz
(
1 +O

(
e−(p−q)pjqk−1−jn cos θ

))
=
∑

0≤j<k

(
k − 1
j

)
pjqk−jze−p

jqk−jz
(
1 +O

(
e−(p−q)qk−1n cos θ

))
(99)

= qkze−q
kz (1 +O(E6)) ,
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where

E6 :=
∑

1≤j<k

(pα1/q)j

j!
Ljne

−qkn((p/q)j−1) cos θ.

Since 1 ≤ k ≤ k0 − α1Kn/LLn, we have

qkn ≥ LLn
p/q − 1

eKn/LLn .

It follows, by using the inequality

tj − 1
t− 1

≥ j (t > 1; j ≥ 1),

that

E6 ≤
∑
j≥1

(pα1/q)j

j!
L
j− (p/q)j−1

p/q−1 cos(θ)eKn/LLn

n

≤
∑
j≥1

(pα1/q)j

j!
L−j(cos(θ)eKn/LLn−1)
n

≤
∑
j≥1

(pα1/q)j

j!
e−jK+O(jθ2LLn)

= O(e−Kn),

since θ = o(LL−1/2
n ). This proves (30).

For part (ii), by (99),

M̃k(z) = Sk,m(z)
(
1 +O

(
e−(p−q)pmqk−1−mn cos θ + E7 + E8

))
,

where

E7 :=
∑

0≤j<m

∣∣∣∣ Sk,j(z)Sk,m(z)

∣∣∣∣ (1 +O
(
e−(p−q)pjqk−1−jn cos θ

))
,

E8 :=
∑

m<j<k

∣∣∣∣ Sk,j(z)Sk,m(z)

∣∣∣∣ (1 +O
(
e−(p−q)pjqk−1−jn cos θ

))
.

By (31), pmqk−mn = eηLLn/(p/q − 1). It follows, by changing j to m− j, that

E7 = O

⎛⎝m!
∑

1≤j≤m

(q/p)j

(m− j)!
k−j exp

(
pmqk−mn cos(θ)

(
1 − (q/p)j

))⎞⎠
= O

⎛⎝m!
∑

1≤j≤m

(q/pα1)j

(m− j)!
L
−j+ 1−(q/p)j

p/q−1 eη cos θ
n

⎞⎠
= O

⎛⎝m!
∑

1≤j≤m

(q/pα1)j

(m− j)!
L−j(1−qeη cos θ/p)
n

⎞⎠
= O

(
m−(1−qeη cos θ/p)
n

)
= O

(
me−Kn

)
,

since η ≤ log(p/q) −Kn/LLn and θ = o(LL−1/2
n ).
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Similarly,

E8 = O

⎛⎝m!
∑
j>m

(p/q)j−m

j!
kj−m exp

(
−pmqk−mn cos(θ)

(
(p/q)j−m − 1

))⎞⎠
= O

⎛⎝m!
∑
j≥1

(pα1/q)j

(j +m)!
L
j− (p/q)j−1

p/q−1 eη cos θ
n

⎞⎠
= O

⎛⎝m!
∑
j≥1

(pα1/q)j

(j +m)!
L−j(eη cos θ−1)
n

⎞⎠
= O

(
m−1L−(eη cos θ−1)

n

)
= O

(
m−1e−Kn

)
,

since η ≥ Kn/LLn. This completes the proof of (32).

Appendix B: Well-definedness of Qk(z, y). We prove here the following
lemma that is needed for the proof of Proposition 4.

Lemma 7. The function Qk(reiθ , y) is well defined for r ≥ 0, |θ| ≤ ε, and |y| = 1.
Proof. We first show that

|a3(r)(eiϕ − 1) + a4(r)(eiϕ − 1)2| < 1(100)

for r ≥ 0 and |y| = 1. By direct calculation, we have

|a3(r)(eiϕ − 1) + a4(r)(eiϕ − 1)2|2 = a3(r)2υ − a4(r)(a3(r) − a4(r))υ2,

where υ := 2(1 − cosϕ). Since

a3(r) − a4(r) ≥ a3(r) − 2a4(r) = e−r (pr(eqr − 1 − qr) + qr(epr − 1 − pr)) ≥ 0,

we have

|a3(r)(eiϕ − 1) + a4(r)(eiϕ − 1)2| ≤
√

2 a3(r).

By simple calculus, we have a3(r) < 2−1/2, which implies (100). Indeed, the inequality
a3(r) < 2−1/2 is equivalent to

pre−pr + qre−qr − re−r < 2−1/2 (r ≥ 0),

and we have

pre−pr + qre−qr − re−r ≤ max
r≥0

re−r(er/2 − 1) ≈ 0.52 < 2−1/2.

This proves the lemma when z = r; then the assertion of the lemma follows from
analyticity.

Appendix C: A useful approximation. In the proof of Proposition 4 we need
the following lemma.

Lemma 8. Let f(z) be an entire function satisfying

f(z) =
{
O(|z|2) as z → 0,
O(|z|e−q(z)) as z → ∞, | arg(z)| ≤ ε̄,

(101)
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where ε̄ > 0. Then, uniformly for all k = k(n) ≥ 1 and z = neiθ, |θ| ≤ ε̄,

fk(z) :=
∑

0≤j<k

(
k − 1
j

)
f(pjqk−1−jz) = Θ(|M̃k(z)|).

Proof. If 1 ≤ k ≤ k0, then it is easy to see that fk(z) = Θ(|M̃k(z)|) for |θ| ≤ ε̄.
When k ≥ k0, let f∗(s) :=

∫∞
0 xs−1f(x)dx. Then f∗(s) is well defined in the half-

plane �(s) > −2 by (101). By the estimates in (101) and the same argument used in
[23, Proposition 5], we have, assuming ρ ≥ 1 and t > 0,

f∗(ρ+ it) =
∫ eiε̄∞

0

xρ+it−1f(x)dx

= eiε̄(ρ+it)
∫ ∞

0

xρ+it−1f(xeiε̄)dx

= O(e−ε̄t
∫ 1

0

xρ+1dx) +O

(
e−ε̄t

∫ ∞

1

xρe−qx cos ε̄dx
)

= O
(
e−ε̄tρ−1 + e−ε̄tq−ρρ1/2(ρ/e)ρ

)
,

uniformly in ρ and t. If t < 0, then changing eiε̄ to e−iε̄ gives

f∗(ρ+ it) = O
(
e−ε̄|t|ρ−1 + e−ε̄|t|q−ρρ1/2(ρ/e)ρ

)
.

When −2 < ρ ≤ 1, f∗(ρ+ it) = O(e−ε̄|t|) for large |t| by the same argument. On the
other hand, by the first estimate in (101), we also have

f∗(s) = O
(
|s+ 2|−1

)
(s→ 2).

With these estimates and the Mellin inversion integral

fk(z) =
1

2πi

∫
(ρ)

z−sf∗(s)(p−s + q−s)k−1ds,

we can apply the arguments used for M̃k(z) and prove that fk(z) = Θ(|M̃k(z)|) for
| arg(z)| ≤ ε̄.
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1. Introduction. It is well known that fixed-point theorems are useful in many
completely disparate and unrelated scientific branches and, thus, in computer sci-
ence. Among the main fixed-point results is the Tarski theorem [47] (often called the
Knaster–Tarski theorem) stating that the set of fixed-points of a monotone single-
valued function f : L → L, over a complete lattice 〈L,≤〉, is a complete lattice and
therefore has a least fixed-point.

The topic of this work is the overview and investigation of the fixed-points of mul-
tivalued functions f : L → 2L (multivalued functions are also called correspondences,
or set-valued functions, in the literature). Such functions naturally arise, e.g., in the
specification of the semantics of nondeterministic programming languages [7, 8, 11,
18, 31, 36, 37, 44], in game theory [6, 33, 45, 53], and in disjunctive logic program-
ming [22, 27, 32, 42, 52]; those of the latter case motivated our work. Informally, (i)
in the first case, the meaning of a nondeterministic1 program P may be seen as a
function p : S → 2S, where S is the set of states a program may assume. The image
of p is a finite nonempty set, as at a given step of a program execution, due to a non-
deterministic statement, more than one successive state is possible. The semantics of
a program is then related to the fixed-points of such functions (s ∈ p(s)); (ii) in the
second case, a game is represented as a function g : S → 2S , where S is the strategy
space of the involved players, and fixed-points (s ∈ g(s)) are related to the so-called
Nash equilibria of the game. The image of g is a nonempty (usually finite) set, as at
each step of the game, more than one incomparable strategic choice is possible; and
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1An example of a nondeterministic statement is “π1 or π2” with informal semantics “execute
either program π1 or program π2.”
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(iii) in the third case, models of disjunctive logic programs are related to fixed-points
(I ∈ TP(I)) of a function TP : L̂ → 2L̂, where L̂ is the set of interpretations of a
disjunctive logic program. Here, TP is a so-called immediate consequence operator,
which at each “step” provides a better approximation of the models of a disjunctive
logic program. The image of TP is a possibly empty, nonfinite set, as at each step
of the model approximation computation, either no approximations, or a potentially
infinite number of incomparable better approximations, are possible.

We point out that, in all three cases, fixed-point computations may be seen
roughly as a tree, where a node is an element of the domain and the children of it are
the alternative (nondeterministic) choices provided by the image of the multivalued
function.

Generally, multivalued functions present the following fundamental challenge to
the ordinary fixed-point approach: unlike monotone single-valued functions, it is pos-
sible that zero, one, or (infinitely) many minimal fixed-points exist.

The contribution of this work is twofold:
• We provide conditions for the existence of fixed-points and minimal fixed-

points and show how to recursively obtain them in a slightly more general
setting than considered so far (such as when the image of a multivalued
function may be empty; see below). A summary of our main findings in
described in Table 3.1. To the best of our knowledge, we have compared
the results obtained with respect to all related work using similar order-
theoretic approaches; when a reformulation or easier proof of a known result
is presented, then appropriate credit is given.

• The results are then applied to a general form of logic programs, encompassing
the disjunctive and many-valued extensions. The rules in such logic programs
have the form g(B1, . . . , Bk) ← f(A1, . . . , An), where f, g are arbitrary com-
putable functions over a complete lattice (which acts as the truth space) and
Bi and Aj are atoms. The form of the rules is sufficiently expressive to gen-
eralize all approaches that we are aware of in (monotone) many-valued logic
programming. The main difference in this application to, e.g., semantics of
nondeterministic programming languages and game theory, is that the image
of TP(I) may be empty or of infinite size, while in the former two cases both
p(s) and g(s) are nonempty and finite. We show that a multivalued opera-
tor TP(I) can be defined whose fixed-points are in one-to-one correspondence
with the models of the logic program. The obtained relationship is novel and
addresses some fundamental theoretical problems that have been neglected
so far in the logic programming literature. We conclude by showing that
our results extend current well-known results for classical disjunctive logic
programs, where rules are of the form B1 ∨ · · · ∨Bk ← A1 ∧ · · · ∧An.

2. Preliminaries. We recall some basic definitions and notations.
With L = 〈L,≤〉, where ≤ is a partial order (x ≤ y may be read as “x approx-

imates y”) over the nonempty set L, we denote a complete lattice, with join (meet)
operator ∨ (∧), least (greatest) element ⊥ (�).

Given S ⊆ L, by minS (maxS) we denote the set of minimal (maximal) elements
in S and by

∧
S (

∨
S) the greatest lower bound (least upper bound) of S.2 A

nonempty subset S of L is a sublattice of L if for any x, y of S, both x ∨ y and x ∧ y
belong to S. A nonempty subset S of L is ∧-closed (∨-closed) if for any subset U

2We recall that
∧

S =
∧

s∈S s and
∨

S =
∨

s∈S s.
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of S,
∧
x∈U x (

∨
x∈U x) belongs to S. Note that S is ∧-closed (∨-closed) iff S is a

complete meet semilattice (complete join semilattice). Furthermore, we say that S is
closed if S is both ∧-closed and ∨-closed, i.e., S is a complete sublattice of L. Given
two elements a, b ∈ L with a ≤ b, we denote by [a, b] the interval {x ∈ L | a ≤ x ≤ b}.
Clearly, L = 〈[a, b],≤〉 is a complete lattice as well. Finally, by L̄ = 〈L,≥〉 we denote
the dual lattice of L = 〈L,≤〉, where x ≥ y iff y ≤ x. Of course, L̄ is a complete
lattice as well, where ≥ is the reversed order of ≤ and � (⊥) is the least (greatest)
element of L̄.

Two sets X and Y are equipollent iff there is a bijection from X to an Y . The
cardinality |X | of a set X is the least ordinal α such that there is a bijection between
X and α.

We use the notation (xα)α∈I to denote a (possibly transfinite) nonempty sequence
of elements xα ∈ L, where I is an ordinal. We say that the sequence is increasing
(decreasing) iff xα ≤ xα+1 (xα+1 ≤ xα) for all α ∈ I.

If there is an ordinal β ∈ I such that xβ = xα for all β ≤ α ∈ I, we say that
(xα)α∈I is eventually stationary or constant. A property we will frequently rely on is
the following well-known fact.

Proposition 2.1. An increasing (decreasing) sequence (xα)α∈I of elements xα ∈
L with |I| > |L| has the property that there is an ordinal β ∈ I such that |β| ≤ |L|
and xβ = xα for all β ≤ α ∈ I (|S| is the cardinal of a set S).

For ease of presentation and by abuse of terminology, under the condition of
Proposition 2.1, we will say that the sequence (xα)α∈I converges to xβ .

A function f : L → L is monotone iff for all x, y ∈ L, x ≤ y implies f(x) ≤ f(y).
f is inflationary iff for all x ∈ L, x ≤ f(x). A fixed-point of f is an element x ∈ L such
that f(x) = x. By Fix(f) we denote the set of fixed-points of f . f is

∨
-preserving (

∧
-

preserving) iff for all increasing (decreasing) sequences (xα)α∈I , f(
∨
α xα) =

∨
α f(xα)

(f(
∧
α xα) =

∧
α f(xα)). f is limit-preserving iff it is both

∨
- and

∧
-preserving. It

is easy to prove that
∨

- or
∧

-preserving functions are monotone. However, a limit-
preserving (in particular a monotone) function need not be inflationary.

Example 1. Consider f : {0, 1} → {0, 1} with f(x) = 0 for all x ∈ {0, 1}; then f
is limit preserving and, thus, monotone, but 1 �≤ f(1) and, thus, f is not inflationary.
The Tarski theorem [47] establishes that a monotone function f : L→ L has a fixed-
point, the set of fixed-points of f is a complete lattice, and, thus, f has a least and
a greatest fixed-point. The least (greatest) fixed-point can be obtained by transfinite
iteration of f over ⊥ (�). Furthermore, let Φ(f) = {x ∈ L : f(x) ≤ x}, Ψ(f) = {x ∈
L : x ≤ f(x)}, and, thus, � ∈ Φ(f), while ⊥ ∈ Ψ(f). Then the least fixed-point is∧

Φ(f), while the greatest fixed-point is
∨

Ψ(f). If f is inflationary, then f has a
fixed-point (e.g., obtained by transfinite iteration of f over ⊥, also � ≤ f(�) = �),
and x ∈ Φ(f) iff x is a fixed-point of f . However, inflationary functions may not have
a least fixed-point.

Example 2. Consider L = [0, 1] and function f with f(0) = 1 and for x > 0,
f(x) = x. Then f is not monotone and is inflationary, all x > 0 are fixed-points,
Φ(f) = {x : x > 0},

∧
Φ(f) = 0 �∈ Φ(f), and 0 is not a fixed-point of f .

3. Multivalued functions. Given L = 〈L,≤〉, a multivalued function is a func-
tion f : L → 2L (if for all x ∈ L, |f(x)| = 1, then f is single valued). Note that we
do not require f(x) �= ∅ for all x ∈ L. We say that x ∈ L is a fixed-point of f iff
x ∈ f(x). For instance, see the following example.

Example 3. Let L = {0, 1, 2}. Consider f : L → 2L defined as f(0) = {0, 1, 2},
f(1) = {0, 1}, and f(2) = {0}. Then 0 and 1 are fixed-points, whereas 2 is not a
fixed-point.
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Furthermore, we say that f is nonempty (resp., ∧-closed, ∨-closed) iff for all x ∈ L
we have that f(x) �= ∅ (f(x) is, resp., ∧-closed, ∨-closed).

In order to define the notion of a (multivalued) monotone function, as f(x) is now
a set of elements, we need to extend the partial order ≤ to sets of elements. There
are mainly three well-known preorders (reflexive, transitive, but not antisymmetric),
namely the Smyth ordering, the Hoare ordering, and the Egli-Milner ordering, which
have been proposed in the context of nondeterministic programming languages (see,
e.g., [1, 25]):3

X �S Y iff ∀y ∈ Y ∃x ∈ X s.t. (such that) x ≤ y (Smyth ordering),(3.1)
X �H Y iff ∀x ∈ X ∃y ∈ Y s.t. x ≤ y (Hoare ordering),(3.2)

X �EM Y iff X �S Y and X �H Y (Egli-Milner ordering) .(3.3)

These orderings may be read as follows: (i) X �S Y iff all y ∈ Y are approximated by
some x ∈ X ; (ii) X �H Y iff all x ∈ X approximate some y ∈ Y ; and (iii) X �EM Y
iff all y ∈ Y are approximated by some x ∈ X and all x ∈ X approximate some y ∈ Y .

Clearly the Hoare ordering is equivalent to the Smyth ordering in the dual un-
derlying lattice. Indeed it is straightforward to show the following.

Proposition 3.1. Let X,Y be two subsets of L. Then X �S Y in L iff Y �H X
in L̄.

As a consequence, many properties we state with respect to the Smyth ordering
in L have their dual with respect to the Hoare ordering in L̄.

f is Smyth-monotone, or simply S-monotone, iff for all x, y ∈ L, if x ≤ y, then
f(x) �S f(y) holds. The notions of Hoare-monotone, or simply H-monotone, and Egli-
Milner-monotone, or simply EM-monotone, are defined similarly. By using Proposi-
tion 3.1, it is straightforward to prove the following.

Proposition 3.2. Let f : L → 2L be a multivalued function. Then f is S-
monotone in L iff f is H-monotone in L̄.

We say that f is inflationary iff for all x, {x} �S f(x); i.e., all elements in f(x)
are greater than or equal to x. Dually, we say that f is deflationary iff for all x ∈ L,
f(x) �H {x}; i.e., all elements in f(x) are smaller than or equal to x. Of course, a
deflationary function is an inflationary function in the dual lattice L̄.

Proposition 3.3. Let f : L → 2L be a multivalued function. Then f is defla-
tionary in L iff f is inflationary in L̄.

We next generalize the notion of a limit-preserving function to the multivalued
case. A multivalued function f : L→ 2L is

∨
-preserving iff for all increasing sequences

(xα)α∈I ,

(3.4) f

(∨
α

xα

)
=

{
y | there is (yα)α∈I s.t. yα ∈ f(xα) and y =

∨
α

yα

}
.

Dually, we say that f : L→ 2L is
∧

-preserving iff for all decreasing sequences (xα)α∈I ,

(3.5) f

(∧
α

xα

)
=

{
y | there is (yα)α∈I s.t. yα ∈ f(xα) and y =

∧
α

yα

}
.

f is limit-preserving iff it is both
∨

- and
∧

-preserving. For ease of presentation,
sometimes we use the notation

∨
α f(xα) (resp.,

∧
α f(xα)) to denote the right-hand

3[36] describes another order, called the Plotkin order, which extends the Egli-Milner ordering.
However, we will not address it here.
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side of (3.4) (resp., (3.5)). Note that if for all x ∈ L, |f(x)| = 1, then the definition
reduces to the usual one for single-valued functions.

Of course, we have the following.
Proposition 3.4. Let f : L → 2L be a multivalued function. Then f is

∧
-

preserving in L iff f is
∨

-preserving in L̄.
We can prove the following.
Proposition 3.5. Consider a multivalued function f : L→ 2L.
1. If f is

∨
-preserving, then f is S-monotone.

2. If f is
∧

-preserving, then f is H-monotone.
3. If f is limit-preserving, then f is EM-monotone.

Proof.
Case 1. Let x1 ≤ x2 and f

∨
-preserving. Then for the increasing sequence

x1 ≤ x2, f(x2) = f(x1 ∨ x2) = {y : there are yi ∈ f(xi) s.t. y = y1 ∨ y2} = X .
If f(x2) = ∅, then trivially f(x1) �S f(x2) = ∅. If f(x1) = ∅, then by definition
X = ∅ and, thus, f(x2) = ∅. Therefore, ∅ = f(x1) �S f(x2) = ∅. Otherwise assume
f(x1) and f(x2) nonempty. Therefore, as f is

∨
-preserving, for y ∈ f(x2) = X there

are yi ∈ f(xi) (i = 1, 2) such that y = y1 ∨ y2. In particular, y1 ≤ y. Therefore,
f(x1) �S f(x2) and, thus, f is S-monotone.

Case 2. The proof is dual to Case 1 (see the appendix, Proposition A.1).
Case 3. This case is straightforward by Cases 1 and 2.
Note that a

∧
-preserving function need not be S-monotone and, similarly, a

∨
-

preserving function need not be H-monotone and, thus, an EM-monotone function
need not be limit-preserving.

Example 4. Consider L = {0, 1} with 0 ≤ 1. Then the multivalued function
f : L → 2L, f(0) = ∅, f(1) = {1} is

∧
-preserving, but not S-monotone, as 0 ≤ 1

and f(0) = ∅ ��S f(1) = {1}. Similarly, the multivalued function g : L → 2L,
g(0) = {0}, g(1) = ∅ is

∨
-preserving, but not H-monotone, as 0 ≤ 1 and g(0) =

{0} ��H g(1) = ∅.
But, we can easily show the following.
Proposition 3.6. Consider a multivalued function f : L→ 2L and x1 ≤ x2 with

f(x1) �= ∅ �= f(x2).
1. If f is

∧
-preserving, then f(x1) �S f(x2).

2. If f is
∨

-preserving, then f(x1) �H f(x2).
Proof.
Case 1. For the decreasing sequence x2 ≥ x1, as f is

∧
-preserving, f(x1) =

f(x2 ∧ x1) = {y : there are yi ∈ f(xi) s.t. y = y2 ∧ y1} = X . Now, for y ∈ f(x2)
choose a y′ ∈ f(x1) �= ∅ and consider y′′ = y∧y′. Therefore, y′′ ∈ X = f(x1), y′′ ≤ y
and, thus, f(x1) �S f(x2).

Case 2. This is similar to Case 1 (see the appendix, Proposition A.2).
Example 1 can be adapted to multivalued functions and prove that a limit-

preserving (in particular an S-monotone) function need not be inflationary.
Example 5. Consider f : {0, 1} → 2{0,1} such that for all x ∈ {0, 1}, f(x) = {0};

then f is limit-preserving and, thus, S-monotone, but {1} ��S f(1) = {0}.
We next want to investigate the existence of (minimal) fixed-points of multivalued

functions. Similarly to the single-valued case, for f : L→ 2L, let us define

Φ(f) = {x ∈ L : f(x) �S {x}},
Ψ(f) = {x ∈ L : {x} �H f(x)} .
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Note that, unlike the single-valued case, not necessarily � ∈ Φ(f) (i.e., if f(�) = ∅).
Similarly, ⊥ ∈ Ψ(f) iff f(⊥) �= ∅. Also, if f(x) = ∅, then x �∈ Φ(f); i.e., if x ∈ Φ(f),
then f(x) �= ∅. Finally, note that if f(�) �= ∅, then � ∈ Φ(f) (we will use these
straightforward facts often in the paper). Furthermore, note that Φ(f) is related
to the �S order, while Ψ(f) is related to �H . One might wonder why we did not
consider, for instance, ΦH(f) = {x | f(x) �H {x}}. As we will see later,

∧
Φ(f)

relates to the least fixed-point of f (if it exists), while
∨

Ψ(f) relates to the greatest
fixed-point of f . Example 6 shows that

∧
ΦH(f) is not related to the least fixed-point

of f .
Example 6. Consider L = {0, 1} and the multivalued function f : L → 2L,

f(0) = {0, 1}, f(1) = {1}. Then f is EM-monotone, Fix(f) = {0, 1}, but ΦH(f) =
{x | f(x) �H {x}} = {1} and 1 =

∧
ΦH(f) is not the least fixed-point of f .

We can show the following.
Proposition 3.7. Let f : L→ 2L be a multivalued function.
1. If f is inflationary, then x ∈ Φ(f) iff x is a fixed-point of f .
2. If f is deflationary, then x ∈ Ψ(f) iff x is a fixed-point of f .

Proof.
Case 1. Let x ∈ Φ(f). As f is inflationary, {x} �S f(x) �S {x} and, thus, for

x ∈ {x} there is y ∈ f(x) such that x ≤ y ≤ x, i.e., x = y ∈ f(x). Vice versa, if
x ∈ f(x), then f(x) �S {x} and, thus, x ∈ Φ(f).

Case 2. This is similar to Case 1 (see the appendix, Proposition A.3).
Note that Proposition 3.7 does not hold if a function is, e.g., S-monotone, but

not inflationary.
Example 7. In Example 3, f is S-monotone, not inflationary with 2 ∈ Φ(f), but

2 �∈ f(2).
The following examples show that a multivalued S-monotone function f : L→ 2L

may have several minimal fixed-points or even no minimal fixed-point at all.
Example 8. Consider Belnap’s truth space FOUR [3], L = {⊥, f, t,�} with f, t

incomparable. Here, besides f for “false” and t for “true,” ⊥ stands for “unknown,”
whereas � stands for inconsistency. ≤ is the so-called knowledge order. Consider the
multivalued function g : L → 2L defined as g(⊥) = {f, t,�}, g(f) = {f,�}, g(t) =
{t,�}, and g(�) = {�}. Then g is EM-monotone, inflationary, and

∨
-preserving.

Furthermore, f ∈ g(f), t ∈ g(t), and � ∈ g(�), but ⊥ �∈ g(⊥), and thus f, t, and
� are fixed-points of g, while ⊥ is not. The minimal fixed-points are f and t. Note
that g(x) does not have a least element (e.g., g(⊥)) for all x. Additionally, note that
Φ(g) = {f, t,�},

∧
Φ(g) = ⊥ �∈ Φ(g), and min Φ(g) = {f, t}. Therefore, unlike the

single-valued case,
∧

Φ(g) is not a fixed-point of g.
The four-element Belnap’s truth space FOUR was introduced as a very suitable

setting for computerized reasoning; it has a bilattice structure, since two orderings
can be naturally defined and, as a result, it can be viewed as a class of truth values
that can accommodate incomplete and inconsistent information, and in certain cases,
default information.

Example 9. Let L = [0, 1]. Consider the multivalued function f : L→ 2L defined
as f(x) = {y | y > 0, y ≥ x)}. Then f is nonempty,

∨
-preserving, and inflationary.

Furthermore, for all x > 0, x ∈ f(x), but 0 �∈ f(0), and thus all x > 0 are fixed-
points of f , while 0 is not. Therefore, f has no minimal fixed-point. Also, note that
Φ(f) = {x | x > 0},

∧
Φ(f) = 0 �∈ Φ(f), and min Φ(f) = ∅. Similar to Example 8,

0 =
∧

Φ(f) is not a fixed-point of f , but now min Φ(f) = ∅. Also note that f(0) has
no least element.
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Similarly, let us consider now g(x) = {y | y < 1, y ≤ x}. Then g is nonempty,
∧

-
preserving, and deflationary. Ψ(g) = {x | x < 1},

∨
Ψ(g) = 1 �∈ Ψ(g), maxΨ(g) = ∅,

and 1 �∈ g(1). Hence, g has no greatest fixed-point.
Likewise, h(x) = {y | 0 < y < 1}. Then h is nonempty and EM-monotone.

Φ(h) = {x | x > 0}, Ψ(h) = {x | x < 1}, and h has neither a least nor a greatest
fixed-point.

Like the single-valued case, a multivalued inflationary function may not have a
minimal fixed-point, even if f(x) has a least element for all x ∈ L.

Example 10. Consider f : [0, 1] → 2[0,1], where f(0) = {1} and for x > 0,
f(x) = {x}. Then f is not S-monotone but is inflationary. Also, f(x) has a least
element for all x ∈ L. All x > 0 are fixed-points as x ∈ f(x), Φ(f) = {x | x > 0}
(in accordance with Proposition 3.7), and

∧
Φ(f) = 0, but 0 �∈ f(0). Note that

min Φ(f) = ∅.
However, we will show later in Proposition 3.10 that a multivalued S-monotone

function, such that f(x) has a least element for all x ∈ L, has indeed a least fixed-
point.

We next show that if Φ(f) has minimals, then an S-monotone or inflationary
function f has minimal fixed-points.

Proposition 3.8. Let f : L→ 2L be a multivalued function.
1. If f is an S-monotone or inflationary multivalued function, and Φ(f) has

minimals, then all y ∈ min Φ(f) are minimal fixed-points of f . In particular,
if x =

∧
Φ(f) ∈ Φ(f), then x is the least fixed-point of f .

2. If f is an H-monotone or deflationary multivalued function, and Ψ(f) has
maximals, then all y ∈ maxΨ(f) are maximal fixed-points of f . In particular,
if x =

∨
Ψ(f) ∈ Ψ(f), then x is the greatest fixed-point of f .

Proof.
Case 1. To begin with, let us show that any y ∈ min Φ(f) is a fixed-point of f .

As Φ(f) has minimals, min Φ(f) �= ∅. So, let y ∈ min Φ(f). As ∅ �= f(y) �S {y},
thus, there is y′ ∈ f(y) such that y′ ≤ y. If f is S-monotone, then f(y′) �S f(y), and
thus for y′ ∈ f(y) there is y′′ ∈ f(y′) such that y′′ ≤ y′. Therefore, f(y′) �S {y′}, and
thus y′ ∈ Φ(f). But y ∈ min Φ(f), so it cannot be y′ < y. Therefore, y = y′ ∈ f(y);
i.e., y is a fixed-point of f . If f is inflationary, by Proposition 3.7, y is a fixed-point
of f .

Now, let us show that any y ∈ min Φ(f) is also a minimal fixed-point of f . So,
consider y ∈ min Φ(f) and, thus, y is a fixed-point of f . Now, consider another fixed-
point x ∈ f(x). Therefore, f(x) �S {x}, and thus x ∈ Φ(f). But y ∈ min Φ(f), so it
cannot be x < y, and thus y is a minimal fixed-point of f .

Finally, consider x =
∧

Φ(f). By hypothesis, x ∈ Φ(f) and x is a least element
of Φ(f). Hence, we know that x ∈ f(x). Let y ∈ f(y). Hence y ∈ Φ(f), and thus
x ≤ y. As a consequence, x is the least fixed-point of f .

Case 2. This is similar to Case 1 (see the appendix, Proposition A.4).
Note that Φ(f) in Examples 3 and 8 has minimals, while Φ(f) in Example 9 does

not.
The following proposition establishes a condition on an S-monotone function f

under which Φ(f) has minimals and, thus, minimal fixed-points.
Proposition 3.9. Let f : L→ 2L be a multivalued function.
1. If f is a

∧
-preserving multivalued function with Φ(f) �= ∅, then Φ(f) has

minimals and, thus, minimal fixed-points.
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2. If f is a
∨

-preserving multivalued function with Ψ(f) �= ∅, then Ψ(f) has
maximals and, thus, maximal fixed-points.

Proof.
Case 1. By hypothesis Φ(f) �= ∅. Let (xα)α∈I be a decreasing sequence of xα ∈

Φ(f) and let x̄ =
∧
α xα. As f is

∧
-preserving, by definition f(x̄) = {y : there is (yα)α∈I

s.t. yα ∈ f(xα) and y =
∧
α yα}. Now, for any α, xα+1 ≤ xα, by Proposition 3.6 and,

as xα ∈ Φ(f), f(xα+1) �S f(xα) �S {xα}. Therefore, for any xα there is yα ∈ f(xα)
and yα+1 ∈ f(xα+1) such that yα+1 ≤ yα ≤ xα. Note that if α is a limit ordinal,
then, as xα ≤ xβ for all β < α, it follows that f(xα) �S f(xβ) �S {xβ} and, thus,
yα ≤ yβ ≤ xβ for all β < α. Therefore, there is a decreasing sequence (yα)α∈I of
elements yα ∈ f(xα) such that ȳ =

∧
α yα ≤

∧
α xα = x̄. By definition of f(x̄),

ȳ ∈ f(x̄) and, thus, f(x̄) �S {x̄}. Therefore x̄ ∈ Φ(f) and, thus, every decreasing
sequence has a lower bound in Φ(f). So, by Zorn’s lemma, Φ(f) has minimals, which
by Proposition 3.8 are also minimal fixed-points.

Case 2. This is the same as Case 1 (see the appendix, Proposition A.5).
The converse of Proposition 3.9 above is not true.
Example 11. Consider L = {0, 0.5, 1}, where f : L → 2L with f(0) = {0},

f(0.5) = {0.5}, and f(1) = {0, 1}. Then Φ(f) = L has minimals, but f is not S-
monotone: 0.5 ≤ 1 but f(0.5) ��S f(1). Therefore, by Proposition 3.6, f cannot be∧

-preserving.
One might wonder whether an S-monotone f : L → 2L such that for all x ∈ L,

f(x) has minimals implies that Φ(f) has minimals. This is not true, as the following
example shows.

Example 12. Consider Y = {yα : α ∈ ω}, Y antichain, X = {xα : α ∈ ω}, xα+1 ≤
xα, x̄ =

∧
α xα, yα ≤ xα, each pair x̄, yα incomparable, L = {x̄}∪X∪Y ∪{⊥,�}, and

f : L→ 2L with f(⊥) = Y , f(x̄) = Y , f(xα) = {xα}, f(yα) = {xα}, and f(�) = {�}.
Then f is S-monotone, for all x ∈ L, f(x) has minimals, Φ(f) = X∪{�}, and (xα)α∈ω
is a decreasing sequence of elements in Φ(f). As neither x̄ nor ⊥ is in Φ(f), Φ(f)
does not have minimals.

However, we can prove the following.
Proposition 3.10. Let f : L→ 2L be a multivalued function.
1. If f is S-monotone and for all x ∈ L, f(x) has a least element, then f has a

least fixed-point.
2. If f is H-monotone and for all x ∈ L, f(x) has a greatest element, then f

has a greatest fixed-point.
Proof.
Case 1. As for all x ∈ L, f(x) has a least element, by definition

∧
f(x) ∈

f(x) �= ∅. Therefore, Φ(f) �= ∅ as ∅ �= f(�) �S {�}. Consider a =
∧
c∈Φ(f) c. If

a ∈ Φ(f), then by Proposition 3.8, a is the least fixed-point of f . So, let us show
that a ∈ Φ(f). For c ∈ Φ(f) there is an xc ∈ f(c) such that xc ≤ c. As a ≤ c
and f is S-monotone, f(a) �S f(c) and, thus, for xc ∈ f(c) there is yc ∈ f(a)
such that yc ≤ xc ≤ c. Since f(a) has a least element, there is y ∈ f(a) such that
y ≤

∧
c∈Φ(f) yc ≤

∧
c∈Φ(f) xc ≤

∧
c∈Φ(f) c = a. Hence, f(a) �S {a}, i.e., a ∈ Φ(f).

Case 2. This is the same as Case 1 (see the appendix, Proposition A.6).
Note that if, e.g., f(x) has a least element for all x ∈ L, then this does not imply

necessarily that f is
∧

-preserving or
∨

-preserving.
Example 13. Consider Belnap’s truth space FOUR, L = {f, t,⊥,�}. Let h(�) =

{f}, h(t) = {⊥, f}, h(f) = {⊥, t}, h(⊥) = {⊥}. Then for all x ∈ L, h(x) has a least
element. Consider the decreasing sequence (�, f). Then h(� ∧ f) = h(f) = {⊥, t},
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while h(�) ∧ h(f) = {⊥} and, thus, h is not
∧

-preserving. Consider the increasing
sequence (f,�). Then h(f ∨�) = h(�) = {f}, while h(f)∨h(�) = {f,�} and, thus,
h is not

∨
-preserving.

The following example shows that, e.g., an H-monotone function such that for all
x ∈ L, f(x) has a least element, does not imply that f has a least fixed-point.

Example 14. Consider the lattice FOUR as in Example 13. Let g(⊥) = {t}, g(f) =
{f, t,⊥}, g(t) = {f, t,⊥}, g(�) = {�}. g is H-monotone, but not S-monotone. Fur-
thermore, for all x ∈ L, g(x) has a least element. As Fix(g) = {f, t,�}, g has no
least fixed-point.

The following example shows that an H-monotone or S-monotone nonempty func-
tion may not have a fixed-point at all.

Example 15. Consider L = [0, 1] and a multivalued function f , with f(x) =
{(x + 1)/2} for x < 1 and f(1) = {1 − 1/n | n = 1, 2, . . .}. Then f is H-monotone
without any fixed-point.

Similarly, let g(x) = {x/2} for x > 0 and g(0) = {1/n | n = 1, 2, . . .}. Then g is
S-monotone without any fixed-point.

Next, we describe properties of the structure of the set of fixed-points. The
following example shows that the meet of two fixed-points of a monotone multivalued
function may not be a fixed-point and, thus, the set of fixed-points may not be a
sublattice.

Example 16. Consider L = {f, t,⊥,�, c}, where ⊥ ≤ c, c ≤ f ≤ �, and c ≤
t ≤ �. Let g(⊥) = {⊥}, g(c) = {⊥}, g(t) = {t}, g(f) = {f}, g(�) = {�}. Then g is
EM-monotone, limit-preserving, deflationary, but not inflationary, and for all x ∈ L,
g(x) is a closed sublattice of L. However, Fix(g) = {⊥,�, f, t} is not a sublattice of
L, e.g., f, t ∈ Fix(f), but c = f ∧t �∈ Fix(f) (Fix(f) is not even a meet semilattice).

However, we can show the following.
Proposition 3.11. Let f : L → 2L be an S-monotone, nonempty, and ∧-closed

multivalued function. Then
1. Φ(f) is ∧-closed; and
2. f has a least fixed-point.

Proof. Note that Φ(f) �= ∅ as ∅ �= f(�) �S {�}.
1. Consider a subset S of Φ(f) and a =

∧
S. Let us show that a ∈ Φ(f). We

know that for each c ∈ S, f(c) �S {c} holds; i.e., there is xc ∈ f(c) such that xc ≤ c.
But, f is S-monotone and, thus, from a ≤ c, f(a) �S f(c) �S {c} follows. That is,
there is yc ∈ f(a) such that yc ≤ xc ≤ c. Let y =

∧
c∈S yc. As f is ∧-closed, y ∈ f(a)

follows. Therefore, y =
∧
c∈S yc ≤

∧
c∈S c = a, f(a) �S {a}, and, thus, a ∈ Φ(f).

Therefore, Φ(f) is ∧-closed.
2. From point 1, Φ(f) has a least element a and, thus, by Proposition 3.8, f has

a as a least fixed-point.
Dually, we have the following.
Proposition 3.12. Let f : L → 2L be an H-monotone, nonempty, and ∨-closed

multivalued function. Then
1. Ψ(f) is ∨-closed; and
2. f has a greatest fixed-point.

Proof. This is the dual of proof of Proposition 3.11 (see the appendix, Proposi-
tion A.7).

Clearly, from Propositions 3.11 and 3.12 we immediately have the following.
Proposition 3.13. Let f : L → 2L be an EM-monotone multivalued function

such that for any x ∈ L, f(x) is a nonempty closed sublattice of L. Then f has a
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least fixed-point and a greatest fixed-point.
Also, the next proposition follows immediately from Proposition 3.7.
Proposition 3.14. Let f : L→ 2L be a nonempty multivalued function. Then
1. if f is S-monotone, inflationary, and ∧-closed, then Fix(f) is nonempty and

∧-closed and, thus, has a least element; and
2. if f is H-monotone, deflationary, and ∨-closed, then Fix(f) is nonempty and

∨-closed and, thus, has a greatest element.
Note that if f is both inflationary and deflationary, then for all x ∈ L such that

f(x) �= ∅, we can easily show that f(x) = {x}; i.e., f is a single-valued, constant,
limit-preserving function, and each such x is a fixed-point, and, thus, is not interesting.

We have seen in Proposition 3.14 that under rather strong conditions, we have a
rather strong structure on the set of fixed-points (e.g., the conjunction of two fixed-
points is a fixed-point). On the other hand, Example 16 shows that, e.g., if we omit
the inflationary condition, then Fix(f) is not ∧-closed (e.g., the conjunction of two
fixed-points need not be a fixed-point) and, thus, Fix(f) cannot be a closed sublattice
of L.

The following proposition, due to [53], establishes that the set of fixed-points is a
complete lattice, though not a closed sublattice.

Proposition 3.15 (Zhou [53]). Let f : L → 2L be a multivalued function. If f
is EM-monotone and for any x ∈ L, f(x) is a nonempty closed sublattice of L, then
Fix(f) is a nonempty complete lattice.

We next look at limit-preserving functions and their impact on the set of fixed-
points. We first notice the following.

Proposition 3.16. Let f : L→ 2L be a multivalued function. Then
1. if f is

∧
-preserving, then f is ∧-closed;

2. if f is
∨

-preserving, then f is ∨-closed; and
3. if f is limit-preserving, then for any x ∈ L, f(x) is a closed sublattice of L.

Proof.
1. Consider x ∈ L. If f(x) is empty, then it is also ∧-closed. Otherwise, consider

any subset of f(x) in the form of a sequence (yα)α∈I of elements yα ∈ f(x). We show
that f(x) is ∧-closed by showing that y =

∧
α∈I yα ∈ f(x). So, consider the decreasing

sequence (xα)α∈I , where x = xα, for all α ∈ I. By construction, x =
∧
α∈I xα. As f

is
∧

-preserving, we have that

f(x) = f(
∧
α xα)

= {z | there is (zα)α∈I s.t. zα ∈ f(xα) and z =
∧
α zα}

= {z | there is (zα)α∈I s.t. zα ∈ f(x) and z =
∧
α zα} .

Therefore, as for (yα)α∈I we have yα ∈ f(x), it follows that y =
∧
α∈I yα ∈

f(
∧
α xα) = f(x), which concludes the proof.
The other points can be shown similarly.
Note that the converse in Proposition 3.16 does not hold. For instance, in Exam-

ple 14, the function g is such that for all x ∈ L, g(x) is a closed sublattice, but g is
not

∧
-preserving (as g is not S-monotone).

We already know from Proposition 3.9 that if f is
∧

-preserving and Φ(f) �= ∅
(e.g., f(�) �= ∅), then f has minimal fixed-points and, similarly, from Proposition 3.9
we know that if f is

∨
-preserving and Ψ(f) �= ∅ (e.g., f(⊥) �= ∅), then f has maximal

fixed-points. By further relying on Propositions 3.14 and 3.16, we have the following.
Proposition 3.17. Let f : L→ 2L be a nonempty multivalued function. Then
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1. if f is
∧

-preserving and inflationary, then Fix(f) is nonempty, ∧-closed, and
thus, has a least element;

2. if f is
∨

-preserving and deflationary, then Fix(f) is nonempty, ∨-closed,
and thus, has a greatest element; and

3. if f is limit-preserving, then Fix(f) is a nonempty complete lattice.
Note that the condition for nonemptiness in the above proposition is mandatory

as, e.g., a
∧

-preserving function f may not necessarily imply that f is nonempty,
as the example below shows. This example also shows that Proposition 3.17 neither
subsumes nor contrasts with Proposition 3.8.

Example 17. Consider the lattice FOUR. Let g be a multivalued function on
L such that g(⊥) = ∅, g(�) = {�}, g(f) = {f}, and g(t) = {t}. It can be easily
verified that g is

∧
-preserving and deflationary, though Fix(g) = {f, t,�}, and, thus,

no least fixed-point exists. g has two minimal fixed-points instead.
As already pointed out, we are more interested in cases in which f(x) may be

empty for some x ∈ L. The literature we are aware of does not report results in
such cases [6, 22, 33, 45, 53]. The following result (compare to Proposition 3.15)
reveals the structure of the set of fixed-points for limit-preserving functions under
weaker conditions than those in Proposition 3.17. It says that the set of fixed-points
of a limit-preserving function, if not empty, is a complete multilattice. A complete
multilattice [4, 29, 30] is a partially ordered set M = 〈M,≤〉, such that for every
subset X ⊆ M , the set of upper (resp., lower) bounds of X has minimal (resp.,
maximal) elements, which are called multisuprema (resp., multi-infima). The sets of
multisuprema and multi-infima of a set X are denoted multsup(X) and multinf(X).

Proposition 3.18. Let f : L → 2L be a multivalued function. If f is limit-
preserving and Fix(f) is nonempty, then Fix(f) is a complete multilattice.

Proof. The proof is inspired by the proof of Proposition 3.15.
Let us show that 〈Fix(f),≤〉 is a complete multilattice. By assumption, Fix(f)

is nonempty; by Proposition 3.5, f is EM-monotone; and by Proposition 3.16, for
any x ∈ L, f(x) is a closed sublattice of L. Let S ⊆ Fix(f). Let us show that the
set multsup(S) is nonempty in 〈Fix(f),≤〉. So, consider a =

∨
S =

∨
c∈S c and the

complete lattice B = 〈[a,�],≤〉. Let g be the multivalued function from [a,�] to
2[a,�] defined by g(s) = f(s) ∩ [a,�] for all s ∈ [a,�]. Since both f and h, which
assign to each s ∈ [a,�] the constant interval [a,�], are

∧
-preserving on S, it is not

difficult to check that g = f ∩ h is
∧

-preserving on [a,�].
Now, let’s show that Φ(g) �= ∅. For c ∈ S, as c ≤ a and f is H-monotone,

f(c) �H f(a) follows. Hence, for c ∈ f(c) there is xc ∈ f(a) such that c ≤ xc.
Consider b =

∨
c∈S xc. Therefore, a =

∨
c∈S c ≤

∨
c∈S xc = b. We show now that

b ∈ f(a). Consider the sequence (a, a, . . . , a) of length |S|. As f is limit-preserving
and all xc ∈ f(a), we have that b =

∨
c∈S xc ∈ f(a∨ a∨ · · · ∨ a) = f(a), i.e., b ∈ f(a).

Now, consider s ∈ [a,�]. As a ≤ s and f is H-monotone, f(a) �H f(s) follows;
i.e., for b ∈ f(a) there is an sb ∈ f(s) such that a ≤ b ≤ sb. It follows that g(s) =
f(s) ∩ [a,�] �= ∅ for all s ∈ [a,�]. In particular, g(�) �= ∅ and, thus, g(�) �S {�},
i.e., � ∈ Φ(g) �= ∅.

As a consequence, by Proposition 3.9, g has minimal fixed-points S′. Obviously,
as Fix(g) = Fix(f) ∩ [a,�], any a′ ∈ S′ is also a fixed-point of f , with a ≤ a′. In
fact, a′ is a minimal fixed-point of f , which is an upper bound of all elements of S;
in other words, a′ ∈ multsup(S) and a′ ∈ Fix(f), which concludes the proof.

Similarly, it can be shown that multinf(S) is nonempty in 〈Fix(f),≤〉, and, thus,
we can conclude that 〈Fix(f),≤〉 is a complete multilattice.
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Table 3.1

Main results about F ix(f).

Prop.
∧

-pr.
∨

-pr. S-mo. H-mo. f(x) infl. defl. Φ(f) Ψ(f) F ix(f)

3.7 • �= ∅ �= ∅

3.7 • �= ∅ �= ∅

3.8 • min min

3.8 •
∧ ∧

3.8 • max max

3.8 •
∨ ∨

3.8 • min min

3.8 •
∧ ∧

3.8 • max max

3.8 •
∨ ∨

3.9 • �= ∅ min

3.9 • �= ∅ max

3.10 •
∧ ∧

3.10 •
∨ ∨

3.11 • �= ∅, ∧-cl.
∧

3.12 • �= ∅, ∨-cl.
∨

3.14 • �= ∅, ∧-cl. • �= ∅, ∧-cl.

3.14 • �= ∅, ∨-cl. • �= ∅, ∨-cl.

3.15 • • �= ∅, sublatt. �= ∅, compl. latt.

3.17 • �= ∅ • �= ∅, ∧-cl.

3.17 • �= ∅ • �= ∅, ∨-cl.

3.17 • • �= ∅ �= ∅, compl. latt.

3.18 • • compl. multilatt.

Table 3.2

Impact of multivalued functions in the examples on F ix(f).

Ex.
∧

-pr.
∨

-pr. S-mo. H-mo. f(x) infl. defl. Φ(f) Ψ(f) F ix(f)

10
∧

,
∨

• �= ∅,

� ∃
∧ ∨ ∨

,

� ∃ min

8 • • •
∨

•
∃ min,

� ∃
∧ ∨ ∨

,

∃ min,

� ∃
∧

9 •
∨

•
∨

,

� ∃ min

∨ ∨
,

� ∃ min

9 •
∧

•
∧ ∧

,

� ∃max

∧
,

� ∃ max

9 • •
�= ∅,
� ∃ min
� ∃ max

�= ∅,
� ∃ min
� ∃ max

�= ∅,
� ∃min
� ∃max

�= ∅,
� ∃ min
� ∃ max

14 . •
∧ ∃min

� ∃
∧ compl. latt.

� ∃ min∨
15 •

∧ ∨ ∧
= ∅

15 •
∨ ∨ ∧

= ∅

16 • • closed
sublatt.

• compl.
latt.

∧ ∃
∧

,

∃
∨

,

¬∧-cl.

17 • •
∃min∨ ∃ min∨ ∃ min,∨

Note that by Proposition 3.9, in Proposition 3.18 above, Φ(f) �= ∅ guarantees
that Fix(f) is nonempty.

For convenience, Table 3.1 reports a summary of the main results about Fix(f)
reported in this section. In the table, min (max) means that the set contains minimals
(maximals), while

∧
(
∨

) means that the set contains a least (greatest) element.
For completeness, Table 3.2 summarizes the impact of the multivalued functions

in the examples on the set of fixed-points.

3.1. Orbits. We next describe how to obtain minimal fixed-points (if they exist)
of multivalued functions f : L→ 2L. An orbit4 of f is a (possibly transfinite) sequence
(xα)α∈I of elements xα ∈ L, with |I| > |L| and

x0 = ⊥,
xα+1 ∈ f(xα),
xλ =

∨
α<λ xα for limit ordinals λ .

4The definition is a generalization of the usual iteration of f over ⊥ for single-valued functions.
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Some comments are in order:
• Due to the nondeterministic choice of xα+1, f may have many possible orbits.
• For the sake of this paper we consider the starting point of the orbit x0 = ⊥.

However, this can be made more flexible by considering any x0 = a ∈ L
as a starting point. We consider x0 = ⊥, as we are interested in how to
obtain minimal fixed-points. Of course, a special and interesting alternative
case is x0 = � (in that case, we postulate that for limit ordinal λ, xλ =∧
α<λ xα), which relates to the computation of maximal fixed-points. We call

such sequences �-orbits.
• A sequence x0, x1, . . . , xα, where xβ+1 ∈ f(xβ) for β < α and f(xα) = ∅, is

not an orbit.
• For convenience, we require that the length |I| of an orbit be strictly greater

than |L|, so that, if the orbit is increasing (decreasing), we may apply Proposi-
tion 2.1, which guarantees then that the orbit eventually becomes stationary.

• If an orbit (xα)α∈I becomes stationary, i.e., there is β ∈ I such that |β| ≤ |L|
and xα = xβ for all β ≤ α ∈ I, then by construction xβ = xβ+1 ∈ f(xβ) and,
thus, xβ is a fixed-point of f .

• As any increasing (decreasing) orbit converges to a fixed-point, it is clear
that if we can guarantee that such an orbit exists, then also the existence of
a fixed-point is shown.

• Of course, from a practical point of view, whenever we try to build an orbit,
we may stop as soon as we have xβ = xβ+1.

Example 18. Consider the lattice FOUR. Let g be a multivalued function such
that g(⊥) = {f, t}, g(f) = {f, t}, g(t) = {f, t}, g(�) = {�}. It can easily be verified
that g is S-monotone and Fix(g) = {f, t,�}. Then, for instance, we may have the
following orbits:

o1 = (⊥, f, f, f, f),
o2 = (⊥, t, t, t, t, t),
o3 = (⊥, f, t, t, t),
o4 = (⊥, t, f, f, t),
o5 = (⊥, f, t, f, t, f, t) .

As already pointed out, unlike the single-valued case, Examples 9 and 18 show
that, e.g., S-monotonicity does not guarantee the existence of a minimal fixed-point.
Also, S-monotonicity does not guarantee that an orbit (xα)α∈I eventually becomes
stationary (consider the orbit (0, 2, 0, 2, . . .) in Example 3 or orbit o5 in Example 18).
Note also that in Example 18 no orbit converges to the fixed-point �.

Our main contribution in this context is the following.
Proposition 3.19. For a multivalued function f ,
1. if f is inflationary, then each orbit is increasing;
2. each increasing orbit converges to a fixed-point of f (if no fixed-point exists,

then there is no orbit); and
3. if f is S-monotone and inflationary, then for any minimal fixed-point of f

there is an orbit converging to it.
Proof. Let (xα)α∈I be an orbit of f . Recall that for ordinal α we have xα+1 ∈

f(xα) �= ∅. As f is inflationary, {xα} �S f(xα). But, by the definition of �S , for
xα+1 ∈ f(xα), xα ≤ xα+1. For a limit ordinal λ, xλ =

∨
α<λ xα, {xλ} �S f(xλ) �= ∅,

and, thus, there is xλ+1 ∈ f(xλ) such that xλ ≤ xλ+1.
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For the second point, as (xα)α∈I is an increasing sequence and |I| > |L|, by
Proposition 2.1 there is an ordinal α such that xα = xα+1 ∈ f(xα). That is, xα is a
fixed-point of f .

Finally, for the third point, assume x̄ ∈ f(x̄) is a minimal fixed-point of f . Now,
let us show by (transfinite) induction on α that there is an increasing orbit (xα)α∈I
of f such that xα ≤ x̄ for all α.
The case where α = 0. x0 = ⊥ ≤ x̄.
α successor ordinal. By induction, xα ≤ x̄. As f is S-monotone and inflationary,

{xα} �S f(xα) �S f(x̄). But, x̄ ∈ f(x̄), so we can choose xα+1 ∈ f(xα) such
that xα ≤ xα+1 ≤ x̄.

α limit ordinal. By induction, xβ ≤ x̄ holds for all β < α, which implies that
xα =

∨
β<α xβ ≤ x̄.

The sequence (xα)α∈I is increasing and, thus, by Proposition 2.1 there is an
ordinal α such that xα = xα+1 ∈ f(xα). So, xα is a fixed-point of f with xα ≤ x̄. As
x̄ is a minimal, xα = x̄.

Example 19. Consider the lattice FOUR. Let g be a multivalued function such
that g(⊥) = {f, t}, g(f) = {f}, g(t) = {t}, g(�) = {�}. It can easily be verified that
g is S-monotone and inflationary and that Fix(g) = {f, t,�}. Then, we may have
the following orbits:

o1 = (⊥, f, f, f, f),
o2 = (⊥, t, t, t, t, t) .

Orbit o1 converges to the minimal fixed-point f , while o2 converges to the minimal
fixed-point t.

Of course, the dual of Proposition 3.19 holds as well.
Proposition 3.20. For a multivalued function f ,
1. if f is deflationary, then each �-orbit is decreasing;
2. each decreasing �-orbit converges to a fixed-point of f (if no fixed-point exists,

then there is no orbit); and
3. if f is H-monotone and deflationary, then for any maximal fixed-point of f

there is a �-orbit converging to it.
Proof. This is dual to Proposition 3.19 (see the appendix, Proposition A.8).
By a straightforward adaptation of the proof of point 3 in Proposition 3.19, we

can show the following.
Proposition 3.21. Let f be an H-monotone, nonempty multivalued function

such that for any increasing sequence (yα)α∈I there is y ∈ f(
∨
α∈I yα) such that

yα ≤ y for all α ∈ I. Then, there is an increasing orbit and, thus, a fixed-point of f .
Proof. Let us show by (transfinite) induction on α that there is an increasing

orbit (xα)α∈I of f and that by Proposition 3.19, point 2, it converges to a fixed-point
of f .
The case where α = 0. x0 = ⊥.
α successor ordinal. By induction, xα−1 ≤ xα and xα ∈ f(xα−1). As f is H-

monotone, we have f(xα−1) �H f(xα). So, for xα ∈ f(xα−1), there is xα+1 ∈
f(xα) s.t. xα ≤ xα+1.

α limit ordinal. Consider (xβ)β∈α. By hypothesis, there is xα+1 ∈ f(
∨
β∈α xβ)

with xβ ≤ xα+1 for all β < α, and, thus, xα =
∨
β<α xβ ≤ xα+1.

Note that the condition on the limit is essential, as Example 15 shows: (0,0.5,0.75,. . .)
is the increasing sequence that can be built, which converges to 1. But, there is no
x ∈ f(1) such that 1 ≤ x. The dual of Proposition 3.21 is as follows.
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Proposition 3.22 (Khamsi and Misane [22]). Let f be an S-monotone, nonempty
multivalued function such that for any decreasing sequence (yα)α∈I there is y ∈
f(
∧
α∈I yα) such that y ≤ yα for all α ∈ I. Then there is a decreasing �-orbit

and, thus, a fixed-point of f .
We recall that Proposition 3.22 is the main result described in [22] (see also [16]).
A closer look at the induction step in the previous proof of point 3 of Proposi-

tion 3.19 reveals a useful practical case. Indeed, rather than choosing an arbitrary
xα+1 ∈ f(xα) s.t. xα+1 ≤ x̄ with xα ≤ xα+1, if min f(xα) is nonempty, we may
choose an appropriate xα+1 ∈ min f(xα).

In the following, let (xα)α∈I be an orbit (�-orbit) of f . We say that (xα)α∈I is
an orbit (�-orbit) of minimals (maximals) of f iff xα+1 ∈ min f(xα) if min f(xα) �= ∅
(xα+1 ∈ max f(xα) if max f(xα) �= ∅). Hence, we have the following.

Proposition 3.23. Consider a multivalued function f : L→ 2L.
1. If f is inflationary and S-monotone, then for any minimal fixed-point of f

there is an orbit (xα)α∈I of minimals converging to it.
2. If f is deflationary and H-monotone, then for any maximal fixed-point of f

there is a �-orbit(xα)α∈I of maximals converging to it.
Similarly, we have the following.
Proposition 3.24. Consider a multivalued function f : L→ 2L.
1. If f : L→ 2L is S-monotone and for all x ∈ L, f(x) has a least element, then

there is an orbit (xα)α∈I of least elements, i.e., xα+1 =
∧
f(xα), converging

to the least fixed-point of f .
2. If f : L → 2L is H-monotone and for all x ∈ L, f(x) has a greatest element,

then there is a �-orbit (xα)α∈I of greatest elements, i.e., xα+1 =
∨
f(xα),

converging to the greatest fixed-point of f .
Proof.
1. From Proposition 3.10, we know that f has a least fixed-point x̄. Now, we

proceed similarly as for Proposition 3.19, point 3. Let us show by (transfinite) induc-
tion on α that there is an increasing orbit (xα)α∈I of f s.t. xα+1 =

∧
f(xα) (if α

ordinal), and xα ≤ x̄ for all α.
The case where α = 0. x0 = ⊥ ≤ x̄.
α successor ordinal. By induction, xα−1 ≤ xα ≤ x̄ and xα =

∧
f(xα−1). As f is

S-monotone, f(xα−1) �S f(xα) �S f(x̄). But, x̄ ∈ f(x̄), and, thus, there is
y1 ∈ f(xα) such that y1 ≤ x̄. Consider xα+1 =

∧
f(xα). As xα+1 ∈ f(xα),

xα+1 ≤ y1 ≤ x̄ follows. But then, for xα+1 ∈ f(xα) there is y2 ∈ f(xα−1)
such that y2 ≤ xα+1. Consider xα =

∧
f(xα−1). By induction, xα ∈ f(xα−1)

and, thus, xα ≤ y2 ≤ xα+1 ≤ y1 ≤ x̄.
α limit ordinal. By induction, xβ ≤ xβ+1 ≤ x̄ holds for all β < α, which implies

that xα =
∨
β<α xβ =

∨
β<α xβ+1 ≤ x̄. As f is S-monotone, f(xβ) �S

f(xα) �S f(x̄) for β < α. But, x̄ ∈ f(x̄), and, thus, there is y1 ∈ f(xα) such
that y1 ≤ x̄. Consider xα+1 =

∧
f(xα). As xα+1 ∈ f(xα), xα+1 ≤ y1 ≤ x̄

follows. Similarly, as f(xβ) �S f(xα), for xα+1 ∈ f(xα) and xβ+1 =
∧
f(xβ),

we have by induction xβ+1 ∈ f(xβ) and, thus, xβ+1 ≤ xα+1. Therefore,
xβ ≤ xβ+1 ≤ xα+1 ≤ x̄ and, thus, xα =

∨
β<α xβ =

∨
β<α xβ+1 ≤ xα+1 ≤ x̄.

The sequence (xα)α∈I is increasing and, thus, by Proposition 2.1 there is an
ordinal α such that xα = xα+1 ∈ f(xα). So, xα is a fixed-point of f with xα ≤ x̄. As
x̄ is the least fixed-point, xα = x̄.

Point 2 can be shown similarly.
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Interestingly, f being S-monotone and inflationary does not guarantee that Φ(f)
has minimals, and, thus, a minimal fixed-point may not exist (Example 9). However,
we have the following.

Proposition 3.25. Let f be an inflationary,
∧

-preserving multivalued function
such that Φ(f) �= ∅.

1. Then f has minimal fixed-points and there are orbits converging to them.
2. If f is also

∨
-preserving, then ω steps are sufficient to reach a minimal fixed-

point.
Proof. The first item follows immediately from Propositions 3.7, 3.9, and 3.19. For

the second item, consider an orbit (xα)α∈I converging to a minimal fixed-point x̄ of f .
Let us show that xω is a fixed-point of f . As f is inflationary, the orbit is increasing.
Then xω =

∨
α<ω xα. As f is

∨
-preserving we have that f(xω) = f(

∨
α<ω xα) =

{y : there is (yα)α<ω s.t. yα ∈ f(xα) and y =
∨
α<ω yα}. For 0 ≤ α < ω, let

yα = xα+1. Therefore, yα ∈ f(xα) and, thus, xω = y =
∨
α<ω yα ∈ f(xω). That is,

xω is a fixed-point of f and xω ≤ x̄ and, thus, xω = x̄.
Clearly, the dual of Proposition 3.25 holds as well.
Proposition 3.26. If a multivalued function f is deflationary and

∨
-preserving,

and Ψ(f) �= ∅, then f has maximal fixed-points and there are �-orbits converging to
them. If f is also

∧
-preserving, then ω steps are sufficient to reach a maximal fixed-

point.
We conclude this part by showing a strict relationship between S-monotone and

inflationary operators. For a multivalued function f : L→ 2L, let us define

(3.6) g(x) = x⊕ f(x) = {x ∨ y : y ∈ f(x)} .

Note that if f(x) = ∅, then g(x) = ∅.
Proposition 3.27. For f : L → 2L, g(x) = x ⊕ f(x) is inflationary. Further-

more, if f is S-monotone, then
1. g is S-monotone;
2. x ∈ f(x) implies x ∈ g(x);
3. x ∈ g(x) implies f(x) �S {x};
4. if x is a minimal fixed point of g, then x is a minimal fixed point of f ; and
5. if x is a minimal fixed point of f and f is also inflationary, then x is a

minimal fixed point of g.
Proof. Consider f and g. If f(x) = ∅, then {x} �S g(x) = ∅. Otherwise, for

y ∈ g(x), x ≤ y. Therefore, {x} �S g(x) and, thus, g is inflationary. Now, suppose f
is S-monotone.

1. This is easy to prove, as g is a combination of S-monotone functions.
2. If x ∈ f(x), then by definition of g, x = x ∨ x ∈ g(x).
3. If x ∈ g(x), then for some y ∈ f(x), x = x ∨ y. Therefore, y ≤ x and, thus,

f(x) �S {x}.
4. Assume x is a minimal fixed-point of g, i.e., x ∈ g(x) = x ⊕ f(x). Therefore,

there is y ∈ f(x) such that y ≤ x. As f is S-monotone, f(y) �S f(x). That is,
there is z ∈ f(y) such that z ≤ y and, thus, y = y ∨ z. Therefore, y ∈ g(y). As x is
minimal and y ≤ x, y = x follows, and, thus, x ∈ f(x). To prove that x is a minimal
fixed-point of f , assume there is y ≤ x such that y ∈ f(y). By point 2, y ∈ g(y), and,
thus, as x is a minimal fixed-point of g, y = x follows.

5. Assume x is a minimal fixed-point of f . By point 2 x ∈ g(x). To prove that
x is a minimal fixed-point of g, assume there is y ≤ x such that y ∈ g(y). Then by
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point 3 f(y) �S {y} and, thus, y ∈ Φ(f). By Proposition 3.7, y ∈ f(y), and, thus, as
x is a minimal fixed-point of f , y = x follows.

We note that the inflationary condition in point 5 in Proposition 3.27 is necessary.
Example 20. Consider L = {0} ∪ {1/n : n = 1, 2, . . .} and the multivalued

mapping f : L→ 2L defined as follows:

f(0) = {1/n : n = 1, 2, . . . },
f(1/n) = {1} ∪ {1/(n+ k) : k = 1, 2, . . .}.

f is S-monotone, but not inflationary ({1/n} ��S f(1/n)), and 1 is its only fixed-point.
However, the function g(x) = x⊕ f(x) has the following definition:

g(0) = {1/n : n = 1, 2, . . .},
g(1/n) = {1, 1/n} ,

which has infinitely many fixed points and none is minimal.
Of course, Proposition 3.27 has its dual as well. Let

(3.7) h(x) = x⊗ f(x) = {x ∧ y : y ∈ f(x)} .

Proposition 3.28. For f : L → 2L, h(x) = x ⊗ f(x) is deflationary. Further-
more, if f is H-monotone, then

1. h is H-monotone;
2. x ∈ f(x) implies x ∈ h(x);
3. x ∈ h(x) implies {x} �H f(x);
4. if x is a maximal fixed point of h, then x is a maximal fixed point of f ; and
5. if x is a maximal fixed point of f and f is also deflationary, then x is a

maximal fixed point of h.
Proof. This is dual to Proposition 3.27 (see the appendix, Proposition A.9).
We report here some other related results known in the literature. For instance,

[45] (which relies on [33]) gives a condition for the existence of a least fixed-point.
Proposition 3.29 (Stouti [45]). Let f : L→ 2L be a multivalued function, where

L = 〈L,�〉 is a complete partial order (CPO) with ⊥, i.e., any nonempty chain in
L has a supremum in L, and ⊥ ∈ L. Assume that for any x ∈ L, f(x) is nonempty,
and that if for any x, y ∈ L with x < y, then for every a ∈ f(x) and b ∈ f(y), we
have that a ≤ b.5

1. Then f has a least fixed-point.
2. If there is a ∈ L such that for all b ∈ f(a) we have a ≤ b, then f has a least

fixed-point in the subset {a ∈ L | a ≤ x}.
For completeness, we recall that [33] states the following.
Proposition 3.30 (Orey [33]). Let f : L→ 2L be a multivalued function, where

L = 〈L,�〉 is a CPO with ⊥, i.e., any nonempty chain in L has a supremum in L,
and ⊥ ∈ L. Assume that for any x ∈ L, f(x) is nonempty, and that if for any x, y ∈ L
with x < y, then for every a ∈ f(x) and b ∈ f(y), we have that a ≤ b. If there is
a ∈ L such that {a} �S f(a), then f has a fixed-point.

The above proposition relies on the fact that under its condition we have that
{a} �S f(a) �S f2(a) �S · · · , which allows us to build an increasing and, thus,
eventually stationary, orbit.

5Hence, this is a strictly stronger monotonicity condition than the EM-monotonicity.
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We conclude this section by extending ≤ to Ln pointwise: for (x1, . . . , xn) ∈ Ln

and (y1, . . . , yn) ∈ Ln, we say that (x1, . . . , xn) ≤ (y1, . . . , yn) iff for all i, xi ≤ yi. For
x,y ∈ Ln, x∧y and x∨y are defined pointwise, i.e., x∧y = (x1∧y1, . . . , xn∧yn) and
x∨y = (x1∨y1, . . . , xn∨yn). Since L = 〈L,≤〉 is a complete lattice, so is Ln = 〈Ln,≤〉.
All definitions and properties of single-valued functions and multivalued functions over
the domain L of L can be extended to Ln as well.

4. Generalized logic programs. We now apply the results developed so far
to a general form of logic programs. Consider a complete lattice L = 〈L,≤〉, which
will act as our truth-value set. Formulae will have a degree of truth in L. Let F
be a family of computable n-ary functions f : Ln → L, called (logical) connectors.6

Connectors will be used to build logical formulae from logical atoms. For instance, the
join (disjunction function) ∨ and the meet (conjunction function) ∧ are connectors.
f(x, y) = max(0, x + y − 1) is also a connector over [0, 1]2. Connectors need not
necessarily be monotone functions. Let V be a set of variable symbols and A be a set
of atomic formulae P (t1, . . . , tm), where P is an m-ary predicate symbol and all ti are
terms. A term is defined inductively, as usual, as being either a variable, a constant,
or the application of a logical function symbol to terms [26].

A formula is either an atom A or an expression of the form f(A1, . . . , An), where f
is an n-ary connector and each Ai is an atom. For ease of presentation, the connectors
∧ and ∨ are used in fix notation. The intuition behind a formula f(A1, . . . , An) is
that the truth degree of the formula is given by evaluating the truth degree of each
Ai and then applying f to these degrees to obtain the final degree. Of course, the
function f may well be the composition of functions, f1 ◦ · · · ◦ fn. For instance, over
[0, 1], min(A(x, y), B(y, z)) · max(¬R(z), 0.7) + G(x) is a formula. In this case, the
truth of the formula is determined from the truth of the atoms A(x, y), B(y, z), R(z),
and G(x) by applying the specified arithmetic functions. Truth degrees in L may
appear in formulae (like 0.7 above).

A logic program P is a set of rules ψ ← ϕ, where ψ and ϕ are formulae (respec-
tively, called the head and the body); i.e., rules are of the form

g(B1, . . . , Bk) ← f(A1, . . . , An) ,

where f, g are connectors and Bi and Aj are atoms. Free variables in a rule are
understood to be universally quantified. For instance, over [0, 1],

max(A(x), B(x)) ← 0.7 · max(0, A(x, y) +B(y, z) − 1)

is a rule. The intuition is that the truth of either A(x) or B(x) is at least the
truth degree of the body. We point out that the form of the rules is sufficiently
expressive to encompass all approaches we are aware of to monotone many-valued
logic programming.7 So far, in many-valued logic programming, rules are either of
the “deterministic” formB ← f(A1, . . . , An) or of the formB1∨. . .∨Bk ← A1∧. . .∧An
(see, e.g., [46]).

In the following, by P∗ we denote the ground instantiation of P . If there is no
constant in P , then we consider some constant, say c, to form ground terms. Note

6By computable we mean that the result of f is computable in a finite amount of time.
7Also note that any classical first order clause A1 ∨ · · · ∨ Ak ∨¬B1 ∨ · · · ¬Bn (with k + n > 0) is

a rule of the form A1 ∨ · · · ∨ Ak ← B1 ∧ · · · ∧ Bn. If k = 0, we use ⊥ in the left-hand side, while if
n = 0, we use � in the right-hand side.
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that |P∗| may be not finite, but it is countable. If we restrict a term to be either a
variable or a constant, then |P∗| is finite.

We next consider the usual notion of interpretation and generalize the notion of
satisfiability (see, e.g., [46]) to our setting. An interpretation is a mapping I from
ground atoms to members of L. For a ground atom A, I(A) indicates the degree of
truth to which A is true under I. An interpretation I is extended from atoms to
nonatomic formulae in the usual way as follows:

1. for b ∈ L, I(b) = b; and
2. I(f(A1, . . . , An)) = f(I(A1), . . . , I(An)).

An interpretation I satisfies (is a model of) a ground rule ψ ← ϕ ∈ P∗, denoted
I |= ψ ← ϕ iff I(ϕ) ≤ I(ψ). Essentially, we postulate that the consequent ψ of the
ground rule (implication) is at least as true as the antecedent ϕ. We further say that
I satisfies (is a model of) a logic program P , denoted I |= P , iff I satisfies all ground
rules in P∗. Given an interpretation I, by P [I] we denote the set of ground rules of
P∗ in which the body has been evaluated by means of I, i.e.,

P [I] = {ψ ← I(ϕ) : ψ ← ϕ ∈ P∗} .

It is easily verified that I |= P iff I |= P [I].
Given two interpretations I, J , we define I ≤ J pointwise; i.e., I ≤ J iff for all

ground atoms I(A) ≤ J(A). It is easily verified that the set of interpretations, denoted
L̂, forms a complete lattice as well, i.e., 〈L̂,≤〉 is a complete lattice, with least element
I⊥ (mapping all atoms to ⊥) and greatest element I� (mapping all atoms to �). If L
is countable, then so is L̂. If L is finite and a term is either a variable or a constant,
then L̂ is finite as well.

It is worth noting that I ≤ J does not necessarily imply that I(ψ) ≤ J(ψ) for a
formula ψ. However, as one may expect, if the functions involved in ψ are monotone,
then from I ≤ J , I(ψ) ≤ J(ψ) follows.

Proposition 4.1. Let I, J be two interpretations such that I ≤ J . If ψ is a
formula involving monotone functions f ∈ F , then I(ψ) ≤ J(ψ).

Proof. The proof is on the structure of ψ. Assume ψ is an atomic formula A.
Then by definition of I ≤ J , I(A) ≤ J(A). If ψ = f(A1, . . . , An), then using induction
on Ai and the fact that f is monotone we have that

I(f(A1, . . . , An)) = f(I(A1), . . . , I(An))
≤ f(J(A1), . . . , J(An))
= J(f(A1, . . . , An)) ,

which concludes the proof.
Note that the connectors ∧,∨ are monotone. More generally, let us define the

evaluation function

e(I, ψ) = I(ψ) .

Then the above proposition establishes that the function e(I, ψ) is monotone in I if
all the connectors in ψ are monotone; i.e., if I ≤ J , then e(I, ψ) ≤ e(J, ψ). Similarly,
we can show that if all the connectors in ψ are

∨
-preserving (

∧
-preserving), then

e(I, ψ) is
∨

-preserving (
∧

-preserving) in I.
Proposition 4.2. If all the connectors in ψ are

∨
-preserving (

∧
-preserving),

then e(I, ψ) is
∨

-preserving (
∧

-preserving) in I.
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Proof. Let us prove the
∧

-preserving case. The other case is similar. Consider a
decreasing sequence of interpretations (Iα)α∈I . We have to show that e(

∧
α Iα, ψ) =∧

α e(Iα, ψ). That is, (
∧
α Iα)(ψ) =

∧
α Iα(ψ). Let Ī be the interpretation Ī =∧

α Iα. The proof is on the structure of ψ. Assume ψ is an atomic formula A.
Then by definition, e(Ī , A) = Ī(A) = (

∧
α Iα)(A) =

∧
α Iα(A) =

∧
α e(Iα, A). If

ψ = f(A1, . . . , An), then using induction on Ai and the fact that f is
∧

-preserving
we have that

e(Ī , f(A1, . . . , An)) = Ī(f(A1, . . . , An))
= f(Ī(A1), . . . , Ī(An))
= f(e(Ī , A1), . . . , e(Ī , An))

= f

(∧
α

e(Iα, A1), . . . ,
∧
α

e(Iα, An)

)

=
∧
α

f(e(Iα, A1), . . . , e(Iα, An))

=
∧
α

f(Iα(A1), . . . , Iα(An))

=
∧
α

Iα(f(A1, . . . , An))

=
∧
α

e(Iα, f(A1, . . . , An)) ,

which concludes the proof.
Useful to note is the following.
Proposition 4.3. ∨ (∧) is

∨
-preserving (

∧
-preserving).

Proof. Let us show that ∨ is
∨

-preserving. Indeed, for all increasing sequences
(〈xα, yα〉)α∈I , we have that

∨
(∨

α

〈xα, yα〉
)

= ∨
(〈∨

α

xα,
∨
α

yα

〉)

=

(∨
α

xα

)
∨
(∨

α

yα

)
=

∨
α

(xα ∨ yα)

=
∨
α

∨(xα, yα) .

In a similar way, ∧ is
∧

-preserving.
In general, ∨ (∧) is not

∧
- (

∨
-) preserving.

Example 21 (see [5]). Let us show that the meet function is not
∨

-preserving in
general. Consider the complete lattice obtained from the set of closed subsets of the
unit disk, with the meet defined as the set-intersection and the join defined as the
topological closure of set-union (closure is needed here because the arbitrary union
of closed sets need not be closed). This definition provides a complete distributive
lattice structure. Now, for all n ∈ N, define xn,1 = a = the unit circle, i.e., the points
〈x, y〉 satisfying x2 + y2 = 1, and define xn,2 = the disk of radius 1 − 1/n, that is,
the points 〈x, y〉 satisfying x2 + y2 ≤ 1 − 1/n. The sequence (〈xn,1, xn,2〉)n∈N is an
increasing sequence.

∨
n xn,2 turns out to be the whole unit disk; therefore (

∨
n xn,1)∧

(
∨
n xn,2) = a∧ (

∨
n xn,2) is the unit circle. On the other hand, xn,1 ∧ xn,2 = a∧ xn,2

is the empty set (which is a closed subset), and hence
∨
n(xn,1 ∧ xn,2) =

∨
n(a∧ xn,2)
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is the empty set. As a consequence, (
∨
n xn,1) ∧ (

∨
n xn,2) �=

∨
n(xn,1 ∧ xn,2) and,

thus, the meet function ∧ is not
∨

-preserving.
However, it can easily be shown that ∨ (∧) is

∧
- (

∨
-) preserving if L = 〈L,≤〉

is finite, i.e., |L| ∈ N. From a practical point of view this is a limitation we can
live with, especially taking into account that computers have finite resources. In
particular, this includes also the case of the rational numbers in [0, 1] under a given
fixed decimal precision p (e.g., p = 2) and the Boolean lattice over {0, 1}.

Proposition 4.4. If L = 〈L,≤〉 is finite, then ∨ and ∧ are limit-preserving.
Note that Proposition 4.4 can be extended to any finite n-ary meet (join) function.

Furthermore, Proposition 4.4 holds also for any infinite n-ary meet (join) function, as
for a finite lattice, an infinite meet (join) is equivalent to a finite meet (join). Indeed,
only finitely many values can appear in the infinite meet (join). Another useful and
special case is when L = 〈[0, 1],≤〉, as it is used in fuzzy logic programming (see, e.g.,
[48]).

Proposition 4.5. ∨ and ∧ are limit-preserving on [0, 1] × [0, 1].

4.1. Fixed-point characterization of logic programs. The aim of this sec-
tion is to extend the usual fixed-point characterization of classical logic programs [26]
to the case of generalized logic programs. So, let P be a logic program. Consider
L = 〈L,≤〉 and the related complete lattice of interpretations 〈L̂,≤〉. We next de-
fine a multivalued function over L̂ whose set of fixed-points coincides with the set of
models of P .

The multivalued immediate consequence operator mapping interpretations into
sets of interpretations, TP : L̂→ 2L̂, is defined as

TP(I) = {J : J |= P [I], I ≤ J} .

Note that either TP(I�) = ∅ or TP(I�) = {I�}. Also note that, unlike in the single-
valued case, we do not necessarily have TP(I) �= ∅.

Example 22. For any interpretation I and for P = {A ∨B ← �, ⊥ ← A, ⊥ ←
B }, TP(I) = ∅ holds.

However, note that for the specific case of rules of the form below (where Ai, Bj
is neither � nor ⊥ and k ≥ 1)

A1 ∨ · · · ∨Ak ← f(B1, . . . , Bn) ,

it is easily verified that for any I, I� ∈ TP(I) �= ∅, and in particular TP(I�) = {I�}.
Also, note that TP(I) may not be countable.

Example 23. Consider L = [0, 1] and P with rule A ← 0. Then for any inter-
pretation I �= I�, TP(I) = {J | I ≤ J and J(A) ≥ 0.3} holds. Hence, TP(I) is not
countable.

The TP function has the desired property in which models of logic programs are
fixed-points and vice versa.

Proposition 4.6. I |= P iff I ∈ TP(I).
Proof. I |= P iff I |= P [I] iff I ∈ TP(I).
Example 24. Over L = 〈{0, 1},≤〉, consider P = {A ← 1 − B} and I(A) =

0, I(B) = 1. Then

TP(I) = {J | J |= P [I], I ≤ J}
= {J | J |= A← 0, I ≤ J}
= {J | I ≤ J}
= {I, I ′},
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where I ′(A) = I ′(B) = 1. Note that I ∈ TP(I) and I is a model of P . Note also that
the truth combination function f(x) = 1−x in rule A← 1−B is not monotone. Hence
determining models of a logic program is equivalent to investigating the fixed-points
of the multivalued function TP .

In the following, we will determine which properties of section 3 about multivalued
functions apply to TP and which are specific of TP only. To start with, as definition
J ∈ TP(I) implies I ≤ J we immediately have the following.

Proposition 4.7. TP is inflationary.
Furthermore, we also can show the following.
Proposition 4.8. If all connector functions in the body ϕ of rules ψ ← ϕ ∈ P

are
∨

-preserving, then TP is
∨

-preserving and, thus, S-monotone.
Proof. Let (Iα)α∈I be an increasing sequence of interpretations. Let Ī =

∨
α Iα.

We have to show that TP(Ī) = {J : there is (Jα)α∈I s.t. Jα ∈ TP(Iα) and J =∨
α Jα} (=

∨
α TP(Iα)). So, let J ∈ TP(Ī). Then J |= P [Ī] and Ī ≤ J and,

thus, Iα ≤ J . Then, using Proposition 4.2, for all ground rules ψ ← ϕ ∈ P∗,
Iα(ϕ) ≤

∨
α Iα(ϕ) = Ī(ϕ) ≤ J(ψ). Therefore, J |= P [Iα] and, thus, J ∈ TP(Iα).

Hence, J ∈
∨
α TP(Iα). Vice versa, let J ∈

∨
α TP(Iα). Thus J =

∨
α Jα with

Jα ∈ TP(Iα). It follows that Iα ≤ Jα ≤ J and Jα |= P [Iα]. Then, using Proposi-
tion 4.2, for all ground rules ψ ← ϕ ∈ P∗, Ī(ϕ) =

∨
α Iα(ϕ) ≤

∨
α Jα(ψ) = J(ψ) and,

thus, J |= P [Ī]. As Ī =
∨
α Iα ≤

∨
α Jα = J , J ∈ TP(Ī) follows. S-monotonicity

follows from Proposition 3.5.
The analogue of Proposition 4.8 does not hold for

∧
-preserving connector func-

tions.
Example 25. Consider L = [0, 1], a ≥ 1, the function f(x) = 1/(a + 1 − x),

and the logic program P = { 1
a+1 ← f(A)}. Consider a decreasing sequence of in-

terpretations In(A) = 1/n, n ∈ N. Then Ī(A) =
∧
α Iα(A) = I⊥(A) = 0. The

function f is monotone—more precisely,
∧

-preserving—, with maximum value 1
a

and minimum value 1
a+1 . Furthermore, f(I1(A)) = 1

a , while f(Ī(A)) = 1
a+1 and

f(In(A)) = 1
a+1−1/n >

1
a+1 . Therefore, TP(Ī) = {J : J interpretation}. On the other

hand, TP(In) = ∅ and, thus,8
∧
n TP(In) = ∅. Therefore, TP(

∧
n In) �⊆

∧
n TP(In);

i.e., TP is not
∧

-preserving.
Let us define

(4.1) GP (I) = {J ∨ I : J |= P [I]} .

Then it is easily verified that TP(I) ⊆ GP (I) (from I ≤ J , J ∨ I = J). On the
other hand, for J ∈ GP (I), J = J ′ ∨ I, J ′ |= P [I], J ′ ≤ J , and I ≤ J . If all
connector functions in the head of rules in P are monotone, then for all ground rules
ψ ← ϕ ∈ P∗ (using Proposition 4.1), I(ϕ) ≤ J ′(ψ) ≤ J(ψ). Therefore, J ∈ TP(I),
i.e., GP(I) ⊆ TP(I). Therefore we have what follows.

Proposition 4.9. For any interpretation I, TP(I) ⊆ GP (I). If all connector
functions in the head of rules in P are monotone, then TP(I) = GP(I).

Monotonicity is a necessary condition for guaranteeing equivalence among TP
and GP .

Example 26. Over L = 〈{0, 1},≤〉, consider the logic program P = {¬A ← A}.
The negation function ¬x = 1− x is obviously not monotone. Consider I(A) = 1 and
J ′(A) = 0. Then, J ′ |= P [I] and, thus, J = I ∨ J ′ = I� ∈ GP(I), but J �∈ TP(I).

8Recall that
∧

n TP (In) is shorthand for the right-hand side of (3.5).
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A closer analysis shows that we can write GP similarly to (3.6). Indeed, let FP
be the multivalued function

FP(I) = {J : J |= P [I]} .

Then, it can easily verified that

GP(I) = I ⊕ FP(I) .

We can show the following.
Proposition 4.10. If all connector functions in the body ϕ of rules ψ ← ϕ ∈ P

are monotone, then FP is a multivalued S-monotone operator.
Proof. Consider interpretations I, J s.t. I ≤ J . Let us show that FP (I) �S FP(J).

If FP (J) = ∅, then obviously FP(I) �S FP (J). Otherwise, assume FP(J) �= ∅. Let
J ′ ∈ FP (J) and, thus, by definition J ′ |= P [J ]; i.e., for all ground rules ψ ← ϕ ∈
P∗, J(ϕ) ≤ J ′(ψ). But, I ≤ J and, using Proposition 4.1, I(ϕ) ≤ J(ϕ) ≤ J ′(ψ).
Therefore, J ′ |= P [I] and, thus, J ′ ∈ FP(I), which concludes the proof.

Note that the proof of the proposition above shows in fact that if I ≤ J , then
FP(J) ⊆ FP(I) and, thus, FP(I) �S FP (J).

Now, taking into account Propositions 3.27, 4.7, and 4.9, the following analogue
of Proposition 3.27 can be obtained.

Proposition 4.11. GP is inflationary. Furthermore, if all connector functions
in P are monotone, then (i) TP = GP ; (ii) TP is S-monotone; (iii) I ∈ FP(I) implies
I ∈ TP(I); (iv) I ∈ TP(I) implies FP (I) ≤ {I}; and (v) for any interpretation I, I
is a minimal fixed-point of FP iff I is a minimal fixed-point of TP .

By relying on Propositions 4.6, 3.7, and 3.19, we have the following.
Proposition 4.12. Let P be a logic program. Then
1. Φ(TP) �= ∅ iff P has a model;
2. each orbit of TP is increasing and converges to a model of P;
3. if I is a minimal model of P and all connector functions in P are monotone,

then there is an orbit converging to I.
Unlike the general case, for TP we can be even more precise and reach any model.
Proposition 4.13. If I is a model of P and all connector functions in P are

monotone, then there is an orbit converging to I.
Proof. We show that if I |= P , then there is an orbit converging to I. By

Proposition 4.6, I ∈ TP(I). The proof is similar for point 3 in Proposition 3.19. We
know that each orbit of TP converges to a model of P . As in Proposition 3.19, we can
show by induction on α that there is an orbit (Iα)α∈I of elements Iα+1 ∈ TP(Iα) with
I0 = I⊥, such that Iα ≤ I for all α. Therefore, the orbit converges to a model Iᾱ of
P , where Iᾱ = Iᾱ+1, Iᾱ ≤ I. By Proposition 4.6, Iᾱ ∈ TP(Iᾱ). Now, let us show that
I ∈ TP(Iᾱ). Indeed, from Iᾱ |= P and I |= P , for all ψ ← ϕ ∈ P∗, from Iᾱ ≤ I, using
Proposition 4.1, we have Iᾱ(ϕ) ≤ I(ϕ) ≤ I(ψ). Therefore, I ∈ TP(Iᾱ) and, thus, the
sequence I0 = ⊥, . . . , Iᾱ, I, I, . . . is an orbit converging to I.

Example 27. Consider the logic program over the Boolean lattice on {0, 1},
P = {(a∨b← 1), (c← a), (a∧c∧d← b)}. The unique minimal model is Ī(a, b, c, d) =
〈1, 0, 1, 0〉. The following are two orbits p1, p2 of TP :

p1 = 〈0, 0, 0, 0〉 → 〈1, 0, 0, 0〉 → 〈1, 0, 1, 0〉 → 〈1, 0, 1, 0〉 ,
p2 = 〈0, 0, 0, 0〉 → 〈0, 1, 0, 0〉 → 〈1, 1, 1, 1〉 → 〈1, 1, 1, 1〉 .

Both 〈1, 0, 1, 0〉 and 〈1, 1, 1, 1〉 are fixed-points, i.e., models, and p1 reaches the minimal
one.
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Note that the previous two propositions allow us also to decide, if the lattice is
finite, whether or not a logic program has a model. Indeed, it suffices to try to build
an orbit, starting with I⊥, and systematically use all alternatives (which are finite)
at each step. If no orbit can be built, no model exists.

As for the general case (see Example 9), TP may not have minimal fixed-points.
Example 28. Consider the logic program P = {f(A) ← 1}, where f(x) = 1 if

x > 0 and f(0) = 0. Then I |= P iff I(A) > 0, and no minimal model exists.
The following example shows that if a connector function is not

∧
-preserving,

then there is a decreasing sequence of models not converging to a model.
Example 29. Consider L = [0, 1] and the connector function f such that f(0) = 0

and for x > 0, f(x) = 1. Now, consider the logic program P = {A ∨ f(B) ← 1}.
Then the decreasing sequence (In)n∈N of interpretations In, where In(A) = 0 and
In(B) = 1/n is a decreasing sequence of models of P converging to the interpretation
I(A) = 0, I(B) = 0, which, however, is not a model of P . (Note: f is not

∧
-

preserving.) Also note that P has a minimal model with I(A) = 1 and I(B) = 0,
despite the fact that the connector function f is not

∧
-preserving.

We next want to establish a proposition like Proposition 3.9, guaranteeing the
existence of minimal fixed points.

Proposition 4.14. If all connector functions in P are
∧

-preserving and P has
models, then Φ(TP) has minimals.

Proof. As P has models, models are fixed-points of TP (Proposition 4.6), and
TP is inflationary, by Proposition 3.7, Φ(TP) �= ∅. So, let (Iα)α∈I be a decreasing
sequence of interpretations in Φ(TP), and let I =

∧
α Iα. Again, by Zorn’s lemma it

suffices to show that I ∈ Φ(TP).
By Propositions 4.11 and 3.7, Iα ∈ TP(Iα); i.e., Iα are fixed-points. Now, let

us show that I ∈ TP(I). From Iα ∈ TP(Iα) and ψ ← ϕ ∈ P∗, Iα(ϕ) ≤ Iα(ψ)
holds. Therefore, by Proposition 4.2, I(ϕ) = (

∧
α Iα)(ϕ) =

∧
α Iα(ϕ) ≤

∧
α Iα(ψ) =

(
∧
α Iα)(ψ) = I(ψ). As a consequence, I |= P [I] and, thus, I ∈ TP(I). Therefore,

I ∈ Φ(TP), which concludes the proof.
We note that, by Proposition 3.19, if TP(I�) �= ∅, then, as TP is inflationary, P

has a model. Then, by Propositions 3.8 and 4.6, the next proposition directly follows.
Proposition 4.15. If all connector functions in P are

∧
-preserving and P has

models, then TP has minimal fixed-points and, thus, P has minimal models.
The analogue of Proposition 3.25 is as follows.
Proposition 4.16. If P has models and all connector functions in P are

∧
-

preserving, then P has minimal models and there are orbits converging to them. If all
connector functions in P are also

∨
-preserving, then ω steps are sufficient to reach a

minimal model.

4.2. The case of classical logic programs. We conclude this part by applying
our results to classical logic programs [26, 27, 32]. As already pointed out, any classical
first order clause A1 ∨ · · · ∨Ak ∨¬B1 ∨ · · · ¬Bn (with k+ n > 0) is a rule of the form

(4.2) A1 ∨ · · · ∨Ak ← B1 ∧ · · · ∧Bn .

If k = 0, we use ⊥ in the left-hand side, while if n = 0, we use � in the right-hand
side. The truth space is L = {0, 1}. Note that usually in disjunctive logic programs
k ≥ 1 is assumed and Ai, Bj is neither � nor ⊥. This slight difference has an impact
on the set of models of a disjunctive logic program, as we show next.



ON FIXED-POINTS OF MULTIVALUED FUNCTIONS 1905

Example 30. Consider the truth space L = {0, 1} and consider P with rules

⊥ ← A,

A← � .

The former rule states that A should be false, while the latter states that A should be
true. Of course, TP(I) = ∅, for any interpretation I and, thus, TP has no fixed-point;
thus, P has no model.

On the other hand, if we assume that k ≥ 1 and that Ai, Bj is neither � nor ⊥,
as usual for disjunctive logic programs, as L is finite, by Proposition 4.4, ∨ and ∧ are
limit-preserving. Furthermore, it is easily verified that for any I, I� ∈ TP(I) �= ∅,
in particular TP(I�) = {I�}, TP is

∨
-preserving (thus, S-monotone), and, as TP

inflationary, P has a model. By Propositions 4.16 and 3.23 we immediately have the
following well-known fact [27, 32].

Proposition 4.17. Any classical disjunctive logic program P has minimal models
and there are orbits (of length ω) of minimals converging to them.

Finally, let us further restrict logic programs to the case where the head contains
one atom only (i.e., k = 1). That is, rules are of the usual deterministic form

(4.3) A← B1 ∧ · · · ∧Bn .

Then, for any I, TP(I) has a least element.
Proposition 4.18. For any classical deterministic logic program P and inter-

pretation I, TP(I) has a least element.
Proof. Consider J̄ =

∧
TP(I). Let us show that J̄ ∈ TP(I). As for all J ∈ TP(I)

we have I ≤ J , it follows that I ≤
∧
J∈TP(I) J = J̄ . Now, consider A ← I(ϕ) with

A← ϕ ∈ P∗. Then by Proposition 4.2, as for all J ∈ TP(I), I(ϕ) ≤ J(A) holds,

I(ϕ) ≤
∧

J∈TP(I)

J(A) =
∧

J∈TP(I)

e(J,A) = e

⎛
⎝ ∧
J∈TP (I)

, A

⎞
⎠ = e(J̄ , A) = J̄(A),

and, thus, J̄ |= P [I]. As a consequence, J̄ ∈ TP(I).
Now, using Propositions 3.10, 3.24, and 4.17 we immediately have the following

well-known fact [26].
Proposition 4.19. Any classical deterministic logic program P has a least model

and there is an orbit (of length ω) of least elements converging to it.
If terms are restricted to be either variables or constants, then for disjunctive

logic programs the set of minimal models is finite (as there are finitely many inter-
pretations). For both Propositions 4.17 and 4.19 the length of the orbits is finite.

5. Conclusions and related work. We have provided conditions for the exis-
tence of fixed-points, and minimal and maximal fixed-points of multivalued functions
over complete lattices, and have shown how to obtain them. Our main contribution
establishes that an inflationary, S-monotone, multivalued function with Φ(f) �= ∅
has minimal fixed-points, where each orbit converges to a fixed-point and for each
minimal fixed-point an orbit converging to it exists. We have also shown that (see
Table 3.1) the set of fixed-points of a limit-preserving multivalued function is a com-
plete multilattice. We also reported the results of related work we are aware of.

We then applied our results to a general form of logic programs, where the truth
space is a complete lattice. We have shown that a multivalued operator can be
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defined whose fixed-points are in one-to-one correspondence with the models of the
logic program.

Related work. To the best of our knowledge, the fixed-point theory over com-
plete lattices is mainly single-value oriented. Nonetheless, [6, 14, 15, 16, 20, 21,
22, 33, 45, 53] establish a version of the Knaster–Tarski theorem, though requir-
ing the condition that f(x) be always nonempty and some other conditions. Refer-
ences [20, 21, 22, 14, 15, 16, 17, 38] also investigate the case where metric spaces
or Banach spaces are considered in place of complete lattices, and then use the
well-known contraction principle (see also [24, 41]) or continuity to guarantee the
existence of a fixed-point (if f(x) is always nonempty, of course). They also then
apply some of their results to disjunctive logic programs (with nonmonotone nega-
tion). Close in spirit, using mainly Banach spaces, topological spaces, and metric
spaces in place of complete lattices, are works of the mathematical community such
as [2, 10, 19, 23, 49, 40, 34, 35, 43, 50, 51]. We point out that these works do not
cover our results. As our initial objective was to study generalized many-valued logic
programs, our analysis tried to parallel the usual analyses made for single-valued
functions over complete lattices.

The research area of semantics for nondeterministic programming languages (see,
e.g., [8, 36, 37, 44]) instead does not address multivalued functions directly, but rather
“lifts” a multivalued function f : D → 2D to a function g : P∗(D) → P∗(D), where
P∗(D) is a rather complicated and appropriately ordered subset of the powerset of
D (so-called power domains [1, 36, 44]), and then applies usual fixed-point theory.
Here, D is a so-called domain, i.e., a complete partial ordered set with some additional
constraints [1]. As in all order cases, f(x) is assumed to be nonempty and finite. This
constraint is related to the application of nondeterministic programming languages
(as indeed, at each step of a program execution, there is at least one next state and
there are at most finitely many possible nondeterministic alternatives).

Concerning the application of multivalued functions to logic programming, to the
best of our knowledge, no work considers such general rules. Related to our approach
are [14, 15, 16, 20, 21, 22] in which classical disjunctive logic programs have been
considered with nonmonotone negation. We did not consider nonmonotonic negation
so far, as an appropriate semantics (for generalized nonmonotone many-valued logic
programs) has still to be developed. We also point to works such as [13, 39, 52] in
which disjunctive logic programs are studied from a domain-theoretic (i.e., Smyth
powerdomain) point of view. One feature of these works is that, by using an appro-
priate domain, as in the case of nondeterminsitic programming languages, the concept
of a multivalued function is avoided by representing “disjunctive states”9 (again, the
image of a multivalued function is assumed to be nonempty and finite). On the other
hand, we follow a direct approach, which requires less formal and abstract theory and
is likely amenable to a less formal audience as well.

We envisage several directions for future research. The fixed-point theory of
multivalued functions is interesting per se (there are many options worth investigating,
such as using some other sets in place of complete lattices, CPOs, domains, Banach
spaces, metric spaces, topological spaces, or some specific sets such as [0, 1], etc., which
have mainly been considered by mathematicians—see also [12]). On the other hand,
related to general logic programs, besides considering special cases for connectors in
the head and body, it would be interesting to generalize the stable model semantics

9This is similar to [42] in which an immediate consequence operator has been defined over sets
of interpretations.
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for classical disjunctive logic programs [9] to our case. More generally, we would
like to bring the theory of fixed-points of multivalued functions to the attention of the
knowledge representation and reasoning community, where multivalued functions may
be applied to several problems and logic-based languages for knowledge representation.

Appendix A. Some other proofs.
Proposition A.1. Consider a multivalued function f : L → 2L. If f is

∧
-

preserving, then f is H-monotone.
Proof. Consider x1 ≤ x2. Then for the decreasing sequence x2 ≥ x1, f(x1) =

f(x2 ∧ x1) = {y : there are yi ∈ f(xi) s.t. y = y2 ∧ y1} = X . If f(x1) = ∅, then
trivially ∅ = f(x1) �H f(x2). If f(x2) = ∅, then by definition X = ∅ and, thus,
f(x1) = ∅. Therefore, ∅ = f(x1) �H f(x2) = ∅. Otherwise assume f(x1) and f(x2)
are nonempty. Therefore, as f is

∧
-preserving, for y ∈ f(x1) = X there are yi ∈ f(xi)

(i = 1, 2) such that y = y2 ∧ y1. In particular, y ≤ y2. Therefore, f(x1) �H f(x2)
and, thus, f is H-monotone.

Proposition A.2. Consider a multivalued function f : L → 2L and x1 ≤ x2

with f(x1) �= ∅ �= f(x2). If f is
∨

-preserving, then f(x1) �H f(x2).
Proof. For the increasing sequence x1 ≤ x2, as f is

∨
-preserving, f(x2) = f(x1 ∨

x2) = {y : there are yi ∈ f(xi) s.t. y = y2 ∨ y1} = X . Now, for y ∈ f(x1) choose a
y′ ∈ f(x2) �= ∅ and consider y′′ = y ∨ y′. Therefore, y′′ ∈ X = f(x2), y ≤ y′′, and,
thus, f(x1) �H f(x2).

Proposition A.3. Let f : L→ 2L be a multivalued function. If f is deflationary,
then x ∈ Ψ(f) iff x is a fixed-point of f .

Proof. Let x ∈ Ψ(f). As f is deflationary, {x} �H f(x) �H {x} and, thus, for
x ∈ {x} there is y ∈ f(x) such that x ≤ y ≤ x, i.e., x = y ∈ f(x). Vice versa, if
x ∈ f(x), then {x} �H f(x) and, thus, x ∈ Ψ(f).

Proposition A.4. Let f : L → 2L be a multivalued function. If f is an H-
monotone or deflationary multivalued function, and Ψ(f) has maximals, then all y ∈
maxΨ(f) are maximal fixed-points of f . In particular, if x =

∨
Ψ(f) ∈ Ψ(f), then x

is the greatest fixed-point of f .
Proof. As Ψ(f) has maximals, maxΨ(f) �= ∅. So, let y ∈ max Ψ(f). Therefore,

{y} �H f(y) �= ∅ and, thus, there is y′ ∈ f(y) such that y ≤ y′. If f is H-monotone,
then f(y) �H f(y′) and, thus, for y′ ∈ f(y) there is y′′ ∈ f(y′) such that y′ ≤ y′′.
Therefore, {y′} �H f(y′) and, thus, y′ ∈ Ψ(f). But y ∈ maxΨ(f), so it cannot be
y < y′. Therefore, y = y′ ∈ f(y); i.e., y is a fixed-point of f . If f is deflationary,
by Proposition 3.7, y is a fixed-point of f . Now, assume x ∈ f(x). Therefore,
{x} �H f(x) and, thus, x ∈ Ψ(f). But y ∈ maxΨ(f), so it cannot be y < x, and,
thus, y is a maximal fixed-point of f . Finally, consider x =

∨
Ψ(f). By hypothesis,

x ∈ Ψ(f) and x is the greatest element of Ψ(f). Hence, we know that x ∈ f(x). Let
y ∈ f(y). Hence y ∈ Ψ(f), and, thus, y ≤ x. As a consequence, x is the greatest
fixed-point of f .

Proposition A.5. Let f : L → 2L be a multivalued function. If f is a
∨

-
preserving multivalued function with Ψ(f) �= ∅, then Ψ(f) has maximals and, thus,
maximal fixed-points.

Proof. By hypothesis, Ψ(f) �= ∅. Let (xα)α∈I be an increasing sequence of xα ∈
Ψ(f), and let x̄ =

∨
α xα. As f is

∨
-preserving, by definition, f(x̄) = {y : there is

(yα)α∈I s.t. yα ∈ f(xα) and y =
∨
α yα}.

Now, for any α, xα ≤ xα+1, by Proposition 3.6 and, as xα ∈ Ψ(f), {xα} �H
f(xα) �H f(xα+1). Therefore, for any xα there are yα ∈ f(xα) and yα+1 ∈ f(xα+1)
such that xα ≤ yα ≤ yα+1.
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Note that if α is a limit ordinal, then, as xβ ≤ xα for all β < α, it follows that
{xβ} �H f(xβ) �H f(xα) and, thus, xβ ≤ yβ ≤ yα for all β < α. Therefore, there
is an increasing sequence (yα)α∈I of elements yα ∈ f(xα) such that x̄ =

∨
α xα ≤∨

α yα = ȳ. By definition of f(x̄), ȳ ∈ f(x̄), and, thus, {x̄} �H f(x̄). Therefore
x̄ ∈ Ψ(f), and, thus, every increasing sequence has an upper bound in Ψ(f). So,
by Zorn’s lemma, Ψ(f) has maximals, which by Proposition 3.8 are also maximal
fixed-points.

Proposition A.6. Let f : L → 2L be a multivalued function. If f is an H-
monotone, multivalued function, and for all x ∈ L, f(x) has the greatest element,
then f has the greatest fixed-point.

Proof. As for all x ∈ L, f(x) has the greatest element, by definition,
∨
f(x) ∈

f(x) �= ∅. Therefore, Ψ(f) �= ∅ as {⊥} �H f(⊥). Consider a =
∨
c∈Ψ(f) c. If

a ∈ Ψ(f), then by Proposition 3.8, a is the greatest fixed-point of f . So, let us show
that a ∈ Ψ(f). For c ∈ Ψ(f) there is an xc ∈ f(c) such that c ≤ xc. As c ≤ a
and f is H-monotone, f(c) �H f(a), and, thus, for xc ∈ f(c) there is yc ∈ f(a)
such that c ≤ xc ≤ yc. Since f(a) has the greatest element, there is y ∈ f(a)
such that a =

∧
c∈Ψ(f) c ≤

∧
c∈Ψ(f) xc ≤

∧
c∈Ψ(f) yc ≤ y. Hence, {a} �H f(a),

i.e., a ∈ Ψ(f).
Proposition A.7. Let f : L → 2L be an H-monotone, nonempty, and ∨-closed

multivalued function. Then
1. Ψ(f) is ∨-closed;
2. f has a greatest fixed-point.

Proof. Note that Ψ(f) �= ∅ as {⊥} �H f(�) �= ∅.
1. Consider a subset S of Ψ(f) and a =

∨
S. Let us show that a ∈ Ψ(f). We

know that for each c ∈ S, {c} �H f(c) holds; i.e., there is xc ∈ f(c) such that c ≤ xc.
But, f is H-monotone, and, thus, from c ≤ a, {c} �H f(c) �H f(a) follows. That is,
there is yc ∈ f(a) such that c ≤ xc ≤ yc. Let y =

∨
c∈S yc. As f is ∨-closed, y ∈ f(a)

follows. Therefore, a =
∨
c∈S c ≤

∨
c∈S yc = y, {a} �H f(a), and, thus, a ∈ Ψ(f).

Therefore, Ψ(f) is ∨-closed.
2. From point 1, Ψ(f) has the greatest element a, and, thus, by Proposition 3.8,

f has a as the greatest fixed-point.
Proposition A.8. For a multivalued function f ,
1. if f is deflationary, then each �-orbit is decreasing;
2. each decreasing �-orbit converges to a fixed-point of f (if no fixed-point exists,

then there is no orbit);
3. if f is H-monotone and deflationary, then for any maximal fixed-point of f

there is a �-orbit converging to it.
Proof. Let (xα)α∈I be an orbit of f . Recall that for ordinal α, xα+1 ∈ f(xα) �= ∅.

As f is deflationary, f(xα) �H {xα}. But, by definition of �H , for xα+1 ∈ f(xα),
xα+1 ≤ xα. For a limit ordinal λ, xλ =

∨
α<λ xα, ∅ �= f(xλ) �H {xλ}, and, thus,

there is xλ+1 ∈ f(xλ) such that xλ+1 ≤ xλ.
For the second point, as (xα)α∈I is a decreasing sequence and |I| > |L|, by

Proposition 2.1 there is an ordinal α such that xα = xα+1 ∈ f(xα). That is, xα is a
fixed-point of f .

Finally, for the third point, assume x̄ ∈ f(x̄) is a maximal fixed-point of f . Now,
let us show by (transfinite) induction on α that there is a decreasing orbit (xα)α∈I of
f s.t. x̄ ≤ xα for all α.
The case when α = 0. x̄ ≤ � = x0.
α successor ordinal. By induction, x̄ ≤ xα. As f is H-monotone and deflationary,
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f(x̄) �H f(xα) �H {xα}. But, x̄ ∈ f(x̄), so we can choose xα+1 ∈ f(xα) s.t.
x̄ ≤ xα+1 ≤ xα.

α limit ordinal. By induction, x̄ ≤ xβ holds for all β < α, which implies that
x̄ ≤

∨
β<α xβ = xα.

The sequence (xα)α∈I is decreasing, and, thus, by Proposition 2.1 there is an ordinal
α such that xα = xα+1 ∈ f(xα). So, xα is a fixed-point of f with x̄ ≤ xα. As x̄ is
maximal, xα = x̄.

Proposition A.9. For f : L→ 2L, h(x) = x⊗f(x) is deflationary. Furthermore,
if f is H-monotone, then

1. h is H-monotone;
2. x ∈ f(x) implies x ∈ h(x);
3. x ∈ h(x) implies {x} �H f(x);
4. if x is a maximal fixed point of h, then x is a maximal fixed point of f ;
5. if x is a maximal fixed point of f , and f is also deflationary, then x is a

maximal fixed point of h.
Proof. Consider f and h. If f(x) = ∅, then ∅ = h(x) �H {x}. Otherwise, for

y ∈ h(x), y ≤ x. Therefore, h(x) �H {x}, and, thus, h is deflationary. Now, suppose
f is H-monotone.

1. This is easy. h is a combination of H-monotone functions.
2. If x ∈ f(x), then by definition of h, x = x ∧ x ∈ h(x).
3. If x ∈ h(x), then for some y ∈ f(x), x = x ∧ y. Therefore, x ≤ y and, thus,

{x} �H f(x).
4. Assume x is a maximal fixed-point of h, i.e., x ∈ h(x) = x ⊗ f(x). Therefore,

there is y ∈ f(x) such that x ≤ y. As f is H-monotone, f(x) �H f(y). That is,
there is z ∈ f(y) such that y ≤ z and, thus, y = y ∧ z. Therefore, y ∈ h(y). As x is
maximal and x ≤ y, y = x follows and, thus, x ∈ f(x). To prove that x is a maximal
fixed-point of f , assume there is x ≤ y such that y ∈ f(y). By point 2, y ∈ h(y), and,
thus, as x is a maximal fixed-point of h, y = x follows.

5. Assume x is a maximal fixed-point of f . By point 2 x ∈ h(x). To prove that
x is a maximal fixed-point of h, assume there is x ≤ y such that y ∈ h(y). Then by
point 3 {y} �H f(y) and, thus, y ∈ Ψ(f). By Proposition 3.7, y ∈ f(y), and, thus, as
x is a maximal fixed-point of f , y = x follows.

Disclaimer. The authors of this work apologize both to the authors and to the
readers for all the relevant works and results which are not cited here that we are
unaware of.
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Abstract. We provide a suite of impossibility results and lower bounds for the required number
of processes and rounds for synchronous consensus under transient link failures. Our results show that
consensus can be solved even in the presence of O(n2) moving omission and/or arbitrary link failures
per round, provided that both the number of affected outgoing and incoming links of every process is
bounded. Providing a step further toward the weakest conditions under which consensus is solvable,
our findings are applicable to a variety of dynamic phenomena such as transient communication
failures and end-to-end delay variations. We also prove that our model surpasses alternative link
failure modeling approaches in terms of assumption coverage.
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1. Introduction. Most research on fault-tolerant distributed algorithms con-
ducted in the past rests on process failure models. Every failure occurring in a system
is attributed to either the sending or the receiving process here, irrespectively of
whether the actual error occurs at this process or rather on the intermediate commu-
nication path. Moreover, a process that commits a single failure is often “statically”
considered faulty during the whole execution, even if its failure is transient.

Although such process failure models adequately capture many important scenar-
ios, including crash failures, where a faulty process just stops operating, and Byzantine
failures, where a faulty process can do anything, they are not particularly suitable
for modeling more dynamic phenomena. In particular, given the steadily increas-
ing dominance of communication over computation in modern distributed systems,
in conjunction with the high reliability of modern processors and robust operating
system designs, transient communication failures such as lost or unrecognized packets
(synchronization errors), CRC errors (data corruption), and receiver overruns (packet
buffer overflow) are increasingly dominating real-world failures. Another dynamic
phenomenon that is encountered frequently in practice is unpredictable variations of
the end-to-end delays in multihop networks such as the Internet, which are caused,
for example, by temporary network congestion and intermediate router failures. Since
excessive end-to-end delays appear as omissions in classic (semi)synchronous systems
and other time(out)-based approaches, for example, [3, 4, 5, 53, 7, 51, 43, 39], such
timing variations can also be considered as transient link failures.

The distinguishing properties of such failures are (a) that they affect the path
(termed the link in what follows) connecting two processes, rather than the endpoints
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(the processes), and (b) that they are mobile [58], as different links may fail at different
times. Hence, the ability to communicate (in a timely manner) with other processes
in the system cannot be statically attributed to a process here: If the link failure
rate is sufficiently high, there will never be a nonempty set of processes that appear
nonfaulty to each other, i.e., never send (timing) faulty messages to each other. As a
consequence, classic process failure models are inappropriate for such applications.

This paper focuses on impossibility results and lower bounds for synchronous
deterministic consensus in the presence of such mobile link failures. In the consensus
problem (also called the “Byzantine agreement” problem [47]), processes have to agree
on a common output value, despite failures, based on some input values distributed
among the processes. Consensus is widely recognized as one of the most fundamental
problems in fault-tolerant distributed computing. Synchronous consensus algorithms
execute in a sequence of lock-step rounds k = 1, 2, . . . , which consist of sending,
receiving, and processing round k messages exchanged among all the processes.

Unfortunately, there is a discouraging impossibility result for deterministic syn-
chronous consensus in the presence of general link failures (see Theorem 1 in section 3),
which goes back to Gray’s 1978 paper [33] on atomic commitment in distributed
databases. This result was strengthened by Santoro and Widmayer [58], who intro-
duced the mobile omissive process failure model: In each round, some process can be
send-omissive (or omissive for short) in the sense that it can experience any number
of transmission failures on its outgoing links. Even a single mobile omissive process
failure was shown to render consensus unsolvable [58].

Despite those negative results, however, there are synchronous consensus algo-
rithms for restricted link failure patterns. For example, it has been known for a long
time that consensus can be solved when sufficient connectivity is always maintained
[20, 37, 46].

More recently, Schmid, Weiss, and Rushby introduced a hybrid failure model for
synchronous systems [66] which—in addition to classic process failures—admits up to
O(n2) moving link failures per round. The link failure patterns must be such, however,
that no more than fs� outgoing links and no more than f r� incoming links are affected
at any process per round. An analysis of the assumption coverage [62] in the presence
of independent, identically distributed probabilistic link failures confirmed that this
model is suitable even for substantial link failure rates. Most existing consensus
algorithms [48, 32, 47, 10, 68] were shown to work essentially unchanged under this
hybrid failure model [65, 71, 14, 64, 11], provided that the number of processes n in
the system is increased by Crf

r
� + Csf

s
� for some small integers Cr , Cs that depend

on the particular algorithm.
Naturally, the different values of Cr and Cs obtained for different consensus algo-

rithms raised the question of lower bounds, both on the number of failures that can
be tolerated and on the number of rounds required to solve consensus. In the present
paper, we provide the results of our comprehensive theoretical study of this subject:

1. In section 2, we provide a precise definition of our system model, which in-
volves both moving omission and moving arbitrary link failures (but no pro-
cess failures).

2. In section 3, we use a refinement of the bivalency proof techniques introduced
in [58] for proving a versatile generalization of Gray’s result, which reveals the
importance of unimpaired bidirectional communication for solving consensus.

3. Using this general result, as well as a new instance of an easy impossibil-
ity proof [28], we provide a complete suite of impossibility results and lower



1914 ULRICH SCHMID, BETTINA WEISS, AND IDIT KEIDAR

bounds for the required number of processes (section 4) and rounds (sec-
tion 5).

4. In section 6, we show that our lower bounds are tight and characterize the
threshold that, when exceeded, turns a correct process exhibiting omission
(resp., arbitrary link failures according to our model) into a classic omission
(resp., Byzantine faulty process).

5. In section 7, we survey alternative approaches for modeling link failures and
analyze their assumption coverage in a simple probabilistic setting. It turns
out that our model is the only one with a coverage that approaches 1 (rather
than 0) for large n.

Some conclusions and directions of future work in section 8 eventually complete our
paper.

2. System model. We consider a system of n distributed processes , each iden-
tified by a unique id p ∈ Π = {1, . . . , n}. The processes are fully connected by a
point-to-point network made up of unidirectional links . Every pair of processes p and
q �= p is hence connected by a pair of links (p, q), from sender process p to receiver
process q, and (q, p), from sender process q to receiver process p, which are consid-
ered independent of each other. To simplify our presentation, we also assume that
there is a link (p, p) from every process p ∈ Π to itself. Our system hence contains
n2 unidirectional links. Links may reorder messages, that is, are not assumed to be
FIFO.

2.1. Computing model. For our computing model, we employ the standard
lock-step round model as used in [58]. Every process p is modeled as a deterministic
state machine—acting on some local state statep ∈ Statep—that can send and receive
messages from some (possibly infinite) alphabet M. The initial state of process p is
drawn from a set of initial states Initp ⊆ Statep. All processes execute, in perfect
synchrony, a sequence of atomic computing steps forming a sequence of lock-step
rounds k ∈ K = {1, 2, . . .}: In round k, process p performs the following steps:

1. Initializes its received messages vector Rmp to ∀q ∈ Π : rmp[q] = ∅, where ∅
represents “no message,” and sends at most one message msgkp = Msgp(statep, k)
to every process q ∈ Π (including itself); Msgp : Statep×K → M∪{∅} denotes
the message sending function of the algorithm executed by p.

2. Waits for some time while receiving messages into Rmp. This time must be
sufficiently long to allow delivery of (most of) the round k messages. We
assume that no messages arrive after this waiting period is over; practically,
if late messages arrive, they are discarded.

3. Performs a state transition from statep to state′p = Transp(statep, rmp, k),
where Transp : Statep × Rmp × K → Statep denotes the state transition
function of the algorithm executed by p.

Note that the round number k can be viewed as global time in this model and is
typically part of statep.

The distributed algorithm executed by the processes is hence specified by the pairs
of message sending function and message transition function {(Msgp,Transp)| p ∈ Π}.

The configuration Ck of the system at the end of round k is the vector of states
(statek1 , . . . , state

k
n) obtained at the end of round k (after the state transition); the

initial configuration is C0 = (init1, . . . , initn) with ∀p ∈ Π : initp ∈ Initp. The
system-wide n × n received messages matrix Rk for round k is the column vector
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(rmk
1 , . . . , rm

k
n)T of all processes’ received messages vectors in round k, i.e.,

(2.1) Rk =

⎛⎜⎜⎜⎝
rmk

1 [1] rmk
1 [2] . . . rmk

1 [n]
rmk

2 [1] rmk
2 [2] . . . rmk

2 [n]
...

...
...

...
rmk

n[1] rmk
n[2] . . . rmk

n[n]

⎞⎟⎟⎟⎠ ,
with entry rmk

p[q] denoting the message that process p received from process q via its
incoming link in round k, or ∅ if no such message was received.

A run (also termed execution) of the distributed algorithm is an infinite se-
quence C0,R1, C1,R2, . . . of configurations alternating with received messages ma-
trices, starting from some initial configuration C0 ∈ (Init1, . . . , Initn).

2.2. Failure model. We assume that all processes are correct,1 but links may
fail transiently.

Consider the system-wide n × n sent messages matrix Sk for round k, which
consists of n identical rows containing the message sent by every process in round k,
i.e.,

(2.2) Sk =

⎛⎜⎜⎜⎝
msgk1 msgk2 . . . msgkn
msgk1 msgk2 . . . msgkn

...
...

...
...

msgk1 msgk2 . . . msgkn

⎞⎟⎟⎟⎠ ,
with msgkp denoting the message process p sends to all processes via its outgoing links
in round k, or ∅ if no message is sent.

Clearly, in case of no link failures in round k, Rk = Sk since every message sent
by p via its outgoing link to q is received faithfully by q via its incoming link from
p. A link failure hitting the directed link (p, q) results in rmk

q [p] �= msgkp, however, so
Rk �= Sk in this case. As in [58], we distinguish the following types of link failures of
(p, q) in a single round k:

• Correct link: rmk
q [p] = msgkp.

• Lossy link: ∅ = rmk
q [p] �= msgkp.

• Erroneous link (corruption): ∅ �= rmk
q [p] �= msgkp �= ∅.

• Erroneous link (spurious): ∅ �= rmk
q [p] �= msgkp = ∅.

For some round k, a lossy link is called omission faulty, an erroneous link (corrupted
or spurious) is termed arbitrary faulty. A link producing either type of failure is
termed faulty.

Our link failure model, originally introduced in [66, 65], is such that, system-wide,
up to c ·n2 links for some c < 1 may be faulty in any round. We cannot allow any set
of c · n2 links to be hit by link failures, however, but require some restriction on the
allowed link failure patterns: Let Fk be the n× n failure pattern matrix with entries

fkq [p] =

⎧⎨⎩
ok if rmk

q [p] = msgkp,
om if ∅ = rmk

q [p] �= msgkp,
arb(e) otherwise, where e encodes the type of the actual error,

which is just the difference of Rk and Sk interpreted as ok, om, or arb(e) on a per
entry basis, depending on the corresponding link behavior. The feasible pattern of

1Except for section 5, where we also allow process crashes.



1916 ULRICH SCHMID, BETTINA WEISS, AND IDIT KEIDAR

system-wide link failures must be such that for every process p and every round k,
the following hold:

(Ar) p’s row (fp[1], . . . , fp[n]) in Fk contains at most f r� entries �= ok, with at most
f r,a� ≤ f r� of those equal to arb(.). Since row p corresponds to p acting as a
receiver process, we say that p may perceive at most f r� receive link failures
(on its incoming links), with up to f r,a� arbitrary ones among those.

(As) p’s column (f1[p], . . . , fn[p])T in Fk contains at most fs� entries �= ok, with
at most fs,a� ≤ fs� of those equal to arb(.). Since column p corresponds to p
acting as a sender process, we say that p may experience at most fs� send link
failures (on its outgoing links), with up to fs,a� arbitrary ones among those.

Note that every process in the system may experience up to fs� send link failures
(fs,a� of them arbitrary), and up to f r� receive link failures (f r,a� of them arbitrary)
in every round. In addition, the particular links actually hit by a link failure may
be different in different rounds. Of course, they may also remain the same, which
makes our link failure model, for example, applicable to not fully connected networks
as well; cf. [67].

In the above modeling, the primary failure instance is the link failure pattern
in the matrix Fk. It determines how many link failures could be experienced by
every process, both as a sender (send link failures fs� , f

s,a
� ) and as a receiver (receive

link failures f r� , f r,a� ). Clearly, assumptions (Ar) and (As) imply that at most nfs�
outgoing links and at most nf r� incoming links may be hit by a link failure. Since every
outgoing link is of course some receiver’s incoming link, it follows that the maximum
allowed number of link failures occurs when fs� = f r� = f�.

In our subsequent analysis, however, our assumptions on send link failures, as
captured by (As) and fs� , f

s,a
� , will be independent of the assumptions made on

receive link failures, as captured by (Ar) and f r� , f
r,a
� . Doing this allows us to extend

the range of applicability of our model. In particular, by restricting the assumption
“every process may commit up to fs� send link failures” to “at most f r� processes in
some fixed subset of the processes may commit up to fs� send link failures,” we can also
model restricted process failures: For example, a restricted omission faulty process is
perceived as omission faulty only by at most fs� receiver processes per round (rather
than by all receivers, as allowed in the case of a standard omission faulty process);
see section 6 for details.

Note that adding classic process failures to the picture would provide a “fallback”
in cases where the link failure restrictions (As) and/or (Ar) are violated: As long as
the numbers of link failures experienced by a process p do not exceed the thresholds
f r� , f

r,a
� , fs� , and fs,a� , process p can be considered correct. Otherwise, p can just be

considered faulty, in which case the link failure restrictions of course do not apply.
The resulting hybrid perception-based failure model has been applied successfully in
the analysis of several different algorithms [66, 65, 71, 14, 64, 72, 11]. In order to
focus on the intrinsic costs of link failures, we will not add standard process failures
to the model of this paper, however.

2.3. The consensus problem. Binary consensus is the problem of comput-
ing a common binary output value from binary input values distributed among all
processes. We assume that every process p has a read-only input value xp ∈ {0, 1}
in statep, which is supplied via the initial state initp ∈ Initp to p’s local instance
of a synchronous deterministic distributed consensus algorithm. In addition, p has a
write-once output value yp ∈ {0, 1} in statep, initially undefined. Process p irreversibly
computes (“decides upon”) yp according to the following requirements:
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(C0) Termination: Every process decides within a finite number of rounds (that
may be different for different processes and may depend on the particular
execution).

(C1) Agreement : Every two processes p and q compute the same output value
yp = yq.

(C2) Weak validity [29]: If all processes start with the same input value, then every
process p computes

• yp = 1 if ∀q : xq = 1 and no link failure has occurred in the entire
execution,

• yp = 0 if ∀q : xq = 0.
Note that practical consensus algorithms usually guarantee the following stronger
validity property:

(C2’) Validity: If all processes start with the same input value ∀q : xq = v, then
every process p computes yp = v.

In particular, yp = 1 in the case of ∀q : xq = 1 even when link failures have occurred.
We will employ the weaker form of validity in our proofs most of the time, since
impossibility of consensus under (C2) obviously implies impossibility of consensus
under (C2’) as well.

3. Basic results. In this section, we will provide a generic analysis of consensus
in our setting, which essentially follows the approach taken in [58]:2 Using bivalence
arguments, we will show that consensus is impossible if every process p can withhold its
information from a nonempty subset Q = Q(p) of processes for an arbitrary number of
rounds. Withholding is a weaker property than the “adjacency-preserving” property
used in [58], however, and so our generic results are slightly stronger than those of [58]
and hence need a different proof. In particular, our findings reveal the importance of
unimpaired bidirectional communication between processes for solving consensus.

In order to motivate the need for restricting failure patterns and to set the stage
for our more advanced proofs, we start with Gray’s well-known result [33], in the
formalization of [50, Thm. 5.1]. It is devoted to the coordinated attack problem,
which is just consensus with weak validity (C2) as stated in section 2.3. This result
assumes, however, that there are no constraints on the link failure pattern matrices
(except that only omission failures are allowed).

Theorem 1 (Gray’s impossibility [50, Thm. 5.1]). There is no deterministic
algorithm that solves the coordinated attack problem in a synchronous 2-process system
with arbitrary lossy links.

Proof. Suppose that the failure-free execution E of a 2-process system with omis-
sion faulty links terminates at the end of round r when starting with initial values
[1, 1]. By validity, the common decision value must be 1 in E. Since decisions are
irreversible, we can safely drop all the messages some algorithm might send in rounds
> r without changing the decision value. The resulting “truncated” execution E
shown in Figure 3.1 is obviously feasible.

By means of induction on the number of messages k sent in E, we show that the
decision value 1 does not change even when we drop all messages in E: For k = 0,
the claim holds trivially. For the induction step, assume that k > 0 messages are sent
in E where both processes decide by some round r and no messages are sent after

2Note that we could also have employed the layering framework [52] by Moses and Rajsbaum,
which provides generic consensus impossibility and lower bound results in a model-independent way.
Although similar in its general structure, it is based on quite different lower level “tools,” for example,
potence instead of valence, which are—contrary to [42]—not required in our relatively simple setting.
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t

p2

round 1

round r

1p [1] [1]

Fig. 3.1. Execution of a 2-process synchronous consensus algorithm with unrestricted link
omission failures, starting with initial values [1, 1], truncated after round r by which both processes
decide.

round r. Let m be the last message from, w.l.o.g., p1 → p2 in E (cf. the dotted line in
Figure 3.1). If m is dropped, the resulting execution E

′
is indistinguishable from E

for p1, so p1 and, by agreement, also p2 must eventually decide upon 1. Clearly, in E
′
,

process p2 could decide after round r and even send out additional messages in some
round r′ > r—we can guarantee only that the decision value is the same. However, p1

has already decided by round r and hence cannot make use of such “late” messages.
Consequently, we can safely drop all those late messages in E

′
, if any, leading to an

execution E′ where only k − 1 messages are sent, both processes decide upon 1 by
some round r′, and no messages are sent after round r′. We can hence apply the
induction hypothesis to E′, which completes the induction step.

Since the processes are fully isolated from each other in the resulting execution
where all messages have been dropped, changing the initial values to [1, 0] and then
to [0, 0] cannot affect the decision value either, but now the outcome of the final
execution would violate validity.

As our first “real” result, we will now show that solving consensus is even impossi-
ble when a link—viewed as a pair of unidirectional links—loses or, in case of arbitrary
link failures, corrupts messages only in one direction, i.e., when either process (but
not necessarily both) can withhold information for an arbitrary number of rounds
from the other. Eventually bidirectional communication is hence mandatory for any
deterministic consensus algorithm. Solutions exist, however, if the direction of the
message loss is fixed; see the remarks following Theorem 2 below.

Unfortunately, this stronger result cannot be shown by generalizing the proof of
Theorem 1: We are not allowed to simply drop all messages in later rounds to “hide”
the effect of dropping/restoring round r-messages here, since this would amount to a
link failure in both directions and hence an infeasible execution. It was shown in [58],
however, that bivalency arguments [29] can successfully be applied in this setting.

We start with some notation: Recall that we defined an execution as an infi-
nite sequence C0,R1, C1,R2, . . . of configurations alternating with received message
matrices, starting from some initial configuration C0 ∈ (Init1, . . . , Initn). For a con-
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figuration Ck = (ck1 , . . . , c
k
n), let statep(Ck) = ckp denote the local state of process p in

Ck. Since we are dealing with deterministic algorithms, executions are uniquely deter-
mined by the initial configuration, i.e., the initial values xp for all processes p, and the
sequence of link failure pattern matrices Fk in rounds k ≥ 1. Consequently, we can
unambiguously specify executions as infinite sequences C0,F1, C1,F2, . . . of configu-
rations alternating with failure pattern matrices. Moreover, a finite sequence of failure
pattern matrices Fx = Fk, . . . ,Fk+x starting from configuration Ck−1 uniquely de-
termines the finite execution segment Ck−1,Fk, Ck,Fk+1, Ck+1, . . . ,Fk+x, Ck+x, and
we write Ck+x = Fx(Ck−1). An execution is called feasible if all Fk are feasible, i.e.,
adhere to the link failure pattern constraints (Ar) and (As) in section 2.2. Finally, a
configuration C′ is called reachable from configuration C if there is a feasible finite
sequence of failure pattern matrices Fx such that C′ = Fx(C). A configuration C is
reachable if it is reachable from some initial configuration.

A configuration is called v-decided (decided for short) if all processes have decided
on a common decision value v ∈ {0, 1}. A configuration C is v-valent (univalent if v is
not known or irrelevant) if all decided configurations reachable from C are v-decided;
in particular, it is impossible to reach a 1-decided configuration from a 0-valent C.
On the other hand, C is bivalent if both 0-decided and 1-decided configurations can
be reached from C.

For example, in the case of n = 2, given any configuration Ck−1 = (ck−1
1 , ck−1

2 ),
there are only four possible successor configurations Ck00, Ck01, Ck10, and Ck11 in the case
of message omissions: Configuration Ck−1 is followed by the successor configuration
Ckxy, depending on whether the message p2 → p1 (x) and/or p1 → p2 (y) is lost
(x, y = 0) or correct (x, y = 1) in round k ≥ 1.3 Note that Ck00 is feasible only in the
setting of Theorem 1, where unrestricted losses are allowed, since both messages are
lost there. In the context of Theorem 2, however, Ck00 cannot be reached from Ck−1

since losing both messages is not feasible.
The situation is more complicated in case of arbitrary link failures, however, where

Ck−1 can have more than four successor configurations: After all, different errors e,
experienced, for example, by the message from p2 → p1 due to an arbitrary link failure
with fk1 [2] = arb(e) in the failure pattern matrix Fk, might result in different states
of p1. Fortunately, we can keep the convenient assumption of just four successors if
we replace a single successor state Ckxy by the set of possible successor states. Using
this extended interpretation, Ck01 actually consists of all configurations reachable from
Ck−1, where only the message p2 → p1 is lost or erroneous, for example. Univalence
of a set of configurations Ckxy means that all individual configurations Ck ∈ Ckxy are
univalent, whereas bivalence means that at least one individual configuration Ck ∈
Ckxy is bivalent. Bivalence proofs are easily generalized to this extended interpretation.

Finally, our notation can be easily generalized to n > 2: (Sets of) successor
configurations are indexed by strings of n(n − 1) 0’s or 1’s, corresponding to every
link in a system of n processes, with 0 denoting a lost or faulty message, and 1 denoting
a nonfaulty one.

Two successor configurations Ckv and Ckw are called neighbors if the received mes-
sage matrices Rk

v and Rk
w that lead to Ckv and Ckw, respectively, differ in at most one

entry: W.l.o.g., this entry contains the correct message in Rk
v but a lost/erroneous

one in Rk
w. Consequently, all configurations in Ck00 and Ck01 are neighbors in the

3Message “self-transmission,” from p1 → p1 and p2 → p2, is always assumed to be failure-free
here. Since we are dealing with impossibility results and lower bounds, this can safely be assumed.
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above system, but the ones in Ck01 and Ck10 are not. The successor graph GC of some
configuration C consists of all successor configurations of C, where all neighbors are
connected by an edge. We can make the following well-known observation.

Lemma 1. The successor graph GC of any configuration C of a consensus algo-
rithm under our system model is connected.

Proof. Let k ≥ 1 be the round at the end of which the transition from C to
one of its successor configurations takes place. Obviously, the failure-free successor
configuration C1..1 where no round k messages has been lost or corrupted must be
in GC . Let CX be any other successor configuration caused by a feasible link failure
pattern, with MX denoting the corresponding set of lost or faulty messages. Since
the link failure pattern M′

X , obtained from MX by removing (= repairing) exactly
one of the lost or faulty messages, is of course also feasible, the resulting successor
configuration C′

X is a neighbor of CX and obviously C′
X ∈ GC . Since |M′

X | = |MX |−
1, this argument can be repeated until the failure-free successor configuration C′

X =
C1..1 is reached. Hence, there is a path from any CX to C1..1 in the successor graph
GC .

The result of Lemma 1 will be used primarily in conjunction with Lemma 2.
Lemma 2. Suppose that all successor configurations of some configuration C with

successor graph GC are univalent. If there are two arbitrary successor configurations
C′ and C′′ among those that are 0-valent and 1-valent, respectively, then there are also
two neighboring successor configurations C

′
and C

′′
that are 0-valent and 1-valent.

Proof. Since C′ and C′′ are connected in GC and have different valences, there
is a path of configurations connecting C′ and C′′. This implies that there must be
neighbors C

′
and C

′′
on this path where the valence changes.

With these two lemmas, it is fairly easy to show that eventually bidirectional
communication is mandatory for solving consensus in a 2-process system: Theorem 2
considers link omission failures only (that may change arbitrarily from round to round,
however) and strengthens Gray’s theorem, Theorem 1. Note that it could also be
derived from the impossibility of consensus under a single moving process omission
failure [58] in a system of n = 2 processes.

Theorem 2 (unidirectional 2-process impossibility). There is no deterministic
algorithm that solves consensus in a synchronous system with two nonfaulty processes
connected by a lossy link, even if communication is reliable in one direction in every
round.

Proof. Assume that there are algorithms Ap1 and Ap2 running on processes p1

and p2 that jointly solve consensus in a 2-process system with unidirectional commu-
nication. We will show inductively that every bivalent configuration has at least one
bivalent successor. This implies that it is impossible to always reach a final decision
within any finite number of rounds.

For the base case k = 0 of our inductive construction, we have to show that there
is a bivalent initial configuration. Consider the configuration C0(01), where p1 starts
with initial value 0 and p2 starts with initial value 1. If C0(01) is bivalent, we are
done. If C0(01) is 0-valent, the execution where all messages from p1 → p2 are lost
in all rounds must also lead to a 0-decided configuration. However, this execution is
indistinguishable for p2 from the equivalent execution that starts from C0(11) (where
p1 has initial value 1 instead of 0), which implies that the common decision value
must also be 0 here. Since C0(11) must lead to a 1-decided configuration in case of
no link failures by validity, we have shown that C0(11) is bivalent in this case. An
analogous argument can be used to show that C0(00) would be bivalent when C0(01)
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is 1-valent.
For the induction step k ≥ 1, we assume that we have already reached a bivalent

configuration Ck−1 at the end of round k−1 and show that at least one of the feasible
successor configurations Ck01, C

k
10, and Ck11 reached at the end of round k is bivalent.

Assuming the contrary, all of those must be univalent. The bivalence of Ck−1 implies
that at least one of Ck01, Ck10, and Ck11 must be 0-valent and one must be 1-valent
(i.e., Ck−1 must be a fork [69]). By Lemma 2 in conjunction with Lemma 1, either
the neighbors Ck11 and Ck01, or else Ck11 and Ck10 must be v-valent and (1 − v)-valent,
respectively. W.l.o.g. assume that Ck11 is v-valent and Ck01 is (1 − v)-valent for some
v ∈ {0, 1}. Since the only difference between those two configurations is that the
message from p2 → p1 arrives in the former but not in the latter, we consider the
execution Ck∗11 , where all messages from p1 → p2 are lost in all rounds > k. As p1

cannot tell p2 whether it has received a round k message, the execution Ck∗11 starting
from Ck11 is indistinguishable for p2 from the same execution starting from Ck01. Since
p2 must eventually decide upon the same value, Ck11 and Ck01 cannot have different
valences.

Remarks.
1. If message losses can occur only in one direction, and if that direction is

known to the algorithm, then there is a trivial 1-round algorithm that solves
consensus in a 2-process system: The process that can communicate with its
peer sends its own value and decides upon it; the other process decides upon
the value received from its peer.

2. If message losses can occur only in one and the same but unknown direction,
there is a simple 2-round algorithm that solves consensus in a 2-process sys-
tem: Every pi initially sets vi := xi. In the first round, p1 sends v1 to p2.
If p2 receives v from p1, it sets v2 := v. In the second round, p2 sends its
value v2 to p1. If p1 receives v from p2, it sets v1 := v. At the end of the
second round, process pi, i = 1, 2, decides upon vi. It is easy to verify that
the decision values satisfy validity and agreement.

Our next goal will be to show that consensus cannot be solved in any system of
n ≥ 2 processes if, for every process, bidirectional communication with every peer
cannot eventually be guaranteed. More specifically, we will show that this is the
case when every process p can withhold its information from some nonempty subset
Q = Q(p) of processes (but not necessarily vice versa) from any round k+1 on, namely,
when there is a sequence of failure pattern matrices for rounds k + 1, k + 2, . . . such
that every q ∈ Q has the same view of the resulting execution after round k + x,
independently of the state of p in the starting configuration Ck.

Definition 1 (withholding). A process p, in some reachable configuration Ck,
can withhold its information from round k + 1 on, if there is an infinite sequence
of failure pattern matrices F = Fk+1,Fk+2, . . . and a nonempty set Q of processes
with p �∈ Q (where both F and Q may depend on p and Ck) such that, for any
reachable configuration C

k
with ∀q ∈ Q : stateq(Ck) = stateq(C

k
), there exists an

infinite sequence of failure pattern matrices F = Fk+1
,Fk+2

, . . . such that ∀q ∈ Q :
stateq

(
Fx(Ck)

)
= stateq

(
Fx(C

k
)
)

for any finite prefix Fx = Fk+1, . . . ,Fk+x of F
and Fx = Fk+1

, . . . ,Fk+x
of F .

We say that p can withhold its information if it can withhold its information from
round k + 1 on, for every k ≥ 0, starting from any reachable configuration Ck.

Definition 1 implies that if p can withhold its information, then, since |Q| ≥ 1,
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there is at least one process q = q(p) which never gets any useful information from p
at all during F—neither directly nor indirectly via other processes.

It is important to note that withholding is a weaker property than adjacency-
preserving , on which the generic results of [58] are based: The latter requires that
all processes �= p have the same state in Fx(Ck) and Fx(C

k
), i.e., correspond to p

withholding its state from every q �= p. Consequently, adjacency-preserving implies
withholding, but not vice versa. In fact, the proofs of Theorems 3 and 6 will show that
withholding—but not adjacency-preservation—is possible under our failure model for
certain parameter values. Basically, this is due to some “unidirectional” partitioning
of the n processes in the system, which is possible when (As) and (Ar) hold, provided
that n is small enough.

As a consequence, we cannot use the generic consensus impossibility results from
[58]. The following Lemma 3 reveals, however, that the ability of every process p to
withhold its information from some nonempty subset of the processes arbitrarily long
already prohibits a solution to the consensus problem.

Lemma 3 (n-process impossibility). Consider a synchronous n-process system
with omission and/or arbitrary link failures. There is no deterministic algorithm that
solves consensus in such a system if any process p can withhold its information in any
configuration.

Proof. The proof is a generalization of the proof of Theorem 2, although more
involved: We assume here that there are n algorithms A1, . . . , An running on the n
processes p1, . . . , pn in the system that jointly solve consensus. We will show induc-
tively that there is an infinite execution involving bivalent configurations only, which
makes it impossible to always reach a decision within a finite number of rounds.

For the base case k = 0 of our inductive construction, we have to show that there
is a bivalent initial configuration C0. As in [29], we consider the initial configuration
C0(111..1), where all processes start with the initial value 1. If this configuration
is bivalent, we are done. Otherwise, C0(111..1) can only be 1-valent, since validity
requires a decision value 1 in the failure-free case. Now consider C0(011..1), where
process p1 starts with 0 and all others with 1. If this configuration is bivalent, we are
done. If not, we assume first that it is 0-valent and choose the execution starting from
C0(011..1) where p1 withholds its value from some process q(p1) = px �= p1; such an
execution must exist according to Definition 1 since p can withhold its information.
This execution is indistinguishable for px from the analogous execution starting from
C0(111..1), however, so px’s (and hence the common) decision must be 1 here. This
contradicts the stipulated 0-valence of C0(011..1), however, which could hence only
be 1-valent.

The whole argument can now be repeated for p2 in place of p1, etc., until either
a bivalent initial configuration has been found or the 1-valent initial configuration
C0(0..001) has been reached; in C0(0..001), the processes p1, . . . , pn−1 start with 0 and
pn starts with 1. We again consider the execution where pn withholds its information
from some process q(pn) = py �= pn. For py, this execution is indistinguishable from
the same one starting from C0(0..000), which must lead to a decision value of 0 by
weak validity (C2). This contradicts the stipulated 1-valence of C0(0..001), however.

For the induction step k ≥ 1, we assume that we have already reached a bivalent
configuration Ck−1 at the end of round k − 1. We must show that at least one of
the feasible successor configurations Ck that can be reached at the end of round k is
bivalent. If this is true in the first place, we are done. If not, all successor configu-
rations Ck must be univalent. However, the bivalence of Ck−1 implies that at least



CONSENSUS LOWER BOUNDS UNDER LINK FAILURES 1923

one of those must be 0-valent and one must be 1-valent (i.e., Ck−1 must be a fork
[69]). By Lemma 2, there must also be 0-valent and 1-valent successor configurations
Ck0 and Ck1 , respectively, that are neighbors. Assume that they differ only in the
state of process r that has some specific round k message correct in Ck0 but incorrect
in Ck1 (or vice versa). Now consider the two executions starting with Ck0 and Ck1 ,
where r withholds its round k information from some process q(r) = pz �= r in any
future round > k. They are indistinguishable for pz, which means that pz and, by
agreement, all other processes must compute the same decision in both executions.
This contradicts the stipulated different valences of Ck0 and Ck1 , however.

Lemma 3 has a number of important consequences. First, it reveals an interesting
asymmetry in the “severeness” of receive link failures (Ar) versus send link failures
(As). This can be seen by considering two instances of a 3-process system, where two
processes A, B cannot communicate bidirectionally due to receive and/or send link
failures: In the system shown in Figure 3.2 (called of type R), processes A and B may
not receive the messages from both peers due to excessive receive link failures (f r� = 2
and fs� = 1). In the system shown in Figure 3.3 (of type S), processes A and B may
fail to send to both peers due to excessive send link failures (f r� = 1 and fs� = 2).

C

A B

C

A B

Fig. 3.2. 3-process system (type R), where processes A and B cannot communicate in one
direction due to excessive receive link failures (fr

� = 2 and fs
� = 1). The left scenario shows the case

A �→ B and the right one B �→ A, which may alternate arbitrarily.

It follows from Lemma 3 that no algorithm can solve consensus in a system of
type R, even if process C is fixed and known to the algorithm. For, since A may fail
to receive any information from any other process in the system, choosing q(p) = A
secures withholding by every p �= A. Similarly, since B may also fail to receive the
information from any peer, it provides the required q(p) for withholding by process
p = A. Hence, consensus is impossible in a 3-process system with f r� = 2 and fs� = 1;
note that C is not fixed here, which makes consensus even harder to solve.

C

A B

C

A B

Fig. 3.3. 3-process system (type S), where processes A and B cannot communicate in one
direction due to excessive send link failures (fr

� = 1 and fs
� = 2). The left scenario shows the case

A �→ B and the right one B �→ A, which may alternate arbitrarily.

On the other hand, for systems of type S where C is fixed and known to the
algorithm, there is a trivial solution that lets all processes decide upon the value of
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process C. If process C is fixed but not known, consensus can be solved by means of
the algorithm described in [34]. No solution exists in a system of type S only if C is
not fixed—as is the case in a 3-process system with f r� = 1 and fs� = 2.

As a final remark, we note that the above observations are in accordance with
the results of [43], where it was shown that bounded-time consensus is impossible in
the �MFM (“majority from majority”) link timing model.

4. Number of processes. Using the results of section 3, we will first establish
a lower bound for purely omissive link failures (f r,a� = fs,a� = 0).

For the special case fs� = f r� = f� > 0, such a lower bound can be inferred
from Theorem 2 (even from Theorem 1) by a straightforward simulation-type proof:
Assume that there is a deterministic algorithm C that solves consensus for n = 2f�.
Using C, it is possible to construct a solution for consensus in a 2-process system with
lossy links, which is impossible, however.

The detailed proof is as follows: Partition the n processes into two subsets PA and
PB of size f� each. Two superprocesses A and B are used to simulate the execution of
the processes in PA and PB, respectively. All the links between the simulated processes
in the two superprocesses are routed over a single superlink . For a superprocess’s
decision value, any simulated process’s decision value can be taken. In order to ensure
that C achieves consensus among all (simulated) processes, we must show that our link
failure assumptions are not violated for any simulated process in any superprocess in
case of a superlink failure: Any simulated process must not get more than f r� = f�
receive link failures and must not produce more than fs� = f� send link failures. This
is trivially satisfied since fs� = f r� = f�, however. Hence, our solution would achieve
consensus among the two superprocesses, which violates Theorem 2 (even Theorem 1,
since bidirectional partitioning could happen here).

For the general case of arbitrary fs� and f r� , the lower bound for omission link
failures can immediately be derived from Lemma 3.

Theorem 3 (lower bound processes 1). Any deterministic algorithm that solves
consensus under our system model with fs� , f

r
� > 0 needs n > f r� + fs� .

Proof. We first show that, for any process p, we can arbitrarily choose a set P
of f r� processes including p, where no process in P sends any messages to a process
in Q = Π\P in case of n = fs� + f r� in some feasible execution: Since there are
fs� ≥ 1 processes in Q, every process in P may commit send link failures that omit
all processes in Q. Any process in Q thus experiences exactly f r� receive link failures,
which is also feasible with respect to our failure model. Hence, there is no information
flow from processes in P to processes in Q at all, such that every process p can trivially
withhold its information. According to Lemma 3, solving consensus is impossible
here.

Remarks.
1. According to Corollary 1 in section 6, the lower bound n > f r� +fs� provided by

Theorem 3 is tight; it is, for example, matched by the authenticated algorithm
ZA [65].

2. The result of Theorem 3 implies that, in order to be able to solve consensus,
link failures (As) and (Ar) may affect at most a minority of processes only.
In the setting of Gray’s theorem, Theorem 1, however, there is no point
in considering this case at all: There is no nonempty minority of processes
for n = 2. Focusing on overly simple cases hence sometimes hides ways of
escaping impossibility results.

In order to find a lower bound for arbitrary link failures, we will again start with
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the special case fs� = f r� = fs,a� = f r,a� = f� > 0. Our derivation will be based on
Theorem 4, which shows that no algorithm can solve consensus (with validity (C2’))
in a 4-process system in the presence of a single arbitrary link failure per process
(f r,a� = fs,a� = 1).

Theorem 4 (4-process impossibility). There is no deterministic algorithm that
solves consensus with validity (C2’) under our system model for a single arbitrary link
failure in a 4-process system.

Proof. We employ a new instance of the “easy impossibility proof techniques” of
[28] to show that any deterministic algorithm violates agreement if every process may
see an inconsistent value from one of its neighbors. Suppose that our four processes
execute a distributed algorithm consisting of specific programs A, B, C, D, which
solve consensus under our system model with f r,a� = fs,a� = fs� = f r� = 1. In order to
derive a contradiction, we arrange eight processes in a cube as shown in Figure 4.1. For
example, the lower leftmost process labeled A[0] executes algorithm A starting with
initial value 0 (the 0 on its left displays this process’s decision value, as explained
below). Note carefully that all processes and all links are assumed to be nonfaulty
here.

10

10

10

10

A[0]

B[0] C[1]

D[1]

View X

D[0] A[1]

B[1]C[0]

View
 0

View
 1

Fig. 4.1. Topology used for proving the violation of agreement in a 4-process system. Eight
nonfaulty processes with perfect links are arranged in a cube in a neighborhood-preserving way. The
assignment of initial values ensures that all processes in view 0 (resp., view 1) decide 0 (resp., 1),
but this violates agreement in view X.

Of course, dealing with a solution for a 4-process system, we cannot expect to
achieve consensus in the 8-process system of Figure 4.1. However, due to the special
assignment of algorithms to processes, each process observes a neighborhood as in a
4-process system. More specifically, the four processes at any side of the cube (we
call it a view) can be interpreted as an instance of a legitimate 4-process system.
In fact, as can be checked easily, our assignment ensures that any process in a view
is connected to exactly one process outside this view. Since we assumed that every
process may see an arbitrary faulty input from at most one neighbor, the input from
the process outside the view may be arbitrary—it just appears as a process the links
of which deliver arbitrary faulty messages.

Now consider the processes in view 0, which all have initial value 0. By the validity
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property for consensus, all processes must decide 0 here (the initial value 1 of the
processes outside view 0 does not matter, as the links to them are considered arbitrary
faulty with respect to view 0). Similarly, in view 1, all processes must decide 1 since
they have initial value 1. But now the processes in view X face a problem: Since
e.g., the lower leftmost process A[0] observes exactly the same messages in view X
as in view 0 by construction, it must decide 0 as observed above. Similarly, as the
lower rightmost process D[1] observes exactly the same messages in view X as in
view 1, it must decide 1—but this would violate agreement in the 4-process system
corresponding to view X . We hence established the required contradiction, thereby
completing the proof of Theorem 4.

Using Theorem 4, a similar simulation-type argument as in the pure omission
failure case can be used to show the lower bound n > 4f� for fs� = fs,a� = f r� = f r,a� =
f� > 0 arbitrary link failures. Corollary 1 in section 6 reveals that this lower bound
is also tight; it is, for example, matched by the nonauthenticated algorithm OMH
[66, 65].

Theorem 5 (lower bound processes 2). Any deterministic algorithm that solves
consensus with validity (C2’) under our system model with f r� = fs� = fs,a� = f r,a� =
f� > 0 needs n > 4f�.

Proof. Assume that there is a deterministic algorithm C that solves consensus for
n = 4f� in our model. We use C to construct a solution for a 4-process system of
Theorem 4, which provides the required contradiction.

We partition the set of all processes P into four subsets PA, PB, PC , PD of
the same cardinality f�, and we let each superprocess A, B, C, D simulate all the
instances of the algorithm in the respective subset. For the superprocess’s decision
value, any simulated process’s decision value can be taken. In order to ensure that
C achieves consensus among all (simulated) processes, we must show that our link
failure assumptions are not violated for any process in any superprocess if at most
one superlink per process may experience an arbitrary link failure. Since any superlink
hosts the links to and from exactly f� processes, this is trivially fulfilled, however: In
case of a superlink failure, every sender process commits at most f� send link failures
(affecting the f� processes in the receiving superprocess), and every receiver process
experiences at most f� receive link failures (from the f� processes in the sending
superprocess).

Therefore, we have constructed an implementation of a consensus algorithm for
a 4-process system which can withstand a single arbitrary link failure. Since this is
impossible by Theorem 4, the proof of Theorem 5 is completed.

Unfortunately, we did not find an easy way to generalize the above simulation-
type argument for an arbitrary number fs� , f

s,a
� , f r� , f

r,a
� ≥ 0 of link failures (and weak

validity (C2)). In order to derive a lower bound for n for this general case, we must
hence resort to our key lemma, Lemma 3, again. What needs to be shown here,
however, is that every process p can withhold its information: Lemma 5 below will
prove that as many as f r� + f r,a� processes can withhold their information from as
many as fs� + fs,a� processes in case of n = f r� + f r,a� + fs� + fs,a� , provided that

(4.1)
f r,a�
f r�

=
fs,a�
fs�

.

Hence, by Lemma 3, n > f r� +f r,a� +fs� +fs,a� is a lower bound for solving consensus if
(4.1) holds. If (4.1) does not hold, there are cases where consensus can be solved also
for n ≤ f r� + f r,a� + fs� + fs,a� . A lower bound in this case is n > f

r

� + f
ra

� + f
s

� + f
sa

� ,
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however, where f
r

� ≤ f r� , f
ra

� ≤ f r,a� , f
s

� ≤ fs� , f
sa

� ≤ fs,a� are such that (4.1) holds
and n is maximal (see the comments prior to Theorem 6 for details).

Diving into the details of our lower bound proof, we start with a simple “balls and
boxes” technical lemma. It shows that it is possible to drop white, orange, and purple
balls into a matrix such that each row and each column contain some specific numbers
of balls of each color. This result will be used subsequently to assert the existence of a
certain mapping of send and receive link failures, by interpreting a white, orange, and
purple ball as a correct, omission faulty, and arbitrary faulty transmission between a
particular sender process (column index) and receiver process (row index).

Lemma 4 (balls and boxes). Consider a matrix with s + sa rows and r + ra

columns, where s ≥ sa > 0, r ≥ ra > 0, and

(4.2) r/ra = s/sa.

Then it is possible to drop white, orange, and purple balls into the matrix (one ball
per entry) such that any single row contains exactly ra white, r − ra orange, and ra

purple balls, whereas any single column contains exactly sa white, s− sa orange, and
sa purple balls.

Proof. First, we note that summing up the number of balls of the same color
by rows and columns, respectively, in any such assignment yields the same result:
For example, we need wr = (s + sa)ra white balls when summing over rows and
wc = sa(r+ra) white balls when summing over columns. Since (4.2) implies sra = sar,
it follows that wr = wc. We will now construct such an assignment explicitly.

Consider the first row in our matrix, and let

π0, π1, . . . , πr+ra−1

with πi ∈ {white, orange, purple} be its assignment of balls to places according to the
following rule: For any integer x ≥ 0,

πx =

⎧⎨⎩
orange ∨ purple if x = c(i) for some integer i ≥ 0,
purple iff x = c

(
a(j)
)

for some integer j ≥ 0,
white otherwise,

where

c(i) =
⌊r + ra

r
· i
⌋
,

a(j) =
⌊ r
ra

· j
⌋
,

p(j) = c
(
a(j)
)

=
⌊
r + ra

r
·
⌊ r
ra

· j
⌋⌋
.

This assignment distributes colored (orange or purple), as well as purple balls alone,
as regularly as possible over the r+ ra available places in the first row. The following
periodicity properties are immediately apparent from the above definitions: For 0 ≤
i ≤ r − 1, 0 ≤ j ≤ ra − 1, and any integer y ≥ 0,

0 ≤ c(i) ≤ r + ra − 1 and c(i+ r) = c(i) + r + ra,(4.3)
0 ≤ p(j) ≤ r + ra − 1 and p(j + r) = p(j) + r + ra,(4.4)
πy+r+ra = πy.(4.5)
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From the properties of c(i) and p(j), it follows immediately that π0, π1, . . . , πr+ra−1

contains exactly r colored balls and ra white ones. Clearly, every cyclic permutation
(rotation) πy, πy+1, . . . , πy+r+ra−1 of the original π0, π1, . . . , πr+ra−1 has this property
as well. Note that index addition in this cyclic permutation should actually be modulo
r + ra; (4.5) reveals that this is automatically taken care of, however. Below, we will
assign πy , πy+1, . . . , πy+r+ra−1 to row y of our matrix to prove our lemma.

By using the equivalences (r + ra)/r = (s+ sa)/s and r/ra = s/sa, which follow
immediately from (4.2), in the definitions of c(i) and p(i), we obtain similar periodicity
properties for 0 ≤ i ≤ s− 1, 0 ≤ j ≤ sa − 1, and any integer x ≥ 0:

0 ≤ c(i) ≤ s+ sa − 1 and c(i+ s) = c(i) + s+ sa,(4.6)
0 ≤ p(j) ≤ s+ sa − 1 and p(j + s) = p(j) + s+ sa,(4.7)
πx+s+sa = πx.(4.8)

As before, this implies that π0, π1, . . . , πs+sa−1 contains exactly s colored balls and
sa white ones. Even more, the periodicity properties (4.6) and (4.7) imply that every
cyclic permutation (rotation) πx, πx+1, . . . , πx+s+sa−1 of π0, π1, . . . , πs+sa−1 has this
property as well; again, (4.8) takes care of index addition modulo s+ sa.

Hence, we just have to assign πy, πy+1, . . . , πy+r+ra−1 to row y of our matrix,
meaning that the entry in column 0 of row y contains the same ball as the entry
in column y of row 0, for example. Our findings on the number of balls in cyclic
permutations of π0, . . . , πr+ra−1 shows that this assignment respects our lemma’s
requirement on rows. Similarly, inspection of the resulting matrix shows that column
x contains the pattern πx, πx+1, . . . , πx+s+sa−1, which respects our requirement on
the number of balls in columns as well. For example, for r = 4, ra = 2, s = 2, sa = 1,
we obtain the following assignment:⎛⎝ p o w p o w

o w p o w p
w p o w p o

⎞⎠ .
Now we are ready to prove our major Lemma 5, which shows that, in case of

n = f r� + f r,a� + fs� + fs,a� processes satisfying (4.1), any two executions that lead to
two sufficiently “similar” configurations, in the sense that |Q| = fs� + fs,a� processes
have identical states in both, can be extended by one round in a way that again yields
two “similar” configurations for the processes in Q. This implies that all the remaining
f r� + f r,a� processes can withhold their information in the resulting execution. Hence,
Lemma 3 can be applied again, which will finally establish our general lower bound
result.

Lemma 5 (similarity). Consider two configurations C = (c1, . . . , cn) and C′ =
(c′1, . . . , c

′
n) generated by executions E and E′ in a system of n = f r� + f r,a� + fs� +

fs,a� processes satisfying f r� /f
r,a
� = fs� /f

s,a
� , where the states c1 = c′1, . . . , cfs

� +fs,a
�

=
c′
fs

� +fs,a
�

of fs� + fs,a� processes are the same. Then, E and E′ can be feasibly extended
by one round, such that the same fs� + fs,a� processes again have the same states d1 =
d′1, . . . , dfs

� +fs,a
�

= d′
fs

� +fs,a
�

in the resulting successor configurations D = (d1, . . . , dn)
and D′ = (d′1, . . . , d

′
n).

Proof. Let Q = {q0, . . . , qfs
� +fs,a

� −1} be the set of processes with equal states in C
and C′, and let P = {p0, . . . , pfr

� +fr,a
� −1} be the set of the remaining processes with

possibly different states in C and C′. We claim that there is a feasible link failure
pattern F extending E by one round, yielding the execution E ∪ (F , D), where ∪
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denotes the concatenation operation. Therefore, every process in Q gets exactly f r,a�
arbitrary link failures from some processes in P , delivering the message that would
have been sent in the failure-free extension of E′ (i.e., in the absence of link failures).
In addition, every process in Q also experiences exactly f r� −f

r,a
� omission link failures

from some processes in P , whereas the messages from the remaining f r,a� processes in
P are received correctly. All messages from processes in Q to processes in Q, as well
as all messages to processes in P , are failure-free.

Not surprisingly, the required link failure pattern has already been established
in Lemma 4: We just have to map r = f r� , r

a = f r,a� , s = fs� , and sa = fs,a� and
interpret white, orange, and purple balls as correct, omission faulty, and arbitrary
faulty transmissions from the f r� + f r,a� processes in P (columns) to the fs� + fs,a�
processes in Q (rows). The results of Lemma 4 reveal that the corresponding link
failure pattern respects both the maximum numbers of send and receive link failures.

Knowing that such an F indeed exists, our lemma follows from extending E with
F and E′ with the pattern matrix F ′, which is exactly F except that a process that
committed an arbitrary send link failure in F transmits correctly in F ′, whereas a
process that transmitted correctly in F commits an arbitrary send link failure in F ′,
which (erroneously) delivers the message that would have been transmitted in the
failure-free extension of E: After this round, every process in Q has the same view
of the execution both in E ∪ (F , D) and E′ ∪ (F ′, D′) and hence reaches the same
configuration in D and D′ as asserted.

Now it is not difficult to prove our general lower bound result as given by Theo-
rem 6. It reveals that n > f r� +f r,a� +fs� +fs,a� is required for solving consensus if (4.1)
holds. According to Corollary 1 in section 6, this bound is tight and is, for example,
matched by the exponential algorithm OMH [66, 65]. If (4.1) does not hold, consensus
can be solved with fewer processes, namely, with n > f

r

� + f
ra

� + f
s

� + f
sa

� ones. The
quantities f

r

� , f
ra

� , f
s

� , and f
sa

� are nonnegative integers solving (4.1), subject to the
constraints f

r

� ≤ f r� , f
ra

� ≤ f r,a� , f
s

� ≤ fs� , and f
sa

� ≤ fs,a� , such that f
r

�+f
ra

� +f
s

�+f
sa

�

is maximal. Note that this is in accordance with the observation that, if (4.1) does
not hold, OMH solves consensus also for n = f r� + f r,a� + fs� + fs,a� (if it is allowed to
execute some additional rounds). Although we do not know whether the lower bound
given by Theorem 6 is also tight in this case, we nevertheless conjecture that this is
the case.

Theorem 6 (lower bound processes 3). Any deterministic algorithm that solves
consensus under our system model needs n > f

r

� + f
ra

� + f
s

� + f
sa

� , where f
r

� ≤ f r� ,
f
ra

� ≤ f r,a� , f
s

� ≤ fs� , f
sa

� ≤ fs,a� are such that f
r

�/f
ra

� = f
s

�/f
sa

� holds and the sum
f
r

� + f
ra

� + f
s

� + f
sa

� is maximal.
Proof. Due to Theorem 3, it remains to provide an impossibility proof for

fs,a� , f r,a� > 0. According to Lemma 3, we just have to show that every process p
can withhold its information under the conditions of our theorem: More specifically,
for every k ≥ 0, we need a failure pattern for rounds k + 1, k + 2, . . . such that a
nonempty set of processes Q = Q(p) has the same view of the resulting execution
after round r ≥ k + 1, independent of the information p has gathered by round r.

This follows easily from inductively applying Lemma 5, however: If we assume
that p is just one of the f r� + f r,a� processes in P that may have a different state in
two k-round executions E (resp., E′) leading to configurations C (resp., C′), we are
guaranteed that the remaining |Q| = fs� + fs,a� processes that had identical states in
E and E′ have identical states in some 1-round extension E∪(F , D) and E′∪(F ′, D′)
of E and E′ again. Hence, no such process ever gets information from p. Since this
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can go on for an arbitrary number of rounds, Definition 1 reveals that every p can
indeed withhold its information as required.

5. Number of rounds. In this section, we will show that being able to handle
link failures comes at the price of additional running time. More specifically, compared
to the case without link failures, solving consensus in case of fs� , f

r
� > 0 requires one

additional round. Our proofs are again based on bivalency arguments and reuse some
of the results developed in the previous sections.

Theorem 7 (lower bound rounds 1). Any deterministic algorithm that solves
consensus under our system model for fs� , f

r
� > 0 needs at least two rounds.

Proof. Assume that there is a 1-round algorithm that solves consensus in the
presence of link failures. Obviously, since any process p may suffer from a send link
failure to any receiver process q, any process p can withhold its information from at
least one process q(p) here: The 1-round assumption does not allow other processes
to learn about p’s information in some later round. Therefore, Lemma 3 reveals that
solving consensus is impossible here. Note that Lemma 3 is applicable here, since x-
round consensus is an instance of consensus where no messages are sent in rounds > x.
So if no consensus algorithms exists, as guaranteed by Lemma 3, x-round consensus
is impossible also.

The above result can be extended to the case where both process and link failures
can occur. Using our ideas in the simple bivalency proof of the well-known f + 1
lower bound for the number of rounds required for solving consensus in the presence
of f process crashes developed in [6], it is possible to show that f + 2 is a tight lower
bound (matched, for example, by algorithm OMH of [66, 65] and also confirmed by
Corollary 1 for f = 0).

Theorem 8 (lower bound rounds 2). Any deterministic algorithm that solves
consensus under our system model with n ≥ f+fs� +f r� , where f denotes the maximum
number of process crash failures and fs� , f

r
� > 0, needs at least f + 2 rounds in the

worst case.
Proof. In [6], a simple forward induction based on a bivalency argument involving

message losses due to process crashes is used to show that any consensus algorithm
has executions that lead to at least one bivalent configuration at the end of round
f − 1. The executions considered in this proof are such that at most one process
may crash in every round; clearly, no link failures are assumed to occur here. The
impossibility of consensus within f rounds follows by contradiction: It is shown in [6,
Lemma 1] that the existence of such a solution would imply that all configurations
reached after f − 1 rounds must be univalent.

In order to prove Theorem 8, we have only to provide an analogue to [6, Lemma
1]: The existence of a consensus algorithm that decides after f+1 rounds in our failure
model would imply that all configurations reached after f − 1 rounds are univalent.
The proof is by contradiction: Assuming that not all configurations reached after f−1
rounds are univalent, there must be a bivalent configuration Cf−1 after round f − 1.
Since at most one process may have crashed during each of the first f − 1 rounds,
there is still one process p that may crash in round f or f + 1. Note that it is the
crash of this process p and/or the occurrence of link failures in round f or f + 1 that
“allows” Cf−1 to be bivalent.

Let v be the algorithm’s decision in the execution E, where no failure (i.e., neither
a crash of p nor any link failure) occurs in the two rounds following Cf−1. Due to
the bivalence of Cf−1, there must be a different execution E also starting from Cf−1,
where the decision is 1− v. Assume first that p crashes in round f in E. Then, there
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must be two executions, Eq leading to the decision value v, and E
q

leading to 1 − v,
which differ only in that the (crashing) p sends its round f message to q in Eq but
not in E

q
: Starting from E where p sends all its messages, we remove the messages p

succeeds in sending one by one until the decision value changes; this happens at the
latest when we arrive at the execution E

q
.

By construction, q is the only process that can distinguish between Eq and E
q

after round f . If we allow q to produce a send link failure to some other correct
process r (this process must exist since n ≥ f + 2) in the final round f + 1, then r
has the same view at the end of Eq and E

q
. Hence, the resulting decisions cannot

be different, providing the required contradiction of some Cf−1 being bivalent in this
case.

We still have to deal with the case where p does not crash in round f in E.
Then, we claim that there is some bivalent configuration Cf reachable from Cf−1

in round f . For the sake of contradiction, assume that all configurations reachable
from Cf−1 in a single round (where no process crashes) are univalent. Since Cf−1 is
bivalent, the configuration Cf reached by the link-failure-free single-round extension
of Cf−1 must be v-valent, whereas some configuration C

f
reached by another single-

round extension with link failures must be (1− v)-valent. Due to Lemma 2, there are
two neighboring configurations Cfq and C

f

q that are also v-valent and (1 − v)-valent,
respectively. Those configurations differ only in a single link failure from some sender
s→ q in round f , perceived by q in C

f

q but not in Cfq .
Again, q is the only process that can distinguish between the resulting executions

Eq and E
q

after round f . If we allow q to produce a send link failure to some other
correct process r (this process must exist since n ≥ f + 2) in the final round f + 1,
then r has the same view at the end of Eq and E

q
. Therefore, the resulting decisions

cannot be different, contradicting the stipulated univalence of all Cf . Hence, there is
indeed some reachable bivalent configuration Cf at the end of round f .

Since we still have a processor p to crash in round f + 1 in this case, however,
the original proof [6, Lemma 1] applies: In order to decide at the end of round f + 1,
all configurations at the end of round f must be univalent. Since Cf is bivalent, we
have established the required contradiction also in this case.

As a concluding remark, we note that the additional round required for solving
consensus in the presence of link failures is not a new result. For f = 0, it has been
shown in [45] that two rounds are needed for solving consensus. Interestingly, the gen-
eral case follows also from the general result of [25] on indulgent consensus algorithms.
More specifically, link omission failures can be interpreted as false suspicions of a local
failure detector module. Our algorithms tolerate such link failures and hence must be
indulgent with respect to their “failure detectors” (= message reception). Note that
our constraints (As) and (Ar) also ensure termination of such algorithms.

6. Other results. In this section, we will elaborate on some consequences of
our model and the results obtained so far. We start with some considerations related
to connectivity in the underlying communication graph in our model, which can be
used for confirming the tightness of our lower bounds n > fs� +f r� and n > fs� +fs,a� +
f r� + f r,a� .

Consider the single-round communication graph G for some round k. It consists
of n vertices corresponding to the processes in Π and contains a directed edge (p, q) iff
there is no link failure on the link connecting p→ q in round k. Recall from elementary
graph theory that a graph G is at least c-connected if it remains connected when at
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most c − 1 vertices and their adjacent edges are removed. Two paths connecting
processes p and q are called process-disjoint iff they do not have common processes
except p and q.

Theorem 9 (connectivity). Every single-round communication graph G of a
system of n > fs� + f r� processes complying to our system model is at least c-connected
with c = n − fs� − f r� > 0. In fact, every pair of processes p, q is connected by c
process-disjoint paths consisting of at most two nonfaulty links.

Proof. Since at least c-connectivity follows trivially if every pair of processes
is connected by c process-disjoint paths, it suffices to show the latter: From (As),
we know that p is connected to at least n − fs� processes (possibly including itself)
via nonfaulty links. From (Ar), it follows that q is connected to a set of at least
n− fs� − f r� = c of these processes via nonfaulty links. Let I with |I| ≥ c be this set
of processes. If p �∈ I and q �∈ I (i.e., if p and q are not adjacent), then p and q are
connected by c paths consisting of two nonfaulty links routed over the processes in I.
Otherwise, there are only c− 1 paths of length 2 and a direct path from p to q, which
are of course also process-disjoint.

Theorem 9 implies that one can build a 2-round simulation of reliable communica-
tion in our model by using the well-known echo broadcasting scheme [15] (“crusader’s
agreement” [23]): p sends (msg, p) to all in the first round, and every q rebroadcasts
(msg, p) in the second round. One can easily show that this broadcasting scheme
allows every q to deliver (msg, p) correctly if c = n − fs� − f r� > 0. Interestingly, as
proved in [11, 12], this simulation even works in case of arbitrary link failures if n is
sufficiently large.

Corollary 1 (reliable link simulation [11, Thm.2]). There is a 2-round simu-
lation, which implements reliable broadcasting in our link failure model if n − fs� −
fs,a� − f r� − f r,a� > 0.

Any synchronous consensus algorithm resilient to f classic process failures can
hence be used in conjunction with this simulation for solving consensus in the hybrid
failure model of [66, 65] (and therefore, trivially, in the model of section 2). Note,
however, that this simulation doubles the number of rounds and is hence suboptimal:
Theorem 8 revealed a lower bound of f +2 rounds for solving consensus in our model
and the algorithms provided in [65] confirm that this bound is tight.

Certain consequences of the results of the previous sections also shed some light
on classic process failures. After all, the effect of an omission (resp., arbitrary) faulty
process on its peers is principally the same as the effect of omission (resp., arbitrary)
send link failures (As) committed by a nonfaulty process: Some receiving processes
inconsistently get no (resp., erroneous) messages instead of the correct ones. So, we
question why f omission faulty processes require at least f + 1 rounds of execution
(Theorem 8), whereas any number of processes committing send link failures can be
handled in just 2 rounds according to Corollary 1; cf. the exponential algorithm OMH
[65, Thm. 5.4], for example.

From our link failure model, it is apparent that arbitrary send link failures (As)
can also be viewed as the consequence of a restricted process failure with inconsistency
limited to fs� . Since fs� < n, however, the inconsistency caused by send link failures is
strictly less than that of an arbitrary faulty process, since the latter is not restricted
in the number of recipients that may get an erroneous message. If at most f r� = f r,a�
processes suffer from restricted process failures with inconsistency limited to fs� = fs,a� ,
both (As) and (Ar) are satisfied, which implies that this alternative interpretation
leads to feasible link failure patterns in our model. Note carefully that (As) and (Ar)
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admit more general failure patterns than just restricted process failures, however: A
receive failure may hit any incoming link in the former but is restricted to one of the
links from the f r� restricted faulty processes in the latter.

Anyway, using the alternative interpretation of arbitrary link failures as restricted
arbitrary process failures, the result of Theorem 6 allows us to characterize what makes
a process failure a truly arbitrary (Byzantine) one: Choosing f r� = f r,a� > 0 arbitrary
and fixing n > 2f r,a� , an optimal consensus algorithm such as OMH solves consensus
with n ≥ 2fs,a� + 2f r,a� + 1 in only two rounds. It hence tolerates f r,a� restricted
arbitrarily process failures with inconsistency limited to

(6.1) fs,a� ≤ (n− 1)/2� − f r,a� .

For example, n = 9 processes are required for tolerating two restricted arbitrary
failures with inconsistency fs,a� = 2 in just two (instead of three) rounds. Due to
(6.1), at least �(n−1)/2�+f r,a� processes, i.e., a majority4 of the nonfaulty processes,
get the correct message, even in the broadcast of a restricted arbitrary faulty process.
Provided that n is chosen appropriately, any number f r,a� of process failures with
inconsistency limited to fs,a� can hence be tolerated in just two rounds here, i.e., in
a number of rounds that does not depend on the number of failures f r,a� . If, on the
other hand, more than fs,a� , i.e., more than a minority of the nonfaulty processes,
can get a faulty message in the broadcast of a process, then the sender must be
considered arbitrary faulty and thus increases the number of rounds required for
solving consensus.

A similar observation can be made for omission failures. Choosing fs,a� = f r,a� = 0,
and f r� > 0 arbitrary, and fixing n > f r� , an optimal consensus algorithm such as ZA
[65] solves consensus for n ≥ f r� + fs� + 1 in only two rounds. It hence tolerates f r�
restricted omission process failures with inconsistency

(6.2) fs� ≤ n− 1 − f r� .

It follows from (6.2) that at least f r� +1 processes, i.e., at least one nonfaulty process,
must get the correct message, even in the broadcast of a restricted omission faulty
process. If this is warranted, any number f r� of such restricted process failures can be
tolerated within two rounds.

It hence follows that a process that disseminates inconsistent information cannot
do much harm—in the sense of requiring additional rounds for solving consensus—if
at most a certain number of recipients can get inconsistent information:

• A process must be considered arbitrary faulty if it can supply erroneous in-
formation to a majority of the nonfaulty processes.

• A process must be considered omission faulty if it can fail to provide infor-
mation to any and all nonfaulty processes.

For suboptimal algorithms, the thresholds (numbers of affected receivers) are of course
smaller.

Note, finally, that our observations do not contradict the lower bound f+1 for the
number of rounds required for consensus in the presence of f faulty processes (recall
Theorem 8 or [8, Sec. 5.1.4]), since this result relies heavily on the fact that a faulty
process can disseminate inconsistent information to as many processes as desired.

4For a suboptimal algorithm, even more than a majority of the nonfaulty processes must get the
correct message here.
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7. Relation to other models. In this section, we will relate our model to
alternative link failure modeling approaches. Particular emphasis will be put on the
issue of assumption coverage, which will be analyzed and compared in detail in a
simple probabilistic setting.

7.1. Overview of related approaches. It has long been known that consensus
is impossible with arbitrarily lossy links [33]. Therefore, every useful failure model
must restrict link failures in some way. Some previous work has considered links
that eventually become reliable “for sufficiently long,” at least among a majority of
the processes, (e.g., [46, 24]), or “stubborn links” [36] that eventually deliver every
message provided the message is sent sufficiently many times. These models in essence
provide safety despite link failures but require communication to eventually become
reliable in order to ensure liveness. A similar approach is employed in the crash-
recovery model [2], which also deals with transient failures, albeit at the level of
whole processes and on a much larger time-scale. There are only a few failure models
for synchronous systems in the literature that deal with transient link failures that
continue to occur indefinitely.

One straightforward way to deal with link failures is to map link failures to sender
process failures [32] or, preferably, to general send/receive-omission failures [54]. Un-
fortunately, this approach suffers from poor model coverage (see section 7.2) and is
also quite restrictive in the sense that only specific processes—the faulty ones—may
experience link failures.

Another class of models [55, 61, 67] considers a small number of link failures explic-
itly: Those papers assume that at most O(n) links may be faulty system-wide during
the entire execution. Obviously, such models can be applied only when link failures
are rare. Hadzilacos [37] presents a theoretical study of connectivity requirements for
solving consensus in arbitrary networks with stopping and omission failures.

The most severe problem of the models surveyed so far is their inability to deal
with the “moving” nature of transient link failures: In a real network, there is a
positive probability for message loss (or delay) on every link. In the aforementioned
models, once a single message is lost, either the link or the process is deemed faulty.
Since failures are considered persistent during an execution in the above models, the
“exhaustion” of nonfaulty processes and links progresses rapidly with every round.
This makes any attempt to solve consensus in models such as those presented in
[32, 54, 37] void in case of significant link failure rates (see section 7.2 for a detailed
analysis). A more adequate approach to capturing message loss is to allow for transient
failures that hit different processes or links in different communication rounds.

Santoro and Widmayer were the first to introduce this assumption: In [58, 60],
they showed that consensus cannot be solved in the presence of n− 1 (resp., n/2�)
omission (resp., Byzantine) link failures per round, particularly if those link failures
hit the same sender process. As a consequence, consensus cannot be solved in the
presence of just a single mobile omission or Byzantine faulty process, i.e., a single
process—which may be different in different rounds—that suffers from omission or
even Byzantine failures. This result has been proven in [58] by means of a similar
approach as employed in section 3 and reproven in the layering framework by Moses
and Rajsbaum [52].

On the other hand, if the number of moving link failures is further restricted to
less than n − 1 (resp., n/2�) per round in case of omission (resp., Byzantine) link
failures, consensus can be solved in a constant number of rounds [59, 49]. Other
distributed computing problems [21] and special system architectures [22] have also
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been studied under this model.
The failure model introduced in [56] can be seen as a first step in the direction

of increasing the link failure resilience from O(n) to O(n2): For a system with n ≥
20f+1 processes, at most f of which may be Byzantine faulty per round, a consensus
algorithm was given that tolerates a small number l = n/20 of link failures at every
node. A different (but related) model has been proposed in [31], which considers
at most f Byzantine process failures per round that may move from one process to
another with a certain maximum speed.

Cristian et al. [20] provide a suite of synchronous atomic broadcast protocols
with much better link failure resilience (which is comparable to results we presented
in an earlier paper [65]). Although atomic broadcast is usually investigated in a more
communications-oriented context, it can be used to solve consensus as well; see, e.g.,
[38] for an overview. The three algorithms of Cristian et al. [20] tolerate an arbitrary
number of processes with omission, timing, or Byzantine failures (if authentication is
available) and work on general communication graphs subject to link failures. Instead
of making the number of link failures explicit, however, it is just assumed that any
two processes in the system are always connected via a path of nonfaulty links.

Unlike in the deterministic setting, link failures are easily tolerated by random-
ized consensus algorithms such as the one of [70]. Such algorithms circumvent Gray’s
impossibility result (cf. Theorem 1) by adding nondeterminism (coin tossing) to the
computations. Still, due to the inherent nonzero probability of failure/nontermination
within a fixed number of rounds, randomized algorithms are unsuitable for some appli-
cations. Moreover, there is a lower bound 1/(R+1) for the probability of disagreement
after R rounds with arbitrary loss [50, Thm. 5.5]. It is interesting to note, however,
that our link failure modeling approach also circumvents this lower bound: For a
well-known randomized algorithm, Schmid and Fetzer established a probability of
disagreement of only (1/2)R [64].

Though our paper primarily deals with message omissions in the synchronous
timing model, our model can also be used to reason about timeliness of some links in
otherwise asynchronous round-based systems (where late messages are discarded). In
this context, our threshold f r� (resp., fs� ) can be seen as a restriction on the number of
late (or untimely) messages a process receives (resp., sends) in a round. Restrictions
of this type have received much attention recently: A suite of papers [3, 4, 5, 53, 7, 51,
43, 39, 40, 44] provided weaker and weaker models that are still sufficiently strong for
implementing failure detectors and/or solving consensus in the presence of at most f
process crash failures and dynamic timing variations.

In particular, Keidar and Shraer introduced a model called all from majority
(�AFM) in their round-by-round GIRAF framework [43], which is closely related to
the moving link failure model introduced in section 2.2: It allowsO(n2) links per round
to be nontimely, provided that every process has at least m+ 1 timely outgoing links
and n−m timely incoming links at any time for some suitable m. The set of timely
links may be moving. �AFM was shown in [44] to be the only model (out of those
defined thus far in this context) that scales with n, in the sense that consensus can be
guaranteed to terminate in a constant expected number of rounds in the independent
identically distributed probabilistic link failure model, even for n→ ∞.

Our model is also related to the heard-of model (HO Model) developed by Charron-
Bost and Schiper [18, 19]. The HO Model is a round-based distributed computing
model, which unifies synchrony and (benign) failures of both processes and links. It
has recently been extended to Byzantine failures [13] as well. Our link failure restric-
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tions (As) and (Ar) can be elegantly expressed as simple communication predicates
in the HO model, namely, ∀p ∈ Π, k ≥ 1 : |HO(p, k)| ≥ n− f r� ∧ |TT (p, k)| ≥ n− fs�
in case of omission link failures, where HO(p, k) is the set of processes p hears from
in round k and TT (p, k) is the set of processes p talks to in round k. Moreover, the
reliable link simulation that led to Corollary 1 can be seen as a 2-round translation
that simulates a global kernel (of size n, i.e., a failure-free system) in our model. It
is also interesting to compare the upper bound results of [13] with our lower bounds:
Theorem 5 reveals that we can allow at most n/4 arbitrary link failures per round.
The algorithm AT,E in [13] admits up to n/4 arbitrary receive link failures per round,
without posing a restriction to send link failures, however. There is no contradiction
here, due to the fact that the analysis of AT,E separates safety and liveness: The
algorithm actually needs some rounds with much less than n/4 link failures for guar-
anteed termination. By contrast, our lower bounds guarantee both safety and liveness
simultaneously.

Finally, we already noted that, in the context of round-by-round fault detectors
[30], false suspicions of a local failure detector [16] can also be interpreted as transient
link failures. Our results, such as the lower bound of f+2 rounds for solving consensus,
are hence also applicable to stable periods [26] and stable runs [41, 25] of indulgent
[35] consensus algorithms.

An alternative way to cope with transient link failures involves reliable link sim-
ulation protocols based on retransmissions [1, 9, 2]. Asynchronous algorithms can
then be used atop such protocols for solving consensus. However, since retransmis-
sion protocols can obviously mask omissions only (but not timing failures and/or
erroneous messages), they are no panacea. Moreover, using time redundancy for tol-
erating link failures necessarily increases the end-to-end delay in case of a failure,
which eventually affects the consensus algorithms’ termination time. And, last but
not least, since it is impossible to solve consensus in asynchronous systems with even
a single crash failure [29], one has to add some synchrony to the system anyway
[3, 4, 5, 53, 7, 51, 40, 43, 39]. This makes our synchronous lower bound results appli-
cable again, at least to asynchronous algorithms designed for round-by-round-based
frameworks such as [64, 18, 19, 43]. A detailed survey of link failures in partially
synchronous and asynchronous systems can be found in [63].

Note that using reliable link protocols in conjunction with synchronous consensus
algorithms is not particularly useful, since the duration of the rounds must be fixed
a priori. As a consequence, only a certain number of retransmissions can be accomo-
dated in a round, which is not sufficient for simulating reliable links in the presence of
high link failure rates. In sharp contrast, our approach toward handling link failures
uses additional processes (i.e., some larger value of n) instead of retransmissions and
therefore does not suffer from this problem: The duration of a round just needs to
encompass a single end-to-end delay.

7.2. Model coverage. In this section, we will prove that our link failure model
also surpasses alternative approaches in terms of assumption coverage.

If link failures are just mapped to sender process failures, as in [32], even a single
link failure per process and round (f� = 1 in our terminology) would end up with
f = n faulty processes in some runs. Figure 7.1 shows an example for n = 4 and
f� = 1.

In the more elaborate send/receive-omission failure model of [54], an omission
can be attributed to either the sender or the receiver process. Still, in the example
of Figure 7.1, only at most two processes can be considered correct. Ending up with
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Received msgs. Rm1:
msg1 msg2 ∅ msg4

Received msgs. Rm4:
msg1 ∅ msg3 msg4

p1 p2

p3p4

∅ msg2 msg3 msg4

f� omissions/process Received msgs. Rm2:

msg1 msg2 msg3 ∅
Received msgs. Rm3:

Fig. 7.1. Example of a 4-process system with f� = 1 send and receive omission failures per
process in each round, where all processes must be considered faulty in traditional process failure
models.

less than a majority of correct processes renders uniform consensus unsolvable [17],
however. Hence, by attributing link failures to processes, we may miss the opportunity
to solve consensus in scenarios which can be handled in our model.

We now turn to examine whether the additional scenarios captured by our model
are significant. After all, one could argue that failure patterns as depicted above al-
most never occur in practice, such that more refined models have only marginal added
value. We counter this argument by quantifying the coverage5 of various models, using
a simple probabilistic “benchmarking scenario.”

Definition 2. Consider a synchronous system of n processes, where each of
the n(n − 1) unidirectional links fails with some independent probability 0 ≤ p < 1,
independently in every round. The coverage Cov(M) of a model M is the probability
that the model assumptions hold true during the execution of an m-round algorithm
for some arbitrary m ≥ 1.

Combining ideas from [62] and [44], we analyze the coverage of the following
failure models:

• f general omission-faulty processes (GOf ) [54],
• at least one process with f nonmoving timely links (TLf) [5],
• at most n− 2 moving link failures per round (MLn−2) [58],
• f� moving link failures per process and round (MLOf�

), the model of sec-
tion 2.2.

It will turn out that the link failure model introduced in section 2.2 surpasses all other
modeling approaches above in terms of coverage. In particular, it is the only model
that scales with n, in the sense that, for example, Cov(MLOn/2) → 1 for n→ ∞. By
contrast, the coverage of all the other models even goes to 0 for n→ ∞ in comparable
settings.

We should mention, though, that our coverage analysis does not aim at replacing
a direct analysis of a distributed algorithm in our probabilistic “benchmarking sce-
nario.” A particular algorithm A may perform much better than our coverage analysis
predicts, since A may also work well in executions where the deterministic model M
is violated. Hence, Cov(M) is just a lower bound on the achievable performance of
A but is of course a meaningful measure for assessing the quality of a deterministic

5We note that the term coverage suffers from overloading in the literature; throughout this paper,
“coverage” must be read as “model coverage in synchronous systems with independent link failure
probability p.”
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model independently of a particular protocol.

Analysis of f general omission-faulty processes (GOf ). Under this failure
model, there must be a set K of at least k = n − f processes that never commit a
send nor a receive omission. This requirement is mapped to our probabilistic link
failure setting as follows: All the links among the processes in K must be correct in
all rounds, and the links connecting processes in Π\K with processes in Π\K may
be either correct or faulty. The links to/from processes in K from/to processes in
Π\K may also be either correct or faulty, since we can attribute a link failure to the
adjacent process in Π\K.

So let K be a subset of k = n− f ≥ 1 distinct processes where all k(k − 1) links
among processes in K never experience any omission failure during m rounds. Since
there are

(
n
k

)
different sets K of k processes out of n processes, the probability Pn(k)

that there is at least one such set in a run satisfies

(7.1) Pn(k) ≤
(
n

k

)
(1 − p)k(k−1)m.

Note that Pn(k) is not equal to
(
n
k

)
(1 − p)k(k−1)m, since there may be multiple sets

K in a given run (recall that the links outside K can also be correct).
Hence, the model coverage of the standard general omission failure model with

at most f faulty processes GOf satisfies

(7.2) Cov(GOf ) = Pn(n− f) ≤
(

n

n− f

)
(1 − p)(n−f)(n−f−1)m.

In case of f = λn for any 0 < λ < 1, it is not difficult to prove that Cov(GOλn) → 0
for n→ ∞. We will use asymptotic analysis for this purpose,6 with Stirling’s formula

(7.3) n! ∼
√

2πn ·
(n
e

)n
for n→ ∞

as our major ingredient.
Lemma 6 (asymptotic expansion

(
n
nλ

)
). For any 0 < λ < 1 and n→ ∞,

(7.4)
(
n

λn

)
∼ 1√

2πnλ(1 − λ)
·
(
(1 − λ)−(1−λ) · λ−λ

)n
.

Proof. Using Stirling’s formula in
(
n
k

)
= n!

(n−k)! k! , we find

(
n

λn

)
∼

(
n
e

)n
(
n(1−λ)

e

)n(1−λ)(
λn
e

)λn ·
√

2πn√
2πn(1 − λ) ·

√
2πλn

∼
( n

n(1 − λ)

)n
·
(n(1 − λ)

λn

)λn
· 1√

1 − λ ·
√

2πλn

∼ (1 − λ)−n ·
(1 − λ

λ

)λn
· 1√

2πnλ(1 − λ)
,

from which (7.4) follows immediately.

6We use the notation f(n) ∼ g(n) ⇔ limn→∞ f(n)/g(n) = 1 and f(n) ∝ g(n) ⇔ 0 ≤
limn→∞ f(n)/g(n) ≤ 1.
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Using the result of Lemma 6 in (7.2), the coverage of GOnλ evaluates to

(7.5) Cov(GOnλ) ∝
(
(1 − λ)−(1−λ) · λ−λ

)n√
2πnλ(1 − λ)

· (1 − p)
(
n(1−λ)

)(
n(1−λ)−1

)
m.

Since the exponent of 1 − p < 1 is quadratic in n, it is obvious that Cov(GOnλ) → 0
for n → ∞, for any p > 0, 0 < λ < 1, and m ≥ 1. In particular, for f = n/2, we
obtain

(7.6) Cov(GOn/2) ∝
2n√
πn/2

(1 − p)(n/2)(n/2−1)m.

Cov(GOn/2) hence very quickly goes to 0 for n → ∞ for any 0 < p < 1 and any
m ≥ 1. Figure 7.2 gives some numerical values which reveal that the coverage of the
general omission process failure model in our benchmarking scenario is indeed very
poor. For example, for p = 0.01 and m = 2 (first plot in the left figure), the coverage
is only about 10−25 in a system of n = 40 processes (log-scale)!
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Fig. 7.2. Coverage general process omission failure model: Upper bound on log10

(
Cov(GOn/2)

)
over n with p = 0.01 and p = 0.1 for m = 2 (left) and m = 20 (right).

Analysis of at least one process with f nonmoving timely links (TLf).
We now turn our attention to the “nonmoving” link timing models [3, 4, 5] used for
solving Ω and consensus in an (almost) asynchronous system of n processes with up
to f process crash failures and eventually reliable links. The weakest model among
those (denoted TLf here) assumes that (eventually) there is at least one process p
with at least f timely outgoing links in each of its broadcasts. Note that those f links
are fixed throughout the (suffix of the) execution.

We note that the model TLf is actually too weak for solving consensus within
bounded time: As shown in [43, 44], considerably more timely links are required to
solve consensus within a bounded number m of (timely) rounds. We incorporate
the analysis of TLf here, however, since it provides sort of an “upper bound” with
respect to coverage: Any model that, in addition to TLf , requires additional timely
links must have an even lower coverage in our benchmarking scenario. Bear in mind,
however, that the number of rounds m should be considered large here.

With p representing the probability that a link is nontimely in a round here, the
probability Pn−1(f) = Cov(TLf) that some process has at least f timely links during
m rounds is at most n

(
n−1
f

)
(1 − p)fm: We have n processes, and there are

(
n−1
f

)
different subsets of f processes among the n − 1 neighbors of a process; (1 − p)fm
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gives the probability that the links to a fixed set of f neighbors are correct during all
m rounds. Hence,

(7.7) Cov(TLf) ≤ n ·
(
n− 1
f

)
(1 − p)fm.

As in the analysis of GOf , this is only a (quite conservative) upper bound for Pn−1(f),
however, since the involved events are not independent.

For f = λ(n− 1) = λn′, 0 < λ < 1, where we employed the abbreviation

n′ = n− 1

used throughout this section, we obtain

Cov(TLλn′) ≤ (n′ + 1) ·
(
n′

λn′

)
(1 − p)mλn

′

∝
√

n′

2πλ(1 − λ)
·
(
(1 − λ)−(1−λ) · λ−λ

)n′

· (1 − p)mλn
′
.(7.8)

Choosing λ = 1/2, i.e., f = (n− 1)/2 = n′/2, to facilitate comparison with our other
results, we obtain

(7.9) Cov(TLn′/2) ∝
√

2n′

π

(
4(1 − p)m

)n′/2

.

The above bound goes to 0 for n′ → ∞ if 4(1 − p)m < 1, i.e., when the number of
rounds satisfies

(7.10) m > − log 4
log(1 − p)

>
log 4
p

,

according to the series expansion log(1 − x) = −
∑
k≥1 x

k/k, valid for |x| < 1. For
smaller values of m, (7.9) increases exponentially. Since Cov(TLn′/2) = Pn′(n′/2) is
a probability and hence ≤ 1, however, the question arises whether the range of m
where Cov(TLn′/2) → 0 could be extended by a refined analysis.

Some advanced results on the distribution of the maximum degree of nodes in a
geometric random graph [57] can be used for this purpose: The sought probability
Pn−1(f) is just the probability that the maximum degree Δ of the nodes in a random
graph with n nodes (where an edge exists, independently of the other edges, with
some fixed probability 0 < q < 1) satisfies Δ ≥ f . More specifically, we have to
consider the random graph with n nodes, corresponding to our processes, where an
edge (x, y) exists if there is no link failure on the link x→ y during m rounds. Clearly,
the probability of the latter event is q = (1 − p)m. Note that [57] actually deals with
undirected graphs. Considering the undirected random graph RG corresponding to
an execution, instead of its directed counterpart RG, provides an upper bound: Since
every directed edge in RG is also present in RG, it follows that P{ΔRG ≥ f} ≥
P{ΔRG ≥ f}.

Theorem 10 (maximum degree in geometric random graphs [57]). Given a
geometric random graph with n nodes and edge probability q, the maximum degree Δ
is strongly concentrated, in the sense that almost always

(7.11)

∣∣∣∣∣Δ − qn−
√

2q(1 − q)n logn+ log logn

√
q(1 − q)n
8 logn

∣∣∣∣∣ ≤ log log
√

n

logn
.
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Moreover, the tail satisfies P{Δ < qn + b
√
nq(1 − q)} =

(
c(b) + o(1)

)n for n → ∞,
where c(b) < 1 is the root of a certain equation; c(0) = 0.6102; and c(b) is independent
of q.

According to our exposition above, we must set q := (1−p)m, n := n′+1, and f =
n′/2. Now, if n′/2 > nq = (n′+1)(1−p)m with n′/2−(n′−1)(1−p)m ≥ C ·n′ for some
constant C > 0, then the area Δ ≥ n′/2 is to the right of the area of concentration[
nq−O(

√
n logn), nq+O(

√
n logn)

]
of Δ given in (7.11) if n is sufficiently large. As

a consequence, Cov(TLn′/2) = P{ΔRG ≥ n′/2} ≤ P{ΔRG ≥ n′/2} actually goes to
0 for n → ∞ if (1 − p)m < 1/2, i.e., when m > log 2

p > log 2
p ; cf. (7.10). For smaller

values of m, Cov(TLn′/2) → 1 for n → ∞ (with a fast transition phase in between,
as usual in random graphs).

Figure 7.3 provides some numerical values in a system with p = 0.1 for m = 20
rounds. It reveals that the coverage of n′/2 fixed timely links in our benchmarking
scenario is poor if m is above its critical value (7.10) with respect to p (which is the
case for m = 20 and p = 0.1).
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Fig. 7.3. Coverage of nonmoving timely links: Upper bound on log10

(
Cov(TLn′/2)

)
over n

with p = 0.1 for m = 20. The number of rounds m = 20 is above its critical value (7.10) here.

Analysis of n−2 moving link failures per round (MLn−2). Classic moving
link failure models, particularly [58], admit only O(n) link failures per round. Let
MLλn be the model that admits at most λn link failures per round for some real
constant λ > 0. In [58], it was shown that consensus possibility demands at most
λn = n− 2 link failures per round; hence λ = (n− 2)/n here.

We start our derivations with a simple bound on the tail of the binomial distri-
bution taken from Feller’s book [27],7 which will also be required in the analysis of
the coverage of our model MLOf�

. Consider the binomial distribution B(n, p), where
p is the “success” probability, and let

(7.12) pn(f�) =
f�∑
l=0

(
n

l

)
pl(1 − p)n−l

be the probability of at most f� “successes,” and let qn(f�) = 1 − pn(f�) be the

7This method gives a better bound than Chernoff’s, i.e., qn(f�) ≤ minz≥1 B(z; n, p)/zf� , where
B(z; n, p) = (pz + 1 − p)n is the generating function of the binomial distribution.
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probability of more than f� “successes.” Clearly,

(7.13) qn(f�) =
n∑

l=f�+1

(
n

l

)
pl(1 − p)n−l.

Lemma 7 gives an upper bound for this quantity.
Lemma 7 (upper bound for binomial tail [27]). For any 0 ≤ p ≤ 1, n ≥ 1, and

f� + 1 > np, we have

(7.14) qn(f�) ≤
(1 − p)(f� + 1)
f� + 1 − np

·
(

n

f� + 1

)
pf�+1(1 − p)n−f�−1.

Proof. Following the argument [27, p. 151, eq. (3.4)], let b(k;n, p) =
(
n
k

)
pk(1 −

p)n−k, and note that qn(f�) =
∑∞

k=0 b(k + f� + 1;n, p). Using the straightforward
identity

(
n
k

)
= n−k+1

k

(
n
k−1

)
, one obtains for any k ≥ 1

b(k + f� + 1;n, p) =
(n− k − f� − 1 + 1)p
(k + f� + 1)(1 − p)

· b(k − 1 + f� + 1;n, p)

=
(
1 − k + f� + 1 − (n+ 1)p

(k + f� + 1)(1 − p)

)
· b(k − 1 + f� + 1;n, p)

=
k∏
j=1

(
1 − j + f� + 1 − (n+ 1)p

(j + f� + 1)(1 − p)

)
· b(f� + 1;n, p)

=
k∏
j=1

(
1 −

1 − (n+1)p
j+f�+1

1 − p

)
· b(f� + 1;n, p).

Since it is easily checked that, for any j ≥ 1,

1 −
1 − (n+1)p

j+f�+1

1 − p
≤ 1 −

1 − np
f�+1

1 − p
,

it follows that

b(k + f� + 1;n, p) ≤
(
1 −

1 − np
f�+1

1 − p

)k
· b(f� + 1;n, p),

which holds even for k ≥ 0. Consequently,

qn(f�) =
∞∑
k=0

b(k + f� + 1;n, p) ≤ b(f� + 1;n, p)
∞∑
k=0

(
1 −

1 − np
f�+1

1 − p

)k
≤ 1 − p

1 − np
f�+1

·
(

n

f� + 1

)
pf�+1(1 − p)n−f�−1,

as asserted in (7.14).
In case of MLλn, we set n := n(n− 1), p := 1− p, and f� := n(n− 1)− λn− 1 =

n(n− 1 − λ) − 1 in Lemma 7, such that qn(n−1)

(
n(n− 1 − λ) − 1

)
is the probability

that at least n(n − 1 − λ) nonfaulty links (and hence at most λn faulty links) occur
per round. It evaluates to

qn(n−1)

(
n(n− 1 − λ) − 1

)
≤ pn(n− 1 − λ)
n(n− 1 − λ) − n(n− 1)(1 − p)

·
(

n(n− 1)
n(n− 1 − λ)

)
(1 − p)n(n−1−λ)pλn.
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By independence, the probability that at most λn link failures occur during m rounds
is
[
qn(n−1)

(
n(n− 1 − λ) − 1

)]m, and thus

(7.15) Cov(MLλn) ≤
[
p · (n− 1 − λ)
p · (n− 1) − λ

·
(

n(n− 1)
n(n− 1 − λ)

)
(1 − p)n(n−1−λ)pλn

]m
by Lemma 7. In order to determine the asymptotic value of Cov(MLλn), we will need(

1 − x

n

)n
∼ e−x for any fixed x and n→ ∞,(

1 − x

n− 1

)n(n−1)

= en(n−1) log
(
1− x

n−1

)
= e

n(n−1)·
(
− x

n−1−
x2

2(n−1)2
+O(x3/n3)

)
= e−nx−

nx2
2(n−1) +O(x3/n)

∼ e−nx−
x2
2 for |x| < 1,

where we used the series expansion log(1 − x) = −
∑
k≥1 x

k/k. Applying Stirling’s
formula (7.3) again yields

(
n(n− 1)

n(n− 1 − λ)

)
∼

(
n(n−1)

e

)n(n−1)

(
n(n−1−λ)

e

)n(n−1−λ)(
λn
e

)λn ·
√

2πn(n− 1)√
2πn(n− 1 − λ) ·

√
2πλn

∼
( n− 1
n− 1 − λ

)n(n−1)

·
(n− 1 − λ

λ

)λn
· 1√

1 − λ
n−1 ·

√
2πλn

∼ 1(
1 − λ

n−1

)n(n−1)
·
(n
λ

)λn
·
(
1 − λ · (1 + λ)

λn

)λn
· 1√

2πλn

∼ eλn+λ2/2 ·
(n
λ

)λn
· e−λ(1+λ) · 1√

2πλn

∼ e−λ(1+λ/2)

√
2πλn

·
(en
λ

)λn
(7.16)

∼ eλn logn+λn(1−log λ)− 1
2 ·logn−λ(1+λ/2)− 1

2 ·log(2πλ).(7.17)

The dominant term in the exponent in (7.17) is clearly λn logn > 0. On the other
hand,

(1 − p)n(n−1−λ)pλn = en
2 log(1−p)−(1+λ)n log(1−p)+(λn) log p,

which rapidly goes to 0 for n → ∞ since the dominant term in the exponent is
log(1 − p)n2 < 0. Multiplying this with (7.16) according to (7.15) hence yields

(7.18) Cov(MLλn) ∝
[
e−λ(1+λ/2)

√
2πλn

·
(enp
λ

)λn
(1 − p)n(n−1−λ)

]m
,

which quickly goes to 0 for n→ ∞, for any λ and m.
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For the special case λ = (n− 2)/n, which implies at most n− 2 link failures per
round, we obtain for n→ ∞

λ ∼ 1,
e−λ(1+λ/2)

√
2πλn

∼ e−3/2

√
2πn

,

(enp
λ

)λn
=
(
enp
n−2
n

)n−2

=
(1 − 2/n)2 · (enp)n−2

(1 − 2/n)n
∼ (enp)n−2

e−2
,

(1 − p)n(n−1−λ) = (1 − p)n(n−1)−n+2 =
( 1

(1 − p)2
)n−2

(1 − p)n
2−2.

Using this in expression (7.18) hence yields

Cov(MLn−2) ∼
( e−3/2

e−2
√

2πn

)m( enp

(1 − p)2
)(n−2)m

(1 − p)(n
2−2)m

∼
(√

e

2πn

)m ( enp

(1 − p)2
)(n−2)m

(1 − p)(n
2−2)m,

which very quickly goes to 0 for n→ ∞. Figure 7.4 gives some numerical values which
reveal that the coverage of this model in our benchmarking scenario is very poor even
for relatively small system sizes n.
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Fig. 7.4. Coverage of O(n) moving link failures per round: Upper bound on
log10

(
Cov(MLn−2)

)
over n with p = 0.01 and p = 0.1 for m = 2 (left) and m = 20 (right).

7.2.1. Analysis of f� moving link failures per process and round (MLOf�).
Finally, we will show that the moving link omission failure model MLOf�

with
f r� = fs� = f� introduced in section 2.2 does not suffer from poor coverage: On the
contrary, in accordance with [44], we will show that Cov(MLOnλ) → 1 for n → ∞,
for any p < 1/2 and λ > p.

Recalling (7.12), we have to set n := n − 1 and choose p to be our link failure
probability p in this equation in order to obtain the probability pn−1(f�) that at most
f� outgoing links are faulty in the broadcast of a single process to its n− 1 receivers
in a round. Similarly, the probability qn−1(f�) = 1−pn−1(f�) that more than f� links
are faulty in this event is given by (7.13), and Lemma 7 provides an upper bound for
qn−1(f�) for f�+ 1 > (n− 1)p. Since we will eventually choose f� = (n− 1)/2− 1 and
p < 1/2, the latter condition is indeed satisfied. Note that there is a reasonably small
upper bound for qn−1(f�) also in case of small values f� + 1 ≤ (n− 1)p; see [62].
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The probability that none of the n processes in the system experiences more than
f� link failures on its outgoing links in a single round is Ps = pn−1(f�)n, since the
failures on the outgoing links of different processes are independent.

Obviously, (7.12) for pn−1(f�) also provides the probability that a single receiver
process experiences at most f� link failures on its incoming links. As before, the
probability that none of the n processes in the system experiences more than f� link
failures on its incoming links in a round is Pr = pn−1(f�)n.

The probability Psr that none of the n processes in the system experiences more
than f� link failures on its outgoing links and no more than f� link failures on its
incoming links is not just the product of Ps and Pr, however, since they are not
independent. However, Psr = Pr|sPs, where Pr|s denotes the conditional probability
that no process perceives more than f� link failures on its incoming links, conditioned
on the fact that no process experiences more than f� link failures on its outgoing links.
Since trivially Pr|s ≥ Pr , we obtain Psr ≥ PsPr = pn−1(f�)2n and hence

Cov(MLOf�
) = Pmsr ≥ (1 − qn−1(f�))2nm.

By the Bernoulli inequality (1 + α)n ≥ 1 + nα for any α > −1, we obtain

(7.19) (1 − qn−1(f�))2nm ≥ 1 − 2nmqn−1(f�),

which is valid for qn−1(f�) < 1; since the latter is a probability < 1, this condition is
of course satisfied.

Consequently, using Lemma 7, 1 − Cov(MLOf�
) can be upper bounded by

(7.20) 1 − Cov(MLOf�
) ≤ 2nm(f� + 1)(1 − p)

f� + 1 − (n− 1)p

(
n− 1
f� + 1

)
pf�+1(1 − p)n−1−f�−1.

A very similar analysis as for MLλn proves that Cov(MLOf�
) quickly approaches

1 as n → ∞ for any f� + 1 = λ(n− 1) with λ > p and p < 1/2: Recalling Lemma 6,
we immediately obtain(

n

λn

)
pλn(1 − p)n(1−λ) ∼

(1 − p

1 − λ

)n(1−λ)(p
λ

)λn 1√
2πnλ(1 − λ)

.

Plugging n′ := n− 1 and f� + 1 = (n− 1)λ = n′λ according into (7.20) into the
above equation provides

1 − Cov(MLOn′λ−1) ∝
m(1 − p)
λ− p

·
√

2n′λ

π(1 − λ)

[( 1 − p

1 − λ

)1−λ( p
λ

)λ]n′

.

Since xλ ≤ x for any 0 ≤ λ ≤ 1, and p < λ,( 1 − p

1 − λ

)1−λ( p
λ

)λ
=

1 − p

1 − λ

(p(1 − λ)
λ(1 − p)

)λ
≤ 1 − p

1 − λ
· p(1 − λ)
λ(1 − p)

=
p

λ
< 1,

so Cov(MLO(n−1)λ−1) indeed quickly approaches 1 as n → ∞. In the special case
λ = 1/2 > p, where f� + 1 = (n − 1)/2 = n′/2 with n = n′ + 1 ∼ n′ for n → ∞, we
obtain

(7.21) 1 − Cov(MLOn′/2−1) ∝
m(1 − p)
1/2 − p

·
√

2n′

π
·
(
4p(1 − p)

)n′/2
,
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which rapidly goes to 0 for n → ∞, for any p < 1/2, and for any m = O(nk),
with k arbitrary but fixed. Figure 7.5 confirms that our link failure model8 indeed
scales well with n and gives excellent coverage for any reasonable choice of parameters.
Note carefully that those figures, in sharp contrast to all previous ones, show an upper
bound on 1 − Cov(MLOn′/2), i.e., the difference to ideal coverage.
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Fig. 7.5. Coverage of f� moving link failures per round per process: Upper bound on log10

(
1−

Cov(MLOn′/2)
)

over n with p = 0.01 and p = 0.1 for m = 2 (left) and m = 20 (right).

Finally, Figure 7.6 compares our upper bounds on Cov(GOn/2), Cov(TLn′/2), and
Cov(MLn−2) in a system of n = 30 processes, for m = 2 and m = 20 rounds, under
varying link failure rates p; Figure 7.7 does the same for n = 60. The numerical results
reveal that all those models provide poor coverage in our benchmarking scenario,
particularly under substantial link failure rates. Note that this is also true for TLn′/2,
unless the number of rounds m is not below the critical value (7.10) with respect to
p.
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Fig. 7.6. Upper bound on Cov(GOn/2), Cov(TLn′/2), and Cov(MLn−1) over p for a system
of n = 30 processes, for m = 2 (left) and m = 20 (right) rounds.

By contrast, Figures 7.8 and 7.9 provide numerical results for our upper bound
on 1−Cov(MLOn′/2), under the same parameter values for n and m as in Figures 7.6
and 7.7. They reveal a high coverage also under substantial link failure rates, as well
as a remarkably low dependence on the number m of rounds. They finally justify our
claim that MLO is the only model that performs well in our benchmarking scenario.

8As well as the moving timely link model for Ω and consensus of [39, 40], which can be analyzed
in a similar way.
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Fig. 7.7. Upper bound on Cov(GOn/2), Cov(TLn′/2), and Cov(MLn−1) over p for a system
of n = 60 processes, for m = 2 (left) and m = 20 (right) rounds.
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Fig. 7.8. Upper bound on log10

(
1 − Cov(MLOn′/2)

)
over p for a system of n = 30 processes,

for m = 2 (left) and m = 20 (right) rounds.
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Fig. 7.9. Upper bound on log10

(
1 − Cov(MLOn′/2)

)
over p for a system of n = 60 processes,

for m = 2 (left) and m = 20 (right) rounds.

8. Conclusions. We provided a complete theoretical treatment of the impossi-
bility of deterministic synchronous consensus under a novel link failure model, which
grants every process a certain maximum number of send and receive link failures per
round. Link failures may both be omissive and arbitrary and can hit messages to/from
different processes in every round. Using novel instances of “easy impossibility” and
bivalency proofs, we provided related lower bounds for the number of processes and
rounds as well. Most of them are matched by existing consensus algorithms and hence
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are tight. An analysis of the assumption coverage in a simple probabilistic setting re-
vealed that our model is the only one with a coverage that approaches 1 (rather than
0) for large n.

Part of our current/future theoretical research in this area is devoted to consensus
lower bounds under our fully fledged hybrid failure model, which captures both process
and link failures simultaneously. We analyzed several algorithms under this model and
found that the respective numbers of processes required just add up. This suggested
that tolerating link failures and process failures is more or less orthogonal. In [11],
however, it was shown that this is not true in general. Generalized lower bounds are
hence required for reasoning about optimal algorithms here.
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Abstract. A k-query locally decodable code (LDC) encodes an n-bit message x as an N-bit
codeword C(x), such that one can probabilistically recover any bit xi of the message by querying only
k bits of the codeword C(x), even after some constant fraction of codeword bits has been corrupted.
The major goal of LDC related research is to establish the optimal trade-off between length and
query complexity of such codes. Recently vast improvements in upper bounds for the length of
LDCs were achieved via constructions that rely on existence of certain special (“nice”) subsets of
finite fields. In this work we extend the constructions of LDCs from “nice” subsets. We argue that
further progress on upper bounds for LDCs via these methods is tied to progress on an old number
theory question regarding the size of the largest prime factors of Mersenne numbers. Specifically, we
show that every Mersenne number m = 2t − 1 that has a prime factor p > mγ yields a family of
k(γ)-query LDCs of length exp(n1/t). Conversely, if for some fixed k and all ε > 0 one can use the
“nice” subsets technique to obtain a family of k-query LDCs of length exp(nε), then infinitely many
Mersenne numbers have prime factors larger than currently known.
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1. Introduction. Classical error-correcting codes allow one to encode an n-bit
string x into an N -bit codeword C(x), in such a way that x can still be recovered even
if C(x) gets corrupted in a number of coordinates. It is well known [21] that codewords
C(x) of length N = O(n) already suffice to correct errors in up to δN locations of
C(x) for any constant δ < 1/4. The disadvantage of classical error-correction is that
one needs to consider all or most of the (corrupted) codeword to recover anything
about x. Now suppose that one is interested only in recovering one or a few bits of
x. In such a case more efficient schemes are possible. Such schemes are known as
locally decodable codes (LDCs). LDCs allow reconstruction of an arbitrary bit xi
from looking only at k randomly chosen coordinates of C(x), where k can be as small
as 2. LDCs have numerous applications in complexity theory [17, 33], cryptography
[6, 13], and the theory of fault tolerant computation [28]. The following is a slightly
informal definition of LDCs.

A (k, δ, ε)-LDC encodes n-bit strings to N -bit codewords C(x), such that for every
i ∈ [n], the bit xi can be recovered with probability 1 − ε by a randomized decoding
procedure that makes only k queries, even if the codeword C(x) is corrupted in up to
δN locations.

One should think of δ > 0 and ε < 1/2 as constants. The main parameters of
interest in LDCs are the length N and the query complexity k. Ideally we would
like to have both of them as small as possible. The concept of LDCs was explicitly
discussed in various papers in the early 1990s [2, 32, 25]. Katz and Trevisan [17]
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were the first to provide a formal definition of LDCs. Further work on LDCs includes
[3, 10, 24, 4, 19, 35, 38, 37, 16, 27, 36, 15].

Below is a brief summary of what was known regarding the length of optimal
LDCs prior to a recent paper of Yekhanin [38]. The length of optimal 2-query LDCs
was settled by Kerenidis and de Wolf [19] and is exp(n).1 The best upper bound for
the length of 3-query LDCs is exp(n1/2) due to Beimel, Ishai, and Kushilevitz [3],
and the best lower bound is Ω̃(n2) [37]. For general (constant) k the best upper
bound is exp(nO(log log k/(k log k))) due to Beimel et al. [4], and the best lower bound is
Ω̃(n1+1/(�k/2�−1)) [37].

The recent work of Yekhanin [38] improved the upper bounds to the extent that
it changed the common perception of what may be achievable [14, 13]. Yekhanin [38]
introduced a novel technique to construct codes from so-called nice subsets of finite
fields and showed that every Mersenne prime p = 2t − 1 yields a family of 3-query
LDCs of length exp(n1/t). Based on the largest known Mersenne prime [7], this trans-
lates to a length of less than exp(n10−7

). Combined with the recursive construction
from [4], this result yields vast improvements for all values of k > 2. It has often been
conjectured that the number of Mersenne primes is infinite. If indeed this conjecture
holds, Yekhanin [38] gets 3-query LDCs of length N = exp(nO( 1

log log n )) for infinitely
many n. Finally, assuming that the conjecture of Lenstra, Pomerance, and Wagstaff
(see [34, p. 388], [26]) regarding the density of Mersenne primes holds, Yekhanin [38]
gets 3-query LDCs of length N = exp(nO( 1

log1−ε log n
)) for all n, for every ε > 0.

1.1. Our results. We address two natural questions left open by [38]:
1. Are Mersenne primes necessary for the constructions of [38]?
2. Has the technique of [38] been pushed to its limits, or can one construct better

codes through a more clever choice of nice subsets of finite fields?
We extend the work of [38] and answer both of these questions. In what follows let

P (m) denote the largest prime factor ofm. We show that one does not necessarily need
to use Mersenne primes. It suffices to have Mersenne numbers with polynomially large
prime factors. Specifically, every Mersenne number m = 2t− 1 such that P (m) ≥ mγ

yields a family of k(γ)-query LDCs of length exp(n1/t). A partial converse also holds.
Namely, if for some fixed k ≥ 3 and all ε > 0 one can use the technique of [38]
to (unconditionally) obtain a family of k-query LDCs of length exp(nε), then for
infinitely many t we have

(1) P (2t − 1) ≥ (t/2)1+1/(k−2).

The bound (1) may seem quite weak in light of the widely accepted conjecture
that the number of Mersenne primes is infinite. However, (for any k ≥ 3) this bound
is substantially stronger than what is currently known unconditionally. Lower bounds
for P (2t − 1) have received a considerable amount of attention in the number theory
literature [29, 30, 11, 31, 23, 22, 12]. The strongest result to date is due to Stewart [31].
It says that, for all integers t ignoring a set of asymptotic density zero and for all
functions ε(t) > 0 where ε(t) tends to zero monotonically and arbitrarily slowly,

(2) P (2t − 1) > ε(t)t (log t)2 / log log t.

There are no better bounds known to hold for infinitely many values of t, unless one
is willing to accept some number theoretic conjectures [23, 22]. We hope that our

1Throughout the paper we use the standard notation exp(x) = eΘ(x).
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work will further stimulate the interest in proving lower bounds for P (2t − 1) in the
number theory community.

In summary, we show that one may be able to improve the unconditional bounds
of [38] (say, by discovering a new Mersenne number with a very large prime factor)
using the same technique. However, any attempts to reach the exp(nε) length for
some fixed query complexity and all ε > 0 require either progress on an old number
theory problem or a substantially different approach.

In this paper we deal only with binary codes for the sake of clarity of presentation.
We remark, however, that our results as well as the results of [38] can be easily
generalized to larger alphabets. Such a generalization is discussed in detail in [39].

1.2. Outline. In section 3 we introduce the key concepts of [38], namely, those of
combinatorial and algebraic niceness of subsets of finite fields. We also briefly review
the construction of LDCs from nice subsets. In section 4 we show how Mersenne
numbers with large prime factors yield nice subsets of prime fields. In section 5 we
prove a partial converse. Namely, we show that every finite field Fq containing a
sufficiently nice subset is an extension of a prime field Fp, where p is a large prime
factor of a large Mersenne number. Our main results are summarized in sections 4.3
and 5.4.

2. Notation. We use the following standard mathematical notation:
• [s] = {1, . . . , s}.
• Zn denotes integers modulo n.
• Fq is the finite field of q elements.
• dH(x, y) denotes the Hamming distance between binary vectors x and y.
• (u, v) stands for the dot product of vectors u and v.
• For a linear space L ⊆ Fm2 , L⊥ denotes the dual space. That is, L⊥ =
{u ∈ Fm2 | for all v ∈ L, (u, v) = 0}.

• For an odd prime p, ordp(2) denotes the smallest integer t such that p | 2t−1.

3. Nice subsets of finite fields and locally decodable codes. In this section
we introduce the key technical concepts of [38], namely that of combinatorial and
algebraic niceness of subsets of finite fields. We briefly review the construction of
LDCs from nice subsets. Our review is concise although self-contained. We refer the
reader interested in a more detailed and intuitive treatment of the construction to the
original paper [38]. We start by formally defining LDCs.

Definition 1. A binary code C : {0, 1}n → {0, 1}N is said to be (k, δ, ε)-locally
decodable if there exists a randomized decoding algorithm A such that the following
hold:

1. For all x ∈ {0, 1}n, i ∈ [n], and y ∈ {0, 1}N such that dH(C(x), y) ≤ δN, we
have Pr [A(y, i) = xi] ≥ 1 − ε, where the probability is taken over the random
coin tosses of the algorithm A.

2. A reads at most k coordinates of y.
We now introduce the concepts of combinatorial and algebraic niceness of subsets

of finite fields. Our definitions are syntactically slightly different from the original
definitions in [38]. We prefer these formulations since they are more appropriate for
the purposes of the current paper. In what follows let F∗

q denote the multiplicative
group of Fq.

Definition 2. A set S ⊆ F∗
q is called t-combinatorially nice if for some constant

c > 0 and every positive integer m there exist two n = �cmt�-sized collections of
vectors {u1, . . . , un} and {v1, . . . , vn} in Fmq , such that
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1. for all i ∈ [n], (ui, vi) = 0;
2. for all i, j ∈ [n] such that i 	= j, (uj , vi) ∈ S.

Definition 3. A set S ⊆ F∗
q is called k-algebraically nice if k is odd and there

exist an odd k′ ≤ k and two sets S0, S1 ⊆ Fq such that
1. S0 is not empty;
2. |S1| = k′;
3. for all α ∈ Fq and β ∈ S,we have |S0 ∩ (α+ βS1)| ≡ 0 mod (2).

The following lemma shows that for an algebraically nice set S, the set S0 can
always be chosen to be large. It is a straightforward generalization of [38, Lemma 15].

Lemma 4. Let S ⊆ F∗
q be a k-algebraically nice set. Let S0, S1 ⊆ Fq be sets

realizing the definition of k-algebraic niceness of S. One can always redefine the set
S0 to satisfy |S0| ≥ �q/2.

Proof. Let L be the linear subspace of Fq2 spanned by the incidence vectors of the
sets α + βS1 for α ∈ Fq and β ∈ S. Observe that L is invariant under the actions
of a 1-transitive permutation group (permuting the coordinates in accordance with
addition in Fq). This implies that the space L⊥ is also invariant under the actions of
the same group. Note that L⊥ has positive dimension since it contains the incidence
vector of the set S0. The last two observations imply that L⊥ has full support ; i.e.,
for every i ∈ [q] there exists a vector v ∈ L⊥ such that vi 	= 0. Note that the expected
weight of a random vector in a linear subspace of Fq2 of full support is q/2. Let v ∈ L⊥

be an arbitrary vector of weight �q/2. Redefining the set S0 to be the set of nonzero
coordinates of v, we conclude the proof.

We now proceed to the core proposition of [38] that shows how sets exhibiting
both combinatorial and algebraic niceness yield LDCs.

Proposition 5. Suppose S ⊆ F∗
q is t-combinatorially nice and k-algebraically

nice; then for every message length n there exists a code of length exp(n1/t) that is
(k, δ, 2kδ)-locally decodable for all δ > 0.

Proof. Our proof proceeds in three steps. We specify encoding and local decoding
procedures for our codes and then argue the lower bound for the probability of correct
decoding. We use the notation from Definitions 2 and 3.

Encoding. We assume that our message has length n = �cmt� for some integer
value of m. (Otherwise we pad the message with zeros. It is easy to see that such
padding does not affect the asymptotic length of the code.) Our code will be F2-linear.
Therefore it suffices to specify the encoding of unit vectors e1, . . . , en, where ej has
length n and a unique nonzero coordinate j. We define the encoding of ej to be a qm

long vector, whose coordinates are labelled by elements of Fmq . For all w ∈ Fmq we set

(3) Enc(ej)w =
{

1 if (uj, w) ∈ S0,
0 otherwise.

It is straightforward to verify that we defined a code encoding n bits to exp(n1/t) bits.
Local decoding. Given a (possibly corrupted) codeword y and an index i ∈ [n],

the decoding algorithm A picks w ∈ Fmq such that (ui, w) ∈ S0 uniformly at random,
reads k′ ≤ k coordinates of y, and outputs the modulo 2 sum

(4)
∑
λ∈S1

yw+λvi .

Probability of correct decoding. First we argue that decoding is always correct if
A picks w ∈ Fmq such that all bits of y in locations {w + λvi}λ∈S1 are not corrupted.
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We need to show that for all i ∈ [n], x ∈ {0, 1}n, and w ∈ Fmq , such that (ui, w) ∈ S0,

(5)
∑
λ∈S1

⎛⎝ n∑
j=1

xj Enc(ej)

⎞⎠
w+λvi

= xi.

Note that

(6)

∑
λ∈S1

⎛⎝ n∑
j=1

xj Enc(ej)

⎞⎠
w+λvi

=
n∑
j=1

xj
∑
λ∈S1

Enc(ej)w+λvi

=
n∑
j=1

xj
∑
λ∈S1

I [(uj , w + λvi) ∈ S0] ,

where I[γ ∈ S0] = 1 if γ ∈ S0 and zero otherwise. Now note that

(7)

∑
λ∈S1

I [(uj , w + λvi) ∈ S0] =
∑
λ∈S1

I [(uj , w) + λ(uj , vi) ∈ S0]

=
{

1 if i = j,
0 otherwise.

The last identity in (7) for i = j follows from (ui, vi) = 0, (ui, w) ∈ S0, and k′ = |S1|
is odd. The last identity for i 	= j follows from (uj, vi) ∈ S and the algebraic niceness
of S. Combining identities (6) and (7), we get (5).

Now assume that up to δ fraction of bits of y are corrupted. Let Ti denote the
set of coordinates whose labels belong to {w ∈ Fmq | (ui, w) ∈ S0}. Recall that
by Lemma 4, |Ti| ≥ qm/2. Thus at most 2δ fraction of coordinates in Ti contain
corrupted bits. Let Qi =

{
{w+λvi}λ∈S1 | w : (ui, w) ∈ S0

}
be the family of k′-tuples

of coordinates that may be queried by A. The fact that (ui, vi) = 0 implies that
every element of Ti belongs to the same number of k′-tuples from Qi. Combining the
last two observations, we conclude that with probability at least 1 − 2kδ A picks an
uncorrupted k′-tuple and outputs the correct value of xi.

All LDCs constructed in this paper are obtained by applying Proposition 5 to
certain nice sets. Thus all our codes have the same dependence of ε (the probability
of the decoding error) on δ (the fraction of corrupted bits). In what follows we often
ignore these parameters and consider only the length and query complexity of codes.

4. Mersenne numbers with large prime factors yield nice subsets of
prime fields. In what follows let 〈2〉 ⊆ F∗

p denote the multiplicative subgroup of F∗
p

generated by 2. In [38, Lemma 13] it is shown that for every Mersenne prime p = 2t−1
the set 〈2〉 ⊆ F∗

p is simultaneously 3-algebraically nice and ordp(2)-combinatorially
nice. In this section we prove the same conclusion for a substantially broader class of
primes.

Lemma 6. Suppose p is an odd prime; then 〈2〉 ⊆ F∗
p is ordp(2)-combinatorially

nice.
Proof. Let t = ordp(2). Clearly, t divides p − 1. We need to specify a constant

c > 0 such that for every positive integer m there exist two n = �cmt�-sized collections
of vectors {u1, . . . , un} and {v1, . . . , vn} in Fmp satisfying

• for all i ∈ [n], (ui, vi) = 0;
• for all i, j ∈ [n] such that i 	= j, (uj , vi) ∈ 〈2〉.
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We start with some notation. For y ∈ Fwp and a positive integer l, let y⊗l ∈ Fw
l

p denote
the lth tensor power of y. Coordinates of y⊗l are labelled by all possible sequences
in [w]l and y⊗li1,...,il =

∏l
j=1 yij . The following identity relating tensor powers and dot

products of vectors is standard. For every positive integer l and vectors u, v in Fwp ,

(8)

(
u⊗l, v⊗l

)
=

∑
(i1,...,il)∈[w]l

⎛⎝ l∏
j=1

uij

l∏
j=1

vij

⎞⎠
=

∑
(i1,...,il)∈[w]l

⎛⎝ l∏
j=1

uijvij

⎞⎠ =

⎛⎝ ∑
i1∈[w]

ui1vi1

⎞⎠ . . .

⎛⎝ ∑
il∈[w]

uilvil

⎞⎠ = (u, v)l.

We now proceed to the construction of vectors {u1, . . . , un} and {v1, . . . , vn} in
Fmp . First assume that m has the shape m = w(p−1)/t for some integer w ≥ p−1. Let
n =

(
w
p−1

)
. Observe that n ≥ cmt for a suitably chosen constant c > 0. For i ∈ [n] let

vectors u′i in Fwp be the incidence vectors of all possible subsets of [w] of cardinality
(p− 1) and let vectors v′i be their complements (i.e., for every i ∈ [n], vi = 1w − ui).
Observe that

• for all i ∈ [n], (u′i, v
′
i) = 0;

• for all i, j ∈ [n] such that i 	= j, (u′j , v
′
i) 	= 0.

Let l = (p− 1)/t. For i ∈ [n] set ui = u′⊗li and vi = v′⊗li . Formula (8) and cyclicity
of F∗

p imply that vectors {u1, . . . , un}, {v1, . . . , vn} in Fmp have the desired properties,
i.e.,

• for all i ∈ [n], (ui, vi) = 0;
• for all i, j ∈ [n] such that i 	= j, (uj , vi) ∈ 〈2〉.

Now assume that m does not have the right shape, and let m1 be the largest
integer smaller than m that does have it. In order to get vectors of length m we use
vectors of length m1 coming from the construction above padded with zeros. It is not
hard to verify that such a construction still gives us n ≥ cmt large families of vectors
for a suitably chosen constant c.

We use the standard notation F to denote the algebraic closure of the field F.
Also let

Cp = {x ∈ F
∗
2 | xp = 1}

denote the multiplicative subgroup of pth roots of unity in F2. The next lemma
generalizes [38, Lemma 14].

Lemma 7. Let p be a prime and k be odd. Suppose there exist ζ1, . . . , ζk ∈ Cp
such that

(9) ζ1 + · · · + ζk = 0;

then 〈2〉 ⊆ F∗
p is k-algebraically nice.

Proof. In what follows we define the set S1 ⊆ Fp and prove the existence of a set
S0 such that together S0 and S1 yield k-algebraic niceness of 〈2〉. Identity (9) and
the fact that we are working in characteristic 2 imply that there exist an odd integer
k′ ≤ k and k′ distinct pth roots of unity ζ′1, . . . , ζ′k ∈ Cp such that

(10) ζ′1 + · · · + ζ′k′ = 0.
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Let t = ordp(2). Observe that Cp ⊆ F2t . Let g be a generator of Cp. Iden-
tity (10) yields gγ1 + · · · + gγk′ = 0 for some distinct values {γi}i∈[k′] in Zp. Set
S1 = {γ1, . . . , γk′}.

Consider a natural one-to-one correspondence between subsets S′ of Fp and poly-
nomials φS′(x) in the ring F2[x]/(xp − 1): φS′(x) =

∑
s∈S′ xs. It is easy to see that

for all sets S′ ⊆ Fp and all α, β ∈ Fp, such that β 	= 0,

φα+βS′(x) = xαφS′(xβ).

Let α be a variable ranging over Fp and β be a variable ranging over 〈2〉. We are
going to argue the existence of a set S0 that has even intersections with all sets of the
form α+βS1, by showing that all polynomials φα+βS1 belong to a certain linear space
L ⊂ F2[x]/(xp − 1) of dimension less than p. In this case any nonempty set T ⊆ Fp
such that φT ∈ L⊥ can be used as the set S0. Let τ(x) = gcd(xp − 1, φS1(x)). Note
that τ(x) 	= 1 since g is a common root of xp − 1 and φS1(x). Let L be the space of
polynomials in F2[x]/(xp − 1) that are multiples of τ(x). Clearly, dimL = p− deg τ .
Fix some α ∈ Fp and β ∈ 〈2〉. Let us prove that φα+βS1(x) is in L:

φα+βS1(x) = xαφS1(x
β) = xα(φS1(x))

β .

The last identity above follows from the fact that for any f ∈ F2[x] and any integer i
we have f(x2i

) = (f(x))2
i

.
In what follows we present sufficient conditions for the existence of k-tuples of

pth roots of unity in F2 that sum to zero. We treat the k = 3 case separately since in
that case we can use a specialized argument to derive a more explicit conclusion.

4.1. A sufficient condition for the existence of three pth roots of unity
summing to zero.

Lemma 8. Let p be an odd prime. Suppose ordp(2) < (4/3) log2 p; then there
exist three pth roots of unity in F2 that sum to zero.

Proof. Let t = ordp(2). Note that Cp ⊆ F2t . Consider the homogeneous equation

(11) x
(2t−1)/p
1 + x

(2t−1)/p
2 + x

(2t−1)/p
3 = 0.

We count the F2t-rational solutions to (11) up to multiplication by nonzero scalars.
Let N2t denote the total number of such solutions. Davenport and Hasse [9] proved
that

(12)
∣∣N2t − (2t + 1)

∣∣ ≤ (d− 1)(d− 2)2t/2,

where d = (2t − 1)/p is the degree of (11). The estimate (12) is also a special case of
the Weil bound [20, p. 330].

A solution a = (x1, x2, x3) to (11) is called trivial if one of the coordinates of a
is zero. Observe that setting one of xi, 1 ≤ i ≤ 3, to zero in (11) leaves us with an
equation (xj/xk)(2

t−1)/p = 1 in the other two variables. Cyclicity of F∗
2t implies that

such an equation has exactly (2t − 1)/p solutions in F2t up to scalar multiplication.
Therefore there are exactly 3(2t − 1)/p trivial solutions to (11). Note that every
nontrivial solution yields a triple of elements of Cp that sum to zero.

Identity (12) implies that in the case

(13) 2t + 1 >
(

2t − 1
p

− 1
)(

2t − 1
p

− 2
)

2t/2 + 3
2t − 1
p
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there exists a nontrivial solution to (11). Note that (13) follows from

(14) 2t + 1 >
(

2t

p

)(
2t

p

)
2t/2 − 23t/2+1

p
+

3 · 2t
p

,

and (14) follows from

2t > 22t+t/2/p2 and 2t/2+1 > 3.

Now note that the first inequality above follows from t < (4/3) log2 p, and the second
follows from t > 1.

Note that the constant 4/3 in Lemma 8 cannot be improved to 2: there are no
three elements of C13264529 that sum to zero, even though ord2(13264529) = 47 <
2 · log2 13264529 ≈ 47.3. We briefly discuss our method for verifying this at the end
of section 5.3.

4.2. A sufficient condition for the existence of k pth roots of unity
summing to zero. Our argument in this section proceeds in three steps. First we
briefly review the notion of (additive) Fourier coefficients of subsets of F2t . Next,
we invoke a folklore argument to show that subsets of F2t with appropriately small
nontrivial Fourier coefficients contain k-tuples of elements that sum to zero. Finally,
we use a recent result of Bourgain and Chang [5] (generalizing the classical estimate
for Gauss sums) to argue that (under certain constraints on p) all nontrivial Fourier
coefficients of Cp are small.

For x ∈ F2t let Tr(x) = x+x2 + · · ·+x2t−1
denote the trace of x. It is a standard

fact that for all x, Tr(x) ∈ F2. Characters of F2t are homomorphisms from the
additive group of F2t into the multiplicative group {±1}. There exist 2t characters.
We denote characters by χa, where a ranges in F2t , and set χa(x) = (−1)Tr(ax) [20].
Let C(x) denote the incidence function of a set C ⊆ F2t . For arbitrary a ∈ Ft2
the Fourier coefficient Ĉ(χa) is defined by Ĉ(χa) =

∑
χa(x)C(x), where the sum is

over all x ∈ F2t . Fourier coefficient Ĉ(χ0) = |C| is called trivial, and other Fourier
coefficients are called nontrivial. In what follows

∑
χ stands for summation over all

2t characters of F2t . We need the following two standard properties of characters and
Fourier coefficients: ∑

χ

χ(x) =
{

2t if x = 0,
0 otherwise,(15)

∑
χ

Ĉ2(χ) = 2t|C|.(16)

The following lemma is folklore.
Lemma 9. Let C ⊆ F2t and let k ≥ 3 be a positive integer. Let F be the largest

absolute value of a nontrivial Fourier coefficient of C. Suppose

(17)
F

|C| <
(
|C|
2t

)1/(k−2)

;

then there exist k elements of C that sum to zero.
Proof. Let M(C) = #

{
(ζ1, . . . , ζk) ∈ Ck | ζ1 + · · ·+ ζk = 0

}
. Formula (15) yields

(18) M(C) =
1
2t

∑
x1,...,xk∈F2t

C(x1) . . . C(xk)
∑
χ

χ(x1 + · · · + xk).
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Note that χ(x1+· · ·+xk) = χ(x1) . . . χ(xk). Changing the order of summation in (18),
we get

(19) M(C) =
1
2t
∑
χ

∑
x1,...,xk∈F2t

C(x1) . . . C(xk)χ(x1) . . . χ(xk) =
1
2t
∑
χ

Ĉk(χ).

Note that

(20)

1
2t
∑
χ

Ĉk(χ) =
|C|k
2t

+
1
2t
∑
χ
=χ0

Ĉk(χ)

≥ |C|k
2t

− F k−2 1
2t
∑
χ

Ĉ2(χ) =
|C|k
2t

− F k−2|C|,

where the last identity follows from (16). Combining (19) and (20) we conclude that
(17) implies M(C) > 0.

The following lemma is a special case of [5, Theorem 1].
Lemma 10. Assume that n | 2t − 1 and satisfies the condition

gcd
(
n,

2t − 1
2t′ − 1

)
< 2t(1−ε)−t

′
for all 1 ≤ t′ < t, t′ | t,

where ε > 0 is arbitrary and fixed. Then for all a ∈ F∗
2t

(21)

∣∣∣∣∣∣
∑
x∈F2t

(−1)Tr(axn)

∣∣∣∣∣∣ < c12t(1−δ),

where δ = δ(ε) > 0 and c1 = c1(ε) are constants.
Below is the main result of this section. Recall that Cp denotes the set of pth

roots of unity in F2.
Lemma 11. For every c > 0 there exists an odd integer k = k(c) such that the

following implication holds. If p is an odd prime and ordp(2) < c log2 p, then some k
elements of Cp sum to zero.

Proof. Note that if there exist k′ elements of a set C ⊆ F2 that sum to zero,
where k′ is odd, then there exist k elements of C that sum to zero for every odd
k ≥ k′. Also note that the sum of all pth roots of unity is zero. Therefore given c it
suffices to prove the existence of an odd k = k(c) that works for all sufficiently large
p. Let t = ordp(2). Observe that p > 2t/c. Assume that p is sufficiently large so that
t > 2c. Next we show that the precondition of Lemma 10 holds for n = (2t − 1)/p
and ε = 1/(2c). Let t′ | t and 1 ≤ t′ < t. Clearly gcd(2t

′ − 1, p) = 1. Therefore

(22) gcd
(

2t − 1
p

,
2t − 1
2t′ − 1

)
=

2t − 1
p(2t′ − 1)

<
2t(1−1/c)
2t′ − 1

,

where the inequality follows from p > 2t/c. Clearly, t > 2c yields 2t/(2c)/2 > 1.
Multiplying the right-hand side of (22) by 2t/(2c)/2 and using 2(2t

′ − 1) ≥ 2t
′
we get

(23) gcd
(

2t − 1
p

,
2t − 1
2t′ − 1

)
< 2t(1−1/(2c))−t′.
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Combining (23) with Lemma 10 we conclude that there exist δ > 0 and c1 such that
for all a ∈ F∗

2t

(24)

∣∣∣∣∣∣
∑
x∈F2t

(−1)Tr
(
ax(2t−1)/p

)∣∣∣∣∣∣ < c12t(1−δ).

Observe that x(2t−1)/p takes every value in Cp exactly (2t−1)/p times when x ranges
over F∗

2t . Therefore the left-hand side of (24) is

(25)

∣∣∣∣∣∣(−1)Tr(0) +
2t − 1
p

∑
x∈Cp

(−1)Tr(ax)

∣∣∣∣∣∣ =
∣∣∣∣1 +

2t − 1
p

Ĉp(χa)
∣∣∣∣ .

Let F = maxa∈F
∗
2
|Ĉp(χa)| denote the largest absolute value of a nontrivial Fourier

coefficient of Cp. Combining (24) and (25) we get

(26) (2t − 1)(F/p) < c12t(1−δ) + 1.

Assuming that t is sufficiently large, we get

(27) (2t − 1)(F/p) < c22t(1−δ)

for a suitably chosen constant c2. Inequality (27) yields F/p < (2c2)2−δt. Pick k ≥ 3
to be the smallest odd integer such that (1 − 1/c)/(k − 2) < δ. We now have

(28)
F

p
< 2−

(1−1/c)t
(k−2)

for all sufficiently large values of p. Combining p > 2t/c with (28) we get

F

|Cp|
<

(
|Cp|
2t

)1/(k−2)

,

and the application of Lemma 9 concludes the proof.

4.3. Summary. In this section we summarize our positive results and show
that one does not necessarily need to use Mersenne primes to construct LDCs via the
methods of [38]. It suffices to have Mersenne numbers with polynomially large prime
factors. Recall that P (m) denotes the largest prime factor of an integer m. Our first
theorem gets 3-query LDCs from Mersenne numbers m with prime factors larger than
m3/4.

Theorem 12. Suppose P (2t − 1) > 20.75t; then for every message length n there
exists a 3-query LDC of length exp(n1/t).

Proof. Let P (2t − 1) = p. Observe that p | 2t − 1 and p > 20.75t yield
ordp(2) < (4/3) log2 p. Combining Lemmas 8, 7, and 6 with Proposition 5 we ob-
tain the statement of the theorem.

As an example application of Theorem 12 one can observe that P (223 − 1) =
178481 > 2(3/4)∗23 ≈ 155872 yields a family of 3-query LDCs of length exp(n1/23).
Theorem 12 immediately yields the following theorem.

Theorem 13. Suppose that for infinitely many t we have P (2t−1) > 20.75t; then
for every ε > 0 there exists a family of 3-query LDCs of length exp(nε).
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The next theorem gets constant-query LDCs from Mersenne numbers m with
prime factors larger than mγ for every value of γ.

Theorem 14. For every γ > 0 there exists an odd integer k = k(γ) such that
the following implication holds. Suppose that P (2t− 1) > 2γt; then for every message
length n there exists a k-query LDC of length exp(n1/t).

Proof. Let P (2t − 1) = p. Observe that p | 2t − 1 and p > 2γt yield ordp(2) <
(1/γ) log2 p. Combining Lemmas 11, 7, and 6 with Proposition 5 we obtain the
statement of the theorem.

As an immediate corollary we get the following theorem.
Theorem 15. Suppose for some γ > 0 and infinitely many t we have P (2t−1) >

2γt; then there is a fixed k such that for every ε > 0 there exists a family of k-query
LDCs of length exp(nε).

5. Nice subsets of finite fields yield Mersenne numbers with large prime
factors. We start the section with the following definition.

Definition 16. We say that a sequence {Si ⊆ F∗
qi
}i≥1 of subsets of finite fields

is k-nice if every Si is k-algebraically nice and t(i)-combinatorially nice, for some
integer valued strictly increasing function t.

The core Proposition 5 asserts that a subset S ⊆ F∗
q that is k-algebraically nice and

t-combinatorially nice yields a family of k-query LDCs of length exp(n1/t). Clearly,
to get k-query LDCs of length exp(nε) for some fixed k and every ε > 0 via this
proposition, one needs to exhibit a k-nice sequence. In this section we show how the
existence of a k-nice sequence implies that infinitely many Mersenne numbers have
large prime factors.

Our argument proceeds in two steps. In section 5.1 we show that a k-nice sequence
yields an infinite sequence of primes {pi}i≥1, where every Cpi contains a k-tuple
of elements summing to zero. In sections 5.2 and 5.3 we show that Cp contains
a (nontrivial) short additive dependence only if p is a large factor of a Mersenne
number.

5.1. A nice sequence yields infinitely many primes p with short depen-
dencies between pth roots of unity. Our argument in this section proceeds in
three steps. First we study algebraically nice subsets of finite fields. Second we study
combinatorially nice subsets of finite fields. Third we show how an interplay between
the structural properties of algebraically and combinatorially nice subsets translates
nice sequences into infinite families of primes p with short nontrivial additive depen-
dencies in Cp.

Algebraically nice subsets of F∗
q. We start with some notation. Consider

a finite field Fq = Fpl , where p is prime. Fix a basis e1, . . . , el of Fq over Fp. In
what follows we often write (α1, . . . , αl) ∈ Flp to denote α =

∑l
i=1 αiei ∈ Fq. Let

R denote the ring F2[x1, . . . , xl]/(x
p
1 − 1, . . . , xpl − 1). Consider a natural one-to-one

correspondence between subsets S1 of Fq and polynomials φS1(x1, . . . , xl) ∈ R:

φS1(x1, . . . , xl) =
∑

(α1,...,αl)∈S1

xα1
1 . . . xαl

l .

It is easy to see that for all sets S1 ⊆ Fq and all α, β ∈ Fq

(29) φ(α1,...,αl)+βS1(x1, . . . , xl) = xα1
1 . . . xαl

l φβS1(x1, . . . , xl).

Let Γ be a family of subsets of Fq. It is straightforward to verify that a set S0 ⊆ Fq has
even intersections with every element of Γ if and only if φS0 belongs to L⊥, where L is
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the linear subspace of R spanned by {φS1}S1∈Γ. Combining the last observation with
formula (29) we conclude that a set S ⊆ F∗

q is k-algebraically nice if and only if there
exists a set S1 ⊆ Fq of odd size k′ ≤ k such that the ideal generated by polynomials
{φβS1}{β∈S} is a proper ideal of R. Note that polynomials {f1, . . . , fh} ∈ R generate
a proper ideal if and only if polynomials {f1, . . . , fh, xp1 − 1, . . . , xpl − 1} generate a
proper ideal in F2[x1, . . . , xl]. Also note that a family of polynomials generates a
proper ideal in F2[x1, . . . , xl] if and only if it generates a proper ideal in F2[x1, . . . , xl].
Now an application of Hilbert’s Nullstellensatz [8, p. 168] implies that a set S ⊆ F∗

q is
k-algebraically nice if and only if there is a set S1 ⊆ Fq of odd size k′ ≤ k such that
the polynomials {φβS1}{β∈S} and {xpi − 1}1≤i≤l have a common root in F2.

Lemma 17. Let Fq = Fpl , where p is prime. Suppose Fq contains a nonempty
k-algebraically nice subset; then there exist ζ1, . . . , ζk ∈ Cp such that ζ1 + · · ·+ ζk = 0.

Proof. Assume that S ⊆ F∗
q is nonempty and k-algebraically nice. The discussion

above implies that there exists S1 ⊆ Fq of odd size k′ ≤ k such that all polynomials
{φβS1}{β∈S} vanish at some (ζ1, . . . , ζl) ∈ Clp. Fix an arbitrary β0 ∈ S, and note that
Cp is closed under multiplication. Thus each of the k′ monomials of φβ0S1 is a root
of unity when evaluated at (ζ1, . . . , ζl), and

(30) φβ0S1(ζ1, . . . , ζl) = 0

yields k′ pth roots of unity that sum to zero. It is readily seen that (since we are
working in characteristic 2) one can extend (30) by adding an appropriate number of
pairs of identical roots to obtain k pth roots of unity that sum to zero for any odd
k ≥ k′.

Note that Lemma 17 does not suffice to prove that a k-nice sequence {Si ⊆ F∗
qi
}i≥1

yields infinitely many primes p with short (nontrivial) additive dependencies in Cp.
We need to argue that the set {charFqi}i≥1 cannot be finite. This is our goal for the
remainder of the section.

To proceed, we need some more notation. Recall that q = pl and p is prime. For
x ∈ Fq let Tr(x) = x+ · · · + xp

l−1 ∈ Fp denote the (absolute) trace of x. For γ ∈ Fq,
c ∈ F∗

p we call the set πγ,c = {x ∈ Fq | Tr(γx) = c} a proper-affine hyperplane of Fq.
Lemma 18. Let Fq = Fpl , where p is prime. Suppose S ⊆ F∗

q is k-algebraically
nice; then there exist h ≤ pk proper-affine hyperplanes {πγr,cr}1≤r≤h of Fq such that
S ⊆

⋃h
r=1 πγr ,cr .

Proof. The discussion preceding Lemma 17 implies that there exists a set S1 =
{σ1, . . . , σk′} ⊆ Fq of odd size k′ ≤ k such that all polynomials {φβS1}{β∈S} vanish at
some (ζ1, . . . , ζl) ∈ Clp. Let ζ be a generator of Cp. For every 1 ≤ i ≤ l, pick ωi ∈ Zp
such that ζi = ζωi . For every β ∈ S, φβS1(ζ1, . . . , ζl) = 0 yields

(31)
∑

μ=(μ1,...,μl)∈βS1

ζ
∑ l

i=1 μiωi = 0.

Observe that for fixed values {ωi}1≤i≤l ∈ Zp the map D(μ) =
∑l

i=1 μiωi is a linear
map from Fq to Fp. It is a standard fact that every such map can be expressed as
D(μ) = Tr(δμ) for an appropriate choice of δ ∈ Fq [20]. Therefore we can rewrite (31)
as

(32)
∑
μ∈βS1

ζTr(δμ) =
∑
σ∈S1

ζTr(δβσ) = 0.
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Let W =
{
(w1, . . . , wk′ ) ∈ Zk

′

p

∣∣ ζw1 + · · · + ζwk′ = 0
}

denote the set of exponents of
k′-dependencies between powers of ζ. Clearly, |W | ≤ pk. Identity (32) implies that
every β ∈ S satisfies

(33)

⎧⎪⎨⎪⎩
Tr((δσ1)β) = w1,
...
Tr((δσk′ )β) = wk′

for an appropriate choice of (w1, . . . , wk′) ∈ W . Note that the all-zeros vector does
not lie in W since k′ is odd and the characteristic is even. Therefore at least one of the
identities in (33) has a nonzero right-hand side and defines a proper-affine hyperplane
of Fq. Collecting one such hyperplane for every element of W we get a family of |W |
proper-affine hyperplanes containing every element of S.

Combinatorially nice subsets of F∗
q. Lemma 18 gives us some insight into the

structure of algebraically nice subsets of Fq. Our next goal is to develop an insight into
the structure of combinatorially nice subsets. We start by reviewing some relations
between tensor and dot products of vectors. For vectors u ∈ Fmq and v ∈ Fnq let
u⊗ v ∈ Fmnq denote the tensor product of u and v. Coordinates of u⊗ v are labelled
by all possible elements of [m] × [n] and (u ⊗ v)i,j = uivj . Also, let u⊗l denote the
lth tensor power of u and let u ◦ v ∈ Fm+n

q denote the concatenation of u and v. The
following identity is standard. For any u, x ∈ Fmq and v, y ∈ Fnq ,

(34) (u⊗ v, x⊗ y) =
∑

i∈[m], j∈[n]

uivjxiyj =

⎛⎝∑
i∈[m]

uixi

⎞⎠⎛⎝∑
j∈[n]

vjyj

⎞⎠ = (u, x)(v, y).

In what follows we need a generalization of identity (34). First we let f(x1, . . . , xh) =∑
i cix

α
(i)
1

1 . . . x
α

(i)
h

h be a polynomial in Fq[x1, . . . , xh]. Then we define f̄ ∈ Fq[x1, . . . , xh]

by f̄ =
∑
i:ci 
=0 x

α
(i)
1

1 . . . x
α

(i)
h

h ; i.e., we simply set all nonzero coefficients of f to 1. As-
sume that f has no free term. For vectors u1, . . . , uh in Fmq define

(35) f(u1, . . . , uh) = · · · ◦
(
ciu

⊗α(i)
1

1 ⊗ · · · ⊗ u
⊗α(i)

h

h

)
◦ · · · ,

where the concatenation is over all values of i. Note that to obtain f(u1, . . . , uh) we
replaced products in f by tensor products and replaced addition by concatenation.
Clearly, f(u1, . . . , uh) is a vector whose length may be larger than m.

Lemma 19. For every f ∈ Fq[x1, . . . , xh] and u1, . . . , uh, v1, . . . , vh ∈ Fmq ,

(36)
(
f(u1, . . . , uh), f̄(v1, . . . , vh)

)
= f((u1, v1), . . . , (uh, vh)).

Proof. Let u = (u1, . . . , uh) and v = (v1, . . . , vh). Observe that if (36) holds for
polynomials f1 and f2 defined over disjoint sets of monomials, then it also holds for
f = f1 + f2:(

f(u), f̄(v)
)

=
(
(f1 + f2)(u), (f̄1 + f̄2)(v)

)
=
(
f1(u) ◦ f2(u), f̄1(v) ◦ f̄2(v)

)
= f1 ((u1, v1), . . . , (uh, vh)) + f2 ((u1, v1), . . . , (uh, vh)) = f ((u1, v1), . . . , (uh, vh)) .

Therefore it suffices to prove (36) for monomials f = cxα1
1 . . . xαh

h . It remains to
notice that identity (36) for monomials f = cxα1

1 . . . xαh

h follows immediately from
formula (34) using induction on

∑h
i=1 αi.
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The next lemma bounds combinatorial niceness of certain subsets of F∗
q .

Lemma 20. Let Fq = Fpl , where p is prime. Let S ⊆ F∗
q. Suppose there exist h

proper-affine hyperplanes {πγr ,cr}1≤r≤h of Fq such that S ⊆
⋃h
r=1 πγr,cr ; then S is

at most h(p− 1)-combinatorially nice.
Proof. Assume S is t-combinatorially nice. This implies that for some c > 0 and

every m there exist two n = �cmt�-sized collections of vectors {ui}i∈[n] and {vi}i∈[n]

in Fmq , such that
• for all i ∈ [n], (ui, vi) = 0;
• for all i, j ∈ [n] such that i 	= j, (uj , vi) ∈ S.

For a vector u ∈ Fmq and integer e let ue denote the vector resulting from raising every

coordinate of u to the power e. For every i ∈ [n] and r ∈ [h] define vectors u(r)
i and

v
(r)
i in Fmlq by

(37) u
(r)
i = (γrui) ◦ (γrui)p ◦ · · · ◦ (γrui)p

l−1
and v

(r)
i = vi ◦ vpi ◦ · · · ◦ v

pl−1

i .

Note that for every r1, r2 ∈ [h], v(r1)
i = v

(r2)
i . It is straightforward to verify that for

every i, j ∈ [n] and r ∈ [h],

(38)
(
u

(r)
j , v

(r)
i

)
= Tr(γr(uj , vi)).

Combining formula (38) with Tr(0) = 0 and using the fact that the set S is covered
by proper-affine hyperplanes {πγr,cr}r∈[h] we conclude that

• for all i ∈ [n] and r ∈ [h], (u(r)
i , v

(r)
i ) = 0;

• for all i, j ∈ [n] such that i 	= j, there exists r ∈ [h] such that (u(r)
j , v

(r)
i ) ∈ F∗

p.
Pick g(x1, . . . , xh) ∈ Fp[x1, . . . , xh] to be a homogeneous degree h polynomial such
that for a = (a1, . . . , ah) ∈ Fhp : g(a) = 0 if and only if a is the all-zeros vector. The
existence of such a polynomial g follows from [20, Example 6.7]. Set f = gp−1. Note
that for a ∈ Fhp : f(a) = 0 if a is the all-zeros vector, and f(a) = 1 otherwise. For all
i ∈ [n] define

(39) u′i = f
(
u

(1)
i , . . . , u

(h)
i

)
◦ (1) and v′i = f̄

(
v
(1)
i , . . . , v

(h)
i

)
◦ (−1).

Note that f and f̄ are homogeneous degree (p−1)h polynomials in h variables. There-
fore (35) implies that, for all i vectors, u′i and v′i have m′ ≤ h(p−1)h(ml)(p−1)h + 1
coordinates. Combining identities (39) and (36) and using the properties of dot prod-
ucts between vectors {u(r)

i } and {v(r)
i } discussed above, we conclude that for every m

there exist two n = �cmt�-sized collections of vectors {u′i}i∈[n] and {v′i}i∈[n] in Fm
′

q

such that
• for all i ∈ [n], (u′i, v

′
i) = −1;

• for all i, j ∈ [n] such that i 	= j, (u′j , v
′
i) = 0.

It remains to notice that a family of vectors with such properties exists only if n ≤ m′,
i.e.,

�cmt� ≤ h(p−1)h(ml)(p−1)h + 1.

Given that we can pick m to be arbitrarily large, this implies that t ≤ (p− 1)h.
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Summary. The next lemma presents the main result of this section.
Lemma 21. Let k be an odd integer. Suppose there exists a k-nice sequence; then

for infinitely many primes p some k elements of Cp sum to zero.
Proof. Assume that {Si ⊆ F∗

qi
}i≥1 is k-nice. Let p be a fixed prime. Combining

Lemmas 18 and 20 we conclude that every k-algebraically nice subset S ⊆ F∗
pl is at

most (p− 1)pk-combinatorially nice. Note that our bound on combinatorial niceness
is independent of l. Therefore there are only finitely many extensions of the field Fp in
the sequence {Fqi}i≥1, and the set P = {charFqi}i≥1 is infinite. It remains to notice
that according to Lemma 17 for every p ∈ P there exist k elements of Cp that sum to
zero.

In what follows we present necessary conditions for the existence of k-tuples of
pth roots of unity in F2 that sum to zero. We treat the k = 3 case separately since in
that case we can use a specialized argument to derive a slightly stronger conclusion.

5.2. A necessary condition for the existence of k pth roots of unity
summing to zero. We start the section with the following lemma.

Lemma 22. Let k ≥ 3 be odd and p be a prime. Suppose there exist ζ1, . . . , ζk ∈ Cp
such that

∑k
i=1 ζi = 0; then

(40) ordp(2) ≤ 2p1−1/(k−1).

Proof. Let t = ordp(2). Note that Cp ⊆ F2t . Note also that no element of Cp
other than the multiplicative identity falls into a proper subfield of F2t . Therefore,
for every ζ ∈ Cp where ζ 	= 1 and every nonzero f(x) ∈ F2[x] such that deg f ≤ t− 1,
we have f(ζ) 	= 0.

By multiplying
∑k

i=1 ζi = 0 through by ζ−1
k , we may reduce to the case ζk = 1.

Let ζ be a generator of Cp. For every i ∈ [k− 1] pick wi ∈ Zp such that ζi = ζwi . We
now have

∑k−1
i=1 ζ

wi + 1 = 0. Set h = �(t− 1)/2�. In what follows we interchangeably
treat variables {il, i′l, jl}l∈[k−1] that take integer values in the range [−�p/2�, �p/2�]
as taking values in Z or in Zp. Consider the (k − 1)-tuples

(41) (mw1 + i1, . . . ,mwk−1 + ik−1) ∈ Zk−1
p for m ∈ Zp and i1, . . . , ik−1 ∈ [0, h].

Suppose two of these coincide, say

(mw1 + i1, . . . ,mwk−1 + ik−1) = (m′w1 + i′1, . . . ,m
′wk−1 + i′k−1)

with (m, i1, . . . , ik−1) 	= (m′, i′1, . . . , i
′
k−1). Set n = m−m′ and jl = i′l−il for l ∈ [k−1].

We now have

(nw1, . . . , nwk−1) = (j1, . . . , jk−1)

with −h ≤ j1, . . . , jk−1 ≤ h. Observe that n = 0 would imply m = m′ and il = i′l for
all l ∈ [k− 1]. Therefore n 	= 0, and there exists a g ∈ Zp such that ng = 1 modulo p.
Consider a polynomial

P (z) = zj1+h + · · · + zjk−1+h + zh ∈ F2[z].

Note that degP ≤ 2h ≤ t − 1. Note also that P (1) = 1 and P (ζg) = 0. The latter
identity contradicts the fact that ζg is a proper element of F2t . This contradiction
implies that all (k − 1)-tuples in (41) are distinct. This yields

pk−1 ≥ p

(
t

2

)k−1

,

which is equivalent to (40).
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5.3. A necessary condition for the existence of three pth roots of unity
summing to zero. In this section we slightly strengthen Lemma 22 in the special
case when k = 3. Our argument is loosely inspired by the Agrawal–Kayal–Saxena
deterministic primality test [1].

Lemma 23. Let p be a prime. Suppose there exist ζ1, ζ2, ζ3 ∈ Cp that sum up to
zero; then

(42) ordp(2) ≤ ((4/3)p)1/2 .

Proof. Let t = ordp(2). Note that Cp ⊆ F2t . Note also that no element of Cp
other than the multiplicative identity falls into a proper subfield of F2t . Therefore,
for every ζ ∈ Cp where ζ 	= 1 and every nonzero f(x) ∈ F2[x] such that deg f ≤ t− 1,
we have f(ζ) 	= 0.

Observe that ζ1+ζ2+ζ3 = 0 implies ζ1ζ−1
2 +1 = ζ3ζ

−1
2 . This yields (ζ1ζ−1

2 +1)p =
1. Put ζ = ζ1ζ

−1
2 . Note that ζ 	= 1 and ζ, 1 + ζ ∈ Cp. Consider the products

πi,j = ζi(1 + ζ)j ∈ Cp for 0 ≤ i, j ≤ t − 1. Note that πi,j , πk,l cannot be the same if
i ≥ k, l ≥ j, and (i, j) 	= (k, l) as then ζ is a root of a polynomial

f(z) = zi−k − (1 + z)l−j ,

which has degree less than t. In other words, if πi,j = πk,l and (i, j) 	= (k, l), then
the pairs (i, j) and (k, l) are comparable under termwise comparison. In particular,
either (k, l) = (i+ a, j + b) or (i, j) = (k+ a, l+ b) for some pair (a, b) with πa,b = 1.

We next check that there cannot be two distinct nonzero pairs (a, b), (a′, b′) with
πa,b = πa′,b′ = 1. As shown above, these pairs must be comparable; we may as-
sume without loss of generality that a ≤ a′, b ≤ b′. The equations πa,b = 1 and
πa′−a, b′−b = 1 force a + b ≥ t and (a′ − a) + (b′ − b) ≥ t, so a′ + b′ ≥ 2t. But
a′, b′ ≤ t− 1, a contradiction.

If there is no nonzero pair (a, b) with 0 ≤ a, b ≤ t−1 and πa,b = 1, then all πi,j are
distinct, so p ≥ t2. Otherwise, as above, the pair (a, b) is unique, and the products
πi,j with 0 ≤ i, j ≤ t − 1 and (i, j) � (a, b) are pairwise distinct. The number
of pairs excluded by the condition (i, j) � (a, b) is (t − a)(t − b); since a + b ≥ t,
(t− a)(t− b) ≤ t2/4. Hence p ≥ t2 − t2/4 = 3t2/4 as desired.

While the necessary condition given by Lemma 23 is quite far away from the
sufficient condition given by Lemma 8, it nonetheless suffices for checking that for most
primes p, there do not exist three pth roots of unity summing to zero. For instance,
among the 664578 odd primes p ≤ 108, all but 550 are ruled out by Lemma 23.
(There is an easy argument that t must be odd if p > 3; this cuts the list down to
273 primes.) Each remaining p can be tested by computing gcd(xp + 1, (x+ 1)p + 1);
the only examples we found that did not satisfy the condition of Lemma 8 were
(p, t) = (73, 9), (262657, 27), (599479, 33), (121369, 39).

5.4. Summary. In the beginning of section 5 we argued that in order to use the
method of [38] (i.e., Proposition 5) to obtain k-query LDCs of length exp(nε) for some
fixed k and all ε > 0, one needs to exhibit a k-nice sequence of subsets of finite fields.
In what follows we use technical results of the previous subsections to show that the
existence of a k-nice sequence implies that infinitely many Mersenne numbers have
large prime factors.

Theorem 24. Let k be odd. Suppose there exists a k-nice sequence of subsets of
finite fields; then for infinitely many values of t we have

(43) P (2t − 1) ≥ (t/2)1+1/(k−2).
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Proof. Using Lemmas 21 and 22 we conclude that a k-nice sequence yields in-
finitely many primes p such that ordp(2) ≤ 2p1−1/(k−1). Let p be such a prime and
t = ordp(2). Then P (2t − 1) ≥ (t/2)1+1/(k−2).

A combination of Lemmas 21 and 23 yields a slightly stronger bound for the
special case of 3-nice sequences.

Theorem 25. Suppose there exists a 3-nice sequence of subsets; then for infinitely
many values of t we have

(44) P (2t − 1) ≥ (3/4)t2.

We would like to remind the reader that although the lower bounds for P (2t− 1)
given by (43) and (44) are extremely weak in light of the widely accepted conjecture
stating that the number of Mersenne primes is infinite, they are substantially stronger
than what is currently known unconditionally (2).
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Abstract. This paper gives a dichotomy theorem for the complexity of computing the parti-
tion function of an instance of a weighted Boolean constraint satisfaction problem. The problem
is parameterized by a finite set F of nonnegative functions that may be used to assign weights to
the configurations (feasible solutions) of a problem instance. Classical constraint satisfaction prob-
lems correspond to the special case of 0,1-valued functions. We show that computing the partition
function, i.e., the sum of the weights of all configurations, is FP#P-complete unless either (1) every
function in F is of “product type,” or (2) every function in F is “pure affine.” In the remaining cases,
computing the partition function is in P.

Key words. complexity theory, counting, #P, constraint satisfaction

AMS subject classifications. Primary, 68Q25; Secondary, 05C15, 68T27

DOI. 10.1137/070690201

1. Introduction. This paper gives a dichotomy theorem for the complexity of
the partition function of weighted Boolean constraint satisfaction problems. Such
problems are parameterized by a set F of nonnegative functions that may be used to
assign weights to configurations (solutions) of the instance. These functions take the
place of the allowed constraint relations in classical constraint satisfaction problems
(CSPs). Indeed, the classical setting may be recovered by restricting F to functions
with range {0, 1}. The key problem associated with an instance of a weighted CSP
is to compute its partition function, i.e., the sum of weights of all its configurations.
Computing the partition function of a weighted CSP may be viewed as a generaliza-
tion of counting the number of satisfying solutions of a classical CSP. Many partition
functions from statistical physics may be expressed as weighted CSPs. For example,
the Potts model [22] is naturally expressible as a weighted CSP, whereas in the classical
framework only the “hard-core” versions may be directly expressed. (The hard-core
version of the antiferromagnetic Potts model corresponds to graph coloring, and the
hard-core version of the ferromagnetic Potts model is trivial—acceptable configura-
tions color the entire graph with a single color.) A corresponding weighted version of
the decision CSP was investigated by Cohen et al. [3]. This results in optimization
problems.

We use #CSP(F) to denote the problem of computing the partition function
of weighted CSP instances that can be expressed using only functions from F . We
show in Theorem 4 below that if every function f ∈ F is “of product type,” then
computing the partition function Z(I) of an instance I can be done in polynomial time.
Formal definitions are given later, but the condition of being of product type is easily
checked—it essentially means that the partition function factors. We show further in
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Theorem 4 that if every function f ∈ F is “pure affine,” then the partition function of
Z(I) can be computed in polynomial time. Once again, there is an algorithm to check
whether F is pure affine. For each other set F , we show in Theorem 4 that computing
the partition function of a #CSP(F) instance is complete for the class FP#P. The
existence of algorithms for testing the properties of being purely affine or of product
type means that the dichotomy is effectively decidable.

1.1. Constraint satisfaction. Constraint satisfaction, which originated in ar-
tificial intelligence, provides a general framework for modeling decision problems and
has many practical applications. (See, for example, [17].) Decisions are modelled by
variables, which are subject to constraints, modelling logical and resource restric-
tions. The paradigm is sufficiently broad that many interesting problems can be mod-
elled, from satisfiability problems to scheduling problems and graph-theory problems.
Understanding the complexity of CSPs has become a major and active area within
computational complexity [7, 13].

A CSP typically has a finite domain, which we will denote by [q] = {0, 1, . . . , q − 1}
for a positive integer q.1 A constraint language Γ with domain [q] is a set of relations
on [q]. For example, take q = 2. The relation R = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}
is a 3-ary relation on the domain {0, 1}, with four tuples.

Once we have fixed a constraint language Γ, an instance of the CSP is a set of
variables V = {v1, . . . , vn} and a set of constraints. Each constraint has a scope, which
is a tuple of variables (for example, (v4, v5, v1)) and a relation from Γ of the same arity,
which constrains the variables in the scope. A configuration σ is a function from V
to [q]. The configuration σ is satisfying if the scope of every constraint is mapped to
a tuple that is in the corresponding relation. In our example above, a configuration
σ satisfies the constraint with scope (v4, v5, v1) and relation R if and only if it maps
an odd number of the variables in {v1, v4, v5} to the value 1. Given an instance of a
CSP with constraint language Γ, the decision problem CSP(Γ) asks us to determine
whether any configuration is satisfying. The counting problem #CSP(Γ) asks us to
determine the number of (distinct) satisfying configurations.

Varying the constraint language Γ defines the classes CSP and #CSP of deci-
sion and counting problems. These contain problems of different computational com-
plexities. For example, if Γ = {R1, R2, R3}, where R1, R2, and R3 are the three
binary relations defined by R1 = {(0, 1), (1, 0), (1, 1)}, R2 = {(0, 0), (0, 1), (1, 1)}, and
R3 = {(0, 0), (0, 1), (1, 0)}, then CSP(Γ) is the classical 2-satisfiability problem, which
is in P. On the other hand, there is a similar constraint language Γ′ with four rela-
tions of arity 3 such that 3-satisfiability (which is NP-complete) can be represented in
CSP(Γ′). It may happen that the counting problem is harder than the decision prob-
lem. If Γ is the constraint language of 2-satisfiability above, then #CSP(Γ) contains
the problem of counting independent sets in graph, and is #P-complete [21] even if
restricted to 3-regular graphs [12].

Any decision problem CSP(Γ) is in NP, but not every problem in NP can be repre-
sented as a CSP. For example, the question “Is G Hamiltonian?” cannot naturally be
expressed as a CSP, because the property of being Hamiltonian cannot be captured by
relations of bounded size. This limitation of the class CSP has an important advantage.
If P �= NP, then there are problems which are neither in P nor NP-complete [15]. But,
for well-behaved smaller classes of decision problems, the situation can be simpler.
We may have a dichotomy theorem, partitioning all problems in the class into those

1Usually [q] is defined to be {1, 2, . . . , q}, but it is more convenient here to start the enumeration
of domain elements at 0 rather than 1.



1972 M. DYER, L. A. GOLDBERG, AND M. JERRUM

which are in P and those which are NP-complete. There are no “leftover” problems of
intermediate complexity. It has been conjectured that there is a dichotomy theorem
for CSP. The conjecture is that CSP(Γ) is in P for some constraint languages Γ, and
CSP(Γ) is NP-complete for all other constraint languages Γ. This conjecture appeared
in a seminal paper of Feder and Vardi [10] but has not yet been proved.

A similar dichotomy, between FP- and #P-complete, is conjectured for #CSP [2].
The complexity classes FP and #P are the analogues of P and NP for counting prob-
lems. FP is simply the class of functions computable in deterministic polynomial time.
#P is the class of integer functions that can be expressed as the number of accepting
computations of a polynomial-time nondeterministic Turing machine. Completeness
in #P is defined with respect to polynomial-time Turing reducibility [16, Chap. 18].
Bulatov and Dalmau [2] have shown in one direction that, if #CSP(Γ) is solvable in
polynomial time, then the constraints in Γ must have certain algebraic properties (as-
suming #P �⊆ FP). In particular, they must have a so-called Mal’tsev polymorphism.
The converse is known to be false, though it remains possible that the dichotomy
(if it exists) does have an algebraic characterization.

The conjectured dichotomies for CSP and #CSP are major open problems for
computational complexity theory. There have been many important results for sub-
classes of CSP and #CSP. We mention the most relevant to our paper here. The first
decision dichotomy was that of Schaefer [18], for the Boolean domain {0, 1}. Schaefer’s
result is as follows.

Theorem 1 (Schaefer [18]). Let Γ be a constraint language with domain {0, 1}.
The problem CSP(Γ) is in P if Γ satisfies one of the conditions below. Otherwise,
CSP(Γ) is NP-complete.

1. Γ is 0-valid or 1-valid.
2. Γ is weakly positive or weakly negative.
3. Γ is affine.
4. Γ is bijunctive.

We will not give detailed definitions of the conditions in Theorem 1, but the in-
terested reader is referred to the paper [18] or to Theorem 6.2 of the textbook [7]. An
interesting feature is that the conditions in [7, Thm. 6.2] are all checkable. That is,
there is an algorithm to determine whether CSP(Γ) is in P or NP-complete, given a
constraint language Γ with domain {0, 1}. Creignou and Hermann [6] adapted Schae-
fer’s decision dichotomy to obtain a counting dichotomy for the Boolean domain.
Their result is as follows.

Theorem 2 (Creignou and Hermann [6]). Let Γ be a constraint language with
domain {0, 1}. The problem #CSP(Γ) is in FP if Γ is affine. Otherwise, #CSP(Γ) is
#P-complete.

A constraint language Γ with domain {0, 1} is affine if every relation R ∈ Γ is
affine. A relation R is affine if the set of tuples x ∈ R is the set of solutions to a system
of linear equations over GF(2). These equations are of the form v1 ⊕ · · · ⊕ vn = 0 and
v1 ⊕ · · · ⊕ vn = 1, where ⊕ is the exclusive or operator. It is well known (see, for
example, Lemma 4.10 of [7]) that a relation R is affine if and only if a, b, c ∈ R implies
d = a ⊕ b ⊕ c ∈ R. (We will use this characterization below.) There is an algorithm
for determining whether a Boolean constraint language Γ is affine, so there is an
algorithm for determining whether #CSP(Γ) is in FP or #P-complete.

1.2. Weighted #CSP. The weighted graph homomorphism framework of [4]
extends naturally to CSPs. Fix the domain [q]. Instead of constraining a length-k scope
with an arity-k relation on [q], we give a weight to the configuration on this scope by
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applying a function f from [q]k to the nonnegative rationals. Let Fq = {f : [q]k →
Q

+ | k ∈ N} be the set of all such functions (of all arities).2 Given a function f ∈ Fq
of arity k, the underlying relation of f is given by Rf = {x ∈ [q]k | f(x) �= 0}. It is
often helpful to think of Rf as a table, with k columns corresponding to the positions
of a k-tuple. Each row corresponds to a tuple x = (x1, . . . , xk) ∈ Rf . The entry in
row x and column j is xj , which is a value in [q].

A weighted #CSP problem is parameterized by a finite subset F of Fq and will
be denoted by #CSP(F). An instance I of #CSP(F) consists of a set V of variables
and a set C of constraints. Each constraint C ∈ C consists of a function fC ∈ F
(say of arity kC) and a scope, which is a sequence sC = (vC,1, . . . , vC,kC ) of variables
from V . The variables vC,1, . . . , vC,kC need not be distinct. As in the unweighted case,
a configuration σ for the instance I is a function from V to [q]. The weight of the
configuration σ is given by

w(σ) =
∏
C∈C

fC(σ(vC,1), . . . , σ(vC,kC )).

Finally, the partition function Z(I) is given, for instance I, by

(1) Z(I) =
∑

σ:V→[q]

w(σ).

In the computational problem #CSP(F), the goal is to compute Z(I), given an in-
stance I.

Note that an (unweighted) CSP counting problem #CSP(Γ) can be represented
naturally as a weighted CSP counting problem. For each relation R ∈ Γ, let fR be the
indicator function for membership in R. That is, if x ∈ R, we set fR(x) = 1. Otherwise
we set fR(x) = 0. Let F = {fR | R ∈ Γ}. Then for any instance I of #CSP(Γ) the
number of satisfying configurations for I is given by the (weighted) partition function
Z(I) from (1).

This framework has been employed previously in connection with graph homo-
morphisms [1]. Suppose H = (Hij) is any symmetric q × q matrix H of rational
numbers. We view H as being an edge-weighting of an undirected graph H, where
a zero weight in H means that the corresponding edge is absent from H. Given a
(simple) graph G = (V,E), we consider computing the partition function

ZH(G) =
∑

σ:V→[q]

w(σ), where w(σ) =
∏

{u,v}∈E
Hσ(u)σ(v).

Within our framework above, we view H as the binary function h : [q]2 → R, and the
problem is then computing the partition function of #CSP ({h}).

Bulatov and Grohe [4] call H connected if H is connected and bipartite if H is
bipartite. They give the following dichotomy theorem for nonnegative H .3

Theorem 3 (Bulatov and Grohe [4]). Let H be a symmetric matrix with non-
negative rational entries. Then we have the following:

2We assume 0 ∈ N, so we allow nonnegative constants.
3This is not quite the original statement of the theorem. We have chosen here to restrict all

inputs to be rational, in order to avoid issues of how to represent, and compute with, arbitrary real
numbers.
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1. If H is connected and not bipartite, then computing ZH is in FP if the rank
of H is at most 1; otherwise computing ZH is #P-hard.

2. If H is connected and bipartite, then computing ZH is in FP if the rank of H
is at most 2; otherwise computing ZH is #P-hard.

3. If H is not connected, then computing ZH is in FP if each of its connected
components satisfies the corresponding conditions stated in 1 or 2; otherwise
computing ZH is #P-hard.

Many partition functions arising in statistical physics may be viewed as weighted
#CSP problems. An example is the q-state Potts model (which is, in fact, a weighted
graph homomorphism problem). In general, weighted #CSP is very closely related to
the problem of computing the partition function of a Gibbs measure in the framework
of Dobrushin, Lanford, and Ruelle (see [1]). See also the framework of Scott and
Sorkin [19].

1.3. Some notation. We will call the class of (rational) weighted #CSP prob-
lems weighted #CSP. The subclass having domain size q = 2 will be called weighted
Boolean #CSP and will be the main focus of this paper. We will give a dichotomy
theorem for weighted Boolean #CSP.

Since weights can be arbitrary nonnegative rational numbers, the solution to these
problems is not an integer in general. Therefore #CSP(F) is not necessarily in the
class #P. However, Goldberg and Jerrum [11] have observed that Z(I) = Z̃(I)/K(I),
where Z̃ is a function in #P and K(I) is a positive integer computable in FP. This
follows because, for all f ∈ F , we can ensure that f(·) = f̃(·)/K(I), where f̃(·) ∈ N,
by “clearing denominators.” The denominator K(I) can obviously be computed in
polynomial time, and it is straightforward to show that computing Z̃(I) is in #P,
so the characterization of [11] follows. The resulting complexity class, comprising
functions which are a function in #P divided by a function in FP, is named #P

Q

in [11], where it is used in the context of approximate counting. Clearly we have

weighted#CSP ⊆ #P
Q

⊆ FP#P.

On the other hand, if Z(I) ∈ weighted#CSP is #P-hard, then, using an oracle for
computing Z(I), we can construct a #P oracle Z̃(I) as outlined above. (Note that
Z(I) /∈ #P in general.) Using this oracle, we can compute any function in FP#P with
a polynomial time-bounded oracle Turing machine. Thus any #P-hard function in
weighted#CSP is complete for FP#P. We will use this observation to state our main
result in terms of completeness for the class FP#P.

We make the following definition, which relates to the discussion above. We will
say that F ⊆ Fq simulates f ∈ Fq if, for each instance I of #CSP(F ∪{f}), there is a
polynomial time computable instance I ′ of #CSP(F) such that Z(I) = ϕ(I)Z(I ′) for
some ϕ(I) ∈ Q which is FP-computable. This generalizes the notion of parsimonious
reduction [16] among problems in #P. We will use ≤T to denote the relation “is
polynomial-time Turing-reducible to” between computational problems. Clearly, if F
simulates f , we have #CSP(F ∪ {f}) ≤T #CSP(F). Note also that, if f̃ = Kf , for
some constant K > 0, then {f} simulates f̃ . Thus there is no need to distinguish
between “proportional” functions.

We use the following terminology for certain functions. Let χ= be the binary
equality function defined on [q] as follows. For any element c ∈ [q], χ=(c, c) = 1,
and for any pair (c, d) of distinct elements of [q], χ=(c, d) = 0. Let χ �= be the binary
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disequality function given by χ �=(c, d) = 1 − χ=(c, d) for all c, d ∈ [q].4 We say that
a function f is of product type if f can be expressed as a product of unary functions
and binary functions of the form χ= and χ �=.

We focus attention in this paper on the Boolean case, q = 2. In this case, we say
that a function f ∈ F2 has affine support if its underlying relation Rf , defined earlier,
is affine. We say that f is pure affine if it has affine support and range {0, w} for
some w > 0. Thus a function is pure affine if and only if it is a positive real multiple
of some (0,1-valued) function which is affine over GF(2).

1.4. Our result. Our main result is the following.
Theorem 4. Suppose F ⊆ F2 = {f : {0, 1}k → Q

+ | k ∈ N}. If every function in
F is of product type, then #CSP(F) is in FP. If every function in F is pure affine,
then #CSP(F) is in FP. Otherwise, #CSP(F) is FP#P-complete.

Proof. Suppose first that F is of product type. In this case the partition function
Z(I) of an instance I with variable set V is easy to evaluate because it can be fac-
tored into easy-to-evaluate pieces: Partition the variables in V into equivalence classes
according to whether or not they are related by an equality or disequality function.
(The equivalence relation on variables here is “depends linearly on.”) An equivalence
class consists of two (possibly empty) sets of variables U1 and U2. All of the variables
in U1 must be assigned the same value by a configuration σ of nonzero weight, and
all variables in U2 must be assigned the other value. Variables in U1 ∪ U2 are not
related by equality or disequality to variables in V \ (U1 ∪U2). The equivalence class
contributes one weight, say α, to the partition function if variables in U1 are given
value “0” by σ, and it contributes another weight, say β, to the partition function
if variables in U1 are given value “1” by σ. Thus, Z(I) = (α + β)Z(I ′), where I ′ is
the instance formed from I by removing this equivalence class. Therefore, suppose we
choose any equivalence class and remove its variables. Since F contains only unary,
equality, or binary disequality constraints, we can also remove all functions involving
variables in U1 ∪U2 to give F ′. Then I ′ is of product type with fewer variables, so we
may compute Z(I ′) recursively.

Suppose second that F if pure affine. Then Z(I) =
∏
f∈F w

kf

f Z(I ′), where {0, wf}
is the range of f , kf is the number of constraints involving f in I, and I ′ is the instance
obtained from I by replacing every function f by its underlying relation Rf (viewed
as a function with range {0, 1}). Z(I ′) is easy to evaluate, because this is just counting
solutions to a linear system over GF(2), as Creignou and Hermann have observed [6].

Finally, the #P-hardness in Theorem 4 follows from Lemma 5 below.
Lemma 5. If f ∈ F2 is not of product type and g ∈ F2 is not pure affine, then

#CSP({f, g}) is #P-hard.
Note that the functions f and g in Lemma 5 may be one and the same function.

So #CSP({f}) is #P-hard when f is not of product type nor pure affine. The rest of
this article gives the proof of Lemma 5.

2. Useful tools for proving hardness of #CSP.

2.1. Notation. For any sequence u1, . . . , uk of variables of I and any sequence
c1, . . . , ck of elements of the domain [q], we will let Z(I | σ(u1) = c1, . . . , σ(uk) = ck)
denote the contribution to Z(I) from assignments σ with σ(u1) = c1, . . . , σ(uk) = ck.

2.2. Projection. The first tool that we study is projection, which is referred to
as “integrating out” in the statistical physics literature.

4A more general disequality function is defined in the appendix.
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Let f be a function of arity k, and let J = {j1, . . . , jr} be a size-r subset of
{1, . . . , k}, where j1 < · · · < jr.5 We say that a k-tuple x′ ∈ [q]k extends an r-tuple
x ∈ [q]r on J (written x′ 	J x) if x′ agrees with x on indices in J ; that is to say,
x′ji = xi for all 1 ≤ i ≤ r. The projection g of f onto J is defined as follows. For every
x ∈ [q]r, g(x) =

∑
x′�Jx

f(x′).
The following lemma may be viewed as a weighted version of Proposition 2 of [2],

where it is proved for the unweighted case. It is expressed somewhat differently in [2],
in terms of counting the number of solutions to an existential formula.

Lemma 6. Suppose F ⊆ Fq. Let g be a projection of a function f ∈ F onto a
subset of its indices. Then #CSP(F ∪ {g}) ≤T #CSP(F).

Proof. Let k be the arity of f , and let g be the projection of f onto the subset J of
its indices. Let I be an instance of #CSP(F ∪{g}). We will construct an instance I ′ of
#CSP(F) such that Z(I) = Z(I ′). The instance I ′ is identical to I except that every
constraint C of I involving g is replaced with a new constraint C′ of I ′ involving f .
The corresponding scope (vC′,1, . . . , vC′,k) is constructed as follows. If j� is the �th
element of J , then v′C′,j�

= vC,�. The other variables, vC′,j (j /∈ J), are distinct new
variables. We have shown that F simulates g with φ(I) = 1.

2.3. Pinning. For c ∈ [q], δc denotes the unary function with δc(c) = 1 and
δc(d) = 0 for d �= c. The following lemma, which allows “pinning” CSP variables
to specific values in hardness proofs, generalizes Theorem 8 of [2], which does the
unweighted case. Again [2] employs different terminology, and its theorem is a state-
ment about the full idempotent reduct of a finite algebra. The idea of pinning was
used previously by Bulatov and Grohe of [4] in the context of counting weighted graph
homomorphisms (see Lemma 32 of [4]). A similar idea was used by Dyer and Green-
hill in the context of counting unweighted graph homomorphisms—in that context,
Theorem 4.1 of [8] allows pinning all variables to a particular component of the target
graph H .

Lemma 7. For every F ⊆ Fq, #CSP(F ∪
⋃
c∈[q] δc) ≤T #CSP(F).

The proof of Lemma 7 is deferred to the appendix. Since we use only the case
q = 2 in this paper, we provide the (simpler) proof for the Boolean case here.

Lemma 8. For every F ⊆ F2, #CSP(F ∪ {δ0, δ1}) ≤T #CSP(F).
Proof. For x ∈ [2]k, let x be the k-tuple whose ith component, xi, is xi ⊕ 1 for

all i. Say that F is symmetric if it is the case that for every arity-k function f ∈ F
and every x ∈ [2]k, f(x) = f(x).

Given an instance I of #CSP(F ∪ {δ0, δ1}) with variable set V , we consider two
instances I ′ and I ′′ of #CSP(F). Let V0 be the set of variables v of I to which the
constraint δ0(v) is applied. Let V1 be the set of variables v of I to which the constraint
δ1(v) is applied. We can assume without loss of generality that V0 and V1 do not
intersect. (Otherwise, Z(I) = 0 and we can determine this without using an oracle for
#CSP(F).) Let V2 = V \(V0∪V1). The instance I ′ has variables V2∪{t0, t1}, where t0
and t1 are distinct new variables that are not in V . Every constraint C of I involving
a function f ∈ F corresponds to a constraint C′ of I ′. C′ is the same as C except that
variables in V0 are replaced with t0 and variables in V1 are replaced with t1. Similarly,
the instance I ′′ has variables V2 ∪ {t}, where t is a new variable that is not in V .
Every constraint C of I involving a function f ∈ F corresponds to a constraint C′′

of I ′′. The constraint C′′ is the same as C except that variables in V0∪V1 are replaced
with t.

5It is not necessary to choose this particular ordering for J , but it is convenient to do so.
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Case 1. F is symmetric: By construction,

Z(I ′) − Z(I ′′) = Z(I ′ | σ(t0) = 0, σ(t1) = 1) + Z(I ′ | σ(t0) = 1, σ(t1) = 0).

By symmetry, the summands are the same, so

Z(I ′) − Z(I ′′) = 2Z(I ′ | σ(t0) = 0, σ(t1) = 1) = 2Z(I).

Case 2. F is not symmetric: Let f be an arity-k function in F , and let x ∈ [2]k

so that f(x) > f(x) ≥ 0. Let s = (tx1 , . . . , txk
), and let I ′x be the instance derived

from I ′ by adding a new constraint with function f and scope s. Similarly, let I ′′x be
the instance derived from I ′′ by adding a new constraint with function f and scope
(t, . . . , t). Now

Z(I ′x) = Z(I ′ | σ(t0) = 0, σ(t1) = 1)f(x) + Z(I ′ | σ(t0) = 1, σ(t1) = 0)f(x)
+ Z(I ′ | σ(t0) = 0, σ(t1) = 0)f(0, . . . , 0) + Z(I ′ | σ(t0) = 1, σ(t1) = 1)f(1, . . . , 1)
= Z(I ′ | σ(t0) = 0, σ(t1) = 1)f(x) + Z(I ′ | σ(t0) = 1, σ(t1) = 0)f(x) + Z(I ′′x ).

Thus we have two independent equations,

Z(I ′x) − Z(I ′′x ) = Z(I ′ | σ(t0) = 0, σ(t1) = 1)f(x) + Z(I ′ | σ(t0) = 1, σ(t1) = 0)f(x),
Z(I ′) − Z(I ′′) = Z(I ′ | σ(t0) = 0, σ(t1) = 1) + Z(I ′ | σ(t0) = 1, σ(t1) = 0) ,

in the unknowns Z(I ′ | σ(t0) = 0, σ(t1) = 1) and Z(I ′ | σ(t0) = 1, σ(t1) = 0). Solving
these, we obtain the value of Z(I ′ | σ(t0) = 0, σ(t1) = 1) = Z(I).

2.4. #P-hard problems. To prove Lemma 5, we will give reductions from
some known #P-hard problems. The first of these is the problem of counting homo-
morphisms from simple graphs to 2-vertex multigraphs. We use the following special
case of Bulatov and Grohe’s Theorem 3.

Corollary 9 (Bulatov and Grohe [4]). Let H be a symmetric 2 × 2 matrix
with nonnegative real entries. If H has rank 2 and at most one entry of H is 0, then
Eval(H) is #P-hard.

We will also use the problem of computing the weight enumerator of a linear code.
Given a generating matrix A ∈ {0, 1}r×C of rank r, a code word c is any vector in
the linear subspace Υ generated by the rows of A over GF(2). For any real number λ,
the weight enumerator of the code is given by WA(λ) =

∑
c∈Υ λ

‖c‖, where ‖c‖ is the
number of 1’s in c. The problem of computing the weight enumerator of a linear code
is in FP for λ ∈ {−1, 0, 1} and is known to be #P-hard for every other fixed λ ∈ Q

(see [22]). We could not find a proof, so we provide one here. We restrict our attention
to positive λ, since that is adequate for our purposes.

Lemma 10. Computing the weight enumerator of a linear code is #P-hard for
any fixed positive rational number λ �= 1.

Proof. We will prove hardness by reduction from a problem Eval(H), for some
appropriate H , using Corollary 9. Let the input to Eval(H) be a connected graph
G = (V,E) with V = {v1, . . . , vn} and E = {e1, . . . , em}. Let B be the n×m incidence
matrix of G, with bij = 1 if vi ∈ ej and bij = 0 otherwise. Let A be the (n − 1) ×m
matrix which is B with the row for vn deleted. A will be the generating matrix of the
weight enumerator instance, with r = n − 1 and C = m. It has rank (n − 1) since
G contains a spanning tree. A code word c has cj =

⊕
i∈U bij , where U ⊆ V \ {vn}.

Thus cj = 1 if and only if ej has exactly one endpoint in U , and the weight of c is λk,
where k is the number of edges in the cut U, V \ U . Thus WA(λ) = 1

2ZH(G), where
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H is the symmetric weight matrix with H11 = H22 = 1 and H12 = H21 = λ. The 1
2

arises because we fixed which side of the cut contains vn. Now H has rank 2 unless
λ = 1, so this problem is #P-hard by Corollary 9. Note, by the way, that ZH(G) is
the partition function of the Ising model in statistical physics [5].

3. The proof of Lemma 5. Throughout this section, we assume q = 2. The
following lemma is a generalization of a result of Creignou and Hermann [6], which
deals with the case in which f is a relation (or, in our setting, a function with range
{0, 1}). The inductive technique used in the proof of Lemma 11 (combined with the
follow-up in Lemma 12) is good for showing that #CSP(F) is #P-hard when F
contains a single function. A very different situation arises when #CSP({f}) and
#CSP({g}) are in FP but #CSP({f, g}) is #P-hard due to interactions between f
and g—we deal with that problem later.

Lemma 11. Suppose that f ∈ F2 does not have affine support. Then #CSP({f})
is #P-hard.

Proof. Let k be the arity of f , and let us denote the ith component of k-tuple
a ∈ Rf by ai. The proof is by induction on k. The lemma is trivially true for k = 1,
since all functions of arity 1 have affine support.

For k = 2, we note that since Rf is not affine, it is of the form Rf = {(α, β), (ᾱ, β),
(ᾱ, β̄)} for some α ∈ {0, 1} and β ∈ {0, 1}. We can show that #CSP({f}) is #P-hard
by reduction from Eval(H) using

H =
(
f(0, 0) f(0, 1)
f(1, 0) f(1, 1)

)
,

which has rank 2 and exactly one entry that is 0. Given an instance G = (V,E) of
Eval(H), we construct an instance I of #CSP({f}) as follows. The variables of I are
the vertices of G. For each edge e = (u, v) of G, add a constraint with function f
and variable sequence u, v. Corollary 9 now tells us that Eval(H) is #P-hard, so
#CSP({f}) is #P-hard.

Suppose k > 2. We start with some general arguments and notation. For any
i ∈ {1, . . . , k} and any α ∈ {0, 1} let f i=α be the function of arity k−1 derived from f
by pinning the ith position to α. That is, f i=α(x1, . . . , xk−1) = f(x1, . . . , xi−1, α,
xi+1, . . . , xk). Also, let f i=∗ be the projection of f onto all positions apart from posi-
tion i (see section 2.2). Note that #CSP({f i=α}) ≤T #CSP({f, δ0, δ1}), since f i=α can
obviously be simulated by {f, δ0, δ1}. Furthermore, by Lemma 8, #CSP({f, δ0, δ1}) ≤T

#CSP({f}). Thus, we can assume that f i=α has affine support—otherwise, we are
finished by induction. Similarly, by Lemma 6, #CSP(

{
f i=∗}) ≤T #CSP({f}). Thus

we can assume that f i=∗ has affine support—otherwise, we are finished by induction.
Now, recall that Rf is not affine. Consider any a, b, c ∈ Rf such that d = a⊕b⊕c /∈

Rf . We have four cases.
Case 1. There are indices 1 ≤ i < j ≤ k such that (ai, bi, ci) = (aj , bj , cj). Without

loss of generality, suppose i = 1 and j = 2. Define the function f ′ of arity (k − 1)
by f ′(r2, . . . , rk) = f(r2, r2, . . . , rk). Note that Rf ′ is not affine since the condition
a ⊕ b ⊕ c /∈ Rf is inherited by Rf ′ . So, by induction, #CSP({f ′}) is #P-hard. Now
note that #CSP({f ′}) ≤T #CSP({f}). To see this, note that any instance I1 of
#CSP({f ′}) can be turned into an instance I of #CSP({f}) by repeating the first
variable in the sequence of variables for each constraint.
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Case 2. There is an index 1 ≤ i ≤ k such that ai = bi = ci. Since d is not in
Rf and di = ai, we find that f i=ai does not have affine support, contrary to earlier
assumptions.

Having finished Cases 1 and 2, we may assume without loss of generality that
we are in Case 3 or 4 below, where {α, β} ∈ {0, 1}, ᾱ = 1 − α, β̄ = 1 − β, and
a′, b′, c′ ∈ {0, 1}k−2.

Case 3. a = (ᾱ, β̄, a′), b = (ᾱ, β, b′), c = (α, β̄, c′). Since Rf1=∗ is affine and a, b,
and c are in Rf , we must have either d = (α, β, d′) ∈ Rf or e = (ᾱ, β, d′) ∈ Rf , where
d′ = a′ ⊕ b′ ⊕ c′. In the first case, we are done (we have contradicted the assumption
that d �∈ Rf ), so assume that e ∈ Rf but d �∈ Rf . Similarly, since Rf2=∗ is affine, we
may assume that g = (α, β̄, d′) ∈ Rf . Since Rf1=ᾱ is affine and a, b, and e are in Rf ,
we find that h = a⊕ b⊕ e = (ᾱ, β̄, c′) ∈ Rf . Since Rf2=β̄ is affine and a, c, and g are
in Rf , we find that i = (ᾱ, β̄, b′) ∈ Rf . Also, since Rf2=β̄ is affine and a, h, and i are
in Rf , we find that j = (ᾱ, β̄, d′) ∈ Rf . Let f ′(r1, r2) = f(r1, r2, d3, . . . , dk). Since e,
g, and j are in Rf but d is not, we have (ᾱ, β), (α, β̄), (ᾱ, β̄) ∈ Rf ′ , but (α, β) /∈ Rf ′ .
Thus, f ′ does not have affine support and #CSP({f ′}) is #P-hard by induction. Also,
#CSP({f ′}) ≤T #CSP({f}) by Lemma 8.

Case 4. a = (ᾱ, α, a′), b = (ᾱ, α, b′), c = (α, ᾱ, c′). Since Rf1=∗ is affine and a, b,
and c are in Rf but d is not, we have e = (ᾱ, ᾱ, d′) ∈ Rf . Similarly, since Rf2=∗ is
affine and a, b, and c are in Rf but d is not, we have g = (α, α, d′) ∈ Rf . Now since
Rf1=ᾱ is affine and a, b, and e are in Rf , we have h = (ᾱ, ᾱ, c′) ∈ Rf . Also, since
Rf2=α is affine and a, b, and g are in Rf , we have i = (α, α, c′) ∈ Rf .

Let f ′(r1, r2) = f(r1, r2, c3, . . . , ck). If j = (ᾱ, α, c′) �∈ Rf , then f ′ does not
have affine support (since c, h, and i are in Rf ), so we finish by induction as in
Case 3. Suppose j ∈ Rf . Since Rf1=ᾱ is affine and a, b, and j are in Rf , we have
� = (ᾱ, α, d′) ∈ Rf . Let f ′′(r1, r2) = f(r1, r2, d3, . . . , dk). Then f ′′ does not have affine
support (since e, g, and � are in Rf but d is not), so we finish by induction as in
Case 3.

Lemma 11 showed that #CSP({f}) is #P-hard when f does not have affine
support. The following lemma gives another (rather technical, but useful) condition
which implies that #CSP({f}) is #P-hard. We start with some notation. Let f be
an arity-k function. For a value b ∈ {0, 1}, an index i ∈ {1, . . . , k}, and a tuple
y ∈ {0, 1}k−1, let yi=b denote the tuple x ∈ {0, 1}k formed by setting xi = b and
xj = yj (j ∈ {1, . . . , k} \ {i}).

We say that index i of f is useful, if there is a tuple y such that f(yi=0) > 0
and f(yi=1) > 0. We say that f is product-like if, for every useful index i, there is a
rational number λi such that, for all y ∈ {0, 1}k−1,

(2) f(yi=0) = λif(yi=1).

If every position i of f is useful, then being product-like is the same as being of product
type. However, being product-like is less demanding because it does not restrict indices
that are not useful.

Lemma 12. If f ∈ F2 is not product-like, then #CSP({f}) is #P-hard.
Proof. We will use Corollary 9 to prove hardness, following an argument from [9].

Choose a useful index i so that there is no λi satisfying (2).
Suppose f has arity k. Let A be the 2× 2k−1 matrix such that for b ∈ {0, 1} and

y ∈ {0, 1}k−1, Ab,y = f(yi=b). Let A′ = AAT .
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First, we show that Eval(A′) is #P-hard. Note that A′ is the following symmetric
2 × 2 matrix with nonnegative rational entries:

( ∑
y A

2
0,y

∑
y A0,yA1,y∑

y A0,yA1,y

∑
y A

2
1,y

)
=

( ∑
y f(yi=0)2

∑
y f(yi=0)f(yi=1)∑

y f(yi=0)f(yi=1)
∑
y f(yi=1)2

)
.

Since index i is useful, all four entries of A′ are positive. To show that Eval(A′) is
#P-hard by Corollary 9, we just need to show that its determinant is nonzero. By
the Cauchy–Schwarz equation, the determinant is nonnegative and is zero only if λi
exists, which we have assumed not to be the case. Thus Eval(A′) is #P-hard by
Corollary 9.

Now we reduce Eval(A′) to #CSP({f}). To do this, take an undirected graph
G which is an instance of Eval(A′). Construct an instance Y of #CSP({f}). For
every vertex v of G we introduce a variable xv of Y . Also, for every edge e of G
we introduce k − 1 variables xe,1, . . . , xe,k−1 of Y . We introduce constraints in Y as
follows. For each edge e = (v, v′) of G we introduce constraints f(xv, xe,1, . . . , xe,k−1)
and f(xv′ , xe,1, . . . , xe,k−1) into Y , where we have assumed, without loss of generality,
that the first index is useful.

It is clear that Eval(A′) is exactly equal to the partition function of the #CSP({f})
instance Y .

For w ∈ Q
+, let Uw denote the unary function mapping 0 to 1 and 1 to w. Note

that U0 = δ0, and U1 gives the constant (0-ary function) 1, occurrences of which leave
the partition function unchanged. So, by Lemma 8, we can discard these constraints
since they do not add to the complexity of the problem. Note, by the observation
above about proportional functions, that the functions Uw include all unary functions
except for δ1 and the constant 0. We can discard δ1 by Lemma 8, and if the constant
0 function is in F , any instance I where it appears as a constraint has Z(I) = 0. So
again we can discard these constraints since they do not add to the complexity of the
problem.

Thus Uw will be called nontrivial if w /∈ {0, 1}. Let ⊕k : {0, 1}k → {0, 1} be the
arity-k parity function that is 1 if and only if its argument has an odd number of
1’s. Let ¬⊕k : {0, 1}k → {0, 1} be the function 1 − ⊕k. The following lemma shows
that even a simple function like ⊕3 can lead to intractable #CSP instances when it
is combined with a nontrivial weight function Uλ.

Lemma 13. #CSP(⊕3, Uλ, δ0, δ1) and #CSP(¬⊕3, Uλ, δ0, δ1) are both #P-hard,
for any positive λ �= 1.

Proof. We give a reduction from computing the weight enumerator of a linear
code, which was shown to be #P-hard in Lemma 10. In what follows, it is sometimes
convenient to view ⊕k, δ0, etc., as relations as well as functions to {0, 1}.

We first argue that, for any k, the relation ⊕k can be simulated by {⊕3, δ0, δ1}.
For example, to simulate x1 ⊕ · · · ⊕ xk for k > 3, take new variables y, z, and w and
let m = �k/2 and use x1 ⊕ · · · ⊕ xm ⊕ y and xm+1 ⊕ · · · ⊕ xk ⊕ z and y ⊕ z ⊕w and
δ0(w).

Since {⊕3, δ0, δ1} can be used to simulate any relation ⊕k, we can use {⊕3, δ0, δ1}
to simulate an arbitrary system of linear equations over GF(2). In particular, we can
use them to simulate the subspace Υ of code words for a given generating matrix A.

Finally, we can use Uλ to simulate the function which evaluates the weight enu-
merator on Υ. Then, since λ �= 0, 1, we can apply Lemma 10 to complete the argument.
The same proof, with minor modifications, applies to ¬⊕3.
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Lemma 14. Suppose that f ∈ F2 is not of product type. Then, for any positive
λ �= 1, there exists a constant c, depending on f , such that #CSP({f, δ0, δ1, Uλ, Uc})
is #P-hard.

Proof. If f does not have affine support, the result follows by Lemma 11. So
suppose f has affine support. Consider the underlying relation Rf , viewed as a table.
The rows of the table represent the tuples of the relation. Let J be the set of columns
on which the relation is not constant. That is, if i ∈ J , then there is a row x with
xi = 0 and a row y with yi = 1. Group the columns in J into equivalence classes: two
columns are equivalent if and only if they are equal or complementary. Let k be the
number of equivalence classes. Take one column from each of the k equivalence classes
as a representative, and focus on the arity-k relation R induced by those columns.

Case 1. Suppose that R is the complete relation of arity k. Let f∗ be the projection
of f onto the k columns of R. By Lemma 6,

#CSP({f∗}) ≤T #CSP({f}) ≤T #CSP({f, δ0, δ1, Uλ, Uc}).
We will argue that #CSP({f∗}) is #P-hard. To see this, note that every column of f∗

is useful. Thus, if f∗ were product-like, we could conclude that f∗ was of product type.
But this would imply that f is of product type, which is not the case by assumption.
So f∗ is not product-like, and hardness follows from Lemma 12.

Case 2. Suppose that R is not the complete relation of arity k. We had assumed
that Rf is affine. This means that, given three vectors, x, y, and z in Rf , x ⊕ y ⊕ z
is in Rf as well. The arity-k relation R inherits this property, so is also affine.

Choose a minimal set of columns of R that do not induce the complete relation.
This exists by assumption. Suppose that there are j columns in this minimal set.
Observe that j �= 1 because there are no constant columns in J . Also j �= 2, since
otherwise the two columns would be related by equality or disequality, contradicting
the preprocessing step. The argument here is that on two columns, R cannot have
exactly three tuples because it is affine, and having tuples x, y, and z in would
require the fourth tuple x⊕ y⊕ z. But if it has two tuples, then, because there are no
constant columns, the only possibilities are either (0, 0) and (1, 1) or (0, 1) and (1, 0).
Both contradict the preprocessing step, so j ≥ 3.

Let R′ be the restriction of R to the j columns. Now R′ of course has fewer than
2j rows, and at least 2j−1 by minimality. It is affine, and hence must be ⊕j or ¬⊕j . To
see this, first note that the size of R′ has to be a power of 2 since R′ is the solution to
a system of linear equations. Hence the size of R′ must be 2j−1. Then, since there are
j variables, there can only be one defining equation. And, since every subset of j − 1
variables induces a complete relation, this single equation must involve all variables.
Therefore, the equation is ⊕j or ¬⊕j .

Let f ′ be the projection of f onto the j columns just identified. Let f ′′ be further
obtained by pinning all but three of the j variables to 0. Pinning j − 3 variables to 0
leaves a single equation involving all three remaining variables. Thus Rf ′′ must be ⊕3

or ¬⊕3.
Now define the symmetric function f ′′′ by
f ′′′(a, b, c) = f ′′(a, b, c)f ′′(a, c, b)f ′′(b, a, c)f ′′(b, c, a)f ′′(c, a, b)f ′′(c, b, a).

Note that Rf ′′′ is ⊕3 or ¬⊕3, since Rf ′′ is symmetric and hence Rf ′′′ = Rf ′′ .
To summarize: using f and the constant functions δ0 and δ1, we have simulated a

function f ′′′ such that its underlying relation Rf ′′′ is either ⊕3 or ¬⊕3. Furthermore,
if triples x and y have the same number of 1’s, then f ′′′(x) = f ′′′(y).

We can now simulate an unweighted version of ⊕3 or ¬⊕3 using f ′′′ and a unary
function Uc, with c set to a conveniently chosen value. There are two cases. Suppose
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first that the affine support of f ′′′ is ¬⊕3. Then let w0 denote the value of f ′′′ when ap-
plied to the 3-tuple (0, 0, 0), and let w2 denote f ′′′(0, 1, 1) = f ′′′(1, 0, 1) = f ′′′(1, 1, 0).
Recall that f ′′′(x) = 0 for any other 3-tuple x. Now let c = (w0/w2)

1/2. Note from the
definition of f ′′′ that w0 and w2 are squares of rational numbers, so c is also rational.
Define a function g of arity 3 by g(α, β, γ) = Uc(α)Uc(β)Uc(γ)f ′′′(α, β, γ). Note that
g(0, 0, 0) = w0 and g(0, 1, 1) = g(1, 0, 1) = g(1, 1, 0) = c2w2 = w0. Thus, g is a pure
affine function with affine support ¬⊕3 and range {0, w0}. The other case, in which
the affine support of f ′′′ is ⊕3, is similar.

We have established a reduction from either #CSP(⊕3, Uλ, δ0, δ1) or #CSP(¬⊕3,
Uλ, δ0, δ1), which are both #P-hard by Lemma 13.

Lemma 15. If f ∈ F2 is not of product type, then #CSP({f, δ0, δ1, Uλ}) is #P-
hard for any positive λ �= 1.

Proof. Take an instance I of #CSP({f, δ0, δ1, Uλ, Uc}), from Lemma 14, with n
variables x1, x2, . . . , xn. We want to compute the partition function Z(I) using only
instances of #CSP({f, δ0, δ1, Uλ}), that is, instances which avoid using constraints Uc.
For each i, let mi denote the number of copies of Uc that are applied to xi, and let
m =

∑n
i=1mi. Then we can write the partition function as Z(I) = Z(I; c), where

Z(I;w) =
∑

σ∈{0,1}n

Ẑ(σ)
∏

i:σi=1

wmi =
∑

σ∈{0,1}n

Ẑ(σ)w
∑n

i=1miσi ,

where Ẑ(σ) denotes the value corresponding to the assignment σ(xi) = σi, ignoring
constraints applying Uc, and w is a variable. So Ẑ(σ) is the weight of σ, taken over
all constraints other than those applying Uc. Note also that Z(I;w) is a polynomial
of degree m in w. We can evaluate Z(I;w) at the point w = λj by replacing each
Uc constraint with j copies of a Uλ constraint. This evaluation is an instance of
#CSP({f, δ0, δ1, Uλ}). So, using m different values of j and interpolating, we learn the
coefficients of the polynomial Z(I;w). Then we can set w = c to evaluate Z(I).

Lemma 16. Suppose that f ∈ F2 is not of product type and g ∈ F2 is not pure
affine. Then #CSP({f, g, δ0, δ1}) is #P-hard.

Proof. If g does not have affine support, we are done by Lemma 11. So suppose
that g has affine support. Since g is not pure affine, the range of g contains at least
two nonzero values.

The high-level idea will be to use pinning and bisection to extract a nontrivial
unary weight function Uλ from g. Then we can reduce from #CSP({f, δ0, δ1, Uλ}),
which we proved #P-hard in Lemma 15.

Look at the relation Rg, viewed as a table. If every column were constant, then g
would be pure affine, so this is not the case. Select a nonconstant column with index
h. If there are two nonzero values in the range of g amongst the rows of Rg that are 0
in column h, then we derive a new function g′ by pinning column h to 0. The new
function g′ is not pure affine, since the two nonzero values prevent this. So we will
show inductively that #CSP({f, g′, δ0, δ1}) is #P-hard. This will give the result since
#CSP({f, g′, δ0, δ1}) trivially reduces to #CSP({f, g, δ0, δ1}).

If we don’t finish this way, or symmetrically by pinning column h to 1, then we
know that there are distinct positive values w0 and w1 such that, for every row x
of Rg with 0 in column h, g(x) = w0 and, for every row x of Rg with 1 in column h,
g(x) = w1. Now note that, because the underlying relation Rg is affine, it has the
same number of 0’s in column h as 1’s. This is because Rg is the solution of a set
of linear equations. Adding the equation xh = 0 or xh = 1 exactly halves the set
of solutions in either case. We now project onto the index set {h}. We obtain the
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unary weight function Uλ, with λ = w1/w0, on using the earlier observation about
proportional functions. This was our goal and completes the proof.

Lemma 5 now follows from Lemmas 8 and 16, completing the proof of
Theorem 4.

Appendix. The purpose of this appendix is to prove Lemma 7 for an arbitrary
fixed domain [q]. We used only the special case q = 2, which we stated and proved
as Lemma 8. However, pinning appears to be a useful technique for studying the
complexity of #CSP, so we give a proof of the general Lemma 7, which we believe
will be applicable elsewhere.

In order to prove the lemma, we introduce a useful, but less natural, variant of
#CSP. Suppose F ⊆ Fq. An instance I of #CSP�=(F) consists of a set V of variables
and a set C of constraints, just like an instance of #CSP(F). In addition, the instance
may contain a single extra constraint C applying the arity-q disequality relation χ�=
with scope (vC,1, . . . , vC,q).

The disequality relation χ �= is defined by χ �=(x1, . . . , xq) = 1 if x1, . . . , xq ∈ [q]
are pairwise distinct, that is, if they are a permutation of the domain [q]. Otherwise,
χ �=(x1, . . . , xq) = 0.

Lemma 7 follows immediately from Lemmas 17 and 18 below.
Lemma 17. For every F ⊆ Fq, #CSP(F ∪

⋃
c∈[q] δc) ≤T #CSP �=(F).

Proof. We follow the proof lines of Lemma 8, but instead of subtracting the
contribution corresponding to configurations in which some ti’s get the same value,
we use the disequality relation to restrict the partition function to configurations in
which they get distinct values.

Say that F is symmetric if it is the case that for every arity-k function f ∈
F , every tuple x ∈ [q]k, and every permutation π : [q] → [q], f(x1, . . . , xk) =
f(π(x1), . . . , π(xk)).

Let I be an instance of #CSP(F ∪
⋃
c∈[q] δc) with variable set V . Let Vc be the

set of variables v ∈ V to which the constraint δc(v) is applied. Assume without loss of
generality that the sets Vc are pairwise disjoint. Let Vq = V \

⋃
c∈[q] Vc. We construct

an instance I ′ of #CSP�=(F). The instance has variables Vq ∪ {t0, . . . , tq−1}. Every
constraint C of I involving a function f ∈ F corresponds to a constraint C′ of I ′.
Here C′ is the same as C except that variables in Vc are replaced with tc, for each
c ∈ [q]. Also, we add a new disequality constraint to the new variables t0, . . . , tq−1.

Case 1. F is symmetric. By construction, Z(I ′) =
∑
y0,...,yq−1

Z(I ′ | σ(t0) =
y0, . . . , σ(tq−1) = yq−1), where the sum is over all permutations y0, . . . , yq−1 of [q]. By
symmetry, the summands are all the same, so Z(I ′) = q!Z(I ′ | σ(t0) = 0, . . . , σ(tq−1) =
q − 1) = q!Z(I).

Case 2. F is not symmetric. Say that two permutations π1 : [q] → [q] and
π2 : [q] → [q] are equivalent if, for every f ∈ F and every tuple x ∈ [q]k, f(π1(x1), . . . ,
π1(xk)) = f(π2(x1), . . . , π2(xk)). Partition the permutations π : [q] → [q] into equiva-
lence classes. Let h be the number of equivalence classes and ni be the size of the ith
equivalence class, so n1 + · · · + nh = q!.6 Let {π1, . . . , πh} be a set of representatives
of the equivalence classes with π1 being the identity. We know that n1 �= q! since F
is not symmetric.

For a positive integer � we will now build an instance I ′� by adding new constraints
to I ′. For each πi other than π1 we add constraints as follows. Choose a function fi ∈ F

6In fact, it can be shown that these equivalence classes are cosets of the symmetry group of f ,
and hence are of equal size, though we do not use this fact here.
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and a tuple y such that fi(y1, . . . , yk) �= fi(πi(y1), . . . , πi(yk)). If fi(y1, . . . , yk) >
fi(πi(y1), . . . , πi(yk)), then define the k-tuple xi by (xi1, . . . , xik) = (y1, . . . , yk). Other-
wise, let n be the order of the permutation πi and let gr denote fi(πri (y1), . . . , π

r
i (yk)).

Since g0 < g1 and gn = g0 there exists an ξ ∈ {1, . . . , n− 1} such that gξ > gξ+1. Let
(xi1, . . . , x

i
k) = (πξ(y1), . . . , πξ(yk)) so fi(xi1, . . . , x

i
k) > fi(πi(xi1), . . . , πi(x

i
k)).

Let wij denote fi(πj(xi1), . . . , πj(x
i
k)) so, since π1 is the identity, we have just en-

sured that wi1 > wii. Let si = (txi
1
, . . . , txi

k
), and let 0 ≤ zi ≤ h (i = 2, . . . , h) be posi-

tive integers, which we will determine below. Add �zi new constraints to I ′� with rela-
tion fi and scope si. Let λi =

∏h
γ=2 w

zγ

γi . Note that, given σ(t0) = πi(0), . . . , σ(tq−1) =
πi(q − 1), the contribution to Z(I ′�) for the new constraints is

h∏
γ=2

fγ(σ(txγ
1
), . . . , σ(txγ

k
))zγ� =

h∏
γ=2

fγ(πi(x
γ
1 ), . . . , πi(x

γ
k))

zγ�

=
h∏
γ=2

w
zγ�
γ,i =

( h∏
γ=2

w
zγ

γ,i

)�
= λi

�.

So

Z(I ′�) =
h∑
i=1

ni Z( I ′ | σ(t0) = πi(0), . . . , σ(tq−1) = πi(q − 1))λ�i .

We have ensured that λ1 > 0, since wi1 > wii ≥ 0, so wi1 > 0 for all i = 2, . . . , h.
We now choose the zi’s so that λi �= λ1 for all i = 2, . . . , h. If wγi = 0 for any
γ = 2, . . . , h, we have λi = 0 and hence λi �= λ1. Thus we will assume, without loss of
generality, that wγi > 0 for all γ = 2, . . . , h and i = 2, . . . , h′, where h′ ≤ h. Then we
have

λi
λ1

=
h∏
γ=2

(wγi
wγ1

)zγ

= e
∑h

γ=2 αγizγ (i = 2, . . . , h′),

where αγi = ln(wγi/wγ1). Note that αii < 0, since wii < wi1. We need to find an
integer vector z = (z2, . . . , zh) so that none of the linear forms Li(z) =

∑h
γ=2 αγizγ is

zero, for i = 2, . . . , h′. We do this using a proof method similar to the Schwartz–Zippel
lemma. (See, for example, [20].) None of the Li(z) is identically zero, since αii �= 0.
Consider the integer vectors z ∈ [h]h−1. At most hh−2 of these can make Li(z) zero for
any i, since the equation Li(z) = 0 makes zi a linear function of zγ (γ �= i). Therefore
there are at most (h′ − 1)hh−2 < hh−1 such z which make any Li(z) zero. Therefore
there must be a vector z ∈ [h]h−1 for which none of the Li(z) is zero, and this is the
vector we require.

Now, by combining terms with equal λi and ignoring terms with λi = 0, we can
view Z(I ′�) as a sum Z(I ′�) =

∑
i ciλ

�
i , where the λi’s are positive and pairwise distinct

and

c1 = n1Z(I ′ | σ(t0) = 0, . . . , σ(tq−1) = q − 1).

Thus, by Lemma 3.2 of [8] we can interpolate to recover c1. Dividing by n1, we get

Z(I ′ | σ(t0) = 0, . . . , σ(tq−1) = q − 1) = Z(I).
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Lemma 18. For every F ⊆ Fq, #CSP�=(F) ≤T #CSP(F).
Proof. We use Möbius inversion for posets, following the lines of the proof of [2,

Theorem 8].7 Consider the set of partitions of [q]. Let 0 denote the partition with
q singleton classes. Consider the partial order in which η ≤ θ if and only if every
class of η is a subset of some class of θ. Define μ(0) = 1, and for any θ �= 0 define
μ(θ) = −

∑
η≤θ,η �=θ μ(η). Consider the sum

∑
η≤θ μ(η). Clearly, this sum is 1 if θ = 0.

From the definition of μ, it is also easy to see that the sum is 0 otherwise, since
∑
η≤θ

μ(η) = μ(θ) +
∑

η≤θ,η �=θ
μ(η) = 0.

Now let I be an instance of #CSP �=(F) with a disequality constraint applied
to variables t0, . . . , tq−1. Let V be the set of variables of I. Given a configuration
σ : V → [q], let ϑ(σ) be the partition of [q] induced by of (σ(t0), . . . , σ(tq−1)). Thus i
and j in [q] are in the same class of ϑ(σ) if and only if σ(ti) = σ(tj). We say that a
partition η is consistent with σ (written η � σ) if η ≤ ϑ(σ). Note that η � σ means
that for any i and j in the same class of η, σ(ti) = σ(tj).

Let Ω be the set of configurations σ that satisfy all constraints in I except possibly
the disequality constraint. Then Z(I) =

∑
σ∈Ωw(σ)1σ , where 1σ = 1 if σ respects the

disequality constraint, meaning that ϑ(σ) = 0, and 1σ = 0 otherwise. By the Möbius
inversion formula derived above,

Z(I) =
∑
σ∈Ω

w(σ)
∑

η≤ϑ(σ)

μ(η).

Changing the order of summation, we get

Z(I) =
∑
η

μ(η)
∑
η≤θ

∑
σ∈Ω:ϑ(σ)=θ

w(σ) =
∑
η

μ(η)
∑

σ∈Ω:η�σ
w(σ).

Now note that
∑
σ:η�σ w(σ) is the partition function Z(Iη) of an instance Iη of

#CSP(F). The instance Iη is formed from I by ignoring the disequality constraint
and identifying variables in t0, . . . , tq−1 whose indices are in the same class of η. Thus
we can compute all the Z(Iη) in #CSP(F). Finally, Z(I) =

∑
η μ(η)Z(Iη), completing

the reduction.
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to PosSLP, and we present some preliminary results supporting this conjecture. The generic task of
numerical computation is also polynomial-time equivalent to PosSLP. We prove that PosSLP lies in
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1. Introduction. The original motivation for this paper comes from a desire to
understand the complexity of computation over the reals in the Blum–Shub–Smale
model. In section 1.1 we give a brief introduction to this model, and we introduce the
problem PosSLP and explain its importance in understanding the Blum–Shub–Smale
model.

In section 1.2 we present yet another reason to be interested in PosSLP. We isolate
a computational problem that lies at the root of the task of designing numerically
stable algorithms. We show that this task is computationally equivalent to PosSLP.
The material in sections 1.1 and 1.2 provides motivation for studying PosSLP and for
attempting to place it within the framework of traditional complexity classes.

In section 1.3 we discuss our main technical contributions: proving upper and
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lower bounds on the complexity of PosSLP. In section 1.4 we present applications of
our main result with respect to the Euclidean traveling salesman problem and the
sum-of-square-roots problem.

1.1. Polynomial time over the reals. The Blum–Shub–Smale model of com-
putation over the reals provides a very well-studied complexity-theoretic setting in
which to study the computational problems of numerical analysis. We refer the reader
to Blum et al. [12] for detailed definitions and background material related to this
model; here, we will recall only a few salient facts. In the Blum–Shub–Smale model,
each machine computing over the reals has associated with it a finite set S of real
machine constants. The inputs to a machine are elements of

⋃
n R

n = R
∞, and thus

each polynomial-time machine over R accepts a “decision problem” L ⊆ R
∞. The

set of decision problems accepted by polynomial-time machines over R using only
constants from S ∪ {0, 1} is denoted PS

R
. The union of the classes PS

R
over all S is

called polynomial time over R and is denoted PR. The subclass P∅
R

of “constant-free
polynomial time” is commonly denoted by P0

R
; cf. Bürgisser and Cucker [20].

There has been considerable interest in relating computation over R to the clas-
sical Boolean complexity classes such as P, NP, PSPACE, etc. This is accomplished
by considering the Boolean part of decision problems over the reals. That is, given a
problem L ⊆ R

∞, the Boolean part of L is defined as BP(L) := L ∩ {0, 1}∞. (Here,
we follow the notation of [12]; {0, 1}∞ =

⋃
n{0, 1}n, which is identical to {0, 1}∗.) The

Boolean part of PR, denoted BP(PR), is defined as {BP(L) | L ∈ PR}.
By encoding the advice function in a single real constant as in Koiran [44], one can

show that P/poly ⊆ BP(PR). The best upper bound on the complexity of problems
in BP(PR) that is currently known was obtained by Cucker and Grigoriev [27]:

(1.1) BP(PR) ⊆ PSPACE/poly.

There has been no work pointing to lower bounds on the complexity of BP(PR); no-
body has presented any compelling evidence that BP(PR) is not equal to P/poly.
There has also been some suggestion that perhaps BP(PR) is equal to PSPACE/poly.
For instance, certain variants of the RAM model that provide for unit-cost arith-
metic can simulate all of PSPACE in polynomial time [10, 37]. Since the Blum–Shub–
Smale model also provides for unit-time multiplication on “large” numbers, Cucker
and Grigoriev [27] mention that researchers have raised the possibility that similar
arguments might show that polynomial-time computation over R might be able to
simulate PSPACE. Cucker and Grigoriev also observe that certain näıve approaches
to providing such a simulation must fail.

One of our goals is to provide evidence that BP(PR) lies properly between P/poly
and PSPACE/poly. Towards this goal, it is crucial to understand a certain deci-
sion problem PosSLP: Decide, for a given division-free straight-line program, whether
it represents a positive integer. More generally, for a fixed finite subset S ⊂ R,
PosSLP(S) is the problem of deciding for a given division-free straight-line program,
using constants from S∪{0, 1}, whether the real number represented by it is positive.
(For precise definitions, see the next section.)

The immediate relationship between the Blum–Shub–Smale model and the prob-
lems PosSLP(S) is given by the proposition below.

Proposition 1.1. We have PPosSLP(S) = BP(PS
R

) for all finite subsets S ⊂ R.
In particular, PPosSLP = BP(P0

R
).

Proof. It is clear that PosSLP(S) is in BP(PS
R

), since we can implement a stan-
dard SLP (straight-line program) interpreter in the real Turing machine framework
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and evaluate the result in linear time using unit-cost instructions. The result is
then obtained by one sign test. To show the other direction, assume that we have
a polynomial-time machine over R using only the constants in S ∪ {0, 1}. By a usual
argument (separate computation of numerator and denominator), we may assume
without loss of generality that the machine does not use divisions. Given a bit string
as input, we simulate the computation by storing the straight-line program repre-
sentation of the intermediate results instead of their values. Branch instructions can
be simulated by using the oracle PosSLP(S) to determine if the contents of a given
register (represented by a straight-line program) are greater than zero.

It was shown by Chapuis and Koiran [24] that algebraic constants do not help.
More specifically, P0

R
is equal to the class of decision problems over the reals decided

by polynomial-time Blum–Shub–Smale machines using real algebraic numbers as con-
stants.

As already mentioned, by encoding the advice function in a single real constant,
one can show that P/poly ⊆ BP(PR). The proof in fact shows even PPosSLP/poly ⊆
BP(PR). The real constant encoding the advice function, will, of course, in general
be transcendental. Thus, there is a strong relationship between nonuniformity in the
classical model of computation and the use of transcendental constants in the Blum–
Shub–Smale model. We conjecture that this relationship can be further strengthened,
as follows.

Conjecture 1. PPosSLP/poly = BP(PR).
In section 3 we present some preliminary results toward proving this conjecture.

For instance, we prove that BP(P{α}
R

) ⊆ PPosSLP/poly for almost all α ∈ R, in the
sense of Lebesgue measure. We also show that BP(P{α}

R
) ⊆ PPosSLP/1 (one bit of

advice) if α is the value of an elementary function on a rational number. This is the
case, for instance, for the well-known transcendental numbers e or π.

1.2. The task of a numerical analyst. The Blum–Shub–Smale model is a
very elegant one, but it does not take into account the fact that actual numerical
computations have to deal with finitely represented values. We next observe that even
if we take this into account, the PosSLP problem still captures the complexity of
numerical computation.

Let u �= 0 be a dyadic rational number. The floating point representation of u is
obtained by writing u = v2m, where m is an integer and 1

2 ≤ |v| < 1. The floating
point representation is then given by the sign of v and the usual binary representations
of the numbers |v| and m. The floating point representation of 0 is the string 0 itself.
We shall abuse notation and identify the floating point representation of a number
with the number itself, using the term “floating point number” for the number as well
as its representation.

Let u �= 0 be a real number. We may write u as u = u′2m, where 1
2 ≤ |u′| < 1 and

m is an integer. Then, we define a floating point approximation of u with k significant
bits to be a floating point number v2m so that |v − u′| ≤ 2−(k+1).

We will focus on one part of the job that is done by numerical analysts: the design
of numerically stable algorithms. In our scenario, the numerical analyst starts out with
a known function f , and the task is to design a “good” algorithm for it. When we say
that the function f is “known,” we mean that the analyst starts out with some method
of computing (or at least approximating) f ; we restrict attention to the “easy” case
where the method for computing f uses only the arithmetic operations +,−, ∗,÷, and
thus the description of f that the analyst is given can be presented as an arithmetic
circuit with operations +,−, ∗,÷. Usually, the analyst also has to worry about the
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problems that are caused by the fact that the inputs to f are not known precisely
but are only given as floating point numbers that are approximations to the “true”
inputs—but again we will focus on the “easy” case where the analyst will merely
try to compute a good approximation for f(x1, . . . , xn) on the exact floating point
numbers x1, . . . , xn that are presented as input, as follows.

The generic task of numerical computation (GTNC). Given a straight-
line program P (with ÷), and given inputs x1, . . . , xn for P (as floating point numbers)
and an integer k in unary, along with a promise that P (x1, . . . , xn) neither evaluates
to zero nor does division by zero, compute a floating point approximation of the value
of the output P (x1, . . . , xn) with k significant bits.

The traditional approach that numerical analysts have followed in trying to solve
problems of this sort is to study the numerical stability of the algorithm represented by
the circuit and, in case of instability, to attempt to devise an equivalent computation
that is numerically stable. Although stable algorithms have been found for a great
many important functions, the task of devising such algorithms frequently involves
some highly nontrivial mathematics and algorithmic ingenuity. There seems to be no
expectation that there will ever be a purely automatic way to solve this problem, and
indeed there seems to be no expectation that a numerically stable algorithm will exist
in general. To summarize, there is substantial empirical evidence that the generic task
of numerical computation is intractable. It would be of significant practical interest
if, contrary to expectation, it should turn out to be very easy to solve (say, solvable
in linear time).

We show that the generic task of numerical computation is equivalent in power
to PosSLP.

Proposition 1.2. The GTNC is polynomial-time Turing equivalent to PosSLP.
Proof. We first reduce PosSLP to the GTNC. Given a division-free straight-line

program representing the number N , we construct a straight-line program computing
the value v = 2N − 1. The only inputs 0, 1 of this program can be considered to be
floating point numbers, and this circuit clearly satisfies the promise of the GTNC.
Then N > 0 if v ≥ 1, and N ≤ 0 if v ≤ −1. Determining an approximation of v to
one significant bit is enough to distinguish between these cases.

Conversely, suppose we have an oracle solving PosSLP. Given a straight-line pro-
gram with inputs being floating point numbers, we first convert it to a straight-line
program having only input 1; it is easy to see that this can be done in polynomial
time. By standard techniques we move all ÷ gates to the top, so that the program
computes a value v = v1/v2, where v1, v2 are given by division-free straight-line pro-
grams. We can use the oracle to determine the signs of v1 and v2. Without loss of
generality assume that v is positive. Next we use the oracle to determine whether
v1 ≥ v2. Suppose that this is indeed the case (the opposite case is handled similarly).

We then find the least r so that 2r−1 ≤ v < 2r, by first comparing v1 with v222i

for i = 0, 1, 2, 3, . . ., using the oracle, thus finding the minimum i so that v < 22i

, and
afterwards doing a binary search, again using the oracle to compare v1 to v22r for
various values of r. This takes polynomial time.

The desired output is a floating point number u = u′2r, where |v−u′| ≤ 2−(k+1).
To obtain u′ we first want to find the integer w between 2k and 2k+1 − 1 so that
w/2k+1 ≤ v/2r < (w + 1)/2k+1. Since w/2k+1 ≤ v/2r < (w + 1)/2k+1 iff w2rv2 ≤
v12k+1 < (w + 1)2rv2, we can determine this by another binary search, using O(k)
calls to the oracle. We then output the sign of v, the binary representation of the
rational w/2k+1, and the binary representation of r, together forming the desired
floating point approximation of v.
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The reader may wonder how GTNC fits into the numerical analysis literature. The
long exponent model (LEM) of Demmel [31, 30] offers the closest parallel. Demmel
considers the classic problem of computation of the determinant, and he identifies
three ways of modeling the problem, which he calls the traditional model, the short
exponent model (SEM), and the LEM. Computing determinants is easy in the SEM,
while in the LEM the problem is equivalent to a special case of GTNC. Namely, it is
equivalent to instances of GTNC where the circuit C that is provided as input is the
polynomial-size SLP for determinants given by Berkowitz [9].

Demmel goes so far as to conjecture that, in the LEM, the problem of deciding
whether the determinant is zero is NP-hard [31]. Since this problem is actually a
special case of EquSLP and thus lies in BPP, Demmel’s conjecture is almost certainly
false. However, we agree with his underlying intuition, in that we believe that the
problem of deciding whether the determinant is positive in the LEM very likely is
intractable (even if we see no evidence that it is NP-hard) [57]. That is, this special case
of PosSLP is recognized as a difficult problem by the numerical analysis community.

1.3. The complexity of PosSLP. We consider Proposition 1.2 to be evidence
for the computational intractability of PosSLP. If PosSLP is in P/poly, then there
is a polynomial-sized “cookbook” that can be used in place of the creative task of
devising numerically stable computations. This seems unlikely.

We wish to emphasize that the generic task of numerical computation models the
discrete computational problem that underlies an important class of computational
problems. Thus it differs quite fundamentally from the approach taken in the Blum–
Shub–Smale model.

We also wish to emphasize that, in defining the generic task of numerical com-
putation, we are not engaging in the debate over which real functions are “efficiently
computable.” There is by now a large literature comparing and contrasting the relative
merits of the Blum–Shub–Smale model with the so-called bit model of computing, and
there are various competing approaches to defining what it means for a real-valued
function to be feasible to compute; see [13, 17, 16, 67, 68] among others. Our concerns
here are orthogonal to that debate. We are not trying to determine which real-valued
functions are feasible; we are studying a discrete computational problem that is rel-
evant to numerical analysis, with the goal of proving upper and lower bounds on its
complexity.

The generic task of numerical computation is one way of formulating the notion of
what is feasible to compute in a world where arbitrary precision arithmetic is available
for free. In contrast, the Blum–Shub–Smale model can be interpreted as formulating
the notion of feasibility in a world where infinite precision arithmetic is available
for free. According to Proposition 1.2, both of these approaches are equivalent (and
captured by PPosSLP) when only algebraic constants are allowed in the Blum–Shub–
Smale model. Conjecture 1 claims that this is also true when allowing arbitrary real
constants.

As another demonstration of the computational power of PosSLP, we show in
section 2 that the problem of determining the total degree of a multivariate polynomial
over the integers given as a straight-line program reduces to PosSLP.

The above discussion suggests that PosSLP is not an easy problem. Can more
formal evidence of this be given? Although it would be preferable to show that PosSLP
is hard for some well-studied complexity class, the best that we can do is observe that
a somewhat stronger problem (BitSLP) is hard for #P. This will be done in section 2.

The above discussion also suggests that nontrivial upper bounds for PosSLP are
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of great interest. Prior to this paper, the best upper bound was PSPACE. Our main
technical result is an improved upper bound: We show, based on results on the uniform
circuit complexity of integer division and the relationship between constant depth cir-
cuits and subclasses of PSPACE [6, 39], that PosSLP lies in the counting hierarchy CH,
a well-studied subclass of PSPACE that bears more or less the same relationship to
#P as the polynomial hierarchy bears to NP [64, 66].

Theorem 1.3. PosSLP is in PPPPPPP

.
Another interesting upper bound for PosSLP was recently discovered by Tarasov

and Vyalyi [61], who give a reduction from PosSLP to the semidefinite feasibility
problem (SDFP), i.e., the feasibility version of the optimization problem semidefinite
programming. Their result can be seen as a lower bound for SDFP. SDFP is known
to reduce to its complement and to lie in NPR [54]; also it is easy to see that SDFP
reduces to the existential theory of the reals (for instance, see the discussion in [54]),
and thus SDFP ∈ PSPACE.

We suspect that PosSLP lies at an even lower level of CH. Note that, in presenting
our upper bound, we do not exploit some powerful techniques that have been proved
useful in computing certain bits of exponentially large numbers [40]. We leave as major
open problems the question of providing better upper bounds for PosSLP and the
question of providing any sort of hardness theorem, reducing a supposedly intractable
problem to PosSLP.

Theorem 1.3, together with Proposition 1.1, implies that BP(P0
R
) ⊆ CH. It is

reasonable to conjecture that BP(PR) ⊆ CH/poly—and indeed that would follow from
Conjecture 1—but as yet we are not able to improve the upper bound of BP(PR) ⊆
PSPACE/poly that was presented by Cucker and Grigoriev [27].

We believe that it would be very interesting to verify Conjecture 1, as this would
give a characterization of BP(PR) in terms of classical complexity classes. But in fact, it
would be equally interesting to refute it under some plausible complexity-theoretic as-
sumption, as this would give evidence that the power of using transcendental constants
in the sequential Blum–Shub–Smale model goes beyond the power of nonuniformity
in classical computation.

1.4. Applications. The sum-of-square-roots problem is a well-known problem
with many applications to computational geometry and elsewhere. The input to the
problem is a list of integers (d1, . . . , dn) and an integer k, and the problem is to decide
whether

∑
i

√
di ≥ k. The complexity of this problem is posed as an open question by

Garey, Graham, and Johnson [36] in connection with the Euclidean traveling sales-
man problem, which is not known to be in NP but which is easily seen to be solvable
in NP relative to the sum-of-square-roots problem. See also O’Rourke [53, 52] and
Etessami and Yannakakis [34] for additional information. Although it has been con-
jectured [51] that the problem lies in P, it seems that no classical complexity class
smaller than PSPACE has been known to contain this problem. On the other hand,
by observing that one can construct a polynomial-sized straight-line program with
division that approximates the square root of any given integer with exponentially
high precision, using Newton iteration, Tiwari [62] showed that this problem can be
decided in polynomial time on an “algebraic random-access machine.” In fact, it is
easy to see that the set of decision problems decided by such machines in polynomial
time is exactly BP(P0

R
). Thus by Proposition 1.1 we see that the sum-of-square-roots

problem reduces to PosSLP. Theorem 1.3 thus yields the following corollary.
Corollary 1.4. The sum-of-square-roots problem and the Euclidean traveling

salesman problem are in CH.
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2. Preliminaries. Our definitions of arithmetic circuits and straight-line pro-
grams are standard. An arithmetic circuit is a directed acyclic graph with input nodes
labeled with the constants 0, 1 or with indeterminates X1, . . . , Xk for some k. Inter-
nal nodes are labeled with one of the operations +,−, ∗,÷. A straight-line program is
a sequence of instructions corresponding to a sequential evaluation of an arithmetic
circuit. If it contains no ÷ operation, it is said to be division-free. Unless otherwise
stated, all the straight-line programs considered will be division-free. Thus straight-
line programs can be seen as very compact representations of a polynomial over the
integers. In many cases, we will be interested in division-free straight-line programs
using no indeterminates, which thus represent an integer.

By the n-bit binary representation of an integer N such that |N | < 2n we under-
stand a bit string of length n+ 1 consisting of a sign bit followed by n bits encoding
|N | (padded with leading zeroes, if needed).

We consider the following problems:
EquSLP. Given a straight-line program representing an integer N , decide whether

N = 0.
ACIT. Given a straight-line program representing a polynomial f ∈ Z[X1, . . . , Xk],

decide whether f = 0.
DegSLP. Given a straight-line program representing a polynomial f ∈ Z[X1, . . . , Xk]

and given a natural number d in binary, decide whether deg f ≤ d.
PosSLP. Given a straight-line program representing N ∈ Z, decide whether N > 0.
BitSLP. Given a straight-line program representing N , and given n, i ∈ N in binary,

decide whether the ith bit of the n-bit binary representation of N is 1.
It is not clear that any of these problems is in P, since straight-line program

representations of integers can be exponentially smaller than ordinary binary repre-
sentation.

There is an immediate relationship between the Blum–Shub–Smale model over
the complex numbers C and the problem EquSLP. Let P0

C
denote the class of decision

problems over C decided by polynomial-time Blum–Shub–Smale machines using only
the constants 0, 1. Similarly as for Proposition 1.1 one can show that PEquSLP =
BP(P0

C
). On the other hand, it is known that constants can be eliminated in this

setting [11, 45], and hence BP(PC) = BP(P0
C
). We therefore have the following result.

Proposition 2.1. PEquSLP = BP(PC).
Clearly, EquSLP is a special case of ACIT. Schönhage [57] showed that EquSLP is

in coRP, using computation modulo a randomly chosen prime. Ibarra and Moran [41],
building on DeMillo and Lipton [29], Schwartz [58], and Zippel [69], extended this to
show that ACIT lies in coRP. In the spirit of Adleman’s observation [1], Heintz and
Schnorr [38] established the existence of nonuniform polynomial-time algorithms for
an algebraic variant of the ACIT problem (allowing any field elements as constants).
The problem ACIT has recently attracted much attention due to the work of Kabanets
and Impagliazzo [42] who showed that a deterministic algorithm for ACIT would yield
circuit lower bounds. (See [47] for some progress on finding deterministic algorithms for
certain versions of the problem.) As far as we know, although the proof technique that
we use in Proposition 2.2 is well known and has been applied various times over the
years [3, 60], it has not been pointed out before that ACIT is actually polynomial-time
equivalent to EquSLP. In other words, disallowing indeterminates in the straight-line
program given as input does not make ACIT easier. Or more optimistically: It is
enough to find a deterministic algorithm for this special case in order to have circuit
lower bounds.
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Proposition 2.2. ACIT is polynomial-time equivalent to EquSLP.
Proof. We are given a straight-line program of size n with m indeterminates

X1, . . . , Xm, computing the polynomial p(X1, . . . , Xm). Define Bn,i = 22in2

. Straight-
line programs computing these numbers using iterated squaring can easily be con-
structed in polynomial time, so given a straight-line-program for p, we can easily
construct a straight-line program for p(Bn,1, . . . , Bn,m). We shall show that for n ≥ 3,
p is identically zero iff p(Bn,1, . . . , Bn,m) evaluates to zero.

To see this, first note that the “only if” part is trivial, so we only have to
show the “if” part. Thus, assume that p(X1, . . . , Xm) is not the zero-polynomial.
Let q(X1, . . . , Xm) be the largest monomial occurring in p with respect to inverse
lexicographic order,1 and let k be the number of monomials. We can write p =
αq +

∑k−1
i=1 αiqi, where (qi)i=1,...,k−1 are the remaining monomials. An easy induc-

tion in the size of the straight-line program shows that |αi| ≤ 222n

, k ≤ 22n

and that
the degree of any variable in any qi is at most 2n.

Now, our claim is that the absolute value |αq(Bn,1, . . . , Bn,m)| is strictly
bigger than |

∑k−1
i=1 αiqi(Bn,1, . . . , Bn,m)|, and thus we cannot have that p(Bn,1, . . . ,

Bn,m) = 0.
Indeed, since the monomial q was the biggest in the inverse lexicographic ordering,

we have that for any other monomial qi there is an index j so that

q(Bn,1, . . . , Bn,m)
qi(Bn,1, . . . , Bn,m)

≥ 22jn2∏j−1
l=1 22ln2 ·2n

> 22n2−1
,

so we can bound∣∣∣∣∣
k−1∑
i=1

αiqi(Bn,1, . . . , Bn,m)

∣∣∣∣∣ ≤ 22n

222n
∣∣∣ k−1
max
i=1

qi(Bn,1, . . . , Bn,m)
∣∣∣

≤ 22n

222n

2−2n2−1 |q(Bn,1, . . . , Bn,m)| < q(Bn,1, . . . , Bn,m) ≤ |αq(Bn,1, . . . , Bn,m)|,

which proves the claim.
We believe that Proposition 2.2 could be a useful tool for devising deterministic

algorithms for ACIT. (See section 5 for one modest application in this direction.) Of
course, it must also be acknowledged that multivariate polynomials exhibit a great
deal of structure that is not so apparent in computation over the integers (as embodied
by EquSLP), and algorithmic attacks on ACIT should also attempt to exploit this
structure.

The problem DegSLP is not known to lie in BPP, even for the special case of
univariate polynomials. Here, we show that it reduces to PosSLP.

Proposition 2.3. DegSLP polynomial-time many-one reduces to PosSLP.
Proof. We first show the reduction for the case of univariate polynomials (i.e.,

straight-line programs with a single indeterminate), and afterwards we reduce the
multivariate case to the univariate case.

Let f ∈ Z[X ] be given by a straight-line program of length n. To avoid having
to deal with the zero polynomial of degree −∞ and to ensure that the image of the
polynomial is a subset of the nonnegative integers, we first change the straight-line
program computing f into a straight-line program computing f1(X) = (Xf(X)+ 1)2

1Xα1
1 · · ·Xαm

m is greater than Xβ1
1 · · ·Xβm

m in this order iff the right-most nonzero component
of α − β is positive; cf. Cox, Little, and O’Shea [26, p. 59].
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by adding a few extra lines. We can check whether the degree of f is at most d by
checking whether the degree of f1 is at most D = 2(d + 1) (except for d = −∞, in
which case we check whether the degree of f1 is at most D = 0).

Let Bn be the integer 22n2

. As in the proof of Proposition 2.2, we can easily
construct a straight-line program computing Bn and from this a straight-line program
computing f1(Bn).

Now, suppose that deg f1 ≤ D. Using the same bounds on sizes of the coefficients
as in the proof of Proposition 2.2 and assuming without loss of generality that n ≥ 3,
we then have

f1(Bn) ≤
D∑
i=0

222n

Bin < (2n + 1)222n

BDn ≤ (22n

+ 1)222n−2n2

BD+1
n <

BD+1
n

2
.

On the other hand, suppose that deg f1 ≥ D + 1. Then we have

f1(Bn) ≥ (Bn)D+1 −
D∑
i=0

222n

Bin ≥ BD+1
n − 22n

222n

2−2n2

BD+1
n >

BD+1
n

2
.

Thus, to check whether deg f1 ≤ D, we just need to construct a straight-line-program
for 2f1(Bn)−BD+1

n and check whether it computes a positive integer. This completes
the reduction for the univariate case.

We next reduce the multivariate case to the univariate case. Thus, let f in
Z[X1, . . . , Xm] be given by a straight-line program of length n. We define f∗ in
Z[X1, . . . , Xm, Y ] by f∗(X1, . . . , Xm, Y ) = f(X1Y, . . . , XmY ). We claim that if we

let Bn,i = 22in2

as in the proof of Proposition 2.2, then, for n ≥ 3, the degree of the
univariate polynomial f∗(Bn,1, . . . , Bn,m, Y ) is equal to the total degree of f . Indeed,
we can write f∗ as a polynomial in Y with coefficients in Z[X1, . . . , Xm]:

f∗(X1, . . . , Xm, Y ) =
d∗∑
j=0

gj(X1, . . . , Xm)Y j ,

where d∗ is the degree of variable Y in the polynomial f∗. Note that this is also the
total degree of the polynomial f . Now, the same argument as used in the proof of Pro-
portion 2.2 shows that since gd∗ is not the zero-polynomial, gd∗(Bn,1, Bn,2, . . . , Bn,m)
is different from 0.

As PosSLP easily reduces to BitSLP, we obtain the chain of reductions

EquSLP ≡ ACIT ≤p
m DegSLP ≤p

m PosSLP ≤p
m BitSLP.

In section 4 we will show that all the above problems in fact lie in the counting
hierarchy CH.

The complexity of BitSLP contrasts sharply with that of EquSLP.
Proposition 2.4. BitSLP is hard for #P.
Proof. A similar result is stated without proof in [31]. The proof that we present

is quite similar to that of Bürgisser [22, Proposition 5.3], which in turn is based on
ideas of Valiant [65]. We show that computing the permanent of matrices with entries
from {0,1} is reducible to BitSLP.

Given a matrix X with entries xi,j ∈ {0, 1}, consider the univariate polynomial

fn =
∑
i

fn,iY
i =

n∏
i=1

⎛⎝ n∑
j=1

xi,jY
2j−1

⎞⎠ ,
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which can be represented by a straight-line program of size O(n2). Then fn,2n−1 equals
the permanent of X . Let N be the number that is represented by the straight-line
program that results from replacing the indeterminate Y with 2n

3
. It is easy to see

that the binary representation of fn,2n−1 appears as a sequence of consecutive bits in
the binary representation of N .

Triggered by an earlier version of this paper [5], Koiran and Perifel [43] studied
the variant of the problem DegSLP for computations of polynomials over the finite
field Fp. They proved a considerably better upper bound on this problem than what
is currently known for DegSLP. Also, Koiran and Perifel [43] investigated the problem
zero monomial coefficient of deciding for a polynomial f given by a straight-line
program and a given monomial xα whether the coefficient of this monomial in f
equals zero. For computations of polynomials over the finite field Fp, they managed
to show that zero monomial coefficient is ModpP complete. However, for characteristic
zero, no improvements upon the results in this paper were made in that respect.

3. Transcendental constants. We present here some first results toward es-
tablishing our Conjecture 1.

Let S denote a fixed finite subset of R. By an SLP over S we shall understand a
division-free straight-line program using constants from S∪{0, 1}. Recall the following
problem:
PosSLP(S). Given an SLP over S, decide whether the real number represented by

it is positive.
Remark 1. We could have defined a variant of PosSLP(S) by allowing divisions

in the straight-line programs. However, this variant is easily seen to be polynomial-
time equivalent to PosSLP(S). Indeed, by computing separately with numerators
and denominators we can transform an SLP representing α into two division-free
SLPs representing numbers A,B such that α = A/B. Hereby, the length of the SLPs
increases at most by a factor of four. Now α is positive iff AB is positive.

A result by Chapuis and Koiran [24] implies that algebraic constants can be
eliminated. It can be stated as follows.

Proposition 3.1. Let S ⊆ R be finite and α ∈ R be algebraic over the field Q(S).
Then PPosSLP(S∪{α}) = PPosSLP(S).

Our first goal is to prove that almost all transcendental constants can be elimi-
nated.

Theorem 3.2. For all (α1, α2, . . . , αk) ∈ R
k except in a subset of Lebesgue mea-

sure zero we have PPosSLP({α1,...,αk})/poly = PPosSLP/poly.
The proof will require some lemmas. The idea is to eliminate one by one the

elements of such sets S, replacing each element with appropriate advice of polynomial
size.

We denote by RSn ⊂ R the set of all real numbers that occur as a root of some
nonzero univariate polynomial that is computed by an SLP of size n that uses con-
stants in S. Note that R \ RSn consists of a collection of open intervals. Clearly, any
univariate polynomial computed from S by an SLP of size n has constant sign on
each of these intervals. For α ∈ R \ RSn , we denote by ISn (α) the unique interval
containing α.

Remark 2. A real number α is transcendental over Q(S) iff α �∈ RSn for all n (or
equivalently, for infinitely many n).

Definition 3.3. We call a real number α approximable with respect to S if
either α is algebraic over Q(S) or else α is transcendental over Q(S) and satisfies
the following condition: there exists a polynomial p such that for all sufficiently large
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n ∈ N the interval ISn (α) contains an element xn that can be represented by an SLP
over S of size p(n), possibly using divisions. (Note that this interval is well defined
as α �∈ RSn ; cf. Remark 2.) We say that α is approximable iff it is approximable with
respect to the empty set.

Lemma 3.4. If α ∈ R is approximable with respect to S, then PPosSLP(S∪{α})/poly
= PPosSLP(S)/poly.

Proof. Suppose that α ∈ R is approximable with respect to S. By Proposition 3.1
we may assume that α is transcendental over Q(S). Then, for all sufficiently large
n, there exist xn ∈ ISn (α) computed by an SLP Γn over S (using divisions) of size
polynomial in n.

It is sufficient to show that PosSLP(S∪{α}) is contained in PPosSLP(S)/poly. Let
C be an SLP (of size n) over S ∪ {α} computing v ∈ R. We want to decide whether
v is positive. If we replace the constant α by the variable X , then this SLP computes
a polynomial f(X) and we have v = f(α). Since the sign of f is constant on the
interval ISp(n)(α), v has the same sign as f(xp(n)).

We interpret the SLP Γn over S as an advice of polynomial size. By concatenating
Γn with the SLP for f , we obtain an SLP over S that computes f(xp(n)). We eliminate
the divisions in the concatenated SLP according to Remark 1. Then the sign of this
number is obtained by one oracle call to PosSLP(S).

Lemma 3.5. We have the following:
1. |RSn | ≤ (6(n+ |S|))n.
2. The minimal distance between two different elements of R∅

n is at least 2−2Nn

with Nn = O(n log n).
Proof. Let Fn be the product of all nonzero univariate polynomials f that can be

computed from the variableX by an SLP over S of size n. Note that such f have degree
at most 2n. Then RSn is the set of roots of Fn. There are at most

∏n
i=1 3(|S|+i−1)2 ≤

(3(|S|+ n)2)n SLPs over S. Therefore, degFn ≤ (6(|S|+ n)2)n, which shows the first
assertion.

Before showing the second assertion we introduce a notation: let ‖g‖1 denote the
sum of the absolute values of the coefficients of a univariate polynomial g. It is easy
to see that ‖g · h‖1 ≤ ‖g‖1 · ‖h‖1.

Suppose now S = ∅. If f(X) is computed by an SLP of size n over ∅ from the
variable X , then one can show that log ‖f‖1 ≤ (n+ 1)2n; see, e.g., [21, Lemma 4.16].
By the submultiplicativity of ‖ ‖1 we conclude

log ‖Fn‖1 ≤ (3n2)n (n+ 1)2n ≤ 2O(n logn).

Rump [55] showed that the distance between any two distinct real roots in a
univariate polynomial P with integer coefficients and degree d is at least 2

√
2(d

d
2 +1

(‖P‖1 + 1)d)−1. The second assertion follows by applying this bound to the polyno-
mial Fn.

Lemma 3.6. For any finite S ⊂ R, the set of real numbers that are not approx-
imable with respect to S has Lebesgue measure zero.

Proof. Let α ∈ R and xn be the binary approximation of α with a precision of
n2 digits, i.e., |α − xn| < 2−n

2
. Clearly, there is an SLP over {1/2} of size O(n2)

representing xn. Furthermore, suppose that α has distance at least 2−n
2

from RSn for
all sufficiently large n, say for n ≥ m. Then xn is contained in the interval ISn (α) for
n ≥ m. Hence, by definition, α is approximable with respect to S.
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These reasonings show that for all m ∈ N

B := {α ∈ R | α is not approximable w.r.t. S} ⊆
⋃
n≥m

Un,

where Un := {x ∈ R | ∃ρ ∈ RSn |x − ρ| < 2−n
2} denotes the 2−n

2
-neighborhood of

RSn . Denoting by λ(A) the Lebesgue measure of a set A ⊆ R, we get from Lemma 3.5

λ(Un) ≤ 2 |RSn | 2−n
2 ≤ 2 (6(n+ |S|))n2−n2 ≤ 2−

1
2n

2

for sufficiently large n. Therefore, we conclude that for all sufficiently large m

λ(B) ≤
∞∑
n=m

2−
1
2n

2
.

Since the series
∑
n 2−

1
2n

2
is convergent and m was arbitrary, we conclude that

λ(B) = 0.
Proof of Theorem 3.2. We consider for α := (α1, . . . , αk) ∈ R

k and 0 ≤ i ≤ k the
complexity classes Ci(α) := PPosSLP({α1,...,αi})/poly. Clearly, Ck(α) �= C0(α) implies
that Cs(α) �= Cs−1(α) for some index s. By applying Lemma 3.4 to the set of constants
S = {α1, . . . , αs−1}, we obtain that {α ∈ R

k | Ck(α) �= C0(α)} is a subset of

⊆
k⋃
s=1

{
α ∈ R

k | αs is not approximable w.r.t. {α1, . . . , αs−1}
}
.

Lemma 3.6 says that, for fixed α1, . . . , αs−1, the set

{αs ∈ R | αs is not approximable w.r.t. {α1, . . . , αs−1}}

has Lebesgue measure zero. It follows from Fubini’s theorem that the right-hand
subset of R

k has measure zero as well, which shows the assertion.
We can actually prove for many specific real numbers that they are approximable.

Indeed, quite surprisingly, for any elementary function f(X) there exists a sequence
(Rn(X)) of rational functions such that |Rn(x) − f(x)| < 2−n for all x ∈ [0, 1], and
such that Rn(X) can be computed by a straight-line program of polylogarithmic size
(using divisions) from X . The elementary functions include the algebraic functions,
the natural logarithm, and the exponential function. For algebraic functions, such ap-
proximating rational functions can be constructed with Newton’s method; see Kung
and Traub [46]. For the natural logarithm, the construction of such approximations
relies on the AGM (arithmetic-geometric mean) iteration going back to Gauss, La-
grange, and Legendre, which, in particular, gives very good approximations of π. The
latter algorithms were discovered by Brent [18] and Salamin [56]. The book by Borwein
and Borwein [15] provides a complete and in-depth exposition of this subject.

More precisely, we shall understand by an elementary function a function built up
from rational constants by finitely many arithmetic operations, applications of exp,
ln, and the operation of taking a solution of a polynomial equation. (For a formal
definition see [19].)

Theorem 3.7. Let α be the value of an elementary function at a rational number.
Then the following hold:

1. α is approximable. In particular, e = exp(1) and π are approximable.
2. We have PPosSLP({α}) ⊆ PPosSLP/1, where /1 means one bit of advice.
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Proof. 1. By Lemma 3.5 we know that εn = 2−2Nn with Nn = O(n log n) is a
lower bound on the minimum distance between two different elements of R∅

n. Note
that there is an SLP over {1/2} of polynomial size computing εn (repeated squaring).

Let α be as in the statement of the theorem. Without loss of generality we may
assume that α is transcendental. According to Borwein and Borwein [14, Table 1], for
each n there is an SLP of size nO(1) (using divisions) computing an approximation an
of α that satisfies |an−α| < 1

2εn. By checking the proofs (cf. Borwein and Borwein [15])
one sees that these SLPs are uniform; i.e., they can be constructed in polynomial time
in n.

We claim that there exist bn ∈ {0, 1} such that xn = an+bn 1
2εn lies in the interval

I∅n(α) and thus satisfies the requirement in Definition 3.3. Hence α is approximable.
Indeed, let �n and rn denote the left and right endpoints of the interval I∅n(α),

and denote by mn := 1
2 (�n + rn) its midpoint. Consider first the case where α < mn.

If α ≤ an, then an < α+ 1
2εn < mn + 1

2εn ≤ rn, and hence xn := an ∈ I∅n(α). Else if
an < α, then α < an + 1

2εn < α + 1
2εn ≤ rn, and hence xn := an + 1

2εn ∈ I∅n(α) does
the job. In the case where α ≥ mn one argues similarly.

2. We follow the proof of Lemma 3.4. However, since the SLPs computing the
approximation an are polynomial-time uniform, only one bit of advice (corresponding
to bn) is in fact needed to emulate the computation with α.

We have not been able to find a specific number that is provably nonapproximable.
It is quite possible that there are no nonapproximable numbers at all.

4. PosSLP lies in CH. The counting hierarchy CH was defined by Wagner [66]
and was studied further by Torán [64]; see also [8, 6]. A problem lies in CH if it lies
in one of the classes in the sequence PP,PPPP, etc.

Theorem 4.1. BitSLP is in CH.
Proof. It was shown by Hesse, Allender, and Mix Barrington [39] that there are

Dlogtime-uniform threshold circuits of polynomial size and constant depth that com-
pute the following function:
Input: A number X in Chinese remainder representation. That is, a sequence of

values indexed (p, j) giving the jth bit of X mod p, for each prime p < n2,
where 0 ≤ X ≤ 2n (thus we view n as an appropriate “size” measure of the
input).

Output: The binary representation of the unique natural numberX <
∏
p prime,p<n2 p

whose value modulo each small prime is encoded in the input.
Let this circuit family be denoted {Dn}.

Now, as in the proof of [6, Lemma 5], we consider the following exponentially big
circuit family {En}, which computes BitSLP.

Given as input an encoding of a straight-line program representing integer W , we
first build a new program computing the positive integer X = W +22n

. Note that the
bits of the binary representation of W (including the sign bit) can easily be obtained
from the bits of X .

Level 1 of the circuit En consists of gates labeled (p, j) for each prime p such
that p < 22n and for each j : 1 ≤ j ≤ �log p�. The output of this gate records the
jth bit of X mod p. (Observe that there are exponentially many gates on level 1, and
also note that the output of each gate (p, j) can be computed in time polynomial in
the size of the binary encoding of p and the size of the given straight-line program
representing X . Note also that the gates on Level 1 correspond to the gates on the
input level of the circuit D22n .)

The higher levels of the circuit are simply the gates of D22n .
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Now, similar to the proof of [6, Lemma 5], we claim that for each constant d the
following language is in the counting hierarchy:Ld = {(F, P, b) : F is the name of a gate
on level d of En and F evaluates to b when given straight-line program P as input}.

We have already observed that this is true when d = 1. For the inductive step,
assume that Ld ∈ CH. Here is an algorithm to solve Ld+1 using oracle access to Ld.
On input (F, P, b), we need to determine whether the gate F is a gate of En, and if
so, we need to determine whether it evaluates to b on input P . F is a gate of En iff
it is connected to some gate G such that, for some b′, (G,P, b′) ∈ Ld. This can be
determined in NPLd ⊆ PPLd , since Dn is Dlogtime-uniform. That is, we can guess a
gate G, check that G is connected to F (this takes only linear time because of the
uniformity condition), and then use our oracle for Ld. If F is a gate of En, we need
to determine whether the majority of the gates that feed into it evaluate to 1. (Note
that all of the gates in Dn are MAJORITY gates.) That is, we need to determine
whether it is the case that for most bit strings G such that G is the name of a gate
that is connected to F , (G,P, 1) is in Ld. This is clearly computable in PPLd .

Thus in order to compute BitSLP, given program P and index i, compute the
name F of the output bit of En that produces the ith bit of N (which is easy be-
cause of the uniformity of the circuits D22n) and determine if (F, P, 1) ∈ Ld, where
d is determined by the depth of the constant-depth family of circuits presented in
[39].

Theorem 4.1 shows that BP(P0
R
) lies in CH. A similar argument can be applied to

an analogous restriction of “digital” NPR (i.e., where nondeterministic machines over
the reals can guess “bits” but cannot guess arbitrary real numbers). Bürgisser and
Cucker [20] present some problems in PSPACE that are related to counting problems
over R. It would be interesting to know whether these problems lie in CH.

Although Theorem 4.1 shows that BitSLP and PosSLP both lie in CH, some
additional effort is required in order to determine the level of CH where these problems
reside. We present a more detailed analysis for PosSLP, since it is our main concern
in this paper. (A similar analysis can be carried out for BitSLP, showing that it lies

in PHPPPPPPPP

[7].)
The following result implies Theorem 1.3, since Toda’s theorem [63] shows that

PPPHA

⊆ PPPA

for every oracle A.
Theorem 4.2. PosSLP ∈ PHPPPP

.
Proof. We will use the Chinese remaindering algorithm of [39] to obtain our upper

bound on PosSLP. (Related algorithms, which do not lead directly to the bound
reported here, have been used on several occasions [2, 28, 33, 48, 49].) Let us introduce
some notation relating to Chinese remaindering.

For n ∈ N let Mn be the product of all odd primes p less than 2n
2
. By the prime

number theorem, 22n

< Mn < 22n2+1
for n sufficiently large. For such primes p let

hp,n denote the inverse of Mn/p mod p.
Any integer 0 ≤ X < Mn can be represented uniquely as a list (xp), where p

runs over the odd primes p < 2n
2

and xp = X mod p. Moreover, X is congruent to∑
p xphp,nMn/p modulo Mn. Hence X/Mn is the fractional part of

∑
p xphp,n/p.

Define the family of approximation functions appn(X) to be
∑

pBp, where Bp =
xphp,nσp,n and σp,n is the result of truncating the binary expansion of 1/p after 2n

4

bits. Note that for n sufficiently large andX < Mn, appn(X) is within 2−2n3

of X/Mn.
Let the input to PosSLP be a program P of size n representing the integer W ,
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and set Yn = 22n

. Since |W | ≤ Yn, the number X := W + Yn is nonnegative, and we
can easily transform P into a program of size 2n+ 2 representing X . Clearly, W > 0
iff X > Yn. Note that if X > Yn, then X/Mn and Yn/Mn differ by at least 1/Mn >

2−2n2+1
, which implies that it is enough to compare the binary expansions of appn(X)

and appn(Yn). (Interestingly, this seems to be somewhat easier than computing the
bits of X directly.)

We can determine whether X > Yn in PH relative to the following oracle A: A
= {(P, j, b, 1n) : the jth bit of the binary expansion of appn(X) is b, where X is the
number represented by straight-line program P and j is given in binary}.

Lemma 4.3 completes the proof by showing that A ∈ PHPPPP

.
Lemma 4.3. A ∈ PHPPPP

.
Proof. Assume for the moment that we can show that B ∈ PHPP, where B :=

{(P, j, b, p, 1n) : the jth bit of the binary expansion of Bp (= xphp,nσp,n) is b, where
p < 2n

2
is an odd prime, xp = X mod p, X is the number represented by the straight-

line program P , and j is given in binary}. In order to recognize the set A, it clearly
suffices to compute 2n

4
bits of the binary representation of the sum of the numbers

Bp. A uniform circuit family for the iterated sum is presented by Maciel and Thérien
in [50, Corollary 3.4.2] consisting of MAJORITY gates on the bottom (input) level,
with three levels of AND and OR gates above. As in the proof of Theorem 4.1, the
construction of Maciel and Thérien immediately yields a PHPPB

algorithm for A,
by simulating the MAJORITY gates by PPB computation, simulating the OR gates
above the MAJORITY gates by NPPPB

computation, etc. The claim follows, since

by Toda’s theorem [63], PHPPB

⊆ PHPPPHPP

= PHPPPP

. It remains only to show that
B ∈ PHPP.

Lemma 4.4. B ∈ PHPP.
Proof. Observe that, given (P, j, b, p), we can determine in polynomial time whether

p is prime [4], and we can compute xp.
In PH ⊆ PPP we can find the least generator gp of the multiplicative group of

the integers mod p. The set C = {(q, gp, i, p) : p �= q are primes and i is the least
number for which gip ≡ q mod p} is easily seen to lie in PH. We can compute the
discrete log base gp of the number Mn/p mod p in #PC ⊆ PPP by the algorithm that
nondeterministically guesses q and i, verifies that (q, gp, i, p) ∈ C, and if so generates i
accepting paths. Thus we can compute the number Mn/p mod p itself in PPP by first
computing its discrete log, and then computing gp to that power, mod p. The inverse
hp,n is now easy to compute in PPP, by finding the inverse of Mn/p mod p.

Our goal is to compute the jth bit of the binary expansion of xphp,nσp,n. We have
already computed xp and hp,n in PPP, so it is easy to compute xphp,n. The jth bit of
1/p is 1 iff 2j mod p is odd, so bits of σp,n are easy to compute in polynomial time.
(Note that j is exponentially large.)

Thus our task is to obtain the jth bit of the product of xphp,n and σp,n, or
(equivalently) adding σp,n to itself xphp,n times. The problem of adding logO(1) n
many n-bit numbers lies in uniform AC0 [32]. Simulating these AC0 circuits leads to
the desired PHPP algorithm for B.

5. An observation on derandomizing ACIT. The connections between al-
gebraic complexity and the counting hierarchy in the preceding section were first
introduced in an earlier version of this paper [5]. Recently, these connections have led
to further developments. Bürgisser shows in [23] that the counting hierarchy provides
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a useful tool for showing implications among several hypotheses in algebraic com-
plexity theory that were not previously known to be related. In that same paper, he
also improves a theorem of Koiran, relating the arithmetic circuit complexity of the
permanent to a frequently studied question about the complexity of expressing n!. We
have some new observations to present on this topic, and we start by recalling some
background and definitions.

We will follow the terminology of Shub and Smale [59], and say that n! is “easy”
if there is a sequence of SLPs Cn of size logO(1) n, where Cn represents the number
n!. Following the same convention, we say that n! is “ultimately easy” if there is a
sequence of SLPs Cn of size logO(1) n, where Cn represents a nonzero multiple of
the number n!. (It does not matter which multiple is represented.) Shub and Smale
conjectured that n! is not ultimately easy, and they showed that this condition implies
that PC �= NPC. It is also pointed out in [12] that if factoring is sufficiently hard to
compute, it implies that n! is not easy. There are a number of papers that touch on
the questions of whether or not n! is easy or ultimately easy. The reader is referred
to [25, 23, 12] for more references. A goal of this section is to relate these questions
to the complexity of ACIT.

Note that if n! is not ultimately easy, it says merely that there are infinitely many
n for which multiples of n! require large circuits. It may be useful also to consider
the hypothesis that this condition holds for all large n; that is, for all k there is an m
such that for all n > m there is no SLP of size logk n representing a nonzero multiple
of n! Let us call this condition “n! is ultimately hard.”

The following implications are known to hold:

n! is ultimately hard ⇒ n! is not ultimately easy ⇒ n! is not easy
⇒ the permanent requires arithmetic circuits of superpolynomial size ⇒ AFIT

∈
⋂
ε>0io-[DTIME(2n

ε

)],

where io-[DTIME(t(n))] denotes the class of problems A for which there is a deter-
ministic algorithm running in time t(n) that solves A correctly for all instances of
length n, for infinitely many n, and where AFIT denotes arithmetic formula identity
testing: a special case of ACIT. The third implication is from [23], the fourth is from
[42, Theorem 7.7]. Derandomization results such as those of [42] usually come in two
flavors. If one assumes that a particular function (such as the permanent) is hard on
infinitely many input lengths, then one obtains only algorithms that work correctly
on infinitely many input lengths. One can also obtain an algorithm that works cor-
rectly on all input lengths if one starts with a stronger assumption, such as that the
permanent requires large circuits on all input lengths.

It has not been known whether any of these hypotheses are sufficiently strong to
derandomize ACIT itself, although it is known that if ACIT is in

⋂
ε>0DTIME(2n

ε

)
(or even in

⋂
ε>0NTIME(2n

ε

)), then either the permanent requires arithmetic circuits
of superpolynomial size or NEXP �⊆ P/poly [42]. We observe now that the following
implication holds.

Proposition 5.1. We have the following:
1. If n! is ultimately hard, then ACIT ∈

⋂
ε>0DTIME(2n

ε

).
2. If n! is not ultimately easy, then ACIT ∈

⋂
ε>0io-[DTIME(2n

ε

)].
Proof. We prove only the second claim. The first is easier and follows by the same

method.
First note that, by Proposition 2.2, it is sufficient to prove the implication for

EquSLP instead of ACIT. Assume that n! is not ultimately easy. Then for every k
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there is an infinite set I(k) of numbers such that for all m ∈ I(k) no SLP of size at
most logkm can produce a nonzero multiple of m!.

Given ε > 0, pick any γ such that 0 < γ < ε. Choose k to be the least integer
larger than 1/γ. For any m ∈ I(k) set n = �logkm�.

Suppose we are given as input an SLP C of size n. Note that the binary encoding
ofm has length at most n1/k—but we do not know what m is. Thus we try all numbers
z having binary encoding of length at most n1/k (one of which will be m). We then
compute the binary representation of z! with the obvious algorithm, which takes time
at most z2 logO(1) z, which is less than 2n

γ

for sufficiently large n. Then we evaluate
the SLP C modulo z!; we accept iff the result is zero for all of the numbers z. This
algorithm works correctly, since by our assumption, the SLP C cannot produce a
nonzero multiple of m!. The running time is 2O(nγ)2O(nγ), which is less than 2n

ε

for
all large n.

We remark that this proof makes use of no special properties of the factorial
function. As one of the referees has pointed out to us, the same upper bound follows if
there is any sequence of numbers (a(n)) such that the binary representation of a(n) can
be computed from n in time polynomial in m, the length of the binary representation
of a(n), such that no multiple of a(n) can be represented by an arithmetic circuit of
size logO(1)m. If we drop the requirement that a(n) be computable in time polynomial
in m, then a simple counting argument (or Kolmogorov complexity argument) shows
that most numbers a(n) have this property.

6. Closing remarks. NP-hardness is firmly established as a useful tool for pro-
viding evidence of intractibility. We believe that PosSLP can become a useful tool
for providing evidence of intractibility for problems that do not appear to be NP-
hard and for providing evidence that certain problems do not lie in NP or reduce to
NP. Indeed, results of this flavor have already started to appear: Etessami and Yan-
nakakis have recently shown that PosSLP reduces to the problem of finding mixed
strategy profiles close to exact Nash equilibria in three-person games [35]; i.e., they
show that this fundamental but very challenging numerical problem of computational
game theory is PosSLP-hard. We may regard this PosSLP-hardness result as evidence
that the problem is not NP-easy. In contrast, the related, weaker, and much less
elusive notion of computing a strategy profile approximately satisfying the equilib-
rium conditions is trivially NP-easy. It would be most interesting to establish similar
PosSLP-hardness results for other natural numerical problems in the computational
sciences (e.g., computational physics) for which no efficient and “fool-proof” methods,
even nondeterministic ones, are known but which also do not appear to be NP-hard.

There are several directions for further research suggested by the results that we
have presented. We would very much like to see a resolution of our Conjecture 1, and
we think that it is likely that PosSLP lies at a lower level of the counting hierarchy
than is proved in Theorem 1.3. Perhaps better upper bounds can be presented at
least for the sum-of-square-roots problem. Can better evidence be presented for the
intractibility of PosSLP? Can some important problems in NPR (such as the existential
theory of the reals) be shown to lie in the counting hierarchy?
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Abstract. We present an algorithm with runtime O(k2kn3m) for the following NP-complete
problem [M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Co., San Francisco, 1979, problem GT35]: Given an arbitrary
graph G on n vertices and m edges, can we obtain an interval graph by adding at most k new edges
to G? This resolves the long-standing open question [H. Kaplan, R. Shamir, and R. E. Tarjan,
SIAM J. Comput., 28 (1999), pp. 1906–1922; R. G. Downey and M. R. Fellows, Parameterized
Complexity, Springer-Verlag, New York, 1999; M. Serna and D. Thilikos, Bull. Eur. Assoc. Theory
Comput. Sci. EATCS, 86 (2005), pp. 41–65; G. Gutin, S. Szeider, and A. Yeo, in Proceedings IWPEC
2006, Lecture Notes in Comput. Sci. 4169, Springer-Verlag, Berlin, 2006, pp. 60–71], first posed by
Kaplan, Shamir, and Tarjan, of whether this problem was fixed parameter tractable. The problem
has applications in profile minimization for sparse matrix computations [J. A. George and J. W. H.
Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, Englewood Cliffs,
NJ, 1981; R. E. Tarjan, in Sparse Matrix Computations, J. R. Bunch and D. J. Rose, eds., Academic
Press, 1976, pp. 3–22], and our results show tractability for the case of a small number k of zero
elements in the envelope. Our algorithm performs bounded search among possible ways of adding
edges to a graph to obtain an interval graph and combines this with a greedy algorithm when graphs
of a certain structure are reached by the search.
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1. Introduction and motivation. Interval graphs are the intersection graphs
of intervals of the real line and have a wide range of applications [13]. Connected
with interval graphs is the following problem: Given an arbitrary graph G, what
is the minimum number of edges that must be added to G in order to obtain an
interval graph? This problem is NP-hard [18, 9]. The problem arises in sparse matrix
computations, where one of the standard methods for reordering a matrix to get
as few nonzero elements as possible during Gaussian elimination is to permute the
rows and columns of the matrix so that nonzero elements are gathered close to the
main diagonal [10]. The profile of a matrix is the smallest number of entries that
can be enveloped within off-diagonal nonzero elements of the matrix. Translated to
graphs, the profile of a graph G is exactly the minimum number of edges in an interval
supergraph of G [26]. Originally, physical mapping of DNA was another motivation
for this problem [12].

In this paper, we present an algorithm with runtime O(k2kn3m) for the k-interval
completion problem of deciding whether a graph on n vertices and m edges can be
made into an interval graph by adding at most k edges. A parameterized problem
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with parameter k and input size x that can be solved by an algorithm having runtime
f(k) · xO(1) is called fixed parameter tractable (FPT) (see [7] for an introduction
to fixed parameter tractability and bounded search tree algorithms). The k-interval
completion problem is thus FPT, which settles a long-standing open problem [17, 7, 25,
14]. An early paper (first appearance FOCS ’94 [16]) in this line of research by Kaplan,
Shamir and Tarjan [17] gives FPT algorithms for k-chordal completion, k-strongly
chordal completion, and k-proper interval completion. In all these cases a bounded
search tree algorithm identifies a subgraph which is a witness of nonmembership in
the desired class of graphs, and branches recursively on all possible ways of adding
an inclusion-minimal set of edges that gets rid of the witness. For example, since a
graph is chordal if and only if it has no induced cycle on more than 3 vertices, the
k-chordal completion algorithm [17, 2] takes as witness a subset C of vertices inducing
a d-cycle, 4 ≤ d ≤ k + 3, and branches on all ways of adding the d− 3 edges needed
to make the subgraph induced by C chordal. The existence of an FPT algorithm for
solving k-interval completion was left as an open problem by [17], with the following
explanation for why a bounded search tree algorithm seemed unlikely: “An arbitrarily
large obstruction X could exist in a graph that is not interval but could be made
interval with the addition of any one out of O(|X|) edges.” Our FPT algorithm for this
problem is nevertheless based heavily on applying the bounded search tree technique,
supplemented with a greedy algorithm to circumvent the obstructions mentioned in
the quote.

Let us mention some related work. Ravi, Agrawal, and Klein [24] gave an
O(log2 n)-approximation algorithm for minimum interval completion, subsequently
improved to an O(log n log log n)-approximation by Even, Naor, Rao, and Schieber [8]
and finally to an O(log n)-approximation by Rao and Richa [23]. Heggernes, Suchan,
Todinca, and Villanger showed that an inclusion-minimal interval completion can be
found in polynomial time [15]. Kuo and Wang [20] gave an O(n1.722) algorithm for
minimum interval completion of a tree, subsequently improved to an O(n) algorithm
by Dı́az, Gibbons, Paterson, and Torán [5]. Cai [2] proved that k-completion into any
hereditary graph class having a finite set of forbidden subgraphs is FPT. Some re-
searchers have been misled into thinking that this settled the complexity of k-interval
completion; however, interval graphs do not have a finite set of forbidden subgraphs
[21]. Gutin, Szeider, and Yeo [14] gave an FPT algorithm for deciding if a graph G
has profile at most k + |V (G)|, but the more natural parameterization of the profile
problem is to ask if G has profile at most k + |E(G)|, which is equivalent to the k-
interval completion problem on G. Similar questions, asking if we can add/remove at
most k vertices/edges to a graph such that a certain property is satisfied, have been
investigated in the literature for various graph properties; see, e.g., [3].

Our algorithm for k-interval completion circumvents the problem of large obstruc-
tions (witnesses) by first getting rid of all small witnesses, in particular witnesses for
the existence of an asteroidal triple (AT) of vertices. Three nonadjacent vertices a, b, c
form an AT if there exists a path from any two of them avoiding the neighborhood
of the third. Since a graph is an interval graph if and only if it is both chordal and
AT-free [21], to complete into an interval graph we must destroy witnesses for non-
chordality and witnesses for existence of an AT. Witnesses for nonchordality (chordless
cycles of length > 3) must have size O(k) and do not present a problem. Likewise,
if an AT is witnessed by an induced subgraph S of size O(k) it does not present a
problem, as shown in section 3 of this paper. In section 4, we show that in every
induced subgraph S witnessing the existence of an AT, one of the vertices of the AT
is shallow, meaning that there is a short path from it to each of the other two vertices
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of the AT. We give a branching rule for the case when G has no AT witnessed by
a small subgraph, but it has at least k + 1 shallow vertices. The most difficult case
is when we have a chordal noninterval graph G with no AT having a small witness
and with at most k shallow vertices. For this case we introduce thick AT-witnesses
in section 5, consisting of an AT and all vertices on any chordless path between any
two vertices of the AT avoiding the neighborhood of the third vertex of the AT. We
define minimality for thick AT-witnesses and show that also in every minimal thick
AT-witness one of the vertices of the AT is shallow. In section 6 we show how to care-
fully compute the set C of shallow vertices so that removing C from the graph gives
an interval graph. Based on the cardinality of C, we show how to further continue
branching in a bounded way. When no bounded branching is possible we show that
the instance has enough structure that the best solution is a completion computed in
a greedy manner. The presented algorithm consists of 4 branching rules in addition
to the greedy completion.

2. Preliminaries. We work with simple and undirected graphs G = (V,E), with
vertex set V (G) = V and edge set E(G) = E, and n = |V |, m = |E|. For X ⊂ V ,
G[X] denotes the subgraph of G induced by the vertices in X. We will use G− x to
denote G[V \ {x}] for x ∈ V , and G− S to denote G[V \ S] for S ⊆ V .

For neighborhoods, we use NG(x) = {y | xy ∈ E} and NG[x] = NG(x) ∪ {x}.
For X ⊆ V , NG[X] =

⋃
x∈X NG[x] and NG(X) = NG[X] \ X. We will omit the

subscript when the graph is clear from the context. A vertex set X is a clique if
G[X] is complete, and a maximal clique if no superset of X is a clique. A vertex x is
simplicial if N(x) is a clique.

We will say that a path P = v1, v2, . . . , vp is between v1 and vp, and we call it
a v1, vp-path. The length of P is p. We will use P − vp and P + vp+1 to denote
the paths v1, v2, . . . , vp−1 and v1, v2, . . . , vp, vp+1, respectively. We say that a path P
avoids a vertex set S if P contains no vertex of S. A chord of a cycle (path) is an edge
connecting two nonconsecutive vertices of the cycle (path). A chordless cycle (path)
is an induced subgraph that is isomorphic to a cycle (path). A graph is chordal if it
contains no chordless cycle of length at least 4.

A graph is an interval graph if intervals can be associated with its vertices such
that two vertices are adjacent if and only if their corresponding intervals overlap.
Three nonadjacent vertices form an asteroidal triple (AT) if there is a path between
every two of them that does not contain a neighbor of the third. A graph is AT-free if
it contains no AT. A graph is an interval graph if and only if it is chordal and AT-free
[21]. A vertex set S ⊆ V is called dominating if every vertex not contained in S is
adjacent to some vertex in S. A pair of vertices {u, v} is called a dominating pair
if every u, v-path is dominating. Every interval graph has a dominating pair [4] and
thus also a dominating chordless path.

A clique tree of a graph G is a tree T whose nodes (also called bags) are maximal
cliques of G such that for every vertex v in G, the subtree Tv of T that is induced by
the bags that contain v is connected. A graph is chordal if and only if it has a clique
tree [1]. A clique path Q of a graph G is a clique tree that is a path. A graph G is an
interval graph if and only if has a clique path [11]. An interval graph has at most n
maximal cliques.

Given two vertices u and v in G, a vertex set S is a u, v-separator if u and v
belong to different connected components of G− S. A u, v-separator S is minimal if
no proper subset of S is a u, v-separator. S is a minimal separator of G if there exist
two vertices u and v in G with S a minimal u, v-separator. For a chordal graph G, a
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set of vertices S is a minimal separator of G if and only if S is the intersection of two
neighboring bags in any clique tree of G [1].

An interval supergraph H = (V,E∪F ) of a given graph G = (V,E), with E∩F =
∅, is called an interval completion of G. H is called a k-interval completion of G if
|F | ≤ k. The set F is called the set of fill edges of H. On input G and k, the k-interval
completion problem asks whether there is an interval completion of G with at most k
fill edges.

3. Nonchordality and small simple AT-witnesses: Rules 1, 2.
Branching Rule 1. If G is not chordal, find a chordless cycle C of length at least

4. If |C| > k + 3, answer no; otherwise:
• Branch on the at most 4|C| different ways to add an inclusion minimal set of

edges (of cardinality |C| − 3) between the vertices of C to make C chordal.
It is shown in [17, 2] that there are at most 4|C| minimal sets of edges for making

C chordal. If Rule 1 applies, we branch by creating at most 4|C| recursive calls, each
with new parameter value k− (|C| − 3). The correctness of Rule 1 is well understood
[17, 2]. Let us remark that each invocation of the recursive search tree subroutine will
apply only one of four branching rules. Thus, if Rule 1 applies we apply it and branch,
else if Rule 2 applies we apply it and branch, else if Rule 3 applies we apply it and
branch, else apply Rule 4. Rules 2, 3, and 4 will branch on single fill edges, dropping
the parameter by one. Also Rule 1 could have branched on single fill edges, simply
by taking the set of nonedges of the induced cycle and branching on each nonedge
separately. We continue with Rule 2.

Observation 3.1. Given a graph G, let {a, b, c} be an AT in G. Let P ′
ab be the

set of vertices on a path between a and b in G − N [c], let P ′
ac be the set of vertices

on a path between a and c in G − N [b], and let P ′
bc be the set of vertices on a path

between b and c in G−N [a]. Then any interval completion of G contains at least one
fill edge from the set {cx | x ∈ P ′

ab} ∪ {ax | x ∈ P ′
bc} ∪ {bx | x ∈ P ′

ac}.
Proof. Otherwise {a, b, c} would still be an independent set of vertices with a path

between any two avoiding the neighborhood of the third; in other words it would be
an AT.

We introduce simple AT-witnesses and give a branching rule for small such wit-
nesses.

Definition 3.2. Let {a, b, c} be an AT in a graph G. There are three paths
Pab, Pbc, Pbc, where Pab is the set of vertices on a shortest path between a and b in
G −N [c], Pac is the set of vertices on a shortest path between a and c in G −N [b],
and Pbc is the set of vertices on a shortest path between b and c in G − N [a]. The
induced subgraph Gabc = G[Pab ∪Pbc ∪Pac] of G is called a simple AT-witness of this
AT. We call {Pab, Pbc, Pbc} the core of Gabc.

Observe that a simple AT-witness for {a, b, c} and the mentioned shortest paths
of its core exist if and only if {a, b, c} is an AT. Furthermore, from the definition of
an AT-witness Gabc for {a, b, c}, a, b, and c are vertices of Gabc.

Branching Rule 2. If G is chordal: For each triple {a, b, c} check if {a, b, c} is an
AT. For each AT {a, b, c}, find a simple AT-witness Gabc for it with core {Pab, Pbc,
Pbc}. If there exists an AT {a, b, c}, such that |{cx | x ∈ Pab} ∪ {ax | x ∈ Pbc} ∪ {bx |
x ∈ Pac}| ≤ k + 15 for the simple AT-witness Gabc, then:

• Branch on each of the fill edges in the set {cx | x ∈ Pab}∪{ax | x ∈ Pbc}∪{bx |
x ∈ Pac}.

By Observation 3.1, any interval completion contains at least one edge from the
set branched on by Rule 2.
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Lemma 3.3. Let G be a graph to which Rule 1 cannot be applied (i.e., G is
chordal). There exists a polynomial time algorithm that finds a simple AT-witness
Gabc with core {Pab, Pbc, Pbc}, where |{cx | x ∈ Pab} ∪ {ax | x ∈ Pbc} ∪ {bx | x ∈
Pac}| ≤ k + 15, if such an AT-witness exists.

Proof. A simple AT-witness can be found in polynomial time: for a triple of
vertices, check if there exists a shortest path between any two of them that avoids
the neighborhood of the third vertex. Since shortest paths are used to define simple
AT-witnesses and all shortest paths between a pair of vertices have the same length,
then |{cx | x ∈ Pab} ∪ {ax | x ∈ Pbc} ∪ {bx | x ∈ Pac}| will be the same for all cores
{Pab, Pbc, Pbc} defining simple AT-witnesses for an AT {a, b, c}.

4. Minimal simple AT-witnesses and shallow vertices: Rule 3. In this
section we consider chordal graphs to which Rule 2 cannot be applied, which means
chordal graphs containing no AT of small enough size. We introduce minimal simple
AT-witnesses and show that they each have a shallow vertex.

Definition 4.1. A simple AT-witness Gabc for an AT {a, b, c} is minimal if
Gabc − x is AT-free for any x ∈ {a, b, c}.

Since the vertices of an AT belong to any AT-witness for that AT, it follows
that not every AT has a minimal simple AT-witness. However, clearly, for each AT
{a′, b′, c′}, we can find an AT {a, b, c} that has a minimal simple AT-witness. Hence,
as long as there is an AT in a chordal graph, there is also an AT that has a minimal
simple AT-witness. Interestingly, by the following result of Lekkerkerker and Boland
[21] and since minimal simple AT-witnesses are induced subgraphs, a minimal simple
AT-witness of a chordal graph is either of constant size or it is a member of one of
the two families of graphs shown in Figure 1.

Theorem 4.2 (see ([21])). Let G be a chordal graph with more than 7 vertices.
Then G contains an AT, and no induced subgraph of G contains an AT, if and only
if G belongs to the family of graphs shown in Figure 1.

b

c

v0 v1 vr
a b

c

v0 v1 vr
a

Fig. 1. These two families of graphs (r ≥ 1) are the only minimal simple AT-witnesses of
nonconstant size that survive Rules 1 and 2.

Since the chordal graphs that we study in this section contain no AT of size
less than 15, the minimal simple AT-witnesses that we encounter from now on will
always be one of the two types given in Figure 1. (The reader might be interested to
know that, by the results of Lekkerkerker and Boland [21], any other possible minimal
AT-witness in a chordal graph is of size exactly 7 and is one of two different graphs.)

Definition 4.3. Let {a, b, c} be an AT in a chordal graph G. Vertex c is called
shallow if shortest a, c-paths and shortest b, c-paths are of length at most 4.

Observation 4.4. Let G be a graph to which neither Rule 1 (i.e., G is chordal) nor
Rule 2 can be applied. Let Gabc be a minimal simple AT-witness for an AT {a, b, c}
in G. Then the following statements are true.

• Each of a, b, c is a simplicial vertex in Gabc.
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• For any x ∈ {a, b, c}, Gabc−x is an interval graph, and in this interval graph,
{a, b, c} \ {x} is a dominating pair.

• Let {Pab, Pbc, Pac} be the core of Gabc, where |Pab| ≥ |Pbc| ≥ |Pac|. If |Pab| ≥
6, then c is shallow.

Proof. Since neither Rule 1 nor Rule 2 apply to G and Gabc is minimal, then by
Theorem 4.2 we know that Gabc belongs to one of the families in Figure 1. Each of
a, b, c is either the end vertex of the long path or the vertex at the bottom for each
of the graphs in Figure 1. Hence the observation follows. The vertex at the bottom
is the shallow vertex.

We are ready to give Branching Rule 3.
Branching Rule 3. Let C(G) be the set of vertices of G each of which is shallow

in some AT of G. This rule applies if Rules 1 and 2 do not apply and |C(G)| > k,
in which case we let B be a subset of C(G) with |B| = k + 1. For each c ∈ B find a
simple AT-witness Gabc with core {Pab, Pbc, Pac}, where c is shallow.

• For each c ∈ B, branch on the at most 8 fill edges {ax | x ∈ Pbc} ∪ {bx | x ∈
Pac}.

• Branch on the at most |B|(|B| − 1)/2 possible fill edges {uv | u, v ∈ B and
uv 
∈ E}.

Observe that Rule 3 only needs a subset of C of size k+1, and thus an algorithm
can stop the computation of C when this size is reached.

Lemma 4.5. If Rule 3 applies to G, then any k-interval completion of G contains
a fill edge which is branched on by Rule 3.

Proof. In a k-interval completion we cannot add more than k fill edges. Thus,
since |B| = k+1 any k-interval completion H of G either contains a fill edge between
two vertices in B (and all these are branched on by Rule 3), or there exists a vertex
c ∈ B with no fill edge incident to it (since the opposite would require k+1 fill edges).
If c ∈ B does not have a fill edge incident to it, then by Observation 3.1 one of the
edges in {ax | x ∈ Pbc}∪{bx | x ∈ Pac} must be a fill edge (and all these are branched
on for each c ∈ B by Rule 3).

Lemma 4.6. Let G be a graph to which Rule 1 and Rule 2 cannot be applied.
There exists a polynomial time algorithm that finds the unique maximal set C(G) of
shallow vertices in G, and applies Rule 3 if |C(G)| ≥ k + 1.

Proof. A minimal simple AT-witness can be found in polynomial time: for a triple
of vertices, check if there exists a shortest path between any two of them that avoids
the neighborhood of the third vertex. If these three paths exist and induce a minimal
simple AT-witness for the triple, add the shallow vertex to the set C(G). Notice that
every vertex that is shallow in some minimal simple AT-witness will be added to the
set C(G). Rule 3 is used on the set C(G), when vertex number k + 1 is added.

5. Thick AT-witnesses. In this section we introduce thick AT-witnesses and
show that minimal thick AT-witnesses have a shallow vertex. These shallow vertices
will be important for the fourth and final rule given in the next section.

We now consider graphs G to which none of the Rules 1, 2, or 3 can be applied.
This means that G is chordal (Rule 1), the set C(G) of shallow vertices in G has
cardinality at most k (Rule 3), implying that (the connected components of) G[C(G)]
is an interval graph (Rule 2).

Definition 5.1. Let {a, b, c} be an AT in a chordal graph G, and let W = {w |
w be a vertex of a chordless a, b-path, a, c-path, or b, c-path in G}. The graph GTabc =
G[W ] is the (unique) thick AT-witness for the AT {a, b, c}.

We denote the neighborhoods of a, b, and c in GTabc respectively by Sa, Sb, and
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Sc, since these are minimal separators in GTabc and also in G by the following two
observations.

Observation 5.2. Let GTabc be a thick AT-witness in a chordal graph G. For any
x ∈ {a, b, c}, x is a simplicial vertex and Sx = NGTabc

(x) is a minimal separator in
GTabc.

Proof. We prove the observation for x = a; the other possibilities are symmetric.
Because of the existence of a shortest b, c-path avoiding Sa, it follows that b and c
are contained in the same connected component of GTabc \ Sa. Every neighbor of a
in GTabc appears in a chordless path from a to either b or c or both. By the fact that
b and c appear in the same connected component of GTabc \ Sa and that neighbor of
a in GTabc appears in a chordless path from a to either b or c, we can conclude that
Sa is both a minimal a, b-separator and a minimal a, c-separator. In a chordal graph,
every minimal separator is a clique [6]. Hence a is simplicial in GTabc.

Observation 5.3. Let GTabc be a thick AT-witness in a chordal graph G. Then
the set of minimal separators of GTabc are exactly the set of minimal a, b-separators,
a, c-separators, and b, c-separators of G.

Proof. Let S be a minimal a, b-separator in G. Note that S ⊆ GTabc. There exist
two connected components Ca and Cb of G − S, containing, respectively, a and b,
such that NG(Ca) = NG(Cb) = S. For any vertex z ∈ S we can now find a chordless
shortest path in G from z to each of a and b, where every intermediate vertex is
contained in, respectively, Ca and Cb. By joining these two paths, we get a chordless
path from a to b that contains z. Since this holds for any vertex in S, it follows by the
way we defined GTabc that any minimal a, b-separator of G is a minimal a, b-separator
of GTabc. The argument can be repeated with a, c and b, c to show that every minimal
a, c-separator or b, c-separator of G is also a minimal separator of GTabc.

Every minimal separator of GTabc separates two simplicial vertices appearing in
two different leaf bags of any clique tree of GTabc. Since a, b, c are the only simplicial
vertices in GTabc (every other vertex being an internal vertex of a chordless path),
every minimal separator of GTabc is a minimal a, b-separator, b, c-separator, or a, c-
separator. Let S be a minimal a, b-separator in GTabc. Vertex set S is a subset of a
minimal a, b-separator of G, since the same chordless paths exist in G. But S cannot
be a proper subset of a minimal a, b-separator of G, since every minimal a, b-separator
of G is a minimal a, b-separator in GTabc, and thus S would not be a minimal separator
in GTabc otherwise. The argument can be repeated with a, c and b, c.

Definition 5.4. A thick AT-witness GTabc is minimal if GTabc − x is AT-free
for every x ∈ {a, b, c}.

Observation 5.5. Let GTabc be a minimal thick AT-witness in a chordal graph G.
Then GTabc − c is an interval graph, and in this interval graph {a, b} is a dominating
pair.

Proof. The graph G′ = GTabc−c is by definition an interval graph, since GTabc is a
minimal thick AT-witness. For a contradiction assume that {a, b} is not a dominating
pair, and thus there exists a path P ′

ab from a to b in G′ − N [y] for some vertex
y ∈ V (G′) \ {a, b}. Let Q be a clique path of G′. Vertex y does not appear in any bag
of Q that contains a or b, and it does not appear in any bags between the subpaths Qa

and Qb of Q. Let us without loss of generality assume that Qa appears between Qy

and Qb in Q. We show that y is then not in any chordless path between any pair of
a, b, c, giving the contradiction. Due to the above assumptions, y is not contained in
the component Cb of G′ −N [a] that contains b. Furthermore, a is a simplicial vertex
by Observation 5.2, and P ′

ab contains vertices from NG′(a); thus y 
∈ NG′(a) since P ′
ab
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would not avoid the neighborhood of y otherwise. The path Pbc− c is contained in Cb

since it contains no vertex of N [a], and thus y is not adjacent to any vertex in Pbc− c.
We know that cy 
∈ E(GTabc), since by Observation 5.2, NGTabc

(c) is a clique, and
thus y would be adjacent to the neighbor of c in Pbc if cy were an edge in E(GTabc).
Now we have a contradiction since y is not in any chordless path between any pair of
a, b, c.

Lemma 5.6. Let G be a graph to which neither Rule 1 nor Rule 2 can be applied,
and let GTabc be a minimal thick AT-witness in G where c is shallow. Then for every
vertex u ∈ Sc we have Sa ∪ Sb ⊆ N [u].

Proof. Let E′ = E(GTabc), and let us on the contrary and without loss of gener-
ality assume that c′a′ 
∈ E′ for c′ ∈ Sc and a′ ∈ Sa. Let Pab = (a = v1, v2, . . . , vr =
b), Pbc, and Pac be the shortest paths used to define a simple AT-witness for {a, b, c}.
We will show that either {a′, b, c} or {a, vr−1, c} is an AT in a subgraph of GTabc,
contradicting its minimality.

Vertex set {a′, b, c} is an independent set since cb 
∈ E′, a′b 
∈ E′ due to |Pab| >
15 − 8 (Rule 2), and a′c 
∈ E′ because c is simplicial in GTabc, and thus c′a′ ∈ E′ if
a′c ∈ E′. Either v2 = a′, or a′v2 ∈ E′ since a is simplicial in GTabc. Pab − a + a′ is
a path from a′ to b that avoids the neighborhood of c. In the same way Pac − a + a′

is a path from a′ to c, and since we have already seen that a′b 
∈ E′ this path avoids
the neighborhood of b. By Observation 5.5, c′ is adjacent to some vertex on the path
Pab = (a = v1, v2, . . . , vr = b). If c′ is adjacent to some vertex vi where i > 3, then
there is a path c, c′, vi, . . . , vr = b that avoids the neighborhood of a′, and we have
a contradiction since a′, b, c would be an AT in GTabc − a. We can therefore assume
that there is a j ∈ {2, 3} such that vjc

′ ∈ E′, and that there exists no vic
′ ∈ E′

for any i > 3. The set {a, vr−1, c} is an independent set, since cvr−1, avr−1 
∈ E′.
The path a, v2, . . . , vr−1 avoids the neighborhood of c, the path c, c′, vj , . . . , a avoids
the neighborhood of vr−1, and Pbc − b + vr−1 is a path from c to vr−1 that avoids
the neighborhood of a, since b is simplicial in GTabc. This is a contradiction since
GTabc − b contains the AT {a, vr−1, c}.

Lemma 5.7. Let G = (V,E) be a graph to which neither Rule 1 nor Rule 2 can
be applied. Let GTabc be a minimal thick AT-witness in G where c is shallow. Let Cc

be the connected component of G−Sc that contains c. Then every vertex of Cc has in
G the same set of neighbors Sc outside Cc; in other words ∀u ∈ Cc : NG(u)\Cc = Sc.

Proof. By definition NG(u) \ Cc ⊆ Sc. Let us assume for a contradiction that
ux 
∈ E for some x ∈ Sc and u ∈ Cc. Since Cc is a connected component there exists
a path from u to c inside Cc. Let u′, c′ be two consecutive vertices on this path, such
that Sc ⊆ NG(c′) and u′x′ 
∈ E for some x′ ∈ Sc. By Lemma 5.6 x′ creates a short
path from a to b that avoids the neighborhood of u′, and by using Pac− c and Pbc− c
and the vertices c′ and u′ we can create short paths from a to u′ and from b to u′

that avoid the neighborhoods of b and a, respectively. This is now a contradiction,
since {a, b, u′} is an AT with a simple AT-witness where the number of branching fill
edges are 5 for the path a, a′, x′, b′, b, 5 for Pac − c and c′, u′, and 5 for Pbc − c and
c′, u′, giving a total of 15 branching edges.

The following simple observations are needed for the proof of Lemma 5.10.

Observation 5.8. A vertex v is simplicial only if v is an end vertex of every
chordless path that contains v.

Proof. Any vertex that appears as a nonend vertex in a chordless path has two
neighbors that are not adjacent.

Observation 5.9. Let GTabc be a minimal thick AT-witness in a graph G to which



INTERVAL COMPLETION IS FIXED PARAMETER TRACTABLE 2015

neither Rule 1 nor Rule 2 can be applied. Then at least one of the vertices in the AT
{a, b, c} is shallow, and there exists a minimal simple AT-witness Gabc for {a, b, c},
where V (Gabc) ⊆ V (GTabc).

Proof. Let Pab, Pac, Pbc be shortest chordless paths contained in GTabc, and let
Gabc be defined by Pab, Pac, Pbc. It is clear that GTabc is minimal only if Gabc is
minimal. By Observation 4.4, Rule 2, and the fact that Gabc is a minimal AT-witness
for {a, b, c}, we know that at least one of the vertices in {a, b, c} is shallow.

Lemma 5.10. Let G be a graph to which neither Rule 1 nor Rule 2 can be
applied, and let GTabc be a thick AT-witness in G. Then there exists a minimal thick
AT-witness GTxyz in G, where V (GTxyz) ⊆ V (GTabc) and z is shallow, such that
z ∈ {a, b, c}.

Proof. GTxyz will be obtained from GTabc by deleting one of the simplicial vertices
in the AT that defines GTabc, and repeat this until a minimal thick AT-witness GTxyz

is obtained. Note that only neighbors of the deleted vertex can become simplicial after
each deletion, by Observation 5.8. As a result, the deleted vertices induce at most
three connected components. Actually the number of components will be exactly
three, since otherwise the connected components contain a chordless path between
two of the vertices in {x, y, z} which is a contradiction to the definition of a minimal
thick AT-witness. Thus, each connected component is adjacent to one of the vertices
x, y, z. By Observation 5.9 one of the vertices x, y, z is shallow. Let us without loss
of generality assume that z is the shallow vertex in GTxyz. By Lemma 5.3, minimal
separators of GTxyz are also minimal separators of GTabc, so let us assume without
loss of generality that z and c are contained in the same connected component of
GTabc −NGTxyz

(z). Notice that z and c might be the same vertex. By Lemma 5.7, c
is shallow in the minimal thick AT-witness GTxyc.

Like Rules 2 and 3, Rule 4 will branch on single fill edges, but it will also consider
minimal separators, based on the following two basic observations.

Observation 5.11. If G has a minimal thick AT-witness GTabc in which Pac and
Pbc are shortest a, c and b, c-paths avoiding N(b) and N(a), respectively, then any in-
terval completion of G either contains a fill edge from the set {bx | x ∈ Pac}∪{ax | x ∈
Pbc} or contains one of the edge sets {{cx | x ∈ S} | S is a minimal a, b-separator in
GTabc}.

Proof. By Observation 3.1, we know that at least one of the edges in {ax | x ∈
Pbc}∪{bx | x ∈ Pac}∪{cx | x ∈ Pab} for the paths Pab, Pac, Pbc defined in the proof of
Observation 5.9, is a fill edge of any interval completion of G. If an interval completion
H does not contain any fill edge from the set {bx | x ∈ Pac} ∪ {ax | x ∈ Pbc}, then
H contains at least one fill edge from the set {cx | x ∈ P ′

ab}, where P ′
ab is any

chordless a, b-path in G that avoids the neighborhood of c. Thus, NH(c) contains a
minimal a, b-separator in G (which by Observation 5.3 is also a minimal a, b-separator
in GTabc) since every chordless and thus every a, b-path in G−N [c] contains a vertex
of NH(c).

Observation 5.12. Let G be a graph to which neither Rule 1 nor Rule 2 can be
applied, and let GTabc be a minimal thick AT-witness in G where c is shallow. Then
Sc ⊂ S for every minimal a, b-separator S different from Sa and Sb.

Proof. Let S be a minimal a, b-separator different from Sa and Sb. No minimal
a, b-separator contains another minimal a, b-separator as a subset; thus there exists
a vertex a′ ∈ Sa \ S and a vertex b′ ∈ Sb \ S. S is then also a minimal a′, b′-
separator because of the edges aa′ and bb′. It then follows from Lemma 5.6 that
Sc ⊂ N(a′) ∩N(b′), and thus Sc ⊂ S.
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6. Partitioning the shallow vertices: Rule 4. In this section we present the
fourth and final rule and prove correctness of the resulting search tree algorithm. We
start by detailing the computation of the set C(G) of shallow vertices which will give
us a partition of C(G) that we will use in our Branching Rule 4.

Definition 6.1. Given a graph G to which Rules 1 and 2 do not apply, we
compute a set C(G) = C1 ∪C2 ∪ · · · ∪Cr of vertices that are shallow in some minimal
thick AT-witness, with G \ C(G) = Rr an interval graph, as follows:

R0 := G; i := 0; C(G) := ∅;
while Ri is not an interval graph do

i := i + 1;
Find GTaibici a minimal thick AT-witness in Ri−1 with ci shallow;
Let Ci be the connected component of Ri−1 −NGTaibici

(ci) that contains ci;

for each c ∈ Ci do GTaibic := GTaibici − ci + c;
Ri := Ri−1 − Ci;
C(G) := C(G) ∪ Ci;

end-while
r := i

The minimal thick AT-witness GTaibici is found by first finding an AT {a, b, c},
then removing simplicial vertices different from a, b, c according to Observation 5.8 to
get a thick AT-witness, and then applying the procedure in the proof of Lemma 5.10.

A priori we have no guarantee that there are no edges between a vertex in Ci and
a vertex in Cj , for some i 
= j, but when |C(G)| ≤ k (which is ensured by Rule 3) this
indeed holds, as shown in the following lemma.

Lemma 6.2. Let G = (V,E) be a graph to which none of Rules 1, 2, 3 can be
applied, and let C(G) = C1 ∪ C2 ∪ · · · ∪ Cr from Definition 6.1. Then Ci induces an
interval graph that is a connected component of G[C(G)], for each 1 ≤ i ≤ r.

Proof. First, |Ci| ≤ k since Rule 3 does not apply, and since Rules 1, 2 do not
apply, it must induce an interval graph. To argue that it is a connected component,
note first that by definition G[Ci] is connected and Ci ∩ Cj = ∅ for any i 
= j. For a
contradiction we assume that cz ∈ E for some c ∈ Ci and z ∈ Cj with i < j. Notice
that cz ∈ E implies that z ∈ Sc. Let GTabc be the minimal thick AT-witness in Ri−1

with c the shallow vertex and Sc = NGTabc
(c), and likewise let GTxyz be the minimal

thick AT-witness in Rj−1 with z shallow and Sz = NGTxyz
(z). Let Pab be a path from

a to b in GTabc \N(c). There are now two cases.

Case I: There is a vertex w ∈ Pab∩Sz. Note that Sc and Sz are minimal separators
in the chordal graphs Ri−1 and Rj−1, respectively, and thus by Observation 5.3 Sc

and Sz are cliques [6]. Thus, since cw 
∈ E we must have c 
∈ Sz. But then we have
c and z in the same component Dz of G \ Sz. By Lemma 5.7 c and z must therefore
have the same neighbors outside Dz. But this contradicts the fact that zw ∈ E while
cw 
∈ E.

Case II: Pab∩Sz = ∅. Let Dz be the connected component of G\Sz that contains
z. By Observation 5.5 GTabc \{c} is an interval graph where a, b is a dominating pair;
thus zw ∈ E for some w ∈ Pab since z ∈ Sc and therefore V (Pab) ⊆ Dz.

Since c is shallow we know that |Pac| + |Pbc| ≤ 8, and since Rule 2 cannot be
applied we know that |Pab|+ |Pac|+ |Pbc| ≥ k + 16. Thus we have at least k + 16− 8
vertices in Pab and thus |Dz| ≥ |Pab| > k. Assuming we can show the subset-property
Dz ⊆ C1 ∪ C2 ∪ · · · ∪ Cj we are done with the proof since this will lead to the
contradiction k < |Dz| ≤ |C1 ∪ C2 ∪ · · · ∪ Cj | ≤ |C(G)| ≤ k. Let us prove the subset-
property. G has a perfect elimination ordering starting with the vertices of C1, as
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these vertices are a component resulting from removing a minimal separator from G.
By induction, we have that G has a perfect elimination ordering α starting with the
vertices in C1 ∪ C2 ∪ · · · ∪ Cj−1. For a contradiction assume there exists a vertex
t ∈ Dz \ (C1 ∪ C2 ∪ · · · ∪ Cj). As t ∈ Dz there is a shortest chordless t, z-path Ptz

in Dz. The edge tz 
∈ E since this would make t a member of Cj (as t 
∈ Cj). Only
vertices in C1 ∪ C2 ∪ · · · ∪ Cj−1 are removed from the graph, and these separate z
from t in G[Dz] (since t 
∈ Cj). Let s be the lowest numbered vertex in the ordering
α that belongs to the path Ptz. This is now a contradiction, since a nonend vertex of
a chordless path cannot be simplicial if two adjacent vertices eliminated later in the
perfect elimination ordering are nonadjacent.

Rule 4 will branch on a bounded number of single fill edges and it will also
compute a greedy completion by choosing for each shallow vertex a minimal separator
minimizing fill and making the shallow vertex adjacent to all vertices of that separator.
We will prove that if none of the single fill edges branched on in Rule 4 are present
in any k-interval completion, then the greedy completion gives an interval completion
with the minimum number of edges. The greedy choices of separators are made as
follows:

Definition 6.3. Let G be a graph to which none of Rules 1, 2, 3 can be applied.
Let Definition 6.1 give C(G) = C1 ∪C2 ∪ · · ·∪Cr, representative vertices c1, c2, . . . , cr
and minimal thick AT-witnesses GTaibici and graphs G = R0 ⊃ R1 ⊃ · · · ⊃ Rr, with
Rr interval. Let Mi for i = 1, 2, . . . , r be a minimal ai, bi-separator S in GTaibici

different from Sai and Sbi and N(Cj) for all 1 ≤ j ≤ r, satisfying S ∩ C(G) = ∅ and
minimizing |S \N(Ci)|. If no such S exists, define Mi = null.

Lemma 6.4. If Mi 
= null, then Mi is a minimal separator in Rr.

Proof. The vertex set Mi is a minimal separator in GTaibici by construction, and
since GTaibici is a subgraph of the chordal graph Ri it is by Observation 5.3 also a
minimal separator of Ri. We prove that Mi is also a minimal separator in Rj for any
i + 1 ≤ j ≤ r by induction on j. Recall that Rj is obtained by removing Cj from
Rj−1, where Cj is a component of Rj−1 \ Sci for a minimal separator Sci of Rj−1,
and Sci = N(Cj) by Lemma 5.7. Consider a clique tree of Rj−1 and observe that any
minimal separator of Rj−1 that is not a minimal separator of Rj either is equal to
N(Cj) or contains a vertex of Cj . Finally, note that the minimal separator Mi has
been chosen so that it is not of this type.

Branching Rule 4. Rule 4 applies if none of Rules 1, 2, 3 apply, in which case
we compute, as in Definitions 6.1 and 6.3, C1, C2, . . . , Cr (which are connected com-
ponents of G[C(G)] by Lemma 6.2), the minimal thick AT-witnesses GTaibic with c
shallow for each c ∈ Ci, and M1, . . . ,Mr (which are minimal separators of Rr by
Lemma 6.4). For each 1 ≤ i ≤ r and each c ∈ Ci choose a′i ∈ Sai

\Sc and b′i ∈ Sbi \Sc

and find Paic and Pbic (shortest paths in GTaibic avoiding N(bi) and N(ai), respec-
tively, of length at most 4 by Observation 5.9). For each pair 1 ≤ i 
= j ≤ r, choose a
vertex vi,j ∈ N(Cj) \N(Ci) (if it exists).

• For 1 ≤ i ≤ r and c ∈ Ci, branch on the at most 8 fill edges {aix | x ∈
Pbic} ∪ {bix | x ∈ Paic} and also on the 2 fill edges {ca′i, cb′i}.

• Branch on the at most |C(G)|(|C(G)|− 1)/2 fill edges {uv | u, v ∈ C(G) and
uv 
∈ E}.

• Branch on the at most |C(G)|r fill edges
⋃

1≤i �=j≤r{cvi,j | c ∈ Ci}.
• Finally, compute H = (V, E ∪

⋃
1≤i≤r{cx | c ∈ Ci and x ∈ Mi}) and check if

it is a k-interval completion of G (note that we do not branch on H).

Lemma 6.5. If G has a k-interval completion, and Rules 1, 2, and 3 do not apply
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to G, and no k-interval completion of G contains any single fill edge branched on by
Rule 4, then the graph H, which Rule 4 obtains by adding fill edges from every vertex
in Ci to every vertex in Mi for every 1 ≤ i ≤ r, is a k-interval completion of G.

Proof. By Observation 5.11, for each c ∈ Ci either one of the edges in {aix | x ∈
Pbic} ∪ {bix | x ∈ Paic} is a fill edge (and all these are branched on by Rule 4) or
else the k-interval completion contains the edge set {cx | x ∈ S} for some minimal
ai, bi-separator S in GTaibic. Such an edge set in a k-interval completion is one of four
types (listed below) depending on the separator S used to define it. For each type and
any c ∈ Ci we argue that Rule 4 considers it. Observe that N(Ci) \ Ci = N(c) \ Ci

by Lemma 5.7, and thus the fill edges from c will go to vertices in S \N(Ci), which
is nonempty since there is an ai, bi-path avoiding N(c). We now give the four types
of minimal separators S and show that the first three are branched on by a single fill
edge:

1. S ∩ C(G) 
= ∅. Since N(Ci) ∩ C(G) = ∅ by Lemma 6.2, we have in this case
a fill edge between two vertices in C(G) (between c ∈ Ci and a vertex in
C(G) ∩ S \N(Ci)), and all these are branched on by Rule 4.

2. S = Sai
or S = Sbi , where Sai , Sbi , Sc defined by GTaibic. We found in Rule

4 a pair of vertices a′i ∈ Sai \ Sc and b′i ∈ Sbi \ Sc and branched on the fill
edges ca′i and cb′i.

3. S = N(Cj) for some 1 ≤ j ≤ r. If S = N(Cj), then N(Cj) \N(Ci) 
= ∅ and
we found in Rule 4 a vertex vi,j ∈ N(Cj) \ N(Ci) and branched on the fill
edge cvi,j .

4. S is none of the three types above. Note that Mi was chosen in Definition 6.3
by looping over all minimal ai, bi-separators S in GTaibici (which by Lemma
5.7 are exactly the minimal ai, bi-separators of GTaibic) satisfying S∩C(G) =
∅, S 
= Sa, S 
= Sb, and S 
= N(Cj) for any j. Thus, of all separators of this
fourth type, Mi is the one minimizing the fill.

The assumption is that G has a k-interval completion but no single edge branched
on by Rule 4 is present in any k-interval completion. This means that only separators
of the fourth type are used in any k-interval completion. Since H added the minimum
possible number of fill edges while using only separators of the fourth type, any
interval completion of G must add at least |E(H) \ E(G)| edges. It remains to show
that H is an interval graph. H is constructed from an interval graph Rr and the
components G[C1], . . . , G[Cr] of G[C(G)], which are interval graphs by Lemma 6.2,
and M1, . . . ,Mr which are minimal separators of Rr by Lemma 6.4. Since Mi 
= Sai

and Mi 
= Sbi we have by Observation 5.12 that Sc = N(Ci) ⊂ Mi so that adding
all edges between Ci and Mi for 1 ≤ i ≤ r gives the graph H. We show that H is
an interval graph by induction on 0 ≤ i ≤ r. Let H0 = Rr and let Hi for i ≥ 1
be the graph we get from Hi−1 and Ci by making all vertices of Ci adjacent to all
vertices of the minimal separator Mi of Rr. H0 is an interval graph by induction, and
its minimal separators include all minimal separators of Rr. If (K1,K2, . . . ,Kq) is a
clique path of Hi−1 with Mi = Kj ∩Kj+1, and (K ′

1,K
′
2, . . . ,K

′
p) is a clique path of

G[Ci], then (K1,K2, . . . ,Kj ,K
′
1∪Mi,K

′
2∪Mi, . . . ,K

′
p∪Mi,Kj+1, . . . ,Kq) is a clique

path of Hi, and hence Hi is an interval graph. Finally, observe that the minimal
separators of Hi−1 and hence of Rr are also minimal separators of Hi.

Theorem 6.6. The search tree algorithm applying Rules 1, 2, 3, and 4 in that
order decides in O(k2kn3m) time whether an input graph G on n vertices and m
edges can be completed into an interval graph by adding at most k edges.

Proof. At least one of the rules will apply to any graph which is not interval.
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The correctness of Rule 1 is well understood [17, 2]; that of Rules 2 and 3 follows by
Observations 3.1 and 5.11 and of Rule 4 by Lemma 6.5. Each branching of Rules 2,
3, and 4 adds a single fill edge and drops k by one. As already mentioned, Rule 1
could also have added a single fill edge in each of its then at most k2 branchings. The
height of the tree is thus no more than k, before k reaches 0 and we can answer “no.”
If an interval graph is found we answer “yes.”

Let us argue for the runtime. The graph we are working on never has more than
m + k edges. In Rule 1 we decide in linear time if the graph has a large induced
cycle. In Rule 2 we may have to try all triples when searching for an AT with a
small simple AT-witness, taking O(n3(m+ k)) time. In Rule 3 and 4 we need to find
a minimal thick AT-witness at most k + 1 times. As observed earlier, the minimal
thick AT-witness is found by first finding an AT {a, b, c}, which can be done in time
O(m + k) since G is a chordal graph [19], then remove simplicial vertices different
from a, b, c to find the thick AT-witness, and then make it minimal. Using a clique
tree we find in this way a single minimal thick AT-witness in time O(n3) and at most
k of them in time O(n3k). Hence each rule takes time at most O(n3(m+ k)) and has
branching factor at most k2 (e.g., in Rule 1 and also in Rule 3 when branching on all
fill edges between pairs of shallow vertices). The height of the search tree is at most
k and the number of nodes therefore at most k2k. We can assume k ≤ n ≤ m since
otherwise a brute-force algorithm easily solves minimum interval completion in n2n

steps. Thus each rule takes time O(n3m) for total runtime O(k2kn3m).

7. Concluding remarks. We have shown that k-interval completion is FPT.
The runtime of our algorithm can probably be improved somewhat, at the expense
of much more complicated data structures. In an earlier version of this paper, in the
STOC 2007 proceedings, we asked if there was a hereditary graph class recognizable
in polynomial time for which the k-completion problem into this graph class was not
FPT. This question has been answered [22], since for the complements of wheel-free
graphs the k-completion problem is W [2]-complete. It is still an open problem whether
the complexity of k-completions into perfect graphs is FPT.

An alternative equivalent definition of the complexity class FPT relates to ker-
nelization. In this formulation a parameterized problem is FPT if there exists a
polynomial-time algorithm that for any instance outputs an equivalent “kernelized”
instance whose size is a function of the parameter only. The quest for the smallest
possible kernel size is orthogonal to the quest for the fastest possible FPT algorithm.
The FPT algorithm given here for k-interval completion implies that this problem
has an exponential-sized kernel. We leave as an open problem whether k-interval
completion has a polynomial-sized kernel.
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OPTIMIZING SCHEMA LANGUAGES FOR XML: NUMERICAL
CONSTRAINTS AND INTERLEAVING∗

WOUTER GELADE† , WIM MARTENS‡, AND FRANK NEVEN§

Abstract. The presence of a schema offers many advantages in processing, translating, querying,
and storage of XML data. Basic decision problems such as equivalence, inclusion, and nonemptiness
of intersection of schemas form the basic building blocks for schema optimization and integration,
and algorithms for static analysis of transformations. It is thereby paramount to establish the exact
complexity of these problems. Most common schema languages for XML can be adequately modeled
by some kind of grammar with regular expressions at right-hand sides. In this paper, we observe that,
apart from the usual regular operators of union, concatenation, and Kleene-star, schema languages
also allow numerical occurrence constraints and interleaving operators. Although the expressiveness
of these operators remains within the regular languages, the presence or absence of these operators
has a significant impact on the complexity of the basic decision problems. We present a complete
overview of the complexity of the basic decision problems for DTDs, XSDs, and Relax NG with
regular expressions incorporating numerical occurrence constraints and interleaving. We also discuss
chain regular expressions and the complexity of the schema simplification problem incorporating the
new operators.

Key words. XML schema languages, complexity, optimization, regular expressions
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1. Introduction. XML is the lingua franca for data exchange on the Inter-
net [1]. Within applications or communities, XML data is usually not arbitrary but
adheres to some structure imposed by a schema. The presence of such a schema not
only provides users with a global view on the anatomy of the data, but, far more
importantly, it enables automation and optimization of standard tasks such as (i)
searching, integration, and processing of XML data (cf., e.g., [12, 23, 26, 44]), and (ii)
static analysis of transformations (cf., e.g., [2, 17, 29, 34]). Decision problems such as
equivalence, inclusion, and nonemptiness of intersection of schemas, hereafter referred
to as the basic decision problems, constitute essential building blocks in solutions for
the just mentioned optimization and static analysis problems. Additionally, the basic
decision problems are fundamental for schema minimization (cf., e.g., [10, 30]). Be-
cause of their widespread applicability, it is therefore important to establish the exact
complexity of the basic decision problems for the various XML schema languages.

The most common schema languages for XML are DTD, XML Schema [39], and
Relax NG [9], and these can be modeled by grammar formalisms [33]. In particu-
lar, DTDs correspond to context-free grammars with regular expressions (REs) at
right-hand sides, while Relax NG is abstracted by extended DTDs (EDTDs) [35]
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shop → regular∗ & discount-box∗

regular → cd
discount-box → cd[10,12] price
cd → artist & title & price

Fig. 1.1. A sample schema using the numerical occurrence and interleave operators. The
schema defines a shop that sells CDs and offers a special price for boxes of 10–12 CDs.

or, equivalently, unranked tree automata [5], defining the regular unranked tree lan-
guages. While XML Schema is usually abstracted by unranked tree automata as well,
recent results indicate that XSDs correspond to a strict subclass of the regular tree
languages and are much closer to DTDs than to tree automata [27]. In fact, they can
be abstracted by single-type EDTDs. As detailed in [28], the relationship between
schema formalisms and grammars provides direct upper and lower bounds for the
complexity of the basic decision problems.

A closer inspection of the various schema specifications reveals that the above
abstractions in terms of grammars with regular expressions is too coarse. Indeed,
in addition to the conventional regular expression operators such as concatenation,
union, and Kleene-star, the XML Schema and the Relax NG specifications allow two
other operators as well:

(1) Both the XML Schema and the Relax NG specifications allow a certain form of
unordered concatenation: the ALL and the interleave operator, respectively.
This operator is actually the resurrection of the &-operator from SGML DTDs
that was excluded from the definition of XML DTDs. Although there are
restrictions on the use of ALL and interleave, we consider the operator in
its unrestricted form. We refer by RE(&) to such regular expressions with
the interleaving operator.

(2) The XML Schema specification allows us to express numerical occurrence
constraints which define the minimal and maximal number of times a regular
construct can be repeated. We refer by RE(#) to such regular expressions
with numerical occurrence constraints.

We illustrate these additional operators in Figure 1.1. Their formal definition is
given in section 2. Although the new operators can be expressed by the conventional
regular operators, they cannot do so succinctly [14], which has severe implications for
the complexity of the basic decision problems.

The goal of this paper is to study the complexity of the basic decision problems for
DTDs, XSDs, and Relax NG with regular expressions extended with interleaving and
numerical occurrence constraints. The latter class of regular expressions is denoted
by RE(#,&). As observed in section 5, the complexity of inclusion and equivalence of
RE(#,&) expressions (and subclasses thereof) carries over to DTDs and single-type
EDTDs. We therefore first establish the complexity of the basic decision problems for
RE(#,&) expressions and frequently occurring subclasses. These results are summa-
rized in Table 1.1 and Table 4.1. Of independent interest, we introduce NFA(#,&)s,
an extension of NFAs with counter and split/merge states for dealing with numerical
occurrence constraints and interleaving operators. Finally, we revisit the simplifica-
tion problem introduced in [27] for schemas with RE(#,&) expressions. This problem
is defined as follows: given an extended DTD, can it be rewritten into an equivalent
DTD or a single-type EDTD?
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Table 1.1

Overview of new and known complexity results. All results are completeness results. The new
results are printed in bold.

inclusion equivalence intersection

RE pspace [41] pspace [41] pspace [24]
RE(&) expspace [31] expspace [31] PSPACE

RE(#) expspace [32] expspace [32] PSPACE

RE(#, &) EXPSPACE EXPSPACE PSPACE

NFA(#), NFA(&),
and NFA(#, &)

EXPSPACE EXPSPACE PSPACE

DTDs with RE pspace [41] pspace [41] pspace [24]

DTDs with
RE(#), RE(&),
or RE(#, &)

EXPSPACE EXPSPACE PSPACE

single-type EDTDs
with RE pspace [28] pspace [28] exptime [28]

single-type EDTDs
with RE(#),
RE(&), or RE(#, &)

EXPSPACE EXPSPACE EXPTIME

EDTDs with RE exptime [37] exptime [37] exptime [38]

EDTDs with
RE(#), RE(&),
or RE(#, &)

EXPSPACE EXPSPACE EXPTIME

In this paper, we do not consider deterministic or one-unambiguous regular ex-
pressions which form a strict subclass of the regular expressions [6]. The reason is
twofold. First, one-unambiguity is a highly debatable constraint (cf., e.g., [42, p. 98]
and [25, 40]) which is required only for DTDs and XML Schema, not for Relax NG.
Actually, the only direct advantage of one-unambiguity is that it gives rise to ptime

algorithms for some of the basic decision problems for standard regular expressions.
The latter does not hold anymore for RE(#,&) expressions rendering the notion even
less attractive. Indeed, already intersection for one-unambiguous regular expressions
is pspace-hard [28], and inclusion for one-unambiguous RE(#) expressions is conp-
hard [22]. A second reason is that, in contrast to conventional regular expressions,
one-unambiguity is not yet fully understood for regular expressions with numerical
occurrence constraints and interleaving operators. Some initial results are provided
by Brüggemann-Klein [7] and Kilpeläinen and Tuhkanen [21] who give algorithms for
deciding one-unambiguity of RE(&) and RE(#) expressions, respectively. However,
the results of Brüggemann-Klein are on the SGML interleaving operator, which is
not the same as the Relax NG interleaving operator considered here. Furthermore,
no study investigating the properties of these one-unambiguous languages has been
undertaken. Such a study, although definitely relevant, is outside the scope of this
paper.

Outline. In section 2, we provide the necessary definitions. In section 3, we define
NFA(#,&). In sections 4 and 5, we establish the complexity of the basic decision
problems for regular expressions and schema languages, respectively. We discuss
simplification in section 6. We conclude in section 7.

2. Definitions.

2.1. Regular expressions with counting and interleaving. For the rest of
the paper, Σ always denotes a finite alphabet. A Σ-symbol (or simply symbol) is
an element of Σ, and a Σ-string (or simply string) is a finite sequence w = a1 · · · an
of Σ-symbols. We define the length of w, denoted by |w|, to be n. We denote the
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empty string by ε. The set of positions of w is {1, . . . , n}, and the symbol of w
at position i is ai. By w1 · w2 we denote the concatenation of two strings w1 and
w2. For readability, we usually denote the concatenation of w1 and w2 by w1w2.
The set of all strings is denoted by Σ∗. A string language is a subset of Σ∗. For
two string languages L,L′ ⊆ Σ∗, we define their concatenation L · L′ to be the set
{ww′ | w ∈ L,w′ ∈ L′}. We abbreviate L · L · · ·L (i times) by Li. By w1 & w2 we
denote the set of strings that is obtained by interleaving or shuffling w1 and w2 in
every possible way. That is, for w,w1, w2 ∈ Σ∗ and a, b ∈ Σ, w & ε = ε & w = {w},
and a ·w1 & b ·w2 = ({a} · (w1 & b ·w2))∪ ({b} · (a ·w1 &w2)). Here, · has precedence
over &. The operator & is then extended to languages in the canonical way.

The set of regular expressions over Σ, denoted by RE, is defined in the usual way,
ε, and every Σ-symbol is a regular expression; when r and s are regular expressions,
then rs, r + s, and r∗ are also regular expressions. By RE(#,&) we denote RE
extended with two new operators: interleaving and numerical occurrence constraints.
That is, when r and s are RE(#,&) expressions, so are r & s and r[k,�] for k, � ∈ N

with k ≤ � and � > 0. By RE(#) and RE(&), we denote RE extended only with
counting and interleaving, respectively. Notice that we disallow ∅ as it does not occur
in practical schema languages.

The language defined by a regular expression r, denoted by L(r), is inductively
defined as follows: L(ε) = {ε}; L(a) = {a}; L(rs) = L(r)·L(s); L(r+s) = L(r)∪L(s);
L(r∗) = {ε} ∪

⋃∞
i=1 L(r)i; L(r[k,�]) =

⋃�
i=k L(r)i; and L(r & s) = L(r) & L(s). The

size of a regular expression r over Σ, denoted by |r|, is the number of Σ-symbols and
operators occurring in r plus the sizes of the binary representations of the integers.
By r? and r+, we abbreviate the expression r + ε and rr∗, respectively. We assume
familiarity with finite automata such as nondeterministic finite automata (NFAs) and
deterministic finite automata (DFAs) [16].

2.2. Schema languages for XML. The set of unranked Σ-trees, denoted by
TΣ, is the smallest set of strings over Σ and the parenthesis symbols “(” and “)” such
that, for a ∈ Σ and w ∈ (TΣ)∗, a(w) is in TΣ. So, a tree is either ε (empty) or is
of the form a(t1 · · · tn), where each ti is a tree. In the tree a(t1 · · · tn), the subtrees
t1, . . . , tn are attached to the root labeled a. We write a rather than a(). Notice that
there is no a priori bound on the number of children of a node in a Σ-tree; such trees
are therefore unranked. For every t ∈ TΣ, the set of nodes of t, denoted by Dom(t),
is the set defined as follows: (i) if t = ε, then Dom(t) = ∅; and (ii) if t = a(t1 · · · tn),
where each ti ∈ TΣ, then Dom(t) = {ε} ∪

⋃n
i=1{iu | u ∈ Dom(ti)}. In what follows,

whenever we say tree, we always mean Σ-tree. A tree language is a set of trees.
We make use of the following definitions to abstract from the commonly used

schema languages.
Definition 2.1. Let R be a class of regular expressions over Σ.
1. A DTD(R) over Σ is a tuple (Σ, d, sd), where d is a function that maps Σ-

symbols to elements of R and sd ∈ Σ is the start symbol. For convenience
of notation, we denote (Σ, d, sd) by d and leave the start symbol sd implicit
whenever this cannot give rise to confusion.
A tree t satisfies d if (i) labt(ε) = sd and, (ii) for every u ∈ Dom(t) with n
children, labt(u1) · · · labt(un) ∈ L(d(labt(u))). By L(d) we denote the set of
trees satisfying d.

2. An extended DTD (EDTD(R)) over Σ is a 5-tuple D = (Σ,Σ′, d, s, μ), where
Σ′ is an alphabet of types, (Σ′, d, s) is a DTD(R) over Σ′, and μ is a mapping
from Σ′ to Σ.
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A tree t then satisfies an extended DTD if t = μ(t′) for some t′ ∈ L(d). Here
we abuse notation and let μ also denote its extension to define a homomor-
phism on trees. Again, we denote by L(D) the set of trees satisfying D. For
ease of exposition, we always take Σ′ = {ai | 1 ≤ i ≤ ka, a ∈ Σ, i ∈ N} for
some natural numbers ka, and we set μ(ai) = a.

3. A single-type EDTD (EDTDst(R)) over Σ is an EDTD(R) D = (Σ,Σ′, d,
s, μ) with the property that, for every a ∈ Σ′, in the regular expression d(a)
no two types bi and bj with i �= j occur.

We denote by EDTD, EDTD(#), EDTD(&), and EDTD(#, &) the classes
EDTD(RE), EDTD(RE(#)), EDTD(RE(&)), and EDTD(RE(#,&)), respectively.
The same notation is used for EDTDsts and DTDs.

For clarity, we sometimes write a → r rather than d(a) = r in examples and
proofs. Following this notation, a simple example of an EDTD is the following:

shop1 → (cd1 + cd2)∗cd2(cd1 + cd2)∗ title1 → ε

cd1 → title1 price1 price1 → ε

cd2 → title1 price1 discount1 discount1 → ε

Here, cd1 defines ordinary CDs, while cd2 defines CDs on sale. The rule for shop1

specifies that there should be at least one CD on sale. Notice that the above EDTD
is not a single-type EDTD as cd1 and cd2 occur in the same rule.

As explained in [33, 27], EDTDs and single-type EDTDs correspond to Relax NG
and XML Schema, respectively.

2.3. Decision problems. The following problems are fundamental to this
paper.

Definition 2.2. Let M be a class of regular expressions, string automata, or
extended DTDs. We define the following problems:

• inclusion for M: Given two elements e, e′ ∈ M, is L(e) ⊆ L(e′)?
• equivalence for M: Given two elements e, e′ ∈ M, is L(e) = L(e′)?
• intersection for M: Given an arbitrary number of elements e1, . . . , en ∈
M, is

⋂n
i=1 L(ei) �= ∅?

• membership for M: Given an element e ∈ M and a string or a tree f , is
f ∈ L(e)?

We recall the known results concerning the complexity of REs and EDTDs.
Theorem 2.3.

(1) inclusion, equivalence, and intersection for REs are pspace-complete
[24, 41].

(2) inclusion and equivalence for RE(&) and RE(#) are expspace-complete
[31, 32].

(3) inclusion and equivalence for EDTDst are pspace-complete [28]; inter-

section for EDTDst is exptime-complete [28].
(4) inclusion, equivalence, and intersection for EDTDs are exptime-

complete [37, 38].
(5) membership for RE(&) is np-complete [31].
(6) membership for RE(#) is in ptime [19].

2.4. Relating decision problems for regular expressions to DTDs and
single-type EDTDs. In [28] it was shown for any subclass of the REs that the
complexity of inclusion and equivalence is the same as the complexity of the
corresponding problem for DTDs and single-type EDTDs. The same holds for inter-

section and DTDs. The proofs of these theorems carry over literally to RE(#,&).
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We call a complexity class C closed under positive reductions if the following
holds for every O ∈ C. Let L′ be accepted by a deterministic polynomial-time Turing
machine M with oracle O (denoted L′ = L(MO)). Let M further have the property
that L(MA) ⊆ L(MB) whenever L(A) ⊆ L(B). Then L′ is also in C. For a more
precise definition of this notion we refer the reader to [15]. For our purposes, it
is sufficient that important complexity classes like ptime, np, conp, pspace, and
expspace have this property, and that every such class contains ptime.

Proposition 2.4 (see [28]). Let R be a subclass of RE(#,&) and let C be a
complexity class closed under positive reductions. Then the following are equivalent:

(a) inclusion for R expressions is in C.
(b) inclusion for DTD(R) is in C.
(c) inclusion for EDTDst(R) is in C.

The corresponding statement holds for equivalence.
The previous proposition can be generalized to intersection of DTDs as well.
Proposition 2.5 (see [28]). Let R be a subclass of RE(#,&) and let C be a

complexity class which is closed under positive reductions. Then the following are
equivalent:

(a) intersection for R expressions is in C.
(b) intersection for DTD(R) is in C.
The above proposition does not hold for single-type EDTDs. Indeed, there is a

class of regular expressions R′ for which intersection is np-complete while inter-

section for EDTDst(R′) is exptime-complete [28].
3. Automata for occurrence constraints and interleaving. We introduce

the automaton model NFA(#,&). In brief, an NFA(#,&) is an NFA with two addi-
tional features: (i) split and merge transitions to handle interleaving; and (ii) counting
states and transitions to deal with numerical occurrence constraints. The idea of split
and merge transitions stems from Jȩdrzejowicz and Szepietowski [18]. Their automata
are more general as they can express shuffle-closure which is not regular. Counting
states are also used in the counter automata of Kilpeläinen and Tuhkanen [20] and
Reuter [36] although these counter automata operate quite differently from NFA(#)s.
Dal-Zilio and Lugiez [11] also proposed an automaton model that incorporates count-
ing and interleaving by means of Presburger formulas. None of the cited papers
considers the complexity of the basic decision problems of their model. We will use
NFA(#,&)s to obtain complexity upper bounds in sections 4 and 5.

For readability, we denote Σ∪{ε} by Σε. We then define an NFA(#,&) as follows.
Definition 3.1. An NFA(#,&) is a 5-tuple A = (Q,Σ, s, f, δ), where the fol-

lowing hold:
• Q is a finite set of states. To every q ∈ Q, we associate a lower bound

min(q) ∈ N and an upper bound max(q) ∈ N.
• s, f ∈ Q are the start and final states, respectively.
• δ is the transition relation and is a subset of the union of the following sets:

(1) Q× Σε ×Q ordinary transition (resets the counter)
(2) Q× {store} ×Q transition that does not reset the counter
(3) Q× {split} ×Q×Q split transition
(4) Q×Q× {merge} ×Q merge transition

Let max(A) = max{max(q) | q ∈ Q} be the largest upper bound occurring in
A. A configuration γ is a pair (P, α), where P ⊆ Q is a set of states and α : Q →
{0, . . . ,max(A)} is the value function mapping states to the value of their counter.
For a state q ∈ Q, we denote by αq the value function mapping q to 1 and every
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other state to 0. The initial configuration γs is ({s}, αs). The final configuration γf
is ({f}, αf). When α is a value function, α[q = 0] and α[q++] denote the functions
obtained from α by setting the value of q to 0 and incrementing the value of q by 1,
respectively, while leaving all other values unchanged.

We now define the transition relation between configurations. Intuitively, the
value of the state at which the automaton arrives is always incremented by one. When
exiting a state, the state’s counter is always reset to zero, except when we exit through
a counting transition, in which case the counter remains the same. In addition, exiting
a state through a noncounting transition is allowed only when the value of the counter
lies between the allowed minimum and maximum. The latter, hence, ensures that the
occurrence constraints are satisfied. Split and merge transitions start and close a
parallel composition.

A configuration γ′ = (P ′, α′) immediately follows a configuration γ = (P, α) by
reading σ ∈ Σε, denoted γ →A,σ γ

′, when one of the following conditions hold:
1. Ordinary transition. There are a q ∈ P and (q, σ, q′) ∈ δ such that min(q) ≤
α(q) ≤ max(q), P ′ = (P − {q}) ∪ {q′}, and α′ = α[q = 0][q′++]. That is, A
is in state q and moves to state q′ by reading σ (note that σ can be ε). The
latter is allowed only when the counter value of q is between the lower and
upper bounds. The state q is replaced in P by q′. The counter of q is reset
to zero, and the counter of q′ is incremented by one.

2. Counting transition. There are a q ∈ P and (q, store, q′) ∈ δ such that
α(q) < max(q), P ′ = (P − {q}) ∪ {q′}, and α′ = α[q′++]. That is, A is
in state q and moves to state q′ by reading ε when the counter of q has not
reached its maximal value yet. The state q is replaced in P by q′. The counter
of q is not reset but remains the same. The counter of q′ is incremented by
one.

3. Split transition. There are a q ∈ P and (q, split, q1, q2) ∈ δ such that min(q) ≤
α(q) ≤ max(q), P ′ = (P − {q}) ∪ {q1, q2}, and α′ = α[q = 0][q1++][q2++].
That is, A is in state q and splits into states q1 and q2 by reading ε when the
counter value of q is between the lower and upper bounds. The state q in P
is replaced by (split into) q1 and q2. The counter of q is reset to zero, and
the counters of q1 and q2 are incremented by one.

4. Merge transition. There are q1, q2 ∈ P and (q1, q2,merge, q) ∈ δ such that,
for each j = 1, 2, min(qj) ≤ α(qj) ≤ max(qj), P ′ = (P − {q1, q2}) ∪ {q}, and
α′ = α[q1 = 0][q2 = 0][q++]. That is, A is in states q1 and q2 and moves
to state q by reading ε when the respective counter values of q1 and q2 are
between the lower and upper bounds. The states q1 and q2 in P are replaced
by (merged into) q, the counters of q1 and q2 are reset to zero, and the counter
of q is incremented by one.

For a string w and two configurations γ, γ′, we denote by γ ⇒A,w γ
′ when there is

a sequence of configurations γ →A,σ1 · · · →A,σn γ
′ such that w = σ1 · · ·σn. The latter

sequence is called a run when γ is the initial configuration γs. A string w is accepted
by A if and only if γs ⇒A,w γf with γf the final configuration. We usually denote
⇒A,w simply by ⇒w when A is clear from the context. We denote by L(A) the set of
strings accepted by A. The size of A, denoted by |A|, is |Q|+ |δ|+ Σq∈Q log(max(q)).
Thus, each max(q) is represented in binary.

An example of an NFA(#,&) defining dvd[10,12] & cd[10,12] is shown in Figure 3.1.
An NFA(#) is an NFA(#,&) without split and merge transitions. An NFA(&) is

an NFA(#,&) without counting transitions. An NFA is an NFA(#) without counting
transitions.
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10,12

dvd

store

store

cd
10,12

Fig. 3.1. An NFA(#, &) for the language dvd[10,12]&cd[10,12]. For readability, we only displayed
the alphabet symbol on nonepsilon transitions and counters for states q, where min(q) and max(q)
are different from one. The arrows from the initial state and to the final state are split and merge
transitions, respectively. The arrows labeled store represent counting transitions.

Clearly NFA(#,&)s accept all regular languages. The next theorem shows the
complexity of translating between RE(#,&) and NFA(#,&), and NFA(#,&) and
NFA.

Theorem 3.2.

(1) Given an RE(#,&) expression r, an equivalent NFA(#,&) can be constructed
in time linear in the size of r.

(2) Given an NFA(#,&) A, an equivalent NFA can be constructed in time expo-
nential in the size of A.

Proof. (1) We prove the theorem by induction on the structure of RE(#,&)-
expressions. For every r we define a corresponding NFA(#,&), A(r) = (Qr,Σ, sr,
fr, δr), such that L(r) = L(A(r)).

For r of the form ε, a, r1 · r2, r1 + r2, and r∗1 these are the usual RE to NFA with
ε-transition constructions as displayed in textbooks such as [16].

We perform the following steps for the numerical occurrence and interleaving
operator which are graphically illustrated in Figure 3.2. The construction for the
interleaving operator comes from [18].

(i) If r = (r1)[k,�] and A(r1) = (Q1,Σ, s1, f1, δ1), then
• Qr := Qr1 
 {sr, fr, qr};
• min(sr) = max(sr) = min(fr) = max(fr) = 1, min(qr) = k, and max(qr) =
�;

• if k �= 0, then δr := δr1 
 {(sr, ε, sr1), (fr1 , ε, qr), (qr, store, sr1), (qr, ε, fr)};
and,

• if k = 0, then δr := δr1 
 {(sr, ε, sr1), (fr1 , ε, qr), (qr, store, sr1), (qr , ε, fr),
(sr, ε, fr)}.

(ii) If r = r1 & r2, A(r1) = (Qr1 ,Σ, sr1 , fr1 , δr1) and A(r2) = (Qr2 ,Σ, sr2 , fr2, δr2),
then

• Qr := Qr1 
Qr2 
 {sr, fr};
• min(sr) = max(sr) = min(fr) = max(fr) = 1;
• δr := δr1 
 δr2 
 {(sr, split, sr1 , sr2), (fr1 , fr2 ,merge, fr)}.

Notice that in each step of the construction, a constant number of states are
added to the automaton. Moreover, the constructed counters are linear in the size of
r. It follows that the size of A(r) is linear in the size of r. The correctness of the
construction can easily be proved by induction on the structure of r.

We next turn to the complexity of the basic decision problems for NFA(#,&).
Theorem 3.3.

(1) equivalence and inclusion for NFA(#,&) are expspace-complete;
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store

sr sr1
fr1

fr
qr

ε

ε ε ε
k, �

if k = 0

fr2

sr fr

sr1
fr1

sr2

Fig. 3.2. From RE(#, &) to NFA(#, &).

(2) intersection for NFA(#,&) is pspace-complete; and
(3) membership for NFA(#) is np-hard, and membership for NFA(&) and

NFA(#,&) are pspace-complete.
Proof. (1) expspace-hardness follows from Theorem 3.2(1) and the expspace-

hardness of equivalence for RE(&) [31]. Membership in expspace follows from
Theorem 3.2(2) and the fact that inclusion for NFAs is in pspace [41].

(2) The lower bound follows from [24]. We show that the problem is in pspace.
For j ∈ {1, . . . , n}, let Aj = (Qj ,Σ, sj , fj, δj) be an NFA(#,&). The algorithm
proceeds by guessing a Σ-string w such that w ∈

⋂n
j=1 L(Aj). Instead of guessing w

at once, we guess it symbol by symbol and keep for each Aj one current configuration
γj on the tape. More precisely, at each time instant, the tape contains for each Aj
a configuration γj = (Pj , αj) such that γsj ⇒Aj ,wi (Pj , αj), where wi = a1 · · · ai is
the prefix of w guessed up to now. The algorithm accepts when each γj is a final
configuration. Formally, the algorithm operates as follows.

1. Set γj = ({sj}, αsj ) for j ∈ {1, . . . , n};
2. While not every γj is a final configuration

(i) Guess an a ∈ Σ.
(ii) Nondeterministically replace each γj by a (P ′

j , α
′
j) such that

(Pj , αj) ⇒Aj ,a (P ′
j , α

′
j).

As the algorithm only uses space polynomial in the size of the NFA(#,&) and
step 2(ii) can be done in pspace, the overall algorithm operates in pspace.

(3) The membership problem for NFA(#,&)s is easily seen to be in pspace

by an on-the-fly implementation of the construction in Theorem 3.2(2). Indeed,
as a configuration of an NFA(#,&) A = (Q,Σ, s, f, δ) has size at most |Q| + |Q| ·
log(max(A)), we can store a configuration using only polynomial space.

We show that the membership problem for NFA(#)s is np-hard by a reduction
from a modification of integer knapsack. We define this problem as follows. Given
a set of natural numbers W = {w1, . . . , wk} and two integers m and n, all in binary
notation, the problem asks whether there exists a mapping τ : W → N such that
m ≤

∑
w∈W τ(w) × w ≤ n. The latter mapping is called a solution. This problem is

known to be np-complete [13].
We construct an NFA(#) A = (Q,Σ, s, f, δ) such that L(A) = {ε} if W,m, n has

a solution, and L(A) = ∅ otherwise.
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...

wk, wk

w1, w1

qwk

q fs
ε

qw1

ε
ε

store

store

ε

store

m, n

ε

Fig. 3.3. np-hardness of membership for NFA(#).

The state set Q consists of the start and final states s and f , a state qwi for each
weight wi, and a state q. Intuitively, a successful computation of A loops at least
m and at most n times through state q. In each iteration, A also visits one of the
states qwi . Using numerical occurrence constraints, we can ensure that a computation
accepts if and only if it passes at least m and at most n times through q and a multiple
of wi times through each qwi . Hence, an accepting computation exists if and only if
there is a mapping τ such that m ≤

∑
w∈W τ(w) × w ≤ n.

Formally, the transitions of A are the following:
• (s, ε, qwi) for each i ∈ {1, . . . , k};
• (qwi , store, q) for each i ∈ {1, . . . , k};
• (qwi , ε, q) for each i ∈ {1, . . . , k};
• (q, store, s); and,
• (q, ε, f).

We set min(s) = max(s) = min(f) = max(f) = 1, min(q) = m, max(q) = n, and
min(qwi) = max(qwi) = wi for each qwi . The automaton is graphically illustrated in
Figure 3.3.

Finally, we show that membership for NFA(&)s is pspace-hard. Before giving
the proof, we describe some n-ary merge and split transitions which can be rewritten
in function of the regular binary split and merge transitions.

1. (q1, q2,merge-split, q′1, q′2): States q1 and q2 are read and immediately split
into states q′1 and q′2.

2. (q1, q2, q3,merge-split, q′1, q′2, q′3): States q1, q2 and q3 are read and immedi-
ately split into states q′1, q

′
2 and q′3.

3. (q1, split, q′1, . . . , q
′
n): State q1 is read and is immediately split into states

q′1, . . . , q
′
n.

4. (q1, . . . , qn,merge, q′1): States q1, . . . , qn are read and are merged into state
q′1.

Transitions of type 1 (resp., 2) can be rewritten using 2 (resp., 4) regular transi-
tions and 1 (resp., 3) new auxiliary states. Transitions of types 3 and 4 can be rewrit-
ten using (n − 1) regular transitions and (n − 1) new auxiliary states. For example,
the transition (q1, q2,merge-split, q′1, q

′
2) is equal to the transitions (q1, q2,merge, qh)

and (qh, split, q′1, q
′
2), where qh is a new auxiliary state.

To show that membership for NFA(&)s is pspace-hard, we reduce from corri-

dor tiling. A tiling instance is a tuple T = (X,H, V, b, t, n), where X is a finite set
of tiles, H,V ⊆ X ×X are the horizontal and vertical constraints, n is an integer in
unary notation, and b, t are n-tuples of tiles (b and t stand for bottom row and top
row, respectively).

A correct corridor tiling for T is a mapping λ : {1, . . . ,m} × {1, . . . , n} → X for
some m ∈ N such that the following constraints are satisfied:
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• the bottom row is b: b = (λ(1, 1), . . . , λ(1, n));
• the top row is t: t = (λ(m, 1), . . . , λ(m,n));
• all vertical constraints are satisfied: ∀i < m, ∀j ≤ n, (λ(i, j), λ(i+1, j)) ∈ V ;

and,
• all horizontal constraints are satisfied: ∀i ≤ m, ∀j < n, (λ(i, j), λ(i, j + 1))
∈ H .

The corridor tiling problem asks, given a tiling instance, whether there exists a
correct corridor tiling. The latter problem is pspace-complete [43].

Given a tiling instance T = (X,H, V, b, t, n), we construct an NFA(&) A over the
empty alphabet (Σ = ∅) which accepts ε if and only if there exists a correct corridor
tiling for T .

The automaton constructs the tiling row by row. Therefore, A must at any time
reflect the current row in its state set (recall that an NFA(&) can be in more than
one state at once). To do this, A contains, for every tile x, a set of states x1, . . . , xn,
where n is the length of each row. If A is in state xi, this means that the ith tile
of the current row is x. For example, if b = x1x3x1 and t = x2x2x1, then the initial
state set is {x1

1, x
2
3, x

3
1}, and A can accept when the state set is {x1

2, x
2
2, x

3
1}.

It remains to define how A can transform the current row (“state set”) into a
state set which describes a valid row on top of the current row. This transformation
proceeds on a tile by tile basis and begins with the first tile, say xi, in the current
row which is represented by x1

i in the state set. Now, for every tile xj for which
(xi, xj) ∈ V , we allow x1

i to be replaced by x1
j , since xj can be the first tile of the

row on top of the current row. For the second tile of the next row, we have to replace
the second tile of the current row, say xk, by a new tile, say x�, such that the vertical
constraints between xk and x� are satisfied and such that the horizontal constraints
between x� and the tile we just placed at the first position of the first row, xj , are
satisfied as well.

The automaton proceeds in this manner for the remainder of the row. For this,
the automaton needs to know at any time at which position a tile must be updated.
Therefore, an extra set of states p1, . . . , pn is created, where the state pi says that the
tile at position i has to be updated. Thus, the state set always consists of one state pi
and a number of states which represent the current and next rows. Here, the states
up to position i already represent the tiles of the next row, the states from position i
still represent the current row, and i is the next position to be updated.

We can now formally construct an NFA(&) A = (Q,Σ, s, f, δ) which accepts ε if
and only if there exists a correct corridor tiling for a tiling instance T = (X,H, V, b, t, n)
as follows:

• Q = {xj | x ∈ X, 1 ≤ j ≤ n} ∪ {pi | 1 ≤ i ≤ n} ∪ {s, f}.
• Σ = ∅.
• δ is the union of the following transitions:

– (s, split, p1, b
1

1, . . . , b
n

n). From the initial state the automaton immedi-
ately goes to the states which represent the bottom row.

– (p1, t
1
1, . . . , t

n
n,merge, f). When the state set represents a full row (the

automaton is in state p1) and the current row is the accepting row, all
states are merged to the accepting state.

– ∀xi, xj ∈ X, (xj , xi) ∈ V : (p1, x
1
j ,merge-split, p2, x

1
i ). When the first

tile has to be updated, the automaton only has to check the vertical
constraints with the first tile of the previous row.

– ∀xi, xj , xk ∈ X,m ∈ N, 2 ≤ m ≤ n, (xk, xi) ∈ V, (xj , xi) ∈ H :
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(pm, xmk , x
m−1
j ,merge-split, p(m mod n)+1, x

m
i , x

m−1
j ). When a tile at the

mth (m �= 1) position has to be updated, the automaton has to check
the vertical constraint with the mth tile at the previous row, and the
horizontal constraint with the (m− 1)th tile of the new row.

Clearly, if there exists a correct corridor tiling for T , there exists a run of A
accepting ε. Conversely, the construction of our automaton, in which the updates
are always determined by the position pi and the horizontal and vertical constraints,
assures that when there is an accepting run of A on ε, this run simulates a correct
corridor tiling for T .

4. Complexity of regular expressions. Before we turn to schemas, we first
deal with the complexity of regular expressions and frequently used subclasses as these
are directly related to the complexities of DTDs and single-type EDTDs.

Mayer and Stockmeyer [31] and Meyer and Stockmeyer [32] already established
the expspace-completeness of inclusion and equivalence for RE(&) and RE(#),
respectively. From Theorems 3.2(1) and 3.3(1) it then directly follows that allow-
ing both operators does not increase the complexity. It further follows from Theo-
rems 3.2(1) and 3.3(2) that intersection for RE(#,&) is in pspace. We stress that
the latter results could also have been obtained without making use of NFA(#,&)s
but by translating RE(#,&)s directly to NFAs. However, in the case of intersec-

tion such a construction should be done in an on-the-fly fashion to not go beyond
pspace. Although such an approach is certainly possible, we prefer the shorter and
more elegant construction using NFA(#,&)s.

Theorem 4.1.

(1) equivalence and inclusion for RE(#,&) are in expspace; and
(2) intersection for RE(#,&) is pspace-complete.
Proof. (1) The proof follows directly from Theorems 3.2(1) and 3.3(1).
(2) The upper bound follows directly from Theorems 3.2(1) and 3.3(2). The lower

bound is already known for ordinary regular expressions.
Bex, Neven, and Van den Bussche [4] established that the vast majority of regular

expressions occurring in practical DTDs and XSDs are of a very restricted form as
defined next. The class of chain regular expressions (CHAREs) are those REs con-
sisting of a sequence of factors f1 · · · fn, where every factor is an expression of the
form (a1 + · · ·+an), (a1 + · · ·+an)?, (a1 + · · ·+an)+, or (a1 + · · ·+an)∗, where n ≥ 1
and every ai is an alphabet symbol. For instance, the expression a(b+ c)∗d+(e+ f)?
is a CHARE, while (ab+ c)∗ and (a∗ + b?)∗ are not.1

We introduce some additional notation to define subclasses and extensions of
CHAREs. By CHARE(#) we denote the class of CHAREs where factors of the
form (a1 + · · · + an)[k,�] also are allowed. For the following fragments, we list the
admissible types of factors. Here, a, a?, and a∗ denote the factors (a1 + · · · + an),
(a1 + · · ·+an)?, and (a1 + · · ·+an)∗, respectively, with n = 1, while a# denotes a[k,�],
and a#>0 denotes a[k,�] with k > 0.

Table 4.1 lists the new and the relevant known results. We first show that adding
numerical occurrence constraints to CHAREs increases the complexity of inclusion

by one exponential. We reduce from exp-corridor tiling.
Theorem 4.2. inclusion for CHARE(#) is expspace-complete.
Proof. The expspace upper bound already follows from Theorem 4.1(1).

1We disregard here the additional restriction used in [3] that every symbol can occur only once.
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Table 4.1

Overview of new and known complexity results concerning chain regular expressions. All results
are completeness results, unless otherwise mentioned. The new results are printed in bold.

inclusion equivalence intersection

CHARE pspace [28] in pspace [41] pspace [28]

CHARE(#) EXPSPACE in EXPSPACE PSPACE

CHARE(a, a?) conp [28] in ptime [28] np [28]

CHARE(a, a∗) conp [28] in ptime [28] np [28]

CHARE(a, a?, a#) coNP in PTIME NP

CHARE(a, a#>0) in PTIME in PTIME in PTIME

The proof for the expspace lower bound is similar to the proof for pspace-
hardness of inclusion for CHAREs in [28]. The main difference is that the numerical
occurrence operator allows us to compare tiles over a distance exponential in the size
of the tiling instance.

The proof is a reduction from exp-corridor tiling. A tiling instance is a tuple
T = (X,H, V, x⊥, x�, n), where X is a finite set of tiles, H,V ⊆ X × X are the
horizontal and vertical constraints, x⊥, x� ∈ X , and n is a natural number in unary
notation. A correct exponential corridor tiling for T is a mapping λ : {1, . . . ,m} ×
{1, . . . , 2n} → X for some m ∈ N such that the following constraints are satisfied:

• the first tile of the first row is x⊥: λ(1, 1) = x⊥;
• the first tile of the mth row is x�: λ(m, 1) = x�;
• all vertical constraints are satisfied: ∀i < m, ∀j ≤ 2n, (λ(i, j), λ(i+1, j)) ∈ V ;

and
• all horizontal constraints are satisfied: ∀i ≤ m, ∀j < 2n, (λ(i, j), λ(i, j+1)) ∈
H .

The exp-corridor tiling problem asks, given a tiling instance, whether there ex-
ists a correct exponential corridor tiling. The latter problem is easily shown to be
expspace-complete [43].

We proceed with the reduction from exp-corridor tiling. Thereto, let T =
(X,H, V, x⊥, x�, n) be a tiling instance. Without loss of generality (w.l.o.g.), we
assume that n ≥ 2. We construct two CHARE(#) expressions r1 and r2 such that

L(r1) ⊆ L(r2) if and only if
there exists no correct exponential corridor tiling for T.

As expspace is closed under complement, the expspace-hardness of inclusion for
CHARE(#) follows.

Set Σ = X 
 {$,}. For ease of exposition, we denote X ∪ {} by X	 and
X ∪ {, $} by X	,$. We encode candidates for a correct tiling by a string in which
the rows are separated by the symbol , that is, by strings of the form

(†) R0R1· · ·Rm,

in which each Ri represents a row, that is, belongs to X2n

. Moreover, R0 is the
bottom row, and Rm is the top row. The following regular expressions detect strings
of this form which do not encode a correct tiling for T :

• X∗
	X [0,2n−1]X∗

	. This expression detects rows that are too short, that
is, contain fewer than 2n symbols.
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• X∗
	X [2n+1,2n+1]X∗X∗

	. This expression detects rows that are too long,
that is, contain more than 2n symbols.

• X∗
	x1x2X

∗
	 for every x1, x2 ∈ X , (x1, x2) �∈ H . These expressions detect all

violations of horizontal constraints.
• X∗

	x1X
[2n,2n]
	 x2X

∗
	 for every x1, x2 ∈ X , (x1, x2) �∈ V . These expressions

detect all violations of vertical constraints.
Let e1, . . . , ek be an enumeration of the above expressions. Notice that k = O(|X |2).
It is straightforward that a string w in (†) does not match

⋃k
i=1 ei if and only if w

encodes a correct tiling.
Let e = e1 · · · ek. Because of leading and trailing X∗

	 expressions, L(e) ⊆ L(ei)
for every i ∈ {1, . . . , k}. We are now ready to define r1 and r2:

r1 =

k times e︷ ︸︸ ︷
$e$e$ · · ·$e$x⊥X [2n−1,2n−1]X∗

	x�X [2n−1,2n−1]
k times e︷ ︸︸ ︷

$e$e$ · · ·$e$,
r2 = $X∗

	,$$e1$e2$ · · · $ek$X∗
	,$$.

Notice that both r1 and r2 are in CHARE(#) and can be constructed in polynomial
time. It remains to show that L(r1) ⊆ L(r2) if and only if there is no correct tiling
for T .

We first show the implication from left to right. Thereto, let L(r1) ⊆ L(r2).
Let uwu′ be an arbitrary string in L(r1) such that u, u′ ∈ L($e$e$ · · ·$e$) and w ∈
x⊥X [2n−1,2n−1]X∗

	x�X [2n−1,2n−1]. By assumption, uwu′ ∈ L(r2).
Notice that uwu′ contains 2k + 2 times the symbol “$.” Moreover, the first and

the last “$” of uwu′ are always matched onto the first and last “$” of r2. This means
that k + 1 consecutive $-symbols of the remaining 2k $-symbols in uwu′ must be
matched onto the $-symbols in $e1$e2$ · · · $ek$. Hence, w is matched onto some ei.
Thus, w does not encode a correct tiling. As the subexpression x⊥X [2n−1,2n−1]X∗

	
x�X [2n−1,2n−1] of r1 defines all candidate tilings, the system T has no solution.

To show the implication from right to left, assume that there is a string uwu′ ∈
L(r1) that is not in r2, where u, u′ ∈ L($e$e$ · · ·$e$). Then w �∈

⋃k
i=1 L(ei), and,

hence, w encodes a correct tiling.
Adding numerical occurrence constraints to the fragment CHARE(a, a?) keeps

equivalence in ptime, intersection in np, and inclusion in conp.
Theorem 4.3.

(1) equivalence for CHARE(a, a?, a#) is in ptime.
(2) inclusion for CHARE(a, a?, a#) is conp-complete.2

(3) intersection for CHARE(a, a?, a#) is np-complete.
Proof. (1) It is shown in [28] that two CHARE(a, a?) expressions are equivalent

if and only if they have the same sequence normal form (which is defined below). As
a[k,�] is equivalent to ak(a?)�−k, it follows that two CHARE(a, a?, a#) expressions are
equivalent if and only if they have the same sequence normal form. It remains to argue
that the sequence normal form of CHARE(a, a?, a#) expressions can be computed in
polynomial time. To this end, let r = f1 · · · fn be a CHARE(a, a?, a#) expression
with factors f1, . . . , fn. The sequence normal form is then obtained in the following
way. First, we replace every factor of the form

• a by a[1, 1];
• a? by a[0, 1]; and
• a[k,�] by a[k, �],

2In the previous version of this article presented at ICDT’07 the complexity was wrongly at-
tributed to lie between pspace and expspace.
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where a is an alphabet symbol. We call a the base symbol of the factor a[i, j]. Then, we
replace successive subexpressions a[i1, j1] and a[i2, j2] carrying the same base symbol
a by a[i1 + i2, j1 + j2] until no further replacements can be made. For instance, the
sequence normal form of aa?a[2,5]a?bb?b?b[1,7] is a[3, 8]b[2, 10]. Obviously, the above
algorithm to compute the sequence normal form of CHARE(a, a?, a#) expressions
can be implemented in polynomial time. It can then be tested in linear time whether
two sequence normal forms are the same.

(2) conp-hardness is immediate since inclusion is already conp-complete for
CHARE(a, a?) expressions [28].

We show that the problem remains in conp. To this end, we represent strings w
by their sequence normal form as discussed above, where we take each string w as the
regular expression defining w. We call such strings compressed. Let r1 and r2 be two
CHARE(a, a?, a#)s. We can assume that they are in sequence normal form.

To show that L(r1) �⊆ L(r2), we guess a compressed string w of polynomial size
for which w ∈ L(r1), but w /∈ L(r2). We guess w ∈ L(r1) in the following manner.
We iterate from left to right over the factors of r1. For each factor a[k, �] we guess
an h such that k ≤ h ≤ �, and add ah to the compressed string w. This algorithm
gives a compressed string of polynomial size which is defined by r1. Furthermore, this
algorithm is capable of guessing every possible string defined by r1. It is, however,
possible that in the compressed string there are two consecutive elements ai, aj with
the same base symbol a. If this is the case we merge these elements to ai+j which
gives a proper compressed string.

The following lemma shows that testing w /∈ L(r2) can be done in ptime.
Lemma 4.4. Given a compressed string w and an expression r in sequence normal

form, deciding whether w ∈ L(r) is in ptime.
Proof. Let w = ap11 · · ·apn

n , and let r = b1[k1, �1] · · · bm[km, �m]. Denote bi[ki, �i]
by fi. For every position i of w (0 < i ≤ n), we define Ci as a set of factors b[k, �] of
r. Formally, fj ∈ Ci when ap11 · · · api−1

i−1 ∈ L(f1 · · · fj−1) and ai = bj . We compute the
Ci as follows.

• C1 is the set of all bj [kj , �j] such that a1 = bj and ∀h < j, kh = 0. These are
all the factors of r which can match the first symbol of w.

• Then, ∀ i ∈ {2, . . . , n}, we compute Ci from Ci−1. In particular, fh =
bh[kh, �h] ∈ Ci when there is an fj = bj [kj , �j ] ∈ Ci−1 such that api−1

i−1 ∈
fj · · · fh−1 and ai = bh. That is, the following conditions should hold:

– j < h: fh occurs after fj in r.
– bh = ai: fh can match the first symbol of api

i .
– ∀e ∈ {j, . . . , h− 1}, if be �= ai−1, then ke = 0: in between factors fj and
fh it is possible to match only symbols ai−1.

– Let min =
∑
e∈{j,...,h−1},be=ai−1

ke and max =
∑

e∈{j,...,h−1},be=ai−1
�e.

Then min ≤ pi−1 ≤ max. That is, pi−1 symbols ai−1 should be matched
from fj to fh−1.

Then, w ∈ L(r) if and only if there is an fj ∈ Cn such that apn
n ∈ L(fj · · · fn). As

the latter test and the computation of C1, . . . , Cn can be done in ptime, the lemma
follows.

(3) np-hardness is immediate since intersection is already np-complete for
CHARE(a, a?) expressions [28].

We show that the problem remains in np. As in the proof of Theorem 4.3(2)
we represent a string w as a compressed string. Let r1, . . . , rn be CHARE(a, a?, a#)
expressions.
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Lemma 4.5. If
⋂n
i=1 L(ri) �= ∅, then there exists a string w = ap11 · · · apm

m ∈⋂n
i=1 L(ri) such that m ≤ min{|ri| | i ∈ {1, . . . , n}} and, for each i ∈ {1, . . . , n}, ji is

not larger than the largest integer occurring in r1, . . . , rn.
Proof. Suppose that there exists a string w = ap11 · · ·apm

m ∈
⋂n
i=1 L(ri), with

ai �= ai+1 for every i ∈ {1, . . . ,m − 1}. Since w is matched by every expression
r1, . . . , rn, and since a factor of a CHARE(a, a?, a#) expression can never match a
strict superstring of api

i for i ∈ {1, . . . , n}, we have that m ≤ min{|ri| | i ∈ {1, . . . , n}}.
Furthermore, since w is matched by every expression r1, . . . , rn, no ji can be

larger than the largest integer occurring in r1, . . . , rn.
The np algorithm then consists of guessing a compressed string w of polynomial

size and verifying whether w ∈
⋂n
i=1 L(ri). If we represent r1, . . . , rn by their sequence

normal form, this verification step can be done in polynomial time by Lemma 4.4.
Finally, we exhibit a tractable subclass with numerical occurrence constraints.
Theorem 4.6. inclusion, equivalence, and intersection for CHARE(a,

a#>0) are in ptime.
Proof. The upper bound for equivalence is immediate from Theorem 4.3(2).
For inclusion, let r1 and r2 be two CHARE(a, a#>0)s in sequence normal form

(as defined in the proof of Theorem 4.3). Let r1 = a1[k1, �1] · · ·an[kn, �n] and r2 =
a′1[k

′
1, �

′
1] · · · a′n′ [k′n′ , �′n′ ]. Notice that every number ki and k′j is greater than zero. We

claim that L(r1) ⊆ L(r2) if and only if n = n′ and for every i ∈ {1, . . . , n}, ai = a′i,
ki ≥ k′i, and �i ≤ �′i.

Indeed, if n �= n′, or if there exists an i such that ai �= a′i or ki < k′i, then
ak11 · · ·akn

n ∈ L(r1) − L(r2). If there exists an i such that �i > �′i, then a�11 · · ·a�nn ∈
L(r1) − L(r2). Conversely, it is immediate that every string in L(r1) is also in L(r2).
It is straightforward to test these conditions in linear time.

For intersection, let, for every i ∈ {1, . . . , n}, ri = ai,1[ki,1, �i,1] · · · ai,mi [ki,mi ,
�i,mi ] be a CHARE(a, a#>0) in sequence normal form. Notice that every number ki,j
is greater than zero. We claim that

⋂n
i=1 L(ri) �= ∅ if and only if

(i) m1 = m2 = · · · = mn;
(ii) for every i, j ∈ {1, . . . , n} and x ∈ {1, . . . ,m1}, ai,x = aj,x; and
(iii) for every x ∈ {1, . . . ,m1}, max{ki,x | 1 ≤ i ≤ n} ≤ min{�i,x | 1 ≤ i ≤ n}.
Indeed, if the above conditions hold, we have that aK1

1,1 · · ·a
Km1
1,m1

is in
⋂n
i=1 L(ri),

where Kx = max{ki,x | 1 ≤ i ≤ n} for every x ∈ {1, . . . ,m1}. If mi �= mj for some
i, j ∈ {1, . . . , n}, then the intersection between ri and rj is empty. So assume that
condition (i) holds. If ai,x �= aj,x for some i, j ∈ {1, . . . , n} and x ∈ {1, . . . ,m1}, then
we also have that the intersection between ri and rj is empty. Finally, if condition
(iii) does not hold, take i, j, and x such that ki,x = max{ki,x | 1 ≤ i ≤ n} and
�j,x = min{�i,x | 1 ≤ i ≤ n}. Then the intersection between ri and rj is empty.

Finally, testing conditions (i)–(iii) can be done in linear time.

5. Complexity of schemas.

5.1. DTDs and single-type EDTDs. By Proposition 2.4 the results on the
equivalence and inclusion problem of the previous section carry over to DTDs
and single-type EDTDs. For the intersection problem, the results carry over only
to DTDs (Proposition 2.5). The only remaining problem is intersection for single-
type EDTDs with counting and interleaving. However, intersection for EDTDst(RE)
is exptime-hard, and in the next section we will see that even for EDTD(#, &)
intersection remains in exptime. It immediately follows that intersection for
EDTDst(#), EDTDst(&), and EDTDst(#,&) is also exptime-complete.
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5.2. Extended DTDs. We next consider the complexity of the basic decision
problems for EDTDs with numerical occurrence constraints and interleaving. As the
basic decision problems are exptime-complete for EDTD(RE), the straightforward
approach of translating every RE(#,&) expression into an NFA and then applying
the standard algorithms gives rise to a double exponential time complexity. By using
NFA(#,&), we can do better: expspace for inclusion and equivalence and, more
surprisingly, exptime for intersection.

Theorem 5.1.

(1) equivalence and inclusion for EDTD(#, &) are in expspace;
(2) equivalence and inclusion for EDTD(#) and EDTD(&) are expspace-

hard; and
(3) intersection for EDTD(#, &) is exptime-complete.
Proof. (1) We show that inclusion is in expspace. The upper bound for equiv-

alence then immediately follows.
First, we introduce some notation. For an EDTD D = (Σ,Σ′, d, s, μ), we will

denote elements of Σ′, i.e., types, by τ . We denote by (D, τ) the EDTD D with
start symbol τ . We define the depth of a tree t, denoted by depth(t), as follows: if
t = ε, then depth(t) = 0, and if t = σ(t1 · · · tn), then depth(t) = max{depth(ti) | i ∈
{1, . . . , n}} + 1.

Suppose that we have two EDTDs D1 = (Σ,Σ′
1, d1, s1, μ1) and D2 = (Σ,Σ′

2,
d2, s2, μ2). We provide an expspace algorithm that decides whether L(D1) �⊆ L(D2).
As expspace is closed under complement, the theorem follows. The algorithm com-
putes a set E of pairs (C1, C2) ∈ 2Σ′

1 × 2Σ′
2 , where (C1, C2) ∈ E if and only if there

exists a tree t such that Cj = {τ ∈ Σ′
j | t ∈ L((Dj , τ))} for each j = 1, 2. That is,

every Cj is the set of types that can be assigned by Dj to the root of t. Or, when
viewing Dj as a tree automaton, Cj is the set of states that can be assigned to the
root in a run on t. Therefore, we say that t is a witness for (C1, C2). Notice that
t ∈ L(D1) (resp., t ∈ L(D2)) if s1 ∈ C1 (resp., s2 ∈ C2). Hence, L(D1) �⊆ L(D2) if
and only if there exists a pair (C1, C2) ∈ E with s1 ∈ C1 and s2 �∈ C2.

We compute the set E in a bottom-up manner as follows:
1. Initially, set E1 := {(C1, C2) | ∃a ∈ Σ, τ1 ∈ Σ′

1, τ2 ∈ Σ′
2 such that μ1(τ1) =

μ2(τ2) = a and, for i = 1, 2, Ci = {τ ∈ Σ′
i | ε ∈ di(τ) ∧ μi(τ) = a}}.

2. For every k > 1, Ek is the union of Ek−1 and the pairs (C1, C2) for which
there are a ∈ Σ, n ∈ N, and a string (C1,1, C2,1) · · · (C1,n, C2,n) in E∗

k−1 such
that

Cj = {τ ∈ Σ′
j | μj(τ) = a, ∃bj,1 ∈ Cj,1, . . . , bj,n ∈ Cj,n

with bj,1 · · · bj,n ∈ dj(τ)} for each j = 1, 2.

Let E := E� for � = 2|Σ
′
1| · 2|Σ′

2|. The algorithm then accepts when there is a pair
(C1, C2) ∈ E with s1 ∈ C1 and s2 �∈ C2 and rejects otherwise.

We argue that the algorithm is correct. As Ek ⊆ Ek+1, for every k, it follows that
E� = E�+1. Hence, the algorithm computes the largest set of pairs. The following
lemma then shows that the algorithm decides whether L(D1) �⊆ L(D2). The lemma
can be proved by induction on k.

Lemma 5.2. For every k ≥ 1, (C1, C2) ∈ Ek if and only if there exists a witness
tree for (C1, C2) of depth at most k.

It remains to show that the algorithm can be carried out using exponential space.
Step 1 reduces to a linear number of tests ε ∈ L(r) for some RE(#,&) expressions r
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which is in ptime by [19]. For step 2, it suffices to argue that, when Ek−1 is known,
it is decidable in expspace whether a pair (C1, C2) is in Ek. As there are only an
exponential number of such possible pairs, the result follows. To this end, we need
to verify that there exists a string W = (C1,1, C2,1) · · · (C1,n, C2,n) in E∗

k−1 such that,
for each j = 1, 2,

(A) for every τ ∈ Cj , there exist bj,1 ∈ Cj,1, . . . , bj,n ∈ Cj,n with bj,1 · · · bj,n ∈
dj(τ); and

(B) for every τ ∈ Σ′
j \ Cj , there do not exist bj,1 ∈ Cj,1, . . . , bj,n ∈ Cj,n with

bj,1 · · · bj,n ∈ dj(τ).
Assume that Σ′

1 ∩Σ′
2 = ∅. Let, for each j = 1, 2 and τ ∈ Σ′

j , N(τ) be the NFA(#,&)
accepting dj(τ). Intuitively, we guess the string W one symbol at a time and compute
the set of reachable configurations Γτ for each N(τ).

Initially, Γτ is the singleton set containing the initial configuration of N(τ). Sup-
pose that we have guessed a prefix (C1,1, C2,1) · · · (C1,m−1, C2,m−1) of W and that we
guess a new symbol (C1,m, C2,m). Then, we compute the set Γ′

τ = {γ′ | ∃b ∈ Cj,m,
γ ∈ Γτ such that γ ⇒N(τ),b γ

′} and set Γτ to Γ′
τ . Each set Γ′

τ can be computed in
exponential space from Γτ . We accept (C1, C2) when, for every τ ∈ Σ′

j , τ ∈ Cj if and
only if Γτ contains an accepting configuration.

(2) It is shown by Mayer and Stockmeyer [31] and Meyer and Stockmeyer [32]
that equivalence and inclusion are expspace-hard for RE(&)s and RE(#), respec-
tively. Hence, equivalence and inclusion are also expspace-hard for EDTD(&)
and EDTD(#).

(3) The lower bound follows from [38]. We argue that the problem is in exptime.
Thereto, let, for each i ∈ {1, . . . , n}, Di = (Σ,Σ′

i, di, si, μi) be an EDTD(#, &). We
assume w.l.o.g. that the sets Σ′

i are pairwise disjoint. We also assume that the start
type si never appears at the right-hand side of a rule. Finally, we assume that no
derivation tree consists of only the root. For each type τ ∈ Σ′

i, let N(τ) denote an
NFA(#,&) for di(τ). According to Theorem 3.2, N(τ) can be computed from di(τ) in
polynomial time. We provide an alternating polynomial space algorithm that guesses
a tree t and accepts if t ∈ L(D1) ∩ · · · ∩ L(Dn). As apspace = exptime [8], this
shows the theorem.

We guess t node by node in a top-down manner. For every guessed node v, the
following information is written on the tape of the TM: for every i ∈ {1, . . . , n}, the
triple ci = (τ iv, τ

i
p, γ

i), where τ iv is the type assigned to v by grammar Di, τ ip is the
type of the parent assigned by Di, and γi is the current configuration of N(τ ip) after
reading the string formed by the left siblings of v. In the following, we say that τ ∈ Σ′

i

is an a-type when μi(τ) = a.
The algorithm proceeds as follows:
1. As for each grammar the types of the roots are given, we start by guessing the

first child of the root. That is, we guess an a ∈ Σ, and, for each i ∈ {1, . . . , n},
we guess an a-type τ i and write the triple ci = (τ i, si, γis) on the tape where
γis is the start configuration of N(si).

2. For i ∈ {1, . . . , n}, let ci = (τ i, τ ip, γ
i) be the triples on the tape. The algo-

rithm now universally splits into two parallel branches as follows:
(a) Downward extension. When for every i, ε ∈ di(τ i), the current node can

be a leaf node and the branch accepts. Otherwise, guess an a ∈ Σ and
for each i, guess an a-type θi. Replace every ci by the triple (θi, τ i, γis)
and proceed to step 2. Here, γis is the start configuration of N(τ i).
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(b) Extension to the right. For every i ∈ {1, . . . , n}, compute a configuration
γ′i for which γi ⇒N(τ i

p),τ i γ′i. When every γ′i is a final configuration, we
do not need to extend to the right anymore and the algorithm accepts.
Otherwise, guess an a ∈ Σ and for each i, guess an a-type θi. Replace
every ci by the triple (θi, τ i, γ′i) and proceed to step 2.

We argue that the algorithm is correct. If the algorithm accepts, we have guessed
a tree t and, for every i ∈ {1, . . . , n}, a tree t′i with μi(t′i) = t and t′i ∈ L(di).
Therefore, t ∈

⋂n
i=1 L(Di). For the other direction, suppose that there exists a tree

t ∈
⋂n
i=1 L(Di) and t is minimal in the sense that no subtree t0 of t is in

⋂n
i=1 L(Di).

Then, there is a run of the above algorithm that guesses t and guesses trees t′i with
μi(t′i) = t. The tree t must be minimal since the algorithm stops extending the tree
as soon as possible.

The algorithm obviously uses only polynomial space.

6. Simplification. The simplification problem is defined as follows: Given an
EDTD, check whether it has an equivalent EDTD of a restricted type, i.e., an equiv-
alent DTD or single-type EDTD. In [27], this problem was shown to be exptime-
complete for EDTDs with standard regular expressions. We revisit this problem in
the context of RE(#,&).

We need a bit of terminology. Let t be a tree and v be a node. By anc-strt(v)
we denote the string formed by the labels on the path from the root to v, i.e.,
labt(ε)labt(i1)labt(i1i2) · · · labt(i1i2 · · · ik), where v = i1i2 · · · ik.

We say that a tree language L is closed under ancestor-guarded subtree exchange
if the following holds: whenever for two trees t1, t2 ∈ L with nodes u1 ∈ Dom(t1)
and u2 ∈ Dom(t2), anc-strt1(u1) = anc-strt2(u2) implies t1[u1 ← subtreet2(u2)] ∈ L.
Here, t1[u1 ← subtreet2(u2)] denotes the tree obtained from t1 by replacing its subtree
rooted at u1 by the subtree rooted at u2 in t2.

We recall the following theorem from [27].
Theorem 6.1 (Theorem 7.1 in [27]). Let L be a tree language defined by an

EDTD. Then the following conditions are equivalent.
(a) L is definable by a single-type EDTD.
(b) L is closed under ancestor-guarded subtree exchange.
We are now ready for the following theorem.
Theorem 6.2. Given an EDTD(#, &), deciding whether it is equivalent to an

EDTDst(#, &) or DTD(#, &) is expspace-complete.
Proof. We first show that the problem is hard for expspace. We use a reduction

from equivalence of RE(#), which is expspace-complete [32].
Let r1, r2 be RE(#) expressions over Σ and let b and s be two symbols not

occurring in Σ. By definition L(rj) �= ∅, for j = 1, 2. Define D = (Σ ∪ {b, s},Σ ∪
{s, b1, b2}, d, s, μ) as the EDTD with the following rules:

s → b1b2,
b1 → r1,
b2 → r2,

where for every τ ∈ Σ ∪ {s}, μ(τ) = τ and μ(b1) = μ(b2) = b. We claim that D
is equivalent to a single-type DTD or a DTD if and only if L(r1) = L(r2). Clearly,
if r1 is equivalent to r2, then D is equivalent to the DTD (and therefore also to a
single-type EDTD)

s → bb,
b → r1.
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Conversely, suppose that there exists an EDTDst which defines the language L(D).
Toward a contradiction, assume that r1 is not equivalent to r2. Thus, there exists a
string w1 such that w1 ∈ L(r1) and w1 /∈ L(r2), or w1 /∈ L(r1) and w1 ∈ L(r2). We
consider only the first case; the second is identical. Now, let w2 be a string in L(r2)
and consider the tree t = s(b(w1)b(w2)). Clearly, t is in L(D). However, the tree
t′ = s(b(w2)b(w1)) obtained from t by switching its left and right subtree is not in
L(D). According to Theorem 6.1, every tree language defined by a single-type EDTD
is closed under such an exchange of subtrees. So, this means that L(D) cannot be
defined by an EDTDst, which leads to the desired contradiction.

We now proceed with the upper bounds. The following algorithms are along the
same lines as the EXPTIME algorithms in [27] for the simplification problem without
numerical occurrence or interleaving operators. We first give an expspace algorithm
which decides whether an EDTD is equivalent to an EDTDst. Let D = (Σ,Σ′, d, s, μ)
be an EDTD. Intuitively, we compute an EDTDst D0 = (Σ,Σ′

0, d0, s, μ0) which is
the closure of D under the single-type property. The EDTDst D0 has the following
properties:

(a) Σ′
0 is in general exponentially larger than Σ′;

(b) the RE(#,&) expressions in the definition of d0 are only polynomially larger
than the RE(#,&) expressions in the definition of d;

(c) L(D) ⊆ L(D0); and
(d) L(D0) = L(D) ⇔ D is equivalent to an EDTDst.

Hence, we have that D is equivalent to an EDTDst if and only if L(D0) ⊆ L(D).
We first show how D0 can be constructed. We can assume w.l.o.g. that, for each

type ai ∈ Σ′, there exists a tree t′ ∈ L(d) such that ai is a label in t′. Indeed, every
useless type can be removed from D in a simple preprocessing step. Then, for a string
w ∈ Σ∗ and a ∈ Σ, let types(wa) be the set of all types ai ∈ Σ′ for which there are a
tree t and a tree t′ ∈ L(d) with μ(t′) = t, and a node v in t such that anc-strt(v) = wa
and the type of v in t′ is ai. We show how to compute types(wa) in exponential time.
To this end, we enumerate all sets types(w). Let s = c1. Initially, set W := {c},
Types(c) := {c1}, and R := {{c1}}. Repeat the following until W becomes empty:

(1) Remove a string wa from W .
(2) For every b ∈ Σ, let Types(wab) contain all bi for which there exist an aj in

Types(wa) and a string in d(aj) containing bi. If Types(wab) is not empty
and not already in R, then add it to R and add wab to W .

Since we add every set only once to R, the algorithm runs in time exponential in the
size of D. Moreover, we have that Types(w) = types(w) for every w and that R = Σ′

0.
For each a ∈ Σ, let types(D, a) be the set of all nonempty sets types(wa), with w ∈

Σ∗. Clearly, each types(D, a) is finite. We next define D0 = (Σ,Σ′
0, d0, s, μ0). Its set

of types is Σ′
0 :=

⋃
a∈Σ types(D, a). Note that s ∈ Σ′

0. For every τ ∈ types(D, a), set
μ0(τ) = a. In d0, the right-hand side of the rule for each types(wa) is the disjunction
of all d(ai) for ai ∈ types(wa), with each bj in d(ai) replaced by types(wab).

We show that properties (a)–(d) hold. Since Σ′
0 ⊆ 2Σ′

, we immediately have
that (a) holds. The RE(#,&) expressions that we constructed in D0 are unions of a
linear number of RE(#,&) expressions in D, but have types in 2Σ′

rather than in Σ′.
Hence, the size of the RE(#,&) expressions in D0 is at most quadratic in the size of
D. Finally, we note that it has been shown in Theorem 7.1 in [27] that (c) and (d)
also hold.

It remains to argue that it can be decided in expspace that L(D0) ⊆ L(D).
A direct application of the expspace algorithm in Theorem 5.1(1) leads to a 2ex-
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pspace algorithm to test whether L(D0) ⊆ L(D), due to the computation of C1.
Indeed, the algorithm remembers, given the EDTDs D0 = (Σ,Σ′

0, d0, s0, μ0) and
D = (Σ,Σ′, d, s, μ), all possible pairs (C1, C2) such that there exists a tree t with
C1 = {τ ∈ Σ′

0 | t ∈ L((D0, τ))} and C2 = {τ ∈ Σ′ | t ∈ L((D, τ))}. It then accepts if
there exists such a pair (C1, C2) with s0 ∈ C1 and s �∈ C2. However, when we use non-
determinism, notice that it is not necessary to compute the entire set C1. Indeed, as
we test only whether there exist elements in C1 in the entire course of the algorithm,
we can adapt the algorithm to compute pairs (c1, C2), where c1 is an element of C1,
rather than the entire set. Since nexpspace = expspace, we can use this adaption
to test whether L(D0) ⊆ L(D) in expspace.

Finally, we give the algorithm which decides whether an EDTD D = (Σ,Σ′,
d, s, μ) is equivalent to a DTD. We compute a DTD (Σ, d0, sd) which is equivalent
to D if and only if L(D) is definable by a DTD. Thereto, let, for each ai ∈ Σ′, ra,i
be the expression obtained from d(ai) by replacing each symbol bj in d(ai) by b. For
every a ∈ Σ, define d0(a) =

⋃
ai∈Σ′ ra,i. Again, it is shown in [27] that L(D) = L(d0)

if and only if L(D) is definable by a DTD. By Theorem 5.1(1) and since d0 is of size
polynomial in the size of D, this can be tested in expspace.

7. Conclusion. The present work gives an overview of the complexity of the ba-
sic decision problems for abstractions of several schema languages including numerical
occurrence constraints and interleaving. W.r.t. intersection the complexity remains
the same, while for inclusion and equivalence the complexity increases by one ex-
ponential for DTDs and single-type EDTDs, and goes from exptime to expspace

for EDTDs. The results w.r.t. CHAREs also follow this pattern. We further showed
that the complexity of simplification increases to expspace.

We emphasize that this is a theoretical study delineating the worst case com-
plexity boundaries for the basic decision problems. Although these complexities must
be studied, we note that the regular expressions used in the hardness proofs do not
correspond at all to those employed in practice. Further, w.r.t. XSDs, our abstraction
is not fully adequate as we do not consider the one-unambiguity (or unique parti-
cle attribution) constraint. However, it is doubtful that this constraint is the right
one to get tractable complexities for the basic decision problems. Indeed, already in-
tersection for unambiguous regular expressions is pspace-hard [28] and inclusion for
one-unambiguous RE(#) expressions is conp-hard [22]. It would therefore be desirable
to find robust subclasses for which the basic decision problems are in ptime.
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STREAM ORDER AND ORDER STATISTICS: QUANTILE
ESTIMATION IN RANDOM-ORDER STREAMS∗
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Abstract. When trying to process a data stream in small space, how important is the order in
which the data arrive? Are there problems that are unsolvable when the ordering is worst case, but
that can be solved (with high probability) when the order is chosen uniformly at random? If we con-
sider the stream as if ordered by an adversary, what happens if we restrict the power of the adversary?
We study these questions in the context of quantile estimation, one of the most well studied problems
in the data-stream model. Our results include an O(polylog n)-space, O(log log n)-pass algorithm
for exact selection in a randomly ordered stream of n elements. This resolves an open question
of Munro and Paterson [Theoret. Comput. Sci., 23 (1980), pp. 315–323]. We then demonstrate an
exponential separation between the random-order and adversarial-order models: using O(polylog n)
space, exact selection requires Ω(log n/ log log n) passes in the adversarial-order model. This lower
bound, in contrast to previous results, applies to fully general randomized algorithms and is estab-
lished via a new bound on the communication complexity of a natural pointer-chasing style problem.
We also prove the first fully general lower bounds in the random-order model: finding an element
with rank n/2 ± nδ in the single-pass random-order model with probability at least 9/10 requires

Ω(
√

n1−3δ/ log n) space.
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1. Introduction. One of the principal theoretical motivations for studying the
data-stream model is to understand the role played by the order in which a problem
is revealed. While an algorithm in the RAM model can process the input data in an
arbitrary order, the key constraint of the data-stream model is that the algorithm
must process (in small space) the input data in the order in which it arrives. Param-
eterizing the number of passes that an algorithm may have over the data establishes
a spectrum between the RAM model and the one-pass data-stream model. How does
the computational power of the model vary along this spectrum? To what extent does
it matter how the stream is ordered?

These issues date back to one of the earliest papers on the data-stream model
in which Munro and Paterson considered the problems of sorting and selection in
limited space [21]. They showed that Õ(n1/p) space was sufficient to find the exact
median of a sequence of n numbers given p passes over the data. However, if the
data were randomly ordered, Õ(n1/(2p)) space sufficed. Based on this result and other
observations, it seemed plausible that any p-pass algorithm in the random-order model
could be simulated by a 2p-pass algorithm in the adversarial-order model. This was
posed as an open problem by Kannan [17], and further support for this conjecture
came via work initiated by Feigenbaum et al. [6] that considered the relationship
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between various property testing models and the data-stream model. It was shown
by Guha, McGregor, and Venkatasubramanian [14] that several models of property
testing can be simulated in the single-pass random-order data-stream model, while it
appeared that a similar simulation in the adversarial-order model required two passes.

In this paper we resolve the conjecture and demonstrate the important role played
by the stream order in the context of exact selection and quantile estimation. Before
detailing our results, we first motivate the study of the random-order model. We
believe that this motivation, coupled with the array of further questions that naturally
arise, may establish a fruitful area of future research.

1.1. Motivation. In the literature to date, it is usually assumed that the stream
to be processed is ordered by an omnipotent adversary that knows the algorithm
and the set of elements in the stream. In contrast to the large body of work on
adversarially ordered streams, the random-order model has received little explicit
attention to date. Aside from the aforementioned work by Munro and Paterson [21]
and Guha, McGregor, and Venkatasubramanian [14], the only other results were given
by Demaine, López-Ortiz, and Munro [5] in a paper about frequency estimation.
However, there are numerous motivations for considering this model.

First, the random-order model gives rise to a natural notion of average-case anal-
ysis which explains why certain data-stream problems may have prohibitive space
lower bounds while being typically solvable in practice. When evaluating a permu-
tation invariant function f on a stream, we observe that there are two orthogonal
components to an instance: the set of data items in the stream, O = {x1, x2, . . . , xn},
and π, the permutation of {1, 2, . . . , n} that determines the ordering of the stream.
Since f is permutation invariant, O determines the value of f . One approach when
designing algorithms is to make an assumption about O such as that the set of items
is distributed according to a Gaussian distribution. While this approach has its mer-
its, because we are trying to compute something about O it is often difficult to find
a suitable assumption that would allow small-space computation while not directly
implying the value of the function. We take an alternative view and, rather than
making assumptions about O, we consider which problems can be solved, with high
probability, when the data items are ordered randomly. This approach is an average-
case analysis, where π is chosen uniformly from all possible permutations while O is
chosen worst case.

Second, if we consider π to be determined by an adversary, a natural complexity
question is the relationship between the power of the adversary and the resources
required to process a stream. If we impose certain computational constraints on the
adversary, a popular idea in cryptography, how does this affect the space and time
required to process the stream?

Lastly, there are situations in which it is reasonable to assume the stream is not
ordered adversarially. These include the following scenarios, where the stream order
is random either by design, by definition, or because of the semantics of data:

1. Random by definition: A natural setting in which a data stream would be
ordered randomly is if each element of the stream is a sample drawn indepen-
dently from some unknown distribution. Regardless of the source distribu-
tion, given the set of n samples, each of the n! permutations of the sequence
of samples was equally likely. Density estimation algorithms that capitalized
on this were presented by Guha and McGregor [13].

2. Random by semantics: In other situations the semantics of the data in the
stream may imply that the stream is randomly ordered. For example, consider
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a database of employee records in which the records are sorted by surname.
We wish to estimate some property of the employee salaries given a stream of
〈surname, salary〉 tuples. If there is no correlation between the lexicographic
ordering of the surnames and the numerical ordering of salaries, then the
salary values are ordered uniformly at random. We note that several query
optimizers make such assumptions.

3. Random by design: Lastly, there are some scenarios in which we dictate the
order of the stream. Naturally we can therefore ensure it is nonadversarial!
An example is the “backing sample” architecture proposed by Gibbons and
coworkers [7,8] for maintaining accurate estimates of aggregate properties of
a database. A large sample is stored on the disk and this sample is used to
periodically correct estimates of the relevant properties.

1.2. Our contributions. We start with the following algorithmic results which
are proved in section 3:

1. A single-pass algorithm using O(log n) space that, given any k, returns an
element of rank k±O(k1/2 log2 n log δ−1) with probability at least 1− δ if the
stream is randomly ordered. The algorithm does not require prior knowledge
of the length of the stream.

2. An algorithm using O(polylog n) space that performs exact selection in only
O(log logn) passes. This was conjectured by Munro and Paterson [21] but
has been unresolved for over 30 years.

In section 4, we introduce two notions of the order of the stream being “semi-
random.” The first is related to the computational power of an adversary ordering the
stream, and the second is related to the random process that determines the order.
We show how the performance of our algorithms degrades as the randomness of the
order decreases according to either notion. These notions of semirandomness will also
be critical for proving lower bounds in the random-order model. In sections 5 and 6,
we prove the following lower bounds:

1. Any algorithm that returns an nδ-approximate median, i.e., an element with
rank n/2 ± nδ, in the single-pass random-order model with probability at
least 9/10 requires Ω(

√
n1−3δ/ logn) space. This is the first unqualified lower

bound in this model. Previously, all that was known was that a single-pass
algorithm that maintained a set of elements whose ranks (among the elements
read thus far) are consecutive and as close to the current median as possible,
required Ω(

√
n) space to find the exact median in the random-order model

[21]. Our result, which is fully general, uses a reduction from communication
complexity but deviates significantly from the usual form of such reductions
because of the novel challenges arising when proving a lower bound in the
random-order model. We believe the techniques used will be useful in proving
average-case lower bounds for a variety of data-stream problems.

2. Any algorithm that returns an nδ-approximate median in p passes of an ad-
versarially ordered stream requires Ω(n(1−δ)/pp−6) space. In particular, this
implies that in the adversarial-order model any O(polylog n)-space algorithm
for exact selection must use Ω(log n/ log logn) passes. This is established
via a new bound on the communication complexity of a natural pointer-
chasing style problem. The best previous result showed that any determin-
istic, comparison-based algorithm for exact selection required Ω(n1/p) space
for constant p [21]. This resolves the conjecture of Kannan and establishes
that existing multipass algorithms are optimal up to terms polynomial in p.
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1.3. Related work on quantile estimation. Quantile estimation is perhaps
the most extensively studied problem in the data-stream model [3,4,9,10,15,19,20,23].
Manku, Rajagopalan, and Lindsay [19,20] showed that we can find an element of rank
k ± εn using O(ε−1 log2 εn) space, where n is the length of the stream and k is user
specified. This was improved to a deterministic, O(ε−1 log εn)-space algorithm by
Greenwald and Khanna [10]. Gilbert et al. [9] gave an algorithm for the model in which
elements may also be “deleted” from the stream. Shrivastava et al. [23] presented
another deterministic algorithm for insert-only streams that uses O(ε−1 logU) space,
where U is the size of the domain from which the input is drawn. Gupta and Zane
[15] and Cormode et al. [3] presented algorithms for estimating biased quantiles, i.e.,
algorithms that return an element of rank k± εk for any k ∈ {1, . . . , n}. We note that
all these algorithms are for the adversarial-order model and therefore are not designed
to take advantage of a weak, or absent, adversary.

1.4. Recent developments. Since the initial submission of this paper, there
has been follow-up work that presents lower bounds on the space required for multi-
pass algorithms for randomly ordered data streams [1,2]. In particular, it was shown
that any O(polylogn)-space algorithm that returns the median of a randomly or-
dered stream of length n with probability at least 9/10 requires Ω(log logn) passes.
Other problems were also considered in the random-order model, including estimating
frequency moments, graph connectivity, and measuring information divergences [1].

2. Notation and preliminaries. Let [n] = {1, . . . , n}. Let Symn be the set of
all n! permutations of [n]. We say a = b± c if |a− b| ≤ c and write a ∈R S to indicate
that a is chosen, uniformly at random, from the set S. The next definition clarifies
the rank of an element in a multiset.

Definition 2.1 (rank and approximate selection). The rank of an item x in a
set S is defined as

RankS(x) = |{x′ ∈ S|x′ < x}| + 1 .

Assuming there are no duplicate elements in S, we say x is an Υ-approximate k-rank
element if RankS(x) = k ± Υ. If there are duplicate elements in S, we say x is an
Υ-approximate k-rank element if there exists some way of breaking ties such that x is
an Υ-approximate k-rank element.

At various points we will appeal to less common variants of Chernoff–Hoeffding
bounds that pertain to sampling without replacement.

Theorem 2.2 (Hoeffding [16]). Consider a population C consisting of N values
{c1, . . . , cN}. Let the mean value of the population be μ = N−1

∑N
i=1 ci and let cmax =

maxi∈N ci−mini∈N ci. Let X1, . . . , Xn be a sequence of independent samples without
replacement from C and X̄ = n−1

∑n
i=1Xi. Then,

Pr
[
X̄ �∈ (μ− a, μ+ b)

]
≤ exp

(
−2na2/cmax

2
)

+ exp
(
−2nb2/cmax

2
)
.

The following corollary will also be useful. If ci = 1 for i ∈ [k] and 0 otherwise, then

Pr
[
X̄ �∈ (μ− a, μ+ b)

]
≤ exp

(
−2a2n2/k

)
+ exp

(
−2b2n2/k

)
.

3. Algorithms for random-order streams. In this section we show how to
perform approximate selection of the kth smallest element in a single pass over a
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Selection Algorithm:
1. Let a = −∞, b = +∞, and

Υ = 20 ln2(n) ln(δ−1)
√
k

p = 4(log4/3(n/Υ) + (ln(3/δ) log4/3(n/Υ))1/2)

l1 = nΥ−1 ln(3n2p/δ)

l2 = 2(n− 1)Υ−1
√

(k + Υ) ln(6np/δ)

2. Partition stream as S = 〈S1, E1, . . . , Sp, Ep〉 where |Si| = l1 and |Ei| = l2
3. Phase i ∈ [p]:

(a) Sample: If Si ∩ (a, b) = ∅, return a, else let u be first element in Si ∩ (a, b)
(b) Estimate: Compute r = RankEi(u) and let r̃ = (n− 1)(r − 1)/l2 + 1
(c) Update: If r̃ < k − Υ/2, a← u, r̃ > k + Υ/2, b← u, else return u

Fig. 3.1. The selection algorithm.

randomly ordered stream of length n. As we are interested in massive data streams,
we consider the space complexity and accuracy guarantees of the algorithm as n
becomes large.

Definition 3.1 (random order). Consider a set of elements x1, . . . , xn ∈ [poly(n)].
Then this set and π ∈ Symn define a stream S = 〈xπ(1), . . . , xπ(n)〉. If π is chosen
uniformly from Symn, then we say the stream is in random order.

We will present the algorithm, assuming the exact value of the length of the
stream, n, is known in advance. In a subsequent section, we will show that this
assumption is not necessary. In what follows, we will assume that the stream contains
distinct values. This can easily be achieved with probability at least 1−δ by attaching
a secondary value yi ∈R [n2δ−1] to each item xi in the stream. We say (xi, yi) <
(xj , yj) iff xi < xj or (xi = xj and yi < yj). Note that breaking the ties arbitrarily
results in a stream whose order is not random. We also may assume that k ≤ n/2 by
symmetry.

3.0.1. Algorithm overview. Our algorithm proceeds in phases and each phase
is composed of the following three distinct subphases: the sample subphase, the esti-
mate subphase, and the update subphase. At all points, we maintain an open interval
(a, b) such that we believe that the value of the element with rank k is between a and
b. In each phase we aim to narrow the interval (a, b). The sample subphase finds a
value u ∈ (a, b). The estimate subphase estimates the rank of u. The update subphase
replaces a or b by u depending on whether the rank of u is believed to be less than or
greater than k. See Figure 3.1 for the algorithm.

3.0.2. Analysis. For the analysis we define the following quantity:

Γ(a, b) = |S ∩ (a, b)| = |{v ∈ S : a < v < b}| .

Lemma 3.2. With probability 1 − δ/3, for all phases, if Γ(a, b) ≥ Υ, then there
exists an element u in each sample subphase, i.e.,

Pr[∀ i ∈ [p] and a, b ∈ S such that Γ(a, b) ≥ Υ;Si ∩ (a, b) �= ∅] ≥ 1 − δ/3 .
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Proof. Fix i ∈ [p] and a, b ∈ S such that Γ(a, b) ≥ Υ. Then,

Pr[Si ∩ (a, b) �= ∅] ≥ 1 −
(

1 − Γ(a, b)
n

)l1
≥ 1 − exp

(
−Υl1
n

)
= 1 − δ

3n2p
.

The result follows by applying the union bound over all choices of i, a, and b.
Lemma 3.3. With probability 1− δ/3, for all phases, we determine the rank of u

with sufficient accuracy, i.e.,

Pr
[
∀i ∈ [p], u ∈ S; r̃ = RankS(u) ± Υ/2 if RankS(u) < k + Υ + 1

r̃ > k + Υ/2 if RankS(u) ≥ k + Υ + 1

]
≥ 1− δ/3 ,

where r̃ = (n− 1)(RankEi(u) − 1)/l2 + 1.
Proof. Fix i ∈ [p] and u ∈ S. First, we consider u such that RankS(u) < k+Υ+1.

Let X = RankEi(u)− 1 and note that E [X ] = l2(RankS(u)− 1)/(n− 1). Appealing
to the second part of Theorem 2.2,

Pr[r̃ �= RankS(u) ± Υ/2] = Pr
[
|X − E [X ] | ≥ l2Υ

2(n− 1)

]
≤ 2 exp

(
−2(l2Υ/(2(n− 1)))2

RankS(u) − 1

)
≤ δ

3np
,

where the last inequality follows because (l2Υ/(2(n− 1)))2 = (k + Υ) ln(6np/δ) (by
definition of l2) and RankS(u) − 1 < k + Υ (by assumption). Now assume that
RankS(u) ≥ k+ Υ + 1 and note that Pr[r̃ ≥ k + Υ/2] is minimized for RankS(u) =
k + Υ + 1. Hence,

Pr[r̃ > k + Υ/2] = 1 − Pr
[
E [X ] −X ≥ l2Υ

2(n− 1)

]
≥ 1 − exp

(
− (l2Υ)2

4(k + Υ)(n− 1)2

)
= 1 − δ

6np
.

The result follows by applying the union bound over all choices of i and u.
We now give the main theorem of this section.
Theorem 3.4. For k ∈ [n], there exists a single-pass, O(log n)-space algorithm in

the random-order model that returns u such that RankS(u) = k±20 ln2(n) ln(δ−1)
√
k

with probability at least 1 − δ.
Proof. Consider Γ(a, b) = |{v ∈ S : a < v < b}| in each phase of the algorithm.

By Lemmas 3.2 and 3.3, with probability at least 1 − 2δ/3, in every phase, if we do
not terminate, then Γ(a, b) decreases and RankS(a) ≤ k ≤ RankS(b). In particular,
in each phase, with probability 1/4, either we terminate or Γ(a, b) decreases by at
least a factor of 3/4. Let Y be the number of phases in which Γ(a, b) decreases by a
factor of 3/4. If the algorithm does not terminate, then Y < log4/3(n/Υ) since Γ(a, b)
is initially n and the algorithm will terminate if Γ(a, b) < Υ. But,

Pr
[
Y < log4/3(n/Υ)

]
= Pr

[
Y < E [Y ] −

√
ln(3/δ) log4/3(n/Υ)

]
≤ δ/3 .
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Hence with probability at least 1 − δ the algorithm returns a value with rank k ± Υ.
The space bound follows immediately from the fact that the algorithm only stores

a constant number of polynomially sized values and maintains a counter that stores
values in the range [n]. Finally, for sufficiently large n,

p(l1 + l2) ≤ 20 ln2(n) ln(δ−1)nΥ−1
√
k = n,

and hence the stream is sufficiently long for all the phases to complete.

3.1. Generalizing to unknown stream lengths. The algorithm in the previ-
ous section assumed prior knowledge of n, the length of the stream. We now discuss
a simple way to remove this assumption. First we argue that, for our purposes, it is
sufficient to look at only half the stream.

Lemma 3.5. Given a randomly ordered stream S of length n, let S′ be a contiguous
substream of length ñ ≥ n/2. Then, with probability at least 1 − δ, if u is the k̃th
smallest element of S′, then RankS(u) = k̃n/ñ± 2(8k̃ ln δ−1)0.5.

Proof. Let a = k̃/ñ. Let the elements in the stream be x1 ≤ · · · ≤ xn. Let
X = |{x1, . . . , xan+b}∩S′| and Y = |{x1, . . . , xan−b−1}∩S′|, where b = 2(8k̃ ln δ−1)0.5.
The probability that the element of rank k̃ = añ in S′ has rank in S outside the range
[an− b, an+ b] is less than

Pr[X < añ or Y > añ] ≤ Pr[X < E [X ] − b/2 or Y > E [Y ] + b/2]

≤ 2 exp
(

−(b/2)2

3(añ+ b)

)
≤ δ .

The lemma follows.
To remove the assumption that we know n, we make multiple instantiations of the

algorithm. Each instantiation corresponds to a guess of n. Let β = 1.5. Instantiation
i guesses a length of

⌈
4βi
⌉
−
⌊
βi
⌋
+1 and is run on the stream starting with the

⌊
βi
⌋
th

data item and ending with the
⌈
4βi
⌉
th data item. We remember the result of the

algorithm until the 2(
⌈
4βi
⌉
−
⌊
βi
⌋

+ 1)th element arrives. We say the instantiation
has been canceled at this point.

Lemma 3.6. At any time, there is only a constant number of instantiations.
Furthermore, when the stream terminates, at least one instantiation has run on a
substream of at least n/2.

Proof. Consider the tth element of the data stream. By this point there have
been O(logβ t) instantiations made. However, Ω(logβ t/6) instantiations have been
canceled. Hence O(logβ t − logβ t/6) = O(1) instantiations are running. We now
show that there always exists an instantiation that has been running on at least half
the stream. The ith instantiation gives a useful result if the length of the stream
n ∈ Ui = {

⌊
4βi
⌋

+ 1, . . . , 2(
⌈
4βi
⌉
−
⌊
βi
⌋

+ 1)}. But
⋃
i≥0 Ui = N \ {0, 1, 2, 3, 4} since

for all i > 1,
⌊
4βi + 1

⌋
≤ 2(

⌈
4βi−1

⌉
−
⌊
βi−1

⌋
+ 1).

We can therefore generalize Theorem 3.4 as follows.
Theorem 3.7. For k ∈ [n], there exists a single-pass, O(log n)-space algorithm in

the random-order model that returns u such that RankS(u) = k±11 ln2(n) ln(δ−1)
√
k

with probability at least 1 − δ. The algorithm need not know n in advance.

3.2. Multipass exact selection. In this section we consider the problem of
exact selection of an element of rank k = Ω(n). We will later show that this requires
Ω(

√
n) space if an algorithm is permitted only one pass over a stream in random

order. However, if O(log logn) passes are permitted, we now show that O(polylog n)
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space is sufficient. We will again assume that the elements in the stream are distinct
but we note that it is not difficult to avoid this assumption.

We use a slight variant of the single-pass algorithm in section 3 as a building
block. Rather than returning a single candidate, we output the pair a and b. Using
the analysis in section 3, it can be shown that, with probability 1 − δ, RankS(a) <
k < RankS(b) and that

|RankS(a) − RankS(b)| ≤ O(
√
n log2 n log δ−1) .

In one additional pass, RankS(a) and RankS(b) can be computed exactly. Hence,
after two passes, by ignoring all elements outside the range (a, b), we have reduced
the problem to that of finding an element of rank k − RankS(a) in a stream of
length O(

√
n log3 n) if we assume that δ−1 = poly(n). If we repeat this process

O(log logn) times and then select the desired element by explicitly storing the remain-
ing O(polylog n)-length stream, it would appear that we can perform exact selection
in O(polylog n) space and O(log logn) passes. However, there is one crucial detail
that needs to be addressed.

In the first pass, by assumption we are processing a data stream whose order is
chosen uniformly from Symn. However, because the stream order is not rerandomized
between each pass, it is possible that the previous analysis does not apply because
of dependencies that may arise between different passes. Fortunately, the following
straightforward, but necessary, observation demonstrates that this is not the case.

Fact 3.8. Let a and b, respectively, be the lower and upper bound returned after
a pass of the algorithm on the stream 〈x1, . . . , xn〉. Let π ∈ Symn satisfy i = π(i)
for all i ∈ [n] such that xi �∈ (a, b). Then the algorithm also would return the same
bounds after processing the stream 〈xπ(1), . . . , xπ(n)〉.

Therefore, conditioned on the algorithm returning a and b, the substream of
elements in the range (a, b) are still ordered uniformly. This leads to the following
theorem.

Theorem 3.9. For k ∈ [n], there exists an O(polylog n)-space, O(log logn)-pass
algorithm in the random-order model that returns the kth smallest value of a stream
with probability 1 − 1/ poly(n).

3.3. Applications to equidepth histograms. In this section we briefly over-
view an application to constructing B-bucket equidepth histograms. Here, the his-
togram is defined by B buckets whose boundaries are defined by the items of rank
in/(B+1) for i ∈ [B]. Gibbons, Matias, and Poosala [8] consider the problem of con-
structing an approximate B-bucket equidepth histogram of data stored in a backing
sample. The measure of “goodness of fit” they consider is

μ = n−1

√
B−1

∑
i∈[B]

ε2i ,

where εi is the error in the rank of the boundary of the ith bucket. They show that
μ can be made smaller than any ε > 0 where the space used depends on ε. However,
in their model it is possible to ensure that the data are stored in random order. As a
consequence of the algorithm in section 3, we get the following theorem.

Corollary 3.10. In a single pass over a backing sample of size n stored in ran-
dom order, we can compute the B quantiles of the samples using O(B logn) memory
with error Õ(n−1/2). Since the error goes to zero as the sample size increases, we
have the first consistent estimator for this problem.
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4. Semirandom order. In this section we consider two natural notions of
“semirandom” ordering and explain how our algorithm can be adjusted to process
streams whose order is semirandom under either definition. The first notion is stochas-
tic in nature: we consider the distribution over orders which are “close” to the uniform
order in terms of the variational distance. This will play a critical role when proving
lower bounds.

Definition 4.1 (ε-generated-random order). Given set {x1, . . . , xn}, π ∈ Symn

defines a stream 〈xπ(1), . . . , xπ(n)〉. We say the order is ε-generated random (ε-GR)
if π is chosen according to a distribution ν such that ‖μ − ν‖1 ≤ ε, where μ is the
uniform distribution on Symn.

The importance of this definition is captured in the following simple lemma.
Lemma 4.2. Let A be a randomized algorithm that succeeds (i.e., returns an

estimate of some property with some accuracy guarantee) with probability at least
1 − δ in the random-order model. Then A succeeds with probability at least 1 − δ − ε
when the stream order is ε-GR.

Proof. Let Prμ,coin [·] denote the probability of an event over the internal coin
tosses of A and the ordering of the stream when the stream order is chosen according
to the uniform distribution μ. Similarly, define Prν,coin [·], where ν is any distribution
satisfying ‖μ− ν‖1 ≤ ε:

Pr
μ,coin

[A succeeds] =
∑

π∈Symn

Pr
μ

[π] Pr
coin

[A succeeds|π] ≤ Pr
ν,coin

[A succeeds] + ε .

The lemma follows since Prμ,coin [A succeeds] ≥ 1 − δ by assumption.
The next theorem follows immediately from Theorem 3.4 and Lemma 4.2.
Theorem 4.3. For k ∈ [n], there exists a single-pass, O(log n)-space algorithm in

the ε-GR-order model that returns u such that RankS(u) = k ± 11 ln2(n) ln(δ−1)
√
k

with probability at least 1 − δ − ε.
The second definition is computational in nature. We consider an adversary

upstream of our algorithm that can reorder the elements subject to having limited
memory to do this reordering.

Definition 4.4 (t-bounded-adversary-random order). A t-bounded adversary is
an adversary that can only delay at most t elements at a time; i.e., when presented
with a stream 〈x1, . . . , xn〉, it can ensure that the received stream is 〈xπ(1), . . . , xπ(n)〉
if π ∈ Symn satisfies

(4.1) ∀i ∈ [n], |{i < j ≤ n : π(j) < π(i)}| ≤ t .

The order of a stream is t-bounded-adversary-random (t-BAR) if it is generated by a
t-bounded adversary acting on a stream whose order is random.

For example, a 2-bounded adversary acting on the stream 〈1, 2, 3, 4, 5, 6, 7, 8, 9〉
can transform it into 〈3, 2, 1, 6, 5, 4, 9, 8, 7〉 or 〈3, 4, 5, 6, 7, 8, 9, 1, 2〉but can not generate
〈9, 8, 7, 6, 5, 4, 3, 2, 1〉. In particular, in the adversarial-order model the stream order
is (n− 1)-BAR, while in the random-order model the order is 0-BAR.

Lemma 4.5. Consider streams 〈x1, . . . , xn〉 and 〈xπ(1), . . . , xπ(n)〉, where π sat-
isfies (4.1). Then for any j, w ∈ [n], |{xj , . . . , xj+w−1} ∩ {xπ(j), . . . , xπ(j+w−1)} ≥
w − 2t.

We assume that t ≤
√
k. Given the above lemma, it is straightforward to trans-

form the algorithm of the previous section into one that is correct (with prescribed
probability) when processing a stream in t-BAR order. In particular, it is sufficient
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to set l1 = O(nΥ−1 ln(3n2p/δ)+ tδ−1) and to choose a random u among Si ∩ (a, b) in
each sample phase. Note that l1 < l2 for t ≤

√
k. In each estimate phase a t-bounded

adversary can introduce an extra 2nt/l2 ≤ tΥ/
√
k ≤ Υ error. Hence, the total error

is at most 2Υ.
Theorem 4.6. For k ∈ [n], there exists a single-pass, O(log n)-space algorithm in

the t-BAR-order model that returns u such that RankS(u) = k± 20 ln2(n) ln(δ−1)
√
k

with probability at least 1 − δ.

5. Random-order lower bound. In this section we will prove a lower bound
on the space required to nδ approximate the median in the single-pass, random-
order model. Our lower bound will be based on a reduction from the communication
complexity of indexing [18]. However, the reduction is significantly more involved
than typical reductions because different segments of a stream cannot be determined
independently by different players if the stream is in random order.

Consider two players Alice and Bob, where Alice has a binary string σ of length
s and Bob has an index r ∈ [s], where s will be determined later. It is known that for
Bob to determine Index(σ, r) = σr after a single message from Alice with probability
at least 4/5, this message must consist of Ω(s) bits.

Theorem 5.1 (see, e.g., [18]). R1−way
1/5 (Index) ≥ c∗s for some constant c∗ > 0.

We start by assuming that there exists an algorithm A that computes an nδ-
approximate median in the single-pass, random-order model with probability at least
9/10. We then use this to construct a one-way communication protocol that will
allow Alice and Bob to solve their Index problem. They do this by simulating A
on a stream of length n, where Alice determines a long prefix of the stream and Bob
determines the remaining elements. For convenience we assume n is even and consider
the median to be the element of rank n/2. The stream they construct consists of the
union of the following sets of elements:

X : A size x set consisting of n/2 + nδ − (2nδ + 1)r copies of 0.
Y : A size y set consisting of n/2 − nδ − (2nδ + 1)(s− r) copies of 2s+ 2.
Z: A size z = (2nδ + 1)s set consisting of 2nδ + 1 copies of {2i+ σi : i ∈ [s]}.

Note that any nδ-approximate median of U = S ∪X ∪ Y is 2r + σr. The difficulty
we face is that we may only assume A returns an nδ-approximate median of U if U is
ordered randomly. Ensuring this seems to require a significant amount of communi-
cation between Alice and Bob. How else can Alice determine the balance of elements
from X and Y in the prefix of the stream or can Bob know the elements of Z that
should appear in the suffix of the stream?

In what follows we will argue that by carefully choosing the length of the prefix,
suffix, and s, it is possible for Alice and Bob to ensure that the ordering of the
stream is 1/20-GR, while only communicating a sufficiently small number of bits with
probability at least 19/20. Then, by appealing to Lemma 4.2, we may assume that
the protocol is correct with probability at least 4/5.

5.1. Generating a stream in semirandom order. Let A be the set of ele-
ments in the prefix of the stream which is determined by Alice. Let B = U \ A be
the set of elements in the remaining part of the stream which is determined by Bob.
Roughly speaking, A will consist of n − Θ̃(n1−δ) of the stream elements, including
most of the elements from Z. The number of elements from X and Y will be de-
termined on the assumption that x = y. B will consist of the remaining Θ̃(n1−δ)
elements from X ∪ Y ∪ Z. The intuition is that if B is too large, then B will contain
too many elements from Z whereas, if B is too small, the assumption that x = y in
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the determination of A will be problematic when it comes to arguing that the order
of the stream is nearly random.

Let p = c∗/(8nδ logn) and consider the following protocol:
1. Alice determines A ∩ Z and B ∩ Z by placing an element from Z into B

with probability p, and placing it in A otherwise. Alice picks t0 according to
T0 ∼ Bin(n/2−z, 1−p) and t1 according to T1 ∼ Bin(n/2−z, 1−p). She places
t0 copies of 0 and t1 copies of 2s + 2 into A. She sends a message encoding
B ∩Z, t0, t1, and the memory state of A run on a random permutation of A.

2. Bob instantiates A with memory state sent by Alice and continues running
it on a random permutation of B = (B ∩ Z) ∪ {x − t0 copies of 0} ∪ {y −
t1 copies of 2s+ 2}. Finally, Bob returns 1 if the output of the algorithm is
odd, and 0 otherwise.

Let ν be the distribution over stream orders generated by the above protocol.
The next lemma establishes that ν is almost uniform. This will be required to prove
the correctness of the algorithm.

Lemma 5.2. If z = 10−6√pn, then ‖μ − ν‖1 ≤ 1/20 where μ is the uniform
distribution on Symn.

Proof. Define the random variables T ′
0 ∼ Bin(x, 1− p) and T ′

1 ∼ Bin(y, 1− p) and
let a0 = x− n/2 + z and a1 = y− n/2 + z. Note that a0, a1 ≥ 0 and a0 + a1 = z. We
upper bound ‖μ− ν‖1 as follows:

‖μ− ν‖1 =
∑
t0,t1

|Pr[T0 = t0, T1 = t1] − Pr[T ′
0 = t0, T

′
1 = t1]|

≤ max
t0∈(1−p)x±b∗
t1∈(1−p)y±b∗

∣∣∣∣Pr[T0 = t0, T1 = t1]
Pr[T ′

0 = t0, T ′
1 = t1]

− 1
∣∣∣∣

+ Pr[max{|T0 − E [T0] |, |T1 − E [T1] |} ≥ b∗ − pz]
+ Pr[max{|T ′

0 − E [T ′
0] |, |T ′

1 − E [T ′
1] |} ≥ b∗] ,

where b∗ = 10
√
pn/2 + pz. By the Chernoff bound,

Pr[max{|T0 − E [T0] |, |T1 − E [T1] |} ≥ b∗ − pz]

+ Pr[max{|T ′
0 − E [T ′

0] |, |T ′
1 − E [T ′

1] |} ≥ b∗] ≤ 8 exp
(
−2(b∗ − pz)2/(3pn)

)
,

and hence the (sum of the) last two terms are upper bounded by 1/40 for sufficiently
large n.

Let t0 = (1−p)x+b0 and t1 = (1−p)x+b1 and assume that |b0|, |b1| ≤ b∗. Then,

Pr[T0 = t0, T1 = t1]
Pr[T ′

0 = t0, T ′
1 = t1]

=

(
n/2−z
t0

)(
n/2−z
t1

)(
x
t0

)(
y
t1

)
pz

=

⎛⎝ ∏
i∈[a0]

xp− i+ 1 − b0
(x− i+ 1)p

⎞⎠⎛⎝ ∏
i∈[a1]

yp− i+ 1 − b1
(y − i+ 1)p

⎞⎠ ,

and therefore

exp
(

−zb∗
p(x− z)

+
−zb∗

p(y − z)

)
≤ Pr[T0 = t0, T1 = t1]

Pr[T ′
0 = t0, T ′

1 = t1]
≤ exp

(
2z2 + zb∗

p(x− z)
+

2z2 + zb∗

p(y − z)

)
.

Substituting z establishes that |Pr[T0 = t0, T1 = t1] /Pr[T ′
0 = t0, T

′
1 = t1]− 1| ≤ 1/40

for sufficiently large n. The lemma follows.
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The next lemma will be necessary to bound the communication of the protocol.
Lemma 5.3. Pr[|Z ∩B| ≥ c∗s/(2 logn)] ≤ 1/20 for s = ω(logn).
Proof. Note that E[|Z ∩ B|] = pz ≤ 3c∗s/(8 logn). Then, by an application of

the Chernoff bound,

Pr[|Z∩B| ≥ c∗s/(2 logn)] = Pr[|Z∩B| ≥ (4/3)E[|Z∩B|]] ≤ exp(−c∗s/(72 logn)) .

Theorem 5.4. Computing an nδ-approximate median in the random-order model
with probability at least 9/10 requires Ω(

√
n1−3δ/ logn) space.

Proof. Let Alice and Bob follow the above protocol to solve their instance of
Index using A. Assume A uses M bits of space. By Lemmas 4.2 and 5.2, the
protocol is correct with probability at least 9/10 − 1/20 = 17/20. Furthermore, by
Lemma 5.3, with probability at least 19/20 the protocol requires at most 3c∗s/4 +M
bits of communication (for sufficiently large n): c∗s/2 bits to transmit Z ∩B, 2 logn
bits to transmit t0 and t1, and M bits for the memory state of A. Therefore, there
exists a protocol transmitting 3c∗s/4+M bits that is correct with probability at least
17/20− 1/20 = 4/5. Hence, by Theorem 5.1, M = Ω(s) = Ω(

√
n1−3δ/ logn).

6. Adversarial-order lower bound. In this section we prove that any p-pass
algorithm that returns an nδ-approximate median in the adversarial-order model re-
quires Ω(n(1−δ)/pp−6) space. This, coupled with the upper bound of Munro and
Paterson [21], will resolve the space complexity of multipass algorithms for median
finding up to polylogarithmic factors. The proof will use a reduction from the com-
munication complexity of a generalized form of pointer chasing that we now describe.

Definition 6.1 (generalized pointer chasing). For i ∈ [p], let fi : [m] → [m] be
an arbitrary function. Then gp is defined by

gp(f1, f2, . . . , fp) = fp(fp−1(. . . (f1(1)) . . .)) .

Let the ith player, Pi, have function fi, and consider a protocol in which the players
must speak in the reverse order, i.e., Pp, Pp−1, . . . , P1, Pp, . . .. We say the protocol
has r rounds if Pp communicates r times. Let Rrδ(gp) be the total number of bits that
must be communicated in an r round (randomized) protocol for P1 to learn gp with
probability at least 1 − δ.

Note that Rp0(gp) = O(p logm). We will be looking at (p − 1)-round protocols.
The proof of the next result will be deferred to the next section.

Theorem 6.2. Rp−1
1/10(gp) = Ω(m/p4 − p2 logm).

The next theorem is shown by reducing generalized pointer chasing to approxi-
mate selection.

Theorem 6.3. Finding an nδ-approximate median in p passes with probability
at least 9/10 in the adversarial-order model requires Ω(n(1−δ)/pp−6) space.

Proof. We will show how a p-pass algorithm A that computes a t-approximate
median of a length n stream gives rise to a p-round protocol for computing gp+1 when
m = ((n/(2t + 1))1/p + 1)/2. If A uses M bits of space, then the protocol uses at
most (p2 + p− 1)M bits. Hence by Theorem 6.2, this implies that M = Ω(m/p6) =
Ω((n/t)1/pp−6).

The reduction proceeds as follows. Consider a (p+ 1)-level, m-ary tree T , where
we say v has level j if the distance between v and the closest leaf is j − 1. We start
by defining some notation:

1. For j ∈ [p + 1], ip, . . . , ij ∈ [m], let v[ip, . . . , ij] denote the ijth child of
v[ip, . . . , ij+1], where v[] is the root of the tree.
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S1 S2 S3

(0, 0, 0)×5(3− f1(1))
(1, 0, 0)×(3− f2(1))

(1, 1, f3(1)), (1, 2, f3(2)), (1, 3, f3(3))
(1, 4, 0)×(f2(1) − 1)
(2, 0, 0)×(3− f2(2))

(2, 1, f3(1)), (2, 2, f3(2)), (2, 3, f3(3))
(2, 4, 0)×(f2(2) − 1)
(3, 0, 0)×(3− f2(3))

(3, 1, f3(1)), (3, 2, f3(2)), (3, 3, f3(3))
(4, 4, 0)×(f2(3) − 1)

(4, 0, 0)×5(f1(1) − 1)

Fig. 6.1. Reduction from pointer chasing to exact median finding. A triple of the form
(x2, x1, x0) corresponds to the numerical value x2·52+x1·51+x0·50. Note that median(S1∪S2∪S3) =
f1(1) · 52 + f2(f1(1)) · 51 + f3(f2(f1(1))) · 50.

2. Let the (p+ 1) tuple (hp, . . . , h0) denote
∑p

i=0 hi(m+ 2)i.
3. For each internal node of level j, e.g., v = v[ip, . . . , ij], we associated a multi-

set of elements S(v) of size aj . Let a1 = 2t + 1 and aj = (m − 1)bj−1,
where

bj−1 = aj−1 +maj−2 +m2aj−3 + · · · +mj−2a1 .

Note that | ∪v∈V (T ) S(v)| = bp+1 = (2m− 1)p(2t+ 1). S(v) contains

bj−1(m− fp+2−j(ij)) copies of (ip, . . . , ij , 0, 0, . . .0)
and bj−1(fp+2−j(ij) − 1) copies of (ip, . . . , ij ,m+ 1, 0, . . . , 0),

where we define ip+1 = 1.
4. For a leaf node, e.g., v = v[ip, . . . , i1], we generate 2t+ 1 copies of

(ip, . . . , i1, fp+1(i1)) .

It can be shown by induction that any t-approximate median of ∪v∈V (T )S(v) equals
(g1, g2, . . . , gp+1). See Figure 6.1 for the case when p = 2,m = 3, and t = 0.

Let Sj be the union of S(v) over all v in the jth layer. Note that Sj can be
determined by the (p+ 2− j)th player, Pp+2−j , who knows the function fp+2−j . The
players emulate A on the stream 〈S1, S2, . . . , Sp+1〉 in the standard way: Pp+1 runs
A on S1, transmits the memory state to Pp, who instantiates the algorithm with
the transmitted memory state and continues running A on S2, etc., until p passes
of the algorithm have been emulated. Note that this is a p-round protocol in which
M(p(p+ 1) − 1) bits are communicated. The result follows.

6.1. Proof of Theorem 6.2. The proof is a generalization of a proof by Nisan
and Widgerson [22]. We present the entire argument for completeness. In the proof
we lower bound the (p − 1)-round distributional complexity, Dp−1

1/20(gp); i.e., we will
consider a deterministic protocol and an input chosen from some distribution. The
theorem will then follow by Yao’s lemma [24] since

Dp−1
1/20(gp) ≤ 2Rp−1

1/10(gp) .
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Let T be the protocol tree of a deterministic p-round protocol. We consider
the input distribution, where each fi is chosen uniformly from F , the set of all mm

functions from [m] to [m]. Note that this distribution over inputs gives rise to a
distribution over paths from the root of T to the leaves. We will assume that in
round j, Pi’s message includes gj−1 if i > j and gj if i ≤ j; e.g., for p = 4 the
appended information is shown in the following table, where g0 = 1.

Round 1 Round 2 Round 3
Player 4 3 2 1 4 3 2 1 4 3 2 1

Appended g0 g0 g0 g1 g1 g1 g2 g2 g2 g3 g3 -

This is possible with only O(p2 logm) extra communication. Consequently we
may assume that at each node, at least lgm bits are transmitted. We will assume
that protocol T requires at most εm/2 bits of communication, where ε = 10−4(p+1)−4,
and derive a contradiction.

Consider a node z in the protocol tree of T corresponding to the jth round of the
protocol when it is Pi’s turn to speak. Let gt−1 be the appended information in the
last transmission. Note that g0, g1, . . . , gt−1 are specified by the messages so far.

Denote the set of functions f1 × · · · × fp that are consistent with the messages
already sent be F z1 × · · · × F zp . Note that the probability of arriving at node z is
|F |−p

∏
1≤j≤p |F zj |. Also note that, conditioned on arriving at node z, f1 × · · · × fp is

uniformly distributed over F z1 × · · · × F zp .
Definition 6.4. Let cz be the total communication until z is reached. We say a

node z in the protocol tree is nice if, for δ = max{4
√
ε, 400ε}, it satisfies the following

two conditions:

|F zj | ≥ 2−2cz |F | for j ∈ [p] and H(fzt (gt−1)) ≥ lgm− δ ,

where H(·) is the binary entropy.
Claim 1. Given the protocol reaches node z and z is nice,

Pr[next node visited is nice] ≥ 1 − 4
√
ε− 1/m .

Proof. Let w be a child of z and let cw = cz+aw. For l �= i note that |Fwl | = |F zl |
since Pl did not communicate at node z. Hence the probability that we reach node w
given that we have reached z is

∏
1≤j≤p |Fwj |/|F zj | = |Fwi |/|F zi |. Furthermore, since

z is nice,

Pr
[
|Fwi | < 2−2cw |F |

]
≤ Pr

[
|Fwi |
|F zi |

< 2−2aw

]
≤
∑
w

2−2aw ≤ 1
m

∑
w

2−aw ≤ 1
m
,

where the second-to-last inequality follows from aw ≥ lgm and the last inequality
follows by Kraft’s inequality. Hence, with probability at least 1− 1/m, the next node
in the protocol tree satisfies the first condition of being nice.

Proving the second condition is satisfied with high probability is more compli-
cated. Consider two different cases, i �= t and i = t, corresponding to whether or not
player i appended gt. In the first case, since Pt did not communicate, F zt = Fwt and
hence H(fwt (gt−1)) = H(fzt (gt−1)) ≥ lgm− δ.

We now consider the second case. In this case we need to show that H(fwt+1(gt)) ≥
lgm− δ. Note that we can express fwt+1 as the following vector of random variables,
(fwt+1(1), . . . , fwt+1(m)), where each fwt+1(v) is a random variables in universe [m]. Note
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there is no reason to believe that components of this vector are independent. By the
subadditivity of entropy,∑

v∈[m]

H(fwt+1(v)) ≥ H(fwt+1) ≥ lg(2−2cw |F |) = lg(|F |) − 2cw ≥ m lgm− εm,

using the fact that fwt+1 is uniformly distribution over Fwt+1, |Fwt+1| ≥ 2−2cw |F |, and
cw ≤ εm/2. Hence if v were chosen uniformly at random from [m], then

Pr
[
H(fwt+1(v)) ≤ lgm− δ

]
≤ ε/δ

by Markov’s inequality. However, we are not interested in a v chosen uniformly at
random but rather v = gt = fzt (gt−1). But, since the entropy of fzt (gt−1) is large, it
is “almost” distributed uniformly. Specifically, since H(fzt (gt−1)) ≥ lgm− δ,

Pr
[
H(fwt+1(gt)) ≤ lgm− δ

]
≤ ε

δ

(
1 +

√
4δ
ε/δ

)
≤ 4

√
ε .

Hence, with probability at least 1 − 4
√
ε the next node satisfies the second condition

of being nice. The claim follows by the union bound.
Note that the height of the protocol tree is p(p − 1) and that the root of the

protocol tree is nice. Hence the probability of ending at a leaf that is not nice is at
most p(p− 1)(1/m+ 4

√
ε) ≤ 1/25. If the final leaf node is nice, then H(gt) is at least

lgm− δ, and hence the probability that gt is guessed correctly is at most (δ+1)/ lgm
using Fano’s inequality. This is less than 1/100 for sufficiently large m, and hence the
total probability of P1 guessing gp correctly is at most 1 − 1/20.

7. Conclusions. In this paper we motivated the study of random-order data
streams and presented the first extensive study of the theoretical issues that arise
in this model. We studied these issues in the context of quantile estimation, one of
the most well studied problems in the data-stream model. Our results demonstrated
some of the trade-offs that arise between space, passes, and accuracy in both the
random-order and adversarial-order models. We resolved a long-standing open ques-
tion of Munro and Paterson [21] by devising an O(polylog n)-space, O(log logn)-pass
algorithm for exact selection in a randomly ordered stream of n elements. We also
resolved an open question of Kannan [17] by demonstrating an exponential separation
between the random-order and adversarial-order models: using O(polylogn) space,
exact selection requires Ω(logn/ log logn) passes in the adversarial-order model.
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Abstract. The �p regression problem takes as input a matrix A ∈ R
n×d, a vector b ∈ R

n,
and a number p ∈ [1,∞), and it returns as output a number Z and a vector xopt ∈ R

d such that
Z = minx∈Rd ‖Ax− b‖p = ‖Axopt − b‖p. In this paper, we construct coresets and obtain an efficient
two-stage sampling-based approximation algorithm for the very overconstrained (n � d) version of
this classical problem, for all p ∈ [1,∞). The first stage of our algorithm nonuniformly samples
r̂1 = O(36pdmax{p/2+1,p}+1) rows of A and the corresponding elements of b, and then it solves the
�p regression problem on the sample; we prove this is an 8-approximation. The second stage of our
algorithm uses the output of the first stage to resample r̂1/ε2 constraints, and then it solves the
�p regression problem on the new sample; we prove this is a (1 + ε)-approximation. Our algorithm
unifies, improves upon, and extends the existing algorithms for special cases of �p regression, namely,
p = 1, 2 [K. L. Clarkson, in Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete
Algorithms, ACM, New York, SIAM, Philadelphia, 2005, pp. 257–266; P. Drineas, M. W. Mahoney,
and S. Muthukrishnan, in Proceedings of the 17th Annual ACM–SIAM Symposium on Discrete
Algorithms, ACM, New York, SIAM, Philadelphia, 2006, pp. 1127–1136]. In the course of proving
our result, we develop two concepts—well-conditioned bases and subspace-preserving sampling—that
are of independent interest.
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1. Introduction. An important question in algorithmic theory is whether there
exists a small subset of the input such that if computations are performed only on
this subset, then the solution to the given problem can be approximated well. Such
a subset is often known as a coreset for the problem. The concept of coresets has
been extensively used in solving many problems in optimization and computational
geometry; e.g., see the excellent survey by Agarwal, Har-Peled, and Varadarajan [2].

In this paper, we construct coresets and obtain efficient sampling algorithms for
the classical �p regression problem, for all p ∈ [1,∞). Recall the �p regression problem.

Problem 1 (�p regression problem). Let ‖·‖p denote the p-norm of a vector.
Given as input a matrix A ∈ R

n×m, a target vector b ∈ R
n, and a real number

p ∈ [1,∞), find a vector xopt and a number Z such that

(1) Z = min
x∈Rm

‖Ax − b‖p = ‖Axopt − b‖p .

In this paper, we will use the following �p regression coreset concept.
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Definition 2 (�p regression coreset). Let 0 < ε < 1. A coreset for Problem 1
is a set of indices I such that the solution x̂opt to minx∈Rm ||Âx− b̂||p, where Â is
composed of those rows of A whose indices are in I and b̂ consists of the corresponding
elements of b, satisfies ‖Ax̂opt − b‖p ≤ (1 + ε)minx ‖Ax− b‖p.

If n � m, i.e., if there are many more constraints than variables, then (1) is
an overconstrained �p regression problem. In this case, there does not in general
exist a vector x such that Ax = b, and thus Z > 0. Overconstrained regression
problems are fundamental in statistical data analysis and have numerous applications
in applied mathematics, data mining, and machine learning [17, 10]. Even though
convex programming methods can be used to solve the overconstrained regression
problem in time O((mn)c) for c > 1, this is prohibitive if n is large.1 This raises
the natural question of developing more efficient algorithms that run in time O(mcn)
for c > 1, while possibly relaxing the solution to (1). In particular, can we get a κ-
approximation to the �p regression problem, i.e., a vector x̂ such that ‖Ax̂− b‖p ≤ κZ,
where κ > 1? Note that a coreset of small size would strongly satisfy our requirements
and result in an efficiently computed solution that is almost as good as the optimal.
Thus, the question becomes: Do coresets exist for the �p regression problem, and if
so, can we compute them efficiently?

Our main result is an efficient two-stage sampling-based approximation algorithm
that constructs a coreset and thus achieves a (1+ε)-approximation for the �p regression
problem. The first stage of the algorithm is sufficient to obtain a (fixed) constant factor
approximation. The second stage of the algorithm carefully uses the output of the
first stage to construct a coreset and achieve arbitrary constant factor approximation.

1.1. Our contributions. Summary of results. For simplicity of presen-
tation, we summarize the results for the case of m = d = rank(A). Let k =
max{p/2+1, p}, and let φ(r, d) be the time required to solve an �p regression problem
with r constraints and d variables. In the first stage of the algorithm, we compute a
set of sampling probabilities p1, . . . , pn in time O(nd5 log n), sample r̂1 = O(36pdk+1)
rows of A and the corresponding elements of b according to the pi’s, and solve an �p
regression problem on the (much smaller) sample; we prove this is an 8-approximation
algorithm with a running time of O

(
nd5 logn+ φ(r̂1, d)

)
. In the second stage of the

algorithm, we use the residual from the first stage to compute a new set of sampling
probabilities q1, . . . , qn, sample an additional r̂2 = O(r̂1/ε2) rows of A and the cor-
responding elements of b according to the qi’s, and solve an �p regression problem
on the (much smaller) sample; we prove this is a (1 + ε)-approximation algorithm
with a total running time of O

(
nd5 logn+ φ(r̂2, d)

)
(section 4). We also show how

to extend our basic algorithm to commonly encountered and more general settings of
constrained, generalized, and weighted �p regression problems (section 5).

We note that the lp regression problem for p = 1, 2 has been studied before. For
p = 1, Clarkson [11] uses a subgradient-based algorithm to preprocess A and b and
then samples the rows of the modified problem; these elegant techniques, however,
depend crucially on the linear structure of the l1 regression problem.2 Furthermore,
this algorithm does not yield coresets. For p = 2, Drineas, Mahoney, and Muthukrish-
nan [13] construct coresets by exploiting the singular value decomposition, a property

1For the special case of p = 2, vector space methods can solve the regression problem in time
O(m2n), and if p = 1 or ∞, linear programming methods can be used.

2Two ingredients of [11] use the linear structure: the subgradient-based preprocessing itself and
the counting argument for the concentration bound.
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peculiar to the l2 space. Thus, in order to efficiently compute coresets for the �p
regression problem for all p ∈ [1,∞), we need tools that capture the geometry of lp-
norms. In this paper we develop the following two tools that may be of independent
interest (section 3).

(1) Well-conditioned bases. Informally speaking, if the the columns of matrix U
form a well-conditioned basis for a d-dimensional subspace of R

n, then for all z ∈ R
d,

‖z‖p should be close to ‖Uz‖p. We will formalize this by requiring3 that for all z ∈ R
d,

‖z‖q multiplicatively approximates ‖Uz‖p by a factor that can depend on d but is in-
dependent of n (where p and q are dual; i.e., 1

q+ 1
p = 1). We show that these bases exist

and can be constructed in time O(nd5 logn). In fact, our notion of a well-conditioned
basis can be interpreted as a computational analogue of the Auerbach and Lewis bases
studied in functional analysis [28]. They are also related to the barycentric spanners
recently introduced by Awerbuch and R. Kleinberg [5] (section 3.1). J. Kleinberg and
Sandler [18] defined the notion of an �1-independent basis, and our well-conditioned
basis can be used to obtain an exponentially better “condition number” than their
construction. Further, Clarkson [11] defined the notion of an “�1-conditioned matrix,”
and he preprocessed the input matrix to an �1 regression problem so that it satisfies
conditions similar to those satisfied by our bases.

(2) Subspace-preserving sampling. We show that sampling rows of A according
to information in the rows of a well-conditioned basis of A minimizes the sampling
variance, and, consequently, the rank of A is not lost by sampling. This is critical
for our relative-error approximation guarantees. The notion of subspace-preserving
sampling was used in [13] for p = 2, but we abstract and generalize this concept for
all p ∈ [1,∞).

We note that for p = 2, our sampling complexity matches that of [13], which is
O(d2/ε2); and for p = 1, it improves that of [11] from O(d3.5(log d)/ε2) to O(d2.5/ε2).

Overview of our methods. Given an input matrix A, we first construct a
well-conditioned basis for A and use that to obtain bounds on a slightly nonstandard
notion of a p-norm condition number of a matrix. The use of this particular condition
number is crucial since the variance in the subspace-preserving sampling can be upper-
bounded in terms of it. An ε-net argument then shows that the first stage sampling
gives us an 8-approximation. The next twist is to use the output of the first stage as a
feedback to fine-tune the sampling probabilities. This is done so that the “positional
information” of b with respect to A is also preserved in addition to the subspace. A
more careful use of a different ε-net shows that the second stage sampling achieves a
(1 + ε)-approximation.

1.2. Related work. As mentioned earlier, in the course of providing a sampling-
based approximation algorithm for �1 regression, Clarkson [11] shows that coresets
exist and can be computed efficiently for a controlled �1 regression problem. Clarkson
first preprocesses the input matrix A to make it well conditioned with respect to the
�1-norm and then applies a subgradient-descent–based approximation algorithm to
guarantee that the �1-norm of the target vector is conveniently bounded. Coresets of
size O(d3.5 log d/ε2) are thereupon exhibited for this modified regression problem. For
the �2 case, Drineas, Mahoney, and Muthukrishnan [13] designed sampling strategies
to preserve the subspace information of A and proved the existence of a coreset of

3The requirement could equivalently be in terms of ‖z‖p, but the above form yields the tightest
dependence on d, since we plan to use Hölder’s inequality.
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rows of size O(d2/ε2), for the original �2 regression problem; this leads to a (1 + ε)-
approximation algorithm. Their algorithm used O(nd2) time to construct the coreset
and solve the �2 regression problem, which is sufficient time to solve the regression
problem without resorting to sampling. In a subsequent work, Sarlós [22] improved
the running time for the (1 + ε)-approximation to Õ(nd) by using random sketches
based on the fast Johnson–Lindenstrauss transform of Ailon and Chazelle [3].

More generally, embedding d-dimensional subspaces of Lp into �
f(d)
p using co-

ordinate restrictions has been extensively studied [21, 23, 8, 25, 26, 24]. Using well-
conditioned bases, one can provide a constructive analogue of Schechtman’s existential
L1 embedding result [23] (see also [8]) that any d-dimensional subspace of L1[0, 1] can
be embedded in �r1 with distortion (1 + ε) with r = O(d2/ε2), albeit with an extra
factor of

√
d in the sampling complexity. Coresets have been analyzed by the com-

putational geometry community as a tool for efficiently approximating various extent
measures [1, 2]; see also [16, 6, 14] for applications of coresets in combinatorial opti-
mization. An important difference is that most of the coreset constructions are expo-
nential in dimension and thus applicable only to low-dimensional problems, whereas
our coresets are polynomial in dimension and thus applicable to high-dimensional
problems.

2. Preliminaries. Given a vector x ∈ R
m, its p-norm is ‖x‖p =

∑m
i=1(|xi|p)1/p,

and the dual norm of ‖·‖p is denoted ‖·‖q, where 1/p + 1/q = 1. Given a ma-
trix A ∈ R

n×m, its generalized p-norm is |||A|||p = (
∑n
i=1

∑m
j=1|Aij |p)1/p. This is a

submultiplicative matrix norm that generalizes the Frobenius norm from p = 2 to all
p ∈ [1,∞), but it is not a vector-induced matrix norm. The jth column of A is denoted
A�j , and the ith row is denoted Ai�. In this notation, |||A|||p = (

∑
j ‖A�j‖

p
p)

1/p =
(
∑

i ‖Ai�‖
p
p)

1/p. For x, x′, x′′ ∈ R
m, it can be shown using Hölder’s inequality that

‖x− x′‖pp ≤ 2p−1(‖x− x′′‖pp + ‖x′′ − x′‖pp).
Two crucial ingredients in our proofs are ε-nets and tail inequalities. A subset

N (D) of a set D equipped with a metric ‖·‖ is called an ε-net in D for some ε > 0 if
for every x ∈ D there is a y ∈ N (D) with ‖x− y‖ ≤ ε. In order to construct an ε-net
for D it is enough to choose N (D) to be the maximal set of points that are pairwise
ε apart. It is well known that the unit ball of a d-dimensional space has an ε-net of
size at most (3/ε)d [8]. We will use the following version of the Bernstein’s inequality.

Theorem 3 (see [20, 7]). Let {Xi}ni=1 be independent random variables with
E[X2

i ] <∞ and Xi ≥ 0. Set Y =
∑

iXi, and let γ > 0. Then

Pr [Y ≤ E[Y ] − γ] ≤ exp
(

−γ2

2
∑
iE[X2

i ]

)
.(2)

If Xi − E[Xi] ≤ Δ for all i, then with σ2
i = E[X2

i ] − E[Xi]2 we have

Pr [Y ≥ E[Y ] + γ] ≤ exp
(

−γ2

2
∑
i σ

2
i + 2γΔ/3

)
.(3)

Finally, throughout this paper, we will use the following sampling matrix formal-
ism to represent our sampling operations. Given a set of n probabilities, pi ∈ (0, 1] for
i = 1, . . . , n, let S be an n×n diagonal sampling matrix such that Sii is set to 1/p1/p

i

with probability pi and to zero otherwise. Clearly, premultiplying A or b by S deter-
mines whether the ith row of A and the corresponding element of b will be included
in the sample, and the expected number of rows/elements selected is r′ =

∑n
i=1 pi.
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(In what follows, we will abuse notation slightly by ignoring zeroed-out rows and
regarding S as an r′ × n matrix and thus SA as an r′ ×m matrix.) Thus, e.g., sam-
pling constraints from (1) and solving the induced subproblem may be represented as
solving

(4) Ẑ = min
x̂∈Rm

‖SAx̂− Sb‖p .

A vector x̂ is said to be a κ-approximation to the �p regression problem of (1) for
κ ≥ 1 if ‖Ax̂− b‖p ≤ κZ.

3. Main technical ingredients.

3.1. Well-conditioned bases. We introduce the following notion of a “well-
conditioned” basis.

Definition 4 (well-conditioned basis). Let A be an n × m matrix of rank d,
let p ∈ [1,∞), and let q be its dual norm. Then an n × d matrix U is an (α, β, p)–
well-conditioned basis for the column space of A if the columns of U span the column
space of A and (1) |||U |||p ≤ α, and (2) for all z ∈ R

d, ‖z‖q ≤ β ‖Uz‖p. We will say
that U is a p–well-conditioned basis for the column space of A if α and β are dO(1),
independent of m and n.

Recall that any orthonormal basis U for span(A) satisfies both |||U |||2 = ‖U‖F =√
d and also ‖z‖2 = ‖Uz‖2 for all z ∈ R

d and thus is a (
√
d, 1, 2)–well-conditioned

basis. Thus, Definition 4 generalizes to an arbitrary p-norm for p ∈ [1,∞), the notion
that an orthogonal matrix is well conditioned with respect to the 2-norm. Observe
that the conditions are slightly different from those of the standard definition of a low-
distortion embedding for the following reason. If U is a low distortion embedding,
that is, if ‖z‖p /C ≤ ‖Uz‖p ≤ ‖z‖p for some C, then we can easily see that U is a
well-conditioned basis according to the above definition with α and β being CdO(1).
The reverse, however, does not hold. The well-conditioned basis definition above
is intended to capture the essence of what is required of a basis for our subspace-
sampling strategy to hold. Note also that duality is incorporated into Definition 4
since it relates the q-norm of the vector z ∈ R

d to the p-norm of the vector Uz ∈ R
n,

where p and q are dual4 (i.e., 1
q + 1

p = 1).
The existence and efficient construction of these bases are given by the following.
Theorem 5. Let A be an n ×m matrix of rank d, let p ∈ [1,∞), and let q be

its dual norm. Then there exists an (α, β, p)–well-conditioned basis U for the column
space of A such that if p < 2, then α = d

1
p + 1

2 and β = 1; if p = 2, then α = d
1
2 and

β = 1; and if p > 2, then α = d
1
p + 1

2 and β = d
1
q−

1
2 . Moreover, U can be computed in

O(nmd+ nd5 log n) time (or in just O(nmd) time if p = 2).
Proof. Let A = QR, where Q is any n × d matrix that is an orthonormal basis

for span(A) and R is a d ×m matrix. If p = 2, then Q is the desired basis U ; from
the discussion following Definition 4, α =

√
d and β = 1, and computing the matrix

U requires O(nmd) time [15]. Otherwise, fix Q and p, and define the norm

‖z‖Q,p � ‖Qz‖p .

4For p = 2, Drineas, Mahoney, and Muthukrishnan used this basis, i.e., an orthonormal matrix,
to construct probabilities to sample the original matrix. For p = 1, Clarkson used a procedure similar
to the one we describe in the proof of Theorem 5 to preprocess A such that the 1-norm of z is a d

√
d

factor away from the 1-norm of Az.
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A quick check shows that ‖·‖Q,p is indeed a norm. (‖z‖Q,p = 0 if and only if z = 0
since Q has full column rank; ‖γz‖Q,p = ‖γQz‖p = |γ| ‖Qz‖p = |γ| ‖z‖Q,p; and
‖z + z′‖Q,p = ‖Q(z + z′)‖p ≤ ‖Qz‖p + ‖Qz′‖p = ‖z‖Q,p + ‖z′‖Q,p.)

Consider the set C = {z ∈ R
d : ‖z‖Q,p ≤ 1}, which is the unit ball of the norm

‖·‖Q,p. In addition, define the d× d matrix F such that Elj = {z ∈ R
d : zTFz ≤ 1} is

the Löwner–John ellipsoid of C. Since C is symmetric about the origin, (1/
√
d)Elj ⊆

C ⊆ Elj; thus, for all z ∈ R
d,

(5) ‖z‖
lj
≤ ‖z‖Q,p ≤

√
d ‖z‖

lj
,

where ‖z‖2
lj

= zTFz (see, e.g., [9, pp. 413–414]). Since the matrix F is symmetric
positive definite, we can express it as F = GTG, where G is full rank and upper
triangular. Since Q is an orthogonal basis for span(A) and G is a d× d matrix of full
rank, it follows that U = QG−1 is an n× d matrix that spans the column space of A.
Note that

A = QR = QG−1GR = Uτ,

where τ = GR. We claim that U = QG−1 is the desired p–well-conditioned basis.
To establish this claim, let z′ = Gz. Thus, ‖z‖2

lj
= zTFz = zTGTGz =

(Gz)TGz = z′
T
z′ = ‖z′‖2

2. Furthermore, since G is invertible, z = G−1z′, and thus
‖z‖Q,p = ‖Qz‖p =

∥∥QG−1z′
∥∥
p

= ‖Uz′‖p. By combining these expressions with (5),
it follows that for all z′ ∈ R

d,

(6) ‖z′‖2 ≤ ‖Uz′‖p ≤
√
d ‖z′‖2 .

Since |||U |||pp =
∑

j ‖U�j‖
p
p =

∑
j ‖Uej‖

p
p ≤

∑
j d

p
2 ‖ej‖p2 = d

p
2 +1, where the inequality

follows from the upper bound in (6), it follows that α = d
1
p + 1

2 . If p < 2, then q > 2
and ‖z‖q ≤ ‖z‖2 for all z ∈ R

d; by combining this with (6), it follows that β = 1. On

the other hand, if p > 2, then q < 2 and ‖z‖q ≤ d
1
q−

1
2 ‖z‖2; by combining this with

(6), it follows that β = d
1
q−

1
2 .

In order to construct U , we need to compute Q and G and then invertG. Our ma-
trix A can be decomposed into QR using the compact QR decomposition in O(nmd)
time [15]. The matrix F describing the Löwner–John ellipsoid of the unit ball of
‖·‖Q,p can be computed in O(nd5 logn) time [19]. Finally, computing G from F takes
O(d3) time, and inverting G takes O(d3) time.

It is an open question whether the discontinuity at p = 2 in Theorem 5 is inherent
in the structure of dual norms, or whether it is due to our inability to compute a better
set of well-conditioned bases.

Connection to barycentric spanners. A point set K = {K1, . . . ,Kd} ⊆
D ⊆ R

d is a barycentric spanner for the set D if every z ∈ D may be expressed
as a linear combination of elements of K using coefficients in [−C,C] for C = 1.
When C > 1, K is called a C-approximate barycentric spanner. Barycentric spanners
were introduced by Awerbuch and R. Kleinberg in [5]. They showed that if a set is
compact, then it has a barycentric spanner. Our proof shows that if A is an n × d
matrix, then B = τ−1/

√
d = R−1G−1/

√
d ∈ R

d×d is a
√
d-approximate barycentric

spanner for D = {z ∈ R
d : ‖Az‖p ≤ 1}. To see this, first note that each B�j belongs

to D since ‖AB�j‖p = 1√
d
‖Uej‖p ≤ ‖ej‖2 = 1, where the inequality is obtained
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from (6). Moreover, since B spans R
d, we can write any z ∈ D as z = Bν. Thus,

ν = B−1z =
√
dτz. Hence,

‖ν‖∞ ≤ ‖ν‖2 ≤ ‖Uν‖p =
∥∥∥√dUτz∥∥∥

p
=

√
d ‖Az‖p ≤

√
d,

where the second inequality is also obtained from (6). This shows that our basis has
the added property that every element z ∈ D can be expressed as a linear combination
of elements (or columns) of B using coefficients whose �2-norm is bounded by

√
d.

Connection to Auerbach bases. An Auerbach basis U = {U�j}dj=1 for a
d-dimensional normed space A is a basis such that ‖U�j‖p = 1 for all j and such that
whenever y =

∑
j νjU�j is in the unit ball of A, then |νj | ≤ 1. The existence of such

a basis for every finite dimensional normed space was first proved by Auerbach [4]
(see also [12, 27]). It can easily be shown that an Auerbach basis is an (α, β, p)–well-
conditioned basis, with α = d and β = 1 for all p. Further, suppose U is an Auerbach
basis for span(A), where A is an n× d matrix of rank d. Writing A = Uτ , it follows
that τ−1 is an exact barycentric spanner for D = {z ∈ R

d : ‖Az‖p ≤ 1}. Specifically,
each τ−1

�j ∈ D since ‖Aτ−1
�j ‖p = ‖U�j‖p = 1. Now write z ∈ D as z = τ−1ν. Since

the vector y = Az = Uν is in the unit ball of span(A), we have |νj | ≤ 1 for all
1 ≤ j ≤ d. Therefore, computing a barycentric spanner for the compact set D—
which is the preimage of the unit ball of span(A)—is equivalent (up to polynomial
factors) to computing an Auerbach basis for span(A).

3.2. Subspace-preserving sampling. In the previous subsection (and in the
notation of the proof of Theorem 5), we saw that given p ∈ [1,∞), any n×m matrix
A of rank d can be decomposed as

A = QR = QG−1GR = Uτ,

where U = QG−1 is a p–well-conditioned basis for span(A) and τ = GR. The
significance of a p–well-conditioned basis is that we are able to minimize the variance
in our sampling process by randomly sampling rows of the matrix A and elements of
the vector b according to a probability distribution that depends on norms of the rows
of the matrix U . This will allow us to preserve the subspace structure of span(A) and
thus to achieve relative-error approximation guarantees.

More precisely, given p ∈ [1,∞) and any n ×m matrix A of rank d decomposed
as A = Uτ , where U is an (α, β, p)–well-conditioned basis for span(A), consider any
set of sampling probabilities pi for i = 1, . . . , n that satisfy

pi ≥ min

{
1,

‖Ui�‖pp
|||U |||pp

r

}
,(7)

where r = r(α, β, p, d, ε) to be determined below. Let us randomly sample the ith row
of A with probability pi for all i = 1, . . . , n. Recall that we can construct a diagonal
sampling matrix S, where each Sii = 1/p1/p

i with probability pi and 0 otherwise, in
which case we can represent the sampling operation as SA.

The following theorem is our main result regarding this subspace-preserving sam-
pling procedure.

Theorem 6. Let A be an n×m matrix of rank d, ε ≤ 1/7, and let p ∈ [1,∞). Let
U be an (α, β, p)–well-conditioned basis for span(A), and let us randomly sample rows
of A according to the procedure described above using the probability distribution given
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by (7), where r ≥ 16(2p + 2)(αβ)p(d ln(12
ε ) + ln(2

δ ))/(p
2ε2). Then, with probability

1 − δ, the following holds for all x ∈ R
m:

| ‖SAx‖p − ‖Ax‖p | ≤ ε ‖Ax‖p .

Proof. For simplicity of presentation, in this proof we will generally drop the
subscript from our matrix and vector p-norms; i.e., unsubscripted norms will be p-
norms. Note that it suffices to prove that, for all x ∈ R

m,

(8) (1 − ε)p ‖Ax‖p ≤ ‖SAx‖p ≤ (1 + ε)p ‖Ax‖p

with probability 1 − δ. To this end, fix a vector x ∈ R
m, define the random variable

Xi = (Sii|Ai�x|)p, and recall that Ai� = Ui�τ since A = Uτ . Clearly,
∑n

i=1Xi =
‖SAx‖p. In addition, since E[Xi] = |Ai�x|p, it follows that

∑n
i=1E[Xi] = ‖Ax‖p. To

bound (8), first note that

(9)
n∑
i=1

(Xi − E[Xi]) =
∑
i:pi<1

(Xi − E[Xi]) .

Equation (9) follows since, according to the definition of pi in (7), pi may equal
1 for some rows, and since these rows are always included in the random sample,
Xi = E[Xi] for these rows. To bound the right-hand side of (9), note that for all i
such that pi < 1,

|Ai�x|p /pi ≤ ‖Ui�‖pp ‖τx‖
p
q /pi (by Hölder’s inequality)

≤ |||U |||pp ‖τx‖
p
q /r (by (7))

≤ (αβ)p ‖Ax‖p /r (by Definition 4 and Theorem 5).(10)

From (10) it follows that for each i such that pi < 1,

Xi − E[Xi] ≤ Xi ≤ |Ai�x|p/pi ≤ (αβ)p ‖Ax‖p /r.

Thus, we may define Δ = (αβ)p ‖Ax‖p /r. In addition, it also follows from (10) that

∑
i:pi<1

E
[
X2
i

]
=
∑
i:pi<1

|Ai�x|p
|Ai�x|p

pi

≤ (αβ)p ‖Ax‖p

r

∑
i:pi<1

|Ai�x|p (by (10))

≤ (αβ)p ‖Ax‖2p
/r,

from which it follows that
∑
i:pi<1 σ

2
i =

∑
i:pi<1E

[
X2
i

]
−(E[Xi])2 ≤

∑
i:pi<1E

[
X2
i

]
≤

(αβ)p ‖Ax‖2p
/r.

To apply the upper tail bound in Theorem 3, define γ = ((1 + ε/4)p − 1) ‖Ax‖p.
It follows that γ2 ≥ (pε/4)2 ‖Ax‖2p and also that

2
∑
i:pi<1

σ2
i + 2γΔ/3 ≤ 2(αβ)p ‖Ax‖2p

/r + 2((1 + ε/4)p − 1)(αβ)p ‖Ax‖2p
/3r

≤
(

2
3

(
5
4

)p
+

4
3

)
(αβ)p ‖Ax‖2p

/r

≤ (2p + 2)(αβ)p ‖Ax‖2p
/r,
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where the second inequality follows by standard manipulations since ε ≤ 1 and since
p ≥ 1. Thus, by (3) of Theorem 3, it follows that

Pr [‖SAx‖p > ‖Ax‖p + γ] = Pr

⎡
⎣ ∑
i:pi<1

Xi > E

⎡
⎣ ∑
i:pi<1

Xi

⎤
⎦+ γ

⎤
⎦

≤ exp

(
−γ2

2
∑
i:pi<1 σ

2
i + 2γΔ/3

)

≤ exp
(

−ε2p2r

16(2p + 2)(αβ)p

)
.

Similarly, to apply the lower tail bound of (2) of Theorem 3, define γ = (1 − (1 −
ε/4)p) ‖Ax‖p. Since γ ≥ ε ‖Ax‖p /4, we can follow a similar line of reasoning to show
that

Pr [‖SAx‖p < ‖Ax‖p − γ] ≤ exp

(
−γ2

2
∑
i:pi<1 σ

2
i

)

≤ exp
(

−ε2r
32(αβ)p

)
.

Choosing r ≥ 16(2p + 2)(αβ)p(d ln(12
ε ) + ln(2

δ ))/(p
2ε2), we get that for every fixed x,

the following is true with probability at least 1 −
(
ε
12

)d
δ:

(1 − ε/4)p ‖Ax‖p ≤ ‖SAx‖p ≤ (1 + ε/4)p ‖Ax‖p .
Now, consider the ball B = {y ∈ R

n : y = Ax, ‖y‖ ≤ 1}, and consider an ε-net
for B, with ε = ε/4. The number of points in the ε-net is

(
12
ε

)d. Thus, by the union
bound, with probability 1− δ, (8) holds for all points in the ε-net. Now, to show that
with the same probability (8) holds for all points y ∈ B, let y∗ ∈ B be such that
|‖Sy‖ − ‖y‖| is maximized, and let η = sup{|‖Sy‖ − ‖y‖| : y ∈ B}. Also, let y∗ε ∈ B
be the point in the ε-net that is closest to y∗. By the triangle inequality,

η = |‖Sy∗‖ − ‖y∗‖| = |‖Sy∗ε + S(y∗ − y∗ε)‖ − ‖y∗ε + (y∗ − y∗ε)‖|
≤ |‖Sy∗ε‖ + ‖S(y∗ − y∗ε)‖ − ‖y∗ε‖ + 2 ‖y∗ − y∗ε‖ − ‖y∗ − y∗ε‖|
≤ |‖Sy∗ε‖ − ‖y∗ε‖| + |‖S(y∗ − y∗ε)‖ − ‖y∗ − y∗ε‖| + 2 ‖y∗ − y∗ε‖
≤ ε/4 ‖y∗ε‖ + εη/4 + ε/2,

where the last inequality follows since ‖y∗ − y∗ε‖ ≤ ε, (y∗ − y∗ε)/ε ∈ B, and

|‖S(y∗ − y∗ε)/ε‖ − ‖(y∗ − y∗ε)/ε‖| ≤ η.

Therefore, η ≤ ε since ‖y∗ε‖ ≤ 1 and since we assume ε ≤ 1/7. Thus, (8) holds for
all points y ∈ B, with probability at least 1 − δ. Similarly, it holds for any y ∈ R

n

such that y = Ax, since y/ ‖y‖ ∈ B and since ‖S(y/ ‖y‖) − y/ ‖y‖‖ ≤ ε implies that
‖Sy − y‖ ≤ ε ‖y‖, which completes the proof of the theorem.

Several things should be noted about this result. First, it implies that rank(SA) =
rank(A), since otherwise we could choose a vector x ∈ null(SA) and violate the
theorem. In this sense, this theorem generalizes the subspace-preservation result of
Lemma 4.1 of [13] to all p ∈ [1,∞). Second, regarding sampling complexity: if
p < 2 the sampling complexity is O(d

p
2 +2), if p = 2 it is O(d2), and if p > 2 it is

O(d(d
1
p + 1

2 d
1
q −

1
2 )p) = O(dp+1). Finally, note that this theorem is analogous to the

main result of Schechtman [23], which uses the notion of Auerbach bases.
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4. The sampling algorithm.

4.1. Statement of our main algorithm and theorem. Our main sampling
algorithm for approximating the solution to the �p regression problem is presented
in Figure 1. The algorithm takes as input an n × m matrix A of rank d, a vector
b ∈ R

n, and a number p ∈ [1,∞). It is a two-stage algorithm that returns as output
a vector x̂opt ∈ R

m (or a vector x̂c ∈ R
m if only the first stage is run). In either case,

the output is the solution to the induced �p regression subproblem constructed on the
randomly sampled constraints. Note that the set of constraints r2 extracted by the
second stage of the algorithm is a coreset for the �p regression problem.

Input: An n × m matrix A of rank d, a vector b ∈ R
n, and p ∈ [1,∞).

Let 0 < ε < 1/7, and define k = max{p/2 + 1, p}.
- Find a p–well-conditioned basis U ∈ R

n×d for span(A) (as in the proof of Theorem 5).

- Stage 1: Define pi = min{1,
‖Ui�‖p

p

|||U|||pp
r1}, where r1 = 16(2p + 2)dk (d ln(8 · 12) + ln(200)) .

- Generate (implicitly) S where Sii = 1/p
1/p
i with probability pi and 0 otherwise.

- Let x̂c be the solution to minx∈Rm ‖S(Ax − b)‖p.

- Stage 2: Let ρ̂ = Ax̂c − b, and unless ρ̂ = 0, define qi = min{1, max{pi,
|ρ̂i|p
‖ρ̂‖p

p
r2}} with

r2 = 150·24pdk

ε2

(
d ln( 280

ε
) + ln(200)

)
.

- Generate (implicitly, a new) T where Tii = 1/q
1/p
i with probability qi and 0 other-

wise.
- Let x̂opt be the solution to minx∈Rm ‖T (Ax − b)‖p.

Output: x̂opt (or x̂c if only the first stage is run).

Fig. 1. Sampling algorithm for �p regression.

The algorithm first computes a p–well-conditioned basis U for span(A), as de-
scribed in the proof of Theorem 5. Then, in the first stage, the algorithm uses in-
formation from the norms of the rows of U to sample constraints from the input �p
regression problem. In particular, roughly O(dp+1) rows of A, and the corresponding
elements of b, are randomly sampled according to the probability distribution given
by

pi = min

{
1,

‖Ui�‖pp
|||U |||pp

r1

}
, where r1 = 16(2p + 2)dk (d ln(8 · 12) + ln(200)) ,(11)

implicitly represented by a diagonal sampling matrix S, where each Sii = 1/p1/p
i .

For the remainder of the paper, we will use S to denote the sampling matrix for the
first-stage sampling probabilities. The algorithm then solves, using any �p solver of
one’s choice, the smaller subproblem. If the solution to the induced subproblem is
denoted x̂c, then, as we will see in Theorem 7, this is an 8-approximation to the
original problem.5

In the second stage, the algorithm uses information from the residual of the 8-
approximation computed in the first stage to refine the sampling probabilities. Define

5For p = 2, Drineas, Mahoney, and Muthukrishnan show that this first stage actually leads to a
(1+ε)-approximation. For p = 1, Clarkson develops a subgradient-based algorithm and runs it, after
preprocessing the input, on all the input constraints to obtain a constant factor approximation in a
stage analogous to our first stage. Here, however, we solve an �p regression problem on a small subset
of the constraints to obtain the constant factor approximation. Moreover, our procedure works for
all p ∈ [1,∞).
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the residual ρ̂ = Ax̂c− b (and note that ‖ρ̂‖p ≤ 8Z). Then, roughly O(dp+1/ε2) rows
of A, and the corresponding elements of b, are randomly sampled according to the
probability distribution

qi = min
{

1,max
{
pi,

|ρ̂i|p
‖ρ̂‖pp

r2

}}
,where r2 =

150 · 24pdk

ε2

(
d ln

(
280
ε

)
+ ln(200)

)
.

(12)

As before, this can be represented as a diagonal sampling matrix T , where each Tii =
1/q1/pi with probability qi and 0 otherwise. For the remainder of the paper, we will use
T to denote the sampling matrix for the second-stage sampling probabilities. Again,
the algorithm solves, using any �p solver of one’s choice, the smaller subproblem. If
the solution to the induced subproblem at the second stage is denoted x̂opt, then, as
we will see in Theorem 7, this is a (1 + ε)-approximation to the original problem.6

The following is our main theorem for the �p regression algorithm presented in
Figure 1 showing that coresets exist for the �p regression problem and can be efficiently
constructed.

Theorem 7. Let A be an n×m matrix of rank d, let b ∈ R
n, let p ∈ [1,∞), and

let k = max{p/2+1, p}. Recall that ε ≤ 1/7, r1 = 16(2p+2)dk (d ln(8 · 12) + ln(200)),
and r2 = 150·24pdk

ε2

(
d ln(280

ε ) + ln(200)
)
. Then the following hold.

• Constant factor approximation. If only the first stage of the algorithm in
Figure 1 is run, then with probability at least 0.6 the solution x̂c to the sampled
problem based on the pi’s of (7) is an 8-approximation to the �p regression
problem.

• Relative-error approximation. If both stages of the algorithm are run, then
with probability at least 0.5 the solution x̂opt to the sampled problem based on
the qi’s of (12) is a (1 + ε)-approximation to the �p regression problem.

• Running time. The ith stage of the algorithm runs in time O(nmd+nd5 logn+
φ(20iri,m)), where φ(s, t) is the time taken to solve the regression problem
minx∈Rt ‖A′x− b′‖p, where A′ ∈ R

s×t is of rank d and b′ ∈ R
s.

Note that since the algorithm of Figure 1 constructs the (α, β, p)–well-conditioned
basis U using the procedure in the proof of Theorem 5, our sampling complexity
depends on α and β. In particular, it will be O(d(αβ)p). Thus, if p < 2, our sampling
complexity is O(d · d p

2 +1) = O(d
p
2 +2); if p > 2, it is O(d(d

1
p + 1

2 d
1
q −

1
2 )p) = O(dp+1);

and (although not explicitly stated, our proof will make it clear that) if p = 2, it
is O(d2). Note also that we have stated the claims of the theorem as holding with
constant probability, but they can be shown to hold with probability at least 1− δ by
using standard amplification techniques.

4.2. Proof for first-stage sampling: Constant factor approximation. To
prove the claims of Theorem 7 having to do with the output of the algorithm after
the first stage of sampling, we begin with two lemmas. First note that, because of
our choice of r1, we can use the subspace-preserving Theorem 6 with only a constant
distortion ε = 1

8 and δ = 1
100 ; i.e., for all x, we have

7
8
‖Ax‖p ≤ ‖SAx‖p ≤

9
8
‖Ax‖p(13)

6The subspace-based sampling probabilities (11) are similar to those used by Drineas, Mahoney,
and Muthukrishnan [13], while the residual-based sampling probabilities (12) are similar to those
used by Clarkson [11].
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with probability at least 0.99. The first lemma below now states that the optimal
solution to the original problem provides a small (constant factor) residual when
evaluated in the sampled problem.

For simplicity of notation, we again drop the p-subscript from the norm notation,
except where it might become confusing.

Lemma 8. ‖S(Axopt − b)‖ ≤ 3Z, with probability at least 1 − 1/3p.
Proof. Define Xi = (Sii|Ai�xopt−bi|)p. Thus,

∑
iXi = ‖S(Axopt − b)‖p, and the

first moment is E[
∑
iXi] = ‖Axopt − b‖p = Z. The lemma follows since, by Markov’s

inequality,

Pr

[∑
i

Xi > 3pE

[∑
i

Xi

]]
≤ 1

3p
;

i.e., ‖S(Axopt − b)‖p > 3p ‖Axopt − b‖p with probability no more than 1/3p.
The next lemma states that if the solution to the sampled problem provides a

constant factor approximation (when evaluated in the sampled problem), then when
this solution is evaluated in the original regression problem we get a (slightly weaker)
constant factor approximation.

Lemma 9. If ‖S(Ax̂c − b)‖ ≤ 3Z, then with probability 0.99, ‖Ax̂c − b‖ ≤ 8Z.
Proof. We will prove the contrapositive: If ‖Ax̂c − b‖ > 8Z, then ‖S(Ax̂c − b)‖ >

3Z. To do so, note that, by Theorem 6 and the choice of r1, we have that, with
probability 0.99,

7
8
‖Ax‖p ≤ ‖SAx‖p ≤

9
8
‖Ax‖p .

Using this,

‖S(Ax̂c − b)‖ ≥ ‖SA(x̂c − xopt)‖ − ‖S(Axopt − b)‖ (by the triangle inequality)

≥ 7
8
‖Ax̂c −Axopt‖ − 3Z (by Theorem 6 and Lemma 8)

≥ 7
8

(‖Ax̂c − b‖ − ‖Axopt − b‖) − 3Z (by the triangle inequality)

>
7
8

(8Z − Z) − 3Z (by the premise ‖Ax̂c − b‖ > 8Z)

> 3Z,

which establishes the lemma.
Clearly, ‖S(Ax̂c − b)‖ ≤ ‖S(Axopt − b)‖ (since x̂c is an optimum for the sampled

�p regression problem). Combining this with Lemmas 8 and 9, it follows that the
solution x̂c to the sampled problem based on the pi’s of (7) satisfies ‖Ax̂c − b‖ ≤ 8Z;
i.e., x̂c is an 8-approximation to the original Z.

To conclude the proof of the claims for the first stage of sampling, note that by
our choice of r1, Theorem 6 fails to hold for our first-stage sampling with probability
no greater than 1/100. In addition, the inequality in Lemma 8 fails to hold with
probability no greater than 1/3p, which is no greater than 1/3 for all p ∈ [1,∞).
Finally, let r̂1 be a random variable representing the number of rows chosen by our
sampling scheme, and note that E[r̂1] ≤ r1. By Markov’s inequality, it follows that
r̂1 > 20r1 with probability less than 1/20. Thus, the first stage of our algorithm fails
to give an 8-approximation in the specified running time with a probability bounded
by 1/3 + 1/20 + 1/100 < 2/5.
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4.3. Proof for second-stage sampling: Relative-error approximation.
The proof of the claims of Theorem 7 having to do with the output of the algorithm
after the second stage of sampling will parallel that for the first stage, but it will have
several technical complexities that arise since the first triangle inequality approxima-
tion in the proof of Lemma 9 is too coarse for relative-error approximation. By our
construction, since qi ≥ pi, we have a finer result for subspace preservation. Thus,
applying Theorem 6 with δ = 1

100 , and a constant ε < 1
8 , with probability 0.99, the

following holds for all x:

(1 − ε) ‖Ax‖p ≤ ‖SAx‖p ≤ (1 + ε) ‖Ax‖p .(14)

As before, we start with a lemma that states that the optimal solution to the original
problem provides a small (now a relative-error) residual when evaluated in the sampled
problem. This is the analogue of Lemma 8. An important difference is that the
second-stage sampling probabilities significantly enhance the probability of success.

Lemma 10. ‖T (Axopt − b)‖ ≤ (1 + ε)Z with probability at least 0.99.
Proof. Define the random variable Xi = (Tii|Ai�xopt−bi|)p, and recall that Ai� =

Ui�τ since A = Uτ . Clearly,
∑n

i=1Xi = ‖T (Axopt − b)‖p. In addition, since E[Xi] =
|Ai�xopt − bi|p, it follows that

∑n
i=1 E[Xi] = ‖Axopt − b‖p. We will use (3) of Theo-

rem 3 to provide a bound for
∑
i (Xi − E[Xi]) = ‖T (Axopt − b)‖p − ‖Axopt − b‖p.

From the definition of qi in (12), it follows that for some of the rows, qi may
equal 1 (just as in the proof of Theorem 6). Since Xi = E[Xi] for these rows,∑

i (Xi − E[Xi]) =
∑

i:qi<1 (Xi − E[Xi]), and thus we will bound this latter quantity
with (3). To do so, we must first provide a bound for Xi − E[Xi] ≤ Xi and for∑

i:qi<1 σ
2
i ≤

∑
iE
[
X2
i

]
. To that end, note that

|Ai�(xopt − x̂c)| ≤ ‖Ui�‖p ‖τ(xopt − x̂c)‖q (by Hölders inequality)
≤ ‖Ui�‖p β ‖Uτ(xopt − x̂c)‖p (by Definition 4 and Theorem 5)
≤ ‖Ui�‖p β (‖Axopt − b‖ + ‖Ax̂c − b‖) (by the triangle inequality)
≤ ‖Ui�‖p β9Z,(15)

where the final inequality follows from the definition of Z and the results from the
first stage of sampling. Next, note that from the conditions on the probabilities qi in
(12), as well as by Definition 4 and the output of the first stage of sampling, it follows
that

(16)
|ρ̂i|p
qi

≤ ‖ρ̂‖p
r2

≤ 8pZp

r2
and

‖Ui�‖p

qi
≤ |||U |||p

r2
≤ αp

r2

for all i such that qi < 1.
Thus, since Xi − E[Xi] ≤ Xi ≤ |Ai�xopt − bi|p/qi, it follows that for all i such

that qi < 1,

Xi − E[Xi] ≤
2p−1

qi
(|Ai�(xopt − x̂c)|p + |ρ̂i|p) (since ρ̂ = Ax̂c − b )(17)

≤ 2p−1

(
‖Ui�‖pp βp9pZp

qi
+

|ρ̂i|p
qi

)
(by (15))

≤ 2p−1 (αpβp9pZp + 8pZp) /r2 (by (16))
≤ cp(αβ)pZp/r2,(18)
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where we set cp = 2p−1(9p + 8p) ≤ 18p. Thus, we may define Δ = cp(αβ)pZp/r2. In
addition, it follows that∑

i:qi<1

E
[
X2
i

]
=

∑
i:qi<1

|Ai�xopt − bi|p
|Ai�xopt − bi|p

qi

≤ Δ
∑
i

|Ai�xopt − bi|p (by (18))

≤ cp(αβ)pZ2p/r2.(19)

To apply the upper tail bound of (3) of Theorem 3, define γ = ((1 + ε)p − 1)Zp. We
have γ ≥ pεZp, and since ε ≤ 1/7, we also have γ ≤

((
8
7

)p − 1
)
Zp. Hence, by (3) of

Theorem 3, it follows that

ln Pr [‖T (Axopt − b)‖p > ‖Axopt − b‖p + γ] ≤ −γ2

2
∑
i:qi<1 σ

2
i + 2γΔ/3

≤ −p2ε2r2(
2cp + 2cp

3

((
8
7

)p − 1
))

(αβ)p

≤ −p2ε2r2
3 · 18p(αβ)p

.

Thus, Pr [‖T (Axopt − b)‖ > (1 + ε)Z] ≤ exp( −p2ε2r2
3·18p(αβ)p ), from which the lemma fol-

lows by our choice of r2.
Next we show that if the solution to the sampled problem provides a relative-error

approximation (when evaluated in the sampled problem), then when this solution is
evaluated in the original regression problem we get a (slightly weaker) relative-error
approximation. We first establish two technical lemmas.

The following lemma says that for all optimal solutions x̂opt to the second-stage
sampled problem, Ax̂opt is not too far from Ax̂c, where x̂c is the optimal solution
from the first stage, in a p-norm sense. Hence, the lemma will allow us to restrict our
calculations in Lemmas 12 and 13 to the ball of radius 12Z centered at Ax̂c.

Lemma 11. ‖Ax̂opt −Ax̂c‖ ≤ 12Z with probability 0.98.
Proof. With probability 0.98, both the inequalities in Lemma 9 and condition (14)

hold true. By two applications of the triangle inequality, it follows that

‖Ax̂opt −Ax̂c‖ ≤ ‖Ax̂opt −Axopt‖ + ‖Axopt − b‖ + ‖Ax̂c − b‖
≤ ‖Ax̂opt −Axopt‖ + 9Z,

where the second inequality follows since ‖Ax̂c − b‖ ≤ 8Z from the first stage of
sampling and since Z = ‖Axopt − b‖. In addition, we have that

‖Axopt − Ax̂opt‖ ≤ 1
(1 − ε)

‖T (Ax̂opt −Axopt)‖ (by Theorem 6)

≤ (1 + 2ε) (‖T (Ax̂opt − b)‖ + ‖T (Axopt − b)‖)
(by the triangle inequality)

≤ 2(1 + 2ε) ‖T (Axopt − b)‖
≤ 2(1 + 2ε)(1 + ε) ‖Axopt − b‖ (by Lemma 10) ,

where the third inequality follows since x̂opt is optimal for the sampled problem. The
lemma follows since ε ≤ 1/8.
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Thus, if we define the affine ball of radius 12Z that is centered at Ax̂c and that
lies in span(A),

(20) B = {y ∈ R
n : y = Ax, x ∈ R

m, ‖Ax̂c − y‖ ≤ 12Z},

then Lemma 11 states that Ax̂opt ∈ B for all optimal solutions x̂opt to the sampled
problem. Let us consider an ε-net, and call it Bε with ε = εZ for this ball B. Using
arguments from [8], since B is a ball in a d-dimensional subspace, the size of the
ε-net is

(
3·12Z
εZ

)d
=
(

36
ε

)d. The next lemma states that for all points in the ε-net,
if that point provides a relative-error approximation (when evaluated in the sampled
problem), then when this point is evaluated in the original regression problem we get
a (slightly weaker) relative-error approximation.

Lemma 12. For all points Axε in the ε-net, Bε, if ‖T (Axε − b)‖ ≤ (1 + 3ε)Z,
then ‖Axε − b‖ ≤ (1 + 6ε)Z with probability 0.99.

Proof. Fix a given point y∗ε = Ax∗ε ∈ Bε. We will prove the contrapositive for this
point; i.e., we will prove that if ‖Ax∗ε − b‖ > (1+6ε)Z, then ‖T (Ax∗ε − b)‖ > (1+3ε)Z
with probability at least 1 − 1

100

(
ε
36

)d. The lemma will then follow from the union
bound.

To this end, define the random variable Xi = (Tii|Ai�x∗ε − bi|)p, and recall
that Ai� = Ui�τ since A = Uτ . Clearly,

∑n
i=1Xi = ‖T (Ax∗ε − b)‖p. In addition,

since E[Xi] = |Ai�x∗ε − bi|p, it follows that
∑n

i=1E[Xi] = ‖Ax∗ε − b‖p. We will use
(2) of Theorem 3 to provide an upper bound for the probability of the event that
‖T (Ax∗ε − b)‖p ≤ ‖Ax∗ε − b‖p − γ, where γ = ‖Ax∗ε − b‖p − (1 + 3ε)pZp, under the
assumption that ‖Ax∗ε − b‖ > (1 + 6ε)Z.

From the definition of qi in (12), it follows that for some of the rows, qi may
equal 1 (just as in the proof of Theorem 6). Since Xi = E[Xi] for these rows,∑

i (Xi − E[Xi]) =
∑

i:pi<1 (Xi − E[Xi]), and thus we will bound this latter quantity
with (2). To do so, we must first provide a bound for

∑
i:qi<1E

[
X2
i

]
. To that end,

note that

|Ai�(x∗ε − x̂c)| = |Ui�τ(x∗ε − x̂c)|
≤ ‖Ui�‖p ‖τ(x∗ε − x̂c)‖q (by Hölders inequality)(21)

≤ ‖Ui�‖p β ‖Uτ(x∗ε − x̂c)‖p (by Definition 4 and Theorem 5)

≤ ‖Ui�‖β12Z,(22)

where the final inequality follows from the radius of the high-dimensional ball in which
the ε-net resides. From this, we can show that

|Ai�x∗ε − bi|
qi

≤ 2p−1

qi
(|Ai�x∗ε −Ai�x̂c|p + |ρ̂i|p) (since ρ̂ = Ax̂c − b )

≤ 2p−1

(
‖Ui�‖p 12pβpZp

qi
+

|ρ̂i|p
qi

)
(by (22))

≤ 2p−1 (αp12pβpZp + 8pZp) /r2 (by (16))
≤ 24p(αβ)pZp/r2.(23)
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Therefore, we have that

∑
i:qi<1

E
[
X2
i

]
=

∑
i:qi<1

|Ai�x∗ε − bi|p
|Ai�x∗ε − bi|p

qi

≤ 24p(αβ)pZp

r2

∑
i

|Ai�x∗ε − bi|p (by (23))

≤ 24p(αβ)p ‖Ax∗ε − b‖2p /r2.(24)

To apply the lower tail bound of (2) of Theorem 3, define γ = ‖Ax∗ε − b‖p−(1+3ε)pZp.
Thus, by (24) and by (2) of Theorem 3 it follows that

ln[‖T (Ax∗ε − b)‖p ≤ (1 + 3ε)pZp]

≤ −r2(‖Ax∗ε − b‖p − (1 + 3ε)pZp)2

24p(αβ)p ‖Ax∗ε − b‖2p

≤ −r2
24p(αβ)p

(
1 − (1 + 3ε)pZp

‖Ax∗ε − b‖p
)2

<
−r2

24p(αβ)p

(
1 − (1 + 3ε)pZp

(1 + 6ε)pZp

)2

(by the premise)

≤ −r2ε2
24p(αβ)p

.

The last line can be justified by the fact that (1 + 3ε)/(1 + 6ε) ≤ 1 − ε since ε ≤ 1/3,
and that (1 − ε)p is maximized at p = 1. Since r2 ≥ 24p(αβ)p(d ln(36

ε ) + ln(200))/ε2,

it follows that ‖T (Ax∗ε − b)‖ ≤ (1 + 3ε)Z with probability no greater than 1
200

(
ε
36

)d.
Since there are no more than

(
36
ε

)d such points in the ε-net, the lemma follows by
the union bound.

Finally, the next lemma states that if the solution to the sampled problem (in the
second stage of sampling) provides a relative-error approximation (when evaluated in
the sampled problem), then when this solution is evaluated in the original regression
problem we get a (slightly weaker) relative-error approximation. This is the analogue
of Lemma 9, and its proof will use Lemma 12.

Lemma 13. If ‖T (Ax̂opt − b)‖ ≤ (1 + ε)Z, then ‖Ax̂opt − b‖ ≤ (1 + 7ε)Z.
Proof. We will prove the contrapositive: If ‖Ax̂opt − b‖ > (1 + 7ε)Z, then

‖T (Ax̂opt − b)‖ > (1 + ε)Z. Since Ax̂opt lies in the ball B defined by (20) and
since the ε-net is constructed in this ball, there exists a point yε = Axε (call it Ax∗ε),
such that ‖Ax̂opt −Ax∗ε‖ ≤ εZ. Thus,

‖Ax∗ε − b‖ ≥ ‖Ax̂opt − b‖ − ‖Ax∗ε −Ax̂opt‖ (by the triangle inequality)
≥ (1 + 7ε)Z − εZ (by assumption and the definition of Ax∗ε )
= (1 + 6ε)Z.

Next, since Lemma 12 holds for all points Axε in the ε-net, it follows that

(25) ‖T (Ax∗ε − b)‖ > (1 + 3ε)Z.
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Finally, note that

‖T (Ax̂opt − b)‖ ≥ ‖T (Ax∗ε − b)‖ − ‖TA(x∗ε − x̂opt)‖ (by the triangle inequality)
> (1 + 3ε)Z − (1 + ε) ‖A(x∗ε − x̂opt)‖ (by (25) and Theorem 6)
> (1 + 3ε)Z − (1 + ε)εZ (by the definition of Ax̂ε)
> (1 + ε)Z,

which establishes the lemma.
Clearly, ‖T (Ax̂opt − b)‖ ≤ ‖T (Axopt − b)‖, since x̂opt is an optimum for the

sampled �p regression problem. Combining this with Lemmas 10 and 13, it follows
that the solution x̂opt to the sampled problem based on the qi’s of (12) satisfies
‖Ax̂opt − b‖ ≤ (1 + 7ε)Z; i.e., x̂opt is a (1 + 7ε)-approximation to the original Z.

To conclude the proof of the claims for the second stage of sampling, note that
we can actually replace ε by ε/7, thus getting the (1 + ε)-approximation with the
corresponding bound on r2 as in Theorem 7. To bound the failure probability, recall
that the first stage failed with probability no greater than 2/5. Note also that by our
choice of r2, Theorem 6 fails to hold for our second-stage sampling with probability
no greater than 1/100. In addition, Lemma 10 and Lemma 12 each fails to hold with
probability no greater than 2/100 and 1/100, respectively. Finally, let r̂2 be a random
variable representing the number of rows actually chosen by our sampling scheme in
the second stage, and note that E[r̂2] ≤ 2r2. By Markov’s inequality, it follows that
r̂2 > 40r2 with probability less than 1/20. Thus, the second stage of our algorithm
fails with probability less than 1/20 + 1/100 + 2/100 + 1/100 < 1/10. By combining
both stages, our algorithm fails to give a (1+ε)-approximation in the specified running
time with a probability bounded from above by 2/5 + 1/10 = 1/2.

Remark. It has been brought to our attention by an anonymous reviewer that
one of the main results of this section can be obtained with a simpler analysis. Via an
analysis similar to that of section 4.2, one can show that a relative factor (as opposed
to a constant factor) approximation can be obtained in one stage by constructing
the sampling probabilities using subspace information from both the data matrix A
and the target vector b. In particular, we compute the sampling probabilities from a
p–well-conditioned basis for the augmented matrix [A b] as opposed to only from A.
Although it simplifies the analysis, this scheme has the disadvantage that a p–well-
conditioned basis needs to be constructed for each target vector b. Using our two-
stage algorithm, one need only construct one such basis for A which can subsequently
be used to compute probabilities for any target vector b (see, e.g., the extension to
generalized �p regression in the next section).

5. Extensions. In this section we outline several immediate extensions of our
main algorithmic result.

Constrained �p regression. Our sampling strategies are transparent to con-
straints placed on x. In particular, suppose we constrain the output of our algorithm
to lie within a convex set C ⊆ R

m. If there is an algorithm to solve the constrained
�p regression problem minz∈C ‖A′x− b′‖, where A′ ∈ R

s×m is of rank d and b′ ∈ R
s,

in time φ(s,m), then by modifying our main algorithm in a straightforward manner,
we can obtain an algorithm that gives a (1 + ε)-approximation to the constrained �p
regression problem in time O(nmd + nd5 logn+ φ(40r2,m)).

Generalized �p regression. Our sampling strategies extend to the case of
generalized �p regression: given as input a matrix A ∈ R

n×m of rank d, a target
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matrix B ∈ R
n×p, and a real number p ∈ [1,∞), find a matrix X ∈ R

m×p such
that |||AX − B|||p is minimized. To do so, we generalize our sampling strategies in
a straightforward manner. The probabilities pi for the first stage of sampling are
the same as before. Then, if X̂c is the solution to the first-stage sampled problem,
we can define the n × p matrix ρ̂ = AX̂c − B and define the second-stage sampling
probabilities to be qi = min

(
1,max{pi, r2‖ρ̂i�‖pp/|||ρ̂|||pp}

)
. Then, we can show that the

X̂opt computed from the second-stage sampled problem satisfies |||AX̂opt − B|||p ≤
(1 + ε)minX∈Rm×p |||AX −B|||p with probability at least 1/2.

Weighted �p regression. Our sampling strategies also generalize to the case
of �p regression involving weighted p-norms: if w1, . . . , wm are a set of nonnegative
weights, then the weighted p-norm of a vector x ∈ R

m may be defined as ‖x‖p,w =

(
∑m

i=1 wi|xi|p)
1/p, and the weighted analogue of the matrix p-norm |||·|||p may be

defined as |||U |||p,w = (
∑d

j=1 ‖U�j‖p,w)1/p. Our sampling scheme proceeds as before.
First, we compute a well-conditioned basis U for span(A) with respect to this weighted
p-norm. The sampling probabilities pi for the first stage of the algorithm are then
pi = min(1, r1wi ‖Ui�‖pp /|||U |||pp,w), and the sampling probabilities qi for the second
stage are qi = min

(
1,max{pi, r2wi|ρ̂i|p/‖ρ̂‖pp,w}

)
, where ρ̂ is the residual from the

first stage.

General sampling probabilities. More generally, consider any sampling prob-
abilities of the form pi ≥ min{1,max{ ‖Ui�‖p

p

|||U|||pp ,
|(ρopt)i|

p

Zp }r}, where ρopt = Axopt− b and

r ≥ 36pdk

ε2

(
d ln(36

ε ) + ln(200)
)

and where we adopt the convention that 0
0 = 0. Then,

by an analysis similar to that presented for our two-stage algorithm, we can show
that, by picking O(36pdp+1/ε2) rows of A and the corresponding elements of b (in
a single stage of sampling) according to these probabilities, the solution x̂opt to the
sampled �p regression problem is a (1+ ε)-approximation to the original problem with
probability at least 1/2. (Note that these sampling probabilities, if an equality is
used in this expression, depend on the entries of the vector ρopt = Axopt − b; in par-
ticular, they require the solution of the original problem. This is reminiscent of the
results of [13]. Our main two-stage algorithm shows that by solving a problem in the
first stage based on coarse probabilities, we can refine our probabilities to approxi-
mate these probabilities and thus obtain an (1+ ε)-approximation to the �p regression
problem more efficiently.)

Acknowledgment. We would like to thank Robert Kleinberg for pointing out
several useful references.
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Abstract. We develop techniques to investigate relativized hierarchical unambiguous compu-
tation. We apply our techniques to generalize known constructs involving relativized unambiguity
based complexity classes (UP and Promise-UP) to new constructs involving arbitrary higher lev-
els of the relativized unambiguous polynomial hierarchy (UPH). Our techniques are developed on
constraints imposed by hierarchical arrangement of unambiguous nondeterministic polynomial-time
Turing machines, and so they differ substantially, in applicability and in nature, from standard meth-
ods (such as the switching lemma [J. H̊astad, Computational Limitations of Small-Depth Circuits,
MIT Press, Cambridge, 1987]), which play roles in carrying out similar generalizations. Aside from
achieving these generalizations, we resolve a question posed by Cai, Hemachandra, and Vyskoč in
[Complexity Theory, Cambridge University Press, Cambridge, UK, 1993, pp. 101–146], on an issue
related to nonadaptive Turing access to UP and adaptive smart Turing access to Promise-UP.

Key words. unambiguous computation, computational complexity, promise problems, rela-
tivization
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1. Introduction.

1.1. Background. Baker, Gill, and Solovay in their seminal paper [4] intro-
duced the concept of relativization in complexity theory and showed that the bottom
levels of the polynomial hierarchy P and NP separate in some relativized world. Baker
and Selman [5] made progress in extending this relativized separation to the next lev-
els of the polynomial hierarchy: They proved that there is a relativized world where
Σp2 �= Πp

2. However, Baker and Selman [5] noted that their proof techniques do not
apply at higher levels of the polynomial hierarchy because of certain constraints in
their counting argument. Thus, it required the development of entirely different proof
techniques for separating all the levels of the relativized polynomial hierarchy. The
landmark paper by Furst, Saxe, and Sipser [23] established the connection between
the relativization of the polynomial hierarchy and lower bounds for small depth cir-
cuits computing certain functions. Techniques for proving such lower bounds were
developed in a series of papers [23, 45, 49, 29], which were motivated by questions
about the relativized structure of the polynomial hierarchy. Yao [49] finally succeeded
in separating the levels of the relativized polynomial hierarchy by applying these new
techniques. H̊astad [29] gave the most refined presentation of these techniques via the
switching lemma. Even to date, H̊astad’s switching lemma [29] is used as an essential
tool to separate relativized hierarchies, composed of classes stacked one on top of
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another. (See, for instance, [29, 37, 9, 46], where the switching lemma is used as a
strong tool for proving the feasibility of oracle constructions.)

A major contribution of our paper lies in demonstrating that known oracle con-
structions involving the initial levels of the unambiguous polynomial hierarchy (UPH)
and the promise unambiguous polynomial hierarchy (UPH), i.e., UP and PPromise-UP

s ,
respectively, can be extended to oracle constructions involving arbitrary higher levels
of UPH by application only of pure counting arguments. Alongside this contribution,
we resolve a question posed by Cai, Hemachandra, and Vyskoč [16] concerning the
closure of UP under nonadaptive Turing reductions and the closure of Promise-UP
under adaptive smart Turing reductions.

The class UP is the unambiguous version of NP. UP has proved to be useful,
for instance, in studying worst-case one-to-one one-way functions [35, 26], obtaining
potential counterexamples to the Berman–Hartmanis isomorphism conjecture [34],
and studying the complexity of closure properties of #P [41]. Lange and Ross-
manith [38] generalized the notion of unambiguity to higher levels of the polynomial
hierarchy. They introduced the following unambiguity based hierarchies: AUPH,
UPH, and UPH. It is known that AUPH ⊆ UPH ⊆ UPH ⊆ UAP [38, 18], where
UAP (unambiguous alternating polynomial-time) is the analogue of UP for alternat-
ing polynomial-time Turing machines. These hierarchies received renewed interests in
some recent papers (see, for instance, [1, 18, 46, 24]). Spakowski and Tripathi [46], fur-
ther developing circuit complexity-theoretic proof techniques of Sheu and Long [44],
and of Ko [37] obtained results on the relativized structure of these hierarchies. They
proved that there is a relativized world where these hierarchies are infinite. They also
proved that for each k ≥ 2 there is a relativized world where these hierarchies collapse
so that they have exactly k distinct levels and their kth levels collapse to PSPACE.
The present paper supplements this investigation with a focus on the structure of the
UPH.

1.2. Results. We prove a combinatorial lemma (Lemma 3.1) and demonstrate
its usefulness in generalizing known relativization results involving classes such as UP
and Promise-UP to new relativization results that involve arbitrary levels of the UPH.

In subsection 4.1, we use Lemma 3.1 to construct relativized worlds in which
certain inclusion relationships between bounded ambiguity classes (UPO(1) and FewP)
and the levels of the UPH do not hold. Theorem 4.1 of this subsection subsumes an
oracle result of Beigel [6] for any constant integer k ≥ 1, and Corollary 4.5 generalizes
a result of Cai, Hemachandra, and Vyskoč [16] from the case of k = 2 to the case of
any arbitrary integer k ≥ 2.

Subsection 4.2 studies the issue of simulating nonadaptive access to UΣph, the
hth level of the UPH, by adaptive access to UΣph. Theorem 4.7 of this subsection
generalizes a result of Cai, Hemachandra, and Vyskoč [15] from the case of h = 1 to
the case of any arbitrary integer h ≥ 1. Lemma 3.1 is used as a key tool for proving
Theorem 4.7.

We improve upon Theorem 4.7 in subsection 4.3. There are compelling reasons
for the transition from subsection 4.2 to subsection 4.3, which we discuss in subsec-
tion 4.3. Theorem 4.10 in that subsection not only resolves a question posed by Cai,
Hemachandra, and Vyskoč [16] but also generalizes one of their results. In particu-
lar, Theorem 4.10 holds for any total, polynomial-time computable, and polynomially
bounded function k(·) and arbitrary integer h ≥ 1, while a similar result of Cai,
Hemachandra, and Vyskoč [16] holds only for any arbitrary constant integer k and
h = 1. Lemma 3.1 is one of the ingredients in the proof of this theorem.
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Subsection 4.4 investigates the complimentary issue of simulating adaptive access
to UΣph by nonadaptive access to UΣph. Theorem 4.13 of this subsection generalizes
a result of Cai, Hemachandra, and Vyskoč [16] from the case of h = 1 to the case
of any arbitrary constant integer h ≥ 1. Again, Lemma 3.1 is useful in making this
generalization possible.

In subsection 4.5, we study the notion of one-sided helping introduced by Ko [36].
Theorem 4.17 of this subsection generalizes and improves one of the results of Cai,
Hemachandra, and Vyskoč [16].

Finally, in section 5 we consider the possibility of imposing a more stringent
restriction in the statement of Lemma 3.1. The investigation in this section leads
to a generic oracle collapse of UPH to P under the assumption that P = NP in
the unrelativized world. This extends a result of Blum and Impagliazzo [10], which
showed a generic oracle collapse of UP (the first level of UPH) to P assuming that
P = NP in the unrelativized world.

2. Preliminaries.

2.1. Notation. Let N+ denote the set of positive integers. Σ denotes the al-
phabet {0, 1}. Let [n] =df {1, 2, . . . , n} for every n ∈ N+. NPTM stands for “nonde-
terministic polynomial-time Turing machine.” For every oracle NPTM N , oracle A,
and string x ∈ Σ∗, we use the shorthand NA(x) for “the computation tree of N with
oracle A on input x.” We fix a standard, polynomial-time computable and invertible,
one-to-one, multiarity pairing function 〈., . . . , .〉 throughout the paper. Let ◦ denote
the composition operator on functions. For any polynomial p(.) and integer i ≥ 1, let
(p◦)i(·) denote

p ◦ p ◦ · · · ◦ p︸ ︷︷ ︸
i

(·),

i.e., the polynomial obtained by i compositions of p. All polynomials p(·) appearing in
this paper are without loss of generality nondecreasing and satisfy p(n) ≥ n for every
n ∈ N+. Let σ be an equivalence relation on a set S. For each x ∈ S, the equivalence
class [x] of x determined by σ is {y ∈ S | xσy}. The set S/σ of all equivalence classes
determined by σ is called the quotient set determined by σ. For any set S, we use
℘(S) to denote the power set of S, i.e., the set of all subsets of S. The join of two
sets A and B over Σ is defined as A⊕B = {0x | x ∈ A} ∪ {1x | x ∈ B}.

We define the notion of a computation path of oracle machines independent of
any concrete oracle. A computation path of an oracle NPTM N encodes a complete
valid computation that N can have relative to some/any oracle; i.e., it contains the
sequence of configurations including the query strings and the answers from the oracle.
Hence two computation paths ρ1 and ρ2 of an oracle NPTM are equal if and only if
the configuration sequences, oracle queries, and oracle answers are the same for the
computation paths. For any computation path ρ, let Q+(ρ) denote the set of strings
that are queried along ρ and answered positively, and let Q−(ρ) denote the set of
strings that are queried along ρ and answered negatively. Let Q(ρ) = Q+(ρ)∪Q−(ρ).
For any concrete oracle A and input x, a given path ρ may or may not appear in
NA(x). For instance, if α ∈ Q+(ρ), then ρ does not appear in NA(x) for any A with
α /∈ A. In this case we also say “NA(x) does not have path ρ.”

For any complexity class C and for any natural notion of polynomial-time re-
ducibility r (e.g., r ∈ {m, dtt, tt, k-tt, T, k-T, b}), let Rpr(C) denote the closure of C
under r. That is, Rpr(C) =df {L | (∃L′ ∈ C)[L ≤pr L′]}. We refer the reader to any
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standard textbook in complexity theory (e.g., [11, 42, 31]) for complexity classes and
reductions not defined in this paper.

Given a complexity class C, the unique existential (∃!), and the unique universal
(∀!) operators on C yield complexity classes. Formally, we have the following.

Definition 2.1. For any arbitrary complexity class C, the following hold.
1. ∃! · C is defined to be the class of all sets L for which there exist a polynomial

p(·) and a set L′ ∈ C such that for all x ∈ Σ∗,

x ∈ L =⇒ (there exists a unique y ∈ Σp(|x|))[〈x, y〉 ∈ L′], and
x �∈ L =⇒ (for all y ∈ Σp(|x|))[〈x, y〉 �∈ L′].

2. ∀! · C is defined to be the class of all sets L for which there exist a polynomial
p(·) and a set L′ ∈ C such that for all x ∈ Σ∗,

x ∈ L =⇒ (for all y ∈ Σp(|x|))[〈x, y〉 ∈ L′], and
x �∈ L =⇒ (there exists a unique y ∈ Σp(|x|))[〈x, y〉 �∈ L′].

We introduce the notion of a Σk(A)-system. This notion is useful for concisely
representing the computation of a stack of oracle NPTMs.

Definition 2.2.

1. For any k ∈ N+ and A ⊆ Σ∗, we call a tuple [A;N1, N2, . . . , Nk], where A is
an oracle and N1, N2, . . . , Nk are nondeterministic oracle Turing machines, a Σk(A)-
system. The language accepted by a Σk(A)-system, denoted by L[A;N1, N2, . . . , Nk],
is defined inductively as follows:

L[A;N1, N2, . . . , Nk] =df

{
L(NA

1 ) if k = 1, and
L(NL[A;N2,N3,...,Nk]

1 ) if k > 1.

2. The computation of a Σk(A)-system [A;N1, N2, . . . , Nk] on input x, denoted
by [A;N1, N2, . . . , Nk](x), is defined as follows:

[A;N1, N2, . . . , Nk](x) =df

{
NA

1 (x) if k = 1, and
N
L[A;N2,N3,...,Nk]
1 (x) if k > 1.

We define the notion of unambiguity in Σk(A)-systems as follows.
Definition 2.3.

1. We say that a Σk(A)-system [A;N1, N2, . . . , Nk] is unambiguous if for every
1 ≤ i ≤ k and for every x ∈ Σ∗, [A;Ni, Ni+1, . . . , Nk](x) has at most one accepting
path.

2. For any Σk(A)-system [A;N1, N2, . . . , Nk], we define

Lunambiguous[A;N1, N2, . . . , Nk] =

⎧⎨
⎩

L[A;N1, N2, . . . , Nk] if [A;N1, N2, . . . , Nk] is
unambiguous,

undefined otherwise.

Roughly speaking, a property of an oracle machine is called robust if the machine
retains that property with respect to every oracle. Below we define the property of
robust unambiguity for a Σk(A)-system.

Definition 2.4. We say that a Σk(·)-system [·;N1, N2, . . . , Nk] is robustly un-
ambiguous if for every set B, the Σk(B)-system [B;N1, N2, . . . , Nk] is unambiguous.

As we will see in section 5, the notion of a robustly unambiguous Σk(·)-system is
useful in extending a result of Blum and Impagliazzo [10].
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2.2. Promise problems and smart reductions. Even, Selman, and Yacobi
[19] introduced and studied the notion of promise problems. Promise problems are
generalizations of decision problems in that the set of Yes-instances and the set of
No-instances must partition the set of all instances in a decision problem, whereas
this is not necessarily the case with promise problems. Thus, for a promise problem,
a set of disallowed strings may be defined, which represent neither Yes-instances nor
No-instances. Over the years, the notion of promise problems has proved to be useful,
in several areas of computational complexity theory. (See [25] for a nice survey of
some applications of promise problems in computational complexity theory.)

Definition 2.5 (based on [25]; cf. [19]). A promise problem Π = (Πyes,Πno)
is defined in terms of disjoint sets Πyes, Πno ⊆ Σ∗. The set Πyes is called the set of
Yes-instances, the set Πno is called the set of No-instances, and the set Πyes ∪ Πno is
called the promise set.

Some technicalities are involved when oracle access to a promise problem is de-
fined. If a query to a promise problem falls inside the promise set, then the answer
to the query is well defined (i.e., the answer is 1 if q is a Yes-instance and 0 if q
is a No-instance). However, if a query falls outside the promise set, then it is not
immediately clear how that query should be handled by the promise problem, i.e.,
the oracle. Several natural models of oracle access to a promise problem are defin-
able. (See [26, 16] for a few possible approaches to defining oracle access to promise
problems.)

Grollmann and Selman [26] proposed a model of oracle access to a promise prob-
lem that prohibits queries that fall outside the promise set. In this model, a querying
machine always asks queries from the promise set; i.e., the queries asked by the
querying machine always obey the underlying promise of the promise problem. For
instance, let us define a promise problem Πunique = (Πyes,Πno) in terms of the ac-
ceptance mechanism of an NPTM N as follows: Πyes = {x ∈ Σ∗ | #accN (x) = 1}
and Πno = {x ∈ Σ∗ | #accN (x) = 0}. Then a Turing access to Πunique in the model
proposed by Grollmann and Selman [26] requires that for any query y asked by the
querying machine on some input, the computation of N on y must be unambiguous;
i.e., #accN (y) must be either 0 or 1. A Turing reduction that obeys the constraints
of this model (i.e., any query ever asked belongs to the promise set) is called a smart
Turing reduction [26]. The definition given below formally captures the notion of a
smart Turing reduction from a decision problem to a promise problem.1

Definition 2.6. A set L polynomial-time smart Turing reduces to a promise
problem Π = (Πyes,Πno), denoted by L ≤ps,T Π or L ∈ PΠ

s , if there is a deterministic
polynomial-time oracle Turing machine M such that for all x ∈ Σ∗,

1. x ∈ L⇐⇒MΠ(x) accepts, and
2. if MΠ(x) asks a query y to Π, then y ∈ Πyes ∪ Πno.

If on all inputs x ∈ Σ∗ the querying machine M asks at most k queries for some
integer constant k ≥ 1, then we say that the set of L polynomial-time smart k-Turing
reduces to Π, and we write L ≤ps,k-T Π or L ∈ PΠ[k]

s .
In the above definition, we followed Grollmann and Selman’s notion of smart

Turing reductions from decision problems to promise problems. We may extend this
notion to define reductions that reduce promise problems to promise problems. (See,
for instance, [25] for a generalization of smart Turing reductions to reductions among
promise problems.) In this paper, we will consider only smart Turing reductions (i.e.,

1Cai, Hemachandra, and Vyskoč [16] referred to Grollmann and Selman’s smart oracle access by
the term guarded access.
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reductions from decision problems to promise problems) as given by Grollmann and
Selman.

The following two definitions are standard.
Definition 2.7. Let Π be any promise problem. Rps,T (Π) is the class of all sets

L such that L ≤ps,T Π; for all k ∈ N+, Rps,k-T (Π) is the class of all sets L such that
L ≤ps,k-T Π; Rps,b(Π) is the class of all sets L for which there exists some k ∈ N+ such
that L ≤ps,k-T Π.

Definition 2.8. For any class of promise problems C and any reduction r ∈
{T, k-T, b}, we define Rps,r(C) =df

⋃
Π∈C R

p
s,r(Π).

We will study the computational power of smart Turing reductions to a particular
class of promise problems, namely, the class Promise-UP, which is defined as follows.

Definition 2.9. Promise-UP is the class of all promise problems Π = (Πyes,Πno)
for which there exists an NPTM N such that for all x ∈ Σ∗,

x ∈ Πyes =⇒ #accN (x) = 1, and
x ∈ Πno =⇒ #accN (x) = 0.

The class PPromise-UP
s of sets that polynomial-time smart Turing reduce to

Promise-UP is a prominent class that behaves remarkably differently than the re-
lated class PUP. While PPromise-UP

s is known to contain the class FewP [16] and the
graph isomorphism problem [2], similar results for the case of PUP are unknown.2

2.3. Unambiguity based hierarchies. Niedermeier and Rossmanith [40] ob-
served that the notion of unambiguity in NPTMs can be generalized in three ways,
each of which defines an unambiguity based hierarchy.

Definition 2.10 (unambiguity based hierarchies [38, 40]).
1. The alternating unambiguous polynomial hierarchy is defined as follows:

AUPH =df

⋃
k≥0

AUΣpk =
⋃
k≥0

AUΠp
k,

where

AUΣpk =
{

P if k = 0,
∃! · AUΠp

k−1 if k ≥ 1, and AUΠp
k =

{
P if k = 0,
∀! · AUΣpk−1 if k ≥ 1.

2. The unambiguous polynomial hierarchy is defined as follows:

UPH =df

⋃
k≥0

UΣpk =
⋃
k≥0

UΠp
k,

where

UΣpk =
{

P if k = 0,
UPUΣp

k−1 if k ≥ 1,
and UΠp

k =
{

P if k = 0,
coUPUΣp

k−1 if k ≥ 1.

2Arvind and Kurur [2] showed that the graph isomorphism problem (GI) belongs to SPP, a class
introduced in [27, 41, 20]. Subsequently, Crâsmaru et al. [18] observed that the proof of classifying
GI into SPP, as given by Arvind and Kurur [2], actually yields a somewhat improved classification
for GI: GI belongs to Rp

s,T (Promise-UP), a subclass of SPP [18].
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AUΣp
k AUΣp

k+1

UΣp
k+1

UΣp
k UΣp

k+1

Σp
k Σp

k+1

UΣp
k

UP≤k UP≤k+1 UPO(1)

AUPH

UPH

UPH

PH

UAP SPP

Fig. 1. Known inclusion structure of unambiguity based classes and other central classes. The
arrows point from subclasses to superclasses.

3. The promise unambiguous polynomial hierarchy is defined as follows:

UPH =df

⋃
k≥0

UΣpk =
⋃
k≥0

UΠp
k,

where UΣp0 =df P, UΣp1 =df UP, and for every k ≥ 2, UΣpk is the class of all sets L ∈
Σpk such that for some oracle NPTMs N1, N2, . . ., Nk, L = L[∅;N1, N2, . . . , Nk], and
for every x ∈ Σ∗ (i) [∅;N1, N2, . . . , Nk](x) has at most one accepting path, and (ii) for
every 1 ≤ i ≤ k− 1, if Ni asks a query w to its oracle L[∅;Ni+1, Ni+2, . . . , Nk] during
the computation of [∅;N1, N2, . . . , Nk](x), then [∅;Ni+1, Ni+2, . . . , Nk](w) has at most
one accepting path. For each k ≥ 0, the class UΠp

k is defined by UΠp
k =df coUΣpk.

Notice that UΣpk is also the class of all sets accepted by unambiguous Σk(∅)-
systems. Also notice that for any set L = L[∅;N1, N2, . . . , Nk] ∈ UΣpk, the Σk(∅)-
system [∅;N1, N2, . . . , Nk] does not need to be unambiguous. In other words, for any
string w that never appears as a query in the computation of [∅;N1, N2, . . . , Nk] it
may happen for some 1 ≤ i ≤ k that [∅;Ni, . . . , Nk](w) has more than one accepting
path.

The following inclusion relationships between unambiguity based classes and other
central classes are known (see also Figure 1).

Theorem 2.11.

1. For all k ≥ 0, AUΣpk ⊆ UΣpk ⊆ UΣpk ⊆ Σpk [38].
2. For all k ≥ 1, UP≤k ⊆ AUΣpk ⊆ UΣpk ⊆ UΣpk ⊆ UAP ⊆ SPP ([38] + [40] +

[18]).
3. PFewP ⊆ PPromise-UP

s [16].
Despite the attention these hierarchies deserve, much less is known about the

structure of these hierarchies since Lange and Rossmanith [38] first posed questions
on their structure—such as, whether these hierarchies intertwine, or whether some
unambiguity based hierarchy is contained in a fixed level of some other hierarchy, or
whether some/all of these hierarchies collapse to a fixed level. On the positive side,
there have been some advances in understanding the structure of these hierarchies.
Hemaspaandra and Rothe [33] related the structure of these hierarchies to the exis-
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tence of sparse Turing complete sets for UP. The structure of these hierarchies received
renewed interest in some recent work (see [1, 18, 24, 46]). For instance, Spakowski and
Tripathi [46] investigated the relativized structure of these hierarchies. They proved
that the unambiguity based hierarchies AUPH, UPH, and UPH are infinite in some
relativized world. They also proved a contrasting result on their relativized structure:
For each k ≥ 2, there is a relativized world where these hierarchies collapse so that
they have exactly k distinct levels and their kth levels coincide with PSPACE.

3. Proof technique.

3.1. Main lemma. Our main lemma is Lemma 3.1, which we will use through-
out this paper for generalizing known oracle constructions involving unambiguity
based classes such as UP and Promise-UP to new oracle constructions involving ar-
bitrary levels of the UPH. Roughly, Lemma 3.1 states computational limitations of a
Σk(O)-system for any arbitrary k ≥ 1, under certain weak conditions.

Lemma 3.1. Fix a Σk(O)-system [O;N1, N2, . . . , Nk], a string x ∈ Σ∗, and a set
U ⊆ Σ∗ such that O ∩ U = ∅. Let r(.) be a polynomial that bounds the running time
of each of the machines N1, N2, . . . , Nk (on any input and with any oracle). Then the
following hold.

(I) Suppose [O;N1, N2, . . . , Nk](x) accepts and for every A ⊆ U with ||A|| ≤ k,
[O ∪A;N1, N2, . . . , Nk] is unambiguous. Let

C = {α ∈ U | [O ∪ {α};N1, N2, . . . , Nk](x) rejects}.

Then ||C|| ≤ 5k ·
∏k
i=1(r◦)i(|x|).

(II) Suppose [O;N1, N2, . . . , Nk](x) rejects and for every A ⊆ U with ||A|| ≤ k+1,
[O ∪A;N1, N2, . . . , Nk] is unambiguous. Let

C = {α ∈ U | [O ∪ {α};N1, N2, . . . , Nk](x) accepts}.

Then ||C|| ≤ 5k ·
∏k
i=1(r◦)i(|x|).

Intuitively, this lemma says the following. If a Σk(O)-system is unambiguous
when any subset A, which contains at most k + 1 elements, of some fixed set U is
added to the oracle O, then this Σk(O)-system behaves similarly to a deterministic
polynomial-time oracle Turing machine upon addition of single strings from U to O.
That is, if we want to change the acceptance behavior of the Σk(O)-system on some
input x by adding a single string α ∈ U to the oracle O, then we need to take α from
a specific small (polynomial-size) subset C (which depends on x) of U .

Proof of Lemma 3.1. By induction on k, we prove the claim “For any oracle O,
any Σk(O)-system [O;N1, N2, . . . , Nk], any x ∈ Σ∗, and any set U ⊆ Σ∗ such that
O ∩ U = ∅, statements (I) and (II) hold.”

For the base case k = 1 of (I), we have [O;N1](x) accepts. Also, since [O;N1]
is unambiguous by the assumption made in (I), there is a unique accepting path in
[O;N1](x). Let C′ be the set of all queries w ∈ U along this unique accepting path.
Then clearly ||C|| ≤ ||C′|| ≤ r(|x|). Thus (I) holds for the base case.

For the base case k = 1 of (II), we have [O;N1](x) rejects. Suppose that ||C|| >
5 · r(|x|). Note that for every α ∈ C, [O ∪ {α};N1](x) accepts. Thus, for every
α ∈ C, let λ(α) be the accepting path in [O ∪ {α};N1](x). It is easy to show that
λ(α1) �= λ(α2) for any distinct α1, α2 ∈ C. To see this, let ρ = λ(α) for some α ∈ C.
Then, by the definition of λ(α) and the assumption that [O;N1](x) rejects, we notice
that path ρ appears in NO∪{α}

1 (x) but does not appear in NO
1 (x). From this, it follows
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that α must be answered positively along ρ, i.e., α ∈ Q+(ρ), since otherwise ρ would
also appear in NO

1 (x). Therefore, for any oracle B with α /∈ B, ρ cannot appear in
NB

1 (x). In particular, ρ cannot appear in NO∪{α′}
1 (x) for any α′ with α′ �= α. Hence,

we get that λ(α1) �= λ(α2) for any distinct α1, α2 ∈ C.
We define, for any α ∈ C,

conflicting(α) = {β ∈ C | λ(α) is not an accepting path in [O ∪ {α, β};N1](x)}.

Since N1(x) with any oracle asks at most r(|x|) queries, there can be at most
r(|x|) strings β ∈ C that can cause λ(α) not to appear in [O ∪ {α, β};N1](x). In
other words, for any α ∈ C, it holds that ||conflicting(α)|| ≤ r(|x|). Thus, it follows
by an easy counting argument and the assumption that ||C|| > 5 · r(|x|) that there
exist distinct α1, α2 ∈ C such that α1 �∈ conflicting(α2) and α2 �∈ conflicting(α1). We
have already shown that λ(α1) and λ(α2) are distinct paths for distinct α1, α2 ∈ C.
Therefore, [O ∪ {α1, α2};N1](x) has two distinct accepting paths, namely, λ(α1) and
λ(α2). This contradicts our assumption that [O ∪ A;N1] is unambiguous for every
A ⊆ U with ||A|| ≤ 2. Thus (II) also holds for the base case.

Induction hypothesis. For k ≥ 1, the following claim is true: For any oracle O,
any Σk(O)-system [O;N1, N2, . . . , Nk], any x ∈ Σ∗, and any set U ⊆ Σ∗ such that
O ∩ U = ∅, statements (I) and (II) hold.

Inductive step. Let [O;N1, N2, . . . , Nk+1] be a Σk+1(O)-system, let r(.) be a
polynomial that bounds the running time of each of N1, N2, . . . , Nk, Nk+1 (for any
oracle), let U ⊆ Σ∗ such that O ∩ U = ∅, and let x ∈ Σ∗.

We first prove (I). Suppose [O;N1, N2, . . . , Nk+1](x) accepts and [O ∪A;N1, N2,
. . . , Nk+1] is unambiguous for every A ⊆ U with ||A|| ≤ k + 1. Let λ denote the
unique accepting path of [O;N1, N2, . . . , Nk+1](x). For every query w along λ, the
Σk(O)-system [O;N2, N3, . . . , Nk+1] computes [O;N2, N3, . . . , Nk+1](w). By Defi-
nition 2.3(1), for every A ⊆ U with ||A|| ≤ k + 1, the Σk(O ∪ A)-system [O ∪
A;N2, N3, . . . , Nk+1] is unambiguous. Thus, it follows by the induction hypothe-
sis that for every query w along λ and for all but at most 5k ·

∏k
i=1(r◦)i(|w|) ≤

5k ·
∏k+1
i=2 (r◦)i(|x|) strings α ∈ U , adding α ∈ U to O does not change the deci-

sion (i.e., acceptance or rejection) of [O;N2, N3, . . . , Nk+1](w). Since the number
of such queries w along λ is at most r(|x|), it follows that λ is an accepting path
in [O ∪ {α};N1, N2, . . . , Nk+1](x) for all but at most r(|x|) · 5k ·

∏k+1
i=2 (r◦)i(|x|) <

5k+1 ·
∏k+1
i=1 (r◦)i(|x|) strings α ∈ U . This proves (I), the first part of the inductive

step.
We now prove (II). Suppose that ||C|| > 5k+1 ·

∏k+1
i=1 (r◦)i(|x|). For any α ∈ C, let

λ(α) denote the unique accepting path in [O ∪ {α};N1, N2, . . . , Nk+1](x). We define
an equivalence relation σ on C as follows: For every α1, α2 ∈ C,

α1σα2 ⇐⇒ λ(α1) = λ(α2).

The following cases are exhaustive.
Case 1. There is an equivalence class of σ of size > 5k ·

∏k+1
i=1 (r◦)i(|x|). Let

[α] be such an equivalence class. Then we have the following situation: The accept-
ing path λ(α) does not appear in [O;N1, N2, . . . , Nk+1](x), but for every β ∈ [α],
path λ(α) appears in [O ∪ {β};N1, N2, . . . , Nk+1](x). Hence for every query w ∈
Σ∗ along λ(α), it holds that for every β, β′ ∈ [α], [O ∪ {β};N2, N3, . . . , Nk+1](w)
and [O ∪ {β′};N2, N3, . . . , Nk+1](w) have the same acceptance behavior; i.e, [O ∪
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{β};N2, N3, . . . , Nk+1](w) accepts if and only if [O ∪ {β′};N2, N3, . . . , Nk+1](w) ac-
cepts. There must be at least one query w′ ∈ Σ∗ along λ(α) such that for some
β ∈ [α] (and hence by the previous sentence for every β ∈ [α]), adding β to O
changes the answer of [O;N2, N3, . . . , Nk+1](w′), since otherwise λ(α) would also ap-
pear in [O;N1, N2, . . . , Nk+1](x). Also note that for every A ⊆ U with ||A|| ≤ k + 1,
[O ∪ A;N2, N3, . . . , Nk+1] is unambiguous. Thus we get a contradiction with the
induction hypothesis, since ||[α]|| > 5k ·

∏k+1
i=1 (r◦)i(|x|) ≥ 5k ·

∏k+1
i=2 (r◦)i(|x|) ≥

5k ·
∏k
i=1(r◦)i(|w′|).

Case 2. Every equivalence class of σ is of size ≤ 5k ·
∏k+1
i=1 (r◦)i(|x|). We need

the following claim, which demonstrates that if σ is an equivalence relation over some
set C consisting only of small equivalence classes, then C can be partitioned into two
sufficiently large disjoint sets C1 and C2 such that every equivalence class is contained
in either C1 or C2.

Claim 1. Let σ be any equivalence relation over some set C, and let ||C|| > 5s.
If ||[α]|| ≤ s for every α ∈ C, then there is a partition (C1, C2) of C such that ||C1||,
||C2|| > 2s, and for every α ∈ C, [α] ⊆ C1 or [α] ⊆ C2.

Proof of Claim 1. Let D be any subset of C such that (i) for every α ∈ C, [α] ⊆ D
or [α] ∩D = ∅, (ii) ||D|| ≤ 2s, and (iii) ||D ∪ [β]|| > 2s for some β ∈ C. Such a set D
exists because ||C|| > 5s and ||[α]|| ≤ s for every α ∈ C.

Let C1 = D ∪ [β] for some β ∈ C such that ||C1|| > 2s. Because ||β|| ≤ s, we
have that ||C1|| ≤ ||D|| + ||[β]|| ≤ 2s + s = 3s. Now let C2 = C − C1. We see that
||C2|| = ||C|| − ||C1|| > 5s− 3s = 2s. Moreover, every equivalence class is contained
in either C1 or C2. This completes the proof of Claim 1.

It is easy to see that our equivalence class σ over C satisfies the preconditions
of Claim 1 for s = 5k ·

∏k+1
i=1 (r◦)i(|x|). Let (C1, C2) be the partition of C given by

Claim 1. Then both ||C1|| and ||C2|| are greater than 2 ·5k ·
∏k+1
i=1 (r◦)i(|x|). For every

α1 ∈ C1 and α2 ∈ C2, we define

conflicting(α1) = {β2 ∈ C2 | λ(α1) is not an accepting path in [O ∪ {α1, β2};N1, N2,

. . . , Nk+1](x)},

and

conflicting(α2) = {β1 ∈ C1 | λ(α2) is not an accepting path in [O ∪ {α2, β1};N1, N2,

. . . , Nk+1](x)}.

We claim that both ||conflicting(α1)|| and ||conflicting(α2)|| are no more than
5k ·

∏k+1
i=1 (r◦)i(|x|). To prove this, first note that N1(x) with any oracle can ask

at most r(|x|) queries along a computation path. Second, for each γ ∈ {α1, α2},
we have that for any A ⊆ U with ||A|| ≤ k + 1, [O ∪ {γ} ∪ A;N1, N2, . . . , Nk+1]
is unambiguous. Therefore, it follows by the induction hypothesis (where now O
is O ∪ {γ} and N1, N2, . . . , Nk are N2, N3, . . . , Nk+1) that for every query w made
by N1(x) along λ(γ) to the oracle L[O ∪ {γ};N2, . . . , Nk+1], there can be at most
5k ·

∏k
i=1(r◦)i(|w|) ≤ 5k ·

∏k+1
i=2 (r◦)i(|x|) strings β ∈ U such that adding β to O∪{γ}

changes the decision (acceptance or rejection) of [O∪{γ};N2, N3, . . . , Nk+1](w). These
two facts imply the stated bound on ||conflicting(α1)|| and ||conflicting(α2)||.

With the bounds ||C1||, ||C2|| > 2 · 5k ·
∏k+1
i=1 (r◦)i(|x|), a simple counting argu-

ment now shows that there exist α1 ∈ C1 and α2 ∈ C2 such that α1 �∈ conflicting(α2)
and α2 �∈ conflicting(α1). As a consequence, [O ∪ {α1, α2};N1, N2, . . . , Nk+1](x)
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accepts along two distinct paths, namely, λ(α1) and λ(α2), which are indeed dis-
tinct since [α1] �= [α2]. This gives a contradiction to the assumption that [O ∪
A;N1, N2, . . . , Nk+1] is unambiguous for every A ⊆ U with ||A|| ≤ k + 1. This com-
pletes the proof of Lemma 3.1.

3.2. The notion of (h, t)-ambiguity for functions on ℘(Σ∗). Any oracle
machine can be interpreted as a function mapping a set of strings to another set of
strings as follows: A machineN maps any set O to the set L(NO). Therefore, it makes
sense to consider the (possibly partial) function L : ℘(Σ∗) → ℘(Σ∗) defined by a
Σk(·)-system [·;N1, N2, . . . , Nk]. (That is, define L so that for everyO ⊆ Σ∗, L(O) =df

Lunambiguous[O;N1, N2, . . . , Nk].) We introduce a convenient notion called “(h, t)-
ambiguity” for (partial or total) functions, which we will later apply to functions
defined by Σk(·)-systems.

Definition 3.2. For any h ∈ N+ and polynomial t(·), we call a partial or total
function L : ℘(Σ∗) → ℘(Σ∗) (h, t)-ambiguous if, for every O, U ⊆ Σ∗ with O∩U = ∅,
one of the following is true:

1. For some A ⊆ U with ||A|| ≤ h, L(O ∪A) is undefined, or
2. for every w ∈ Σ∗,

||{α ∈ U | w ∈ L(O ∪ {α}) ⇐⇒ w /∈ L(O)}|| ≤ t(|w|).

Many of the proofs in this paper apply Proposition 3.3 below. The proof of
Proposition 3.3 is based on the definition of Lunambiguous given in Definition 2.3 and
on Lemma 3.1.

Proposition 3.3. For any Σk(·)-system [·;N1, N2, . . . , Nk], the function L :
℘(Σ∗) → ℘(Σ∗) defined for any B ⊆ Σ∗ by

L(B) = Lunambiguous[B;N1, N2, . . . , Nk]

is (k + 1, t)-ambiguous, where t(·) = 5k ·
∏k
i=1(p◦)i(·) and p(·) is a polynomial that

bounds the running time of the machines N1, N2, . . . , Nk.
Proof. For every O, U ⊆ Σ∗ with O ∩ U = ∅, we have the following two cases:

either there is a set A ⊆ U with ||A|| ≤ k + 1 such that [O ∪ A;N1, N2, . . . , Nk] is
ambiguous or there is no such set A. In the first case, L(O ∪ A) is undefined by
the definition of L in the proposition and by Definition 2.3(2). In the second case,
for every A ⊆ U with ||A|| ≤ k + 1, [O ∪ A;N1, N2, . . . , Nk] is unambiguous, and
furthermore L(O ∪ A) = L[O ∪ A;N1, N2, . . . , Nk]. Thus, in this case, it follows by
Lemma 3.1 that for every w ∈ Σ∗, there can be at most t(|w|) strings α ∈ U such
that adding α to O changes the membership of w in L(O). Clearly, in both cases we
get that L is (k + 1, t)-ambiguous.

Some words are in order on the proof technique used in this paper. The machine
N1 in a Σk(O)-system [O;N1, N2, . . . , Nk] has oracle access to the set L[O;N2, N3, . . . ,
Nk]. In many of our oracle constructions, we use the following central idea: At any
stage, either there is a finite extension B of the current partial oracle A such that
the Σk−1(A ∪ B)-system [A ∪ B;N2, N3, . . . , Nk] is ambiguous and simultaneously
the constraints imposed by the construction at that stage are satisfied, or there is no
such extension. In the first case, we extend A to A ∪ B, ensure that the Σk−1(A′)-
system [A′;N2, N3, . . . , Nk] remains ambiguous for the partial oracle A′ at any later
stage, and move to the next stage. In the second case, all finite extensions B of A
that satisfy the imposed constraints lead to an unambiguous Σk−1(A ∪ B)-system
[A ∪ B;N2, N3, . . . , Nk]. So for these extensions B we have that Lunambiguous[A ∪
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B;N2, N3, . . . , Nk] equals L[A ∪ B;N2, N3, . . . , Nk]. We define a function L′ (as in
Proposition 3.3) for any B ⊆ Σ∗ by L′(B) = Lunambiguous[B;N2, . . . , Nk]. Notice that
by Proposition 3.3, L′ is (k, t)-ambiguous. Moreover, for all finite extensions B of A
mentioned above, L′(A ∪B) = L[A ∪B;N2, N3, . . . , Nk].

It turns out that the (k, t)-ambiguity property of the function L′(·), defined above
for the Σk−1(·)-subsystem [·;N2, N3, . . . , Nk], is the only property of L′ that is needed
in our proofs. Therefore, we can assume without losing anything that in the Σk(A)-
system [A;N1, N2, . . . , Nk], the NPTM N1 has oracle access to a set L(A), where L is
an arbitrary (k, t)-ambiguous function, rather than to the set L′(A). This approach
of using L(A) has its own advantages: It greatly simplifies our proof arguments and
makes expressions compact, since we no longer need to deal with stacks of oracle
NPTMs.

4. Applications. In this section, we demonstrate applications of our proof tech-
niques. We show that our counting techniques are useful in generalizing certain known
relativization results involving bounded ambiguity classes such as UP and Promise-UP
to new results involving arbitrary levels of the UPH. This stands in contrast to gener-
alizations achieved for relativization results involving levels of the PH. For instance,
extending the relativized separation of initial levels of the PH [4, 5] to relativized sepa-
rations of arbitrary levels of the PH [49] required applications of sophisticated circuit-
theoretic techniques. For the case of the UPH, however, we show (via Theorem 4.1)
that a relativized separation of its levels can be achieved by counting techniques alone,
i.e., without resorting to circuit-theoretic tools and techniques.

4.1. Comparing bounded ambiguity classes with the levels of UPH. We
compare classes defined by NPTMs having restrictions on the number of accepting
paths (UPO(1) and FewP) with levels of the UPH. It is known that UP≤k ⊆ UΣpk in
all relativized worlds. Theorem 4.1 shows the optimality of this inclusion with respect
to relativizable proof techniques. Beigel [6] constructed an oracle relative to which
UPk(n)+1 �⊆ UPk(n) for every polynomial k(n) ≥ 2. Theorem 4.1 subsumes this oracle
result of Beigel [6] for any constant k.

By a slight modification of the oracle construction in Theorem 4.1, we can show
that the second level UΣp2 of the promise unambiguous hierarchy UPH is not contained
in the unambiguous polynomial hierarchy UPH. Results on relativized separations of
levels of some unambiguity based hierarchy from another hierarchy have been investi-
gated earlier. Rossmanith (see [40]) gave a relativized separation of AUΣpk from UΣpk
for any k ≥ 2. Spakowski and Tripathi [46] constructed an oracle relative to which
AUΣpk �⊆ Πp

k, for any k ≥ 1. Our relativized separation of UΣp2 from UPH does not
seem to be implied from these previous results in any obvious way.

Theorem 4.1. For any integer k ≥ 1, there exists an oracle A such that
UPA

≤k+1 � UΣp,Ak .
Proof. Our test language is L(A) = {0n | A=n �= ∅}. We will create an oracle

A that, for any length n ∈ N+, satisfies ||A=n|| ≤ k + 1. Let (Ni,1, Ni,2, . . . , Ni,k)
be an enumeration of tuples, where Ni,� is a nondeterministic polynomial-time oracle
Turing machine. Initially, A := ∅.

Stage i. Let p(·) be a polynomial that bounds the running time of Ni,�. Choose
a large integer n such that (a) 2n > 5k ·

∏k
j=1(p◦)j(n), (b) n satisfies the promises

made in the previous stages, (c) no string of length ≥ n is ever queried in any of the
previous stages, and (d) n is larger than the value in the previous stage. Because 2n

grows faster than any polynomial, it is easy to see that there always exists such an n.
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If there exists a set B ⊆ Σn such that ||B|| ≤ k+1 and [A∪B;Ni,1, Ni,2, . . . , Ni,k]
is ambiguous, then set A := A ∪ B. Promise to choose the value of n in the next
stage to be larger than (p◦)k(|w|), where w is an arbitrary string witnessing that
[A ∪B;Ni,1, Ni,2, . . . , Ni,k] is ambiguous, and then move to the next stage.

Otherwise, choose a string α ∈ Σn (as guaranteed by Lemma 3.1 and by our
choice of n) such that

[A;Ni,1, Ni,2, . . . , Ni,k](0n) accepts ⇐⇒ [A∪ {α};Ni,1, Ni,2, . . . , Ni,k](0n) accepts.

If [A;Ni,1, Ni,2, . . . , Ni,k](0n) accepts, then move to the next stage. Otherwise, if
[A;Ni,1, Ni,2, . . . , Ni,k](0n) rejects, then set A := A∪{α} and move to the next stage.
End of stage.

Clearly the construction guarantees that L(A) ∈ UPA
≤k+1 − UΣp,Ak .

A straightforward adaptation of the proof of Theorem 4.1 allows us to separate
the second level, UΣp2, of the promise unambiguous polynomial hierarchy, UPH, from
the unambiguous polynomial hierarchy, UPH, in some relativized world. We obtain
this relativized separation via Theorem 4.2, where the subclass FewPA of UΣp,A2 (see
Theorem 2.11(3)) is separated from UPHA.

Theorem 4.2. There exists an oracle A such that FewPA � UPHA.
Proof sketch. Take the test language L(A) used in the proof of Theorem 4.1.

Maintain the stipulation that the oracle A satisfies, for all n ∈ N+, ||A=n|| ≤ n; this
ensures that L(A) ∈ FewPA. Finally, for all k ∈ N+, diagonalize against all tuples
(Ni,1, Ni,2, . . . , Ni,k) as in the proof of Theorem 4.1.

Corollary 4.3. There is a relativized world where UΣp2 is not contained in
UPH.

Cai, Hemachandra, and Vyskoč [16] proved that smart 2-Turing access to
Promise-UP cannot be subsumed by coNPUP ∪ NPUP in some relativized world. As
a consequence, they showed that there is a relativized world where smart bounded
adaptive reductions to Promise-UP and smart bounded nonadaptive reductions to
Promise-UP are nonequivalent, a characteristic that stands in contrast to the cases
of UP and NP. (Both UP and NP are known to have equivalence between bounded
adaptive reductions and bounded nonadaptive reductions in all relativized worlds
(see [16, 48]).) We obtain a generalization of their result as a corollary of Theo-
rem 4.4: There is a relativized world where smart k-Turing access to Promise-UP is
not contained in coNPUΣp,A

k−1 ∪ NPUΣp,A
k−1 for any k ≥ 2. The proof of Theorem 4.4

gives a first example of the role of (h, t)-ambiguity in derivations of our results.
Theorem 4.4. For any integer k ≥ 2, there exists an oracle A such that

UPA
≤k � coNPUΣp,A

k−1 .

Proof. The test language L(A) is the same as that in the proof of Theorem 4.1.
We maintain the stipulation that for every n ∈ N+, ||A=n|| ≤ k; then, clearly L(A) ∈
UPA

≤k. We will show that L(A) �∈ coNPUΣp,A
k−1 .

Let (Ni,1, Ni,2, . . . , Ni,k) be an enumeration of tuples, where Ni,� is a nondeter-
ministic polynomial-time oracle Turing machine. Initially, A := ∅.

Stage i. Let p(·) be a polynomial that bounds the running time of Ni,�. Choose
a large integer n such that (a) 2n > 5k−1 ·

∏k
j=1(p◦)j(n), (b) n satisfies any promises

made in the previous stages, (c) n is larger than the value of n in the previous stages,
and (d) no queries of length ≥ n are made in the previous stages.
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If there exists a set B ⊆ Σn such that ||B|| ≤ k and [A ∪ B;Ni,2, Ni,3, . . . , Ni,k]
is ambiguous, then set A := A ∪ B. Promise to choose the value of n in the next
stage to be larger than (p◦)k−1(|w|), where w is any arbitrary string witnessing that
[A ∪B;Ni,2, Ni,3, . . . , Ni,k] is ambiguous, and then move to the next stage.

Otherwise proceed as follows. Let L : ℘(Σ∗) → ℘(Σ∗) be the function defined so
that for every O ⊆ Σ∗,

L(O) =df Lunambiguous[O;Ni,2, Ni,3, . . . , Ni,k].

It follows from Proposition 3.3 that L is (k, t)-ambiguous for polynomial t(·) =df

5k−1 ·
∏k−1
j=1 (p◦)j(·). Notice that for every B ⊆ Σn satisfying ||B|| ≤ k, L(A ∪ B) is

defined and moreover L(A ∪B) = L[A∪B;Ni,2, Ni,3, . . . , Ni,k].
If NL(A)

i,1 (0n) rejects, then move to the next stage. Otherwise, fix an accepting

path ρ in N
L(A)
i,1 (0n). For each query w ∈ Q(ρ), let C(w) =df {α ∈ Σn | w ∈

L(A∪ {α}) ⇐⇒ w �∈ L(A)}. By the definition of (k, t)-ambiguity, for each w ∈ Q(ρ),
we have ||C(w)|| ≤ t(|w|) ≤ t(p(n)). Because n is large enough, we can choose some
α ∈ Σn such that α �∈

⋃
w∈Q(ρ) C(w). Set A := A ∪ {α} and move to the next stage.

End of stage.
Clearly the construction guarantees that L(A) �∈ coNPUΣp,A

k−1 .
This completes the proof of Theorem 4.4.
Corollary 4.5. For any integer k ≥ 2, there exists an oracle A such that

Rps,k-T (Promise-UPA) � coNPUΣp,A
k−1 ∪ NPUΣp,A

k−1 .

Proof. This follows from Theorem 4.4 because for all oracles A, UPA
≤k ⊆

Rps,k-T (Promise-UPA) and Rps,k-T (Promise-UPA) is closed under complementa-
tion.

4.2. Simulating nonadaptive access by adaptive access (non–promise
case). It is known that adaptive Turing access to NP is exponentially more pow-
erful compared to nonadaptive Turing access to NP. That is, Rp

(2k−1)-tt(NP) ⊆
Rpk-T (NP) [7], and this inclusion relativizes. However, for the case of unambigu-
ous nondeterministic computation, such a relationship between nonadaptive access
and adaptive access is not known. Cai, Hemachandra, and Vyskoč [15] showed that
even proving the superiority of adaptive Turing access over nonadaptive Turing ac-
cess with one single query more might be nontrivial for unambiguous nondeterministic
computation.

Theorem 4.6 ([15]). For any total, polynomial-time computable, and polynomi-
ally bounded function k(·), there exists an oracle A such that

Rp(k(n)+1)-tt(UPA) �⊆ Rp,Ak(n)-T (UPA).

In the next theorem, we generalize this result to the higher levels of the unam-
biguous polynomial hierarchy UPH.

Theorem 4.7. For any total, polynomial-time computable, and polynomially
bounded function k(·) and integer h ≥ 1, there exists an oracle A such that

Rp(k(n)+1)-dtt(UPA
≤h) �⊆ Rp,Ak(n)-T (UΣp,Ah ),

and hence Rp(k(n)+1)-dtt(UΣp,Ah ) �⊆ Rp,Ak(n)-T (UΣp,Ah ).
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For the proof of Theorem 4.7, we need the following lemma.
Lemma 4.8. Fix an oracle NPTM N with running time bounded by some poly-

nomial p(·), string x ∈ Σ∗, and sets O, U1, U2 ⊆ Σ∗ such that O ∩ U1 = O ∩ U2 =
U1 ∩ U2 = ∅. Let L : ℘(Σ∗) → ℘(Σ∗) be an (h, t)-ambiguous function such that
L(O ∪ A1 ∪ A2) is defined for every A1 ⊆ U1 and A2 ⊆ U2 with ||A1|| ≤ h and
||A2|| ≤ h. Let

C1 = {α ∈ U1 |NL(O)(x) accepts ⇐⇒ NL(O∪{α})(x) rejects} and

C2 = {α ∈ U2 |NL(O)(x) accepts ⇐⇒ NL(O∪{α})(x) rejects}.

If NL(O∪A1∪A2)(x) is unambiguous for every A1 ⊆ U1 and A2 ⊆ U2 with ||A1|| ≤ 1
and ||A2|| ≤ 1, then min{||C1||, ||C2||} ≤ 2 · p(|x|) · t(p(|x|)) · (p(|x|) · t(p(|x|)) + 1).

Proof. We start with the easier case that NL(O)(x) accepts. Let ρ be the (unique)
accepting computation path in NL(O)(x). Then NL(O∪{α})(x) accepts unless for some
query w ∈ Q(ρ), it is the case that w ∈ L(O ∪ {α}) ⇐⇒ w /∈ L(O). Since NL(O)(x)
queries at most p(|x|) queries along every path, since each query w ∈ Q(ρ) is of
length ≤ p(|x|), since L is (h, t)-ambiguous, and since L(O ∪ A1 ∪ A2) is defined for
every A1 ⊆ U1 and A2 ⊆ U2 with ||A1||, ||A2|| ≤ h, there cannot be more than
p(|x|) · t(p(|x|)) strings α ∈ U1 (or α ∈ U2) making NL(O∪{α})(x) reject. Hence
||C1|| ≤ p(|x|) · t(p(|x|)) and ||C2|| ≤ p(|x|) · t(p(|x|)).

For the other case, suppose that NL(O)(x) rejects. To get a contradiction, assume
that min{||C1||, ||C2||} > 2·p(|x|)·t(p(|x|))·(p(|x|)·t(p(|x|))+1). For every α ∈ C1∪C2,
denote by s(α) the unique accepting computation path in NL(O∪{α})(x). Define an
equivalence relation σ1 on C1 as follows: For all α1, α2 ∈ C1,

α1σ1α2 ⇐⇒ s(α1) = s(α2).

Let C1/σ1 be the quotient set of C1 determined by σ1. We first prove that

(4.1) ||C1/σ1|| ≥
||C1||

p(|x|) · t(p(|x|)) .

To this end, consider any α ∈ C1. Note that for every query w ∈ Q(s(α)), there
cannot be more than t(|w|) different strings α′ ∈ C1 such that

w ∈ L(O ∪ {α′}) ⇐⇒ w /∈ L(O).

This holds because L is (h, t)-ambiguous and because L(O ∪ A) is defined for every
A ⊆ U1 with ||A|| ≤ h. Also since there are at most p(|x|) queries w ∈ Q(s(α)) and
each such query is of length ≤ p(|x|), there cannot be more than p(|x|)·t(p(|x|)) strings
α′ ∈ C1 such that for some query w ∈ Q(s(α)), it is the case that w ∈ L(O ∪ {α′})
if and only if w /∈ L(O). In other words, for all but p(|x|) · t(p(|x|)) strings α′ ∈ C1,
the membership in L(O) of every query w ∈ Q(s(α)) remains unchanged on inclusion
of α′ to O. Since, by assumption, NL(O)(x) rejects, it follows that for no more
than p(|x|) · t(p(|x|)) strings α′ ∈ C1, (accepting) path s(α) appears in NL(O∪α′)(x).
Hence there cannot be more than p(|x|) · t(p(|x|)) different strings α′ ∈ C1 such that
s(α′) = s(α). Thus we have proved statement (4.1).

Analogously, the same can be proved for C2 with appropriately defined equiva-
lence class σ2.

Define C̃1 to be a maximal subset of C1 such that s(α1) �= s(α2) for every α1, α2 ∈
C̃1 with α1 �= α2. Analogously, define C̃2. Clearly,

(4.2) ||C̃1|| ≥
||C1||

p(|x|) · t(p(|x|)) > 2 · (p(|x|) · t(p(|x|)) + 1),
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and

(4.3) ||C̃2|| ≥
||C2||

p(|x|) · t(p(|x|)) > 2 · (p(|x|) · t(p(|x|)) + 1).

For every α1 ∈ C̃1, let

conflicting(α1) = {β2 ∈ C̃2 | s(α1) does not appear in NL(O∪{α1,β2})(x)
or s(α1) = s(β2)},

and for every α2 ∈ C̃2, let

conflicting(α2) = {β1 ∈ C̃1 | s(α2) does not appear in NL(O∪{α2,β1})(x)
or s(α2) = s(β1)}.

Fix an arbitrary α ∈ C̃1. Since L is (h, t)-ambiguous and L(O ∪ A1 ∪ A2) is defined
for every ||A1|| ≤ 1 and ||A2|| ≤ h, it holds that for every query w ∈ Q(s(α)) in
NL(O∪{α})(x), there cannot be more than t(|w|) different strings β ∈ C̃2 such that

w ∈ L(O ∪ {α, β}) ⇐⇒ w �∈ L(O ∪ {α}).

Also, since no more than p(|x|) strings are queried on each path in NL(O∪{α})(x),
since each queried string is of length ≤ p(|x|), and since, for distinct α1 and α2,
s(α1) �= s(α2) whenever {α1, α2} ⊆ C̃2, we have that for any α ∈ C̃1,

||conflicting(α)|| ≤ p(|x|) · t(p(|x|)) + 1.

Analogously, we can prove that for any α′ ∈ C̃2,

||conflicting(α′)|| ≤ p(|x|) · t(p(|x|)) + 1.

With the lower bounds on ||C̃1|| and ||C̃2|| given by (4.2) and (4.3), it now follows
by a simple counting argument that there is a pair (α1, α2) ∈ C̃1 × C̃2 such that
α2 /∈ conflicting(α1) and α1 /∈ conflicting(α2). Take two such strings α1 and α2.
It is easy to see that both s(α1) and s(α2) appear in NL(O∪{α1,α2})(x). Further-
more, s(α1) �= s(α2). Hence, NL(O∪{α1,α2})(x) has two different accepting compu-
tation paths: s(α1) and s(α2). This gives a contradiction to the assumption that
NL(O∪A1∪A2) is unambiguous whenever A1 ⊆ U1 and A2 ⊆ U2 with ||A1|| ≤ 1 and
||A2|| ≤ 1. This completes the proof of Lemma 4.8.

Proof of Theorem 4.7. The test language L(A) for our oracle construction is
inspired by the one in [16, Theorem 3.1]. For length n, we will reserve the following
segment of k(n)+1 regions Sn,f = 1n01f0Σn, where f ∈ [k(n)+1]. For n ≥ 1, define
Sn =

⋃k(n)+1
f=1 Sn,f . For all n ≥ 1 and f ∈ [k(n)+1], we stipulate that ||A∩Sn,f || ≤ h.

Let

L(A) = {0n | ||A ∩ Sn|| ≥ 1}.

Clearly, as long as the oracle set A maintains the stipulation that ||A ∩ Sn,f || ≤ h,
we have L(A) ∈ Rp(k(n)+1)-dtt(UPA

≤h) and hence L(A) ∈ Rp(k(n)+1)-dtt(UΣp,Ah ). We

construct an oracle A such that L(A) /∈ Rpk(n)-T (UΣp,Ah ).3

3The construction can be easily modified to prove the stronger result that L(A) /∈
Rp,A

k(n)−T
(UΣp,A

h ).
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We give a brief informal outline of how the diagonalization for L(A) /∈
Rpk(n)-T (UΣp,Ah ) is carried out. Fix some input 0n. The crucial fact is that we have
k(n) + 1 regions but only k(n) adaptive Turing queries. There are two cases. The
easier case is when we can destroy the unambiguity of one of the machines defining
the UΣp,Ah set by adding some strings to the current segment (but, of course, without
violating the above stipulation, i.e., the stipulation that ||A ∩ Sn,f || ≤ h for every
f ∈ [k(n) + 1]). In this case we can simply add these strings to the oracle and move
to the next stage. Otherwise, we can use Lemma 4.8 to show that each Turing query
is insensitive to all but at most one of the k(n) + 1 regions. A Turing query β is
insensitive to a region if adding a single string α to that region does not change the
answer to β, unless the string α comes from a very small (i.e., polynomially bounded)
number of exceptions. But we have only k(n) Turing queries. That is why there must
be a region Sn,f to which all Turing queries are insensitive. Since Sn,f has exponen-
tially many strings but only polynomially many exceptions, there must be at least
one string α∗ ∈ Sn,f that we can add to the current segment without changing the
answers to any of the Turing queries, and hence without changing the decision (i.e,
acceptance or rejection) of the deterministic machine M making the Turing reduction.
We add this string α∗ to the oracle (thereby changing the membership of 0n in the
test language) if and only if M rejects. This completes the construction in the current
stage, and so we move to the next stage.

Now we come to the formal description of the diagonalization. Let (Ni,1, Ni,2, . . . ,
Ni,h,Mj) be an enumeration of tuples where Ni,∗ is a nondeterministic polynomial-
time oracle Turing machine, and Mj is a deterministic polynomial-time oracle Turing
machine making, for any set A and any input of length n, at most k(n) queries to
L[A;Ni,1, Ni,2, . . . , Ni,h]. Initially, let A := ∅.

Stage 〈i, j〉. Let p(·) be a polynomial that bounds the running time of both
Ni,∗ and Mj . Choose an integer n satisfying the following requirements: (a) 2n >
2 ·k(n) ·p(p(n)) ·t(p(p(n))) ·(p(p(n)) ·t(p(p(n)))+1), where t(·) is a polynomial defined
later in this proof, (b) n is large enough so that n satisfies any promises made in the
previous stages and no string of length greater than or equal to n is queried in any of
the previous stages, and (c) n is larger than the value of n in the previous stage.

If there exists a set B ⊆ Sn satisfying ||B ∩ Sn,f || ≤ h for every f ∈ [k(n) + 1]
such that [A∪B;Ni,1, Ni,2, . . . , Ni,h] is ambiguous, then set A := A∪B. Promise to
choose the value of n in the next stage to be larger than (p◦)h(|w|), where w is an
arbitrary input string witnessing that [A ∪ B;Ni,1, Ni,2, . . . , Ni,h] is ambiguous, and
then move to the next stage.

Otherwise proceed as follows. Let L : ℘(Σ∗) → ℘(Σ∗) be the function defined so
that for every O ⊆ Σ∗,

L(O) =df

{
O if h = 1, and
Lunambiguous[O;Ni,2, Ni,3, . . . , Ni,h] if h ≥ 2.

It is easy to see that for the case h = 1, L is (h, t)-ambiguous by Definition 3.2, where
t(·) = 1 is a constant polynomial, and for the case h ≥ 2, L is (h, t)-ambiguous by
Proposition 3.3, where t(·) = 5h−1 ·

∏h−1
�=1 (p◦)�(·). Also, note that for all integers

h ≥ 1, L(A ∪ B) is defined for every B ⊆ Sn satisfying ||B ∩ Sn,f || ≤ h for every
f ∈ [k(n) + 1].

If Mj(0n) with oracle L(NL(A)
i,1 ) is accepting, then move on to the next stage. If

Mj(0n) with oracle L(NL(A)
i,1 ) is rejecting, then look for a string α ∈ Sn that can be
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added to A without changing the decision (i.e., acceptance or rejection) of Mj(0n)
with oracle L(NL(A)

i,1 ). Set A := A ∪ {α} and move to the next stage. End of stage.
It remains to show that such a string α always exists. Consider Mj(0n) with

oracle L(NL(A)
i,1 ). Let β1, β2, . . . , βk(n) be the sequence of queries made by Mj(0n) to

the oracle L(NL(A)
i,1 ). The following claim states that, for any β ∈ Σ∗, there is one

special region Sn,sensitive(β) such that, for all regions Sn,f different from Sn,sensitive(β),
and for all but polynomially many α ∈ Sn,f , the decision (i.e., acceptance or rejection)
of NL(A)

i,1 (β) remains unchanged on the addition of α to A.
Claim 2. For each β ∈ Σ∗, there is an integer sensitive(β) ∈ [k(n)+1] such that

the following is true.
For every f ∈ [k(n) + 1] − {sensitive(β)}, there is a set Cf (β) ⊆ Sn,f with

||Cf (β)|| ≤ 2 · p(|β|) · t(p(|β|)) · (p(|β|) · t(p(|β|)) + 1) such that, for every α ∈ Sn,f −
Cf (β),

β ∈ L(NL(A)
i,1 ) ⇐⇒ β ∈ L(NL(A∪{α})

i,1 ).

Let us assume that the claim is true. There are k(n) + 1 regions in Sn but only k(n)
queries β1, β2, . . . , βk(n) made by Mj(0n) to L(NL(A)

i,1 ). Let � ∈ [k(n) + 1] such that
� �= sensitive(βe) for every e ∈ [k(n)]. Let C = C�(β1) ∪ C�(β2) ∪ · · · ∪ C�(βk(n)).
Note that, for each e ∈ [k(n)], |βe| ≤ p(n) and so ||C�(βe)|| ≤ 2 · p(p(n)) · t(p(p(n))) ·
(p(p(n)) · t(p(p(n))) + 1). Hence, by the assumption on our choice of n, ||C|| ≤
k(n) · max�∈[k(n)]{||C�(βe)||} < 2n.

Let α be any string in Sn,� − C. Such a string exists because ||C|| < 2n =
||Sn,�||. It is easy to see by the above definition of the set C that we can add α to A
without changing the decision of NL(A)

i,1 (βe) for any e ∈ [k(n)]. Clearly, Mj(0n) with

its k(n) queries to L(NL(A)
i,1 ) accepts if and only if Mj(0n) with its k(n) queries to

L(NL(A∪{α})
i,1 ) accepts. This completes the proof of Theorem 4.7.
Proof of Claim 2. Suppose the claim were false. Then there exists β ∈ Σ∗ and

f1, f2 ∈ [k(n) + 1] with f1 �= f2 such that
• Cf1(β) =df ||{α ∈ Sn,f1 |β ∈ L(NL(A)

i,1 ) ⇐⇒ β /∈ L(NL(A∪{α})
i,1 )}|| > 2 ·p(|β|) ·

t(p(|β|)) · (p(|β|) · t(p(|β|)) + 1), and
• Cf2(β) =df ||{α ∈ Sn,f2 |β ∈ L(NL(A)

i,1 ) ⇐⇒ β /∈ L(NL(A∪{α})
i,1 )}|| > 2 ·p(|β|) ·

t(p(|β|)) · (p(|β|) · t(p(|β|)) + 1).
Apply Lemma 4.8 with N := Ni,1, x := β, O := A, U1 := Sn,f1 , and U2 := Sn,f2 .

We obtain min{||Cf1(β)||, ||Cf2 (β)||} ≤ 2 ·p(|β|) ·t(p(|β|)) ·(p(|β|) ·t(p(|β|))+1), which
is a contradiction.

4.3. Simulating nonadaptive access by adaptive access (promise case).
Cai, Hemachandra, and Vyskoč [16] proved the following partial improvement of their
Theorem 4.6.

Theorem 4.9 ([16]). For any constant k, there exists an oracle A such that

Rp(k+1)-tt(UPA) �⊆ Rp,As,k-T (Promise-UPA).

Note that we have replaced “UP” by “Promise-UP” on the right-hand side of
the noninclusion relation of Theorem 4.6. This is a significant improvement for the
following reason. The computational powers of Rpb (UP) and Rps,b(Promise-UP) (the
bounded Turing closure of UP and the bounded smart Turing closure of Promise-UP,
respectively) are known to be remarkably different in certain relativized worlds. While
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it is easy to show that UP≤k is robustly (i.e., for every oracle) contained in PPromise-UP
s,k-T

for any k ≥ 1, we have shown in the proof of Theorem 4.4 that for no k ≥ 2 is
UP≤k robustly contained in PUP. Therefore, it is not immediately clear whether this
improvement is impossible, i.e., whether Rp(k+1)-tt(UP) ⊆ Rps,k-T (Promise-UP) holds
relative to all oracles.

However, Cai, Hemachandra, and Vyskoč [16, Theorem 3.1] could achieve this
improvement only by paying a heavy price. In their own words:

In our earlier version dealing with UPA, the constant k can be re-
placed by any arbitrary polynomial-time computable function f(n)
with polynomially bounded value. It remains open whether the claim
of the current strong version of Theorem 3.1 can be similarly gener-
alized to nonconstant access.

We resolve this open question. We show that Theorem 4.9 holds with constant k
replaced by any total, polynomial-time computable, and polynomially bounded func-
tion k(·). This result is subsumed as the special case h = 1 of our main result,
Theorem 4.10, of this subsection.

Theorem 4.10. For any total, polynomial-time computable, and polynomially
bounded function k(·), and integer h ≥ 1, there exists an oracle A such that

Rp(k(n)+1)-dtt(UPA
≤h) �⊆ Rp,As,k(n)-T (Promise-UPUΣp,A

h−1 ),

and hence Rp(k(n)+1)-dtt(UΣp,Ah ) �⊆ Rp,As,k(n)-T (Promise-UPUΣp,A
h−1).

Theorem 4.10 is furthermore a generalization of Theorem 4.9 to higher levels of
the unambiguous polynomial hierarchy.

The proof of Theorem 4.10 is much more challenging than the proof of Theo-
rem 4.7 because we now require diagonalizing against Rp,As,k(n)-T (Promise-UPUΣp,A

h−1 ) as

opposed to diagonalizing against Rp,Ak(n)-T (UPUΣp,A
h−1 ). To diagonalize against

Rp,Ak(n)-T (UPUΣp,A
h−1) as in the proof of Theorem 4.7, it was sufficient at any stage to

extend the current oracle A so that the Σh(A)-system (corresponding to the stage)
becomes ambiguous on some input string, even if the input string witnessing the
ambiguity of the Σh(A)-system would never arise in a valid computation of the deter-
ministic querying machine (corresponding to the same stage). This is, however, not
sufficient when we diagonalize against Rp,As,k(n)-T (Promise-UPUΣp,A

h−1). Any input string
witnessing the ambiguity of the Σh(A)-system must now have its origin from a valid
computation of the deterministic querying machine.

To prove Theorem 4.9, Cai, Hemachandra, and Vyskoč [16] presented the following
combinatorial lemma.

Lemma 4.11 (the gaming lemma [16]). For 1 ≤ i ≤ m, let Si be a collection of
nonempty subsets of [n] with the following properties:

1. (∀j ∈ [n])(∃� ∈ [m])[{j} ∈ S�], and
2. (∀j ∈ [m]) [(A,B ∈ Sj and A �= B) =⇒ (∃� ∈ [j − 1])(∃C ∈ S�)[C ⊆ A ∪B]].

Then m ≥ n.
Cai, Hemachandra, and Vyskoč [16] gave the following informal interpretation of

this lemma. Suppose a combinatorial game is to be played given the set [n] at hand.
The game is played in steps by a single player. At each step i, the player can generate
a collection Si of nonempty subsets of [n] with a restriction: If sets A,B ⊆ [n] are
generated at some step i > 1, then there must be a previous step j < i and a set
C generated at that step such that C ⊆ A ∪ B. The game ends as soon as all the
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singletons {k} ⊆ [n] are eventually produced. The gaming lemma states that this
combinatorial game requires at least n steps.

Our proof of Theorem 4.10 also makes use of the gaming lemma. However, the
actual diagonalization steps are considerably different from those in [16]. The most
tricky part is the proof of Lemma 4.12. It demonstrates the existence of especially
nice strings α1, α2, . . . , αr satisfying certain useful properties. Each string αi serves
as a representative for one region Sn,i of the oracle. These strings satisfy a kind of
independence property in the following sense. Let A and B be two different minimal
subsets of {α1, α2, . . . , αr} that are minimal in the sense that adding A or B to an
oracle makes an oracle NPTM N accept, but adding any proper subset of A or B to
the oracle makes N reject. Then the independence property implies that adding all
the strings in A ∪B to the oracle will make N have at least two accepting paths.

In each stage of the diagonalization, there are two cases. The easier case is when
we can destroy the unambiguity of the UΣp,Ah−1 oracle in the NPUΣp,A

h−1 -machine, the
machine against which we are diagonalizing, by adding some strings (but, of course,
without violating certain requirements of the stage) to the oracle A. In that case, we
can simply add these strings to the oracle A and move to the next stage. Otherwise,
we apply the gaming lemma (Lemma 4.11) to show that by adding only the nice
strings αi to the oracle A, the desired diagonalization step for the current stage can
be achieved. The existence of these nice strings αi was a key idea that led us to the
resolution of the question by Cai, Hemachandra, and Vyskoč [16] and in generalizing
their result.

Lemma 4.12. Fix an oracle NPTM N with running time bounded by some poly-
nomial p(·), a set O ⊆ Σ∗, and sets X = {x1, x2, . . . , xd} ⊆ (Σ∗)≤m and Y =
{y1, y2, . . . , yd′} ⊆ (Σ∗)≤m. Let U1, U2, . . . , Ur ⊆ Σ∗ be such that for each distinct U�,
U�′ , it holds that O ∩U� = O ∩U�′ = U� ∩ U�′ = ∅ and ||U�|| = ||U�′ || ≥ u. Let L be
an (h, t)-ambiguous function such that L(O∪(

⋃
�∈[r]A�)) is defined for every A� ⊆ U�

satisfying ||A�|| ≤ h. If u > (3 · d+ d′) · r · 22r · p(m) · t(p(m)), then there exist strings
α1 ∈ U1, α2 ∈ U2, . . . , αr ∈ Ur such that the following properties hold.

(A) For every x ∈ X and for every pair of distinct, nonempty sets S1, S2 ∈
℘({1, 2, . . . , r}), if the following conditions are satisfied, then there are at
least two accepting paths in NL(O∪(

⋃
�∈S1∪S2

{α�}))(x):
(A.1) NL(O∪(

⋃
�∈S1

{α�}))(x) accepts and for all S′
1 ⊂ S1, N

L(O∪(
⋃

�∈S′
1
{α�}))(x)

rejects, and
(A.2) NL(O∪(

⋃
�∈S2

{α�}))(x) accepts and for all S′
2 ⊂ S2, N

L(O∪(
⋃

�∈S′
2
{α�}))(x)

rejects.
(B) For every y ∈ Y and for every nonempty set S ∈ ℘({1, 2, . . . , r}), the follow-

ing is true:

if NL(O)(y) accepts, then NL(O∪(
⋃

�∈S{α�}))(y) also accepts.
Proof. We prove the lemma using the probabilistic method. Choose α1 ∈ U1, α2 ∈

U2, . . . , αr ∈ Ur uniformly and independently at random. Let E1 be the event that
there exist an x ∈ X and distinct, nonempty sets S1, S2 ∈ ℘({1, 2, . . . , r}) satisfying
the conditions (A.1) and (A.2) given in the lemma, but NL(O∪(

⋃
�∈S1∪S2

{α�}))(x) has at
most one accepting path. Let E2 be the event that there exist a y ∈ Y and a nonempty
set S ∈ ℘({1, 2, . . . , r}) such that NL(O)(y) accepts, but NL(O∪(

⋃
�∈S{α�}))(y) rejects.

We will prove that Prob(E1)+Prob(E2) < 1, thus completing the proof of the lemma.
We first make the following claim.
Claim 3. Fix a string z ∈ Σ∗. Let O, U1, U2, . . . , Ur be sets defined in the
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statement of Lemma 4.12. Let L be an (h, t)-ambiguous function such that L(O ∪
(
⋃
�∈[r]A�)) is defined for every A� ⊆ U� satisfying ||A�|| ≤ h. Let T ⊆ [r]. Fix

αi ∈ Ui for each i ∈ T arbitrarily. If we choose αj ∈ Uj for each j ∈ [r]−T , uniformly
and independently at random, then for any T1, T2 ⊆ [r] satisfying (T1ΔT2) ∩ T = ∅,

z ∈ L
(
O ∪

( ⋃
�∈T1

{α�}
))

⇐⇒ z /∈ L
(
O ∪

( ⋃
�∈T2

{α�}
))

is true with probability ≤ r · t(|z|)/u.
Proof of Claim 3. Let V = T1 ∩ T2. Because L is (h, t)-ambiguous, for any

j ∈ T1ΔT2, the probability over uniform random choice of αj ∈ Uj that

z ∈ L
(
O ∪

(⋃
�∈V

{α�}
))

⇐⇒ z /∈ L
(
O ∪

(⋃
�∈V

{α�}
)
∪ {αj}

)

is at most t(|z|)/u. Successively choose αj ∈ Uj uniformly at random, where j ∈
T1ΔT2, and add j to V until V equals T1. The probability that

z ∈ L
(
O ∪

( ⋃
�∈T1

{α�}
))

⇐⇒ z /∈ L
(
O ∪

( ⋃
�∈T1∩T2

{α�}
))

is, therefore, at most ||T1 − T2|| · t(|z|)/u. Likewise, the probability that

z ∈ L
(
O ∪

( ⋃
�∈T2

{α�}
))

⇐⇒ z /∈ L
(
O ∪

( ⋃
�∈T1∩T2

{α�}
))

is at most ||T2 − T1|| · t(|z|)/u. Hence the probability that

z ∈ L
(
O ∪

( ⋃
�∈T1

{α�}
))

⇐⇒ z /∈ L
(
O ∪

( ⋃
�∈T2

{α�}
))

is at most (||T1−T2||+||T2−T1||)·t(|z|)/u ≤ r·t(|z|)/u. Thus Claim 3 is proved.
Using Claim 3, we obtain an upper bound on Prob(E1) in Claim 4 and an upper

bound on Prob(E2) in Claim 5.
Claim 4. Prob(E1) ≤ 3 · d · r · 22r · p(m) · t(p(m))/u.
Proof of Claim 4. Let Cx,S1,S2 stand for the condition “input x and the pair S1, S2

satisfy the conditions (A.1) and (A.2) given in the lemma.” Fix an x ∈ X and distinct,
nonempty sets S1 and S2. Let Ex,S1,S2 denote the event that Cx,S1,S2 is satisfied
but NL(O∪(

⋃
�∈S1∪S2

{α�}))(x) has at most one accepting path. Clearly, Prob(E1) ≤∑
x,S1,S2

Prob(Ex,S1,S2). If condition Cx,S1,S2 is satisfied, then for each i ∈ {1, 2}, we

can fix an accepting path ρ(Si) in NL(O∪(
⋃

�∈Si
{α�}))(x). For definiteness, let ρ(Si)

be the lexicographically first accepting path in NL(O∪(
⋃

�∈Si
{α�}))(x).

If Ex,S1,S2 occurs, then at least one of the events J , H(S1), or H(S2) occurs,
where

• J is the event that condition Cx,S1,S2 is satisfied, and ρ(S1) and ρ(S2) are
equal,

• H(S1) is the event that condition Cx,S1,S2 is satisfied, and ρ(S1) does not
appear in NL(O∪(

⋃
�∈S1∪S2

{α�}))(x), and
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• H(S2) is the event that condition Cx,S1,S2 is satisfied, and ρ(S2) does not
appear in NL(O∪(

⋃
�∈S1∪S2

{α�}))(x).
We first determine an upper bound on Prob(J). To this end, we determine an

upper bound on Prob(J | αi = βi for all i ∈ S1) for arbitrary fixed strings βi ∈ Ui
for each i ∈ S1. Hence, suppose henceforth that αi = βi for all i ∈ S1. Because
S1 �= S2 and because we can assume that S1 satisfies the condition (A.1) given in
the lemma, the (accepting) path ρ(S1) in NL(O∪(

⋃
�∈S1

{α�}))(x) does not appear in
NL(O∪(

⋃
�∈S1∩S2

{α�}))(x). Hence, for at least one string z ∈ Q(ρ(S1)) queried along
ρ(S1), we have

(4.4) z ∈ L
(
O ∪

( ⋃
�∈S1∩S2

{α�}
))

⇐⇒ z /∈ L
(
O ∪

( ⋃
�∈S1

{α�}
))

.

Note that this condition depends only on strings αi with i ∈ S1, which are fixed by
αi = βi. Fix one string z satisfying statement (4.4). Applying Claim 3 with T := S1,
T1 := S1 ∩ S2, and T2 := S2, we get that

(4.5) z ∈ L
(
O ∪

( ⋃
�∈S1∩S2

{α�}
))

⇐⇒ z ∈ L
(
O ∪

( ⋃
�∈S2

{α�}
))

holds with probability ≥ 1−r · t(|z|)/u ≥ 1−r · t(p(m))/u. Statements (4.4) and (4.5)
together imply that with probability ≥ 1 − r · t(p(m))/u,

(4.6) z ∈ L
(
O ∪

( ⋃
�∈S1

{α�}
))

⇐⇒ z /∈ L
(
O ∪

( ⋃
�∈S2

{α�}
))

.

Hence with probability ≥ 1 − r · t(p(m))/u, path ρ(S1) does not appear in
NL(O∪(

⋃
�∈S2

{α�}))(x), and therefore ρ(S1) �= ρ(S2). We have proven that for ar-
bitrary fixed strings {βi ∈ Ui | i ∈ S1}, it holds that Prob(J | αi = βi for all i ∈ S1) ≤
r · t(p(m))/u. By the law of total probability, also Prob(J) ≤ r · t(p(m))/u.

To determine an upper bound on Prob(H(S1)), we determine an upper bound on
Prob(H(S1) | αi = βi for all i ∈ S1) for arbitrary fixed strings βi ∈ Ui for each i ∈ S1.
Hence, suppose henceforth that αi = βi for all i ∈ S1. Clearly, ρ(S1) depends only on
strings αi with i ∈ S1, which we have fixed by αi = βi. Then the event H(S1) occurs
only if it holds that ρ(S1) queries some string z with

z ∈ L
(
O ∪

( ⋃
�∈S1

{α�}
))

⇐⇒ z /∈ L
(
O ∪

( ⋃
�∈S1∪S2

{α�}
))

.

Note that path ρ(S1) in NL(O∪(
⋃

�∈S1
{α�}))(x) queries at most p(m) strings, each

of which is of length ≤ p(m). Applying Claim 3 with T := S1, T1 := S1, and
T2 := S1 ∪S2, we get that Prob(H(S1) | αi = βi for all i ∈ S1) ≤ p(m) · r · t(p(m))/u.
We have thus proven that for arbitrary fixed strings {βi ∈ Ui | i ∈ S1}, it holds
that Prob(H(S1) | αi = βi for all i ∈ S1) ≤ p(m) · r · t(p(m))/u. Therefore, also
Prob(H(S1)) ≤ p(m) · r · t(p(m))/u.

Analogously, we can prove that Prob(H(S2)) ≤ p(m) · r · t(p(m))/u.
Thus Prob(Ex,S1,S2) ≤ Prob(J ∪ H(S1) ∪ H(S2)) ≤ Prob(J) + Prob(H(S1)) +

Prob(H(S2)) ≤ 3 · p(m) · r · t(p(m))/u. It follows that Prob(E1) ≤ 3 · d · r · 22r · p(m) ·
t(p(m))/u. This completes the proof of Claim 4.
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Claim 5. Prob(E2) ≤ d′ · r · 2r · p(m) · t(p(m))/u.
Proof of Claim 5. Fix a y ∈ Y and a nonempty set S ∈ ℘({1, 2, . . . , r}). Let Ey,S

denote the event that NL(O)(y) accepts but NL(O∪(
⋃

�∈S{α�}))(y) rejects. Clearly,
Prob(E2) ≤

∑
y,S Prob(Ey,S). If NL(O)(y) accepts, then we can fix an accepting

path ρ in NL(O)(y). For definiteness, let ρ be the lexicographically first accepting
path in NL(O)(y).

Suppose Ey,S occurs. Since NL(O∪(
⋃

�∈S{α�}))(y) rejects, the (accepting) path ρ
in NL(O)(y) does not appear in NL(O∪(

⋃
�∈S{α�}))(y). Hence for at least one string

z ∈ Q(ρ) queried along ρ, we have

z ∈ L(O) ⇐⇒ z �∈ L
(
O ∪

(⋃
�∈S

{α�}
))

.

Applying Claim 3 with T := ∅, T1 := ∅, and T2 := S, we get that for each z ∈ Q(ρ),

z ∈ L(O) ⇐⇒ z �∈ L
(
O ∪

(⋃
�∈S

{α�}
))

holds with probability ≤ r · t(|z|)/u. Since ||Q(ρ)|| ≤ p(m) and since the length of
each query z ∈ Q(ρ) is at most p(m), with probability ≤ p(m) · r · t(p(m))/u we have,
for some z ∈ Q(ρ),

z ∈ L(O) ⇐⇒ z �∈ L
(
O ∪

(⋃
�∈S

{α�}
))

.

Thus we have shown that Prob(Ey,S) ≤ p(m)·r·t(p(m))/u. It follows that Prob(E2) ≤
d′ · r · 2r · p(m) · t(p(m))/u. Thus Claim 5 is proved.

From Claim 4 and Claim 5, we get Prob(E1) + Prob(E2) ≤ (3·d+d′)·r ·22r ·p(m)·
t(p(m))/u < 1, by our choice of u. This completes the proof of Lemma 4.12.

Now it is relatively easy to prove the main result of this subsection.
Proof of Theorem 4.10. For each length n, we will reserve the following segment

of k(n) + 1 regions Sn,f = 1n01f0Σ3k(n)+n, where f ∈ [k(n) + 1]. For n ≥ 1, define
Sn =

⋃k(n)+1
f=1 Sn,f . We take the test language L(A) used in the proof of Theorem 4.7.

The oracle A is constructed in stages. Let (Ni,1, Ni,2, . . . , Ni,h,Mj) be an enumeration
of tuples where Ni,∗ is a nondeterministic polynomial-time oracle Turing machine, and
Mj is a deterministic polynomial-time oracle Turing machine making, for any set A
and any input of length n, at most k(n) queries to L[A;Ni,1, Ni,2, . . . , Ni,h] and at
most polynomially many queries to A. Initially A := ∅.

Stage 〈i, j〉. Let p(·) be a polynomial that bounds the running time of both Ni,�
and Mj . Choose a very large integer n such that (a) 23k(n)+n − p(n) > 4 · k(n) ·
(k(n) + 1) · 22(k(n)+1) · p(p(n)) · t(p(p(n))), where t(·) is a polynomial defined later in
this proof, (b) no string of length n or more is queried in any of the previous stages,
(c) n is larger than the value in the previous stage, and (d) n satisfies any promises
made in the previous stages.

The easy case. (i) For h = 1, if there exists a setB ⊆ Sn, satisfying ||B∩Sn,f || ≤ h
for every f ∈ [k(n)+1], such that the requirement R1 is satisfied, where R1 is defined
as

• R1: Mj(0n) makes a query β to L[A∪B;Ni,1] and NA∪B
i,1 (β) has at least two

accepting paths,
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then set A := A ∪ B. (ii) For h ≥ 2, if there exists a set B ⊆ Sn, satisfying
||B ∩ Sn,f || ≤ h for every f ∈ [k(n) + 1], such that at least one of the requirements
R2 and R3 is satisfied, where R2 and R3 are defined as

• R2: [A∪B;Ni,2, Ni,3, . . . , Ni,h] is ambiguous,
• R3: Mj(0n) makes a query β to L[A ∪ B;Ni,1, Ni,2, . . . , Ni,h] and
N
L[A∪B;Ni,2,Ni,3,...,Ni,h]
i,1 (β) has at least two accepting paths,

then set A := A∪B.
For both (i) and (ii), promise to choose the value of n in the next stage to be

sufficiently large so that the requirements satisfied in this stage cannot become invalid
in the next stage.

The hard case. This means that there is no set B ⊆ Sn as described in (i) and
(ii) above. We proceed as follows. Define function L : ℘(Σ∗) → ℘(Σ∗) such that for
every O ⊆ Σ∗,

L(O) =df

{
O if h = 1, and
Lunambiguous[O;Ni,2, Ni,3, . . . , Ni,h] if h ≥ 2.

It is easy to see that for the case h = 1, L is (h, t)-ambiguous by Definition 3.2, where
t(·) = 1 is a constant polynomial, and for the case h ≥ 2, L is (h, t)-ambiguous by
Proposition 3.3, where t(·) = 5h−1 ·

∏h−1
�=1 (p◦)�(·). Also, note that (since we are in the

hard case) for all integers h ≥ 1, L(A ∪ B) is defined for every B ⊆ Sn that satisfies
||B ∩ Sn,f || ≤ h for every f ∈ [k(n) + 1]. We next use Claim 6 to successfully finish
this stage.

Claim 6. There is a string α ∈ Sn such that Mj(0n) with oracle A⊕ L(NL(A)
i,1 )

is identical to Mj(0n) with oracle (A ∪ {α}) ⊕ L(NL(A∪{α})
i,1 ).

That is, if Mj(0n) with oracle A ⊕ L(NL(A)
i,1 ) rejects, then we set A := A ∪ {α};

otherwise, if Mj(0n) with oracle A⊕ L(NL(A)
i,1 ) accepts, then we leave A unchanged.

Finally, we move to the next stage. End of stage.
This completes the proof of Theorem 4.10.
Proof of Claim 6. Let β1, β2, . . ., βk(n) be the sequence of queries made by Mj(0n)

to the oracle L(NL(A)
i,1 ). Let I = {� |NL(A)

i,1 (β�) accepts}. Let Q̃ be the set of strings
that are queried by Mj(0n) to oracle A. Clearly, ||Q̃|| ≤ p(n).

Apply Lemma 4.12 with N := Ni,1, O := A, d := k(n), d′ := k(n), X =
{β1, β2, . . . , βk(n)}, Y = {β1, β2, . . . , βk(n)}, m := p(n), r := k(n) + 1, Uf := Sn,f − Q̃

for each f ∈ [k(n) + 1], and u := 23k(n)+n − p(n). We obtain strings α1 ∈ Sn,1 − Q̃,
α2 ∈ Sn,2 − Q̃, . . . , αk(n)+1 ∈ Sn,k(n)+1 − Q̃, which satisfy the properties (A) and (B)
given in Lemma 4.12. Now assign to each query β� with � ∈ [k(n)] − I a collection
S� ⊆ ℘([k(n) + 1]) in the following way: {f1, f2, . . . , fs} ∈ S� if and only if
(a) adding {αf1 , αf2 , . . . , αfs} to A makes NL(A)

i,1 (β�) change from rejection to accep-

tance, i.e., NL(A)
i,1 (β�) rejects but NL(A∪{αf1 ,αf2 ,...,αfs})

i,1 (β�) accepts, and
(b) no set T ⊂ {f1, f2, . . . , fs} satisfies (a), i.e., for no such set T does it hold that

N
L(A∪(

⋃
j∈T {αj}))

i,1 (β�) accepts.
Note that no collection S� contains the empty set. However, some of these collections
may be empty.

Suppose that Claim 6 is not true. Then, for every e ∈ [k(n) + 1], there is an
� ∈ [k(n)] such that

(4.7) N
L(A)
i,1 (β�) rejects ⇐⇒ N

L(A∪{αe})
i,1 (β�) accepts.
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Because α1, α2, . . . , αk(n)+1 satisfy property (B) of Lemma 4.12, statement (4.7)
can only be true for � /∈ I. This implies that for every e ∈ [k(n) + 1], there is an
� ∈ [k(n)] − I such that

N
L(A)
i,1 (β�) rejects and NL(A∪{αe})

i,1 (β�) accepts.

It follows from the definition of the collections S� that for every e ∈ [k(n)+1], there is
a collection S� such that the singleton {αe} is contained in S�. Thus we have proven
condition 1 of Lemma 4.11 (the gaming lemma).

Now take two distinct sets A,B ∈ S� for some � ∈ [k(n)]. Then by the definition of
the collections S� together with property (A) of Lemma 4.12, N

L(A∪(
⋃

e∈A∪B{αe}))
i,1 (β�)

has at least two accepting paths. Notice that for any valid query β by
Mj(0n) to L(N

L(A∪(
⋃

e∈A∪B{αe}))
i,1 ), there can be at most one accepting path in

N
L(A∪(

⋃
e∈A∪B{αe}))

i,1 (β) (since we are in the hard case). Therefore, we can be sure
that adding

⋃
e∈A∪B{αe} to A changes the decision (i.e., acceptance or rejection) of

N
L(A)
i,1 for a previous query β�′ with �′ < �. The decision of NL(A)

i,1 (β�′) on the addition
of
⋃
e∈A∪B{αe} to A must change from rejection to acceptance, and not from accep-

tance to rejection, because α1, α2, . . . , αk(n)+1 satisfy property (B) of Lemma 4.12.
Hence there is a set C ∈ S�′ such that C ⊆ A ∪ B. This proves condition 2 of
Lemma 4.11. Lemma 4.11 implies that the number of queries k(n) is greater than or
equal to the number of regions k(n)+ 1, which is a contradiction. This completes the
proof of Claim 6.

4.4. Simulating adaptive access by nonadaptive access. Sections 4.2 and
4.3 studied the limitations of simulating nonadaptive queries to UP≤h by adaptive
queries to UΣph in relativized settings. This section complements these investigations.
In particular, Corollary 4.14 of this section shows that in a certain relativized world, it
is impossible to simulate adaptive k-Turing access to UP≤h by nonadaptive (2k − 2)-
tt access to UΣph. This also implies optimality of robustly (i.e., for every oracle)
simulating adaptive k-Turing accesses by nonadaptive (2k − 1)-tt accesses to classes
such as UP≤h and UΣph, since for any class C we can easily, via a brute-force method,
simulate adaptive k-Turing reduction to C by nonadaptive (2k − 1)-tt reduction to C.

The proof of Theorem 4.13 employs a technique of Buhrman, Spaan, and Toren-
vliet [12], which Cai, Hemachandra, and Vyskoč [16] referred to as the “force your
way through the tree” technique. Buhrman, Spaan, and Torenvliet [12] used their
technique to prove that NEXP has a set that is complete for k-Turing reductions but
not complete for (2k−2)-tt reductions. Cai, Hemachandra, and Vyskoč [16] used this
technique to prove Theorem 4.13 for the case of h = 1. We use the same approach to
generalize the result of Cai, Hemachandra, and Vyskoč [16] from the case of h = 1 to
the case of arbitrary integer h ≥ 1.

Theorem 4.13. For any integers k, h ≥ 1, there exists an oracle A such that

Rpk-T (UPA
≤h) � Rp,A

(2k−2)-tt(NPUΣp,A
h−1).

Proof. The theorem clearly holds for k = 1 since there is an oracle that separates
UP from P. Henceforth, we assume that k ≥ 2. For each length n, we will reserve
the following segment of 2k − 1 regions: Sn,f = 1n0f0Σn, where f ∈ (Σ∗)≤k−1. For
n ≥ 1, define Sn =

⋃
f∈(Σ∗)≤k−1 Sn,f . For each length n and set A ⊆ Σ∗, we also
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define a sequence bAn,1b
A
n,2 . . . b

A
n,k of bits as follows:

(	) bAn,1 =
{

1 if Sn,ε
⋂
A �= ∅,

0 otherwise,

and for each � with 2 ≤ � ≤ k,

bAn,� =
{

1 if Sn,bA
n,1b

A
n,2...b

A
n,�−1

⋂
A �= ∅,

0 otherwise.

Our test language is L(A) = {0n | bAn,k = 1}. Note that our test language is the
same as that in [16, Theorem 3.3]. We stipulate that for all n ≥ 1 and for all
f ∈ (Σ∗)≤k−1, ||Sn,f || ≤ h. Clearly, if the oracle set A maintains this stipulation,
then we have L(A) ∈ Rpk-T (UPA

≤h). We construct an oracle A such that L(A) �∈
Rp

(2k−2)-tt(NPUΣp,A
h−1 ). The construction can be easily modified to prove the stronger

result that L(A) �∈ Rp,A
(2k−2)-tt(NPUΣp,A

h−1 ).

Let (Ni,1, Ni,2, . . . , Ni,h,Mj) be an enumeration of tuples, where Ni,∗ is a nonde-
terministic polynomial-time oracle Turing machine, and Mj is a deterministic
polynomial-time oracle Turing machine making, for any set A and for any input,
at most 2k − 2 nonadaptive queries to L[A;Ni,1, Ni,2, . . . , Ni,h]. Initially, let A := ∅.

Stage 〈i, j〉. Let p(·) be a polynomial that bounds the running time of both Ni,�
and Mj. Choose a very large integer n such that (a) 2n > 22k · p(p(n)) · t(p(p(n))),
where t(·) is a polynomial defined later in this proof, (b) no string of length n or more
is queried in any of the previous stages, (c) n is larger than the value in the previous
stage, and (d) n satisfies any promises made in the previous stages.

For the case h ≥ 2, if there exists a set B ⊆ Sn satisfying ||B ∩ Sn,f || ≤ h for
every f ∈ (Σ∗)≤k−1 such that [A ∪ B;Ni,2, . . . , Ni,h] is not unambiguous, then set
A := A ∪ B. Promise to choose the value of n in the next stage to be larger than
(p◦)h−1(|w|), where w is an arbitrary string witnessing that [A ∪B;Ni,2, . . . , Ni,h] is
not unambiguous, and then move to the next stage.

If no such set B exists for h ≥ 2 or if h = 1, then we define a function L :
℘(Σ∗) → ℘(Σ∗) as follows: For every O ⊆ Σ∗, let

L(O) =df

{
O if h = 1, and
Lunambiguous[O;Ni,2, Ni,3, . . . , Ni,h] if h ≥ 2.

It is easy to see that for the case h = 1, L is (h, t)-ambiguous by Definition 3.2, where
t(·) = 1 is a constant polynomial, and for the case h ≥ 2, L is (h, t)-ambiguous by
Proposition 3.3, where t(·) = 5h−1 ·

∏h−1
�=1 (p◦)�(·). Also, note that for all integers

h ≥ 1, L(A ∪B) is defined for every B ⊆ Sn that satisfies ||B ∩ Sn,f || ≤ h for every
f ∈ (Σ∗)≤k−1.

Let β1, β2, . . . , β2k−2 be the sequence of nonadaptive queries made by Mj(0n) to
the oracle L(NL(A)

i,1 ). Consider the following procedure Diagonalize.
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Procedure Diagonalize({αf ∈ Sn,f | f ∈ (Σ∗)≤k−1})
1. A1 := A;

2. For t := 1 to 2k − 1 do

3. Let bAt
n,1b

At
n,2 . . . bAt

n,k be the bit sequence given by (�);

4. If (bAt
n,k = 0 ⇐⇒ M

L(N
L(At)
i,1 )

j (0n) accepts) is true, then

5. output At and terminate;

6. Else /* That is, bAt
n,k = 0 ⇐⇒ M

L(N
L(At)
i,1 )

j (0n) rejects */

(6.1) Let s := max{� ∈ [k] | bAt
n,� = 0};

(6.2) At+1 := At ∪ {α
b
At
n,1b

At
n,2...b

At
n,s−1

}; /* That is, flip bAt
n,k. */

(6.3) If for every query β�, where � ∈ [2k − 2], the following holds:

“if N
L(At)
i,1 (β�) rejects, then N

L(At+1)

i,1 (β�) also rejects,” then

output At+1 and terminate.

(6.4) Else /* there is a query β� such that N
L(At)
i,1 (β�)

rejects, but N
L(At+1)

i,1 (β�) accepts. */
Return to the For loop;

End of Procedure

Claim 7. For each f ∈ (Σ∗)≤k−1, there exists α̂f ∈ Sn,f such that for each
t ∈ [2k − 1] and for each � ∈ [2k − 2], the following holds in the execution of
Diagonalize({α̂f | f ∈ (Σ∗)≤k−1}):

if NL(At)
i,1 (β�) accepts, then NL(At+1)

i,1 (β�) also accepts.

Let us assume that Claim 7 is true. Then there exist strings α̂f ∈ Sn,f for each f ∈
(Σ∗)≤k−1, satisfying the property stated in the claim. Set A := Diagonalize({α̂f | f
∈ (Σ∗)≤k−1}) and move to the next stage. End of stage.

For each f ∈ (Σ∗)≤k−1, let α̂f ∈ Sn,f be the strings promised in that claim.
Notice that the procedure Diagonalize({α̂f | f ∈ (Σ∗)≤k−1}) never adds more than
one string in any region Sn,f . This follows because each region Sn,f is associated with
exactly one string α̂f ∈ Sn,f , and only these associated strings are ever considered
for inclusion in the oracle. Also note that the effect of step (6.2) in the procedure
is to increment the binary number bAt

n,1b
At
n,2 . . . b

At

n,k by 1. That is, we have, for each

t ∈ [2k − 1] considered until the termination of the For loop, bAt+1
n,1 b

At+1
n,2 . . . b

At+1
n,k :=

bAt
n,1b

At
n,2 . . . b

At

n,k + 1. This implies that after the execution of step (6.2), the bit bAt

n,k is

flipped; i.e., bAt+1
n,k = 1 − bAt

n,k.
If Diagonalize({α̂f | f ∈ (Σ∗)≤k−1}) terminates at step 5, then clearly 0n ∈

L(A) ⇐⇒ 0n �∈ L(M
L(N

L(A)
i,1 )

j ), and so we successfully finish the stage. Otherwise,
Diagonalize({α̂f | f ∈ (Σ∗)≤k−1}) terminates at the execution of step (6.3) or it
terminates because the For loop had finished iterating over the range of values of t.

If Diagonalize({α̂f | f ∈ (Σ∗)≤k−1}) terminates at the execution of step (6.3),
then we have the following situation:

• bAt

n,k = 0 ⇐⇒M
L(N

L(At)
i,1 )

j (0n) rejects.

• b
At+1
n,k = 1 − bAt

n,k.

• For every query β�, where � ∈ [2k−2], ifNL(At)
i,1 (β�) rejects, thenNL(At+1)

i,1 (β�)
also rejects.

• For every query β�, where � ∈ [2k−2], ifNL(At)
i,1 (β�) accepts, thenNL(At+1)

i,1 (β�)
also accepts, by Claim 7.
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It follows that bAt+1
n,k = 1 if and only if M

L(N
L(At+1)
i,1 )

j (0n) rejects. Hence, we
successfully finish the stage. We next claim that if Diagonalize({α̂f | f ∈ (Σ∗)≤k−1})
does not terminate at step 5, then it must terminate at the execution of step (6.3).

To this end, for each t ∈ [2k], let us define Qacc(t) to be the set of queries β�
on which Ni,1 with oracle L(At) accepts. Formally, for any t ∈ [2k], let Qacc(t) =df

{β� | � ∈ [2k − 2] and NL(At)
i,1 (β�) accepts}. By Claim 7, once a query β� becomes a

member of Qt, the query β� remains accepted by NL(At′ )
i,1 for any t ≤ t′ ∈ [2k]. That is,

Qacc(t) ⊆ Qacc(t+1) for all t ∈ [2k−1]. By the definition of the sets Qacc(t), it follows
that if the condition in step (6.4) is true at some iteration t of the For loop, then there
exist queries β� ∈ Qacc(t + 1) − Qacc(t); i.e., we have ||Qacc(t + 1)|| > ||Qacc(t)|| at
these iterations t. Thus, there will be an iteration at which the condition in step (6.4)
will not be true. (This follows because the number of iterations, (2k − 1), of the For
loop is greater than the maximum possible size, 2k − 2, of Qacc(t).) Therefore, at
that iteration, the condition in step (6.3) will be true. Hence, Diagonalize({α̂f | f ∈
(Σ∗)≤k−1}) will terminate at the execution of step (6.3). This completes the proof of
Theorem 4.13.

Proof of Claim 7. Let f be arbitrary in (Σ∗)≤k−1. We will prove that there is a
small set Q̃(f) such that for each t ∈ [2k − 1] and for each � ∈ [2k − 2], the following
holds for all αf ∈ Sn,f − Q̃(f):

(4.8) if NL(At)
i,1 (β�) accepts, then NL(At∪{αf})

i,1 (β�) also accepts.

To this end, fix t ∈ [2k − 1] and � ∈ [2k − 2] and assume that NL(At)
i,1 (β�) accepts. Let

ρ be an arbitrary accepting path in N
L(At)
i,1 (β�). Because L is (h, t)-ambiguous, for

each z ∈ Σ∗ there can be at most t(|z|) strings αf ∈ Sn,f such that

z ∈ L(At) ⇐⇒ z /∈ L(At ∪ {αf}).

Since there are at most p(p(n)) strings queried on ρ, there is a set Q̃(f, t, �) with
||Q̃(f, t, �)|| ≤ p(p(n)) · t(p(p(n))) ensuring that NL(At∪{αf})

i,1 (β�) accepts for every
αf ∈ Sn,f − Q̃(f, t, �).

It is easy to see that statement (4.8) is satisfied with Q̃(f) =
⋃
t,� Q̃(f, t, �).

Clearly, ||Q̃(f)|| ≤ (2k−1) ·(2k−2) ·p(p(n)) ·t(p(p(n))) < 2n by our choice of n. Since
||Sn,f || = 2n, there exists a string α̂f ∈ Sn,f witnessing the correctness of Claim 7.
Thus Claim 7 is proved.

Corollary 4.14. For any integers k, h ≥ 1, there exists an oracle A such that

Rpk-T (UPA
≤h) � Rp,A

(2k−2)-tt(UΣp,Ah ).

4.5. Fault-tolerant access. Ko [36] introduced the notion of one-sided helping
by a set A in the computation of a set B. A set A is said to provide one-sided help
to a set B if there is a deterministic oracle Turing machine M computing B and a
polynomial p(·) such that (a) on any input x ∈ B, MA(x) accepts in time p(|x|), and
(b) for all inputs y and for all oracles C, MC(y) accepts (though perhaps MC(y) may
take a longer time than p(|y|)) if and only if y ∈ B. Since the machine M , accepting
the set B, is capable of answering correctly on faulty oracles, i.e., oracles C different
from the oracle A that provides one-sided help to B, the oracle access mechanism is
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termed fault-tolerant (see [16]). Ko [36] defined P1-help(A) to be the class of all sets
B that can be one-sided helped by A.

It is known that sets that can be one-sided helped (by any arbitrary helper) are
precisely those in NP [36]. Therefore, the notion of one-sided helping provides an
avenue for understanding the structure of NP. For instance, given any class C ⊆ NP,
what class of sets in NP can help the computation of sets in C? Given any class C′

of helpers, what class C ⊆ NP can be helped by sets in C′? It is worth studying the
relationships between helpers and help-receivers to gain more insights into the notion
of one-sided helping.

A restriction of the notion of one-sided helping, called the concept of helping, was
earlier introduced and studied by Schöning [43]. A set A is said to help a set B if
B is computed by a deterministic oracle Turing machine M such that on any input
x ∈ Σ∗, (a) MA(x) halts in polynomial time, and (b) for all oracles C, MC(x) accepts
(though perhaps MC(x) may take a longer time than MA(x) to terminate for C �= A)
if and only if x ∈ B.

Definition 4.15 ([43, 36]).
1. A deterministic oracle Turing machine M is robust if for all oracles A, MA

halts on each input and L(MA) = L(M∅).
2. A set L is in the class P1-help(A) if there exist a robust deterministic or-

acle Turing machine M and a polynomial p(·) such that L = L(M∅) and for all
x ∈ L, MA(x) halts in p(|x|) steps. If C is a complexity class, then P1-help(C) =⋃
A∈C P1-help(A).

3. A set L is in the class Phelp(A) if there exist a robust deterministic oracle
Turing machine M and a polynomial p(·) such that L = L(M∅) and for all x ∈ Σ∗,
MA(x) halts in p(|x|) steps. If C is a complexity class, then Phelp(C) =

⋃
A∈C Phelp(A).

The following observation is a direct consequence of Definition 4.15.
Observation 4.16. For any complexity C, Phelp(C) ⊆ P1-help(C).
There has been much investigation of the complexity of sets that can be one-sided

helped by sets belonging to particular complexity classes. For instance, Ko [36] proved
that NP = P1-help(NP), UP ⊆ P1-help(UP), and P1-help(BPP) ⊆ RP. Ko [36] posed
the question of whether P1-help(UP) is exactly the same as UP. Cai, Hemachandra,
and Vyskoč [16] proved that relativizable proof techniques cannot resolve this ques-
tion: There is a relativized world, where P1-help(UP) is not contained in UP [16]. Cin-
tioli and Silvestri [17] strengthened this result. They exhibited an oracle A such that
PAhelp(UPA) � FewA and an oracleB such that PBhelp(UPB) � Rp,Bb (FewP(npolylog(n))B),
where FewP(npolylog(n)) is the class of all sets accepted by NPTMs with at most
npolylog(n) accepting paths on inputs of length n. Despite these negative (oracle) re-
sults on the provability of containment of Phelp(UP) in classes such as UP, FewP,
and Few, Cai, Hemachandra, and Vyskoč [16] were successful in obtaining an exact
characterization of P1-help(UP). They proved that P1-help(UP) is the closure of UP
under ≤plpos reductions, where ≤plpos is the polynomial-time locally positive reduction
introduced by Hemachandra and Jain [30].

In Theorem 4.17 below, we generalize and improve the relativized separation of
P1-help(UP) from UP by Cai, Hemachandra, and Vyskoč [16]. In the case of h = 1,
Theorem 4.17 gives a relativized separation of P1-help(UP) from Rps,b(Promise-UP),
which is a potentially larger class than UP.4

4There is an oracle relative to which Rp
s,b(Promise-UP) �⊆ UP, which follows from Beigel’s oracle

relative to which UP≤2 �⊆ UP [6] and the fact that UP≤2 ⊆ Rp
s,b(Promise-UP) relative to all oracles.
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It remains an open question whether any of the oracle results by Cintioli and
Silvestri [17], i.e., existence of oracles A and B such that PAhelp(UPA) � FewA and
PBhelp(UPB) � Rp,Bb (FewP(npolylog(n))B), can be easily extended to our result in The-
orem 4.17 for the case of h = 1, or vice versa. It also remains an open question
whether the oracle results by Cintioli and Silvestri [17] can be generalized so that
they hold for Phelp(UP≤h), for any h ≥ 1.

Theorem 4.17. For every integer h ≥ 1, there exists an oracle A such that

P1-help(UPA
≤h) � Rp,As,b (Promise-UPUΣp,A

h−1).

Proof. The proof relies on Ko’s result that for any oracle A, Rpdtt(UPA) ⊆
P1-help(UPA) [36]. Cai, Hemachandra, and Vyskoč [16] used this result to construct
an oracle A such that P1-help(UPA) � UPA. We note that Ko’s proof extends eas-
ily to the case of UP≤h. That is, for any oracle A, it holds that Rpdtt(UPA≤h) ⊆
P1-help(UPA≤h).

It thus suffices to show that there is an oracle A such that Rpdtt(UPA≤h) is not con-

tained inRp,As,b (Promise-UPUΣp,A
h−1). We claim that we can take the oracle A from Theo-

rem 4.10 for k(n) = n. To see this, suppose thatRpdtt(UPA
≤h) ⊆ Rp,As,b (Promise-UPUΣp,A

h−1).
By definition, we know that Rp(n+1)-dtt(UPA

≤h) ⊆ Rpdtt(UPA
≤h). Further, we have

Rp,As,b (Promise-UPUΣp,A
h−1 ) ⊆ Rp,As,n-T (Promise-UPUΣp,A

h−1 ) since an n-Turing reduction
can make more queries than any bounded Turing reduction except for finitely many
n, which can be handled by a look-up table.

The last three inclusions together imply that Rp(n+1)-dtt(UPA
≤h) ⊆ Rp,As,n-T

(Promise-UPUΣp,A
h−1), contradicting Theorem 4.10.

5. Robust unambiguity. So far we have looked at several applications of
Lemma 3.1 in constructing relativized worlds involving arbitrary levels of the un-
ambiguous polynomial hierarchy. Lemma 3.1, in essence, shows computational limi-
tations of Σk(A)-systems under certain weak restrictions. What happens if we impose
a more stringent restriction on a Σk(A)-system? This question is relevant to the fol-
lowing investigation.

We study the power of robustly unambiguous Σk(·)-systems in Theorem 5.1. (Re-
call from Definition 2.4 that a Σk(·)-system [·;N1, N2, . . . , Nk] is robustly unambiguous
if for every oracle B, [B;N1, N2, . . . , Nk] is unambiguous.) Theorem 5.1 illustrates the
following fact: A robustly unambiguous Σk(·)-system is so weak that given any oracle
set B and input x, the hierarchical nondeterministic polynomial-time oracle access
to B in [B;N1, N2, . . . , Nk](x) can be stripped down and turned into a deterministic
polynomial-time oracle access (to B) without changing the decision (i.e., acceptance
or rejection) of the Σk(B)-system on input x. As a corollary, we obtain a generic oracle
collapse of UPH to P assuming P = NP in the unrelativized case. (See, e.g., [10, 21]
for generic oracles and concepts related to them.)

Theorem 5.1. For every k ≥ 1, if the Σk(·)-system [·;N1, N2, . . . , Nk] is robustly
unambiguous, then there is a deterministic polynomial-time oracle Turing machine M
such that for every B ⊆ Σ∗,

L[B;N1, N2, . . . , Nk] = L(MΣp
k
⊕B) ∈ PΣp

k
⊕B.

Proof. We prove by induction on k the following statement: For each robustly
unambiguous Σk(·)-system [·;N1, N2, . . . , Nk], there is a deterministic polynomial-
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time oracle Turing machine M such that for every B ⊆ Σ∗, L[B;N1, N2, . . . , Nk] =
L(MΣp

k⊕B) ∈ PΣp
k⊕B.

The base case k = 1 follows by relativization of [28, Theorem 2.1]. Hence suppose
that k > 1. For every B ⊆ Σ∗, let L(B) denote L[B;N2, N3, . . . , Nk]. Notice the
following easily verifiable facts: For all B ⊆ Σ∗, we have (a) L[B;N1, N2, . . . , Nk] =
L[L(B);N1], (b) [L(B);N1] is unambiguous, and (c) [·;N2, N3, . . . , Nk] is robustly
unambiguous. Thus, by induction hypothesis, we have that there is a determinis-
tic polynomial-time oracle Turing machine M such that for all B ⊆ Σ∗, L(B) =
L(MΣp

k−1⊕B) ∈ PΣp
k−1⊕B . Let D be any Σpk−1-complete set. We can now construct a

nondeterministic polynomial-time oracle Turing machine N ′
1 such that for all B ⊆ Σ∗

• L[L(B);N1] = L[D ⊕B;N ′
1], and

• [D ⊕B;N ′
1] is unambiguous.

We let machine N ′
1 on any input x simulate N1(x), with only one change in the

simulation behavior: Whenever N1(x) makes a query q to L(B), machine N ′
1 executes

MD⊕B(q) and uses the output returned by this deterministic execution as the answer
to q. Thus, N ′

1 is a nondeterministic polynomial-time oracle Turing machine that
accesses oracle D⊕B. Since, for every B ⊆ Σ∗, L(B) = L(MΣp

k−1⊕B) and [L(B);N1]
is unambiguous, we have that for every B ⊆ Σ∗, L[L(B);N1] = L[D ⊕ B;N ′

1] and
[D ⊕ B;N ′

1] is unambiguous. The latter means that for every B ⊆ Σ∗, N ′
1
D⊕B

is unambiguous. By relativization of [28, Theorem 2.1], it follows that there is a
deterministic polynomial-time oracle Turing machine M̂ such that for every B ⊆ Σ∗,
L[D⊕B;N ′

1] = L(M̂NPD⊕B). Since D ∈ Σpk−1, and for every B ⊆ Σ∗, L[D⊕B;N ′
1] =

L[B;N1, N2, . . . , Nk], we also have for every B ⊆ Σ∗

L[B;N1, N2, . . . , Nk] = L(M̂Σp
k⊕B) ∈ PΣp

k⊕B.

This completes the inductive step.
Theorem 5.1 leads to the following corollary, which can be easily proved using the

same techniques found in, e.g., [10, 21].
Corollary 5.2. If P = NP, then, relative to a (Cohen) generic G, P = UPH.
This corollary generalizes the following result of Blum and Impagliazzo: If P =

NP, then, relative to a (Cohen) generic G, PG = UPG [10]. Fortnow and Ya-
makami [22] demonstrated that similar collapses relative to any (Cohen) generic G
do not occur at higher levels of the polynomial hierarchy. They proved that for each
k ≥ 2, there exists a tally set in UPΣp,G

k−1,G ∩ Πp,G
k but not in PΣp,G

k−1,G. Thus Corol-
lary 5.2 contrasts with this generic separation by Fortnow and Yamakami.

6. Conclusion and open problems. We presented a counting technique to
investigate the structure of relativized hierarchical unambiguous computation. How-
ever, two interesting problems have remained open, for whose resolutions the technique
presented in this paper could be useful. These problems are as follows.

1. Simultaneous immunity and simplicity in the relativized unambiguous poly-
nomial hierarchy. Complexity class separations can be evaluated in terms of their
quality. A separation of a complexity class C1 from another class C2 by an immune
set requires the existence of an infinite set L in C1 such that no infinite set in C2 can
be a subset of L; the set L is called C2-immune or immune to C2. A separation of a
complexity class C1 from a class C2 by a simple set requires the existence of a coinfinite
set (i.e., a set whose complement is infinite) L in C1 such that L is not in C2 and L is
immune to C1; the set L is called C1-simple or simple for C1. Finally, a separation of a
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complexity class C1 from a class C2 by a set that is both simple and immune requires
the existence of a set L in C1 such that L is C1-simple and C2-immune.

An oracle separation of a complexity class from another class by a set that is
both simple and immune is considered a much more difficult problem than the oracle
separations of the same classes by simple sets or by immune sets alone. This point
has been discussed in [13], which we explain in our own words as follows: Intuitively,
if a set L is C-immune, then the set L must have low density since no infinite set in C
can be a subset of L. Similarly, if a set L is C-simple, then the set L must have high
density since L is C-immune. Consequently, separation of a complexity class C1 from
another class C2 by a set L ∈ C1 that is both C1-simple and C2-immune requires the
set L to have conflicting requirements: L must be dense enough so as to be C1-simple
and must be thin enough so as to be C2-immune.

Buhrman and Torenvliet [13] showed that, relative to an oracle, the first level and
the second level of the polynomial hierarchy separate by sets that are both simple and
immune. Using Kolmogorov complexity for oracle constructions, they proved that,
relative to an oracle A, NP has a set that is both NP-simple and (NP∩coNP)-immune,
and, relative to an oracleB, Πp

2 has a set that is both Πp
2-simple and (Σp2∩Πp

2)-immune.
However, it is currently open whether there is an oracle relative to which the third
level or any higher level of the polynomial hierarchy separates by a set that is both
simple and immune. In fact, it is also open whether there is an oracle relative to
which NP has a set that is both NP-simple and coNP-immune.

We expect that the situation for the UPH is quite different from the one for
the polynomial hierarchy. We hope that it might be possible that an application of
our proof technique in conjunction with the Kolmogorov arguments of Buhrman and
Torenvliet [13] lead to a construction of an oracle relative to which all the levels of
the UPH separate by sets that are both simple and immune.

2. Random oracle separation of the relativized unambiguous polynomial hierarchy.
There has been an abundance of complexity theoretic results that hold with proba-
bility one relative to a random oracle. Some prominent random oracle results are (1)
probability one separation of NP from P with bi-immunity, and of NP from coNP [8],
(2) probability one separation of NP from P/poly [39], (3) probability one separation
of coNP from NP with immunity [47], and (4) probability one separation of PSPACE
from PH [14, 3]. Despite so many random oracle results, the probability one separa-
tion of the levels of the polynomial hierarchy relative to a random oracle is still an
open problem. (See [32] for an extensive discussion of this problem.) Currently, only
the circuit complexity-theoretic approach is known for separating the higher levels
(levels beyond three) of the polynomial hierarchy, but the circuit approach has so far
not been successful in resolving this longstanding open problem.

We believe that the case of the unambiguous polynomial hierarchy is easier. In
Theorem 4.1, we have used our counting technique to show that for all k ≥ 1, there is
an oracle A such that UPA≤k+1 is not contained in UΣp,Ak . Thus, unlike the case of the
polynomial hierarchy for which only the circuit approach is known for the relativized
separation of all its levels, the levels of the relativized UPH are separable by counting
arguments alone, and thus by completely avoiding the machinery of circuit complexity.
This raises our hope that a probability one separation of the levels of the UPH might
be easier to achieve than its counterpart, i.e., a probability one separation of the levels
of the PH relative to a random oracle.
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SEPARATING AC0 FROM DEPTH-2 MAJORITY CIRCUITS∗
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Abstract. We construct a function in AC0 that cannot be computed by a depth-2 majority cir-
cuit of size less than exp(Θ(n1/5)). This solves an open problem due to Krause and Pudlák [Theoret.
Comput. Sci., 174 (1997), pp. 137–156] and matches Allender’s classic result [A note on the power of
threshold circuits, in Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), Research Triangle Park, NC, 1989, pp. 580–584] that AC0 can be efficiently sim-
ulated by depth-3 majority circuits. To obtain our result, we develop a novel technique for proving
lower bounds on communication complexity. This technique, the Degree/Discrepancy Theorem, is of
independent interest. It translates lower bounds on the threshold degree of any Boolean function into
upper bounds on the discrepancy of a related function. Upper bounds on the discrepancy, in turn,
immediately imply lower bounds on communication and circuit size. In particular, we exhibit the first
known function in AC0 with exponentially small discrepancy, exp(−Ω(n1/5)), thereby establishing
the separations Σcc

2 �⊆ PPcc and Πcc
2 �⊆ PPcc in communication complexity.
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1. Introduction. A natural and important computational model is that of a
polynomial-size circuit of majority gates. This model has been extensively studied
for the past two decades [14, 15, 26, 27, 38, 43, 44, 45]. Research has shown that
majority circuits of depth 2 and 3 already possess surprising computational power.
Indeed, it is a long-standing open problem [21] to exhibit a Boolean function that
cannot be computed by a depth-3 majority circuit of polynomial size. To illustrate,
the arithmetic operations of powering, multiplication, and division on n-bit integer
arguments can all be computed by depth-3 majority circuits of polynomial size [45]. An
even more striking example is the addition of n n-bit integers, which is computable
by a depth-2 majority circuit of polynomial size [45]. Depth-2 majority circuits of
polynomial size can also compute every symmetric function (such as parity) and
every disjunctive normal form (DNF) and conjunctive normal form (CNF) formula of
polynomial size.

The chief goal of this paper is to relate the computational power of majority cir-
cuits to that of AC0, another extensively studied class, which consists of polynomial-
size constant-depth circuits of and, or, not gates. A well-known result due to
Allender [1] states that every function in AC0 can be computed by a depth-3 majority
circuit of quasi-polynomial size. For over ten years, it has been an open problem to
determine whether Allender’s simulation is optimal. Specifically, Krause and Pudlák
[21, sect. 6] ask whether every function in AC0 can be computed by a depth-2 majority
circuit of quasi-polynomial size. We solve this open problem completely, even in the
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more general setting of majority-of-threshold circuits (i.e., depth-2 circuits in which
a majority gate receives inputs from arbitrary linear threshold gates).

Theorem 1.1 (main result). There is a function f : {−1, 1}n → {−1, 1}, explic-
itly given and computable by an AC0 circuit of depth 3, whose computation requires a
majority vote of exp(Ω(n1/5)) linear threshold gates.

In other words, Allender’s simulation is optimal in a strong sense. The lower
bound in Theorem 1.1 is an exponential improvement over previous work. The best
previous lower bound [15, 27] was quasi polynomial and followed trivially from the
observation that AC0 can compute inner product modulo 2 on logc n variables,
for any constant c > 1.

1.1. A communication-complexity perspective. A different and perhaps
more revealing view of this work is in terms of communication complexity [23]. The
communication complexity of Boolean functions in different models has long been an
active area of research, due to its inherent appeal as a complexity subject as well
as its numerous applications in theoretical computer science. Our work contributes
a novel and powerful technique for communication lower bounds, which is based on
the representation of a Boolean function as the sign of a real-valued polynomial.
Specifically, fix a Boolean function f : {−1, 1}n → {−1, 1}. Its threshold degree,
deg±(f), is defined as the minimum degree of a polynomial p(x1, x2, . . . , xn) that
represents f in sign: f(x) ≡ sign(p(x)). This concept has played a prominent role in
the study of circuit complexity [2, 21, 22, 26] and has yielded valuable insights in
other areas, including computational learning theory [17, 20]. In many cases [26], it
is straightforward to obtain strong lower bounds on the threshold degree. Since the
threshold degree is a measure of the complexity of a given Boolean function, it is
natural to wonder whether it can yield lower bounds on communication in a suitable
setting. Our work confirms this intuition for every f .

More precisely, fix a Boolean function f : {−1, 1}n → {−1, 1} with threshold
degree d. Let N be a given integer, N � n. We introduce and study the two-party
communication problem of computing,

f(x|S),

where the Boolean string x ∈ {−1, 1}N is Alice’s input and the set S ⊂ {1, 2, . . . , N}
of size |S| = n is Bob’s input. The symbol x|S stands for the projection of x onto
the indices in S, in other words, x|S = (xi1 , xi2 , . . . , xin) ∈ {−1, 1}n, where i1 < i2 <
· · · < in are the elements of S. Intuitively, this problem models a situation when Alice
and Bob’s joint computation depends on only n of the inputs x1, x2, . . . , xN . Alice
knows the values of all the inputs x1, x2, . . . , xN but does not know which n of them
are relevant. Bob, on the other hand, knows which n inputs are relevant but does
not know their values. As one would hope, we prove that d gives a lower bound on
the communication requirements of this problem. We phrase our result in terms of
discrepancy, a central quantity in communication complexity that immediately yields
lower bounds on communication in a variety of models (see section 2.1).

Theorem 1.2 (Degree/Discrepancy Theorem). Let f : {−1, 1}n → {−1, 1} be
given with threshold degree d � 1. Then for N � n, the matrix M = [f(x|S)]x,S has
discrepancy

disc(M) �
(

4en2

Nd

)d/2
,

where e = 2.718 . . . .
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Theorem 1.2, which we call the Degree/Discrepancy Theorem for obvious rea-
sons, is a separate contribution of our work. Given a function f with threshold degree
d, it generates a communication problem with discrepancy at most 2−d (by setting
N � 16en2/d). This exponentially small upper bound on the discrepancy immediately
translates into an Ω(d) lower bound on communication in a variety of models (deter-
ministic, nondeterministic, randomized, quantum with and without entanglement).
Moreover, the resulting lower bounds on communication remain valid when Alice and
Bob merely seek to predict the answer with nonnegligible advantage, a critical aspect
for lower bounds against threshold circuits. This contrasts with other communication-
complexity methods [32, 34], which only apply to high-accuracy computation. Finally,
discrepancy arises prominently in contexts beyond communication complexity, such
as estimation of margin complexity [25, 40] and approximate rank [19]. For all these
reasons, we believe that the Degree/Discrepancy Theorem is of considerable interest
in its own right. We prove it by a novel application of Gordan’s transposition theorem
[37, sect. 7.8], which is a classical result from the theory of linear inequalities.

We are now in a position to outline the proof of our main result, Theorem 1.1. We
start with a well-known DNF formula Φ, constructed by Minsky and Papert [26], that
has high threshold degree. An application of Theorem 1.2 to Φ yields a communication
problem with low discrepancy. By design, this communication problem can be viewed
as an AC0 circuit of depth 3. Recalling that its discrepancy is exponentially small, we
immediately conclude that it cannot be computed by a depth-2 majority circuit of
subexponential size. This completes the proof.

1.2. On the discrepancy of AC0 circuits. Recall that a key component of
our proof is the construction of an AC0 circuit with exponentially small discrepancy.
Prior to this work, it was not known whether such a circuit existed. In particular, all
previously known functions with exponentially small discrepancy (see, e.g., [14, 27])
contain parity or majority as a subfunction and therefore cannot be computed in
AC0. In view of the intrinsic value of discrepancy as a complexity measure, we state
this result on its own.

Theorem 1.3 (discrepancy of AC0 circuits). There is a function f : {−1, 1}n ×
{−1, 1}n → {−1, 1}, explicitly given and computable by an AC0 circuit of depth 3,
that has discrepancy exp(−Ω(n1/5)) with respect to an explicitly given distribution.

Theorem 1.3 is best possible in that every AC0 circuit of depth 1 or 2 has dis-
crepancy at least n−O(1) with respect to all distributions and all partitions of the
variables (see section 5). As a direct corollary to Theorem 1.3, we separate communi-
cation classes Σcc2 and Πcc

2 from PPcc.
Corollary 1.4. Σcc2 �⊆ PPcc, Πcc

2 �⊆ PPcc.
Here Σcc2 and Πcc

2 are the second level of the polynomial hierarchy in commu-
nication complexity, whereas PPcc is the class of all communication matrices with
nonnegligible discrepancy. Prior to this work, it was entirely conceivable that PPcc

contained both Σcc2 and Πcc
2 and the rest of the polynomial hierarchy PHcc. See sec-

tion 6 for further details.
Another AC0 circuit of depth 3 with exponentially small discrepancy was con-

structed independently by Buhrman, Vereshchagin, and de Wolf [5, sect. 3]. Their
proof uses quite different techniques (approximation theory and quantum communi-
cation complexity). Their circuit has discrepancy exp(−Ω(n1/3)), which is a stronger
bound than Theorem 1.3. An advantage of the construction in this paper is that
it is self-contained and derived from first principles, whereas the work of Buhrman,
Vereshchagin, and de Wolf builds on a subtle result of Razborov [35]. In addition,
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our method is not restricted to AC0 but, rather, applies to any function with high
threshold degree.

1.3. Recent progress. We are pleased to report that the Degree/Discrepancy
Theorem has inspired important progress in communication complexity by several
researchers, which we briefly survey. The first of these new results is concerned with
bounded-error communication. By combining the method of Theorem 1.2 with tech-
niques from matrix analysis and approximation theory, the author [41] obtained strong
lower bounds on bounded-error communication for a broad new class of problems.
These lower bounds remain valid in the quantum model (regardless of prior entan-
glement) and subsume Razborov’s breakthrough lower bounds for symmetric func-
tions [35].

In another development [42], we used the method of Theorem 1.2 as a starting
point to derive essentially optimal lower bounds on the unbounded-error communi-
cation complexity of every symmetric function. The unbounded-error model is more
powerful than all the familiar models of communication (both classical and quantum),
and proving lower bounds in it is a substantial challenge. The only previous nontrivial
lower bounds for this model appeared in the groundbreaking work of Forster [12] and
its extensions.

Razborov and Sherstov [36] recently obtained the first exponential lower bound
on the sign-rank of AC0, thereby solving a long-standing open problem due to Babai,
Frankl, and Simon [3]. The results in [36] additionally give strong lower bounds for
the probably approximately correct (PAC) learning of polynomial-size DNF and CNF
formulas (see Remark 8.2). The method of the Degree/Discrepancy Theorem is one
of the starting points in that work.

The Degree/Discrepancy Theorem has also found applications to multiparty com-
munication complexity. The first of these is the work by Chattopadhyay [6], who ob-
served that the method of Theorem 1.2 adapts in a straightforward manner to the
multiparty model. Analogous to this adaptation, Lee and Shraibman [24] and Chat-
topadhyay and Ada [7] adapted to the multiparty model the author’s recent work [41]
on two-party bounded-error communication. They thereby obtained improved lower
bounds on the bounded-error communication complexity of disjointness for up to
log logn players. David and Pitassi [9] combined this line of work with the probabilis-
tic method, establishing a separation of the communication classes NPcck and BPPcck
for up to k = (1−ε) logn players. Their construction was derandomized in a follow-up
paper by David, Pitassi, and Viola [10], resulting in an explicit separation. See the
survey article [39] for a unified guide to these results, complete with all the key proofs.

1.4. Organization. The remainder of this paper is organized as follows. Sec-
tion 2 provides relevant background on communication complexity and threshold
functions. Section 3 is devoted to the proof of the Degree/Discrepancy Theorem, our
main technical tool. Section 4 studies a particular AC0 circuit Φ with high threshold
degree. Section 5 applies the Degree/Discrepancy Theorem to Φ, yielding an explicit
AC0 circuit f of depth 3 with exponentially small discrepancy. Section 6 uses this
discrepancy result to separate the classes Σcc2 and Πcc

2 from PPcc in communication
complexity. In section 7, we derive our main result, an exponential lower bound on
the size of depth-2 majority circuits that compute AC0. Section 8 concludes with an
application of our results to computational learning theory.

2. Preliminaries. Throughout this work, we identify −1 and 1 with “true” and
“false,” respectively. We view Boolean functions as mappings X → {−1, 1}, where X
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is a finite set such as X = {−1, 1}n. The symbol [n] stands for the set {1, 2, . . . , n}.
For integers N,n with N � n, the symbol

(
[N ]
n

)
denotes the family of all size-n

subsets of {1, 2, . . . , N}. For a string x ∈ {−1, 1}N and a set S ∈
(
[N ]
n

)
, we define

x|S = (xi1 , xi2 , . . . , xin) ∈ {−1, 1}n, where i1 < i2 < · · · < in are the elements of S.
The notation R

m×n refers to the family of all m × n matrices with real entries. We
specify matrices by their generic entry, e.g., A = [F (i, j)]i,j . As usual, we denote the
base of the natural logarithm by e = 2.718 . . . .

Recall that AC0 is the family of polynomial-size unbounded-fanin constant-depth
circuits with and, or, not gates. We adopt the following standard definition of the
sign function:

sign(t) =

⎧⎪⎨⎪⎩
1 if t > 0,
0 if t = 0,
−1 if t < 0.

A linear threshold gate is a Boolean function f : {−1, 1}n → {−1, 1} of the form
f(x) ≡ sign(

∑n
i=1 aixi − θ) for some fixed reals a1, . . . , an, θ. Observe that a linear

threshold gate generalizes the familiar majority gate.

2.1. Communication complexity. We consider Boolean functions f : X ×
Y → {−1, 1}. Typically X = Y = {−1, 1}n, but we also allow X and Y to be ar-
bitrary finite sets. We identify a function f with its communication matrix M =
[f(x, y)]x∈X, y∈Y . In particular, we use the terms “communication complexity of f”
and “communication complexity of M” interchangeably (and likewise for other com-
plexity measures, such as discrepancy). The two communication models of interest
to us are the randomized model and the deterministic model. The randomized com-
plexity R1/2−γ/2(f) of f is the minimum cost of a randomized protocol for f that
computes f(x, y) correctly with probability at least 1

2 + 1
2γ (equivalently, with ad-

vantage γ) on every input (x, y). The public-coin randomized complexity Rpub
1/2−γ/2(f)

is defined analogously, with the only difference that the communicating parties now
have a source of shared random bits; i.e., they can observe tosses of a common coin
without communicating. The distributional complexity Dμ

1/2−γ/2(f) is the minimum
cost of a deterministic protocol for f that has error at most 1

2 − 1
2γ (equivalently,

advantage γ) with respect to the distribution μ over the inputs.
A rectangle of X × Y is any set R = A×B with A ⊆ X and B ⊆ Y . For a fixed

distribution μ over X × Y , the discrepancy of f is defined as

discμ(f) = max
R

∣∣∣∣∣∣
∑

(x,y)∈R
μ(x, y)f(x, y)

∣∣∣∣∣∣ ,
where the maximum is taken over all rectangles R. We define disc(f) = minμ discμ(f).
The discrepancy method is a fundamental technique that places a lower bound on the
randomized and distributional complexity in terms of the discrepancy.

Proposition 2.1 (Kushilevitz and Nisan [23, pp. 36–38]). For every Boolean
function f : X × Y → {−1, 1}, every distribution μ on X × Y , and every γ > 0,

R1/2−γ/2(f) � Rpub
1/2−γ/2(f) � Dμ

1/2−γ/2(f) � log2

γ

discμ(f)
.
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The above definition of discrepancy is not convenient to work with. The following
well-known lemma bounds the discrepancy in terms of a more analytically pleasing
quantity. For completeness, we include a proof.

Lemma 2.2 (discrepancy bound; cf. [4, 8, 11, 33]). Let f : X × Y → {−1, 1} be
given, and let μ be a probability distribution over X × Y . Then

discμ(f)2 � |X |
∑

y,y′∈Y

∣∣∣∣∣∑
x∈X

μ(x, y)μ(x, y′)f(x, y)f(x, y′)

∣∣∣∣∣ .
Proof (adapted from Raz [33]). Let R = A × B be a rectangle over which the

discrepancy is achieved. Define αx = 1 for all x ∈ A, and likewise βy = 1 for all y ∈ B.
For all remaining x and y, let αx and βy be independent random variables distributed
uniformly over {−1, 1}. Passing to expectations,∣∣∣∣∣E

[∑
x,y

αxβyμ(x, y)f(x, y)

]∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(x,y)∈R
E[αxβy︸ ︷︷ ︸

=1

]μ(x, y)f(x, y) +
∑

(x,y) �∈R
E[αxβy]︸ ︷︷ ︸

=0

μ(x, y)f(x, y)

∣∣∣∣∣∣
= discμ(M).

In particular, there exists a fixed assignment αx, βy ∈ {−1, 1} for all x, y such that

discμ(f) �
∣∣∣∣∣∑
x,y

αxβyμ(x, y)f(x, y)

∣∣∣∣∣ .
Squaring both sides and applying the Cauchy–Schwarz inequality,

discμ(f)2 � |X |
∑
x

(
αx
∑
y

βyμ(x, y)f(x, y)

)2

= |X |
∑
y,y′

βyβy′
∑
x

μ(x, y)μ(x, y′)f(x, y)f(x, y′)

� |X |
∑
y,y′

∣∣∣∣∣∑
x

μ(x, y)μ(x, y′)f(x, y)f(x, y′)

∣∣∣∣∣ ,
as desired.

A definitive resource for further details is the book of Kushilevitz and Nisan [23].

2.2. Threshold degree. Let f : {−1, 1}n → {−1, 1} be a given Boolean func-
tion. The threshold degree of f , denoted deg±(f), is the least degree of a polynomial
p(x1, x2, . . . , xn) such that f(x) ≡ sign(p(x)). In view of the domain of f , any such
polynomial p can be assumed to be multilinear. Note that any function f that depends
on k or fewer of the n variables has threshold degree at most k. For a set S ⊆ [n],
we write χS =

∏
i∈S xi. In this notation, the threshold degree of f is the smallest d

such that f(x) ≡ sign(
∑

|S|�d aSχS(x)) for some fixed reals aS . Threshold degree is
also known in the literature as “strong degree” [2], “voting polynomial degree” [21],
“polynomial threshold function (PTF) degree” [30], and “sign degree” [5].

Crucial to understanding the threshold degree is the following result from the
theory of linear inequalities, which follows in a straightforward manner from linear-
programming duality.
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Theorem 2.3 (Gordan’s transposition theorem [37, sect. 7.8]). Let A ∈ R
m×n.

Then exactly one of the following statements holds:
(i) uTA > 0 for some vector u.
(ii) Av = 0 for some nonzero vector v � 0.

The vector notation uTA > 0 and v � 0 above is to be understood entrywise, as
usual. A consequence of Gordan’s transposition theorem is the following well-known
result regarding threshold representations.

Theorem 2.4 (see [2, 30]). Let φ1, φ2, . . . , φk : {−1, 1}n → R be arbitrary real
functions, and let f : {−1, 1}n → {−1, 1} be a given Boolean function. Then exactly
one of the following statements holds:

(i) f(x) ≡ sign(
∑k

i=1 aiφi(x)) for some reals a1, a2, . . . , ak.
(ii) There is a distribution μ over {−1, 1}n such that

E
x∼μ

[f(x)φi(x)] = 0, i = 1, 2, . . . , k.

Proof. Consider the k × 2n matrix A = [f(x)φi(x)]i,x. The claim follows from
Theorem 2.3, with u playing the role of a set of coefficients (a1, a2, . . . , ak) ∈ R

k, and
v playing the role of a probability distribution.

Corollary 2.5. Let f : {−1, 1}n → {−1, 1} be arbitrary and d be a nonnegative
integer. Then exactly one of the following holds:

(i) deg±(f) � d.
(ii) There is a distribution μ over {−1, 1}n such that

E
x∼μ

[f(x)χS(x)] = 0, |S| = 0, 1, . . . , d.

3. The Degree/Discrepancy Theorem. This section marks the beginning of
our proof. Its purpose is to establish Theorem 1.2 (the Degree/Discrepancy Theorem),
which plays a central role in the development to follow.

Theorem 1.2 (restated from section 1.1). Let f : {−1, 1}n → {−1, 1} be given
with threshold degree d � 1. Let N be a given integer, N � n. Define M = [f(x|S)]x,S,
where the indices range as follows: x ∈ {−1, 1}N , S ∈

(
[N ]
n

)
. Then

(3.1) disc(M) �
(

4en2

Nd

)d/2
.

Proof. Let μ be a probability distribution over {−1, 1}n with respect to which
Ez∼μ[f(z)p(z)] = 0 for every real-valued function p of d− 1 or fewer of the variables
z1, . . . , zn. The existence of μ is assured by Corollary 2.5. Throughout this proof, the
symbol U shall stand for the uniform distribution over the relevant domain. We will
analyze the discrepancy of M with respect to the distribution

λ(x, S) = 2−N+n

(
N

n

)−1

μ(x|S).

By Lemma 2.2,

(3.2) discλ(M)2 � 4n E
(S,T )∼U

|Γ(S, T )|,

where we let

Γ(S, T ) = E
x∼U

[
μ(x|S)μ(x|T )f(x|S)f(x|T )

]
.
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To analyze this expression, we prove two key claims.
Claim 3.1. Assume that |S ∩ T | � d− 1. Then Γ(S, T ) = 0.
Proof. For notational convenience, assume that S = {1, 2, . . . , n}. Then

Γ(S, T ) = E
x∼U

[
μ(x1, . . . , xn)μ(x|T )f(x1, . . . , xn)f(x|T )

]
=

1
2N

∑
x1,...,xn

μ(x1, . . . , xn)f(x1, . . . , xn)
∑

xn+1,...,xN

μ(x|T )f(x|T )

=
1

2N
E

(x1,...,xn)∼μ

⎡⎢⎢⎢⎢⎣f(x1, . . . , xn) ·

⎛⎝ ∑
xn+1,...,xN

μ(x|T )f(x|T )

⎞⎠
︸ ︷︷ ︸

∗

⎤⎥⎥⎥⎥⎦ .

Since |S ∩T | � d− 1, the starred expression is a real-valued function of at most d− 1
variables. The claim follows by the definition of μ.

Claim 3.2. Assume that |S ∩ T | = k. Then |Γ(S, T )| � 2k−2n.
Proof. For notational convenience, assume that

S = {1, 2, . . . , n},
T = {1, 2, . . . , k} ∪ {n+ 1, n+ 2, . . . , n+ (n− k)}.

We have

|Γ(S, T )| � E
x∼U

∣∣∣μ(x|S)μ(x|T )f(x|S)f(x|T )
∣∣∣

= E
x1,...,x2n−k

[μ(x1, . . . , xn)μ(x1, . . . , xk, xn+1, . . . , x2n−k)]

� E
x1,...,xn

[μ(x1, . . . , xn)]︸ ︷︷ ︸
=2−n

· max
x1,...,xk

E
xn+1,...,x2n−k

[μ(x1, . . . , xk, xn+1, . . . , x2n−k)]︸ ︷︷ ︸
�2−(n−k)

.

The bounds 2−n and 2−(n−k) follow because μ is a probability distribution.
In view of Claims 3.1 and 3.2, inequality (3.2) simplifies to

discλ(M)2 �
n∑
k=d

2kP[|S ∩ T | = k].

Since

P[|S ∩ T | = k] =
(
n

k

)(
N − n

n− k

)(
N

n

)−1

�
(
n

k

)( n
N

)k
�
(

en2

Nk

)k
,

and since the discrepancy cannot exceed 1, we conclude that

discλ(M)2 � min

{
1,

n∑
k=d

(
2en2

Nk

)k}
�
(

4en2

Nd

)d
.

This completes the proof of Theorem 1.2.
Remark 3.3. The proof above analyzes the discrepancy of M = [f(x|S)]x,S with

respect to a certain distribution λ, derived directly from a distribution μ under which



SEPARATING AC0 FROM DEPTH-2 MAJORITY CIRCUITS 2121

f is uncorrelated with every function of fewer than deg±(f) variables. Therefore, the
discrepancy bound (3.1) is achieved with respect to an explicitly given distribution
whenever μ is explicitly given.

Remark 3.4. The discrepancy bound (3.1) holds not only for M but also for any
sign matrix that contains M . This observation is immediate from the definition of
discrepancy. It allows a considerable degree of flexibility in applying Theorem 1.2, as
will become apparent in section 5.

Remark 3.5. The discrepancy bound in Theorem 1.2 is not tight. In subsequent
work [41, Thm. 7.3], the author strengthened it to disc(M) � (4n/N)d/2. More-
over, this new bound continues to hold when Bob’s input S is restricted to have a
particularly simple form. This stronger Degree/Discrepancy Theorem leads to quanti-
tative improvements on this paper’s Theorems 1.1 and 1.3; see [41, sect. 7] for details.
These improvements are built around a matrix-analytic approach to estimating the
discrepancy, as opposed to the combinatorial derivation above. However, the proof
of the Degree/Discrepancy Theorem in this paper has the advantage that it easily
adapts to the multiparty model and is the foundation of the recent multiparty results
[6, 7, 9, 10, 24]. The matrix-analytic approach does not seem to extend to three or
more communicating parties.

4. A function with high threshold degree. Consider the Boolean function
MPm on n = 4m3 variables, given by

MPm(x) =
m∨
i=1

4m2∧
j=1

xi,j .

A moment’s reflection shows that the threshold degree of MPm is at most m. Indeed,

MPm(x) = sign

{
−1

2
+

m∏
i=1

(4m2 + xi,1 + xi,2 + · · · + xi,4m2)

}
.

(Recall that xi,j ∈ {−1, 1}, where −1 corresponds to “true.”) Minsky and Papert [26],
who originally defined this function, proved that this upper bound is tight.

Theorem 4.1 (Minsky and Papert [26]). MPm has threshold degree m.
Minsky and Papert’s proof, while short and elegant, does not yield an explicit

distribution over {−1, 1}4m3
with respect to which MPm is orthogonal to all func-

tions of fewer than m variables. The existence of such a distribution is assured by
Corollary 2.5. The purpose of this section is to construct it. While this construction
is not needed for our circuit lower bound (Theorem 1.1), it yields additional insight
into the discrepancy of AC0 (Theorem 1.3).

We shall construct the desired distribution by extending an earlier argument, due
to O’Donnell and Servedio [29], that makes the crux of the Minsky–Papert construc-
tion explicit. A starting point in our discussion is the following fact.

Proposition 4.2 (O’Donnell and Servedio [29]). Let ν be the binomial distribu-
tion over {0, 1, . . . , 2m}, i.e., ν(t) = 2−2m

(
2m
t

)
. Then for every polynomial p of degree

at most 2m− 1,

E
t∼ν

[(−1)tp(t)] = 0.

Proof. We present the proof from [29]. The claim holds for the monomials
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p = 1, t, t2, . . . , t2m−1 in view of the combinatorial identity

2m∑
t=0

(
2m
t

)
(−1)ttd = 0, d = 0, 1, . . . , 2m− 1.

By linearity of expectation, this completes the proof.
O’Donnell and Servedio used Proposition 4.2 to obtain an explicit distribution

over {0, 1, . . . , 2m} under which every low-degree symmetric polynomial has zero cor-
relation with MPm. However, what we seek is an explicit distribution over {−1, 1}4m3

.
To this end, we take the argument of O’Donnell and Servedio a step further. The tech-
nical exposition follows.

For t = 0, 1, . . . , 2m, define

(4.1) Xt =

⎧⎨⎩x :
4m2∑
j=1

1 − xi,j
2

= 4m2 − (t− (2i− 1))2 for i = 1, 2, . . . ,m

⎫⎬⎭ .

Thus, X0, X1, . . . , X2m are disjoint sets of inputs. The same sets of inputs figure in
previous analyses [26, 29]. It is easy to verify that for t = 0, 1, . . . , 2m,

(4.2) x ∈ Xt =⇒ MPm(x) = (−1)t.

Let ν be the distribution from Proposition 4.2. We will work with the following dis-
tribution μ over {−1, 1}4m3

:

(4.3) μ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ν(0)/|X0| if x ∈ X0,

ν(1)/|X1| if x ∈ X1,
...

ν(2m)/|X2m| if x ∈ X2m,

0 otherwise.

We are now in a position to prove the main result of this section.
Theorem 4.3 (explicit distribution for MPm). Let μ be given by (4.3). Then

E
μ
[MPm · χS ] = 0, |S| = 0, 1, . . . ,m− 1.

Proof. Let χS be arbitrary with |S| � m−1. Call the variables xi,1, xi,2, . . . , xi,4m2

the ith block of x. Let σ1, σ2, . . . , σm be fixed permutations for blocks 1, 2, . . . ,m,
respectively. The theorem follows immediately from the following two claims.

Claim 4.4. Eμ[MPm · (χS ◦ (σ1, . . . , σm))] = Eμ[MPm · χS ] for all σ1, . . . , σm.

Claim 4.5.

∑
σ1,...,σm

Eμ[MPm · (χS ◦ (σ1, . . . , σm))] = 0.
We prove these claims below. This completes the proof of the theorem.
Proof of Claim 4.4. The functions MPm(x) and μ(x) depend only on the sum of

the bits in each block. Formally, MPm ≡ MPm◦(σ1, . . . , σm) and μ ≡ μ◦(σ1, . . . , σm).
The claim follows.

Proof of Claim 4.5. Write χS = χS1χS2 · · ·χSm , where

Si = S ∩ {(i, 1), . . . , (i, 4m2)}, i = 1, 2, . . . ,m.
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Then,∑
σ1,...,σm

E
μ
[MPm · (χS ◦ (σ1, . . . , σm))] =

∑
σ1,...,σm

E
μ

[
MPm ·

m∏
i=1

(χSi ◦ σi)
]

= E
μ

[
MPm ·

m∏
i=1

(∑
σi

χSi ◦ σi

)]

= E
μ

[
MPm ·

m∏
i=1

pi(xi,1 + xi,2 + · · · + xi,4m2)

]
,

where p1, p2, . . . , pm are polynomials of degree at most |S1|, |S2|, . . . , |Sm|, respectively.
We now use the definition of μ as follows to simplify the last equation:

E
μ

[
MPm ·

m∏
i=1

pi(xi,1 + xi,2 + · · · + xi,4m2 )

]

=
∑
x

μ(x)MPm(x)
m∏
i=1

pi(xi,1 + xi,2 + · · · + xi,4m2)

=
2m∑
t=0

∑
x∈Xt

ν(t)
|Xt|

MPm(x)
m∏
i=1

pi(xi,1 + xi,2 + · · · + xi,4m2)

=
2m∑
t=0

∑
x∈Xt

ν(t)
|Xt|

(−1)t
m∏
i=1

pi(2[t− (2i− 1)]2 − 4m2)︸ ︷︷ ︸
call this p(t)

by (4.1), (4.2)

=
2m∑
t=0

ν(t)(−1)tp(t)

= 0,

where the last equality follows by Proposition 4.2 since p(t) has degree at most
2
∑
i |Si| = 2|S| � 2m− 2.

5. Discrepancy of AC0 circuits. This section proves an exponentially small
upper bound on the discrepancy of an explicit function in AC0.

Theorem 1.3 (rephrased from section 1.2). There exists a function f : {−1, 1}N×
{−1, 1}N → {−1, 1}, explicitly given and computable by an AC0 circuit of depth 3,
that has discrepancy exp(−Ω(N1/5)) with respect to an explicitly given distribution.

Proof. Consider the function MPm on n = 4m3 variables. Theorem 4.1 states
that deg±(MPm) = m. Put N = �16en2/m = �256em5 and define the matrix
M = [MPm(x|S)]x,S , where x ∈ {−1, 1}N and S ∈

(
[N ]
n

)
. By Theorem 1.2,

discλ(M) � 2−m = e−Θ(N1/5)

for a certain distribution λ. By Remark 3.3 and Theorem 4.3, the distribution λ is
given explicitly in terms of (4.3).

Represent a set S ⊂ [N ] with elements i1 < i2 < · · · < in by the Boolean string
(y(1), y(2), . . . , y(n)) ∈ ({−1, 1}logN )n, where y(k) is the binary encoding of the integer
ik. We define F : {−1, 1}N × ({−1, 1}logN )n → {−1, 1} by

F (x, y(1), y(2), . . . , y(n)) = MPm(x|S),
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where S is the set corresponding to y(1), y(2), . . . , y(n). In the event that the strings
y(1), y(2), . . . , y(n) do not specify a legal set S (e.g., they are not all distinct or ordered),
the value of F is irrelevant. By construction,

discλ(F ) = discλ(M) � e−Θ(N1/5).

It remains to show that F is computable by an AC0 circuit of depth 3. For this, observe
that

F (x, y) = MPm(φ(x, y(1)), . . . , φ(x, y(n))),

where φ(x, y(i)) computes xdecimal(y(i)), i.e., computes xa with a being the decimal
integer whose binary representation is y(i). Each φ(x, y(i)) is clearly computable by a
CNF formula of size O(N). Hence, F is computable by an AC0 circuit of depth 3 (by
collapsing the two middle layers of and gates).

Remark 5.1. The function F in Theorem 1.3 can be viewed as a communication
problem in which Alice is given an input x ∈ {−1, 1}N , Bob is given a polynomial-size
DNF formula f : {−1, 1}N → {−1, 1} (from a restricted set), and their objective is
to evaluate f(x). The proof of Theorem 1.3 shows that the communication matrix
of this problem has discrepancy exp(−Ω(N1/5)). We will revisit this observation in
section 8.

Theorem 1.3 exhibits an AC0 circuit of depth 3 with exponentially small discrep-
ancy. At the same time, the discrepancy of every AC0 circuit of depth 2 is at least
n−O(1). To our knowledge, this fact has not been noted in the literature, and we
present its proof below.

Proposition 5.2. Let f : {−1, 1}n × {−1, 1}n → {−1, 1} be an AC0 circuit of
depth 1 or 2. Then discμ(f) � n−O(1) for every distribution μ.

Proof. By assumption, f is a polynomial-size DNF or CNF formula. Without loss
of generality, assume the former, i.e., f = T1 ∨T2∨ · · · ∨Ts, where s = nO(1) and each
of T1, T2, . . . , Ts is a conjunction of literals. Observe that

f = majority(T1, . . . , Ts, Ts+1, . . . , T2s−1),

where we define Ts+1 = Ts+2 = · · · = T2s−1 = −1 (identically true). Consider the
public-coin randomized protocol in which the parties pick i ∈ {1, 2, . . . , 2s− 1} uni-
formly at random, evaluate Ti using constant communication, and output the result.
This protocol evaluates f correctly with probability at least 1

2 + Ω
(

1
s

)
. Thus,

Rpub
1/2−Ω(1/s)(f) = O(1).

Proposition 2.1 now implies that discμ(f) � Ω(1/s) � n−O(1) for all μ.

6. Discrepancy and the polynomial hierarchy. In this section, we will
briefly digress from the main development and explore the consequences of Theo-
rem 1.3 in the study of communication complexity classes PPcc,Σcc2 ,Π

cc
2 .

Throughout this section, the symbol {fn} shall stand for a family of functions
f1, f2, . . . , fn, . . . , where fn : {−1, 1}n × {−1, 1}n → {−1, 1}.

Babai, Frankl, and Simon [3] originally defined the class PPcc as the class of
communication problems that have an efficient protocol with nonnegligible bias. For
our purposes, it will be more convenient to use an equivalent characterization of PPcc

in terms of discrepancy, obtained by Klauck [16].
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Theorem 6.1 (Klauck [16]). A family {fn} is in PPcc if and only if for some
constant c > 1 and all n,

disc(fn) > 2− logc n.

We now define classes Σcc2 and Πcc
2 , which represent the second level of the polyno-

mial hierarchy in communication complexity. A function fn : {−1, 1}n × {−1, 1}n →
{−1, 1} is called a rectangle if there exist subsets A,B ⊆ {−1, 1}n such that

fn(x, y) = −1 ⇔ x ∈ A, y ∈ B.

We call fn the complement of a rectangle if the negated function ¬fn = −fn is a
rectangle.

Definition 6.2 (Babai, Frankl, and Simon [3, sect. 4]).
(1) A family {fn} is in Πcc

0 if each fn is a rectangle. A family {fn} is in Σcc0 if
{¬fn} is in Πcc

0 .
(2) Fix an integer k = 1, 2, . . . . A family {fn} is in Σcck if for some constant

c > 1 and all n,

fn =
2logc n∨
i1=1

2logc n∧
i2=1

2logc n∨
i3=1

· · ·
2logc n⊙
ik=1

gi1,i2,...,ikn ,

where
⊙

=
∨

(resp.,
⊙

=
∧

) for k odd (resp., even), and each gi1,i2,...,ikn is
a rectangle (resp., the complement of a rectangle) for k odd (resp., even). A
family {fn} is in Πcc

k if {¬fn} is in Σcck .
(3) The polynomial hierarchy is given by PHcc =

⋃
k Σcck =

⋃
k Πcc

k , where k =
0, 1, 2, 3, . . . ranges over all constants.

Thus, the zeroth level (Σcc0 and Πcc
0 ) of the polynomial hierarchy consists of

rectangles and complements of rectangles, the simplest functions in communication
complexity. The first level is easily seen to correspond to functions with efficient non-
deterministic or co-nondeterministic protocols: Σcc1 = NPcc and Πcc

1 = coNPcc.
The circuit class AC0 is related to the polynomial hierarchy PHcc in communica-

tion complexity in the obvious way. Specifically, if fn : {−1, 1}n×{−1, 1}n → {−1, 1},
n = 1, 2, 3, 4, . . . , is an AC0 circuit family of depth k with an or gate at the top (resp.,
and gate), then {fn} ∈ Σcck−1 (resp., {fn} ∈ Πcc

k−1). In particular, the depth-3 circuit
family {fn} in Theorem 1.3 is in Σcc2 , whereas {¬fn} is in Πcc

2 . In this light, Theorems
1.3 and 6.1 have the following corollary.

Corollary 1.4 (restated from section 1.2). Σcc2 �⊆ PPcc, Πcc
2 �⊆ PPcc.

Observe that the separations in Corollary 1.4 are achieved for explicit functions,
constructed in Theorem 1.3. Corollary 1.4 is tight in that PPcc trivially contains
Σcc0 ,Σ

cc
1 ,Π

cc
0 ,Π

cc
1 .

7. Lower bounds for majority-of-threshold circuits. At last, we are in a
position to prove the main result of this paper. We will follow an established argument,
due to Nisan [27], that relates discrepancy to the size of majority-of-threshold circuits.
The key piece of the argument is the following statement.

Theorem 7.1 (Nisan [27]). Let f : {−1, 1}n → {−1, 1} be a linear threshold
function. Then Rpub

ε (f) = O(log n+ log 1
ε ) for any partition of the variables and any

ε = ε(n).
We have the following theorem.
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Theorem 1.1 (rephrased from section 1). There exists a function f : {−1, 1}N×
{−1, 1}N → {−1, 1}, explicitly given and computable by an AC0 circuit of depth 3,
whose computation requires a majority vote of exp(Ω(N1/5)) linear threshold gates.

Proof. Nisan [27, Thm. 4] proved an analogous statement for the function in-

ner product modulo 2, and we merely adapt his argument to our setting. Let F
be the function in the statement of Theorem 1.3, with disc(F ) = exp(−Ω(N1/5)).
Proposition 2.1 implies that for any γ > 0,

(7.1) Rpub
1/2−γ/2(F ) = Ω(N1/5) − log

1
γ
.

On the other hand, suppose that F = majority(h1, h2, . . . , hs), where each hi is
a linear threshold function. Then the parties can randomly pick i ∈ {1, 2, . . . , s},
evaluate hi correctly with probability 1 − 1/(4s) using Theorem 7.1, and output the
result. This protocol would have communication cost O(logN + log s) and would
predict F correctly with probability at least (1

2 + 1
2s) −

1
4s = 1

2 + 1
4s on every input.

Thus,

(7.2) Rpub
1/2−1/4s(F ) = O(logN + log s).

Comparing (7.1) and (7.2), we see that s = exp(Ω(N1/5)).

8. An application to learning DNF formulas. We conclude with an ap-
plication of our results to computational learning theory. Let C be an arbitrary set
of Boolean functions {−1, 1}n → {−1, 1}. Suppose it is possible to fix polynomial-
time computable Boolean functions h1, . . . , hd : {−1, 1}n → {−1, 1} such that every
function f ∈ C can be represented as

f(x) ≡ sign

(
d∑
i=1

aihi(x)

)

for some integers a1, . . . , ad with |a1| + · · ·+ |ad| �W . The obvious complexity mea-
sures of this representation are d and W . If d and W are polynomial in n, simple and
efficient algorithms exist for learning C from random examples under every distribu-
tion, e.g., the classic perceptron algorithm [26, 28]. Such classes C admit learning with
large margin and therefore possess a variety of desirable characteristics [18].

Given C, it is thus natural to ask whether it is possible to choose h1, . . . , hd
such that d = poly(n) and W = poly(n). The question is particularly intriguing
for polynomial-size DNF and CNF formulas, a concept class that has eluded every
attempt at an efficient, distribution-free learning algorithm. Our machinery yields a
strong negative answer to this question. We restrict our attention to DNF formulas,
as the CNF case is closely analogous.

Theorem 8.1. Let C denote the concept class of polynomial-size DNF formulas.
Let h1, . . . , hd : {−1, 1}n → {−1, 1} be arbitrary Boolean functions such that every
f ∈ C can be expressed as f(x) ≡ sign(

∑d
i=1 aihi(x)) for some integers a1, . . . , ad with

|a1| + · · · + |ad| �W . Then

dW � eΩ(n1/5).

Proof. Consider the communication problem F in which Alice is given an input
x ∈ {−1, 1}n, Bob is given a function f ∈ C, and their objective is to compute f(x).
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By Remark 5.1, the communication matrix of this problem has discrepancy

disc(F ) � e−Ω(n1/5).

We will construct a cost-2 public-coin randomized protocol for the problem, with
advantage 1/(dW ) on every input. Proposition 2.1 will then imply that

1
dW
� 4 disc(F ),

and the proof will be complete.
The idea behind the protocol is not original; see [13, 14, 25, 31] for similar work.

First, the parties pick an index i ∈ {1, . . . , d} uniformly at random. Then Alice sends
hi(x) to Bob. Bob retrieves the representation of f as f(x) ≡ sign(

∑d
i=1 aihi(x))

for some integers a1, . . . , ad. With probability 1
2 + 1

2 · |ai|
|a1|+···+|ad| , Bob announces

hi(x) · sign(ai) as the output. With the remaining probability, he announces −hi(x) ·
sign(ai). Thus, Bob’s expected output is aihi(x)

|a1|+···+|ad| . As a result, the protocol achieves
the following desired advantage:

f(x) ·
d∑
i=1

1
d
· aihi(x)
|a1| + · · · + |ad|

=
1
d
· |a1h1(x) + · · · + adhd(x)|

|a1| + · · · + |ad|
� 1
dW

.

Remark 8.2. Using subtle techniques, Razborov and Sherstov [36] have recently
proved the following substantially stronger result. Let h1, . . . , hd : {−1, 1}n → R be
arbitrary real functions such that every DNF formula f of linear size is representable
as f(x) ≡ sign(

∑d
i=1 aihi(x)) for some reals a1, . . . , ad. Then d � exp(Ω(n1/3)). This

lower bound on d is essentially optimal [17] and rules out the possibility of PAC
learning DNF formulas in the important dimension complexity framework; see [36]
for details.
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INTERPOLATION OF DEPTH-3 ARITHMETIC CIRCUITS WITH
TWO MULTIPLICATION GATES∗

AMIR SHPILKA†

Abstract. In this paper we consider the problem of constructing a small arithmetic circuit for a
polynomial for which we have oracle access. Our focus is on n-variate polynomials, over a finite field
F, that have depth-3 arithmetic circuits (with an addition gate at the top) with two multiplication
gates of degree at most d. We obtain the following results: 1. Multilinear case. When the circuit
is multilinear (multiplication gates compute multilinear polynomials) we give an algorithm that
outputs, with probability 1 − o(1), all the depth-3 circuits with two multiplication gates computing
the polynomial. The running time of the algorithm is poly(n, |F|). 2. General case. When the
circuit is not multilinear we give a quasi-polynomial (in n, d, |F|) time algorithm that outputs, with
probability 1− o(1), a succinct representation of the polynomial. In particular, if the depth-3 circuit
for the polynomial is not of small depth-3 rank (namely, after removing the g.c.d. (greatest common
divisor) of the two multiplication gates, the remaining linear functions span a not too small linear
space), then we output the depth-3 circuit itself. In the case that the rank is small we output a
depth-3 circuit with a quasi-polynomial number of multiplication gates. � Prior to our work there
have been several interpolation algorithms for restricted models. However, all the techniques used
there completely fail when dealing with depth-3 circuits with even just two multiplication gates.
Our proof technique is new and relies on the factorization algorithm for multivariate black-box
polynomials, on lower bounds on the length of linear locally decodable codes with two queries, and
on a theorem regarding the structure of identically zero depth-3 circuits with four multiplication
gates.

Key words. arithmetic circuits, exact learning, interpolation, reconstruction, depth-3
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1. Introduction. In this work we consider the problem of constructing a small
arithmetic circuit for a polynomial for which we have oracle access. That is, there is a
black box holding a polynomial f , and we would like to find a small arithmetic circuit
that computes f . We are allowed to pick inputs (adaptively) and query the black box
for the value of f on those inputs. The focus of this work is on n-variate polynomials
that have small depth-3 arithmetic circuits1 over some finite field F. We consider the
simplest such circuits, that is, those with only two multiplication gates (also known as
ΣΠΣ(2) circuits). We obtain the following results. Let f be a polynomial, for which
we have oracle access, that is computed by a ΣΠΣ(2) circuit. When f is computed by
a multilinear ΣΠΣ(2) circuit we give a polynomial time algorithm that outputs, with
high probability, all the multilinear ΣΠΣ(2) circuits that compute f . When f does
not have a multilinear ΣΠΣ(2) circuit, we output in quasi-polynomial time, with high
probability (w.h.p.), a short description for f (depending on a technical condition, we
output either a ΣΠΣ(2) circuit for it or a depth-3 circuit of quasi-polynomial size).
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[Shp07]. This research was supported by Israel Science Foundation grant 439/06.
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1In this work, whenever we say depth-3 circuit we mean a circuit with an addition gate at the

top—the reason being that, by factoring the circuit and then applying known interpolation algorithms
for depth-2 circuits, it is easy to reconstruct depth-3 circuits that have a multiplication gate at the
top.
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The problem of reconstructing a small arithmetic circuit for a polynomial using
queries is a basic problem in algebraic complexity and is closely related to problems in
learning theory. We now give some background that explains why studying depth-3
circuits is the next natural step given our current state of knowledge.

1.1. Computational learning theory. This paper considers the task of exact
learning of algebraic functions. The analogous problem for Boolean functions is well
studied, and we first summarize the state of knowledge there. The question of whether
we can compute a small description for a Boolean function, for which we have oracle
access, is a fundamental problem in learning theory. The problem, also known as the
exact learning problem using membership queries, attracted a lot of research, and both
positive and negative results were proved. On the negative side it was shown that if
a class of Boolean circuits C contains trapdoor functions or pseudorandom functions,
then there are no efficient learning algorithms for it [OGM86, KV94, Kha95]. In
particular, there are no efficient interpolation algorithms for the class TC0

4 (the class of
depth-4 threshold circuits), under a widely believed cryptographic assumption [KL01,
NR04]. Moreover, in [RR97] it was proved that if we consider a class of circuits C
that can compute pseudorandom functions efficiently, then it is hard to determine,
in exponential time, whether a function given by its truth table can be computed
efficiently by a circuit from C. In other words, even if the algorithm is given the whole
truth table as input, it cannot determine whether f has a polynomial size circuit in
C or not, in exponential time (i.e., in time polynomial in the size of the truth table).

On the positive side, there are many works showing that in some restricted models
of computation, e.g., when f has a small circuit from a restricted class of circuits,
exact learning from membership queries is possible (see, e.g., [SS96, BBV96, BBTV97,
BBB+00]). However, no exact learning algorithms are known for the class of bounded
depth Boolean circuits. Moreover, even if we allow the algorithm to run in exponential
time and have access to the truth table of the function, it is still not known how to
compute a small bounded depth circuit for it.

To conclude, exact learning is known only for very restricted classes of circuits, and
we cannot hope to learn the class of depth-4 threshold circuits if certain cryptographic
assumptions hold.

1.2. Interpolation of arithmetic circuits. As mentioned above, we consider
the algebraic analogue of the exact learning problem. Let A be a class of arithmetic
circuits over a field F. We are given oracle access to a polynomial f(x1, . . . , xn) ∈
F[x1, . . . , xn] that can be computed by an arithmetic circuit from A. We are allowed to
ask for the value of the polynomial at points of our choice, and we would like to output
a succinct representation for it.2 Ideally we would like to output an arithmetic circuit
from A that computes the polynomial. This problem is also known as the polynomial
interpolation problem.

Unlike the exact learning scenario, there are almost no results that show the im-
possibility of interpolating arithmetic circuits. To the best of our knowledge, the only
hardness result was obtained by Fortnow and Klivans [FK06], who proved that poly-
nomial time interpolation of arithmetic circuits implies a lower bound for the class
ZPEXPRP. A probable explanation for the lack of stronger hardness results is that
no reasonable notion of pseudorandom polynomials is known in the algebraic domain.
However, it is widely believed that, analogously to the exact learning case, it is im-
possible to efficiently interpolate arithmetic circuits of a certain constant depth. The

2In the case of finite fields we may ask for the value over an algebraic extension field of F.
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reason for this belief is that depth-3 arithmetic circuits can compute the arithmetic
analogue of threshold functions (see, e.g., [SW01]), and as efficient exact learning of
TC0

4 is believed to be impossible, we also expect efficient interpolation of bounded
depth arithmetic circuits to be impossible. It is natural to ask then, what is the
maximal depth for which efficient interpolation is possible.

Similarly to the exact learning version, a lot of effort was invested in trying to
interpolate restricted classes of arithmetic circuits. In particular, the class of depth-
2 arithmetic circuits3 received a great deal of attention, and several interpolation
algorithms were devised for it [BOT88, GKS94, KS96, Man95, SS96, KS01]. Many
works also focused on circuits that can be represented by small multiplicity automata
[BBV96, BBTV97, BBB+00, KS06] and on the class of read-once arithmetic formulae
[HH91, BHH95, BC98, BB98, SV08]. One unifying feature of all these classes is that
they all compute polynomials whose partial derivatives span a low dimensional space
(see, e.g., [KS06], where depth-3 circuits of a very special form are discussed). In
contrast, it is easy to give an example of a multilinear ΣΠΣ(2) circuit that computes
a polynomial whose partial derivatives span a high dimensional space. Thus, known
techniques cannot give efficient algorithms for interpolating polynomials computed by
multilinear ΣΠΣ(2) circuits. This highlights the gap in our understanding of depth-2
circuits and depth-3 circuits (even those with only two multiplication gates).

Thus, current techniques are incapable of interpolating depth-3 circuits, even
those with two multiplication gates, and it is believed that above some constant
depth efficient interpolation is impossible.

In this work we introduce new techniques that enable us to give interpolation
algorithms to the class of depth-3 circuits with two multiplication gates. Before
presenting our results we need to give several definitions.

1.3. Some definitions and statement of our results. Let f be a polynomial
computed by a ΣΠΣ(2) circuit. Then f has the following form:

(1) f(x̄) =
d1∏
i=1

L
(1)
i (x̄) +

d2∏
i=1

L
(2)
i (x̄),

where the L(j)
i ’s are linear functions in the variables x̄ = (x1, . . . , xn), over the field

F:

L
(j)
i (x̄) =

n∑
k=1

αi,j,kxk + αi,j,0

for αi,j,k ∈ F. Let M1 and M2 be the multiplication gates of the circuit. That is,

M1 =
d1∏
i=1

L
(1)
i (x̄) and M2 =

d2∏
i=1

L
(2)
i (x̄).

For a ΣΠΣ(2) circuit C we denote by deg(C) the maximal degree of its multiplication
gates. For example, if C is given by (1), then deg(C) = max(d1, d2). Our first result
deals with the case of multilinear ΣΠΣ(2) circuits. A multilinear circuit is a circuit
in which every multiplication gate computes a multilinear polynomial. In particular,
the degree of a multilinear circuit is bounded by n.

3Polynomials computed by small depth-2 circuits are also known as sparse polynomials, i.e.,
polynomials with a small number of monomials.
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Theorem 1. Let f be a multilinear polynomial in n variables that is computed
by a degree d multilinear ΣΠΣ(2) circuit, over a field F. Then there is a randomized
interpolation algorithm that, given black-box access to f and the parameters d and n,
runs in poly(n, |F|)-time and with probability 1− o(1) outputs all the ΣΠΣ(2) circuits
computing f . When |F| < n5 the algorithm is allowed to make queries to f from a
polynomial size algebraic extension field of F.

Notice that we output all the multilinear ΣΠΣ(2) circuits computing f . While
this was not our purpose when first studying the problem, it is a nice consequence of
our techniques (and in particular implies that there are only polynomially many such
circuits).

In order to state our main theorem we need some more definitions. Let C be as
in (1). Define

gcd(C)
�
= g.c.d.(M1,M2)

as the greatest common divisor of the multiplication gates. It is clear that we can
write gcd(C) =

∏k
i=1 Li(x̄) for some set of linear functions. Following the notations

of [DS06] we define the simplification of C, sim(C), to be the circuit

sim(C)
�
= C/ gcd(C).

From the definition of sim(C) it is clear that there exists a subset4 I1 ⊆ [d1] and a
subset I2 ⊆ [d2], such that |I1| = d1 − k, |I2| = d2 − k, and

(2) sim(C) =
∏
i∈I1

L
(1)
i (x̄) +

∏
i∈I2

L
(2)
i (x̄).

We shall also need the notions of the rank of a ΣΠΣ(2) circuit, which we denote by
rank(C), and of depth-3 rank of f , which we denote by rank(f). Given a ΣΠΣ(2)
arithmetic circuit C, let sim(C), I1, and I2 be as in (2). We define

rank(C)
�
= dim

(
span

{
L

(1)
i , L

(2)
j : i ∈ I1, j ∈ I2

})
.

In other words, the rank of C is defined to be the dimension of the space spanned
by the linear functions in sim(C). Let rankd(f) be the minimum, over all ΣΠΣ(2)
circuits C of degree ≤ d that compute f , of rank(C). The motivation for the definition
will become clearer in the analysis of our algorithm. When the degree d is clear from
the context, we drop the subscript d and simply write rank(f) instead of rankd(f).

We can now state our second result that deals with general ΣΠΣ(2) circuits.
Theorem 2. Let f be an n-variate polynomial computed by a ΣΠΣ(2) circuit

of degree d, over a field F. Then there is a randomized interpolation algorithm that,
given black-box access to f and the parameters d and n, runs in quasi-polynomial time
(in n, d, |F|) and has the following properties:

• If rank(f) = Ω
(
log2(d)

)
, then with probability 1− o(1) the algorithm outputs

the (unique) ΣΠΣ(2) circuit for f .
• If rank(f) = O

(
log2(d)

)
, then the algorithm outputs, with probability 1 −

o(1), a polynomial Lin(f), a polynomial Q(y1, . . . , yk), and k linear functions
L1, . . . , Lk, where k ≤ rank(f), such that Lin(f) is the product of all the
linear factors of f and Lin(f) ·Q(L1, . . . , Lk) = f .

4As usual, [k] stands for the set {1, . . . , k}.
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When |F| < max(d5, n5), the algorithm is allowed to make queries to f from a poly-
nomial size extension field of F.

We note that in the case when rank(f) = O
(
log2(d)

)
, the polynomialQ(L1, . . . , Lk)

can be easily represented as a ΣΠΣ circuit with quasi-polynomially many multiplica-
tion gates (as Q has at most a quasi-polynomial number of monomials).

1.4. Our techniques. Our algorithms are based on the following scheme. We
first restrict the inputs to the unknown polynomial to a low dimensional random sub-
space of Fn (although in the multilinear case the subspace is not completely random,
the intuition is the same). We then interpolate the polynomial on this subspace.
The next step is to lift the representation that we found to the whole space. While
this is the general scheme, it has different realizations in the multilinear case and the
general case, and even within each case we have to deal differently with the case of
high rank and the case of low rank. However, similar problems lie at the core of the
different cases. The following questions give a good intuition to the difficulties that
the algorithm has to overcome:

1. Let V1, . . . , Vk be subspaces of codimension 1 inside a linear space V . Given
circuits C1, . . . , Ck such that Ci computes f |Vi (the restriction of f to Vi),
how can we construct from them a single circuit C for f |V ?

2. Given linear spaces V ⊆ U such that V is of codimension 1 in U , and a
circuit C computing f |V , how many circuits C′ are there that compute f |U ,
and whose restriction C′|V is equal to C?

The first question arises in the case of general ΣΠΣ(2) circuits of high rank when
we interpolate the restriction of f to a random subspace V . Our algorithm first
interpolates the restrictions of one of the multiplication gates to codimensional 1
subspaces of V and then combines the different results to get a representation of that
gate over V (then by using the factoring algorithms of [Kal85, KT90, Kal95] we are
able to interpolate f |V ).

To deal with the problem, we consider linear functions in the different Ci’s that
look similar to each other, and we try to glue them together to get a new function.
This process may fail if for any linear function in, say, C1 there are many other linear
functions in C1 that are at Hamming distance 1 from it. In such a situation it is hard
for us to tell what is the “true” image of that linear function in the other Ci’s. On
the other hand, if this is indeed the case, then the linear functions in C1 generate a
locally decodable code and, using the results of [GKST06, DS06] on the length of such
codes, we can prove that such an anomaly cannot occur. Therefore we can always
find a linear function to learn, until eventually we find the whole multiplication gate.

The motivation for the second question is that when we lift the representation
that we found over V to U there may be many different circuits that are possible lifts,
and we somehow have to pick the right one with which to continue the lifting process.
To deal with this problem we note that if a polynomial has two different lifts, then
the difference of the lifts is the zero polynomial. By a result of [DS06] regarding the
structure of identically zero depth-3 circuits, we get that the different lifts must be
of small rank. This enables us to solve the problem for the high rank case (as in this
case the lift is unique). The low rank case is indeed more problematic, and this is
why we need to output a circuit with quasi-polynomially many multiplication gates
when f has low rank (although in the multilinear case, we manage to overcome this
difficulty by proving that the total number of possible lifts is polynomial).

1.5. Recent progress. In a recent joint work with Karnin [KS08] we managed
to extend this result to the case of ΣΠΣ(k) circuits. Moreover, we managed to get a
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deterministic reconstruction algorithm (the algorithms in this paper are all random-
ized). The ideas in the current paper serve as a basic building block to the ideas of
[KS08]; however, some new ideas were required for the more general case.

1.6. Organization. The paper is organized as follows. In section 2 we give
some definitions and describe the results of [DS06] regarding identically zero depth-3
circuits. The algorithm and proof for the multilinear case are given in section 3. In
section 4 we give the algorithm (and proof) for the general case.

2. Preliminaries. For a natural number n we denote [n] = {1, . . . , n}. For a
set S ⊂ [n] we denote by S̄ the complement of S.

Let F be a field. We denote by Fn the n-dimensional vector space over F. We
shall use the notation x̄ = (x1, . . . , xn) to denote the vector of n indeterminates. For
v ∈ Fn we denote by wt(v) the weight of v, i.e., the number of nonzero coordinates in
v. For two nonzero linear functions L1, L2 we will write L1 ∼ L2 whenever L1 and L2

are linearly dependent. Let V = V0 + v0 ⊆ Fn be an affine subspace, where v0 ∈ Fn,
and where V0 ⊆ Fn is a linear subspace. Let L(x̄) be a linear function. We denote by
L|V the restriction of L to V . We say that a set of linear functions {L1, . . . , Lk} is
linearly independent over V if the only linear combination of the Li’s whose restriction
to V is identically zero is the all zero combination. We now introduce coordinates
to the space V . Let v1, . . . , vs be a basis of V0. Let L(x̄) be a linear function. We
consider the restriction of L to V with respect to the basis {vi}. Then L|V can be
written as a function in s variables. In particular if v = α1v1 + · · · + αsvs + v0, then
we define L|V (α1, . . . , αs) = L(v) = L(α1v1 + · · · + αsvs) + L(v0).

For a polynomial f we denote by Lin(f) the product of all the linear factors of
f (with the appropriate multiplicities). We also define sim(f) = f/Lin(f) to be the
simplification of f . Clearly sim(f) does not have any linear factors.

2.1. Identically zero depth-3 circuits. In this section we state some results
of [DS06] regarding identically zero depth-3 circuits. We start by giving some neces-
sary definitions. A ΣΠΣ(k) circuit (that is, a depth-3 circuit with k multiplication
gates) is identically zero if it computes the zero polynomial. Notice that this is a
syntactic definition; we are thinking of the circuit as computing a polynomial and not
as computing a function over the field.5 Let C = M1 + · · · + Mk be an identically
zero ΣΠΣ(k) circuit, where the Mi’s are the multiplication gates. We say that C is
minimal if there is no ∅ �= I � [k] such that

∑
i∈IMi ≡ 0. C is simple if the g.c.d.

of its multiplication gates is 1. The following theorem gives a bound on the degree of
multilinear ΣΠΣ(k) circuits that are identically zero.

Theorem 3 (Corollary 6.9 of [DS06]). There exists an integer function D(k) =
2O(k2) such that every simple, minimal, identically zero multilinear ΣΠΣ(k) circuit is
of degree d ≤ D(k).

In other words, if C is an identically zero ΣΠΣ(k) multilinear circuit that is simple
and minimal, then the degree of C is bounded by a constant depending on k. We
will need to use the result only for ΣΠΣ(4) circuits. We state this as a corollary and
introduce the constant D4 that will play a part in our interpolation algorithms.

Corollary 4. There exists a constant D4, such that every identically zero mul-
tilinear ΣΠΣ(4) circuit that is simple and minimal is of degree ≤ D4.

The next theorem deals with a general ΣΠΣ(k) circuit.

5In our case the field size is much larger than the degree of the polynomial and so the syntactic
definition and the semantic one are the same. However, we mention this distinction as it is sometimes
a cause of confusion.
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Theorem 5 (Lemma 5.2 of [DS06]). Let k ≥ 3, d ≥ 2 be integers and C ≡ 0 be
a simple and minimal ΣΠΣ(k) circuit. Then rank (C) ≤ 2O(k2) logk−2(d).

As before, we shall need the following corollary and the constant R4.
Corollary 6. There exists a constant R4 such that every identically zero

ΣΠΣ(4) circuit, of degree d, that is simple and minimal is of rank at most R4 ·log2(d).
The following corollary shows how to use Corollaries 4 and 6 to guarantee unique-

ness of a ΣΠΣ(2) circuit.
Corollary 7. Let d be some integer, and let D4 and R4 be as in Corollaries

4 and 6, respectively. If a polynomial f has a degree d (multilinear), ΣΠΣ(2) circuit
and rank(f) > R4 · log2(d) (deg(f) > D4), then f has a unique (multilinear) ΣΠΣ(2)
circuit of degree d.

Proof. We prove the claim only for general ΣΠΣ(2) circuits. The proof for the
multilinear case is identical. Let C1 = A1 + A2 be a ΣΠΣ(2) circuit for f , where
A1, A2 are its multiplication gates. By our assumption on rank(f) we know that

rank (C1/g.c.d.(A1, A2)) > R4 · log2(d).

Assume that C2 = B1 + B2 is another ΣΠΣ(2) circuit for f , where B1, B2 are its
multiplication gates. Consider the circuit C = A1 + A2 − B1 − B2; then C is a
ΣΠΣ(4) circuit, and C ≡ 0. By the assumption on rank(C1) we get that rank(C) >
R4·log2(d). By Corollary 6 (for the case of multilinear circuits, we use Corollary 4) this
implies that C is either not simple or not minimal. Note that by the assumption on
rank (C1/g.c.d.(A1, A2)) we get that, even if we remove the g.c.d. of C, the remaining
circuit still has rank > R4 · log2(d). From this we conclude that C is not minimal. As
C1 �≡ 0, we get that A1 −B1 ≡ 0 or A1 −B2 ≡ 0.

3. Multilinear circuits. In this section we prove Theorem 1. For ease of read-
ing we repeat it here.

Theorem 1. Let f be a multilinear polynomial in n variables that is computed
by a degree d multilinear ΣΠΣ(2) circuit, over a field F. Then there is a randomized
interpolation algorithm that, given black-box access to f and the parameters d and n,
runs in poly(n, |F|)-time and with probability 1− o(1) outputs all the ΣΠΣ(2) circuits
computing f . When |F| < n5 the algorithm is allowed to make queries to f from a
polynomial size algebraic extension field of F.

Before sketching the proof we repeat some of the notations that we will use. We
shall have the following representation of f in mind: f = M1 + M2, where M1 and
M2 are the multiplication gates of a multilinear ΣΠΣ(2) circuit for f that are given
by the equations

(3) M1 =
d∏
i=1

Li(Si) and M2 =
d′∏
j=1

L′
j(S

′
j),

where the Li’s (resp., L′
j ’s) are linear functions, and the sets {Si}i∈[d] ({S′

j}j∈[d′])
form a partition of the set of variables (recall that M1 and M2 compute multilinear
polynomials). In particular,

(4) f(x̄) =
d∏
i=1

Li(Si) +
d′∏
j=1

L′
j(S

′
j).

To prove the theorem we will give an algorithm for reconstructing all the ΣΠΣ(2)
circuits for f and prove its correctness. The algorithm basically follows the scheme
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that was described in section 1.4. We have two cases, the low rank case and the high
rank case (in fact we look at low degree and high degree, but for multilinear circuits
these correspond to low rank and high rank). More precisely, in the multilinear
setting low rank means constant rank (where the constant depends on D4 as defined
in Corollary 4). This makes life easier compared to the general case that we will study
in section 4 in which low rank can be as large as O(log2(d)). We now give a slightly
more detailed sketch of the proof as follows:

• Preprocessing: The first step in the proof is a preprocessing step in which we
find all the linear factors of f . We then show that in the multilinear case each
linear factor of f is also a linear factor of both multiplication gates in every
ΣΠΣ(2) circuit for f . This enables us to reduce the problem of finding all the
circuits for f to finding the circuits for sim(f). After this step the algorithm
treats separately low degree circuits and high degree circuits.

• Low degree circuits: The idea is to consider all the restrictions of sim(f) to
small subsets of the variables. Namely, for a set S the restriction of sim(f) to
S is done by setting the variables not in S to zero. We denote the restriction
of sim(f) to S with sim(f)(S). We will consider only sets S of small size, and
so we can find (in a brute force manner) all the simple multilinear ΣΠΣ(2)
circuits for sim(f)(S). Then we will prove that for every multilinear ΣΠΣ(2)
circuit C for sim(f) there exists a set S and a simple multilinear circuit A on
the variables in S such that A is the restriction of C to S (which is defined
in a similar manner to sim(f)(S)) and that there is a relatively easy way of
reconstructing C from A by “revealing” each variable separately.

• High degree circuits: The algorithm for the high degree case is similar in spirit
to the low degree case with a few exceptions. The first difference is that we
will not restrict the variables not in S to zero but rather substitute random
values from F to each of them. The second difference is that in the low degree
case the degree of the circuit A (that was described in the previous item) is
the same as the degree of C, whereas in the high degree case after restricting
the circuit to a small set the degree must drop (it can be at most |S| as the
circuit is multilinear).

3.1. Preprocessing step. Before describing the algorithms for the low rank
and high rank cases, we have a preprocessing step in which we find all the linear
factors of f . We will show that in the case of multilinear ΣΠΣ(2) circuits we actually
get that the linear factors of f are also linear factors of each multiplication gate
separately. This allows us to reduce the case of reconstructing multilinear ΣΠΣ(2)
circuits to the problem of interpolating multilinear ΣΠΣ(2) circuits that do not have
linear factors. We start by showing that we can find the linear factors efficiently. The
following theorem is an immediate corollary of the results of [Kal85, KT90, Kal95].
The theorem requires that the field that we are working with is not too small, so from
now on we shall assume that |F| ≥ n5 (we can make this assumption as we are allowed
to query f on inputs from an extension field).

Theorem 8. Let d, n be integers. Let F be a finite field. Then there is a random-
ized algorithm A that gets as input a black-box access to f and the parameters n and
d, and outputs, in poly(n, d, log |F|) time, with probability 1 − exp(−n), all the linear
factors, with their multiplicities, of f .

Let Lin(f) be the product of all the linear factors of f . The following lemma
shows that if f is not a product of linear functions, then every linear function in its
factorization also divides the multiplication gates M1 and M2 (note that this is not
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the case for nonmultilinear ΣΠΣ(2) circuits).6

Lemma 9. Let f be a polynomial that is computable by a multilinear ΣΠΣ(2) cir-
cuit (as in (4)). Assume that f cannot be represented as a product of linear functions.
Then if a linear function L divides f , then L must also divide both multiplication
gates, in any multilinear ΣΠΣ(2) circuit for f .

Proof. Consider a multilinear ΣΠΣ(2) circuit for f . Assume w.l.o.g. that it is
given by (4). As we assume that f cannot be represented as a product of linear
functions, we can also assume w.l.o.g. that g.c.d.(M1,M2) = 1. Assume for a contra-
diction that L does not divide M1 (and therefore does not divide M2). Consider the
(affine) subspace on which L = 0. We must have that f |L=0 = 0. This implies that
M1|L=0 = −M2|L=0. As M1 and M2 are both products of linear functions, we get
that they share the same linear factors modulo L. In particular we can assume w.l.o.g.
that d′ = d and Li|L=0 ∼ L′

i|L=0.7 By examination we get that the support of L (that
is, the set of nonzero coordinates of L) is contained in the union of the supports of
Li and L′

i, for every 1 ≤ i ≤ d (recall that we assume that g.c.d.(M1,M2) = 1). If
d > 2, then this is not possible, as the circuit for f is multilinear and the Si’s are
disjoint (and so are the S′

j ’s). Thus we get that d = 2 (recall that we assumed that we
removed the g.c.d.). However, if d = 2 and L divides f , then there is another linear
function L′ such that f = L · L′ in contradiction to the assumption that f is not a
product of linear functions.

Thus, contrary to the general case (i.e., nonmultilinear circuits), every linear
factor of f is also a linear factor of both multiplication gates in every multilinear
ΣΠΣ(2) circuit for f (unless f itself is a product of linear functions). Recall that
sim(f) = f/Lin(f). Thus, if we have Lin(f) at hand, then it is easy to simulate
oracle access to sim(f) by making queries to f .8 Moreover, as we assume that we are
given the degree d of a multilinear ΣΠΣ(2) circuit for f , then it is easy to compute
D

Δ= d − deg(Lin(f)). Hence, in the rest of the section we will reconstruct all the
simple multilinear ΣΠΣ(2) circuits for sim(f) of degree D, and from them we will
immediately get all the multilinear ΣΠΣ(2) circuits for f .

As described in the sketch we have two cases, the case that D ≤ D4 (low degree
case) and the case that D > D4 (high degree case).9 We begin with the low degree
case.

3.2. Multilinear circuits: Low degree case. In this section we give an algo-
rithm that finds all the multilinear ΣΠΣ(2) circuits of degree D ≤ D4 that compute
sim(f). We assume w.l.o.g. that the number of variables in sim(f) is more than
10D4, as otherwise we can find all the circuits for sim(f) by a brute force search (this
assumption is used in Lemma 11).

We start with a sketch of the algorithm. We first compute the sum-product
representation of f . Note that as the degree of sim(f) is at mostD4, we can interpolate
sim(f) in polynomial time. This will be helpful in future steps where we have to verify
that a given circuit computes a certain restriction of sim(f). In the next step, for each

6E.g., consider the circuit (x + w)(x + y)(x + z) − wyz. It is not hard to see that it is divisible
by x but cannot be represented as a product of linear functions.

7We can also have d = d′ ± 1 but the analysis remains the same.
8Given Lin(f), an oracle access to f , and a point α ∈ F

n, we would like to output sim(f) =
f(α)/Lin(f)(α). There may be a problem when Lin(f)(α) = 0; however, this can be easily taken
care of by passing a line through α that contains enough (e.g., more than d) points on which Lin(f)
does not vanish. This is a routine procedure and so we omit its details here.

9Recall that D4 is defined in Corollary 4.
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subset S of the variables of size |S| = 10D4, we consider the restriction of sim(f) in
which every variable not in S is set to zero. We denote this polynomial by sim(f)(S).
We then find, in a brute force manner, all the degree ≤ D multilinear ΣΠΣ(2) circuits
that compute sim(f)(S). We now wish to construct all the circuits computing sim(f)
from the circuits for the different sim(f)(S)’s. To do so, we consider for every such
set S all the sets of the form S ∪ {i} for i �∈ S. For each such new set we again
compute all the circuits for sim(f)(S ∪ {i}). Now we try to combine circuits for
sim(f)(S ∪ {1}), . . . , sim(f)(S ∪ {n}) into a single circuit for sim(f). At first sight it
may not be clear how to do this combination; however, we prove that for every circuit
for sim(f) there is a set S for which such a combination will be easy to find. We now
give a more formal description of the algorithm (Algorithm 1).

Algorithm 1 shows how to find all the multilinear ΣΠΣ(2) circuits that compute
sim(f), when its degree D is at most D4. As we are looking for multilinear circuits
and we have Lin(f), we shall only consider variables that do not belong to Lin(f).
In order to not add further notations we shall assume that the variables appearing in
sim(f) are {x1, . . . , xn}.

Algorithm 1 (multilinear circuits of low degree).
1. Interpolate the polynomial sim(f) to get an explicit representation of it as a

sum of monomials.
2. ∀S ⊆ [n] of size |S| = 10D4 find all the degree D simple multilinear circuits

in the variables of S that compute sim(f)(S) (recall that sim(f)(S) is the
polynomial obtained after setting the variables not in S to zero).

3. For each such set S and circuit A computing sim(f)(S) do the following: for
i �∈ S set Si = S ∪ {i}. Repeat the previous steps and find all the multilinear
ΣΠΣ(2) circuits Ai that compute sim(f)(Si) and such that Ai|xi=0 ≡ A (i.e.,
after substituting xi = 0 the circuits are identical). If for some i there is no
such circuit, then move to the next circuit A for sim(f)(S).

4. For each S and A for which we found {Ai}i∈S̄ combine, if possible, the dif-
ferent circuits into one multilinear ΣΠΣ(2) circuit: for every linear function
L ∈ A let Li ∈ Ai be such that Li|xi=0 = L. Denote Li = L+αi ·xi. Replace
L with L̃ = L+

∑
i�∈S αi · xi.

5. For each circuit found in the previous step verify that it computes sim(f).

Before giving the analysis of the algorithm we explain the way in which it follows
the scheme described in section 1.4. Recall that according to the sketch in section 1.4
we first have to restrict sim(f) to a random subspace of the inputs. As restriction to
a subspace does not preserve multilinearity (imagine the polynomial xy restricted to
the subspace x = y), we only consider subspaces in which some of the variables are
restricted to zero. Clearly a restriction to such a subspace preserves multilinearity.
Indeed, in step 2 we basically interpolate all the restrictions of sim(f) to subspaces of
this form that have a low dimension. The lifting is preformed in step 4.

The following theorem summarizes the required properties of Algorithm 1.
Theorem 10. Let f be a multilinear polynomial that can be computed by a

multilinear ΣΠΣ(2) circuit. Assume that deg(sim(f)) > 3. Then Algorithm 1, when
given oracle access to sim(f), outputs all the multilinear ΣΠΣ(2) circuits of degree D
computing sim(f). The running time of the algorithm is polynomial in n and |F|.

Note that the theorem only discusses polynomials f such that sim(f) has degree
larger than 3. This is because when the degree of sim(f) is too small, there may be
more possible circuits computing it. We deal with this case in section 3.2.1.
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Proof. Before proving the correctness of the algorithm, we first analyze its run-
ning time. The first step in the algorithm is a simple interpolation of a multilinear
polynomial of degree D in (at most) n variables. This step runs in time polynomial
in nD (we simply query the polynomial on all inputs in {0, 1}n of weight at most D,
and solve a system of linear equations to find the coefficients, remembering to look
only at coefficients of monomials of degree at most D). Hence we can assume that we
have an explicit representation of sim(f) as sum of monomials. It is clear that in the
second step we get a polynomial number of circuits. Indeed, there are at most n10D4

many sets S, and for each set S there are at most |F|2D·(10D4+1) multilinear ΣΠΣ(2)
circuits in the variables of S (we just count the number of sets of at most 2D linear
functions, in 10D4 variables). In the same way we see that computing the different
Ai’s also requires polynomial time. As we have a description of sim(f) at our disposal,
it is easy to verify whether a given circuit computes sim(f)(S). Thus, steps 1–3 can
be computed in polynomial time (in |F| and n). It is also clear that step 4 requires a
polynomial time, as the number of circuits that we computed in the previous steps is
also polynomial. The last step (verification step) also requires a polynomial running
time, and hence the total running time is polynomial in n and |F|.

The correctness of the algorithm follows from the next two lemmas. The first
lemma (Lemma 11) shows that there exists a set S such that sim(f)(S) does not have
linear factors, and hence step 2 can be implemented for sim(f). The second lemma
(Lemma 12) shows that if S satisfies a certain property and A computes sim(f)(S),
then for every i �∈ S there is a unique circuit Ai that computes sim(f)(S ∪ {i}) and
that equals A after setting xi = 0.

Lemma 11. Let g(x1, . . . , xn) be a polynomial on n > 2d+ 1 variables (recall our
assumption at the beginning of section 3.2) that has no linear factors and that can be
computed by a ΣΠΣ(2) circuit of degree d. Then there exists a variable xk such that
g|xk=0 has no linear factors.

Proof. Let C =
∏d1
i=1 Li +

∏d2
i=1 L

′
i be some ΣΠΣ(2) circuit computing g, for

some d1, d2 ≤ d. It is clear that dim(span({1, L1, . . . , Ld1, L
′
1, . . . , L

′
d2
})) ≤ 2d+ 1. In

particular there is 1 ≤ i ≤ n such that xi is not spanned by the linear functions in
the circuit (and the constant function). Assume w.l.o.g. that i = n. It is now clear
that if we set xn to zero, then the resulting circuit C′ will be “isomorphic” to C in
the following sense: there exists an invertible linear transformation φ : Fn → Fn such
that for every (a1, . . . , an) ∈ Fn we have that C(a1, . . . , an) = C′(φ(a1, . . . , an)) (we
think of C′ as a circuit in n variables although xn does not appear in it). In particular
if C′ has a linear factor, then so does C (as C is equal to the composition of C′ with
a linear transformation). As C has no linear factors (by our assumption on g) we get
that C′ = C|xn=0 has no linear factors as well.

Note that the lemma works for any ΣΠΣ(2) circuit and not just multilinear cir-
cuits. We also note that it is not difficult to change the proof of the lemma to
hold also for the case that n = 2d + 1 (we just need to consider the homogeneous
part of each Li and L′

j and not consider the constant function 1). In addition, it
is also easy to see that we cannot have n = 2d because of the following example:
f(x1, . . . , x2d) =

∏d
i=1 xi +

∏2d
i=d+1 xi. The next lemma shows that if D > 3, then for

every Si and circuit A that was computed in step 2 there is at most one multilinear
ΣΠΣ(2) circuit Ai with Ai = sim(f)(Si) and Ai|xi=0 ≡ A. The proof is by a simple
manipulation of polynomials. Note that this implies that if there exists a circuit C
for f such that A is its restriction to the variables S (that is, A is the resulting circuit
after setting all the variables not in S to zero), then step 4 will return the circuit C



INTERPOLATION OF DEPTH-3 CIRCUITS 2141

(because of the uniqueness, we are assured that we combine the linear functions in
the different Ai’s in the only possible way).

Lemma 12. Let g(x1, . . . , xt) be a polynomial of degree D > 3 that does not have
any linear factors. Assume that we have a multilinear ΣΠΣ(2) circuit computing
g|xt=0. In other words, we have

g(x1, . . . , xt)|xt=0 =
D∏
i=1

Li +
D′∏
j=1

L′
j .

Then there is at most one multilinear circuit of the form

D∏
i=1

(Li + αixt) +
D′∏
j=1

(L′
j + α′

jxt)

that computes g (note that such a circuit may not exist).
Proof. Assume for a contradiction that there are two different multilinear circuits

of that form that compute g. Assume w.l.o.g. that the first circuit is

g = C1 = (L1 + αxt) ·
D∏
i=2

Li + (L′
1 + α′xt) ·

D′∏
j=2

L′
j.

There are three canonical options for the second circuit:

C2 = L1 · (L2 + βxt) ·
D∏
i=3

Li + L′
1 · (L′

2 + β′xt) ·
D′∏
j=3

L′
j,(5)

C2 = (L1 + βxt) · L2 ·
D∏
i=3

Li + L′
1 · (L′

2 + β′xt) ·
D′∏
j=3

L′
j,(6)

C2 = (L1 + βxt) · L2 ·
D∏
i=3

Li + (L′
1 + β′xt) · L′

2 ·
D′∏
j=3

L′
j.(7)

We shall only analyze the first case (given in (5)), as it is the more interesting
one. The analysis of the other cases is similar (and somewhat simpler).

So let us assume that C2 is given by (5). As C1 = C2 we get, by exchanging sides,
that

xt · (αL2 − βL1) ·
D∏
i=3

Li = xt · (β′L′
1 − α′L′

2) ·
D′∏
j=3

L′
j.

Since D > 3, there is 3 ≤ i ≤ D such that Li � |(β′L′
1 − α′L′

2), and so there must be
3 ≤ j ≤ D such that Li ∼ L′

j. This implies that Li divides g. However, we assumed
that g does not have linear factors, so we have a contradiction.

The proof of Theorem 10 now follows easily. Indeed, by Lemma 11 we know
that for every circuit C for sim(f) there exists a set S of size |S| = 10D4 and a
simple multilinear circuit A that compute sim(f)(S). Lemma 12 and the discussion
proceeding it show that C will be one of the circuits computed in step 4. It is clear
that the last step will keep only the correct circuits.

We now handle the cases of D = 3 and D = 2 (note that Lemma 12 says nothing
for such D’s and indeed, the claim is not true in this case).
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3.2.1. Case D ≤ 3. Algorithm 1 in its current form cannot compute all the
circuits of degree ≤ 3 for sim(f). However, the required change is minor and so we
describe it here and do not repeat the algorithm itself. We also give a sketch of a
proof, as the proof itself contains easy manipulations similar in spirit to those that
were already performed for the case D > 3. The basic difference is in steps 3 and 4.
Instead of computing a circuit Ai for sim(f)(S ∪ {i}) we need to compute a circuit
Ai,j for sim(f)(S ∪ {i, j}). Another change is that it may be the case that for some
i the circuit Ai is not the unique lift (in contrast to what Lemma 12 guarantees
for higher degrees). However, in such a case we prove that Ai,j is unique for every
j �∈ S ∪{i}. The rest of the proof should now be clear (given that we prove the above
claim regarding Ai,j). In fact, this discussion is true only for D = 3 and for D = 2,
yet another slight modification is required, but it is similar in spirit and so we omit
it.

We first analyze the case D = 3. The only possible difference from the case
D > 3 is when there is some index i such that there are two (or more) different ways
of extending the circuit A to a circuit Ai. From the proof of Lemma 12 we get that
w.l.o.g. A has the following form:

A = L1 · L2 · L3 + L′
1 · L′

2 · L′
3,

and the two different lifts are10

Ai = (L1 + α2xi) · L2 · L3 + (L′
1 − β2xi) · L′

2 · L′
3

and

A′
i = L1 · (L2 − α1xi) · L3 + L′

1 · (L′
2 + β1xi) · L′

3

for constant α1, α2, β1, and β2. In particular we must have that L3 = c · (β1L
′
1 + c2 ·

β2L
′
2) and L′

3 = c · (α1L1 + α2L2) for some c �= 0. Using the same reasoning as in
the proof of Lemma 12, it is easy to show that for any variable j �∈ S ∪ {i} there is at
most one circuit Ai,j(S ∪ {i, j}) satisfying

Ai,j = g(S ∪ {i, j})

and

Ai,j |xj=0 ≡ Ai.

In other words, for the case D = 3 we have to perform steps 3 and 4 of Algorithm 1
for the circuit Ai(S ∪ {i}) and its possible lifts Ai,j(S ∪ {i, j}).

To conclude, if we have an index i with two different lifts Ai and A′
i (as described

above), then, as in the case of D > 3, we get that there are at most two circuits Â
and Â′ that for every j �∈ S ∪ {i} satisfy

Â(S ∪ {i, j}) ≡ Ai,j

and

Â′(S ∪ {i, j}) ≡ A′
i,j .

10There are two more cases to consider (corresponding to (6) and (7)) but the analysis follows
from similar arguments.



INTERPOLATION OF DEPTH-3 CIRCUITS 2143

Therefore we get, again, that at most polynomially many circuits are found by the al-
gorithm, that those polynomials are computed in polynomial time, and that they
contain all the possible representations for sim(f) (we can find those circuits by
repeating step 4 of Algorithm 1 for each of the Ai’s and the corresponding set {Ai,j}).
Hence we can find in polynomial time all the different multilinear ΣΠΣ(2) circuits for
f .

The case D = 2 follows by a similar case analysis. We omit the proof, as this
case (as well as the case D = 3) is not very interesting and the proofs are simple and
resemble the proofs seen so far.

3.3. Multilinear circuits: High degree case. We now turn to the high degree
case. As described above, the algorithm for this case is similar to Algorithm 1 with the
exception that we do not substitute zeroes for the variables outside S and that “gluing”
the different circuits for sim(f)(S ∪ {i}) is slightly more complicated. Algorithm 2
shows how to interpolate the circuit in the case when deg(sim(f)) > D4.

Algorithm 2 (multilinear circuits of high degree).
∀S ⊆ [n] such that |S| = 2D4do the following:
1. ∀i �∈ S pick a random assignment to xi from F. Denote the final assignment

with ρ. Let sim(f)|ρ be the polynomial sim(f) after substituting the partial
assignment ρ.

2. For every simple multilinear ΣΠΣ(2) circuit in the variables {xi}i∈S , over F,
of degree greater than D4 (and at most 2D4 of course), check whether the
circuit computes sim(f)|ρ. If no such circuit computing sim(f)|ρ is found,
then move to the next S.

3. For every i �= j such that i, j �∈ S, set Si,j = S ∪ {i, j}. Find a simple
multilinear ΣΠΣ(2) circuit Ai,j that computes sim(f)|ρi,j , where ρi,j is the
assignment that equals ρ on all the coordinates outside Si,j (namely, we
“forget” the assignments to xi and xj).

4. Glue the different circuits for the Si,j ’s to a single multilinear ΣΠΣ(2) circuit.
That is, find the unique circuit C whose restriction to ρi,j equals Ai,j (the
exact way of gluing will be explained in the analysis of the algorithm).

If no circuit is found, then output “fail.”
The basic intuition behind the algorithm is the following. As we will see in

Lemma 15 there is a unique circuit for sim(f) of degree greater than D4 (given that
one exists). Moreover, we will see that w.h.p. even when we substitute random field
elements for most of the variables, there is still a unique circuit for the restricted
polynomial. Thus, in order to find the circuit for sim(f) we first find the circuit for
the restricted polynomial sim(f)|ρ (steps 1 and 2) and then find the unique way of
recovering the other variables. The main difference from the low degree case is that
by exposing the other variables, new linear functions may appear (as the degree of the
restricted polynomial is at most |S|), and in order to find the partition of the other
variables to the new linear functions we have to consider pairs of variables (i.e., find
the circuit for sim(f)(S ∪ {i, j}) instead of just finding a circuit for sim(f)(S ∪ {i})).
This is done in steps 3 and 4. The following theorem shows that Algorithm 2 is indeed
correct and analyzes its running time.

Theorem 13. Let f be a multilinear polynomial such that sim(f) can be com-
puted by a multilinear ΣΠΣ(2) circuit of degree D > D4. Then Algorithm 2, when
given oracle access to sim(f), outputs with probability ≥ 1 − (n + 1)2/|F | the unique
multilinear ΣΠΣ(2) circuits of degree D computing sim(f). The running time of the
algorithm is polynomial in n and |F|.
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Note that in particular the theorem implies that there is a unique degree D
ΣΠΣ(2) circuit for sim(f). This is, however, a simple fact given Corollary 7 (and in
Lemma 15 we prove a slightly more general version of this fact).

Proof. The idea of the proof is the following. We first show (Lemma 14) that for
every set S, w.h.p. over the choice of ρ, there is no linear factor dividing sim(f)|ρ (i.e.,
no new linear factor was introduced). We then show (Lemma 15) that this implies
that there is a unique ΣΠΣ(2) circuit for sim(f)|ρ of degree larger than D4, if such
a circuit exists. Combining the two lemmas, we see that there is a set S and an
assignment ρ for which there is a unique ΣΠΣ(2) circuit of degree larger than D4 for
sim(f)|ρ (the set S is picked so that the degree of the circuit for sim(f)ρ is larger than
D4 w.h.p. over the choice of ρ). At this point we will have at hand the unique circuit
for sim(f)|ρ and we would like to add to it the variables not in S to get the circuit
for sim(f). To do so we find (again the unique) ΣΠΣ(2) circuit for sim(f)|ρi,j . From
that circuit we can immediately find whether xi and xj belong to the same linear
function (for each of the multiplication gates) and what is the ratio between their
coefficients. Given this information for all pairs of variables it is easy to construct the
two multiplication gates. We now give the formal proof.

Let S ⊂ [n] be a set of size 2D4 and C = M1 + M2 be a multilinear ΣΠΣ(2)
circuit for sim(f) of degree higher than D4. We say that the assignment ρ is good for
C if no new linear factors were introduced (note that the degree of sim(f)|ρ may be
smaller though). In other words, ρ is good if Lin(sim(f)|ρ) = 1.

Lemma 14. Let S ⊂ [n] be a set of size 2D4 and C = M1 +M2 be a multilinear
ΣΠΣ(2) circuit for sim(f) of degree D > D4. The probability that an assignment ρ,
to the variables not in S, is not good for C is smaller than (n+ 1)2/|F|.

The proof of the lemma is a simple union bound over the event that two lin-
early independent linear functions in the circuit for sim(f) become linearly dependent
nonconstant linear functions after substituting ρ.

Proof. We first bound the probability that M1 or M2 were set to zero. This may
happen only if a linear function from any of them was set to zero, and this happens
with probability 1/|F|. As there are 2D linear functions, we get an upper bound on the
probability of 2D/|F| (recall that we work only with the variables that do not belong to
Lin(f)). To get a bound on the probability that a new linear factor was introduced, we
note that this is possible only if there is a linear function L1 dividing M1 and a linear
function L2 dividing M2 such that L1|ρ ∼ L2|ρ, and they were not set to constants.
As there is only one possible coefficient c for which L1|ρ = c · L2|ρ (i.e., c depends
only on S,L1, and L2 and not on ρ), we see that the probability that this happened
is equal to the probability that the part in L1 − cL2 that depends on the variables
outside S was set to zero. As before, this happens with probability 1/|F|. As there are
at most D2 such pairs we get an upper bound of D2/|F| on the probability. Thus, the
overall probability is bounded by (D2 + 2D)/|F| < (D+ 1)2/|F| ≤ (n+ 1)2/|F|.

The next lemma shows that if there is a multilinear ΣΠΣ(2) circuit C = M1+M2,
of degree D > D4, for sim(f), then it is unique and that if S and ρ are such that ρ is
good for C, then there is a unique multilinear ΣΠΣ(2) circuit for sim(f)|ρ (and that
circuit is M1|ρ +M2|ρ). This lemma generalizes Corollary 7 (by taking S = [n] and
ρ to be the “empty” substitution, we get the claim regarding the uniqueness of the
circuit for sim(f)).

Lemma 15. Let sim(f) be computed by a multilinear ΣΠΣ(2) circuit C = M1 +
M2. For a set S and a good assignment ρ, if deg(sim(f)|ρ) > D4, then there is
a unique simple multilinear ΣΠΣ(2) circuit that computes sim(f)|ρ. Moreover, this
circuit is M1|ρ +M2|ρ.
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Proof. By our assumption we have that deg(sim(f)|ρ) > D4. Assume for a
contradiction that there is a multilinear ΣΠΣ(2) circuit C′ = A1 + A2 such that
C′ = sim(f)|ρ and C′ �= M1|ρ+M2|ρ. Therefore the circuit C̃ = M1|ρ+M2|ρ−A1−A2

is identically zero and of degree > D4. Notice that as ρ is a good assignment, we have
that C̃ is simple. By Corollary 4 we are assured that it is not minimal, and so we
must have that A1 = M1|ρ or A1 = M2|ρ, which is a contradiction.

Given the two lemmas it is easy to explain steps 1 and 2 of the algorithm. Let
C be the unique multilinear ΣΠΣ(2) circuit for sim(f) of degree higher than D4.
Let S be a set of size 2D4 such that the degree of C in the variables of S is larger
than D4 (think of the other variables as constants and view C as a circuit over the
variables in S and compute its degree). By Lemma 14 we get that with probability
≥ 1−(n+1)2/|F | the substitution ρ is such that C|ρ is the unique circuit for sim(f)|ρ.
Thus, for this set S we get that with probability ≥ 1 − (n + 1)2/|F | steps 1 and 2
find the unique circuit C|ρ (and this circuit is of degree greater than D4). We now
continue and show that if such S and good ρ were found, then steps 3 and 4 return
the circuit C.

As ρ is good for C, it immediately follows that ρi,j is good for C (and S ∪
{i, j}). Thus the circuits found in step 3 are the unique circuits computing the
different f |ρi,j ’s (i.e., those circuits are identical to the C|ρi,j ’s). We now explain
how step 4 is performed. Consider a linear function L that belongs to M1. There
are two possibilities. Either L|ρ is constant or not. If L|ρ is not constant, then for
every variable xi we will find its coefficient in L by considering the circuit, say, C|ρ1,i

(assuming that i �= 1; otherwise consider the circuit C|ρ1,2). If L was restricted to a
constant, then denote L =

∑n
i=1 αi · xi. Notice that in C|ρi,j there will be a linear

function of the form c·(αi ·xi+αj ·xj), for some nonzero field element c. In particular, if
for some chosen xi that appears in L, we chose to normalize its coefficient to always be
1, then we can find in this manner all the coefficients of the other variables appearing
with it in L and so reconstruct (a nonzero multiple of) L. In this way we can find
all the linear functions appearing in M1 and M2. Note that we found all the linear
factors up to some nonzero multiple, so it only remains to find a constant that will
give the correct normalization of each Mi. This can be easily done by querying sim(f)
on two points, one on which M1 vanishes and not M2 and vice versa. We note that
we do not have to verify that we found the correct circuit for sim(f), as by Lemma 15
and step 2 we are guaranteed that we have the correct circuit for sim(f)|ρ (assuming
that ρ is good) and it is clear that starting from this circuit we find the unique circuit
C for sim(f). Thus, with probability at least 1− (n+ 1)2/|F | the algorithm finds the
unique multilinear circuit for sim(f).

It only remains to analyze the running time of the algorithm. Given a set S
and an assignment ρ we check whether sim(f)|ρ has new linear factors by applying
Theorem 8, which requires polynomial time and succeeds w.h.p. In step 2 we have to
go over all possible simple multilinear ΣΠΣ(2) circuits for sim(f)|ρ of degree greater
than D4 (and at most 2D4). Note that as there are only |F|2D4+1 linear functions
in the variables {xi}i∈S , there are polynomially many such circuits (|F|2D4·(2D4+1)

is an obvious upper bound). Among all those circuits we shall find, by going over
all 0, 1 assignments to {xi}i∈S , a circuit that computes sim(f)|ρ. As the size of S
is constant, this costs only a constant factor in the running time. Verifying that the
circuit is simple is pretty obvious and requires time polynomial in the degree of the
circuit and linear in n. Next, for each pair (i, j) the complexity of step 3 is similar
to the complexity of step 2. Finally, the procedure described above for “gluing” the
different C|ρi,j ’s requires polynomial time (in n). Hence, the overall running time is
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polynomial in n and |F|, and with probability ≥ 1−(n+1)2/|F | the algorithm outputs
the unique multilinear ΣΠΣ(2) circuit for sim(f). Note that failure can occur only if
we failed to find a good ρ. This completes the proof of Theorem 13.

We now combine the preprocessing step and Theorems 10 and 13 to get Theorem 1
(the argument is straightforward).

3.4. Proof of Theorem 1. The proof of the theorem is easy given the two
algorithms. First, we find Lin(f) and compute D = d−deg(Lin(f)). If D ≤ D4, then
we run the low degree algorithm. If D > D4, then we run the high degree algorithm.
We are assured that if we get an answer, then it is going to be correct. The probability
of failure in both algorithms is polynomially small in n (and can be easily decreased,
e.g., by repeating the algorithm) and so the theorem follows.

4. General circuits. In this section we prove Theorem 2. For convenience we
repeat it here.

Theorem 2. Let f be an n-variate polynomial computed by a ΣΠΣ(2) circuit
of degree d, over a field F. Then there is a randomized interpolation algorithm that,
given black-box access to f and the parameters d and n, runs in quasi-polynomial time
(in n, d, |F|) and has the following properties:

• If rank(f) = Ω
(
log2(d)

)
, then with probability 1− o(1) the algorithm outputs

the (unique) ΣΠΣ(2) circuit for f .
• If rank(f) = O

(
log2(d)

)
, then the algorithm outputs, with probability 1 −

o(1), a polynomial Lin(f), a polynomial Q(y1, . . . , yk), and k linear functions
L1, . . . , Lk, where k ≤ rank(f), such that Lin(f) is the product of all the
linear factors of f and Lin(f) ·Q(L1, . . . , Lk) = f .

When |F| < max(d5, n5), the algorithm is allowed to make queries to f from a poly-
nomial size extension field of F.

From now on we shall assume, w.l.o.g., that the underlying field F is of size greater
than max(d5, n5). We shall have the following representation of f in mind:

(8) f(x̄) =
d∏
i=1

L
(1)
i (x̄) +

d∏
i=1

L
(2)
i (x̄).

Note that in order to ease the notations we assume that the degrees of both multi-
plication gates are equal. As described in section 1.4 there are two conceptual steps
in the proof. First, we restrict the inputs to come from a random subspace V of di-
mension O(log2(d)), where d = deg(f). We then learn the restriction of f to V which
we denote by f |V . The second step is to learn the restriction of f to larger subspaces
and then glue the different representations together. While this is the general picture,
there is a difference in the way that we handle functions with high rank and functions
with low rank. We start by describing the algorithm for the low rank case.

4.1. Interpolation for the low rank case. In this section we give an inter-
polation algorithm for polynomials that are computed by ΣΠΣ(2) circuits of degree
d and that have rank at most 10R4 · log2(d) (recall the definition of R4 from Corol-
lary 6). Let f be such a polynomial. Algorithm 3 is an interpolation algorithm for f .
Before giving the algorithm, we describe each of its steps.

Let C be any ΣΠΣ(2) circuit computing f , e.g., the one given by (8). We start by
computing Lin(f). This can be easily done using Theorem 8. After this step we can
assume, as before, that we get oracle access to sim(f) = f/Lin(f).11 Note, that as

11Unlike the multilinear case, it may be the case that sim(C) does not compute sim(f).
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sim(f) = f/Lin(f) divides sim(C) and rank(f) ≤ 10R4 · log2(d), we get that sim(f)
can be represented as a polynomial in ≤ 10R4 · log2(d) linear functions. Namely, there
exists a polynomial P (y1, . . . , yk) and linearly independent linear functions {Li}i∈[k]

such that sim(f) = P (L1, . . . , Lk) (we will always think of k as the minimal possible
integer allowing such a representation). The goal of Algorithm 3 is to find such a
representation for sim(f). There are two main steps for doing that. First, we pick
a random subspace V of dimension O(R4 · log2(d)) and look for a polynomial Q and
linear functions �1, . . . , �k such that sim(f)|V = Q(�1, . . . , �k) (we do not necessarily
find the polynomial P and restricted linear functions {Li|V } given above; however,
the two different representations are closely related, as shown in Lemma 23). In
the second step we “lift” the �i’s and find �∗i ’s such that for every i, �∗i |V = �i and
sim(f) = Q(�∗1, . . . , �

∗
k). This may seem like a big leap from the outcome of the first

step; however, we manage take it so by exposing one variable at a time (in a similar
way to step 4 of Algorithm 1). The important ingredients of this “lifting” procedure
are Lemmas 23 and 24 which basically show that if V ′ is a subspace containing V ,
then there exist unique linear functions (that can be easily found) {�′i}ki=1, over V ′,
that satisfy span({Li|V ′}) = span({�′i}), �′i|V = �i, and Q(�′1, . . . , �

′
k) = sim(f)|V ′ . We

now give the formal description of the algorithm.
Algorithm 3 (general ΣΠΣ(2) circuits of low rank).
1. Computing Lin(f): Find the linear factors of f using the factoring algo-

rithm of Theorem 8.
2. Interpolating on a low dimensional random subspace: Pick a ran-

dom subspace V of dimension s = 20R4 · log2(d) + log2(n). Find k′ ≤
10R4 · log2(d) linearly independent linear functions {�i}i∈[k′], such that
sim(f)|V = Q(�1, . . . , �k′), for some polynomial Q of degree deg(Q) ≤ d,
and such that no such representation is possible for any k′′ < k′. In other
words, do the following: For k′ = 1, . . . , 10R4 · log2(d) consider all sets of k′

linearly independent linear functions over V . For every such set {�i}i∈[k′] find,
using brute force interpolation, a polynomial Q(y1, . . . , yk′) of degree at most
d, such that Q(�1, . . . , �k′) = sim(f)|V , if such a polynomial exists. Finally,
output the first set {�i}i∈[k′] for which such a polynomial Q was found.

3. Lifting from V to Fn: Find linear functions {�∗i }i∈[k′], over Fn, such that
Q(�∗1, . . . , �

∗
k′) = sim(f) using the following procedure (a more detailed expla-

nation will be given when analyzing the algorithm):
(a) Let {vi}i∈[n] be a basis to Fn, such that {vi}si=1 is a basis to V . For every

i ∈ [n− s] let Vi = span(V ∪ {vs+i}). For each Vi find a representation
for sim(f)|Vi of the form sim(f)|Vi = Q(�(i)1 , . . . , �

(i)
k ), where for each i

and j we have that �(i)j |V = �j.

(b) Find the unique linear functions {�∗i }i∈[k] that satisfy �∗j |Vi = �
(i)
j , for

each i and j, in a way analogous to step 4 of Algorithm 1.
If no such representation is found, then output “fail.”

The next theorem shows the correctness of Algorithm 3 and analyzes its running
time.

Theorem 16. Let f be a polynomial that can be computed by a ΣΠΣ(2) circuit
of rank ≤ 10R4 · log2(d). Then with probability ≥ 1−|F|−Ω(log2(n)) Algorithm 3, when
given oracle access to f , computes Lin(f), a natural number k ≤ 10R4 · log2(d), a
polynomial Q(y1, . . . , yk), and k linear functions {�∗i }i=1,...,k such that Q(�∗1, . . . , �∗k) =
sim(f). The running time of the algorithm is quasi polynomial in n, d, and |F| (i.e.,
it is exp(poly(log |F|, logn, log d))).
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The proof of correctness of the algorithm is composed of three parts. First, we
study properties of polynomials that can be written as functions of exactly k linear
functions. In particular we show that this property is preserved (w.h.p.) when we
restrict the polynomial to a random subspace of sufficient dimension (Corollary 22).
Then we consider sim(f) and a random subspace V of dimension 10R4 · log2(d) and
show how to find the relevant linear functions for it. This will complete the analysis
of step 2. After that we prove a lemma mentioned above (Lemma 24) that shows
how we can “lift” the linear functions found in the previous step to functions over Fn.
This will complete the analysis of step 3. The analysis of the running time will be
quite simple. For sake of modularity, in the next subsection we discuss properties of
polynomials that depend on k linear functions and then proceed with the proof.

4.1.1. Polynomials depending on k linear functions. In this subsection we
study the notion of a polynomial that depends on exactly k linear functions. We first
define this property in a formal manner.

Definition 17. Let h(x1, . . . , xn) be a polynomial. We say that h is a polynomial
in exactly k linear functions if there is a polynomial P (y1, . . . , yk) and k linear func-
tions L1, . . . , Lk such that h = P (L1, . . . , Lk), and there is no such representation for
h with less than k linear functions. We say that h is a polynomial in k linear functions
if there exists a k′ ≤ k such that h is a polynomial in exactly k′ linear functions.

The following lemma gives a sufficient and necessary condition for being a function
of k linear functions.

Lemma 18. Let h(x1, . . . , xn) be a polynomial over F. Then h can be written
as a polynomial in k linear functions if and only if there is a subspace V ∗ ⊆ Fn of
dimension n−k such that for every u ∈ Fn and v ∈ V ∗ we have that h(u) = h(v+u).

Note that the lemma does not speak about h being a function of exactly k linear
functions. However, it is clear that if there is a subspace V ∗ of dimension n − k
that satisfies the condition in the lemma, and there is no subspace U∗ of dimension
> n − k that satisfies the condition of the lemma, then h is a function of exactly k
linear functions.

Proof. Assume w.l.o.g. that h is a polynomial in exactly k linear functions. Denote
h = P (L1, . . . , Lk), where the Li’s are homogeneous linear functions. Let V ∗ = {x̄ ∈
Fn : ∀i Li(x̄) = 0}. Clearly dim(V ∗) = n−k. Let u ∈ Fn and v ∈ V ∗ be two vectors.
We have that h(v + u) = P (L1(u+ v), . . . , Lk(v + u)) = P (L1(u), . . . , Lk(u)) = h(u).

For the other direction, given such V ∗, let L1, . . . , Lk be k linearly independent
linear functions such that for every v ∈ V ∗ and i ∈ [k] we have that Li(v) = 0. Let
V ⊂ Fn be a k-dimensional subspace such that V ∩V ∗ = {0}. Clearly Fn = V ⊕V ∗. It
is also clear that the linear functions {Li|V } are linearly independent. As dim(V ) = k,
it follows that there is some polynomial Q(y1, . . . , yk) such that for every v ∈ V it
holds that h(v) = Q(L1(v), . . . , Lk(v)). Now, given u ∈ Fn write u = v+ v∗ for v ∈ V
and v∗ ∈ V ∗. We now have that h(u) = h(u − v∗) = h(v) = Q(L1(v), . . . , Lk(v)) =
Q(L1(v+v∗), . . . , Lk(v+v∗)) = Q(L1(u), . . . , Lk(u)). Hence, h = Q(L1, . . . , Lk).

We now give some easy corollaries of this lemma.
Corollary 19. Let h(x̄) = P (L1, . . . , Lk) be a polynomial in exactly k linear

functions. Let V be a subspace of Fn. Then h|V is a polynomial in exactly k linear
functions if and only if the restrictions L1|V , . . . , Lk|V are linearly independent.

Corollary 20. Let h be a polynomial in exactly k linear functions. Let V ⊆
Fn be an s-dimensional subspace such that h|V is a polynomial in k′ < k linear
functions. Let v1, . . . , vn−s be vectors such that span(V ∪ {vi}i∈[n−s]) = Fn. Denote
Vi = span(V ∪ {vi}). Then for some i ∈ [n− s] we have that h|Vi is a polynomial in
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more than k′ linear functions.
In the analysis of Algorithm 3 we will be interested in restrictions to random

subspaces. The following lemmas show that if h is a polynomial in exactly k linear
functions and V is a subspace of sufficiently high dimension chosen at random, then
w.h.p. h|V is also a polynomial in exactly k linear functions.

Lemma 21. Let {�i}i∈[t] be a set of linearly independent linear functions over
Fn. Let V ⊆ Fn be a random s-dimensional subspace. Then the probability that the
set {�i|V }i∈[t] is linearly dependent is at most |F|t−s.

Proof. Clearly, �1, . . . , �t are linearly dependent on V if and only if there is
a nonzero linear combination α1�1 + · · · + αk�k that vanishes on V . Given V let
us define L∗ = {�(x1, . . . , xn) : �|V = 0}. Note that as V is random, so is L∗.
Namely, L∗ is a random n−s-dimensional subspace of linear functions. Thus, �1, . . . , �t
are linearly dependent on V if and only if there is a nonzero function in the span
of the �i’s that belongs to L∗. In other words, we have to bound the probability
that a random subspace of dimension n − s (i.e., L∗) intersects a given subspace
of dimension ≤ t (i.e., span(�1, . . . , �t)). As the probability that a random nonzero
vector belongs to a given t-dimensional subspace is (|F|t − 1)/(|F|n − 1) we get by
the union bound that the probability of a nontrivial intersection is upper bounded by
(|F|n−s − 1) · (|F|t − 1)/(|Fn| − 1) < |F|t−s.

From Corollary 19 and Lemma 21 we get the following corollary.
Corollary 22. Let h be a function of exactly k linear forms.12 Let V be a

random subspace of dimension ≥ k + log2(n). Then the probability that h|V is not a
function of exactly k linear forms is at most |F|− log2(n).

The next lemma shows that if a polynomial in k linear functions, h, has two
different representations as a polynomial in exactly k linear functions, then these
representations are closely related.

Lemma 23. Let h(x̄) be a polynomial in exactly k linear functions. Let
P (�′1, . . . , �

′
k) = h = Q(�1, . . . , �k) be two different representations for h. Then

span({�′i}i∈[k]) = span({�i}i∈[k]). In particular this implies that there is an invert-
ible linear transformation T : Fk → Fk such that Q(y1, . . . , yk) = (P ◦ T )(y1, . . . , yk).

Proof. Assume for a contradiction that, w.l.o.g., �′1, �1, . . . , �k are linearly in-
dependent. Let W be the codimension 1 subspace on which �′1 vanishes. It is
clear that �1|W , . . . , �k|W are linearly independent, whereas �′1|W , . . . , �′k|W are lin-
early dependent (as �′1|W = 0). In particular, by Corollary 19 we get that h|W is
a function of at most k − 1 linear functions (when considering the representation
according to the �′i|W ’s) and is a function of exactly k linear functions (when con-
sidering the representation according to the �i|W ’s), which is a contradiction. Now,
let T : Fn → Fn be an invertible linear transformation taking (�i)i to (�′i)i. Namely,
T (�1(v), . . . , �k(v)) = (�′1(v), . . . , �′k(v)) for every v ∈ Fn. We get that for every v ∈ Fn

it holds that

P ◦ T (�1(v), . . . , �k(v)) = P (�′1(v), . . . , �
′
k(v)) = h(v) = Q(�1(v), . . . , �k(v)).

As the �i’s are linearly independent, it follows that we must have P ◦ T = Q (as
otherwise we will have two low degree polynomials representing the same function
over a large field).

4.1.2. Proof of Theorem 16. We are now ready to give the proof of Theo-
rem 16.

12A linear form is a homogeneous linear function.
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Proof of Theorem 16. By our assumption that rank(f) ≤ 10R4 · log2(d), we get
that sim(f) can be written as a polynomial in at most 10R4 · log2(d) linear functions.
For simplicity we shall assume that it is a polynomial of exactly k = rank(f) linear
functions. Let

(9) sim(f) = P (L1, . . . , Lk),

where P (y1, . . . , yk) is a polynomial and {Li}ki=1 are linear forms. We shall later use
this representation. We now analyze separately each step of the algorithm. Step 1 is
an immediate application of Theorem 8 and does not require special analysis.

Step 2: Interpolating on a low dimensional random subspace. Recall
that in this step we pick a random subspace V ⊆ Fn of dimension s = 20R4 · log2(d)+
log2(n), and interpolate sim(f) over it. By Corollary 22 we get that with probability
≥ 1−|F |− log2(n) the polynomial sim(f)|V is a polynomial in exactly k linear functions.
We now find a representation of the form sim(f)|V = Q(�1, . . . , �k).

The idea is pretty simple. We go over all possible values for k (recall that we do
not know k in advance). For each k′ ≤ 10R4 · log2(d)+ log2(n) we go over all possible
sets of k′ linearly independent linear functions over V , and for each set {�i}i∈[k′] we
try to represent sim(f)|V as a polynomial Q(�1, . . . , �k′). Note that given {�i}i∈[k′] we
can find such a polynomial Q (if such Q exists) by a simple brute force interpolation.
As this is routine, we skip it here (for completeness we give a description of this
process in Appendix A).

Using the approach above we may get many different representations for sim(f)|V .
Among all those representations we pick one with the smallest possible k′. As men-
tioned above, by Corollary 22 we get that w.h.p. k′ = k. Moreover, Corollary 20
gives a way to verify that indeed, k′ = k. So, to conclude, after the first step of the
algorithm we can be sure that13 k′ = k and that we have a representation of the form
sim(f)|V = Q(�1, . . . , �k).

The running time of this step is dominated by the number of different subsets
of at most 10R4 · log2(d) linearly independent linear functions over V . Clearly there
are at most |F|10R4·log2(d)+log2(n) linear functions over V , and so we go over at most
|F|(10R4·log2(d)+log2(n))·(10R4·log2(d)) such subsets. The brute force interpolation algo-
rithm (as described in Appendix A) is slightly faster and so the total running time of
this step is |F|O(log2(d)·(log2(d)+log2(n))) = exp(log |F| · log2(d) · (log2(d) + log2(n))).

We now move to the next step, in which we show how to lift the representation
of sim(f)|V to Fn.

Step 3: Lifting from V to Fn. Recall that in this step we look for linear
functions {�∗i }i∈[k] such that �∗i |V = �i and sim(f) = Q(�∗1, . . . , �

∗
k). The existence of

such functions will follow from the next lemma.
Lemma 24. Let {Li}i∈[k] be the linear functions in (9) and {�i}i∈[k] be the linear

functions found in step 2 of Algorithm 3. Assume that {�∗i }i∈[k] satisfy �∗i |V = �i and
span

(
{�∗j}j∈[k]

)
= span

(
{Lj}j∈[k]

)
. Then Q(�∗1, . . . , �∗k) = sim(f).

Proof. We shall use the same notations as in (9). By the assumption that
span

(
{�∗j}j∈[k]

)
= span

(
{Lj}j∈[k]

)
, we see that there is a polynomial Q′(y1, . . . , yk),

of degree deg(Q′) = deg(P ), such that Q′(�∗1, . . . , �∗k) = P (L1, . . . , Lk) = sim(f). By

13In the algorithm we do not check whether k′ = k (by going one dimension up, using Corollary 20)
but we can just as well add such a check without much change to the running time. For the sake of
simplicity we did not add this step to the algorithm.
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considering the restriction to V , we get

Q(�1, . . . , �k) = sim(f)|V = P (L1, . . . , Lk)|V = Q′(�∗1, . . . , �
∗
k)|V

= Q′(�∗1|V , . . . , �∗k|V ) = Q′(�1, . . . , �k).

As the functions {�i}i∈[k] are linearly independent, and the degrees of Q and
Q′ are smaller than the size of the field, we get that Q ≡ Q′. In other
words, Q(y1, . . . , yk) and Q′(y1, . . . , yk) are the same polynomial. In particular
Q(�∗1, . . . , �

∗
k) = Q′(�∗1, . . . , �

∗
k) = sim(f), which is what we wanted to prove.

With the help of the lemma, we now explain why step 3 indeed finds the required
representation for sim(f). In that step we first construct n−s linear spaces {Vi}i∈[n−s]
of dimension s+1, such that ∩iVi = V and span(∪iVi) = Fn. For each such subspace
we look for linear functions {�(i)j }j∈[k] such that �(i)j |V = �j, for every j ∈ [k], and

Q(�(i)1 , . . . , �
(i)
k ) = sim(f)|Vi . The reason that such �(i)j ’s exist follows from Lemmas 23

and 24. Indeed, Lemma 23 implies that span({Li|V }i∈[k]) = span({�i}i∈[k]). Hence,
if we consider the k × n matrix A, whose rows correspond to the Lt’s and columns
correspond to the basis vectors {vi}i∈[n], in which the (t, j)th position equals Lt(vj),
then there exists an invertible linear transformation T : Fk → Fk, such that for
1 ≤ j ≤ k, the (t, j)th entry in T · A is equal to �t(vj). It follows that if we consider
the linear functions �(i)t defined by �(i)t (vj) = (T ·A)t,j , for j ∈ [k]∪{i}, then this gives
the required �

(i)
t ’s. In particular such �

(i)
t ’s exist and we can find them by a simple

interpolation. Therefore we are guaranteed that step 3(a) succeeds. Moreover, this
argument also shows the uniqueness of the �(i)j ’s (this follows from the fact that T is
invertible). Hence, by the explanation above, it is clear that we can easily construct
the matrix T ·A by simply letting (T ·A)t,j = �

(j)
t (vj) for k < j, and (T ·A)t,j = �t(vj)

for j ≤ k. If we now pick �∗i to be the linear function defined by �∗i (vj) = (T ·A)i,j , for
j ∈ [n], then by Lemma 24 we are guaranteed that Q(�∗1, . . . , �∗k) = sim(f). This shows
the correctness of step 3(b) (and the algorithmic way for constructing the �∗i ’s). An
interesting thing to notice is that we have no knowledge of neither the linear functions
{Li} nor the linear transformation T , yet we are able to construct the matrix T · A
using the (simple) conclusions of Lemmas 23 and 24.

The running time of step 3 is at most a polynomial factor times the running time
of step 2. The main factor is repeating step 2 for each Vi. Then, finding the �∗i ’s
is quite simple and can be done in time polynomial in n, as described above. This
completes the proof of Theorem 16.

We note that as k = O(log2(d)) and deg(Q) ≤ d, then Q(�∗1, . . . , �
∗
k) can be

represented as a depth-3 circuit with quasi-polynomially many multiplication gates.

4.2. Interpolation for the high rank case. In this section we deal with the
case that f has a circuit of rank higher than 10R4 · log2(d). We shall use the notation
f = M1+M2, whereM1 andM2 are the two multiplication gates in the ΣΠΣ(2) circuit
for f . We note that from Corollary 7 and the assumption that rank(f) ≥ 10R4·log2(d),
we get that f has a unique ΣΠΣ(2) circuit of degree d.

Before giving the algorithm itself we first describe its main steps. The algorithm
follows the sketch of section 1.4. We first restrict the circuit to a low dimensional
space V (where low means poly(log d)). Then we reconstruct f |V , which is the main
technical difficulty of the algorithm. Finally, we lift the circuit for f |V to a circuit
for f . This step is done in a similar manner to the lifting process of Algorithm 2
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(steps 3 and 4 there) and is based on the uniqueness of the circuit for f . We now say
a few more words on the way to find a circuit for f |V . The idea is to find a large set
(of size O(log2(d))) of linearly independent linear functions {�i} that all divide, say,
M1/ gcd(C). Such a set exists because of the assumption on the rank of f . Then we
consider each of those linear functions and define the subspace Vi = V |�i=0 (i.e., the
subspace of V on which �i vanishes).14 Note that for every i it holds that M1|Vi = 0
and so by querying f on Vi we get oracle access to M2|Vi . Thus, by simple factoring
we get all the circuits M2|Vi . The challenge now is to combine all of them to get
the circuit M2|V . We later discuss this step in more detail. We now give the formal
algorithm (Algorithm 4).

For convenience we divide the analysis of the three steps of the algorithm into
three different subsections. We begin with the analysis of step 1.

4.2.1. Step 1: Interpolating on a low dimensional subspace I.
Lemma 25. With probability ≥ 1 − |F |−Ω(log2 n), over the choice of V , step 1

of Algorithm 4, when given oracle access to f , finds15 a set of t = 100 logd linearly
independent linear functions {�i}i∈[t] such that

∏t
i=1 �i|Mj for some j ∈ {1, 2}, but

no �i divides M3−j (the other multiplication gate). The running time of step 1 is
exp(poly(logn, log d, log |F|)).

Algorithm 4 (general circuits of high rank).
1. Interpolating on a low dimensional subspace I: Pick a random subspace
V ⊆ Fn of dimension s

�
= 20R4 · log2(d) + log2(n). Consider the restriction

f |V . For every set of t = 100 log(d) linearly independent linear functions
{�i}i∈[t] over V , check whether for every i ∈ [t] the restriction of f to the

(affine) subspace Vi
Δ= V ∩ {x : �i(x) = 0} is equal to a product of linear

functions (by factoring).
2. Interpolating on a low dimensional subspace II: For each choice of

{�i}i∈[t], for which factoring was possible, merge (again, only if possible) the
different factors into one multiplication gate (using Algorithm 5). For each
multiplication gate, M , found check whether f |V −M is a product of linear
functions (using the factoring algorithm from Theorem 8). If this is the case,
then output the representation found for f |V . If no such representation is
found, then output “fail.”

3. Lifting from V to Fn: Lift the representation found over V to a represen-
tation over Fn (using the same method as in steps 3 and 4 of Algorithm 2).
Namely, if {vi}i∈[s] is a basis for V and {vi}i∈[n] is a basis for Fn that extends
the basis of V , then let Wi = span(V ∪ vi) for s < i ≤ n. Repeat steps 1 and
2 for each Wi to get the corresponding circuit Ci. If none of the steps failed
for any of the Wi’s, then combine the different Ci’s to get C. Combining the
circuits is done as follows. Let {zi}i∈[n] be the dual basis to {vi}i∈[n], i.e.,
zi(vj) = δi,j . Each linear function in C ∪{Ci}ni=s+1 can be written as a linear
combination of the zi’s and the constant function. Given a linear function �
in C, find the unique �i in Ci such that �i|zi=0 = � (possibly after multiplying
�i by a constant from F). If no such �i exists, or if it is not unique (i.e., there
is �′i �∼ �i with �′i|zi=0 = �), then output “fail.” Otherwise, if � = �i + αi · zi,
then let �′ = �+

∑n
i=s+1 αi · zi. Now, replace each linear function � in C with

the corresponding �′. Denote the resulting circuit with C′. Output C′.

14This is actually an affine subspace, but for simplicity we assume that it is a linear space.
15Of course many other sets are found but only those sets interest us.
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Proof. In the heart of the proof of the lemma is the fact that w.h.p., over the
choice of V , we have that rank(f)|V ≥ 10R4 · log2(d). We prove this fact in Lemma 26.
It will be easy to show that when rank(f |V ) is high, then the required set {�i} exists.
Recall that gcd(C) = g.c.d.(M1,M2), and that

(10) sim(C) = C/ gcd(C) = M ′
1 +M ′

2

is a ΣΠΣ(2) circuit. From Corollary 7 and the assumption that rank(f) ≥ 10R4 ·
log2(d) we get that sim(C) is the unique ΣΠΣ(2) circuit for f/ gcd(C). Let V ⊆ Fn

be a random subspace of dimension s = 20R4 · log2(d)+log2(n). The following lemma
shows that w.h.p. rank(f |V ) is high (the intuition is the same as in Corollary 22).

Lemma 26. Pr[rank(f |V ) ≤ 10R4 · log2(d)] ≤ |F|−Ω(log2 n).
Proof of Lemma 26. To prove the claim we show that w.h.p. the rank of the

circuit M1|V + M2|V is not too small, and then, by Corollary 7, we get that this is
actually the unique representation of f |V as a ΣΠΣ(2) circuit. The lemma will follow
from this fact.

Lemma 27.

Pr
[
rank

(
M1|V +M2|V

g.c.d.(M1|V ,M2|V )

)
≤ 10R4 log2(n)

]
≤ |F|−Ω(log2(n)).

Proof of Lemma 27. In order to show that the rank of M1|V + M2|V does not
decrease by much, we first show that w.h.p., g.c.d.(M1|V ,M2|V ) = g.c.d.(M1,M2)|V ,
and then using Lemma 21 we complete the proof.

Lemma 28. Pr[g.c.d.(M1|V ,M2|V ) �= g.c.d.(M1,M2)|V ] ≤ d2(|F| + 1)/|F|s =
|F|−Ω(log2(n)).

Proof of Lemma 28. It is not hard to see that g.c.d.(M1|V ,M2|V ) is larger than
g.c.d.(M1,M2)|V only if there are two linearly independent linear functions L1, L2,
such that Li|Mi, and such that L1|V ∼ L2|V . The probability, over the choice of V ,
that this will happen is at most (|F| + 1)/|F|s. As there are at most d2 such pairs of
linear functions, the overall probability that the degree of the g.c.d. increases is at
most d2(|F| + 1)/|F|s.

We continue with the proof of Lemma 27. We know that w.h.p.,
g.c.d.(M1|V ,M2|V ) = g.c.d.(M1,M2)|V . Therefore, w.h.p.,

(M1|V +M2|V )/g.c.d.(M1|V ,M2|V ) = M ′
1|V +M ′

2|V

(as defined in (10)). By the assumption on rank(f), we get that the rank of the linear
functions in M ′

1 + M ′
2 is at least 10R4 · log2(d). The result now follows by using

Lemma 21 with the parameters16 s = 20R4 · log2(d) + log2(n) and t = 10R4 · log2(d).
The lemma implies that

Pr
[
rank (M ′

1|V +M ′
2|V ) ≤ 10R4 · log2(d)

]
≤ |F|− log2(n).

This completes the proof of Lemma 27.
We now continue with the proof of Lemma 26. Notice that whenever rank(M1|V +

M2|V ) > 10R4 · log2(d) we get by Corollary 7 that M1|V + M2|V is the unique
ΣΠΣ(2) circuit for f |V of degree ≤ d. In this case we of course get that

16Although the rank is at least 10R4 · log2(d), we consider only a subset of the linear functions of
dimension exactly 10R4 · log2(d).
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rank(f) > 10R4 · log2(d). As Pr
[
rank (M ′

1|V +M ′
2|V ) ≤ 10R4 · log2(d)

]
≤ |F|− log2(n)

we get that Pr
[
rank (f) ≤ 10R4 · log2(d)

]
≤ |F|− log2(n). This completes the proof of

Lemma 26.
Now that we established that (w.h.p.) rank(f |V ) is high we continue with the

proof of Lemma 25. Assuming that rank(f |V ) ≥ 10R4 · log2(d) we get that, w.l.o.g.,
there are at least 5R4 ·log2(d) linearly independent linear functions dividing M1|V and
not M2|V . In particular there exist t = 100 log d linearly independent linear functions
{�i}i∈[t] such that

∏t
i=1 �i divides M1 but no �i divides M2.

We bound the running time in the obvious manner. During the step, we simply
have to run over all sets of t = 100 log d linear functions and, for each such set {�i},
check whether the functions are linearly independent and whether the restriction of
f to Vi = V ∩ {x : �i(x) = 0} completely factorizes to a product of linear functions.
Clearly the running time is equal (up to a polynomial factor in n, |F|) to the number
of such sets. As the dimension of V is s = 20R4 log2(d) + log2(n), the number of sets
that we have to consider is |F|100 log(d)·s, which is quasi polynomial in n, d, and |F|.
This completes the proof of Lemma 25.

4.2.2. Step 2: Interpolating on a low dimensional subspace II. As we
showed in Lemma 25, we can assume that one of the sets of linearly independent
linear functions {�i}i∈[t] found in step 1 satisfies that, w.l.o.g.,

∏t
i=1 �i divides M1|V

but no �i divides M2|V . When studying step 2 we will focus on this set to show that
one of the output circuits is indeed C|V .

Before giving the analysis of step 2 we first explain how to computes M2|V from
the different M2|Vi ’s (given that the �i’s satisfy the property above). The idea behind
the reconstruction algorithm is the following. We have to reconstruct the set of linear
functions appearing in M2|V . Since a linear function can divide M2 several times we
can speak about the multiset of linear functions dividing M2|V , which we denote with
L . As we have oracle access to each Vi, using the factoring algorithm of Theorem 8,
we can assume that we have as input the t multisets {Li}ti=1, where Li is the multiset
composed of the linear functions dividing M2|Vi . What the algorithm actually does
is merge the different Li’s to get L. To simplify notations we shall make several
assumptions on V and {�i}i∈[t] that will be w.l.o.g. and will ease the reading of the
algorithm.17 First, we assume that

V = {(a1, . . . , as, 0, . . . , 0) : ∀i ai ∈ F}.

Hence, every linear function defined on V is of the form

L(v) =
s∑
i=1

αiai + α0

for the vector v = (a1, . . . , as, 0, . . . , 0). We shall also assume that

�i(v) = �i ((a1, . . . , as, 0, . . . , 0)) = ai.

In other words, we assume that �i is a projection on the ith coordinate. Notice that
as we can apply linear transformations to Fn, this can be assumed w.l.o.g.18 Thus, by

17If we were to describe the most general case, then we had to use the dual basis as in step 3.
18Actually, �i can be an affine function and so should be of the form ai + νi for some constant

νi. However, this will not change the algorithm and will only add unnecessary complications to the
presentation.
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our assumption we get that Vi = {(a1, . . . , ai−1, 0, ai+1, . . . , as, . . . , 0) : ∀j aj ∈ F}.
Thus, the multiset Li is the multiset obtained after deleting the ith variable from
all the linear functions in the multiset L. Hence, from our assumptions (that can be
made w.l.o.g.) we see that our goal is to reconstruct a multiset of linear functions L,
from its t different projections {L〉}i∈[t] on s− 1 ≥ t− 1 variables. Algorithm 5 solves
exactly this task. In fact the algorithm assumes that we have only t variables (and
not s) and is still able to solve the problem. Hence, using Algorithm 5 we are able to
reconstruct the set L and from it get M2|V .

To explain how Algorithm 5 works we shall use the following terminology. We
say that a linear function T has multiplicity k in a multiset T if there are exactly
k linear functions in T that are linearly dependent on T (that is, that are equal to
some multiple of T ). The idea behind the algorithm is the following. First, it finds
a linear function L ∈ L1 that has the following property: assume that L appears k
times in L1. Then there exists i ∈ {2, . . . , t} such that L|xi=0 also has multiplicity k
in L1|xi=0. In other words, L has the property that there is no other linear function
L′ ∈ L1 such that L and L′ together span xi. Note that it is not clear why such a
linear function L should exist; however, using known lower bounds on locally decodable
codes (see Appendix B) we can prove its existence. Now, given such L, we note that
by considering Li there are exactly k linear functions {Li}ki=1 that, after erasing their
first coordinate, are equal to (a constant multiple of) L|xi=0. Thus, we are assured
that there are exactly k linear function {�i}ki=1 in L, such that �i|x1=0 = L and
�i|xi=0 = Li. In particular, to get �i we simply add the first coordinate of Li to L
for each i ∈ [k] (after making the appropriate normalization). Now, we can remove
the k projections of {�i}ki=1 from the different Li’s and repeat the algorithm until no
linear function is left. From this description it is clear that the main technical point is
proving that such a linear function L ∈ L1 exists. We now give the formal description
of Algorithm 5 and then analyze it. After that it will be clear how to analyze step 2.

Algorithm 5 (gluing the different M2|Vi ’s together).
Input: Multisets of linear functions Li = L|xi=0, for i = 1, . . . , t, containing

m < exp((t− 1)/60 − 1) linear functions each.
Output: a multiset L̃.
Set L̃ ← ∅.

1. Find a linear function L ∈ L1 and an index 1 < i ≤ t such that the following
holds: denote by k the multiplicity of L in L1. Then the number of L′ ∈ Li
such that L′|x1=0 ∼ L|xi=0 is exactly k (and in particular, L|xi=0 is not a
constant).

2. Denote by {Lj}kj=1 ⊂ Li those k linear functions. Let {cj}kj=1 be such that
L|xi=0 = cj · Lj |x1=0. Let aj,1 be the coefficient of x1 in the linear function

cj · Lj. Let �j
Δ= L+ aj,1 · x1, for j = 1, . . . , k.

3. Set L̃ ← L̃ ∪ {�j}j∈[k].
4. For each l ∈ [t], set Ll ← Ll \ {�j|xl=0}kj=1 (more accurately, remove from Ll
k linear functions �′1, . . . , �

′
k such that �′j = �j |xl=0).

5. If the Li’s are empty, then return L̃; otherwise go to step 1.

The following theorem proves correctness and gives the analysis of Algorithm 5.

Theorem 29. Let L = {Li}mi=1 be a multiset of linear functions in t > 60 logm+
61 variables; i.e., a linear function may appear more than once in L. Denote by
Li Δ= L|xi=0 the multiset resulting from L after removing the ith variable from all the
linear functions in it. Then, given the multisets {Li}i∈t, Algorithm 5 reconstructs



2156 AMIR SHPILKA

a multiset L̃ such that
∏
�∈L̃ � = c ·

∏
�′∈L �

′, for some nonzero constant c, in time
polynomial in m.

Proof. First, we show that if a linear function L was found in step 1, and its
multiplicity in L1 is k, then there are exactly k linear functions {�̃j}j∈[k] in L that
satisfy �̃j |x1=0 ∼ L for each j ∈ [k]. Moreover, these linear functions are equal, up
to a multiplicative factor, to the linear functions {�j}j∈[k] that were found in step 2
of the algorithm. Namely, possibly after reordering it holds that �̃j ∼ �j for j ∈ [k].
Indeed, let L and i be the linear function and index that were found in step 1 (of
Algorithm 5). Denote by k the multiplicity of L in L1 and let {�̃j}j∈[k] ⊂ L be such
that �̃j |x1=0 ∼ L. From the definition of i these are exactly the functions in L that
satisfy that �̃j|x1=0,xi=0 ∼ L|xi=0. We therefore have the following. Let aj be such
that aj · �̃j |x1=0 = L. Let cj and Lj (for j ∈ [k]) be as in step 2. It must be the
case that (possible after reordering) aj · �̃j |xi=0 = cj · Lj. In particular if we define
�j = αj,1 · x1 + L, where αj,1 is the coefficient of x1 in cj · Lj , then it must be the
case that �̃j ∼ �j, as required (note that a different way of defining �j is by letting
�j = cj · Lj + αi · xi, where αi is the coefficient of xi in L). In particular this shows
that step 3 adds to L̃ linear functions that are equal to the �̃j ’s up to a constant factor
and step 4 removes the “images” of those functions from the different Li’s. Thus, if
we can always find such L and i, then we are guaranteed that the output will be a
set L̃ for which there is a 1-1 correspondence between the linear functions in L and
those in L̃ that matches functions that are equal up to a (nonzero) constant factor.
This completes the first part of our proof.

We now prove that if m < exp((t− 1)/60 − 1), then such L and i exist. Assume
for a contradiction that no such L and i exist. Then it must be the case that for every
L ∈ L1 and i there is L′ ∈ L1 such that xi ∈ span(L,L′). In other words, if we consider
the mapping E : Ft−1 → Fm that maps (x2, . . . , xt) to {L(x2, . . . , xt)}L∈L1 , then we
have that for every j ∈ {2, . . . , t} there are, say, at least m/3 disjoint pairs of linear
functions L,L′ ∈ L1 such that xj ∈ span(L,L′). In other words, we can reconstruct
xj by looking at one of the m/3 disjoint pairs of indices in the mapping E. A mapping
that satisfies this property is called a 2-query locally decodable code, and it is known
(Theorem 33) that in such a code it must be the case that m ≥ exp((t − 1)/60 − 1).
However, we assumed that m < exp((t−1)/60−1), and so we reached a contradiction.
Hence a linear function L and an index i can be found. For completeness we discuss
locally decodable codes in Appendix B.

The claim regarding the running time of Algorithm 5 is clear. This completes the
proof of Theorem 29.

To conclude, from Theorem 29 and the discussion at the beginning of section 4.2.2
we see that in step 2 of Algorithm 4, for one of the sets {�i}i∈[t] we manage to
reconstruct the multiplication gate M2|V . To be more accurate, note that for the
multiset L̃ computed in Algorithm 5 we may have that

∏
�∈L̃ � = c ·

∏
�′∈L �

′ for
some nonzero constant c. However, c can be easily found by comparing

∏
�∈L̃ �|x1=0

to M2|x1=0. Therefore, we can multiply some � ∈ L̃ by c to get that
∏
�∈L̃ � =∏

�′∈L �
′ = M2|V .

Now, given M2|V we can use the oracle to f to factor f |V −M2|V and get M1|V .
In particular we compute the circuit C|V = M1|V + M2|V in step 2. We now notice
that if V is such that rank(f |V ) ≥ R4 log2(d) (which happens w.h.p. according to
Lemma 26), then by Corollary 6 this is the only possible representation for f |V (as
a ΣΠΣ(2) circuit) and so the circuit computed at the end of this step is indeed
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M1|V + M2|V . The running time of step 2 is equal to the number of different sets
{�i}i∈[t] considered times the running times of Algorithm 5 and the factoring algorithm
of Theorem 8. Thus, we just proved the following theorem.

Theorem 30. Step 2 of Algorithm 4 runs in time exp(poly(logn, log d, log |F|)),
and if V is such that rank(f |V ) ≥ R4 log2(d), then the circuit computed at the end of
the step is C|V = M1|V +M2|V .

4.2.3. Step 3: Lifting. We first give the intuition behind the way that the
algorithm combines the different circuits for f |Wi . For convenience let us assume
w.l.o.g., again, that

V = {v = (a1, . . . , as, 0, . . . , 0) | ∀i ai ∈ F}.

Also assume w.l.o.g. that for 1 ≤ i ≤ n− s we have that

Wi = {w = (a1, . . . , as, 0, . . . , 0, as+i, 0, . . . , 0) | ∀j aj ∈ F}.

Note that as we are working with the vi’s and their dual basis {zi}, we can make
this assumption. Let us assume that rank(f |V ) ≥ R4 · log2(d). Theorem 30 now
guarantees that the algorithm computes correctly the circuits Ci = M1|Wi + M2|Wi

for s < i ≤ n. Assume that our original ΣΠΣ(2) for f has the following form:

f(x̄) =
d∏
i=1

L
(1)
i (x̄) +

d∏
i=1

L
(2)
i (x̄),

where M1 =
∏d
i=1 L

(1)
i (x̄) and M2 =

∏d
i=1 L

(2)
i (x̄). Denote

L
(k)
i =

n∑
j=1

α
(k)
i,j xj + α

(k)
i,0

for k = 1, 2. If rank(f |V ) > R4 · log2(d), then by Theorem 30 we get that

f |Wi =
d∏
k=1

L
(1)
k (x̄)|Wi +

d∏
k=1

L
(2)
k (x̄)|Wi

=
d∏
k=1

⎛
⎝ s∑
j=1

α
(1)
k,jxj + α

(1)
k,s+ixs+i + α

(1)
k,0

⎞
⎠ +

d∏
k=1

⎛
⎝ s∑
j=1

α
(2)
k,jxj + α

(2)
k,s+ixs+i + α

(2)
k,0

⎞
⎠ .

Therefore all that we have to do is to find all the linear functions of the form∑s
j=1 α

(1)
k,jxj +α

(1)
k,s+ixs+i +α

(1)
k,0, for i ∈ [n− s], and glue them together to get all the

linear functions {
∑n

j=1 α
(1)
k,jxj}k (similarly with

∑s
j=1 α

(2)
k,jxj + α

(2)
k,s+ixs+i + α

(2)
k,0 and

{
∑n
j=1 α

(2)
k,jxj}k). To do so we must be sure that there are no two linearly independent

linear functions in f that their restrictions to V are linearly dependent. Note that if
such a pair exists, e.g., if �|V ∼ �′|V , where � and �′ are linearly independent, then
for some Wi and constants α, α′, α′′ such that α �= α′′, the circuit Ci will contain two
different functions �̃ = �+α ·xi and �̃′ = �′ +α′ ·xi ∼ �+α′′ ·xi, and we will not know
which of them to attach to � and which to attach to �′ when combining appropriate
linear functions from the different Ci’s.
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Now, if no such pair exists, then it is very easy to combine the different circuits
Ci into one circuit C′ for f : for every linear function � in C, that does not divide
both its multiplication gates, there is a unique linear function �i in Ci such that their
restrictions to xi = 0 are linearly dependent (note that by Lemma 28 we can assume
that g.c.d.(M1|V ,M2|V ) = g.c.d.(M1,M2)|V . Hence, if � divides both multiplication
gates in C, then there is a unique �i that divides both multiplication gates in Ci, and
the continuation is the same for this case as well). Therefore there is only one way of
generating a linear function L such that �′|V ∼ � and �′|xi=0 ∼ �i for every i. This
explanation shows that in step 3 we combine the different circuits in the only possible
way. Moreover, it is clear that combining the Ci’s into a single circuit can be done
efficiently. It remains only to justify the assumption that there are no two linearly
independent linear functions in f that their restrictions to V are linearly dependent.

To see that, we notice that as we picked V to be a random subspace of dimension
Ω(log2(d)), Lemma 21 assured us that with probability greater than 1−exp(− log2(n))
no two linearly independent linear functions from C become linearly dependent when
restricted to V . Thus, w.h.p. we can complete this step. Notice that by the above
explanation it is also very easy to verify that indeed, no two linearly independent
linear functions from the circuit for f became dependent on V . The following theorem
summarizes what we have shown in this section.

Theorem 31. Step 3 of Algorithm 4 runs in time poly(n, d, log |F|)) and w.h.p.
over the choice of V outputs the unique ΣΠΣ(2) circuit for f .

Thus, Algorithm 4 outputs w.h.p. over the choice of V the unique ΣΠΣ(2) for f .
We now show how to combine Algorithms 3 and 4 to get Theorem 2.

4.3. Completing the proof of Theorem 2. We note that if we know rank(f),
then the algorithms described in sections 4.1 and 4.2 give the required result. As we
don’t know what the rank is, we run the high rank algorithm for every rank between
10R4 · log2(d) and d. Once the algorithm outputs a ΣΠΣ(2) circuit we verify that
its rank is indeed larger than 10R4 · log2(d). If this is the case, then we stop and
output that circuit. Theorem 31 guarantees that w.h.p. we have found the unique
ΣΠΣ(2) circuit C′ that computes f . If none of the executions of the high rank
algorithm resulted in a ΣΠΣ(2) circuit, then we run the low rank algorithm for each
rank between 1 and 10R4 · log2(d).

To analyze the error probability of the algorithm we note that the possible errors
are in the choice of V and in the factoring algorithm. Indeed, when we are at the
“correct” rank and V is such that the rank of f |V is the same as rank(f) and no
two linearly independent linear functions from C become linearly dependent when
restricted to V , then we are assured that we compute a correct representation for
f . Recall that V is “bad” for us with probability 1/p(n, d), where p is some quasi-
polynomial function of n and d. In addition we can repeat the factoring algorithm of
Theorem 8 polynomially many times to reduce the error probability. Thus the over-
all error is quasi-polynomially small (and can be further reduced to be exponentially
small by repeating the algorithm several times). This completes the proof of the
theorem.

Appendix A. Brute force interpolation. In this section we show how to
interpolate a polynomial that can be written as a polynomial in a few linear functions.
In fact we need to consider a slightly more complicated scenario as described in the
following lemma.
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Lemma 32. Let19 h(x1, . . . , xs) = Lin(h) ·Q(�1, . . . , �k) be a polynomial, where Q
is a polynomial and {Li}i∈[k] are linear functions. Let d = deg(h) < |F|. Then, there
is a deterministic algorithm that, given oracle access to h, Lin(h), d, and the set of
linear functions {�i}i∈[k], finds Q. The running time of the algorithm is poly(|F|s, dk).

Proof. Consider a generic degree d polynomial Q′ in the �i’s. Such a polynomial
has< (d+1)k monomials of the form

∏k
i=1 �i

ei , such that
∑k

i=1 ei ≤ d. Thus we have a
number of unknown coefficients which we can find by a simple interpolation procedure
that we now describe: let �k+1, . . . , �s be linear functions such that20 �1, . . . , �s form
a basis to the space of linear functions over Fs. Let

(11) Q′(y1, . . . , yk) =
∑

{ē=(e1,...,ek):
∑
ei≤d}

cē ·
∏

yi
ei .

Next we represent Lin(h) as a polynomial in the �i’s. Let PLin(y1, . . . , ys) be a poly-
nomial satisfying

(12) Lin(h) = PLin(�1, . . . , �s) =
∑
M

αM ·M(�1, . . . , �s),

where the sum is over all monomials M of degree at most d. Note that as we have
oracle access to Lin(h), it is easy to find the αM ’s (by the usual interpolation process).
We get that h can be written as

(13) h = PLin(�1, . . . , �s) ·Q′(�1, . . . , �k) =
∑
M

γM ·M(�1, . . . , �s),

where each coefficient γM is a linear function in the cē’s. By querying h on all the
points in Fs and using the standard interpolation method, we can easily find all the
coefficients γM , and from them we can get the coefficients cē’s by solving a system
of linear equations. We note that once we know the γM ’s, there is a unique solution
to the cē’s (in case that such a solution exists). The reason is that if two different
solutions exist, then they give rise to two polynomials PLin ·Q1 and PLin ·Q2 that are
equal over Fs. However, the degree of each of the polynomials is at most d, which is
smaller than the size of the field that we are working with, and so the two polynomials
must be the same. In particular we have that Q′ = Q.

Appendix B. Locally decodable codes. In this section we define the notion
of locally decodable codes and state the result that we need. The reader interested
in a more complete background is referred to [KT00, GKST06]. We start with the
definition of locally decodable codes. We fix in advance some of the parameters to
constants in order to simplify the definition. Let E : Ft → Fn be a linear map. We
say that E is a 2-query locally decodable code if there exists a probabilistic oracle

19In section 4.1.2 we needed to interpolate sim(f)|V for an s-dimensional space V , so we assume
that h is a polynomial in s variables.

20We assume w.l.o.g. that �1, . . . , �k are linearly independent.
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machine A such that
• A makes at most two queries (nonadaptively) to the oracle.
• for every x ∈ Ft, for every y ∈ Fn with Δ(y,E(x)) < n/10, and for every
i ∈ [t], we have Pr[Ay(i) = xi] ≥ 2/3, where the probability is taken over the
internal coin tosses of A, and Δ(·, ·) is the Hamming distance function.

The following theorem of [DS06] gives a lower bound on the length of such locally
decodable codes over arbitrary fields.

Theorem 33 (Theorem 1.2 of [DS06]). Let F be a field, and let E : Ft → Fn be
a linear 2-query locally decodable code, as in the definition above; then n ≥ 2

t
60−1.

We note that Goldreich et al. [GKST06] were the first to prove a lower bound
for linear locally decodable codes with two queries; however, for large fields their
result is not optimal. In particular, [GKST06] proved a lower bound of the form
n ≥ 2Ω(t)−log |F| on the length of such codes over F, which deteriorates with the field
size.
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BREAKING A TIME-AND-SPACE BARRIER IN CONSTRUCTING
FULL-TEXT INDICES∗
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Abstract. Suffix trees and suffix arrays are the most prominent full-text indices, and their
construction algorithms are well studied. In the literature, the fastest algorithm runs in O(n) time,
while it requires O(n log n)-bit working space, where n denotes the length of the text. On the other
hand, the most space-efficient algorithm requires O(n)-bit working space while it runs in O(n log n)
time. It was open whether these indices can be constructed in both o(n log n) time and o(n log n)-
bit working space. This paper breaks the above time-and-space barrier under the unit-cost word
RAM. We give an algorithm for constructing the suffix array, which takes O(n) time and O(n)-
bit working space, for texts with constant-size alphabets. Note that both the time and the space
bounds are optimal. For constructing the suffix tree, our algorithm requires O(n logε n) time and
O(n)-bit working space for any 0 < ε < 1. Apart from that, our algorithm can also be adopted to
build other existing full-text indices, such as compressed suffix tree, compressed suffix arrays, and
FM-index. We also study the general case where the size of the alphabet Σ is not constant. Our
algorithm can construct a suffix array and a suffix tree using optimal O(n log |Σ|)-bit working space
while running in O(n log log |Σ|) time and O(n(logε n + log |Σ|)) time, respectively. These are the
first algorithms that achieve o(n log n) time with optimal working space. Moreover, for the special
case where log |Σ| = O((log log n)1−ε), we can speed up our suffix array construction algorithm to
the optimal O(n).
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1. Introduction. Due to the advances in information technology and biotech-
nology, the amount of text data is increasing exponentially. To assist users in locating
their required information, the role of indexing data structures has become more
and more important. For texts with a word boundary such as English, inverted in-
dex [7] is used since it enables fast queries and is space efficient. However, for texts
without word boundary, such as DNA/protein sequences or Chinese/Japanese texts,
inverted index is not suitable. In this case, we need full-text indices, that is, indexing
data structures which make no assumption on the word boundary. Suffix trees [20]
and suffix arrays [19] are two fundamental full-text indices in the literature that find
applications in numerous areas, including data mining [28] and biological research
[8]. For the other full-text indices, almost all of them originate from these two data
structures.
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Suffix trees and suffix arrays are very useful since they allow us to perform pattern
searching efficiently. Consider a text with n characters. Given the suffix tree, we can
search for a pattern P within the text using O(|P |) time, which is independent of the
text size. For the suffix array, the searching time is O(|P |+log n),1 which is only a bit
slower. One more advantage of the suffix array is that even if this indexing structure is
placed in external memory, it still can achieve good I/O performance for searching [3].
In spite of that, suffix trees and suffix arrays cannot be built easily when n is large.
The construction algorithms for both of them either are too slow or require too much
working space.

For instance, when we optimize the construction time, based on the work from
Weiner [30], McCreight [20], Ukkonen [29], and Farach [4], a suffix tree and a suffix
array can be built in O(n) time. However, the working space required is Ω(n logn)
bits.

On the other hand, when we optimize the construction working space, based on
the recent work by Lam et al. [18], we can first build the compressed suffix array (CSA)
of [6] and then convert it into the suffix tree and the suffix array. Although such an
approach reduces the working space to O(n) bits, the execution time is increased to
O(n log n). Another solution is to rely on external memory [3] to control the working
space. However, the time complexity, not to mention the increase in I/O burden, is
even worse.

It was open whether the suffix tree and the suffix array can be constructed in
o(n logn) time and o(n logn)-bit working space. The need to break this time-and-
space barrier is illustrated in a concrete example that arises in practice. Suppose we
would like to construct a suffix array for a human genome (of length approximately
3 billion). The fastest known algorithm runs in linear time. However, it requires 40
gigabytes working space [17]. Such a memory requirement far exceeds the capacity of
ordinary computers. On the other hand, if we apply the most space-efficient algorithm,
the working space required is roughly 3 gigabytes, which is possible to implement on
a PC nowadays. The time required, however, is more than 20 hours [18], which is a
bit slow.

Apart from suffix trees and suffix arrays, we observe that the other full-text indices
also suffer from the same time-and-space barrier during the construction phase. Such
a barrier may prevent these indices from becoming useful for large-scale applications.2

Table 1 summarizes the performance of the best known algorithms for constructing
these full-text indices.

1.1. Our results. Our results are based on the following model. First, we assume
a unit-cost RAM with a word size of O(logU) bits, where n ≤ U , in which standard
arithmetic and bitwise boolean operations on word-sized operands can be performed
in constant time [1, 9]. Second, to compare our work fairly with the other main-
memory algorithms, we add the following assumptions: (1) We restrict our algorithms
to running within the main memory, in which no I/O operations are involved in
the intermediate steps; (2) for counting the working space, we do not include the
space for the output of the full-text indices (this can be justified, as output can
be written directly to the secondary storage upon completion without occupying the
main memory). Under the above model, this paper proposes the following construction

1We use the notation logc
b n = (log n/ log b)c to denote the cth power of the base-b logarithm

of n. Unless specified otherwise, we use b = 2.
2Zobel, Moffat, and Ramamohanarao [32] and Crauser and Ferragina [3] both mentioned the

importance of construction algorithms to the usefulness of the index.
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Table 1

Construction times for full-text indices. The acronyms ST, SA, CST, CSA, FM represent suffix
tree, suffix array, compressed suffix tree, compressed suffix array, and FM-index, respectively. Also,
ε is any fixed real number with 0 < ε < 1.

Index Algorithm Time Space (bits)

opt time [19] O(n) O(n log n)
SA, CSA, or FM opt space [18] O(n log n) O(n)

this paper O(n) O(n)

opt time [4] O(n) O(n log n)
ST or CST opt space [12] O(n log n) O(n)

this paper O(n logε n) O(n)

algorithms for full-text indices, where the input text is assumed to be over a constant-
size alphabet:

1. An algorithm which constructs the suffix array in O(n) time and O(n)-bit
working space;

2. an algorithm which constructs the suffix tree in O(n logε n) time and O(n)-bit
working space for 0 < ε < 1.

To the best of our knowledge, these are the first algorithms known to run in o(n logn)
time and o(n logn)-bit working space.

Our algorithms can actually be adopted to build other full-text indices, including
the CSA, CST [12], and FM-index [5]. The performance of our algorithms for con-
structing these indices is summarized in Table 1. Another application of our algorithm
is that it can act as a time- and space-efficient algorithm for block sorting [2], which
is a widely used process in various compression schemes, such as bzip2 [27].

We also study the general case where the alphabet size is not constant. Let Σ
be the alphabet, and let |Σ| denote its size. Our algorithm can construct the suf-
fix array and the suffix tree using O(n log |Σ|)-bit working space, while running in
O(n log log |Σ|) time and O(n(logε n+ log |Σ|)) time, respectively, for any fixed ε with
0 < ε < 1. These are the first algorithms that achieve o(n log n) time with optimal
working space. Moreover, for the special case where log |Σ| = O((log log n)1−ε), we
can apply Pagh’s data structure for constant-time rank queries [24] to further improve
the running time of the suffix array construction to the optimal O(n).

Remark. Recently, Na and Park [23] proposed another algorithm for the construc-
tion of the CSA, FM-index, and the (BW) transform. The running time is O(n) time,
which is independent of the alphabet size. The working space is increased slightly to
O(n log |Σ| logα|Σ| n) bits, where α = log3 2.

1.2. The main techniques. To achieve a small working space, we use the Ψ
function [6] of the CSA and the BW text [2] as our tools, where they can act as an
implicit representation of any suffix tree generated during construction. Both the Ψ
function and the BW text can be stored in O(n)-bit space. Moreover, given them, we
can construct the suffix tree and the suffix array in O(n logε n) time and O(n) time,
respectively, for 0 < ε < 1.

Apart from the space concern, another reason for using these two data structures
as our tools is that each one’s strength complements nicely the other’s weaknesses:
The Ψ function allows for efficient pattern query, while it is difficult to update the
function in response to the change in the underlying suffix tree; the plain BW text can
be easily and quickly updated, though it does not support efficient pattern query. In
our construction algorithm, efficient queries and fast updates are frequently required,
so we use both data structures alternately in order to utilize their strengths.
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Another finding that leads to improvement is related to the backward search
algorithm, which is used to find a pattern within the text based on the Ψ function.
If we apply a known method [26], given the Ψ function for the text, each step of the
algorithm requires O(log n) time in general. This paper presents a novel auxiliary data
structure of O(n) bits which supports each backward search step in O(log log |Σ|) time
instead. As our construction algorithm frequently executes the backward search, the
overall running time is thus sped up because of this improvement.

Finally, our algorithm borrows the framework of Farach’s linear-time suffix tree
construction algorithm [4], which first constructs two suffix trees, one for odd-position
suffixes and another for even-position suffixes, and then merges the two trees together.
The difference, however, lies in the actual implementation, as we have carefully avoided
storing the suffix pointers explicitly, thus saving O(n logn) bits in total.

The remainder of this paper is organized as follows. Section 2 is a preliminary
section, which gives the definitions for the CSA and BW text and discusses the rela-
tionship between them. Section 3 shows the improved result in the backward search
algorithm. Section 4 describes the framework for the construction algorithm, while
sections 5 and 6 detail the main steps of the algorithm. In section 7, we give de-
tails on the improvement we can achieve when the alphabet size is sufficiently small,
precisely when log |Σ| = O((log logn)1−ε). Finally, we give a conclusion in section 8.

2. Preliminaries. This section is divided into three parts. The first part gives
the basic notation and introduces the suffix array, the Ψ function, and the BW text.
In the second part, we describe the representation of the Ψ function that is used
throughout the paper. Finally, in the third part we discuss the duality between the Ψ
function and the BW text.

2.1. Basic notation. First, we review some of the basic notation and assump-
tions. A text T of length n over an alphabet Σ is denoted by T [0 . . . n − 1]. Each
character of Σ is uniquely encoded by an integer in [0, |Σ| − 1], which occupies log |Σ|
bits. In addition, a character c is alphabetically larger than a character c′ if and only
if the encoding of c is larger than the encoding of c′. Also, we assume that T [n− 1] is
a special character that does not appear elsewhere in the text.

For any i = 0, . . . , n − 1, the string T [i . . . n − 1] is called a suffix of T . The
suffix array SA[0 . . . n − 1] of T is an array of integers such that T [SA[i] . . . n − 1] is
lexicographically the ith smallest suffix of T . The ΨT function, or simply Ψ, is the
main component of the CSA [6]. It is defined as follows:

• Ψ[i] = SA−1[SA[i] + 1] if SA[i] �= n− 1;
• Ψ[i] = SA−1[0] otherwise.

Immediately, we have the following observation.
Observation 1. For the suffix array and the Ψ function of the text T ,
1. characters T [SA[i]] (i = 1, 2, . . . , n) are alphabetically sorted.
2. suppose that T [SA[i]] = T [SA[j]]. Then Ψ[i] < Ψ[j] if and only if i < j.

On the other hand, the BW text W [2] is a transformation on T such that W [i] =
T [SA[i] − 1] if SA[i] > 0, and W [i] = T [n − 1] otherwise. Intuitively, W [i] is the
preceding character of the ith smallest suffix of T in T . This transformation process
is widely used in various compression schemes, such as bzip2 [27], and it constitutes
the main part of the construction of the FM-index [5].

See Figure 1 for an example of the suffix array, the Ψ function, and the BW text
of a string S = acaaccg$. In the example, we have Σ = {a, c, g, t}, and the last
character of S is $, which is unique among the other characters in S. We also assume
that $ is alphabetically smaller than each character in Σ.
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i W [i] SA[i] Ψ[i] S[SA[i] . . . n − 1]
0 g 7 2 $

1 c 2 3 a a c c g $

2 $ 0 4 a c a a c c g $

3 a 3 5 a c c g $

4 a 1 1 c a a c c g $

5 a 4 6 c c g $

6 c 5 7 c g $

7 c 6 0 g $

Fig. 1. Suffix array, the Ψ function, and the BW text W of a string S = acaaccg$.

2.2. Representation of Ψ. Observation 1 implies that the Ψ function is piece-
wise increasing. In addition, each Ψ value is less than n. Therefore, we can use a
function ρ(c, x) = enc(c) · n + x and obtain a total increasing function Ψ′[i] =
ρ(T [SA[i]],Ψ[i]), where enc(c) denotes the encoding of the character c. Note that
value of Ψ′ is less than n|Σ|.

Based on the total increasing property, Ψ′ can be stored as follows. We divide
each Ψ′[i], which takes logn + log |Σ| bits, into two parts qi and ri, where qi is the
first (or most significant) logn bits, and ri is the remaining log |Σ| bits. We encode
the values q0, q1 − q0, . . . , qn−1 − qn−2 in a bit-vector B1 using unary codes. (Recall
that the unary code for an integer x ≥ 0 is encoded as x 0’s followed by a 1.) Note
that the encoding has exactly n 1’s where the (i+ 1)th 1, which corresponds to Ψ[i],
is at position i+ qi. Also, the total number of 0’s is qn−1, which is at most n. Thus,
B1 uses 2n bits. The ri’s are stored explicitly in an array B2[0 . . . n− 1], where each
entry occupies log |Σ| bits. Thus, B2 occupies n log |Σ| bits. Moreover, an auxiliary
data structure of O(n/ log logn) bits is constructed in O(n) time to enable constant-
time rank and select queries, and thus supporting the retrieval of any qi in constant
time [13, 22]. Then, the total size is n(log |Σ| + 2) + o(n) bits. Since qi and ri can be
retrieved in constant time, so can Ψ′[i] = |Σ|qi + ri. This gives the following lemma.

Lemma 1. The Ψ′ function can be encoded in O(n log |Σ|) bits so that each Ψ′[i]
can be retrieved in constant time.

Corollary 1. The Ψ function can be encoded as Ψ′ in O(n log |Σ|) bits so that
each Ψ[i] can be retrieved in constant time.

Proof. The retrieval time follows since Ψ[i] = Ψ′[i] mod n.

2.3. Duality between Ψ and W . It is known that Ψ and W are one-to-one
corresponding. In the section, we show that the transformation between them can be
done in linear time and in O(n log |Σ|)-bit space.

We first give a property relating W and Ψ.
Definition 1. Given an array of characters x[0 . . . n − 1], we define the stable

sorting order of x[i] in x to be the number of characters in x which is alphabetically
smaller than x[i], plus the number of characters x[j] with j < i which is equal to x[i].
This is in fact the position of x[i] after stable sorting.

Lemma 2 (see [2]). Let k be the stable sorting order of W [i] in W . Then, Ψ[k] = i.
Proof. Let Yi denote the suffix TSA[i]−1 when SA[i] > 0, and the suffix T [n − 1]

otherwise. Note that when i < j, if Yi and Yj are starting with the same character,
Yi will be lexicographically smaller than Yj . The reason is that, by excluding the first
character, the remaining part of Yi (which is TSA[i]) is lexicographically smaller than
the remaining part of Yj (which is TSA[j]). Also, observe that the first character of Yi
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is equal to W [i]. Then, it follows that the stable sorting order of W [i] in W is equal
to the rank of Yi among the set of all Yi’s, which is the set of all suffixes of T .

Thus, we have k = SA−1[SA[i] − 1] when SA[i] > 0, and k = SA−1[n − 1]
otherwise. In the former case, SA[k] = SA[i]−1 < n−1, so Ψ[k] = SA−1[SA[k]+1] =
SA−1[SA[i]] = i. For the latter case, we have i = SA−1[0] and SA[k] = n − 1. Thus
we have Ψ[k] = SA−1[0] = i. In summary, Ψ[k] = i for all cases, and the lemma
follows.

The next two lemmas show the linear-time conversion between W and Ψ.
Lemma 3. Given W , we can store Ψ in O(n) time and in O(n log |Σ|) bits. The

working space is O(n log |Σ|) bits.
Proof. The conversion is simply based on counting sort. We present the details

below for completeness. We construct Ψ′ in section 2.2 from W as an encoding of Ψ
(Corollary 1). To construct Ψ′, we create a bit-vector B1[0 . . . 2n − 1] and initialize
all bits to 0. We also create an array B2[0 . . . n− 1], where each entry occupies log |Σ|
bits.

Now, we show how to compute the stable sorting order of W [i] in W , for i =
0, 1, 2, . . .. To do so, we use three auxiliary arrays. The first array is L1 such that
L1[c] stores the number of occurrences of the character c in W . This array can be
initialized by scanning W once. The second array is L2 such that L2[c] stores the
number of occurrences of a character that is smaller than c in W . This array can be
initialized by scanning L1 once. Finally, the third array is L3 such that L3[c] stores
the number of occurrences of c seen so far. Initially, all entries of L3 are initialized
to 0.

Now, we proceed to read W [0], W [1], and so on. Note that during the process,
when we read a character c, we maintain the correctness of L3 by increasing L3[c]
just before the next character is read. Thus, at the beginning of step i, the counter
L3[W [i]] will be storing the number of occurrences of W [i] in W [0 . . . i− 1], and the
stable sorting order of W [i] can be computed by L2[W [i]] + L3[W [i]].

Let k be the stable sorting order of W [i] that is computed at step i in the above
algorithm. By Lemma 2, Ψ[k] = i. Thus, we have Ψ′[k] = x = ρ(T [SA[k]],Ψ[k]) =
ρ(W [i], i). By our scheme, x is divided into two parts q and r, where q = x div |Σ| is
the first logn bits, and r = x mod |Σ| is the remaining bits. For q, a 1 is stored at
B1[k + q]. For r, it is stored at B2[k].

As the stable sorting order of each W [i] is different, all possible Ψ[k]’s will be
eventually computed and stored. A summary of the overall algorithm is shown in
Figure 2. It is easy to see that the overall time is O(n+ |Σ|). For the space complexity,
note that L1, L2, and L3 each occupies |Σ| logn bits, which is at most n log |Σ| bits
because |Σ| ≤ n. Thus, we use O(n log |Σ|)-bit working space.

Lemma 4. Given Ψ and T , we can store W in O(n) time and in O(n log |Σ|) bits.
The working space is O(n log |Σ|) bits.

Proof. Let t = SA−1[0]. Then, we have Ψ[t] = SA−1[1]. In general, Ψk[t] =
SA−1[k].

Hence, we have W [Ψk[t]] = T [k − 1]. To construct W , we can first compute t.
Recall that T [n − 1] is a unique character in T . By scanning T , we compare each
character of T with T [n − 1]. Then, we obtain the value x = SA−1[n − 1], which is
equal to the number of occurrences of a character in T that is smaller than T [n− 1].
Then, by definition, Ψ[x] = SA−1[0], which is equal to t. Thus, t can be found in
O(n) time. Afterwards, we iteratively compute Ψi[t] and set W [Ψi[t]] = T [i− 1], for
i = 1 . . . n. As Ψi[t] corresponds to the rank of a different suffix of T for different i, all
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1. Compute L1[c] to store the number of occurrences of each c ∈ Σ.
2. Compute L2[c] to store the number of occurrences of a character that

is smaller than c. That is, L2[c] =
∑

d<c L1[c] for c ∈ Σ.
3. Let L3 be an array such that L3[c] stores the number of occurrences

of the character c seen so far.
4. Initialize all entries of L3 to be 0.
5. For i = 1, 2, . . . , n,

Let c = W [i], k = L2[c] + L3[c].
Compute x = ρ(c, i).
Let q = x div |Σ|, r = x mod |Σ|.
Set B1[k + q] = 1 and B2[k] = r.
Increase L3[c] by one.

6. Compute the O(n/ log logn)-bit auxiliary data structure for B1.

Fig. 2. Computing Ψ from W .

the characters of W will be eventually computed and stored by the above algorithm.
The total time of the algorithm is O(n), and the spaces for W , T , and Ψ are all
O(n log |Σ|) bits. The lemma thus follows.

3. Improving the backward search algorithm. Let S be a text of length
m over an alphabet Δ. In this section, we present an O(m + |Δ|)-bit auxiliary data
structure for the Ψ function of S that improves each step in the backward search
algorithm from O(logm) time to O(log log |Δ|) time.

We first present in section 3.1 a data structure that supports fast rank query
and show that such a data structure can be constructed efficiently in terms of time
and working space. Then, in section 3.2, we describe the improved backward search
algorithm based on the result of section 3.1.

3.1. Efficient data structure for fast rank query. Let Q be a set of distinct
numbers. For any integer x, the rank of x in Q is the number of elements in Q smaller
than x. We begin with two supporting lemmas prior to the description of our data
structure. The first one is on a perfect hash function, which is obtained by rephrasing
the result of section 4 of [10] as follows.

Lemma 5. Given x b-bit numbers, where b = Θ(log x), a data structure of size
O(xb) bits supporting an O(1)-time existential query can be constructed in O(x log x)
time and O(xb)-bit working space.

The second lemma is derived from a result in [21, 31] based on Lemma 5.
Lemma 6. Given z w-bit numbers, where w = Θ(log z), a data structure of size

O(zw2) bits supporting O(logw)-time rank queries can be constructed in O(zw log(zw))
time and O(zw2)-bit working space.

Proof. It is shown that rank queries can be solved in O(logw) time if the existential
query for all prefixes of the z numbers can be answered in O(1) time [21, 31].3 The

3In the original papers, the results are for another query called predecessor, which finds the largest
element in the z numbers that is smaller than the input w-bit number k. However, such a result can
be modified easily for the rank query as follows. For each number i in the z numbers, it is replaced
by the number iz + the rank of i (so that the number now has w + log z bits), and we construct the
predecessor data structure for these modified numbers. For the intended rank query, we first try to
find the predecessor for kz in the modified numbers, and if no predecessor is found, the rank of k in
the z numbers is 0. Otherwise, let this predecessor be p. It is easy to see that the required result is
equal to (p mod z) + 1.
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idea is that, given a w-bit number k, its longest common prefix with the z numbers
can be found by binary search (on the length) using O(logw) existential queries, and
such a prefix uniquely determines the rank of k.

Notice that only O(zw) strings can be a prefix of the z numbers, and each can be
represented in Θ(w) bits. Applying Lemma 5 on this set of strings (with x = O(zw)
and b = Θ(w)), we have the required data structure. The lemma thus follows.

Now, we are ready to describe our new data structure, whose performance is
summarized below.

Theorem 1. Let Q be a set of n numbers, each of length Θ(logn) bits. Then, a
data structure of size O(n log n) bits supporting an O(log logn)-time rank query in Q
can be constructed in O(n) time and O(n log n)-bit working space.

Proof. We construct the following data structure for Q:
1. Let k0 < k1 < · · · < kn−1 be n numbers of Q stored in ascending order by an

array.
2. Partition the n numbers into n/w2 lists, each containing w2 numbers. Pre-

cisely, the lists are in the form {ki, ki+1, . . . , ki+w2−1}, where i ≡ 0 (mod w2).
3. Let the smallest element in each list be its representative. Construct a data

structure for rank query for these representatives based on Lemma 6.
The above data structure occupies O(nw) bits and can be constructed in O(n)

time and O(nw)-bit working space. With such a data structure, the rank of x among
the n numbers can be found in O(logw) time as follows.

1. Find the rank of x among the n/w2 representatives of the lists. Let this be r.
2. Then, the rank of x among the n numbers must now lie in [rw2, (r+1)w2−1].

Do a binary search on the w2 elements {krw2, krw2+1, . . . , k(r+1)w2−1} to find
the rank of x.

Both steps thus take O(logw) time. This completes the proof of Theorem 1.
Note that, in contrast to the existing data structures for the rank query [13, 25],

our data structure requires either less space for storage (when compared with [13]) or
less time in the construction (when compared with [25]); the drawback is a blow-up
in query time. Based on Theorem 1, we can use some extra space to achieve a more
generalized result, as shown in the following corollary.

Corollary 2. Let Q′ be a set of n values, each of length log �+Θ(logn) bits for
any �. Then, a data structure of size O(n log n+�) bits supporting an O(log logn)-time
rank query in Q′ can be constructed in O(n + �) time and O(n log n+ �)-bit working
space.

Proof. The idea is to apply Theorem 1 by transforming the set Q′ into another set
such that each value takes only Θ(logn) bits. First, we scan Q′ and create a bit-vector
B[0 . . . � − 1] such that B[i] = 1 if there is some number in Q′ whose first log � bits
represent a value i, and B[i] = 0 otherwise. Afterwards, we construct an auxiliary
data structure for B of size o(�) bits to support constant-time rank and select queries
[13, 22].

Now, we transform each number in Q′ as follows: If the first log � bits of the
number represent the value i, these bits are replaced by the binary bit-sequence for
the rank of i in B. Note that the rank of i is less than n, as there are only n numbers.
Thus, after the transformation, each value takes Θ(logn) bits, and, in addition, the
transformation preserves the ordering among the elements in Q′.

Let the set of the transformed values be Q. We create the data structure of
Theorem 1 on Q. To perform a rank query for x in Q′ (we assume that x has the
same length as any number in Q′), we first obtain the first log � bits of x. Suppose
that these bits represent the value ix. Then there are two cases.
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Case 1. If B[ix] = 1, we replace the first log � bits of x by the logn-bits that
represent the rank of ix in B, and obtain a new value y. Then, it is easy to
see that the rank of x in Q′ is equal to the rank of y in Q.

Case 2. Otherwise, we replace the first log � bits of x by the logn-bits that
represent the rank of ix in B, while setting the remaining Θ(logn) bits to
zeros, and obtain a new value z. Then, it is easy to see that the rank of x in
Q′ is equal to the rank of z in Q.

Finally, for the time and space complexity, B and its auxiliary data structures
can be created in O(�) time and stored in �+ o(�) bits, while the data structure for
the rank query in Q can be created in O(n) time and stored in O(n log n) bits (by
Theorem 1). The lemma thus follows.

3.2. The improved backward search algorithm. First, a backward search
step is defined as follows.

Definition 2. For any pattern P , suppose that the rank of P among all suffixes
of S is known. A backward search step then computes the rank of cP among the
suffixes of S for any character c ∈ Δ.

Let Ψ′ denote the total increasing function such that Ψ′[i] = ρ(S[SA[i]],Ψ[i]) and
ρ(c, x) = enc(c) ·m+ x. Then, we have the following lemma.

Lemma 7. Let r be the rank of P among all suffixes of S. Then, the rank of cP
among all suffixes of S is equal to j ∈ [0,m] such that Ψ′[j − 1] < ρ(c, r) ≤ Ψ′[j]. (As
a sentinel, we let Ψ′[−1] = −1 and Ψ′[m] = m|Δ|.)

Proof. It is easy to check that for all i = 0, 1, . . . , j−1, the rank-i suffix of S must
either start with a character smaller than c or start with c but with the remaining
part lexicographically smaller than P . Thus, for all i = 0, 1, . . . , j−1, the rank-i suffix
of S is lexicographically smaller than cP . On the other hand, for all i ≥ j, the rank-i
suffix of S is lexicographically greater than or equal to cP . Thus, the rank of cP
is j.

Essentially, a backward search step that computes the rank of cP in the above
lemma is equivalent to finding the rank of ρ(c, r) in the set of all Ψ′ values. Then
based on the data structure for the rank query in section 3.1 (Corollary 2), we can
obtain the main result of this section as follows.

Lemma 8. Let S be a text of length m over an alphabet Δ. Suppose that the Ψ
function of S is given, which is stored as Ψ′ using the scheme in section 2.2. Then, an
auxiliary data structure for the Ψ function of S can be constructed in O(m+|Δ|) time,
which supports each backward search step in O(log log |Δ|) time. The space requirement
is O(m+ |Δ|) bits.

Proof. Let V denote the set of all Ψ′ values. To prove the lemma, it suffices to
show a data structure of O(m + |Δ|) bits that supports the rank query for any x in
V in O(log log |Δ|) time.

First, recall that in our encoding of Ψ′, each value in V is stored in two parts,
where the first logm bits are encoded by unary codes in a bit-vector B1, and the
remaining log |Δ| bits are encoded in an array B2 as it is. In addition, there is an
auxiliary data structure supporting constant-time rank and select queries.

Let Gi be the set of Ψ′ values whose first logm bits represent the value i. Among
the sets of Gi’s, we are concerned with those sets whose size is greater than log |Δ|.
Let Gi1 , Gi2 , . . . , Gik be such sets, where i1 < i2 < · · · < ik.

Note that each of the groups Gi1 , Gi2 , . . . , Gik has size between log |Δ| and |Δ|.
Now, we combine the groups, from left to right, into supergroups of size Θ(|Δ|).
More precisely, we start from Gi1 , merge it with Gi2 , Gi3 , and so on, until the size
exceeds |Δ|. Then, we merge the next unmerged group with its succeeding group and
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so on, until the size exceeds |Δ|. The process is repeated until all groups are within a
supergroup. (To ensure that each supergroup has size Θ(|Δ|), we add a dummy group
Gm = {m|Δ|,m|Δ| + 1, . . . , (m+ 1)|Δ| − 1} as a sentinel.)

For each supergroup G, let v0, v1, . . . , vp be its Θ(|Δ|) elements. Now, we pick every
log |Δ| elements (i.e., v0, vlog |Δ|, v2 log |Δ|, . . .), subtract each of them by v0, and make
them the representatives of this supergroup. Then, we construct the data structure
for the rank query of Corollary 2 over these representatives.

With the above data structure, a rank query for any x in G can be supported as
follows. We first check if x ≤ v0. If so, the rank of x is 0. Otherwise, we find the rank of
x − v0 among the representatives, which takes O(log log |Δ|) time. Suppose the rank
is r. Then, the rank of x in G must lie between r log |Δ| and (r + 1) log |Δ| − 1, and
this can be found by a binary search in the elements {vr log |Δ|, . . . , v(r+1) log |Δ|−1},
which takes O(log log |Δ|) time. In summary, the time required is O(log log |Δ|).

Now, let us complete the whole picture to show how to perform the rank query
for x in V . First, we extract the first logm bits of x by dividing it with |Δ|. Let
i′ = x div |Δ| be its value. Next, we determine the size of Gi′ , which can be done in
constant time using rank and select queries on B1. If the size is 0 (i.e., Gi′ is empty),
the rank of x in V can be computed immediately (precisely, the required rank is equal
to the number of 1’s in B1[0 . . . i′− 1], which can be computed in constant time using
B1 and its auxiliary data structure). If the size is smaller than log |Δ|, the rank of
x can be found by performing a binary search with the elements in Gi′ , which takes
O(log log |Δ|) time. Finally, if the size is greater than log |Δ|, we locate the super-
group G that contains the elements of Gi′ , and we retrieve the rank r of its smallest
element v0 in V . Then, the required rank is r plus the rank of x in G. We now claim
that locating the supergroup and retrieving r can be done in constant time (to be
proved shortly), so that the total time is O(log log |Δ|).

We prove the above claim as follows. To support finding the smallest element
in each supergroup, and retrieval of its rank in V , we use a bit-vector B′

1 of O(m)
bits, obtained from B1 by keeping only those 1’s whose corresponding Ψ′ value is a
smallest element in some supergroup. Also, we augment B′

1 with constant-time rank
and select data structures. Then, the smallest value of the (i+ 1)th supergroup, and
its rank in V , can be found by consulting B1 and B′

1 in constant time. In addition, for
any Gi (with size greater than log |Δ|), the rank of its supergroup among the other
supergroups can be found by consulting B′

1 in constant time.
On the other hand, to support locating the rank data structure of the supergroup,

we first analyze the space requirement of these data structures. For a particular super-
group G = {v0, v1, . . . , vp}, the data structure is built for p/ logΔ = Θ(Δ/ log Δ)
elements, each of which has value in [0, vp−v0], so that the space is O(vp−v0 + p

log |Δ| ·
log |Δ|) bits (by Corollary 2), which is O(vp−v0) bits since p ≤ vp−v0. Thus, the total
space requirement is O(m+ |Δ|) bits,4 and we assume that the data structures of the
supergroups are stored consecutively according to the rank of its smallest element.
Then, we create a bit-vector B3 whose length is identical to the above data structures,
which is used to mark the starting position of each data structure. Also, we augment
the bit-vector with an o(m + |Δ|)-bit auxiliary data structure to support constant-
time rank and select queries. Thereafter, when we want to locate a supergroup for
Gi, we find its rank r among the other supergroups using B′

1, and then this rank-r
supergroup can be accessed in constant time using B3.

4The additional O(|Δ|) bits are due to the dummy group Gm.
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In summary, our data structure takes a total space ofO(m+|Δ|) bits and supports
each backward search step in O(log log |Δ|) time. For the construction, it takes at most
O(m+ |Δ|) time. The lemma thus follows.

4. The framework for constructing the CSA and the FM-index. Recall
that T [0 . . . n−1] is a text of length n over an alphabet Σ, and we assume that T [n−1]
is a special character that does not appear elsewhere in T . This section describes how
to construct the Ψ function and the BW text W of T in O(n log log |Σ|) time. Our
idea is based on Farach’s framework for linear-time construction of the suffix tree [4],
which first constructs the suffix tree for even-position suffixes by recursion, based on
which it induces the suffix tree for odd-position suffixes, and then merges the two
suffix trees to obtain the required one.

For our case, we first assume that the length of T is a multiple of 2�log log|Σ| n�+1.
(Otherwise, we add enough $ and a $′ at the end of T , where $′ is a character al-
phabetically smaller than the other characters in T , and proceed with the algorithm.
The Ψ of this modified string can be converted into the Ψ of T in O(n) time.) Let h
be �log log|Σ| n�. For 0 ≤ k ≤ h, we define T k to be the string over the alphabet Σ2k

,
which is formed by concatenating every 2k characters in T to make one character.
That is, T k[i] = T [i ·2k+1 . . . (i+1) ·2k−1], for 1 ≤ i ≤ n/2k. By definition, T 0 = T .

In addition, we introduce the following definitions associated with a string. For
any string S[0 . . .m − 1] with even number of characters, denote Se and So to be
the strings of length m/2 formed by merging every 2 characters in S[0 . . .m − 1]
and S[1 . . .m− 1]S[0], respectively; more precisely, Se[i] = S[2i]S[2i+ 1] and So[i] =
S[2i + 1]S[2i + 2], where we set S[m] = S[0]. Intuitively, the suffixes of Se and So
correspond to the even-position and odd-position suffixes of S, respectively. We have
the following observation.

Observation 2. T ie = T i+1.
Also, note that the last characters of T io and T ie are unique among the correspond-

ing string. This makes the results in sections 2 and 3 applicable for both texts.
Our basic framework is to use a bottom-up approach to construct Ψ of T i, or

ΨT i , for i = �log log|Σ| n� down to 0, thereby obtaining Ψ of T in the end. Precisely,
• for step i = �log log|Σ| n�, ΨT i is constructed by first building the suffix tree

for T i using Farach’s algorithm [4] and then converting it back into the Ψ
function.

• for the remaining steps, we construct the ΨT i based on the ΨT i+1 , the latter
of which is in fact ΨT i

e
by Observation 2. We first obtain ΨT i

o
based on T i and

ΨT i
e
. Afterwards, we merge ΨT i

o
and ΨT i

e
to give ΨT i . The complete algorithm

is shown in Figure 3.

1. For i = �log log|Σ| n�,
(a) construct suffix tree for T i.
(b) construct ΨT i from the suffix tree.

2. For i = �log log|Σ| n� − 1 to 0,
(a) construct ΨT i

o
based on ΨT i

e
. (Note: ΨT i

e
= ΨT i+1 .)

(b) construct ΨT i based on the ΨT i
o

and ΨT i
e
.

Fig. 3. The construction algorithm of Ψ function of T .
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Sections 5 and 6 describe in details how to obtain ΨT i
o

from ΨT i
e

and T i, and how
to merge ΨT i

o
and ΨT i

e
to obtain ΨT i , respectively. This gives the main theorem of

this section.
Theorem 2. The Ψ function and the BW text W of T can be constructed in

O(n log log |Σ|) time and O(n log |Σ|)-bit working space.
Proof. We refer to the algorithm in Figure 3, which has two phases. For phase

1, we have i = �log log|Σ| n�. We first construct the suffix tree for T i whose size is
n/2�log log|Σ| n� ≤ n log |Σ|/ logn. This requiresO(n log |Σ|/ logn) time andO(n log |Σ|)-
bit space by using Farach’s suffix tree construction algorithm [4]. Then, ΨT i can
be constructed in O(n log |Σ|/ logn) time and O(n log |Σ|)-bit working space. Thus,
phase 1 in total takes O(n) time and O(n log |Σ|)-bit space.

For every step i in phase 2, we construct ΨT i . Let Δi be the alphabet of T i. Then,
part (a) takes O(|T i|+ |Δi|) time (Lemma 12), and part (b) takes O(|T i| log log |Δi|+
|Δi|) time (Lemma 14). For the space, both require O(|T i| log |Δi| + |Δi|) bits. Note
that |T i| = n/2i and |Δi| ≤ |Σ|2i ≤ n, so the space used by step i is O(|T i| log |Δi|+
|Δi|) = O(n log |Σ|) bits, and the time is O(|T i| log log |Δi| + |Δi|) = O((n/2i) · (i+
log log |Σ|) + |Σ|2i

). In total, the space for phase 2 is O(n log |Σ|) bits and the time is

�log log|Σ| n�−1∑
i=1

O
( n

2i
(i+ log log |Σ|) + |Σ|2i

)

= O(n log log |Σ|).

The whole algorithm for constructing Ψ of T therefore takes O(n log log |Σ|) time
and O(n log |Σ|)-bit space. Finally, the BW text W can be constructed from Ψ using
Lemma 4 in O(n) time and O(n log |Σ|)-bit space. This completes the proof.

Once the BW transformation is completed, the FM-index can be created by encod-
ing the transformed text W using move-to-front encoding and run-length encoding [5].
When the alphabet size is small, precisely, when |Σ| log |Σ| = O(log n), move-to-front
encoding and run-length encoding can be done in O(n) time based on a precomputed
table of o(n) bits. In summary, this encoding procedure takes O(n) time using o(n)-bit
space in addition to the output index. Thus, we have the following result.

Theorem 3. The FM-index of T can be constructed in O(n log log |Σ|) time and
O(n log |Σ|)-bit working space, when |Σ| log |Σ| = O(log n).

4.1. Further discussion. The compressed suffix tree (CST) [12] is a compact
representation of the suffix tree taking O(n log |Σ|) bits of space. The core of the
CST consists of (1) the CSA of the input text, (2) parentheses encoding of the tree
structure of the suffix tree, and (3) an Hgt array that enables efficient computation
of the longest common prefix (LCP) query. It is shown in [12, 11] that once the CSA
of the input text is computed, the CST can be constructed in O(n logε n) time and
O(n log |Σ|)-bit working space, for any fixed ε with 0 < ε < 1.

Once the CST is constructed, we can simulate a preorder traversal of the original
suffix tree in O(n(logε n + log |Σ|)) time [12, 11], thereby constructing the original
suffix tree along the traversal. Summarizing, we have the following result.

Theorem 4. The CST and suffix tree of T can be constructed in O(n logε n) time
and O(n(logε n + log |Σ|)) time, respectively, for any fixed ε with 0 < ε < 1. Both
construction algorithms require O(n log |Σ|)-bit working space.
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Xi

i y[i] x[i] Se[SAe[i] . . . m/2 − 1] S[0]

0 $a c aa cc g$ a

1 cg $ ac aa cc g$ a

2 ca a cc g$ a

3 ac c g$ a

(a)

i y → Co x → sorted x

0 cg $

1 ca a

2 $a c

3 ac c

(b)

Fig. 4. Consider S = acaaccg$. (a) The relationship between x[i], y[i], and Xi. Note that Xi

corresponds to a suffix of So. (b) After stable sorting on the array x, the array y becomes Co.

5. Constructing ΨSo . Given S[0 . . .m−1] and ΨSe , this section describes how
to construct ΨSo . Our approach is indirect, as prior to obtaining ΨSo , we need to
construct the BW text Co of So.

Let Δ be the alphabet of S. Define x[0 . . .m/2 − 1] to be an array of characters
such that x[i] = S[2SAe[i]−1], where 2SAe[i]−1 is computed in modulo-m arithmetic.
Let Xi be the string x[i]Se[SAe[i] . . .m/2 − 1]S[0].

Observation 3. Xi is a suffix of So if SAe[i] �= 0. Otherwise, the first character
of Xi is S[m− 1], which is unique among other characters in S.

Let X be the set {Xk|0 ≤ k ≤ m/2 − 1}. Intuitively, X is the same as the set of
suffixes of So. See Figure 4(a) for an example of Xi.

Lemma 9. The stable sorting order of x[i] in x equals the rank of Xi in X.
Proof. By omitting the first character of every Xi, we see that these Xi’s are of

the form Se[SAe[i] . . .m/2− 1]S[0], which are already sorted. Thus, the rank of Xi is
equal to the stable sorting order of x[i] in x.

Lemma 10. Given ΨSe and S, we can construct Co in O(m + |Δ|) time and
O(m log |Δ| + |Δ|)-bit space.

Proof. Let y[0 . . .m/2 − 1] be an array such that y[i] stores the two characters
that immediately precede x[i] in S (i.e., S[2SAe[i] − 3]S[2SAe[i] − 2]). In fact, y[i] is
the preceding character of Xi in So. Using a similar approach as in Lemma 4, x and
y can be computed in O(m) time, and both arrays occupy O(m log |Δ|) bits.

To construct Co, we perform a stable sort on x as in Lemma 3, and we iteratively
compute the stable sorting order k of x[i], which is equal to the rank ofXi by Lemma 9.
During the process, we set Co[k] = y[i]. The total time is O(m + |Δ|) and the total
space is O(m log |Δ| + |Δ|) bits. See Figure 4 for an example.

Lemma 11. ΨSo can be constructed from Co in O(m+|Δ|) time and O(m log |Δ|+
|Δ|)-bit space.

Proof. The proof is similar to that of Lemma 3.
Thus, we conclude this section with the following lemma.
Lemma 12. Given ΨSe and S, we can construct ΨSo in O(m + |Δ|) time and

O(m log |Δ| + |Δ|)-bit space.

6. Merging ΨSo and ΨSe . In this section, we construct ΨS from ΨSo and ΨSe .
The idea is to determine the rank of any suffix of S among all suffixes of S, and based
on this information, we construct the BW text C of S. Finally, we convert C to ΨS

by Lemma 3.
Let s be any suffix of S. Observe that the rank of s among the suffixes of S

is equivalent to the sum of the rank of s among the odd-position suffixes and that
among the even-position suffixes of S. Based on this observation, we can construct
the C array (the BW transformation of S) as follows.
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First, we construct the auxiliary data structures of Lemma 8 for ΨSo and for ΨSe .
Next, we perform backward searches for Se on ΨSo and ΨSe simultaneously by Lemma 7,
so that at step i, we obtain the ranks of Se[m/2 − i . . .m/2 − 1] among the odd-
position suffixes and even-position suffixes of S, respectively. By summing these two
ranks, we get the rank k of Se[m/2 − i . . .m/2 − 1] among all suffixes of S. Then,
we set C[k] to be S[m − 2i − 1], which is the preceding character of the suffix
S[m− 2i . . .m− 1] = Se[m/2 − i . . .m/2 − 1].

Similarly, we perform a simultaneous backward search for So on ΨSo and ΨSe to
complete the remaining entries of C. Thus, we obtain C by O(m) backward search
steps. The algorithm is depicted as MergeCSA in Figure 5.

MergeCSA

1. Construct the auxiliary data structures for ΨSo and for ΨSe to sup-
port efficient backward search.

2. Backward search for Se on ΨSo and ΨSe simultaneously, and
(a) at step i, we obtain the rank of Se[m/2−i . . .m/2−1] among the

odd-position suffixes and that among the even-position suffixes
of S. Let the sum of the ranks be k.

(b) Set C[k] = S[m− 2i− 1].
3. Backward search for So on ΨSo and ΨSe simultaneously, and fill in
C[k] accordingly.

Fig. 5. Merging ΨSo and ΨSe .

The following lemma shows the correctness of our algorithm.
Lemma 13. The algorithm MergeCSA in Figure 5 constructs C[0 . . .m − 1]

correctly.
Proof. Recall that for every suffix S[i . . .m− 1], C[SA−1[i]] equals the preceding

character of S[i . . .m − 1]. For every even-position suffix S[i . . .m − 1] = Se[i/2 . . .
m/2−1], step 2 computes its rank k among all odd-position and even-position suffixes.
By definition, k = SA−1[i]. Therefore, step 2 correctly assigns C[k] to be the preceding
character of S[i . . .m − 1]. By the same argument, step 3 handles the odd-position
suffixes and correctly assigns C[SA−1[i]] to be the preceding character of S[i . . .m−1].

Therefore, after steps 2 and 3, MergeCSA completely constructs C[0 . . .m− 1].
The lemma thus follows.

By Lemma 8, the auxiliary data structures can be constructed in O(m+ |Δ|) time
and O(m+|Δ|)-bit space, and then each backward search step is done in O(log log |Δ|)
time. On the other hand, the Ψ function occupies O(m log |Δ|)-bit space. Thus, we
have the following lemma.

Lemma 14. Given ΨSo and ΨSe , we can construct ΨS in O(m log log |Δ| + |Δ|)
time and O(m log |Δ| + |Δ|)-bit space.

7. Improvement when log |Σ| = O((log log n)1−ε). In case the alphabet
size is small, precisely, when log |Σ| = O((log logn)1−ε), we can improve the construc-
tion time of the CSA and the FM-index to O(n), which is optimal. The improvement
is based on the following data structure of Pagh for supporting constant-time rank
queries [24].

Theorem 5 (see [24]). Given n distinct numbers in [0,m − 1] such that
m = n logO(1) n, a data structure of size B +O(n(log log n)2

logn ) bits supporting constant-
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time rank queries can be constructed in O(n) time and O(B)-bit space, where B =
�log

(
m
n

)
� = n log m

n +O(n).
We apply the same algorithm as in section 4 for the construction of the CSA,

but we make changes only in the encodings of ΨT i , for i < log log log |Σ|. For those
values of i, we have |T i| = n/2i, and the alphabet size of T i is |Σ|2i

. When log |Σ| =
O((log logn)1−ε), we have |Σ|2i

= logO(1) |T i|.5 Thus, the total increasing sequence of
such Ψ′

T i ’s can be encoded by Theorem 5, and each backward search step on these Ψ
functions can be done in constant time. This gives the following theorem.

Theorem 6. If log |Σ| = O((log logn)1−ε), the CSA, FM-index and BW text W
of T can be constructed in O(n) time and O(n log |Σ|)-bit working space.

Proof. We refer to the algorithm in Figure 3. After the change in the encodings
of ΨT i for i < log log log |Σ|, the time required by each phase is as follows.

• Phase 1 takes O(n) time;
• for i ≥ log log log |Σ|, step i in phase 2 takes O((n/2i) · (i+log log |Σ|)+ |Σ|2i

)
time;

• for i < log log log |Σ|, step i in phase 2 takes O(n/2i + |Σ|2i

) time.
It follows that the total time required is O(n). For the space complexity, it remains
O(n log |Σ|) bits. Thus, the CSA and the BW text W of T can be constructed in
the stated time and space, while the FM-index can be constructed in O(n) time and
O(n log |Σ|)-bit space once W is obtained. This completes the proof.

8. Concluding remarks. We have shown that suffix trees, suffix arrays, and
other full-text indices can be constructed in o(n logn) time and o(n logn)-bit space,
giving a positive answer to an open problem.

Recently, linear-time algorithms for constructing suffix arrays have been pro-
posed [15, 16, 14]. Though using interesting techniques, those algorithms require
O(n log n)-bit working space, and they will imply only O(n logε n) time algorithms
for constructing suffix arrays if the working space is limited to O(n log |Σ|) bits. Thus,
the algorithm proposed in this paper is best suited for suffix array construction under
practical consideration, where the input text is very long but the alphabet size is
small.

One of the open problems remaining is whether we can construct a suffix tree in
optimal O(n) time for texts with general alphabet, while using optimal O(n log |Σ|)-
bit working space. Another direction of research is to further reduce the working space
for constructing full-text indices from O(n log |Σ|) bits to an input-dependent O(nH)
bits, where H is the entropy of the input text.
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Abstract. In this paper, an optimal linear-time algorithm is presented to solve the haplotype
inference problem for pedigree data when there are no recombinations and the pedigree has no mating
loops. The approach is based on the use of graphs to capture SNP, Mendelian, and parity constraints
of the given pedigree. This representation allows us to capture the constraints as the edges in a graph,
rather than as a system of linear equations as in previous approaches. Graph traversals are then
used to resolve the parity of these edges, resulting in an optimal running time.
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1. Introduction. The modeling of human genetic variation is critical to the un-
derstanding of the genetic basis for complex diseases. Single nucleotide polymorphisms
(SNPs) [5] are the most frequent form of this variation, and it is useful to analyze
haplotypes, which are sequences of linked SNP genetic markers (small segments of
DNA) on a single chromosome. In diploid organisms, such as humans, chromosomes
come in pairs, and experiments often yield genotypes, which blend haplotypes for
the chromosome pair. This gives rise to the problem of inferring haplotypes from
genotypes.

Before defining our problem, some preliminary definitions are needed. The phys-
ical position of a marker on a chromosome is called a locus and its state is called an
allele. Without loss of generality, the allele of a biallelic SNP can be denoted by 0 and
1, and a haplotype with m loci is represented as a length-m string in {0, 1}m, and a
genotype as a length-m string in {0, 1, 2}m. Haplotype pair 〈h1, h2〉 is SNP-consistent
with genotype g if where the two alleles of h1 and h2 are the same at the same locus,
say 0 (respectively, 1), the corresponding locus of g is also 0 (respectively, 1), which
denotes a homozygous locus; otherwise, where the two alleles of h1 and h2 are different,
the corresponding locus of g is 2, which denotes a heterozygous locus (i.e., SNP). A
genotype with s heterozygous loci can have 2s−1 SNP-consistent haplotype solutions.
For example, genotype g = 012212 with s = 3 has four SNP-consistent haplotype
pairs: {〈011111, 010010〉, 〈011110, 010011〉, 〈011011, 010110〉, 〈011010, 010111〉}.

A pedigree is a fundamental connected structure used in genetics. Figure 1 shows
the pictorial representation of a pedigree with four nodes, with a square representing
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Fig. 1. Example of a pedigree with four nodes.

a male node and a circle representing a female node and children placed under their
parents: in particular, a father (node F), a mother (node M), and two children (son
node S and daughter node D). Each node in the pedigree is associated with a genotype.
In Figure 1, for example, 2102 is the genotype for F and 2000 is the genotype for M.
We assume that there are no mating loops ; i.e., the pedigree does not contain loops.
For example, marriage between descendants of a common ancestor forms a mating
loop. However, polygamy or remarriage is allowed in the sense that stepchildren can
exist. A precise definition of a mating loop will be given in section 2. Note that
mating loops are rare in real data sets, especially for humans [2].

A consistent haplotype configuration (with no recombinations) for a given pedigree
is an assignment of a pair of haplotypes to each individual node such that (i) all the
haplotype pairs are SNP-consistent with their corresponding genotypes and (ii) the
haplotypes of each child are Mendelian-consistent ; i.e., one of the child’s haplotype is
exactly the same as one of its father’s and the other is the same as one of its mother’s.

Haplotyping Pedigree Data (with No Recombinations) Problem (HPD-
NR): Given a pedigree P where each individual node of P is associated with a geno-
type, find a consistent haplotype configuration (CHC) for P.

Wijsman [7] proposed a 20-rule algorithm, and O’Connell [4] described a genotype
elimination algorithm, both of which can be used for solving the HPD-NR problem.
Li and Jiang [2] formulated the problem as a system of linear equations with O(mn)
equations and O(mn) variables, where n is the number of individuals in the pedigree
and m is the number of loci for each individual. The equations are then solved by
Gaussian elimination. This gives a O(m3n3) time algorithm. Xiao, Liu, Xia, and
Jiang [8] later improved the time complexity to O(mn2 + n3 log2 n log log n). For the
case without mating loops, their algorithm runs in O(mn2 + n3) time.

It has long been conjectured that an O(mn) time algorithm exists, but it should
be appreciated that finding such an algorithm has been elusive and far less straight-
forward than many researchers have initially thought.

In this paper, we propose a new 4-stage algorithm that can either find a CHC
solution or report “no solution” in optimal O(mn) time when the pedigree has no
mating loops. The main idea of our algorithm is to construct a tree to model the
predigree. Each vertex in the tree represents a haplotype; i.e., each genotype corre-
sponds to a pair of vertices. Different types of edges are added between the nodes
to enforce the SNP and Mendelian consistencies. This is carried out gradually in
Stages 1 and 2 in our algorithm, and Stage 3 is to add more edges to unify vertices
of the same haplotype so that a connected tree is formed. The main difficulty in our
approach is to resolve the correct alleles at the heterozygous loci in the CHC solu-
tion. We have developed a routine to resolve the heterozygous loci for tree vertices
in a connected component, which is executed in Stages 2, 3, and 4. As a connected
tree is formed after Stage 3, either a CHC solution is constructed or “no solution” is
reported. This approach allows us to find a CHC solution without (directly) solving
a system of linear equations, as in previous approaches [2, 8].
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Fig. 2. Pedigree with a family problem.

2. Preliminaries.
Definition 1 (pedigree graph and mating loop). A pedigree graph is a graph

derived naturally from the pedigree as follows. Each individual in the pedigree becomes
a node in the graph. Whenever two individuals mate and produce children, there is an
additional mating node, and there are undirected edges connecting the mating node
to the two parents as well as to each of the children. A mating loop is a cycle in the
pedigree graph, and a pedigree does not have a mating loop if the associated pedigree
graph does not have cycles; i.e., the pedigree graph is a tree. A trio consists of a
father, a mother and one of their children. A nuclear family consists of a father, a
mother, and all of their (shared) children.

We assume without loss of generality that the pedigree, and hence the pedigree
graph, is connected.

Definition 2 (family problem). If there exists a family with father F, mother
M, and two children C1 and C2 in the pedigree and two loci i and j such that i and j
are heterozygous in F, M, and C1 but are homozygous and heterozygous, respectively,
in C2, then we say that the pedigree has a family problem.

Figure 2 gives a simple example of a pedigree with a family problem. It can be
easily checked that this, and any other pedigree with a family problem, has no CHC
solution.

For each trio T , we define het(T ) as the set of all loci that are heterozygous for
the father, the mother, and the child in T , and hom(T ) as the set of all loci that are
heterozygous for the father and the mother but homozygous for the child. These two
sets for all trios can be computed easily in O(mn) time.

Consider a nuclear family, which consists of a number of trios. The following
observation is crucial: the nuclear family has no family problem if and only if for any
two trios Ti, Tj in the family, het(Ti) and het(Tj) are either identical or disjoint. Note
that het(Ti) ∪ hom(Ti) = het(Tj) ∪ hom(Tj). Using this observation, we can check
the pedigree for family problems in O(mn) time as follows.

Lemma 1. The family problems in the pedigree can be identified in O(mn) time.
Proof. Consider each nuclear family in the pedigree. We maintain sets S0, S1, . . .

of trios where trios belonging to the same Si have identical het()’s and trios belonging
to different Si’s have disjoint het()’s. We extend the definition of het() and hom() to
Si naturally: het(Si) is the set of loci in het(T ) for T ∈ Si, and hom(Si) is similarly
defined. S0 is a special set of trios with empty het(), and initially S1 = {T1} where
T1 is a trio with non-empty het(). We then consider each trio one by one, and do the
following:

For each new trio T ,
(a) If het(T ) is empty, add T to S0 and go to next T .
(b) Otherwise, for each Si, i ≥ 1,

(i) If some loci in het(Si) are in hom(T ) but some are in het(T ), report
“family problem” and halt.
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(ii) Else if all loci in het(Si) are in hom(T ), go to next i. If this is the
last i, create a new Sj with T as a member, and go to next T .

(iii) Else (all loci in het(Si) are in het(T )) check whether all other loci
in T are homozygous. If this is false, then report “family problem”
and halt. If this is true, add this T as a member of Si, and skip to
next T (no need to test the other Sj ’s).

The processing of each trio takes O(m) time even though it may need to compare
with all Si (and there can be O(n) of them), because the running time of steps (b)(i)
and (b)(ii) is O(|het(Si)|), and the sum of all |het(Si)| is at most m. Thus the checking
of family problems over the entire pedigree takes O(mn) time.

3. The algorithm.

3.1. Stage 1—setting up the local graph G.

Stage 1A—Checking for family problems. Our algorithm begins by check-
ing for family problems. Only if there are no family problems will the algorithm
continue; otherwise, “no solution” is reported.

Stage 1B—Generating vector-pairs. For each trio in the given pedigree,
let the respective genotypes of the father F, the mother M, and the child C be:
x1x2 . . . xm, y1y2 . . . ym, and z1z2 . . . zm where xi, yi, zi ∈ {0, 1, 2}. We determine a
pair of vectors (or vector-pair) each for the father, the mother, and the child, namely:
〈f1, f2〉, 〈m1, m2〉, and 〈c1, c2〉, respectively, where f1 = x1,1x1,2 . . . x1,m and f2 =
x2,1x2,2 . . . x2,m; m1 = y1,1y1,2 . . . y1,m and m2 = y2,1y2,2 . . . y2,m; c1 = z1,1z1,2 . . . z1,m

and c2 = z2,1z2,2 . . . z2,m. The vector-pairs are determined in the following manner.
1. For each locus i, for f1 and f2:

(a) If xi = 0, then x1,i = x2,i = 0.
(b) If xi = 1, then x1,i = x2,i = 1.
(c) If xi = 2 and zi = 0, then x1,i = 0 and x2,i = 1.
(d) If xi = 2 and zi = 1, then x1,i = 1 and x2,i = 0.
(e) If xi = 2 and zi = 2 and yi = 0, then x1,i = 1 and x2,i = 0.
(f) If xi = 2 and zi = 2 and yi = 1, then x1,i = 0 and x2,i = 1.
(g) If xi = 2 and zi = 2 and yi = 2, then x1,i = ? and x2,i = ?.

2. m1 and m2 are similarly determined.
3. Set 〈c1, c2〉 = 〈f1, m1〉. Check that 〈c1, c2〉 is consistent with C’s genotype

z1z2. . . zm; otherwise, report “no solution.”
The vector-pairs are the initial assignment of haplotypes, assuming that C inherits

f1 from F and m1 from M, i.e., 〈c1, c2〉 = 〈f1, m1〉. For example, in Step 1(c), zi = 0
and, hence, z1,i = z2,i = 0. Since c1 is inherited from f1, we can conclude x1,i = 0
and, therefore, x2,i = 1. When there is not enough information to deduce the value
of a locus in the haplotype, a ? is used.

Observe that if a particular node N in the pedigree belongs to k different trios,
then k vector-pairs, or 2k vectors, will be created for N in Stage 1B. These need to be
unified eventually as a single vector-pair, because there is only one pair of haplotype
for each node. This will be handled later when Endgame-consistency is defined, but
first notice that we can define SNP-consistency and Mendelian-consistency in terms
of vector-pairs. Let Φ(N) be the multiset comprised of these k vector-pairs of a node
N. It is sometimes convenient to refer to the vectors rather than the vector-pairs.
Thus, we let Γ(N) be the multiset of 2k vectors, containing the two vectors of each
vector-pair in Φ(N).



LINEAR-TIME HAPLOTYPE INFERENCE 2183

?101

?101

(F):

(M):

(S):

Φ

Φ

Φ Φ(D):

red
brown

?100

?000 ?000

?000

1100 0101

1000 0000

1100 1000

Fig. 3. Graph G for Example 1.

Definition 3 (SNP-consistency condition). SNP-consistency is said to be main-
tained if and only if, for all nodes N in the pedigree, each vector-pair in Φ(N) is
SNP-consistent with N’s genotype. Vector-pair 〈h1, h2〉 is said to be SNP-consistent
with genotype g if either (i) if h1 and h2 are both 0 (respectively, 1) at the same locus,
then the corresponding locus of g is also 0 (respectively, 1); or (ii) if h1 is 0 (respec-
tively, 1) and h2 is 1 (respectively, 0) at the same locus, then the corresponding locus
of g is 2.

Definition 4 (Mendelian-consistency condition [1, 6]). Mendelian-consistency
is said to be maintained if and only if, for all nodes N in the pedigree, N is a child in
a trio comprised of F, M, and N, then Φ(N) contains a vector-pair 〈c1, c2〉 = 〈f1, m1〉
where f1 ∈ Γ(F) and m1 ∈ Γ(M).

Stage 1C—Constructing the local graph G = (V, E). Let V be the multi-
set of all the vectors created in Stage 1B, and let E be the set of red and brown edges
defined below:

1. A red edge is introduced to join the two vectors of each vector-pair generated
in Stage 1A. It indicates that a ? appearing at locus i of both vectors must
be resolved differently in the later stages of the algorithm (the two vectors
can be different or the same at the other non-? locus positions). The red
edges enforce SNP-consistency.

2. For each F-M-C trio, let 〈f1, f2〉, 〈m1, m2〉, and 〈c1, c2〉 be vector-pairs in
Φ(F), Φ(M), and Φ(C), respectively, associated with this trio. Two brown
edges are introduced, one connecting c1 and f1, and the other connecting
c2 and m1. A brown edge between two vectors means that the two vectors
must be the same at all locus positions. The brown edges enforce Mendelian-
consistency.

Example 1. Consider the pedigree with F (father), M (mother), S (son), and D
(daughter) shown in Figure 1. Stage 1 produces the graph G in Figure 3 with 12
vertices and 10 edges (6 red and 4 brown), comprised of two connected components,
one for each of the two trios, F-M-S and F-M-D, in the pedigree.

Definition 5. For any locus i in a connected component G of G, we say
1. Locus i is resolved in G if and only if all vectors in G have 0 or 1 at locus i.
2. Locus i is unresolved in G if and only if all vectors in G have ? at locus i.
3. Otherwise, locus i is mixed (it is a mix of ? and non-? at i).

In Example 1, the connected component for trio F-M-S has one unresolved locus
(locus 1) and three resolved loci (loci 2, 3, and 4). Meanwhile, the component for trio
F-M-D has no unresolved loci and four resolved loci (loci 1, 2, 3, and 4).

Lemma 2. The time complexity of Stage 1 (Stages 1A, 1B, and 1C) is O(mn),
where n is the number of nodes in the pedigree and m is the number of loci in each
genotype. Furthermore, after Stage 1, all loci are either resolved or unresolved in each
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connected component of G (no mixed loci), and each connected component has six
vertices. G has O(n) vertices and edges and is acyclic.

Proof. Checking for family problems takes O(mn) time (Lemma 1). With O(n)
trios and six vectors generated per trio with each vector having m loci, Stage 1B takes
O(mn) time. With O(n) trios and six vertices and five edges (three red and two brown)
per trio introduced in G, Stage 1C takes O(n) time altogether, and furthermore, G
has O(n) vertices and edges. G is acyclic because each connected component of G is
a path consisting of 6 vectors, 3 red edges, and 2 brown edges of a trio.

In later stages of our algorithm, no vector-pairs will be added to or deleted from
each Φ(N), and all loci resolved in Stage 1 will remain unchanged. Components of G
will later be merged with the addition of green (added in Stage 2) or white (added
in Stage 3) edges until G becomes a single connected component. Before we explain
why and how these edges are added, we first note that these new edges can always be
added between two vectors in the same Γ(N). This structured way of adding edges to
make G connected is possible given Lemma 3 below.

Lemma 3. If G has more than one connected component, then there exists a node
N such that there are two vector-pairs in Φ(N) which belong to two different connected
components.

Proof. Suppose to the contrary that, for all N, the vector-pairs in Φ(N) are all
connected. We make use of the fact that the brown edges in G preserve the con-
nectivity of any two nodes in the pedigree, which we have assumed to be connected.
Therefore, if vector-pairs in Φ(N) are all connected for all N, then all vectors are con-
nected together in a single connected component, which contradicts the assumption
that G has more than one connected component.

There are two reasons why we need to merge the connected components of G.
First, each multiset Φ(N) may contain more than one vector-pair; precisely, it con-
tains k vector-pairs if N belongs to k different trios. However, by the time all loci
are resolved, for all nodes N, each multiset Φ(N) must contain k copies of one unique
vector-pair 〈h1, h2〉, which represents the haplotype-pair in a CHC for N. The green
and white edges enforce this constraint by connecting vectors in Γ(N) that are sup-
posed to be identical (because they have identical values at some resolved heterozygous
loci). For example, consider two vector-pairs 〈u1, u2〉, 〈v1, v2〉 of a node N. If at a
heterozygous locus i, u1 is 0 and v1 is also 0, then we know u1 must be identical to v1

(and u2 identical to v2). However, if there is another heterozygous locus j where u1 is
0 and v1 is 1, then it is impossible to give a unique vector-pair, and there is no CHC
solution. We capture this observation by defining the following type of consistency:

Definition 6 (endgame-consistency condition). Vector-pairs 〈u1, u2〉, 〈v1, v2〉 ∈
Φ(N) of a node N are said to be Endgame-inconsistent if the vector values at some
heterozygous loci i and j (i �= j) for u1, u2, v1, and v2 are a permutation of the four
possibilities: 00, 01, 10, and 11, and Endgame-consistent otherwise. The node N is
said to be Endgame-inconsistent if there exist vector-pairs in Φ(N) that are Endgame-
inconsistent, and Endgame-consistent otherwise. Endgame-consistency is said to be
maintained if and only if, for all nodes N in the pedigree, N is Endgame-consistent.

The second reason of adding green and white edges to connect the components
of G is to further resolve the unresolved loci of each connected component of G with
SNP-consistency and Mendelian-consistency maintained: vectors connected by green
or white edges are supposed to be identical, and if a locus is resolved in one of the
connected components but not in the other, the new connection allows us to resolve
the locus in the other connected component as well. In the next subsection we will
develop a procedure for resolving the values of loci in a connected component of G.
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Our algorithm achieves a solution if, at the end of Stage 4, (a) graph G comprises
a single connected component; (b) all loci are resolved in G; and (c) SNP-consistency,
Mendelian-consistency, and Endgame-consistency are maintained. However, our al-
gorithm may report “no solution” if some N is Endgame-inconsistent before the end
of Stage 4.

3.2. Stage 2—Adding green edges. One of the most important aspects of
our algorithm is that, at all stages, we maintain the property that each connected
component of G has only resolved and unresolved loci (i.e., no mixed loci). In or-
der to do this, we make extensive use of a subroutine called LOCUS RESOLVE.
LOCUS RESOLVE(G) attempts to resolve ?’s in a connected component G of G. It
looks at each locus in turn, identifies a resolved locus, and uses this to resolve the lo-
cus at other vertices in the connected component by traversing in a manner consistent
with the colors of the edges. We do not lose any feasible solution in this procedure
because any feasible solution must satisfy SNP-consistency, Mendelian-consistency,
and Endgame-consistency, which are specified by the colors of the edges.

Define v(i) to be the value of locus i (= 0, 1, or ?) at vector v.
LOCUS RESOLVE(G):
For each locus i:
1. Traverse the connected component G to find a vector v where v(i) is resolved

(= 0 or 1). If no such v exists, go to the next locus.
2. Traverse G using a linear-time graph traversal procedure (such as depth-first

search), starting at v. For any edge e = (v1, v2) traversed where v1(i) = x (0
or 1) and v2(i) = ?,
(i) If e is a red edge, set v2(i) = 1 − x.
(ii) Else set v2(i) = x.

Lemma 4. LOCUS RESOLVE(G) runs in O(|G|m) time, where |G| is the number
of vectors in G. All loci in G are either resolved or unresolved after running the
procedure.

Proof. LOCUS RESOLVE performs m graph traversals, one for each locus, and
each traversal takes O(G) time. Hence the time complexity. At any locus i, if at least
one vector is resolved at i, this will be identified in Step 1, and since G is connected,
all other vectors will then be resolved at locus i in Step 2.

Stage 2 will consider the nuclear families in the pedigree one by one and will
try to connect the trios within the same nuclear family, in such a way as to respect
Endgame-consistency. Specifically, green edges are added to connect two unconnected
vectors in Γ(N) that have the value 0 at heterozygous locus i of N, where N is the
father or mother of the nuclear family. Green edges are like brown edges requiring
that the ?s in the two vectors connected by the edge to be resolved the same.

There are two types of nuclear families: namely, the Type A families where
there exists a locus that is heterozygous in either one of, but not both, the parents;
and the Type B families where each locus is either heterozygous in both parents or
homozygous in both parents. Stage 2 consists of Stages 2A and 2B, which process all
Type A and Type B nuclear families, respectively.

For each Type A nuclear family, there exists a locus i that is heterozygous in either
of, but not both of, F and M. Observe that locus i will be resolved in all vectors of the
nuclear family comprised of father F, mother M and their children (that is how Stage
1B works). We can, therefore, connect all the vector-pairs into one single connected
component by adding green edges between vectors in Γ(N) with 0 at locus i, where N
is the parent with heterozygous locus i. This we do in Stage 2A.
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Stage 2A—Processing Type A families. For each nuclear family, which is
comprised of, say, father F, mother M, and their children, where there exists a locus
i that is heterozygous in either (not both) of F and M, do the following:

1. Let V = {v ∈ Γ(N) | v(i) = 0 and v belongs to this nuclear family} where
N is the parent (either M or F) such that i is heterozygous in N. Pick one
vector from V and call it u.

2. For each vector v ∈ V , v �= u, add a green edge to join u and v. After this, the
vectors in the nuclear family are connected as a single connected component.

3. Run LOCUS RESOLVE(G) where G is the connected component contain-
ing u.

4. Check for Endgame-consistency within the family, reporting “no solution” if
it is not maintained.

For each Type B nuclear family, we make use of the sets het() and hom() defined
in section 2. If there is a trio T where hom(T ) is empty, then het(T ) contains all
loci (where F and M are also heterozygous). Since all distinct het()’s are disjoint,
this implies any other trio T ′ in the nuclear family either has het(T ′) empty, or
het(T ′) = het(T ) (and hom(T ′) is empty). In this case all trios with empty hom()
cannot be connected (in Stage 2B). So in Stage 2B we consider only trios where
hom(T ) is nonempty.

We first consider each Si as defined in the proof of Lemma 1, and connect all trios
in the same Si by adding green edges between them. All trios in the same Si have
identical het() and hence identical (and nonempty) hom(); thus they share a resolved
locus, which allows us to add a green edge correctly.

Then we will add edges connecting Si and Si+1 for all i. If Si and Si+1 share
some common locus in their hom()’s, then this allows us to add a green edge correctly
using the resolved loci. If they do not share any common locus in their hom()’s, then
this implies that the union of their het()’s equals the set of all loci (where F and M
are heterozygous). This means that they are the only two Si’s (call them S1 and
S2) which have nonempty het(). If there are trios in S0 (which has an empty het()),
then S0 shares some common resolved locus with both S1 and S2 and all Si’s can
be connected by green edges. Otherwise if there are no trios in S0, then S1 and S2

cannot be connected together.

Stage 2B—Processing Type B families. For each nuclear family, which is
comprised of, say, father F, mother M, and their children, where each locus is either
homozygous in both F and M, or heterozygous in both F and M:

1. If there exists a locus i that is heterozygous in F (and also M), then do the
following:
(a) Let the sets of loci het() and hom() of each trio and the Si’s be as defined

in the proof of Lemma 1.
(b) For each Si with corresponding trios T1, T2, . . . , Tk:

i. Pick a locus x in hom(T1). This is also in hom(Tj) for all other j.
If such x does not exist, go to the next Si.

ii. For each trio Tj other than T1, add a green edge to join u and v,
where u, v ∈ Γ(F) are vectors for trios T1 and Tj with value 0 at
locus x.

(c) For each pair of Si and Si+1:
(i) Pick a T in Si and a T ′ in Si+1.
(ii) If hom(T ) and hom(T ′) share some common locus x, then add a

green edge to join u and v, where u, v ∈ Γ(F) are vectors for trios
T and T ′ with value 0 at locus x.
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(iii) Otherwise (i.e., no such common locus exists), Si and Si+1 are the
only two such sets with a nonempty het(). Call them S1 and S2. If
there are trios in S0, then add a green edge between S1 and S0, and
between S2 and S0, as in Step (c)(ii). If there are no trios in S0,
then no green edges are added.

(d) Run LOCUS RESOLVE() on each connected component of G of the
nuclear family with the green edges added above.

(e) Check for Endgame-consistency within the family, reporting “no solu-
tion” if it is not maintained.

2. Otherwise, no green edges are added for this family.
Lemma 5. The time complexity of Stage 2 (Stages 2A and 2B) is O(mn). Fur-

thermore, after Stage 2, all loci are either resolved or unresolved in each connected
component of G, and G has O(n) vertices and edges, and is acyclic.

Proof. Stage 2A considers the nuclear families of the pedigree one by one. For
each nuclear family, with, say, k children: locus i can be determined in O(m) time;
Step 1 takes O(k) time with V containing one vector per trio of the family; Step 2
takes O(k) time; Step 3 takes O(km) time; and Step 4, which checks for Endgame-
consistency, can be done in O(km) time. Therefore, the total time complexity of
Stage 2A is O(mn).

Stage 2B processes the nuclear families similarly. Each addition of a green edge
in Steps 1(b) and 1(c) takes O(m) time, and thus for a nuclear family with k children,
Steps 1(b) and 1(c) take O(km) time. Steps 1(d) and 1(e) take O(mn) time as in
Stage 2A. Hence the time complexity of Stage 2B is also O(mn).

The execution of LOCUS RESOLVE after green edges are added ensures all loci
are either resolved or unresolved in each connected component of G. No vertices
are added to G and only up to k − 1 green edges are added for each family with
k children. Thus, G continues to have O(n) vertices and edges. All green edges are
added between vectors of the same individual node, and within a nuclear family, green
edges are added in either the father or the mother but not both. Hence, in the absence
of mating loops, G remains acyclic.

Lemma 6. If a connected component G of G has only resolved and unresolved loci
(no mixed loci), then all possible ways of resolving ?’s in vectors in G such that SNP-
consistency and Mendelian-consistency are maintained will either all make all vector-
pairs Endgame-consistent or all make some vector-pairs Endgame-inconsistent.

Proof. Consider a particular resolution of ?’s in the vectors in G such that SNP-
consistency and Mendelian-consistency are maintained. Suppose Endgame-inconsis-
tency occurs at node N; i.e., there exist two vector-pairs 〈x1, x2〉, 〈y1, y2〉 ∈ Φ(N)
such that the vector values at some heterozygous loci i and j (i �= j) for x1, x2, y1,
and y2 are a permutation of the four possibilities: 00, 01, 10, and 11. We can assume,
without loss of generality, that the value at such i and j for x1, x2, y1, and y2 are 00,
11, 01, and 10, respectively. Consider the following three cases for the state of loci i
and j prior to the resolution:
Case 1: Loci i and j were both unresolved in G. Then, for all other possible reso-

lutions, the values at loci i and j for x1, x2, y1, and y2 would either be 00,
11, 01, and 10 respectively, or 11, 00, 10, and 01, respectively, and Endgame-
consistency would also be violated.

Case 2: Only one of locus i and j was unresolved, say i, in G. Then, for all other
possible resolutions, the values at loci i and j for x1, x2, y1, and y2 would
either be 00, 11, 01, and 10 respectively, or 10, 01, 11, and 00, respectively,
and Endgame-consistency would also be violated.
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Case 3: Both loci i and j were resolved. Then, Endgame-inconsistency existed prior
to any resolution of ?’s.

The green edges are essential to the next stage of our algorithm by ensuring that
certain trios are connected. This is established in Lemmas 7 and 8 below.

Lemma 7. Consider a nuclear family within the pedigree with father F, mother
M, and their children. If there exists a locus i that is heterozygous in either one (not
both) of F and M, then after Stage 2A, the family will be represented by a single
connected component in G.

Proof. This follows straightforwardly from how Stage 2A works.
Lemma 8. Consider a nuclear family within the pedigree comprised of father F,

mother M, and their children and with no family problems. If there exists a locus
that is heterozygous in both F and M but homozygous in both C1 and C2, C1 and C2

being children of F and M, then the components for trios F-M-C1 and F-M-C2 will
become connected during Stage 2B.

Proof. All trios with a nonempty hom() will be connected to other trios within
the same Si in Step 1(b) of Stage 2B, which in turn will be connected to all other
Sj ’s in Step 1(c) of Stage 2B. All such Si’s will be connected to a single connected
component since any two of them must share at least one common locus in their
hom() (since otherwise, all trios will form into two S1 and S2 with disjoint het() and
hom(); see the discussion just before Stage 2B is defined). Thus the two trios, which
share a common locus in their hom()’s, will be connected in Stage 2B.

The previous two lemmas lead up to Lemma 9 below, which defines the Mother-
Father Property. The Mother-Father Property helps us from not having to check
for Endgame-consistency for the mother if the father is Endgame-consistent, or vice
versa. This will become important in Stage 3.

Lemma 9 (mother-father property). Suppose (a) M and F are the mother and
father of two unconnected trios in G after Stage 2 and (b) the given pedigree has no
family problems. Then, for all possible way(s) of resolving ?s in vectors in the two
trios such that SNP-consistency and Mendelian-consistency are maintained, M and
F are either both Endgame-consistent or both Endgame-inconsistent.

Proof. Suppose F is Endgame-inconsistent. Without loss of generality, let the
values at loci i and j for x1, x2, y1, and y2 be 00, 11, 01, and 10, respectively, where
〈x1, x2〉, 〈y1, y2〉 ∈ Φ(F). This means that loci i and j are heterozygous loci for F.
Since the two trios are not connected by a green edge, loci i and j are also heterozygous
for M (Lemma 7). Let C1 and C2 be the two respective children of F connected to
〈x1, x2〉 and 〈y1, y2〉 by brown edges. In the absence of family problems and green
edges connecting the two trios, there are only three cases to consider (there is no need
to consider i or j being homozygous for both C1 and C2 according to Lemma 8): (i)
when loci i and j are both heterozygous for both C1 and C2; (ii) when loci i and
j are both heterozygous for C1 and both homozygous for C2; and (iii) when locus i
is heterozygous for C1 and homozygous for C2 while locus j is homozygous for C1

and heterozygous for C2. It can be readily shown that in all three cases, M is also
Endgame-inconsistent.

The argument is similar supposing M is Endgame-inconsistent. Thus, if F (or M)
is Endgame-inconsistent, then M (respectively, F) is Endgame-inconsistent, and the
contrapositive implies that, if M (or F) is Endgame-consistent, then F (respectively,
M) is Endgame-consistent. The lemma follows.

3.3. Stage 3—Adding white edges. After Stage 2, suppose G is left with
more than one connected component. The idea of Stage 3 is to connect components
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of G together with white edges, so that a single connected component results and loci
can be further resolved. Before we present the various substages of Stage 3 formally,
we first give an intuitive idea.

Suppose a pedigree has a CHC solution. Then for any node N with vector-pairs
〈u1, u2〉 and 〈v1, v2〉, if these vector-pairs are not already connected by green edges
in Stage 2, then we need to add a white edge to connect either u1 to v1, or connect
u1 to v2. These represent the two different ways of resolving the haplotypes in N so
as to maintain Endgame-consistency (i.e., either u1 should be identical to v1, or it
should be identical to v2). Thus white edges are analogous to green edges and they
are treated as “nonred” edges by LOCUS RESOLVE.

While it may appear at first sight that each of these white edges can be added
arbitrarily, it turns out that this is not true when multiple white edges are considered
together, and we need a way to determine which of the two ways is the correct way
of connecting the vectors. To do this, we first construct a support graph H in
Stage 3A. The support graph contains unlabeled edges, each corresponding to a white
edge in G, and which will be labeled with either 0 or 1 in Stage 3C. Suppose e is an
unlabeled edge in H corresponding to the white edge between the vector-pairs 〈u1, u2〉
and 〈v1, v2〉 as defined in the previous paragraph. A label of 0 on e denotes that the
white edge in G should connect u1 and v1, while a label of 1 denotes that the white
edge should connect u1 to v2. This is how H is used. In order to find this labeling,
we will construct another graph J in Stage 3B which captures the constraints on how
the unlabeled edges can be labeled.

We start with the construction of H in Stage 3A.

Stage 3A—Constructing the support graph H.
1. For each nuclear family:

If the vector-pairs in the family consist of k > 1 connected components,1

then do the following. Pick a vector from each of the connected compo-
nents in either the father or the mother, but not both (all vectors must
be from the same parent). Create a vertex in H for each such vector.
Add k − 1 unlabeled edges to join these vertices in H .

2. For each pedigree node N:
Suppose this individual N belongs to k′ different nuclear families. Within
each such nuclear family, any two vectors of N in G are either already
connected in Stage 2, or they belong to connected components with
corresponding vertices in H that are connected in Step 1 above. Vectors
of N from different nuclear families are, however, not connected in either
G or H . Pick one vector from N from each of these nuclear families.
Create a vertex in H for each such vector. Add k′ − 1 new unlabeled
edges to connect them in H .

3. For each connected component G in G:
(a) Let k′′ be the number of vectors in G that are chosen as vertices in H in

Steps 1 or 2 above.
(b) Join these vertices in H with k′′ − 1 labeled edges. The label is 0 if the

path between the two vectors in G has an even number of red edges, and
1 otherwise.

1After Stage 2, Type A families have k = 1, and vector-pairs of each Type B family are connected
into at most two connected components except those trios whose hom() is empty, which are still
unconnected.
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Fig. 4. An example showing the steps in Stage 3. (a) The pedigree. (b) The local graph G.
(c) The support graph H. Two edges are labeled with 0. (d) The parity constraint graph J. Three
constraints are added.

Figures 4(a) and 4(b) show a pedigree and the corresponding local graph G.
Figure 4(c) shows the support graph H . In this example, since each nuclear family
has only one connected component, Step 1 is skipped. Unlabeled edges (A, B), (B′, C),
and (C′, D) are added in Step 2, and labeled edges (B, B′) and (C, C′) with label 0
are added in Step 3. In this case H happens to be a path, but it can be more general.
Lemma 10 shows that H is always acyclic.

Lemma 10. If there are no mating loops in the pedigree, then H is acyclic.
Proof. If there is a cycle in H , it cannot involve only vectors in one nuclear family,

by our construction (Step 1 of Stage 3A). Any other cycle is impossible without mating
loops.

Lemma 11. H is connected, has O(n) vertices and edges, and can be constructed
in O(n) time.

Proof. Vertices in H which correspond to vectors in the same connected com-
ponent in G are connected by labeled edges. The different connected components
of G can always be connected by adding edges joining vectors in the same Φ(N) for
some node N (Lemma 3); these correspond to the unlabeled edges in H . Hence, H is
connected.

H clearly has O(n) vertices since the set of vertices is a subset of those of G.
Since H has no cycles by Lemma 10, it has O(n) edges.

Steps 1 and 2 of Stage 3A take O(n) time since the time to process each nuclear
family or individual is proportional to the number of vectors in them. We can check
for connectivity easily by preprocessing (e.g., traversing G to identify connected com-
ponents). Step 3 also takes O(n) time, where the only tricky part is computing the
labels on the labeled edges. This can be done in constant time per label, once the
following preprocessing step is done. By traversing each connected component G of
G, we can compute, for each vertex v in G, whether the number of red edges in the
path from a fixed vertex t in G is odd or even, i.e., the parity. Since G has O(n)
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edges, this can be done in O(n) time and is only done once as a preprocessing step.
Then, the parity of the path in G between any pair of vertices u and v in the same
connected component can be computed in constant time from the parity of the path
between u and t and that between t and v.

In Stage 3B, we construct a parity constraint graph J to represent the con-
straints on the labeling of H . One of the essential differences between H and J is that
H shows connections between “neighboring” components while J captures all parity
constraints between far-apart components.

Figure 4(d) shows the graph J which is derived from the graph H in Figure 4(c).
The vertices in J are the same as the vertices in H . Since the vertices in H correspond
to vertices (vectors) in G, we can extend the terminology of vectors to the vertices
in H : for example, we say that a vertex u in H is heterozygous at locus i when i is
heterozygous in a pedigree node N where u ∈ Γ(N). Simlarly we can speak of a vertex
as homozygous, resolved, unresolved, etc., at a locus i.

Assume white edges have been added to G. G remains acyclic by a reasoning
similar to showing that G is acyclic after adding green edges (Lemma 5). Hence, a
path between any two vectors u and v in G is unique. If u and v are heterozygous
and resolved (have 0 or 1) at locus i but all other vectors (if any) in the path between
u and v are unresolved at locus i, then there is a constraint on how the unresolved
loci can be resolved (equivalently, how the white edges should be added): namely,
the number of red edges in the path in G must be even (or odd) if u and v have
the same (respectively, different) parity of resolved loci at a locus i. This is because
the unresolved loci at the two ends of each red edge must have different parity. To
represent this constraint, we add an edge (u, v) labeled L between u and v in J , where
L is 1 if u and v are resolved differently at locus i, and 0 otherwise.

A straightforward implementation of the above idea will lead to too many edges.
Stage 3B below adds only O(mn) edges to J , and Lemma 12 shows that this is
sufficient to represent all parity constraints.

Stage 3B—Constructing the parity constraint graph J.
1. The vertices in J are the same as the vertices in H .
2. Add an edge between two vectors u and v in J if (u, v) is labeled in H .

Furthermore, the label of this edge in J is the same as its label in H .
3. For each locus i, consider the tree H as if it is separated into subtrees at

all vertices where i is homozygous. That is, each subtree does not contain
any vertex homozygous at i. For each subtree, we root the subtree at an
arbitrary vertex that is heterozygous and resolved at i. (If there is no such
vertex, go to the next subtree.) Traverse the subtree and find, for each vertex
v that is heterozygous and resolved at locus i, its lowest ancestor u that is
also heterozygous and resolved at locus i. Add an edge between u and v in
J . Label this edge with 0 (or 1) if u and v have same (respectively, different)
parity of locus value. Note that there may already be such an edge in J , with
the same or different labels, due to other loci. If it is the same label, do not add
the edge (which is redundant). If the label is different, report “no solution.”

4. Check whether all cycles in J have an even number of edges labeled 1. Report
“no solution” and stop if there is a cycle in J with an odd number of edges
labeled 1.

5. Note that J may not be connected. To make J connected, add edge (u, v) to
J if u and v are in different connected components in J and (u, v) is an edge
in H . This is always possible because H is a connected graph, and J and H
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have the same set of vectors as the vertices. Arbitrarily label this edge with
0. We call the corresponding edge in H a free edge because we have the
freedom to label (u, v) with 1 instead. We continue adding edges until J is
connected.

In effect, the graph J represents a set of linear equations modulo 2; in the example
in Figure 4(d) the equations are xAB +xB′C = 1, xB′C +xC′D = 0, and xAB +xB′C +
xC′D = 0. The free edges in Step 5 correspond to the edges in H that are still
unlabeled after Step 4, and are the result of the degrees of freedom in the system of
equations. These unlabeled edges are “free” by themselves, in the sense that they can
be assigned either 0 or 1, but once an assignment is made on one of the free edges, the
other free edges may become nonfree. For example, consider Figure 4(d). There are
no free edges since H is one connected component (and the system of linear equations
has no degree of freedom). If we assume the edge connecting A and D does not exist,
then there are two connected components, and AB, B′C, and C′D are all potential
free edges. But there is only one degree of freedom since if we assign AB to, say, 0,
then all other “free” edges have their values fixed.

Lemma 12 below shows that Step 3 in Stage 3B adds sufficient edges in J to
represent the parity constraints.

Lemma 12. Suppose there is a path between two vertices u and v in H and there
is a locus i such that both u and v are heterozygous and resolved at i while all other
vertices in this path are not resolved at i. Let L = 0 if u and v have the same resolved
value at i, and 1 otherwise. Then, there is a path in J connecting u and v so that
the result of applying the logical operation exclusive or (XOR) to all labels in this path
equals L.

Proof. Since all other vertices in this path are not resolved, u and v must be in
the same subtree in Step 3 of Stage 3B. If one of u or v is an ancestor of the other
in the rooted subtree (for locus i), not necessarily the lowest ancestor, then by the
construction in Step 3 of Stage 3B, there is a sequence of edges (u, v0), . . . , (vk, v) in
J connecting u and v, such that all these vertices are resolved at locus i. If this path
is a single edge (in the case of the lowest ancestor), then we are done. Otherwise, we
can assume by induction that the XOR of the labels on the path between u and vk

is equal to the parity difference of u and vk. Adding the edge from vk to v, with the
label equal to the parity difference of vk and v, the claim follows.

Otherwise, if neither u nor v is an ancestor of the other in the subtree, let w be
the lowest common ancestor of u and v which is resolved at i. We then have two
paths, one from w to u and the other from w to v, which by a similar argument to
the above, have the correct labels. Hence, there is a path from u to v (through w)
in J , and the XOR of the labels on this path is equal to the parity difference of u
and w XORed with the parity difference of w and v, the result of which is the parity
difference of u and v.

Lemma 13. If Steps 3 and 4 of Stage 3B report “no solution,” then there is
no CHC solution. Otherwise, J has no odd cycle (an odd cycle is a cycle where the
number of 1-labeled edges is odd).

Proof. In Step 3, if “no solution” is reported, there are two conflicting constraints.
In Step 4, if “no solution” is reported, then there is an odd cycle. Each edge with
label 1 denotes that the resolved loci at two ends of the edge must be of different
parity (and label 0 implies same parity). It follows that there is no way of resolving
the loci consistently along an odd cycle.

The free edges introduced in Step 5 are to make J connected so that we can
determine the parity difference between any two nodes in J and completely label all
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edges in H . The following lemma shows that these free edges can be added freely and
labeled arbitrarily without affecting the existence of the CHC solution.

Lemma 14. If there is a CHC solution of the pedigree, then any label (0 or 1)
on the free edges introduced in Step 5 of Stage 3B will make all vector-pairs SNP-
consistent, Mendelian-consistent, and Endgame-consistent. On the other hand, if
there is no CHC solution, none of the labels on the free edges can achieve Endgame-
consistency for all vector-pairs.

Proof. It is obvious that SNP-consistency and Mendelian consistency will always
be maintained because of the red and brown edges. Since a free edge (u, v) is only
added when J is not connected, u and v must be two vectors in different connected
components of J and there must not exist two vectors, one in each connected com-
ponent, where locus i is resolved and the vectors in the path in H between these two
vectors are unresolved at locus i.

As edge (u, v) is in H , u and v must be in the same Φ(N) for some node N whose
loci are either homozygous or heterozygous. If N is heterozygous at locus i, then locus
i will be unresolved in all vectors in either u’s connected component, or v’s connected
component, or both connected components (otherwise J cannot be disconnected). In
all these cases, it can be shown that, from Lemma 6, Endgame-consistency will be
maintained or not maintained no matter whether the free edge is labeled with 0 or 1.
Thus the lemma is proved.

Lemma 15. J has O(mn) edges and can be constructed in O(mn) time.
Proof. There are O(n) vertices and edges in H . Thus, Steps 1 and 2 of Stage 3B

can be done in O(n) time.
Step 3 can be done in O(mn) time using a recursive traversal of each subtree of

H for each locus as follows. We start at the root noting itself as the lowest resolved
ancestor, and recursively traverse each child, passing down the ancestor information
in the recursive calls. At each child, its lowest resolved ancestor is the lowest resolved
ancestor of the parent. If the child itself is resolved heterozygous, then the child notes
itself as the lowest resolved ancestor in subsequent traversal of its own children. Thus,
it takes O(n) time to perform such traversal for each locus.

Each traversal of a locus adds at most O(n) edges to J , so J has at most O(mn)
edges.

In Step 4 we need to identify cycles with an odd number of edges labeled 1. If
we imagine contracting every edge in J with label 0, then the problem reduces to
checking whether the contracted graph has an odd cycle, which amounts to checking
bipartiteness. Thus Step 4 can be done in O(mn) time.

Step 5 can also be done in O(mn) time as follows. First, for each vertex x in
J , keep a list LIST(x) of vertices adjacent to x in H . Next, we perform a two-
pass traversal as follows. Start with an arbitrary vertex X, traverse the connected
component, and label the vertices traversed as “marked.” Then we go back and
traverse the connected component again starting at X. When traversing vertex x, we
check whether all the vertices in LIST(x) are marked. If there is a vertex y that
is unmarked, we add (x, y) to J and perform the same two-pass traversal for the
connected component of y; in effect we are doing a traversal within traversal. In this
way, we grow from one connected component of J and add free edges to connect to
other connected components. The two-pass approach is employed to prevent adding
edges which are not actually free after other free edges are added. Since the graph
has O(mn) edges, Step 5 takes O(mn) time.

Thus, the total time complexity of Stage 3B is O(mn).
Next, we use J to complete the labeling of H .
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Stage 3C—Completing the labeling of H.
1. Traverse J , computing, for each vertex v in J , the parity (odd or even) of the

number of 1-labeled edges in the path from a fixed vertex t in J .
2. For each unlabeled edge (u, v) in H , if u and v have the same parity in J ,

then label edge (u, v) in H with 0, otherwise with 1.
Lemma 16. All edges in H can be labeled with 0 or 1 in O(mn) time in Stage

3C, and the labels in H are consistent with the parity constraints specified in J in the
sense that the parity between any two vectors u and v specified in J is the same as
the parity of the number of 1-labeled edges in the path between u and v in H.

Proof. Note that J specifies a unique parity between any two vertices because J
has no odd cycle. Consider a path P = (v0, v1), (v1, v2), . . . , (vk−1, vk) in H . Each
unlabeled edge (vi, vi+1) in P receives a label equal to the parity between vi and vi+1

in J in Step 1 of Stage 3C, which is equal to the parity of the number of 1-labeled
edges between vi and vi+1 in J . Each labeled edge (vi, vi+1) in P has the same edge
(with the same label) in J , and hence the label of this edge in H is also equal to the
parity of the number of 1-labeled edges between vi and vi+1 in J . Hence, the parity
of the number of 1-labeled edges in P is equal to the XOR of the labels on all edges
in P , which in turn is equal to the XOR of the parity between vi and vi+1 in J over
all i, which is the parity between v0 and vk in J .

As far as the time complexity is concerned, since H has O(n) edges and J has
O(mn) edges, the total time complexity of Stage 3C is O(mn).

Stage 3D—Adding white edges to G.
1. For each edge (u, v) in H that became labeled during Stage 3C:

(a) If the edge is labeled 1, then let x be the vector adjacent to v by a red
edge; otherwise, let x be v.

(b) Add a white edge between u and x.
2. G now becomes a single connected component. Run LOCUS RESOLVE(G).

Lemma 17. Stage 3D can be done in O(mn) time, and after Stage 3D, G will be
a single connected component with only unresolved and resolved loci.

Proof. Step 1 of Stage 3D considers each of the O(n) edges of H one by one, each
taking constant time; thus this step takes O(n) time. Step 2 takes O(mn) time. The
time complexity thus follows.

H is a connected graph that contains at least one vertex from each connected
component of G, and the newly labeled edges in H are between vertices that were not
connected in G (while the edges that were already labeled are between vertices that
were already connected in G). Therefore, each white edge added results in one fewer
connected component in G, and G will become a single connected component after
Step 1 finishes.

LOCUS RESOLVE ensures that G, as a single connected component, has only
unresolved and resolved loci.

Figure 5 shows the graph H of the same example in Figure 4 after the edges are
labeled. The resulting white edges are added to G and the loci resolved.

Lemma 18. If the pedigree has a CHC solution, Stage 3D maintains Endgame-
consistency.

Proof. Suppose, to the contrary, that some node N becomes Endgame-inconsistent
after Stage 3D. Without loss of generality, let the values at loci i and j for x1, x2, y1,
and y2 be 00, 11, 01, and 10, respectively, where 〈x1, x2〉, 〈y1, y2〉 ∈ Φ(N).

Consider the situation prior to Stage 3D. Since the pedigree has a CHC solu-
tion, given Lemma 6, the vector-pairs in each connected component are Endgame-
consistent. Thus 〈x1, x2〉 and 〈y1, y2〉 must belong to different connected components;
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Fig. 5. The same example from Figure 4 showing the result of Stages 3C and 3D. (a) The
graph H with the correct labels. In this case there is a unique solution. (b) The local graph G after
addition of white (dashed) edges. Loci values are also resolved.

call them G1 and G2, respectively. Now suppose 〈x1, x2〉 and 〈y1, y2〉 become con-
nected during Stage 3D after the addition of a white edge e, which connects G1 and
G2. There are four cases to consider:

Case 1: e connects 〈x1, x2〉 and 〈y1, y2〉. White edge e corresponds to an edge
in H , and since H is acyclic, it is the unique edge between the vector-pairs and is
labeled with a unique parity. Without loss of generality, suppose e connects x1 and
y1 and is labeled 0. This white edge will make x1 and y1 equal and, therefore, the
value of loci i and j cannot possibly become 00 for x1 and 01 for y1.

Case 2: e connects 〈x3, x4〉 in G1 and 〈y3, y4〉 in G2 where 〈x3, x4〉 and 〈y3,
y4〉 ∈ Φ(N). Since the pedigree has a CHC solution, and G1 has only resolved and
unresolved loci, according to Lemma 6, vector-pairs of N that are in G1 must be
Endgame-consistent. This implies that 〈x1, x2〉 and 〈x3, x4〉, which are in G1, are
Endgame-consistent. Likewise, 〈y1, y2〉 and 〈y3, y4〉 must also be Endgame-consistent.
By the argument in Case 1, 〈x3, x4〉 and 〈y3, y4〉 must also be Endgame-consistent.
This makes it impossible for 〈x1, x2〉 and 〈y1, y2〉 to be Endgame-inconsistent.

Case 3: e connects 〈x3, x4〉 in G1 and 〈y3, y4〉 in G2 where 〈x3, x4〉 and 〈y3, y4〉
∈ Φ(M) and M is N’s spouse. Suppose 〈u1, u2〉 ∈ Φ(M) belongs to the same trio as
〈x1, x2〉 and suppose 〈v1, v2〉 ∈ Φ(M) belongs to the same trio as 〈y1, y2〉. According
to Lemma 9, 〈u1, u2〉 and 〈v1, v2〉 are also Endgame-inconsistent. Thus, we can con-
sider 〈u1, u2〉 and 〈v1, v2〉 instead of 〈x1, x2〉 and 〈y1, y2〉, and accordingly, apply the
arguments of Case 2.

Case 4: e connects 〈x3, x4〉 in G1 and 〈y3, y4〉 in G2 where 〈x3, x4〉 and 〈y3, y4〉
∈ Φ(M) and M is neither N nor N’s spouse. Assuming no mating loops, this case does
not exist.

3.4. Stage 4—Finishing up. At this point, our graph G has only one con-
nected component, and it only has resolved or unresolved (no mixed) loci, since this
is the property we maintain by our locus resolve procedures. If all loci are resolved,
then of course we are done. For those loci that are still unresolved, Lemma 6 tells
us that any way of resolving makes no difference: we can arbitrarily resolve them in
an SNP-consistent and Mendelian-consistent manner, and it will not affect Endgame-
consistency in the sense that either all vector-pairs will be Endgame-consistent for
all resolutions, or there will be Endgame-inconsistent vector-pairs for all resolutions.
This means the algorithm does not need to try all possibilities; any one will do. This
is crucial for avoiding an exponential blow-up.
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Hence, we do the following as the final stage of our algorithm.

Stage 4—Dealing with a single connected component.
1. Arbitrarily pick a vector u of G. For all unresolved loci i, assign a value of 0

to each of them. Then run LOCUS RESOLVE(G).
2. For all N, check Φ(N) for Endgame-consistency and report “no solution” if it

is not maintained.
Lemma 19. Stage 4 runs in O(mn) time.
Proof. After Stage 3D, G is a single connected component and has no mixed

loci. By Lemma 6, we do not have to try all possible resolutions; any one will do.
Let s be the number of unresolved loci in G. The time complexity of resolving all of
these unresolved loci is O(sn) since LOCUS RESOLVE runs in O(n) time per locus.
Checking all N for Endgame-consistency can be done in O(mn) time.

Note that assigning a value of 1 instead of 0 to any locus before running LO-
CUS RESOLVE would work equally well (Lemma 6); the effect is that all 1’s become
0 and all 0’s become 1 at each such locus, giving another solution. In general, if there
are s unresolved loci after Stage 3D and the pedigree admits a consistent solution,
then there are 2s different CHC solutions. However, if every node in the pedigree has
exactly s heterozygous loci, then there are only 2s−1 different CHC solutions due to
symmetry.

Theorem 1. For a given pedigree, we can either achieve a solution that represents
a CHC for the given pedigree, or report “no solution” when there is no solution, in
O(mn) time where n is the number of nodes in the pedigree and m is the number of
loci.

Proof. Each of the stages of our algorithm runs in O(mn) time. The algorithm
reports “no solution” only when there can be no CHC solution. If the algorithm does
not report “no solution,” then after Stage 4, all loci are resolved and SNP-consistency,
Mendelian-consistency, and Endgame-consistency are all maintained. Thus, the re-
solved loci values represent a CHC solution.

4. Open problems. In this paper, an optimal linear-time algorithm is presented
to solve the haplotype problem for pedigree data when there are no recombinations
and the pedigree has no mating loops. It remains an open problem to extend the
algorithm to handle mating loops. For the haplotyping problem with recombinations,
the problem becomes intractable even when at most one recombination is allowed at
each haplotype of a child, or when the problem is to find a feasible haplotype with the
minimum number of recombinations (even without mating loops) [3]. However, there
is still much scope for further study. For example, in practice, pedigree data often
contain a significant amount of missing alleles (up to 14–15% of the alleles belonging
to a block could be missing in the pedigree data studied). In some cases, the deduction
of the missing information on alleles is possible. The goal is then to devise an efficient
algorithm to determine as many missing alleles as possible.
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Abstract. Computational inference of haplotypes from genotypes has attracted a great deal
of attention in the computational biology community recently, partially driven by the international
HapMap project. In this paper, we study the question of how to efficiently infer haplotypes from
genotypes of individuals related by a pedigree, assuming that the hereditary process was free of
mutations (i.e., the Mendelian law of inheritance) and recombinants. The problem has recently been
formulated as a system of linear equations over the finite field of F (2) and solved in O(m3n3) time
by using standard Gaussian elimination, where m is the number of loci (or markers) in a genotype
and n the number of individuals in the pedigree. We give a much faster algorithm with running
time O(mn2 + n3 log2 n log log n). The key ingredients of our construction are (i) a new system of
linear equations based on some spanning tree of the pedigree graph and (ii) an efficient method for
eliminating redundant equations in a system of O(mn) linear equations over O(n) variables. Although
such a fast elimination method is not known for general systems of linear equations, we take advantage
of the underlying pedigree graph structure and recent progress on low-stretch spanning trees.

Key words. haplotype inference, pedigree analysis, system of linear equations, low-stretch span-
ning tree
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1. Introduction. For centuries, human beings have fought the battle against
deadly diseases, such as diabetes, cancer, stroke, heart disease, depression, and asthma.
Genetic factors are believed to play a significant role for preventing, diagnosing, and
treating these diseases. In recent years, gene mapping [2, 20, 31], whose goal is to
establish connections between diseases and some specific genetic variations, has be-
come one of the most active areas of research in human genetics. In October 2002, a
multicountry collaboration, namely, the international HapMap project was launched
[18]. One of the main objectives of the HapMap project is to identify the haplotype
(i.e., the states of genetic markers from a single chromosome) structure of humans and
common haplotypes among various populations. This information will greatly facili-
tate the mapping of many important disease-susceptible genes. However, the human
genome is a diploid (i.e., its chromosomes come in pairs, with one being paternal and

∗Received by the editors April 9, 2007; accepted for publication (in revised form) September 15,
2008; published electronically March 4, 2009. An extended abstract of this paper, entitled “Fast elim-
ination of redundant linear equations and reconstruction of recombination-free Mendelian inheritance
on a pedigree,” appeared in Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms
(SODA), New Orleans, LA, 2007. This research was supported in part by NSF grant CCR-0309902,
NIH grant LM008991-01, NSFC grants 60528001 and 60553001, National Key Project for Basic
Research (973) grants 2002CB512801 and 2007CB807901, and a fellowship from the Center for Ad-
vanced Study, Tsinghua University. The authors wish it to be known that the first two authors should
be regarded as joint first authors of this paper.

http://www.siam.org/journals/sicomp/38-6/68759.html
†Department of Computer Science and Technology, Tsinghua University, Beijing 100080, China

(xiaojing00@mails.tsinghua.edu.cn).
‡Google, Inc., 1600 Amphitheater Parkway, Mountain View, CA (lanliu@google.com).
§Department of Computer Science, Duke University, Durham, NC 27708 (xialirong@gmail.com).
¶Department of Computer Science and Engineering, University of California, Riverside, CA 92507

(jiang@cs.ucr.edu).

2198



FAST RECONSTRUCTION OF 0-RECOMBINANT HAPLOTYPES 2199

the other maternal), and, in practice, haplotype data are not collected directly, espe-
cially in large-scale sequencing projects, mainly due to cost considerations. Instead,
genotype data (i.e., the states of genetic markers from all chromosomes, without spec-
ifying which chromosome gives rise to each particular marker state) are collected
routinely. Hence, combinatorial algorithms and statistical methods for the inference
of haplotypes from genotypes, which is also commonly referred to as phasing, are
urgently needed and have been intensively studied.

This paper is concerned with the inference of haplotypes from genotypes of indi-
viduals related by a pedigree, which describes the parent-offspring relationship among
the individuals. Figure 1 gives an illustrative example of pedigree, genotype, and hap-
lotype, as well as recombination, where the haplotypes of a parent recombine to pro-
duce a haplotype of her child. (See the appendix for more detailed definitions of these
concepts.) Pedigree data is often collected in family-based gene association/mapping
studies in addition to genotype data. It is generally believed that haplotypes inferred
from pedigrees are more accurate than those from population data. Moreover, some
family-based statistical gene association tests such as TDT (i.e., transmission disequi-
librium test) and its variants (e.g., [32, 39], among others) require access to haplotype
information for each member in a pedigree.

By utilizing some biological assumptions, such as the Mendelian law of inheri-
tance, i.e., one haplotype of each child is inherited from the father while the other is
inherited from the mother free of mutations, and the minimum-recombination prin-
ciple, which says that genetic recombination is rare for closely linked markers and
thus haplotypes with fewer recombinants should be preferred in haplotype infer-
ence [29, 30], several combinatorial approaches for inferring haplotypes from geno-
types on a pedigree have been proposed recently and shown to be powerful and
practical [5, 8, 23, 24, 25, 29, 30, 33, 36, 38]. These methods essentially propose
polynomial-time heuristics or exponential-time exact algorithms for the so-called the
minimum-recombinant haplotype configuration (MRHC) problem, which requires a
haplotype solution for the input pedigree with the minimum number of recombinants
(i.e., recombination events) and is known to be NP-hard [23]. (See the appendix for
a more formal definition of the MRHC problem.)

A closely related problem, called the zero-recombinant haplotype configuration
(ZRHC) problem, where we would like to enumerate all haplotype solutions requir-
ing no recombinant (if such solutions exist), was studied in [23]. The ZRHC prob-
lem was proposed under a more stringent biological assumption that the pedigree is
also recombination-free. (See the appendix for a more formal definition of the ZRHC
problem.) ZRHC is interesting because recent genetic research has shown that human
genomic DNAs can be partitioned into long blocks (called haplotype blocks) such that
recombination within each block is rare or even nonexistent [7, 11, 19], especially when
restricted to a single pedigree [24, 25]. An efficient algorithm for ZRHC could also be
useful for solving the general MRHC problem as a subroutine, when the number of
recombinants is expected to be small. We note in passing that recent work on hap-
lotype inference for population data based on perfect phylogenies also assumes the
data is recombination-free [10, 15, 16, 17]. Observe that, when the solution for ZRHC
is not unique, it would really be useful to be able to enumerate all of the solutions
instead of finding only one feasible solution, so that the solutions can be examined
in subsequent analysis (e.g., likelihood distribution of haplotypes [24, 25, 28], linkage
between different haplotype blocks [1, 14, 21], etc.) by geneticists.

The algorithmic problem and our result. The ZRHC problem can also be
stated abstractly as a simple inheritance reconstruction problem as follows. We have
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Fig. 1. A. The structure of a pair of chromosomes from a mathematical point of view. In the
figure, each numeric value (1 or 2) represents a marker state or an allele. The haplotype inher-
ited from the father (or the mother) is called paternal haplotype (or maternal haplotype, respec-
tively). The paternal and maternal haplotypes are thus strings 22112 and 11212, and they form the
genotype {1, 2}{1, 2}{1, 2}{1, 1}{2, 2}, which is a string of unordered pairs of alleles at each locus.
B. An illustration of a pedigree with 9 members with a mating loop, where circles represent females
and boxes represent males. Children are shown under their parents with line connections. For ex-
ample, individuals 7 and 8 are children of individuals 2 and 3. Individuals without parents, such
as individuals 1 and 2, are called founders. A pedigree with no mating loops is called tree pedigree
conventionally. C. An example of recombination event where the haplotypes of individual 1 recom-
bine to produce the paternal haplotype of individual 3. The numbers inside the circles/boxes are
individual IDs. Here, a “ |” is used to indicate the phase of the two alleles at a marker locus, with
the left allele being paternal and the right maternal. Both loci of individual 2 and the second locus
of individual 4 are homozygous, while all of the other loci in the pedigree are heterozygous.

a pedigree connecting n individuals where each individual j has two haplotypes (i.e.,
strings) defined on m marker loci aj,1 · · · aj,m and bj,1 · · · bj,m inherited from j’s father
and mother, respectively. That is, if individuals j1 and j2 are the parents of j, then
aj,1 · · · aj,m ∈ {aj1,1 · · · aj1,m, bj1,1 · · · bj1,m} and bj,1 · · · bj,m ∈ {aj2,1 · · ·aj2,m, bj2,1 · · ·
bj2,m}. The haplotypes are unknown, but the genotype of each individual j is given
to us in the form of string {aj,1, bj,1} · · · {aj,m, bj,m}. We would like to reconstruct all
of the haplotype solutions that could have resulted in the genotypes.

Li and Jiang presented an O(m3n3) time algorithm for ZRHC by formulating it
as a system of O(mn) linear equations with mn variables over the finite field of F (2)
and applying Gaussian elimination [23]. Although this algorithm is polynomial, it is
inadequate for large-scale pedigree analysis where both m and n can be in the order
of tens or even hundreds, and we may have to examine many pedigrees and haplotype
blocks. There are, for example, over five million SNP markers in the public database
dbSNP [18]. This challenge motivates us to find more efficient algorithms for ZRHC.
Several attempts have been made recently in [4, 26], but the authors failed to prove
the correctness of their algorithms in all cases, especially when the input pedigree has
mating loops. Chan et al. proposed a linear-time algorithm in [3], but the algorithm
works only for pedigrees without mating loops (i.e., the tree pedigrees).

In this paper, we present a much faster algorithm for ZRHC with running time
O(mn2+n3 log2 n log log n). Our construction begins with a new system of linear equa-
tions over F (2) for ZRHC. Although the system still has O(mn) variables and O(mn)
equations, it can be effectively reduced to an equivalent system with O(mn) equations
and at most 2n variables, by exploring the underlying pedigree graph structure. By
using standard Gaussian elimination, this already gives an improved algorithm with
running time O(mn3). We then show how to reduce the number of equations further
to O(n log2 n log log n) (assuming that m ≥ log2 n log log n, which usually holds in
practice), by giving an O(mn) time method for eliminating redundant equations in
the system. Although such a fast elimination method is not known for general sys-
tems of linear equations, we again take advantage of the underlying pedigree graph
structure and recent progress on low-stretch spanning trees in [9]. In particular, the
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low-stretch spanning tree result helps upper bound the number of equations that need
to be kept in the elimination process. We also show that our algorithm actually runs
in O(mn2 +n3) time when the input pedigree is a tree pedigree with no mating loops
(which is often true for human pedigrees) or when there is a locus that is heterozygous
across the entire pedigree. Moreover, our algorithm produces a general solution1 to
the original system of linear equations at the end that represents all feasible solutions
to the ZRHC problem.

Related work on solving systems of (sparse) linear equations. The search
for efficient algorithms for solving systems of linear equations is a classical problem
in linear algebra. Besides Gaussian elimination, methods based on fast matrix mul-
tiplication algorithms have been proposed and could achieve an asymptotic speed of
O(n2.376) on n equations with n unknowns [6, 35]. However, these methods are only of
theoretical interest since they are hard to implement and do not outperform Gaussian
elimination unless n is very large. Moreover, they assume that the coefficient matrix
is of full rank, which is an unreasonable assumption in ZRHC (considering the linear
systems derived for ZRHC so far).

Observe that the linear system given in [23] for ZRHC is actually very sparse
since each of its equations has at most four variables. Thus, a plausible way to speed
up is to utilize fast algorithms for solving sparse linear systems. The Lanczos and
conjugate gradient algorithms [13] and the Wiedemann algorithm [37] are some of the
best known algorithms for solving sparse linear system over finite fields. The Wiede-
mann algorithm runs in (expected) quadratic time (which is in fact slower than our
algorithm when applied to linear systems for ZRHC), while the Lanczos and conjugate
gradient algorithms are only heuristics [22]. However, they use randomization and do
not find all solutions. Furthermore, the algorithms cannot check if the system has
no solution [12]. A randomized algorithm with quadratic expected time for certifying
inconsistency of linear systems is given in [12].

The rest of our paper is organized as follows. We will describe a new system
of linear equations for ZRHC and some useful graphs derived from a pedigree in
section 2. The O(mn3) time algorithm is presented in section 3, and the O(mn2 +
n3 log2 n log log n) time algorithm is given in section 4. Some concluding remarks are
given in section 5. The appendix contains some related biological definitions concern-
ing MRHC and an example execution of the main algorithm.

2. A system of linear equations for ZRHC and the pedigree graph. In
this section, we first present a new formulation of ZRHC in terms of linear equations
and then define some graph structures which will be used in our algorithm.

2.1. The linear system. Throughout this paper, n denotes the number of the
individuals (or members) in the input pedigree and m the number of marker loci.
Without loss of generality, suppose that each allele in the given genotypes is numbered
numerically as 1 or 2 (i.e., the markers are assumed to be biallelic, which makes the
hardest case for MRHC/ZRHC [23]), and the pedigree is free of genotype errors (i.e.,
the two alleles at each locus of a child can always be obtained from her respective
parents). Hence, we can represent the genotype of member j as a ternary vector gj

as follows: gj[i] = 0 if locus i of member j is homozygous with both alleles being 1’s,
gj [i] = 1 if the locus is homozygous with both alleles being 2’s, and gj [i] = 2 otherwise

1A general solution of any linear system is denoted by the span of a basis in the solution space
to its associated homogeneous system, offset from the origin by a vector, namely by any particular
solution.
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(i.e., the locus is heterozygous). For any heterozygous locus i of member j, we use a
binary variable pj [i] to denote the phase at the locus as follows: pj[i] = 1 if allele 2 is
paternal, and pj [i] = 0 otherwise. When the locus is homozygous, the variable is set to
gj [i] for some technical reasons (so that the equations below involving pj[i] will hold).
Hence, the vector pj describes the paternal and maternal haplotypes of member j.
Observe that the vectors p1, . . . ,pn represent a complete haplotype configuration of
the pedigree. In fact, the sparse linear system in [23] was based on these vectors. Also
for technical reasons, define a vector wj for member j such that wj [i] = 0 if its ith
locus is homozygous and wj [i] = 1 otherwise.

Suppose that member jr is a parent of member j. We introduce an auxiliary
binary variable hjr ,j to indicate which haplotype of jr is passed to j. If jr gives its
paternal haplotype to j, then hjr ,j = 0; otherwise, hjr ,j = 1. Suppose that j is a
nonfounder member with her father and mother being j1 and j2, respectively. We
can define two linear (constraint) equations over F (2) to describe the inheritance of
paternal and maternal haplotypes at j, respectively, following the Mendelian law of
inheritance and zero-recombinant assumption:

(2.1) pj1 + hj1,j · wj1 = pj and pj2 + hj2,j ·wj2 = pj + wj .

If we let dj1,j denote the vector 0 and dj2,j denote wj , then the above equations
can be unified into a single equation as

(2.2) pjr
+ hjr,j ·wjr = pj + djr ,j (r = 1, 2).

Formally, we can express the ZRHC problem as a system of linear equations:
(2.3)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pk[i] + hk,j · wk[i] = pj[i] + dk,j [i], 1 ≤ i ≤ m, 1 ≤ j, k ≤ n, k is a parent of j,
pj [i] = gj [i], 1 ≤ i ≤ m, 1 ≤ j ≤ n, gj[i] �= 2,
wj [i] = 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n, gj[i] = 2,
wj [i] = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, gj[i] �= 2,
dk,j [i] = wj [i], 1 ≤ i ≤ m, 1 ≤ j, k ≤ n, k is the mother of j,
dk,j [i] = 0, 1 ≤ i ≤ m, 1 ≤ j, k ≤ n, k is the father of j,

where gj [i], wj [i], dk,j [i] are all constants depending on the input genotypes, and
pj [i], hk,j are the unknowns. Note that the number of p-variables is exactly mn and
the number of h-variables is at most 2n since every child has two parents and there
are at most n children in the pedigree.

Remark. Observe that, for any member j, if the member itself or one of its parents
is homozygous at locus i, then pj[i] is fixed based on (2.3). In the rest of this paper, we
will assume that all such variables pj [i] are predetermined (without any conflict) and
use them as “anchor points” to define some new constraints about the h-variables.

2.2. The pedigree graph and locus graphs. To apply combinatorial tech-
niques, we transform the input pedigree into a graph, called the pedigree graph, by
connecting each parent directly to her children. See Figure 2(B) for an example. Al-
though the edges in the pedigree represent the inheritance relationship between a
parent and a child and are directed, we will think of the pedigree graph, and, more
importantly, the subsequent locus graphs, as undirected in future definitions and con-
structions. This is because each edge (j, k) of the pedigree graph (and locus graphs)
will be used to represent the constraint between the vectors pj and pk (i.e., the phases
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Fig. 2. A. An example pedigree with genotype data. Here, the alleles at a locus are ordered
according to their ID numbers instead of phase (which is unknown). B. The pedigree graph with a
spanning tree. The tree edges are highlighted. Observe that there lies a cycle of length 4 in the given
tree pedigree graph. C. The locus graphs. The left graph is for the first locus, which has a cycle,
while the right graph is for the second locus. The locus forests are highlighted.

at j and k) via the variable hj,k, which is symmetric, as can be seen from Lemma 1
and Corollaries 2 and 3 below.2

Clearly, such a pedigree graph G = (V, E) may be cyclic due to mating loops or
multiple children shared by a pair of parents. Let T (G) be any spanning tree of G.
T (G) partitions the edge set E into two subsets: tree edges and nontree edges. For
simplicity, the nontree edges will be called cross edges. Let EX denote the set of cross
edges. Since |E| ≤ 2n and the number of edges in T (G) is n−1, we have |EX| ≤ n+1.
Figure 2(B) gives an example of tree edges and cross edges.

For any fixed locus i, the value wk[i] can be viewed as the weight of each edge
(k, j) ∈ E, where k is a parent of j. We construct the ith locus graph Gi as the
subgraph of G induced by the edges with weight 1. Formally, Gi = (V, Ei), where
Ei = {(k, j)| k is a parent of j, wk[i] = 1}. The ith locus graph Gi induces a subgraph
of the spanning tree T (G). Since the subgraph is a forest, it will be referred to as the
ith locus forest and denoted by T (Gi). Figure 2(C) shows the locus graphs and the
locus forests of the given pedigree.

The locus graphs can be used to identify some implicit constraints on the h-
variables as follows. First, we need to “symmetrize” of the h-variables and d-constants:
for any edge (k, j) ∈ E, define hk,j = hj,k and dk,j = dj,k.

Lemma 1. For any path P = j0, . . . , jk in locus graph Gi connecting vertices j0
and jk, we have

pj0 [i] + pjk
[i] +

k−1∑
r=0

(hjr ,jr+1 + djr ,jr+1 [i]) = 0.

Proof. The equation follows easily from (2.3) and an induction on the length k of
the path.

Note that the above constraint remains the same no matter in which direction
path P is read, since the addition is over field F (2) and the h-variables and d-constants
are symmetric. From the lemma, we can see that for a cycle in Gi the summation of all
of the h-variables corresponding to the edges on the cycle is a constant. The constant
is said to be associated with the cycle.

Corollary 2. For any cycle C = j0, . . . , jk, j0 in Gi, there exists a binary con-
stant b defined as b =

∑k
r=0 djr ,jr+1 mod k+1 [i] such that

∑k
r=0 hjr,jr+1 mod k+1 = b.

2The reader can also verify that the direction of an edge will not affect the graph traversal and
the ensuing treatment of constraint equations to be discussed in the next two sections.
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Proof. This follows from Lemma 1 and the fact that pj0 [i] + pj0 [i] = 0.
From Lemma 1, we can easily see that if the p-variables at the endpoints of a path

are predetermined, then the summation of all of the h-variables corresponding to the
edges on the path is a constant. The constant is said to be associated with the path.
We construct constraints on h-variables as follows. Again, notice that the following
constant b does not depend on the direction that path P is read.

Corollary 3. Suppose that P = j0, . . . , jk is a path in Gi connecting vertices j0
and jk, and the variables pj0 [i] and pjk

[i] are predetermined. Then there exists a binary
constant b defined as b = pj0 [i]+pjk

[i]+
∑k−1

r=0 djr ,jr+1 [i] such that
∑k−1

r=0 hjr ,jr+1 = b.

3. An O(mn3) time algorithm for ZRHC. Since the number of h-variables
is at most 2n, our key idea is to first derive a system of O(mn) linear equations on
the h-variables. We use paths and cycles in Gi and the predetermined p-variables as
mentioned in the last section to build the linear system, and then we find a general
solution to the system by using Gaussian elimination so that all inherent freedom in
(2.3) is kept. This new system of equations about the h-variables is clearly necessary
for (2.3). The crux of the construction is to show that it is also sufficient, and thus the
p-variables can be determined from the values of the h-variables by a simple traversal
of the locus graphs.

3.1. Linear constraints on the h-variables. We will introduce constraint
equations to “cover” all of the edges in each locus graph. As mentioned above, these
equations connect the p-variables and will suffice to help determine their values. Note
that, since the edges broken in each locus graph involve predetermined p-variables, we
do not have to introduce constraints to cover them. The constraints can be classified
into two categories with respect to the spanning tree T (G): constraints for cross edges
and constraints for tree edges.

Cross edge constraints. Adding a cross edge e to the spanning tree T (G) yields
a cycle C in the pedigree graph G. Let length(C) denote the length of cycle C. Suppose
that the edge e exists in the ith locus graph Gi, and consider two cases of the cycle
C with respect to graph Gi.

Case 1. The cycle exists in Gi. We introduce a constraint along the cycle as
in Corollary 2. This constraint is called a cycle constraint. The set of such cycle
constraints for edge e in all locus graphs is denoted by CC(e), i.e.,

CC(e) = {(b, e) | b is associated with the cycle in T (Gi) ∪ {e}, 1 ≤ i ≤ m}.

The set of cycle constraints for all cross edges is denoted by CC =
⊎

e∈EX CC(e).
Case 2. Some of the edges of the cycle do not exist in Gi. This means that the

cycle C is broken into several disjoint paths in Gi by the predetermined vertices. Since
e exists in Gi, exactly one of these paths, denoted as P , contains e. Observe that both
endpoints of P are predetermined, and thus Corollary 3 could give us a constraint
concerning the h-variables along the path. Such a constraint will be called a path
constraint. The set of such path constraints for e in all locus graphs Gi is denoted by
CP(e), i.e.,

CP(e) =
{

(k, j, b, e)
∣∣∣∣ in T (Gi) ∪ {e}, b is associated with the path containing e

connecting two predetermined vertices k and j, 1 ≤ i ≤ m

}
.

The set of path constraints for all cross edges is denoted by CP =
⊎

e∈EX CP(e).
Please refer to Procedure Cross Edge Constraints in Figure 3 to see the

generation of CC and CP.
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Tree edge constraints. By Corollary 3, there is an implicit constraint concern-
ing the h-variables along each path between two predetermined vertices in the same
connected component of T (Gi). Therefore, for each connected component T of T (Gi),
we arbitrarily pick a predetermined vertex in the component as the seed vertex, and
generate a constraint for the unique path in T (Gi) between the seed and each of the
other predetermined vertices in the component, as in Corollary 3. Such a constraint
will be called a tree constraint. Notice that if there exists any component having no
predetermined vertices, then locus i must be heterozygous across the entire pedigree
and T (Gi) is actually a spanning tree. Such a locus will be referred to as an all-
heterozygous locus. For such a locus i, we arbitrarily pick a vertex in T (Gi) as the
seed, but we will not generate at tree constraints.

To conform with the notation of path constraints and for the convenience of
presentation, we arbitrarily pick a tree edge denoted as e0 and write the set of tree
constraints at all loci as

CT =

⎧⎨⎩(k, j, b, e0)

∣∣∣∣∣∣
in a connected component of T (Gi) with seed k, b is
associated with the path connecting vertices k and
a predetermined vertex j, 1 ≤ i ≤ m

⎫⎬⎭ .

Note that e0 is the same for all of the tree constraints and will be used as an indicator
to distinguish tree constraints from path constraints defined by cross edges. The formal
construction of CT is described in Procedure Tree Edge Constraints in Figure 3.

Again, we need to symmetrize path constraints and tree constraints: given any
constraint (k, j, b, e) generated for a path connecting two predetermined vertices k
and j in a locus graph, define (k, j, b, e) = (j, k, b, e). The above constructions of CC,
CP, and CT are more formally described as pseudocode in Figure 3. We can easily see
that the following holds.

Lemma 4. |CC| + |CP| + |CT| = O(mn).

3.2. Solving the linear system for ZRHC using the new constraints.
We now describe how to solve the system in (2.3) in O(mn3) time. The pseudocode
for solving the system is formally given as Algorithm ZRHC Phase in Figure 4. Here,
we first construct the cycle, path, and tree constraints on the h-variables, and pick
a vertex as the seed for every connected component in the locus forests T (Gi), as
described in the last subsection. Then we solve these constraints by using Gaussian
elimination to obtain a general solution of the h-variables, which may contain some
free h-variables. Next, for each connected component with no predetermined vertices,
we set the p-variable of the seed as a free variable and treat it as a determined value.
Finally, we perform a breadth-first search (BFS) on the spanning forest T (Gi) of each
locus graph Gi. For each connected component of T (Gi), we start from the seed and
propagate its p-variable value to the undetermined vertices in the component by using
the solution for the h-variables, which will result in functions of the free h-variables
and at most one free p-variable. Note that, in the last step of the algorithm, pk[i] is
expressed as a linear combination of the free variables in pj [i] and the free h-variables
with an appropriate constant term.

To show the correctness of the algorithm, we need only show that the solution
found by the algorithm is a feasible solution for (2.3) and vice versa. Since we de-
termine the p-variables based on the linear system for the h-variables derived from
(2.3), any feasible solution to (2.3) will be included in the (general) solution found by
our algorithm. In other words, we do not lose any degrees of freedom in the solution
process. Hence, it suffices to show that our solution satisfies (2.3).
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Procedure Cross Edge Constraints

input: locus graphs G[1..m] and the spanning tree T (G)

output: cross edge constraint sets CC, CP

begin

CC = CP = ∅;
for each cross edge e

Suppose that C is the cycle in T (G) ∪ {e};
CP(e) = CC(e) = ∅;
for each locus i
if C is connected in Gi

Let b =
∑

(k,j)∈ C dk,j [i];

CC(e) = CC(e)
⊎

{(e, b)};
else

Suppose P is the path containing e in T (Gi) ∪ {e};
Let vertices j1 and j2 be the endpoints of P ;

Define b = pj1 [i] + pj2 [i] +
∑

(k,j)∈P dk,j [i];

CP(e) = CP(e)
⊎

{(j1, j2, b, e)};
CC = CC

⊎
CC(e);

CP = CP
⊎

CP(e);

end.

Procedure Tree Edge Constraints

input: locus forests T (G[1..m]) and a fixed tree edge e0

output: tree edge constraint set CT

begin

CT = ∅;
for each locus i
for each connected component T in T (Gi)

if T has no predetermined vertices
Arbitrarily pick a vertex j0 in T as the seed of T ;

else
Arbitrarily pick a predetermined vertex j0 in T as

the seed of T ;
for each predetermined vertex j1 �= j0 in T

Let P be the path between j0 and j1;

Define b = pj0 [i] + pj1 [i] +
∑

(k,j)∈P dk,j [i];

CT = CT
⊎

{(j0, j1, b, e0)};
end.

Fig. 3. The procedure for generating constraints.

Lemma 5. The p-variables and h-variables determined by Algorithm ZRHC Phase

satisfy the linear system in (2.3).

Proof. Denote the solution found by our algorithm as p and h. We need only
care about the first equations in (2.3). If the wk[i] in such an equation is 0, then the
equation involves only two predetermined p-values, which holds trivially since Step 1
of our algorithm explicitly takes care of predetermined p-values. Otherwise, each such
equation corresponds to an edge in some locus graph. Let e = (j1, j2) be an edge in
locus graph Gi. It represents an equation pj1 [i]+hj1,j2 = pj2 [i]+dj1,j2 [i], i.e., the first
equation on edge e in (2.3).
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Algorithm ZRHC Phase

[Improved ZRHC Phase]

input: pedigree G = (V, E) and genotype {gj}
output: a general solution of {pj}
begin

Step 1. Preprocessing

Construct a [low-stretch] spanning tree T (G) on G;

Let e0 be an arbitrary tree edge;

for each locus i
Generate the locus graph Gi;

Generate the locus forest T (Gi);

Identify the predetermined nodes;

Step 2. Constraint generation

Cross Edge Constraints(G[1..m] ,T (G), CC, CP);

Tree Edge Constraints(T (G[1..m]), CT, e0);[
Step 2′. Redundant constraint elimination

Compact Constraints( CC, CP, CT, e0 );

]

Step 3. Solve the h-variables

Apply Gaussian elimination on CC
⊎

CP
⊎

CT

to get a general solution of the h-variables;

Step 4. Solve the p-variables by propagation

for each locus i

for each connected component T in T (Gi)

if T has no predetermined vertices
Set the p-variable of the seed as a free variable and

treat it as a determined value;

Traverse T by BFS starting from the seed;

for each edge (j, k) in T
if pj [i] is determined but pk[i] is undetermined

pk[i] = pj [i] + hj,k + dj,k[i];

return {pj};
end.

Fig. 4. The O(mn3) time algorithm ZRHC Phase and the O(mn2 +n3 log2 n log log n) time al-
gorithm Improved ZRHC Phase. The additional instructions in Improved ZRHC Phase are high-
lighted by bold font in square brackets. In order to save running time, we use disjoint union (i.e.,⊎

) in Algorithms ZRHC Phase and Improved ZRHC Phase.

Given any two vertices js and jt in a same connected component of T (Gi), we
denote by P(js, jt) the unique path in the component connecting js and jt. Suppose
that vertex j0 is the seed of the component. The key observation here is that for any
vertex jt, regardless of whether vertex jt is predetermined or not, our solution satisfies
the equation

(3.1) pjt [i] = pj0 [i] +
∑

(k, j) ∈ P(j0, jt)

(hk,j + dk,j [i]).
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More precisely, if vertex jt is predetermined, then (3.1) holds because of the tree
constraint for path P(j0, jt) defined in Step 2 of the algorithm. Otherwise, pjt [i] is
assigned the value as given in (3.1) during the traversal from the seed j0 to jt in Step
4. More generally, we can build a relationship between the p-values of two vertices js

and jt from (3.1) as follows:

(3.2) pjt [i] = pjs [i] +
∑

(k, j) ∈ P(jt, js)

(hk,j + dk,j [i]).

Notice that, as long as js and jt are in the same connected component of T (Gi), the
above equation is satisfied by our solution. With the help of (3.2), we now show that
our solution satisfies the equation represented by edge e.

Case 1. e is a tree edge. Clearly, vertices j1 and j2 belong to the same connected
component of T (Gi). We replace js and jt by j1 and j2, respectively, in (3.2) and
obtain pj1 [i] = pj2 [i] +

∑
(k, j) ∈ P(j1, j2)(hk,j + dk,j [i]) = pj2 [i] + hj1,j2 + dj1,j2 [i],

which means that our solution satisfies the equation represented by the tree edge e,
since the constant wj1 [i] is assumed to be 1.

Case 2. e is a cross edge. Denote by C the cycle in T (Gi) ∪ {e}. There are two
subcases.

Case 2.1. C exists in Gi. In this case, we have a cycle constraint for C in Gi.
Suppose that the cycle constraint is 0 =

∑
(k,j)∈C(hk,j +dk,j [i]). Observe that vertices

j1 and j2 are in the same connected component of T (Gi); thus we have pj1 [i] =
pj2 [i] +

∑
(k, j) ∈ P(j1, j2)(hk,j +dk,j [i]) as shown in (3.2). Observe that cycle C can be

decomposed into path P(j1, j2) and cross edge e = (j1, j2). Therefore, summing up
the above two equations, we can get pj1 [i] = pj2 [i] + hj1,j2 + dj1,j2 [i], which means
that our solution satisfies the equation represented by the cross edge e.

Case 2.2. C is broken into several disjoint paths in Gi by predetermined ver-
tices. Suppose that the unique path containing e is P . Without loss of general-
ity, suppose that vertices k1 and k2 are the endpoints of P , and P has the form
P(k1, j1); e;P(j2, k2). Since vertices k1 and k2 are predetermined, our algorithm de-
fines a path constraint for P in Gi, i.e., pk1 [i] = pk2 [i] +

∑
(k, j) ∈ P(hk,j + dk,j [i]).

Observe that vertices k1 and j1 are in the same connected component of T (Gi).
Therefore, pk1 [i] = pj1 [i] +

∑
(k, j) ∈ P(k1, j1)(hk,j + dk,j [i]) based on (3.2). Similarly,

vertices j2 and k2 are in the same connected component of T (Gi), and pj2 [i] =
pk2 [i] +

∑
(k, j) ∈ P(j2, k2)(hk,j + dk,j [i]). Since path P = P(k1, j1); e;P(j2, k2), sum-

ming up the above three equations yields equality pj2 [i] = pj1 [i] + hj1,j2 + dj1,j2 [i],
which means that our solution satisfies the equation represented by the cross edge e.

In conclusion, the solution produced by Algorithm ZRHC Phase satisfies the equa-
tions on all edges, and thus the lemma holds.

Theorem 6. The running time of Algorithm ZRHC Phase is O(mn3).
Proof. Step 1 needs O(n) time for each locus, which takes O(mn) time in total.

In Step 2, we need at most O(n) time for generating a constraint. Since there are at
most O(mn) constraints, it takes at most O(mn2) time. In Step 3, the system has
O(n) h-variables and O(mn) constraints. So, Gaussian elimination requires O(mn3)
time. In Step 4, every edge is visited just once in the traversal. Since each h-variable
is expressed as a linear combination of at most n free h-variables at the end of Step
3,every p-variable is expressed as at most n free h-variables and at most one free p-
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variable on the same locus. Thus, this steps takes O(mn2) time altogether. Therefore,
the entire process takes O(mn3) time.

4. Speeding up the algorithm by fast elimination of redundant equa-
tions. The bottleneck in the above algorithm is Step 3, where we have to spend
O(mn3) time to solve a system of O(mn) equations over O(n) variables. Clearly,
most of the equations are redundant and can be expressed as linear combinations of
other equations. The question is how to detect and eliminate these redundant equa-
tions (without using Gaussian elimination, of course). To the best of our knowledge,
there are no methods that would eliminate redundant equations for any system of
linear equations over any field faster than Gaussian elimination asymptotically in the
worst case. Here, we give such a method taking advantage of the underlying pedigree
structure. We first give a general method to compact path and tree constraints that
correspond to paths on a cycle in the pedigree graph.

Let C be a cycle in the pedigree graph G induced by cross edge e1. For convenience,
we say that a path/tree constraint is on the cycle C if it corresponds to a path/edge
on C. The following lemma shows that the path/tree constraints on a cycle can be
greatly compacted and is the key to our algorithm to eliminate redundant constraints.

Lemma 7. Given a set C of path/tree constraints on cycle C, we can reduce C to
an equivalent constraint set of size at most 2 · length(C) in time O(|C|).

Proof. Recall that e0 represents the fixed tree edge introduced in subsection 3.1
for defining the tree constraints. We use Ĉ to denote the equivalent constraint set (to
be constructed). Initially, we set Ĉ = ∅.

For convenience, we say that a path/tree constraint connects vertices j and k if the
constraint has the form (k, j, b, e). To depict a more clear picture of the relationship
between the constraints in C, we define a constraint graph G∗3 as follows. For each
vertex k of the cycle C, we create a vertex in G∗. For each path/tree constraint in
C connecting k and j, we build an edge connecting k and j in G∗. Observe that the
connected components in G∗ naturally partition the constraints in C into disjoint
subsets. We will compact the constraints in each of these disjoint subsets separately
and put the resultant equivalent constraint sets into Ĉ. More precisely, for each con-
nected component of G∗, we pick an arbitrary vertex as the root of the component
and construct new constraints connecting the root and the other vertices in the com-
ponent. The details of the construction will be given in the next paragraph. Here,
the term root is meant to be synonymous to the term seed defined in subsection 3.1,
although each seed is defined for a single locus, whereas a root may be used to deal
with constraints concerning multiple loci.

Now, we give the details of how to construct Ĉ. Consider each connected compo-
nent S of G∗. Suppose that its root is k0. We process the constraints of C induced by
S in the order of increasing distance between the root and the vertices connected by
the constraints. In other words, we traverse S by BFS starting from the root. Suppose
that we are now visiting vertex j. For each edge (k0, j), we directly put into Ĉ the
constraints that created the edge (k0, j) in G∗. For each edge (k, j) where k (k �= k0)
is visited before j, our construction guarantees that Ĉ will have constraints connect-
ing the root k0 and k. Suppose that one of such constraints is c′ = (k0, k, b′, e′). Let
c = (k, j, b, e) ∈ C denote the constraint that created the edge (k, j) in G∗. We gen-
erate a new constraint c′′ = (k0, j, b

′′, e′′), where b′′ = b + b′ and e′′ is defined as

3Note that a constraint graph might actually be a multigraph, but this will not affect the cor-
rectness of Lemma 7.
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follows:

e′′ =

{
e1 if {e} ∪ {e′} = {e0, e1},
e0 otherwise.

Because c can be represented as the summation of c′′ and c′ ∈ Ĉ, c is equivalent to
c′′ given Ĉ. Then we add c′′ to Ĉ. Here, again the fixed tree e0 and cross edge e1

are used to indicate tree and path constraints, respectively. Observe that the above
constraint c′′ resulted from the combination of constraints c′ and that c involves only
tree edges if and only if both or none of c′ and c corresponds to paths containing e.
Otherwise, c′′ corresponds to some path across e1.

The BFS creates an equivalent constraint in Ĉ for every constraint in C, and
thus Ĉ ≡ C. Recall that each constraint in Ĉ has the form (k0, j, b, e), where j is a
vertex in C, e is either e0 or e1, and k0 is the root of the connected component of G∗

containing j. It is easy to see that two constraints (k0, j, b
′, e) and (k0, j, b

′′, e) that
differ only in the associated b-constants are consistent with each other if and only if
b′ = b′′. Hence, Ĉ has at most 2 · length(C) different constraints, or otherwise the
input linear system has no feasible solutions. The construction can be done in O(|C|)
time, as more formally described by Procedure Compact PT Const in Figure 5. Hence,
the lemma holds.

The reader may refer to the example in Appendix B (Step 2′) for a simple illus-
tration of how the construction in the above proof works. An immediate application
of Lemma 7 is to remove redundancy from each path constraint set CP(e), since the
path constraints in CP(e) are all on the cycle induced by e.

Corollary 8. Given the path constraint set CP(e), we can reduce it to an equiv-
alent constraint set of size at most 2 · length(C) in time O(|CP(e)|), where C is the
cycle induced by cross edge e.

We can also use Lemma 7 to remove redundant tree constraints. Note that the
construction in the proof of Lemma 7 still works if the constraints in C are all tree
constraints involving no cross edge e1. Moreover, the resultant set Ĉ contains only
constraints of the form (k0, j, b, e0). This implies that |Ĉ| ≤ n. Therefore, the following
corollary holds.

Corollary 9. Given the tree constraint set CT, we can reduce it to an equivalent
constraint set of size at most n in O(|CT|) time.

4.1. Elimination of redundant cycle constraints. Each cross edge e induces
a unique cycle C. Since every constraint in CC(e) concerns the same set of h-variables
corresponding to the edges on C, each CC(e) contains only one independent constraint.
Moreover, these constraints are consistent with each other if and only if their associ-
ated constants are identical, which can be checked in O(m) time. Because the total
number of cross edges are at most n + 1 we have the following lemma.

Lemma 10. Given the cycle constraint set CC, we can reduce it to an equivalent
constraint set of size at most n + 1 in O(mn) time.

4.2. Elimination of redundant path constraints. We will show how to re-
duce the path constraints CP on a general pedigree to an equivalent set of path con-
straints with size O(n log2 n log log n) in O(mn) time (assuming log2 n log log n < m).
Furthermore, for tree pedigrees (i.e., pedigrees with no mating loops) we can make
the equivalent constraint set as small as O(n). For pedigrees with an all-heterozygous
locus across the entire pedigree, we can first transform CP into an equivalent tree con-



FAST RECONSTRUCTION OF 0-RECOMBINANT HAPLOTYPES 2211

Procedure Compact PT Const

input: a set C of path/tree constraints

on cycle C induced by cross edge e1,
and a fixed tree edge e0

output: a compact constraint set Ĉ ≡ C

begin

Construct the constraint graph G∗ for C;

Ĉ = ∅;
for each connected component S of G∗

Pick an arbitrary vertex k0 ∈ S as the root of S;
Traverse S by BFS starting from k0;

while there exists unvisited vertices in G∗

Visit an unvisited vertex, say k, in the BFS order;

for each constraint c = (k0, j, b, e) in C

Ĉ = Ĉ
⊎

{c};

for each constraint c = (k, j, b, e) in C

s.t. vertex k �= k0 is visited before j

for each constraint c′ = (k0, k, b′, e′) in Ĉ

b′′ = b + b′;

if {e} ∪ {e′} = {e0, e1}
e′′ = e1;

else
e′′ = e0;

Construct a new constraint c′′ = (k0, j, b
′′, e′′);

if there exists a constraint (k0, j, b
′′ + 1, e′′) ∈ Ĉ

exit “The input genotypes are inconsistent.”;

if c′′ /∈ Ĉ

Ĉ = Ĉ
⊎

{c′′};

return Ĉ;

end.

Fig. 5. The procedure for compacting path and tree constraints on a cycle.

straint set with size O(mn), and then we will remove its redundancy via Corollary 9.
We first start with the special cases.

Elimination of redundant path constraints on tree pedigrees. Observing
that the length of each (simple) cycle in the pedigree graph of a tree pedigree is a
constant (i.e., 4, of which an example is given in Figure 2(B)), we can upper bound
the total number of path constraints as follows.

Lemma 11. Given the path constraint set CP on a tree pedigree, we can reduce it
to an equivalent path constraint set of size O(n) in O(mn) time.

Proof. By Corollary 8, we can reduce CP(e) for each cross edge e to an equivalent
set of at most eight path constraints in O(m) time. Since there are at most n+1 cross
edges, the set CP can be reduced to an equivalent set of size O(n) in O(mn) time, and
thus the lemma holds.



2212 JING XIAO, LAN LIU, LIRONG XIA, AND TAO JIANG

Transformation of path constraints on pedigrees with an all-heterozygous
locus. Observe that for a pedigree with an all-heterozygous locus i each cross edge
induces a cycle that exists in the locus graph Gi and has a cycle constraint in the
(reduced) set CC. This allows us to transform all of the path constraints into tree
constraints given the cycle constraints as follows.

Corollary 12. Given the path constraint set CP on a pedigree with an all-
heterozygous locus, we can construct an equivalent tree constraint set of size O(mn)
in O(mn) time.

Proof. Let us first focus on a cross edge e. Suppose that the cycle C is induced by
e in T (G) ∪ {e}, the compact CC(e) is {(b′, e)}, and e0 is the fixed tree edge defined
in subsection 3.1. Notice that the cycle C has two disjoint paths connecting each pair
of two vertices on the cycle. One of them consists of only tree edges and may be used
to define a tree constraint, while the other contains the cross edge and may be used
to represent a path constraint. Therefore, with the help of the cycle constraint (b′, e),
we can transform the path constraint set CP(e) into a tree constraint set C(e) of the
same size as follows:

C(e) = {(k, j, b − b′, e0) | (k, j, b, e) ∈ CP(e)}.

It is not hard to see that C(e) ∪CC(e) ≡ CP(e) ∪ CC(e), and C(e) can be constructed
in |CP(e)| time.

Let C = ∪e∈EX C(e). Obviously, C ≡ CP and |C| = O(mn) since |CP| = O(mn).
Hence, the lemma holds.

Elimination of redundant path constraints on a general pedigree. Now,
we consider how to compact path constraints in the general case. As shown in Corol-
lary 8, given a cross edge e inducing cycle C, we can compact the constraints in CP(e)
so that at most 2 · length(C) constraints are kept. Clearly, the compact CP has size
at most O(n2) since the number of cross edges is at most n + 1 and the length of a
cycle containing a cross edge is at most n. This bound can be improved by observing
that the total length of all cycles in G is related to the average stretch [9] of G with
respect to the spanning tree T (G). Hence, we can obtain a sharper upper bound on
|CP| by using a low-stretch spanning tree T (G) as constructed in [9].

We first give a formal definition of the stretch of an unweighted connected graph
with respect to a spanning tree. Given a spanning tree T on an unweighted connected
graph G = (V, E) (e.g., the pedigree graph), we define the stretch of an edge (k, j) ∈ E,
denoted as strethT (k, j), to be the length of the unique path (i.e., the number of edges
on the path) in T between k and j. The average stretch of G with respect to T is
then defined as avg-stretchT (E) = 1

|E|
∑

(k,j)∈E stretchT (k, j).

Lemma 13. Given a pedigree G, we can build a low-stretch spanning tree T (G)
in O(n log n) time such that |CP| = O(n log2 n · log log n) after compacting.

Proof. In [9], Elkin et al. showed that every unweighted connected graph G =
(V, E) contains a spanning tree, into which each edge of the graph can be embedded
with an average stretch of O(log2 n log log n). Moreover, this tree can constructed in
O(|E| log |V |) time. In our situation, such a low-stretch spanning tree T (G) can be
built in O(n log n) time because |E| ≤ 2n and |V | = n. The following inequality
establishes the relationship between |CP| and the average stretch of E with respect to
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T (G). From Corollary 8, we have

|CP| =
∑

e∈EX

|CP(e)|

≤
∑

C induced by e∈EX

2 · length(C)

=
∑

e = (k,j)∈EX

2 ·
(
stretchT (k, j) + 1

)
≤ 2

∑
(k,j)∈E

stretchT (k, j) + 2n

≤ 2 · |E| · avg-stretchT (E) + 2n

≤ 2 · (2n) · O(log2 n log log n) + 2n

= O(n · log2 n log log n)

4.3. Elimination of redundant tree constraints and the final algorithm.
After we process (i.e., compact or transform) the path constraints, we eliminate re-
dundant tree constraints and obtain a compact tree constraint set containing at
most n constraints as shown in Corollary 9. The complete algorithm for eliminat-
ing redundant cycle, path, and tree constraints is given in Figure 6 as Procedure
Compact Constraints. The next theorem summarizes the above discussion.

Theorem 14. Given the constraint sets CC, CP, and CT on a pedigree, we can
reduce them to an equivalent constraint set of size O(n · log2 n log log n) in O(mn)
time. In particular, for tree pedigrees and pedigrees with an all-heterozygous locus, the
equivalent constraint set has size O(n).

We can incorporate the above redundant constraint elimination procedure
Compact Constraints into the O(mn3) time algorithm for ZRHC in order to obtain an
improved algorithm Improved ZRHC Phase as shown in Figure 4. (An example of how
Improved ZRHC Phase works is given in the appendix.) The following theorem is obvious
given Theorem 14.

Theorem 15. Algorithm Improved ZRHC Phase solves the ZRHC problem correctly
on any pedigree in O(mn2 + n3 log2 n log log n) time. Moreover, it solves ZRHC on
tree pedigrees or pedigrees with an all-heterozygous locus in O(mn2 + n3) time.

5. Concluding remarks. It remains interesting if the time complexity for ZRHC
on general pedigrees can be improved to O(mn2+n3) or lower. Another open question
is how to use the algorithm to solve MRHC on pedigrees that require only a small
(constant) number of recombinants.

Appendix.

A. Some related biological definitions. The genome of an organism consists
of chromosomes that are double strand DNAs. Locations on a chromosome can be
labelled using markers, which are small segments of DNA with some specific features.
A physical position of a marker on a chromosome is called a marker locus and a
marker state is called an allele. In diploid organisms, chromosomes come in pairs. The
status of two alleles at a particular marker locus of a pair of chromosomes is called
a marker genotype. The genotype information at a locus will be denoted using a set,
e.g., {a, b}. If the two alleles a and b are the same, then the genotype is homozygous.
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Procedure Compact Constraints

input: CC, CP, CT, and a fixed tree edge e0

output: compact CC, CP, and CT

begin

Step 1. Removing redundant cycle constraints

for each cross edge e

Pick an arbitrary constraint, say c = (e, b), from CC(e);

if there exists a constraint (e, b + 1) ∈ CC(e)

exit “The input genotypes are inconsistent.”;

CC = CC − CC(e)
⊎

{c};

Step 2. Processing path constraints

if G is a tree pedigree
for each cross edge e

ĈP(e) = ∅;
for each constraint c = (k, j, b, e) ∈ CP(e)

if there exists a constraint (k, j, b + 1, e) ∈ CP(e)

exit “The input genotypes are inconsistent.”;

ĈP(e) = ĈP(e)
⊎
{c};

CP = CP − CP(e)
⊎

ĈP(e);

else if G has an all-heterozygous locus
for each cross edge e

Let (b′, e) be the cycle constraint for e in CC;

for each constraint c = (k, j, b, e) in CP(e)

Construct a new constraint c′ = (k, j, b − b′, e0);

CT = CT
⊎

{c′} ;

else (i.e., G is a general pedigree)

for each cross edge e

ĈP(e) = Compact PT Const(CP(e), e0);

CP = CP − CP(e)
⊎

ĈP(e);

Step 3. Removing redundant tree constraints

CT = Compact PT Const(CT, e0);

end.

Fig. 6. The procedure for removing redundant constraints.

Otherwise, it is heterozygous. A haplotype consists of all alleles, one from each locus,
that are on the same chromosome. Figure 1(A) illustrates the above concepts, where
alleles are represented by their numerical IDs.

A pedigree can be defined formally as follows.
Definition 16. A pedigree graph is a weakly connected directed acyclic graph

(DAG) G = (V, E), where V = M ∪ F , M stands for the male nodes, and F stands
for the female nodes. The in-degree of each node is 0 (founders) or 2 (nonfounders).
If the in-degree of a node is 2, then one edge must start from a male node (called
father) and the other edge from a female node (called mother), and the node itself is
a child of its parents (father and mother).
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A mating loop consists of two distinct paths from a node x to a node y. Figure 1(B)
illustrates an example pedigree with a mating loop. The Mendelian law of inheritance
states that the alleles of a child must come from the alleles of its parents at each
marker locus (i.e., assuming no mutations within a pedigree). In other words, the two
alleles at each locus of the child have different origins: one is from its father (which is
called the paternal allele) and the other from its mother (which is called the maternal
allele). Usually, a child inherits a complete haplotype from each parent. However,
recombination may occur, where the two haplotypes of a parent get shuffled due to a
crossover of chromosomes and one of the shuffled copies is passed on to the child. Such
an event is called a recombination event, and its result is called a recombinant. Since
markers are usually short DNA sequences, we assume that recombination occurs only
between markers. Figure 1(C) illustrates an example where the paternal haplotype of
member 3 is the result of a recombinant. The paternal allele and maternal allele at
each locus is separated by a “|” in this figure.

We use the term haplotype configuration to describes not only the paternal and
maternal haplotypes of an individual but also the grandpaternal or grandmaternal
origin of each allele on the haplotypes. Observe that the number of recombinants
required in a pedigree can be easily computed once the haplotype configuration of
each member of the pedigree is given. The MRHC problem is defined as follows.

Definition 17 (MRHC). Given a pedigree and genotype information for each
member of the pedigree, find a haplotype configuration for the pedigree that requires
the minimum number of recombinants.

Namely, the ZRHC problem is a special case of MRHC with the following defini-
tion.

Definition 18 (ZRHC). Given a pedigree and genotype information for each
member of the pedigree, find a haplotype configuration for the pedigree that requires
no recombinant (if such solution exists).

B. An example execution of Algorithm Improved ZRHC phase. The
example in Figure 7 aims to demonstrate how Algorithm Improved ZRHC phase works
(see Figure 6 for the pseudocode of the algorithm). The input pedigree with genotype
data is shown in Figure 7(A), and the corresponding pedigree graph is in Figure 7(B).

In Step 1, we generate the locus graphs (or forests) as illustrated in Figure 7(C)
and identify the predetermined vertices in Figure 7(D). Moreover, we arbitrarily pick
a tree edge, say e1,4, as the indicator to distinguish tree constraints from path con-
straints, which is defined in subsection 3.1.

In Step 2, we generate cycle, path, and tree constraints as follows. For example,
given the cycle C = v2v5v3v6v2 in the second locus graph of Figure 7(D), we denote
the cycle constraint h2,5 + h3,5 + h3,6 + h2,6 = 0 by the form (0, e2,6). Afterwards,
we have CC = {(0, e2,6), (0, e2,6)}, CP = {(v4, v9, 0, e4,9), (v9, v8, 1, e4,9)} and CT =
{(v6, v8, 0, e1,4), (v6, v9, 1, e1,4), (v4, v8, 1, e1,4)}.

In Step 2′, we first remove redundant cycle constraints and obtain CC = {(0, e2,6)}.
Next, we need to take care of path constraints. For instance, given the path con-
straints (v4, v9, 0, e4,9) and (v9, v8, 1, e4,9) induced by the cross edge e4,9, we draw the
constraint graph as illustrated in Figure 7(E) to help remove redundant path con-
straints and obtain CP = {(v4, v9, 0, e4,9), (v9, v8, 1, e4,9)} based on Lemma 7. Then
we construct the constraint graph as shown in Figure 7(E) for tree constraints and
obtain CT = {(v4, v8, 1, e1,4), (v4, v6, 1, e1,4), (v4, v9, 0, e1,4)}, according to Lemma 7.

In Step 3, we apply Gaussian elimination to the following linear system, which is
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Fig. 7. A. An example input pedigree with genotype data. Here, the alleles at a locus are ordered
according to their ID numbers instead of phase (which is unknown). B. The pedigree graph with a
spanning tree. The tree edges are highlighted. C. Locus graphs for the three loci, respectively. The
locus forests are highlighted. D. The predetermined nodes. In the locus graphs, the predetermined
nodes are indicated by their corresponding p-value (i.e., the number 0 or 1 near the nodes), while
the undetermined nodes are accompanied by the question mark (i.e., “?”). The seeds in the graphs
are highlighted by thick borders. E. The constraint graphs. The left graph is for removing redundant
path constraints generated by the cross edge e4,9, while the right graph is for tree constraints. The
roots (see Lemma 7 for the definition) in the graphs are highlighted by thick borders. F. The locus
graphs with propagated p-values. The notations are the same as those in Figure 7(D), except that
the question marks on the undermined nodes are replaced by their resolved p-values. The resolved
p-values are expressed as a linear combination of the free variables in pj [i] and the free h-variables
with an appropriate constant term.
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equivalent to CC
⊎

CP
⊎

CT:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h2,5 + h3,5 + h3,6 + h2,6 = 0, i.e., the cycle constraint (0, e2,6),
h4,9 = 0, i.e., the path constraint (v4, v9, 0, e4,9),
h4,9 + h2,4 + h2,5 + h3,5 + h3,6 + h6,8 = 1, i.e., the path constraint (v9, v8, 1, e4,9),
h2,4 + h2,5 + h5,3 + h3,6 + h6,8 = 1, i.e., the tree constraint (v4, v8, 1, e1,4),
h2,4 + h2,5 + h5,3 + h3,6 = 1, i.e., the tree constraint (v4, v6, 1, e1,4),
h2,4 + h2,5 + h5,3 + h3,6 + h6,8 + h8,9 = 0, i.e., the tree constraint (v4, v9, 0, e1,4).

Then we obtain the following general solution:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h4,9 = 0,
h6,8 = 0,
h8,9 = 1,
h2,6 = h2,5 + h3,5 + h3,6,
h2,4 = h2,5 + h3,5 + h3,6 + 1,

where h2,5, h3,5, h3,6, h1,4, and h7,8 are free variables.
In Step 4, we solve the unknown p-values by propagation from the seeds and

obtain all p-values as shown in Figure 7(F).
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Abstract. We show that any k-wise independent probability distribution on {0, 1}n O(m2.2

2−
√

k/10)-fools any boolean function computable by an m-clause disjunctive normal form (DNF) (or
conjunctive normal form (CNF)) formula on n variables. Thus, for each constant e > 0, there is a
constant c > 0 such that any boolean function computable by an m-clause DNF (or CNF) formula
is m−e-fooled by any c log2 m-wise probability distribution. This resolves up to an O(log m) factor
the depth-2 circuit case of a conjecture due to Linial and Nisan [Combinatorica, 10 (1990), pp. 349–
365]. The result is equivalent to a new characterization of DNF (or CNF) formulas by low degree
polynomials. It implies a similar statement for probability distributions with the small bias prop-
erty. Using known explicit constructions of small probability spaces having the limited independence
property or the small bias property, we directly obtain a large class of explicit pseudorandom gener-
ators of O(log2 m log n)-seed length for m-clause DNF (or CNF) formulas on n variables, improving
previously known seed lengths.
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1. Introduction. If μ is a probability distribution on {0, 1}n and g : {0, 1}n →
{0, 1} is a boolean function, we say that μ ε-fools g [8, 27] if

|Prx∼μ[g(x) = 1] − Prx∈{0,1}n [g(x) = 1]| ≤ ε,

where the second probability is with respect to the uniform probability distribution
on {0, 1}n.

Let μ be a probability distribution on {0, 1}n, and let k ≥ 0 be an integer. We
say that μ is k-wise independent (e.g., [15, 26]) if any k or fewer of the underlying n
binary random variables are statistically independent and each is equally likely to be
zero or one.1

A disjunctive normal form (DNF) formula on n variables x1, . . . , xn is an OR of
AND gates, called clauses, on the literals x1,¬x1, . . . , xn,¬xn. Similarly, a conjunctive
normal form (CNF) formula is an AND of OR gates.

We consider in this paper the following problem: how large should k be in terms
of ε, n, and m so that any k-wise independent probability distribution on {0, 1}n ε-
fools any boolean function computable by an m-clause DNF (or CNF) formula on n
variables?

The main contribution of this paper is the following theorem.
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1For technical convenience, we allow k = 0 in the sense that any probability distribution on

{0, 1}n is 0-wise independent.
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Theorem 1.1. Any k-wise independent probability distribution on {0, 1}n (16m2.2

2−
√
k/10)-fools any boolean function computable by an m-clause DNF (or CNF) for-

mula on n variables.
The proof is based on harmonic and poset analysis techniques. It uses Hastad’s

switching lemma [9] indirectly via the Linial–Mansour–Nisan (LMN) energy bound
[13], applied to many DNF formulas derived from the DNF formula under considera-
tion. The proof can be regarded as a sequence of reductions between some L1- and
L2-approximations of DNF formulas and auxiliary functions by low degree polynomi-
als with real coefficients.

Corollary 1.2. For each constant e > 0, there is a constant c > 0 such that any
boolean function computable by an m-clause DNF (or CNF) formula is m−e-fooled by
any c log2m-wise probability distribution.

The above problem was first proposed by Linial and Nisan [14]. Motivated by
this problem, they derived a general bound on approximate inclusion-exclusion from
which they concluded that any boolean function computable by an m-clause DNF (or
CNF) formula is o(1)-fooled by any �

√
m logm�-wise independent probability distri-

bution. They conjectured that any boolean function computable by a size-M depth-
d unbounded-fanin AND/OR circuit is ε-fooled by any logd−1M -wise independent
probability distribution, where ε = 0.1. Corollary 1.2 resolves up to an O(logm)
factor this conjecture for depth-2 circuits, reducing the

√
m logm bound of [14] to

O(log2m). Note that the conjecture’s strict parameters are not correct: Luby and
Velickovic [16] reported a counterexample which exhibits for each power m of 2 and
for all n ≥ logm a function f : {0, 1}n → {0, 1} computable by an m-clause DNF
formula, and a logm-wise independent probability distribution μ on {0, 1}n such that
μ does not 1

2 -fool f . Theorem 1.1 leaves the region between O(logm) and o(log2m)
open for depth-2 circuits.

Next we explain the linear programming (LP)-dual of Theorem 1.1 which is a new
approximation of DNF (or CNF) formulas by low degree polynomials and compare it
with the related literature.

1.1. Dual problem. Let g : {0, 1}n → {0, 1} be a boolean function, k ≥ 0 an
integer, and ε ≥ 0. Then saying that “any k-wise independent probability distribution
ε-fools g” is equivalent to saying “there exist gl, gu : {0, 1}n → R such that

• (low degree2) deg(gl) ≤ k and deg(gu) ≤ k;
• (sandwiching polynomials) gl ≤ g ≤ gu;
• (small L1-approximation error) E(g − gl) ≤ ε and E(gu − g) ≤ ε,

where the expectation is over the uniform probability distribution.”
We show this in section 4 (see Theorem 4.2). Thus the dual problem is about an

L1-approximation of DNF (or CNF) formulas by low degree sandwiching polynomials
with real coefficients. Via this duality, Theorem 1.1 is (up to a constant factor)
equivalent to the following theorem.

Theorem 1.3. Let g : {0, 1}n → {0, 1} be a boolean function computable by
an m-clause DNF (or CNF) formula, and let k ≥ 0 be an integer. Then there exist
two real-valued functions gl, gu : {0, 1}n → R each of degree at most k such that
gl ≤ g ≤ gu, E(g − gl) = O(m2.22−

√
k/10), and E(gu − g) = O(m2.22−

√
k/10), where

the expectation is over the uniform probability distribution.
We will actually establish the dual statement.

2The degree of a function f : {0, 1}n → R is the smallest degree of a polynomial p ∈ R[x1, . . . , xn]
such that p(x) = f(x) for all x ∈ {0, 1}n.
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Theorem 1.3 implies the following weaker L1-approximation.
Corollary 1.4. Let g : {0, 1}n → {0, 1} be a boolean function computable by

an m-clause DNF (or CNF) formula, and let k ≥ 0 be an integer. Then there exists
a real-valued function p : {0, 1}n → R of degree at most k such that E|g − p| =
O(m2.22−

√
k/10).

Proof. Set p = gl or gu.
Small constant-depth unbounded-fanin AND/OR circuits can be approximated

by low degree polynomials with real coefficients in different ways [1, 7, 13]. They can
be also approximated by low degree polynomials with coefficients over finite fields
[22]. We compare our sandwiching L1-approximation with [1, 7, 13] specialized to
depth-2 circuits. The approximation in [13] is an L2-approximation based on Hastad’s
switching lemma.

Theorem 1.5 (see [13]). Let g : {0, 1}n → {0, 1} be computable by an m-clause
DNF (or CNF) formula, and let k ≥ 0 be an integer. Then there exists a real-valued
function p : {0, 1}n → R of degree at most k such that E(g − p)2 ≤ 2m2−

√
k/20.

The proof of Theorem 1.1 uses a variation of this L2-approximation (see Theorem
9.1) applied to many DNF formulas derived from the DNF formula under considera-
tion.

The approximation in [1, 7] does not use Hastad’s switching lemma and is in
terms of probabilistic polynomials.

Theorem 1.6 (see [1, 7]). Let g : {0, 1}n → {0, 1} be computable by an m-clause
DNF (or CNF) formula. For all ε > 0, there exists a (finite) family of polynomials
{pα}α, where each pα is a real polynomial (with integer coefficients) on the variables
x1, . . . , xn of degree O(log2 (m/ε) log2m log2 n) such that Prα[pα(x) �= g(x)] ≤ ε for
all x ∈ {0, 1}n. Thus, in particular, Prx[pα(x) �= g(x)] ≤ ε for some α.

The polynomials do not give a good L1-approximation (Ex|pα(x)−g(x)| is poten-
tially as large as 2O(log2 (m/ε) log2m log2 n)), but we believe that they probably can be
used indirectly to establish a weak version of Theorem 1.1 which is naturally extensible
to AC0 circuits. See [5, sections 5.7 and 5.8] for a work in this direction.

A final remark is that one cannot hope to obtain a good L∞-approximation of
DNF formulas by low degree polynomials. This follows from [20].

1.2. Paper outline. In section 2, we give direct applications of Theorem 1.1.
Section 3 contains Fourier transform preliminaries. Section 4 highlights the dual
characterization of the class of boolean functions that are fooled by the limited inde-
pendence property. The remainder of the paper is about the proof of Theorem 1.1,
starting with the proof outline in section 5. The proof consists of sections 5, 6, 7, 8,
and 9. The proof depends on sections 3 and 4, but does not use section 2 or section
10, which branches from the proof and ends with an open problem.

2. Some direct applications. This section can be skipped without loss of con-
tinuity. In section 2.1, we conclude from Theorem 1.1 that probability spaces with
quasi-polynomially small3 bias also fool all polynomial size DNF (or CNF) formulas.
Using known explicit constructions of small probability spaces having the limited in-
dependence property or the small bias property, we directly obtain in section 2.2 a
large class of explicit pseudorandom generators (PRGs) of O(log2m logn)-seed length
for m-clause DNF (or CNF) formulas on n variables, improving previously known (un-
conditional) seed lengths. Finally, we highlight in section 2.3 a direct application of

3By quasi-polynomially small we mean 2− logΘ(1)(n).
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Theorem 1.1 to the distribution of patterns in linear codes.

2.1. Extension to small bias probability spaces. We can conclude from
Theorem 1.1 that probability spaces with quasi-polynomially small bias also fool all
polynomial size DNF (or CNF) formulas.

Let μ be a probability distribution on {0, 1}n, k ≥ 0 be an integer, and δ > 0.
We say that μ is (δ, k)-biased [18] if μ δ-fools all parity functions on k or fewer of the
n binary variables. This is a relaxation of the k-wise independent property since the
latter is equivalent to the (0, k)-bias property. If μ is (δ, n)-biased, it is called δ-biased
[18].

We need the following relation.
Theorem 2.1 (see [3]). Any (δ, k)-biased probability distribution μ on {0, 1}n is

nkδ-close to a k-wise independent probability distribution μ′ on {0, 1}n in the sense
that |μ(A) − μ′(A)| ≤ nkδ for all A ⊂ {0, 1}n. Thus if f : {0, 1}n → {0, 1} is such
that any k-wise independent probability distribution on {0, 1}n ε-fools f , then any
(δ, k)-biased probability distribution on {0, 1}n (ε+ δnk)-fools f .

Using Theorems 1.1 and 2.1, we get the following corollary.
Corollary 2.2. Any (δ, k)-biased probability distribution on {0, 1}n (16m2.2

2−
√
k/10 + δnk)-fools any boolean function computable by an m-clause DNF (or CNF)

formula on n variables.
Corollary 2.3. There is a function δ(m,n, ε) = 2−Θ(log2 m

ε logn) such that for
all positive integers m and n, and all 0 < ε < 1, any δ(m,n, ε)-biased probability
distribution on {0, 1}n ε-fools any boolean function computable by an m-clause DNF
(or CNF) formula on n variables.

Proof. Set k = �(10 log 32m2.2

ε )2� in Corollary 2.2 so that 16m2.22−
√
k/10 ≤ ε/2

and δnk ≤ ε/2 if δ ≤ ε2−	(10 log 32m2.2

ε )2
 logn−1 def= δ(n, n, ε).
Related previously known bounds in [4, 16, 25] work for DNF formulas with very

small fanins. We call a DNF formula an s-DNF if each clause contains at most s literal.
We call a probability distribution on {0, 1}n k-wise δ-dependent if it δ-fools all AND
gates on at most k literals. Ajtai and Wigderson [4], and Luby and Velickovic [16] show
that for all integers 1 ≤ s ≤ n, any k-wise δ-dependent probability distribution μ on
{0, 1}n (e−k/(s2

s) +2sδ)-fools all boolean functions computable by s-DNF (or s-CNF)
formulas on n variables. This implies that there is a function δ(s, ε) = 2−O(s2s log (1/ε))

such that for all 0 < ε < 1 and all integers 1 ≤ s ≤ n, any δ(s, ε)-biased probability
distribution μ on {0, 1}n ε-fools all boolean functions computable by s-DNF (or s-
CNF) formulas on n variables [25]. The bound is good for s = O(1) and is nontrivial
only if the condition k > s2s is satisfied. For general DNF formulas, we can restrict
our attention to the case when s = logm + O(log 1

ε) (see section 5.4), but that will
not help here since then the condition k > s2s would require k > m logm.

2.2. A large class of PRGs for DNF formulas. The problem of derandomiz-
ing AC0 circuits (polynomial-size constant-depth unbounded-fanin AND/OR circuits)
was first studied by Ajtai and Wigderson [4]. Using Hastad’s parity lower bound [9],
Nisan [19] constructed a quasi-polynomial complexity4 PRG for AC0 circuits of seed
length O(log2d+6 n), where d is the circuit depth and n is the input length. This
initiated the hardness-versus-randomness approach which was developed in [21, 10]
and others. Nisan’s generator was optimized by Luby, Velickovic, and Wigderson [17]
for depth-2 circuits reducing the seed length from O(log10 n) to O(log4mn), where m

4By quasi-polynomial complexity we mean 2logΘ(1)(n).
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is the number of clauses of the DNF (or CNF) formula. Using classical linear code–
based constructions of small probability spaces having the k-wise independent or the
δ-bias property, we directly obtain from Theorem 1.1 a large class of explicit PRGs
for depth-2 circuits of seed length O(log3mn).

Small probability spaces having the k-wise independence property can be con-
structed from linear codes. The following construction is folklore. If C ⊂ {0, 1}n

is a binary linear code whose dual C⊥ def= {x ∈ {0, 1}n :
∑

i xiyi = 0 (mod 2) for
all y ∈ C} has minimum distance greater than k, then the uniform distribution on
the codewords of C is k-wise independent as a probability distribution on {0, 1}n.
Classical linear code–explicit constructions achieve |C| = nΘ(k).

Corollary 2.4. For all positive integers m,n and every ε > 0, there are an
integer t = O(log2 m

ε logn) and an explicit generator G : {0, 1}t → {0, 1}n, con-
structible in poly(n)-time and computable in O(tn)-time, such that for every boolean
function g : {0, 1}n → {0, 1} computable by an m-clause DNF (or CNF) formula on
n variables, we have

|Prx∈{0,1}t [g(G(x)) = 1] − Prx∈{0,1}n [g(x) = 1]| ≤ ε.

Proof. Without loss of generality, assume that log2 m
ε logn = o(n) (otherwise, set

t = n and let G be the identity map). Given n,m, and ε, let

k
def=

⌈(
10 log

16m2.2

ε

)2
⌉

;

thus 16m2.22−
√
k/10 ≤ ε. Construct in poly(n, k)-time the parity check matrix Ht×n

of an explicit binary linear code D of block length n, message length n − t, and
minimum distance at least k + 1, where t = O(k logn) = O(log2 m

ε log n). We can
achieve t = O(k logn) using, for instance, a Reed–Solomon code or an algebraic
geometry code reduced to a binary code by plain binarization or by concatenation,
and punctured if necessary. Thus the probability distribution on {0, 1}n resulting
from choosing a random codeword from the dual C = D⊥ of D is k-wise independent.
This distribution is induced by the uniform distribution on {0, 1}t via the F2-linear
map G : {0, 1}t → {0, 1}n defined by G(x) = xH .

Probability distributions with the δ-bias property can be explicitly constructed
from linear codes with support size

(
n
δ

)Θ(1) [18, 2]. Using those constructions and
Corollary 2.3, we get a variation of Corollary 2.4 of asymptotically the same seed
length, i.e., t = O(log2 m

ε logn) (see also Corollary 11.2). Explicit constructions
of (δ, k)-biased probability distributions of support size (k logn

δ )Θ(1) [18, 2] can also
be used via Corollary 2.2 to achieve asymptotically the same seed length for k =
�(10 log 32m2.2

ε )2� and δ = ε
2nk .

For ε = n−O(1), Corollary 2.4 and its variations give us PRGs of O(log2m logn)-
seed lengths for m-clause DNF (or CNF) formulas.

Note that, when ε = n−O(1), each of the above PRGs leads to a 2O(log2m logn)-time
algorithm for the DNF formula approximate counting problem (given a DNF formula
and ε > 0, approximate the fraction of its satisfying assignments within ±ε additive
error). We should mention here that this does not improve the best known time for the
DNF formula approximate counting problem; the algorithm of Luby and Velickovic
[16], which is not based on a PRG, solves this problem in (m logn)exp(O(

√
log logn))-

time when ε is constant.
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The problems of constructing a logarithmic seed length (unconditional) PRG for
DNF formulas or finding a polynomial-time algorithm for the DNF formula approxi-
mate counting problem remain open.

2.3. Patterns in binary linear codes. If I ⊂ [n] and α ∈ {0, 1}I, we call
the pair (I, α) an n-pattern. We say that a string x ∈ {0, 1}n contains an n-pattern
p = (I, α) if xi = αi for all i ∈ I.

If C ⊂ {0, 1}n is a binary linear code whose dual has minimum distance greater
than k, then the uniform distribution on the codewords of C is k-wise independent as
a probability distribution on {0, 1}n. Specialized to such k-wise independent distribu-
tions, Theorem 1.1 can be rephrased as an estimate of the probability that a random
codeword of C contains a pattern from a given set of patterns.

Corollary 2.5. Let A be a set consisting of m n-patterns, and let C ⊂ {0, 1}n
be a linear code whose dual has minimum distance greater than k. Then∣∣∣∣Prx∈C [ ∃p ∈ A s.t.

x contains p

]
− Prx∈{0,1}n

[
∃p ∈ A s.t.
x contains p

]∣∣∣∣ ≤ 16m2.22−
√
k/10.

Proof. Let μ be the k-wise independent probability distribution resulting from
choosing a random codeword of C, and let F be the DNF formula whose clauses
correspond to the patterns in A, i.e.,

F =
∨

(I,α)∈A

( ∧
i∈I:αi=1

xi ∧
∧

i∈I:αi=0

¬xi

)
.

Apply Theorem 1.1 on μ and F .
For instance, consider the following concrete case.
Corollary 2.6. Let C ⊂ {0, 1}n be a linear code whose dual has minimum

distance greater than k, and let 1 ≤ t ≤ n be an integer. Then∣∣∣∣Prx∈C [ x contains t
consecutive ones

]
−Prx∈{0,1}n

[
x contains t

consecutive ones

]∣∣∣∣ ≤ 16(n−t+1)2.22−
√
k/10.

Note that if the maximum size s of a pattern in A in Corollary 2.5 is o(
√
k), the

bound can be improved via Corollary 9.6.

3. Fourier transform preliminaries. The study of boolean function using
harmonic analysis methods dates back to the late 1960s. See, for instance, [12, 11, 13].

We assemble below some needed preliminaries: Fourier transform definition, Par-
seval’s equality, the degree of a boolean function, and the Fourier truncation operator.

We identify the hypercube {0, 1}n with the group Zn2
def= (Z/2Z)n. The charac-

ters of the abelian group Zn2 are {X y}y∈Zn

2
, where X y(x)

def= (−1)
∑n

i=1 xiyi . Those
characters form an orthogonal basis of the space of real-valued functions defined on
Zn2 . They are orthogonal with respect to the uniform distribution; i.e., EX yX y′ = 0
if y �= y′ and 1 otherwise. If g is a real-valued function on Zn2 , we denote by ĝ the
Fourier transform of g with respect to the characters of the abelian group Zn2 . That
is, if g : {0, 1}n → R, its Fourier transform ĝ : {0, 1}n → R is given by the coefficients
of the expansion of g in terms of the {X z}z basis:

g(x) =
∑
y

ĝ(y)X y(x) and ĝ(y) =
1
2n
∑
x

g(x)X y(x).
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Parseval’s equality relates the expected value of the square of a boolean function
g : {0, 1}n → R to the L2-norm of its Fourier transform:

Eg2 =
∑
y

ĝ(y)2 = ‖ĝ‖2
2.

The equality follows from the orthogonality of the characters {X y}y.
If x ∈ Zn2 , the weight of x, which we denote by |x|, is the number of nonzero

coordinates of x. The degree of g : {0, 1}n → R is the smallest degree of a polynomial
p ∈ R[x1, . . . , xn] such that p(x) = g(x) for all x ∈ {0, 1}n. Equivalently, in terms of
the basis {X y}y, the degree of g is equal to the maximal weight of y ∈ {0, 1}n such
that ĝ(y) �= 0.

Finally, we define the Fourier truncation operator. Denote by L({0, 1}n) the space
of real-valued functions on {0, 1}n. If t ≥ 0 is an integer, define the Fourier truncation
operator Trnt : L({0, 1}n) → L({0, 1}n) by

Trnt g =
∑
y:|y|≤t

ĝ(y)X y.

The truncation operator Trnt kills the high frequencies of g and produces a function
Trnt g of degree at most t. Equivalently, Trnt g can be defined as the optimal solution
f∗ of the following L2-approximation problem: given g and t, minimize E(g − f)2

over the choice of f : {0, 1}n → R of degree at most t. This follows from solving
the underlying least square problem in the orthogonal basis {X y}y. Note that, by
Parseval’s equality, the smallest L2-approximation error is

E(g − Trntg)2 =
∑

y:|y|>k
ĝ(y)2.

4. LP duality perspective.
Definition 4.1. We say that a distribution property ε-fools a function g :

{0, 1}n → {0, 1} if any probability distribution on {0, 1}n with this property ε-fools
g.

We note that LP duality gives a purely analytical characterization of the class of
boolean functions that are fooled by the k-wise independence property. The charac-
terization is in terms of L1-approximability by sandwiching polynomials of degree at
most k. In particular, we show that the following theorem holds.

Theorem 4.2. Let g : {0, 1}n → {0, 1}, k ≥ 0 be an integer, and ε ≥ 0. Then the
k-wise independence property ε-fools g if and only if there exist gl, gu : {0, 1}n → R
such that

(i) (low degree) deg(gl) ≤ k and deg(gu) ≤ k;
(ii) (sandwiching polynomials) gl ≤ g ≤ gu;
(iii) (small L1-approximation error) E(g − gl) ≤ ε and E(gu − g) ≤ ε, where the

expectation is over the uniform probability distribution.
We show the LP duality calculations in Appendix A in the more general context

of the (δ, k)-bias property. Since the k-wise independence property is the (0, k)-bias
property, Theorem 4.2 follows from Theorem A.1 in Appendix A by setting δ = 0.

The proof of the main result of this paper in Theorem 1.1 depends only on the if
part of Theorem 4.2. We give in this section a direct verification of the if part which
does not involve LP duality calculations.
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In terms of the {X y}y basis, the definition of k-wise independence can be rephrased
as follows. Let μ be a probability distribution on {0, 1}n, and let k ≥ 0 be an integer.
Then the following are equivalent:

(a) μ is k-wise independent;
(b) EμX y = 0 for each nonzero y in {0, 1}n whose weight is less than or equal to

k;
(c) Eμp = Ep for each p : {0, 1}n → R such that deg(p) ≤ k, where the second

expectation is with respect to the uniform probability distribution.
The equivalence between (a) and (b) is immediate. To relate to (c), write p as p =∑

y:|y|≤k p̂(y)X y; thus Eμp = p̂(0) +
∑

y =0:|y|≤k p̂(y)EμX y.
This equivalence is the key relation between k-wise independent probability dis-

tributions and polynomials of degree at most k. Using this relation, we establish
below the if part of Theorem 4.2. Let g : {0, 1}n → {0, 1}, k ≥ 0 be an integer, and
ε ≥ 0. Assume the existence of sandwiching polynomials gl and gu satisfying (i), (ii),
and (iii). Let μ be a k-wise independent probability measure. We want to show that
μ ε-fools g. Since gu has degree at most k, Eμgu = Egu. Hence

Prx∼μ[g(x) = 1] − Prx∈{0,1}n [g(x) = 1] = Eμg − Eg

= Eμ(g − gu) + E(gu − g) ≤ E(gu − g) ≤ ε,

where the first inequality follows from the fact that gu ≥ g. Similarly, using gl, we
get

−Prx∼μ[g(x) = 1] + Prx∈{0,1}n [g(x) = 1] = −Eμg + Eg

= Eμ(gl − g) + E(g − gl) ≤ E(g − gl) ≤ ε.

That is, μ ε-fools g.

5. Outline of proof. We outline and overview in this section the proof of The-
orem 1.1, restated below.

Theorem 1.1 Any k-wise independent probability distribution on {0, 1}n (16m2.2

2−
√
k/10)-fools any boolean function computable by an m-clause DNF (or CNF) for-

mula on n variables.
The proof is based on harmonic and poset analysis techniques. It uses Hastad’s

switching lemma [9] indirectly via the LMN energy bound [13], applied to many DNF
formulas derived from the original DNF formula. The proof can be regarded as a
sequence of reductions between some L1- and L2-approximations of DNF formulas
and auxiliary functions by low degree polynomials with real coefficients. After some
simplifications in section 5.1, we define those approximation notions in section 5.2,
and then we outline the main steps in the proof in section 5.3.

5.1. Simplifications and notation. Without loss of generality, we restrict our
attention to DNF formulas since any CNF formula is the negation of a DNF formula
with the same number of clauses, and a probability distribution ε-fools a boolean
function if and only if it ε-fools its negation.

To avoid degenerate cases, we assume that the DNF formula has at least one clause
and that each clause has at least one literal. We can do this without loss of generality
since any probability distribution 0-fools the identically one boolean function and the
identically zero boolean function.

A final notational technicality is that if F is a DNF formula, we abuse notation
and also denote by F the boolean function computed by F . That is, if A1, . . . , Am are
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the clauses of F , we will denote by F also the boolean function F : {0, 1}n → {0, 1}
given by F (x) =

∨m
c=1Ac(x).

5.2. Approximation notions used in the proof. The proof uses the following
three approximation notions of real-valued functions on the hypercube by low degree
polynomials with real coefficients.

Definition 5.1 (sandwiched L1-approximation: bias). If g : {0, 1}n → {0, 1} is
a boolean function and k ≥ 0 is an integer, define the k-bias of g, denoted by bias(g; k),
to be the minimum value of ε such that there exist gl, gu : {0, 1}n → R each of degree
at most k such that gl ≤ g ≤ gu, E(gu− g) ≤ ε, and E(g− gl) ≤ ε. We call gl and gu
sandwiching polynomials of g.

Equivalently, by LP duality (Theorem 4.2), bias(g; k) is the minimum value of ε
such that any k-wise independent probability distribution μ on {0, 1}n ε-fools g.

The term bias should not be confused with its other various meanings in the
literature.

Definition 5.2 (L2-approximation: energy). If g : {0, 1}n → R is a real-
valued function and t ≥ 0 is an integer, define the t-energy of g to be energy(g; t) =
minf E(g − f)2 over the choice of a polynomial f : {0, 1}n → R of degree at most t.

Equivalently (see section 3),

energy(g; t) =
∑

y:|y|>t
ĝ(y)2.

That is, energy(g; t) is the high energy content of g at frequencies above t, and hence
the “energy” terminology.

We are allowing g to take real values since eventually we will be working with
nonboolean-valued functions derived from DNF formulas.

Definition 5.3 (constrained L2-approximation: zero-energy). If g : {0, 1}n →
{0, 1} is a boolean function and t ≥ 0 is an integer, define the t-zero-energy of g to be
zeroEnergy(g; t) = minf E(g − f)2 over the choice of a polynomial f : {0, 1}n → R of
degree at most t satisfying the zeros-constraint: f = 0 whenever g = 0; i.e., f(x) = 0
for each x ∈ {0, 1}n such that g(x) = 0.

The zero-energy has no natural interpretation in the Fourier domain. The termi-
nology is motivated by the above energy terminology and the zeros-constraint.

5.3. Main steps in the proof. Given an m-clause DNF formula F and k ≥ 0,
we want to bound its sandwiched L1-approximation error bias(F ; k). The bound
claimed in Theorem 1.1 is bias(F ; k) ≤ 16m2.22−

√
k/10.

To get a concrete sense of the parameters, keep in mind the typical case when
k = Θ(log2m), and note that, although the number n of variables of F does not
appear in the above bound or the subsequent ones, we care about the typical case
when m is polynomial in n.

The proof can be regarded as a sequence of reductions between the above ap-
proximation notions in the context of DNF formulas and auxiliary functions. At a
high level, we reduce the DNF sandwiched L1-approximation problem to the DNF
L2-approximation problem, to which we apply the LMN energy bound. The DNF
constrained L2-approximation problem serves as an intermediate problem in this re-
duction.

The LMN energy bound [13] says that for each m-clause DNF formula F and
each integer t ≥ 0, energy(F ; t) ≤ 2m2−

√
t/20.
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To get started, we restrict our attention to DNF formulas with at most s literals
per clause, where s = Θ(

√
k). We call such DNF formulas s-DNF formulas. We can

do that without loss of generality by paying a small additive error as noted in section
5.4 of this outline. Note that s = Θ(logm) in the typical case when k = Θ(log2m).

The first step of the proof reduces the problem of estimating the k-bias of an
s-DNF formula to that of estimating its t-zero-energy, where t = �(k − s)/2� ≈ k/2.
The argument is short and is in section 5.5 of this outline. Hence s = Θ(

√
t), and

t = Θ(log2m) in the typical case when k = Θ(log2m).
The second and more difficult step of the proof is estimating the zero-energy

of an s-DNF formula, i.e., the s-DNF constrained L2-approximation problem. We
reduce this problem to the s-DNF L2-approximation problem. The argument is long
and involves two intermediate reductions to L2-approximation problems of auxiliary
nonboolean-valued functions associated with DNF formulas. First, we reduce the
problem of bounding the t-zero-energy of an s-DNF formula F to that of bounding
the t′-energies of auxiliary real-valued functions associated with DNF formulas derived
from F , where t′ = t− s ≈ t. We give an overview of this in sections 5.6, 5.7, and 5.8.
Then we reduce the problem of bounding the t′-energies of each of those auxiliary
functions to that of bounding the t′-energies of additional derived DNF formulas,
which finally enables us to use the LMN energy bound. We give an overview of this
in section 5.9. We conclude in sections 5.10 and 5.11.

The arguments in the second step are based on harmonic and poset analysis
machinery, which we develop in section 6. In this outline section, we give an overview
of the underlying constructions and the end results without using the language of
section 6.

5.4. Ignoring large clauses. If s ≥ 1 is an integer, we call a DNF formula F
an s-DNF if each clause of F contains at most s literals. By paying a small additive
error, we can assume without loss of generality that the DNF formula does not contain
very large clauses.

Lemma 5.4. Let k ≥ s ≥ 1 be integers and ε ≥ 0. If bias(F ; k) ≤ ε for each m-
clause s-DNF formula F , then bias(F ; k) ≤ ε+m2−s for each m-clause DNF formula
F .

At the end, we will set s = Θ(
√
k). Hence s = Θ(logm) in the typical case when

k = Θ(log2m).
Proof. The argument is easy. It is more direct in this lemma to work with the

primal definition of the bias. That is, we argue on probability distribution and not
on sandwiching polynomials.

Assume that the hypothesis is correct. Let F be an m-clause DNF formula on n
variables, and let μ be a k-wise independent probability distribution on {0, 1}n. We
want to show that |Prμ[F = 1] − Pr[F = 1]| ≤ ε+m2−s.

Let A1, . . . , Am be the clauses of F ; thus F =
∨m
c=1Ac. Let C′ ⊂ [m] be the set

of indices of clauses each containing at most s literals, F ′ =
∨
c∈C′ Ac, C′′ = [m]\C′,

and F ′′ =
∨
c∈C′′ Ac.

Since F ′ is an s-DNF formula, we have |Prμ[F ′ = 1] − Pr[F ′ = 1]| ≤ ε because
bias(F ′; k) ≤ ε by the lemma hypothesis.

Since F = F ′∨F ′′, we have Prμ[F ′ = 1] ≤ Prμ[F = 1] ≤ Prμ[F ′ = 1]+Prμ[F ′′ =
1] and −Pr[F ′ = 1] − Pr[F ′′ = 1] ≤ −Pr[F = 1] ≤ −P [F ′ = 1]. Thus

−ε− Pr[F ′′ = 1] ≤ Prμ[F = 1] − Prμ[F = 1] ≤ ε+ Prμ[F ′′ = 1].

The lemma then follows from the inequalities Pr[F ′′ = 1] ≤ |C′′|2−(s+1) ≤ m2−s
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and Prμ[F ′′ = 1] ≤ |C′′|2−s ≤ m2−s. The first inequality is immediate since each
clause of F ′′ contains at least s+ 1 literals. To verify the second inequality, construct
another DNF formula G from F ′′ by arbitrarily removing literals from each clause of
F ′′ to make its size equal to s. By construction, G is satisfied by all the satisfying
assignments of F ; hence Prμ[F ′′ = 1] ≤ Prμ[G = 1]. Since μ is k-wise independent
and k ≥ s, each clause of G is satisfied with a probability exactly 2−s with respect to
μ. Thus Prμ[G = 1] ≤ |C′′|2−s.

5.5. From bias to zero-energy. In this section, we reduce the s-DNF sand-
wiched L1-approximation problem to the s-DNF constrained L2-approximation prob-
lem. In particular, we reduce the problem of estimating the k-bias of an s-DNF
formula to that of estimating its t-zero-energy, where t = �k−s2 �.

To justify this move from L1 to L2, we briefly mention in Appendix B natural
L1-approaches which fall short of bounding the k-bias of s-DNF formulas.

We show that the following lemma holds.
Lemma 5.5 (bias � zero-energy). Let F be an m-clause s-DNF formula, and let

k ≥ s be an integer. Then bias(F ; k) ≤ m× zeroEnergy(F ; t), where t = �k−s2 �.
Note that t ≈ k/2 when s = Θ(

√
k). Moreover, t = Θ(log2m) in the typical case

when k = Θ(log2m).
Proof. Assume that we have f : {0, 1}n → R such that deg(f) ≤ �k−s2 �, and that

f satisfies the zeros-constraint: f(x) = 0 for each x ∈ {0, 1}n such that F (x) = 0.
The approach is to construct the sandwiching polynomials fl and fu of F as

fl
def= 1 − (1 − f)2 and

fu
def= 1 −

(
1 −

m∑
c=1

Ac

)
(1 − f)2,

where A1, . . . , Am are the clauses of F realized as polynomials on the variables
x1, . . . , xn. Since F is an s-DNF, the degree of each Ac is at most s. Hence, by
construction, deg(fl), deg(fu) ≤ k.

We want to show that
(i) fl ≤ F ≤ fu and
(ii) E(F − fl) ≤ mE(F − f)2 and E(fu − F ) ≤ mE(F − f)2.
To establish (i), let x ∈ {0, 1}n, and consider two cases depending on whether

F (x) = 0 or 1.
If F (x) = 0, then f(x) = 0 by the zeros-constraint on f . Moreover, none of

the clauses of F is satisfied by x; i.e., Ac(x) = 0 for each clause Ac of F . Hence
fl(x) = 1 − (1 − 0)2 = 0 and fu(x) = 1 − (1 − 0)(1 − 0)2 = 0. That is, (i) holds with
equality when F (x) = 0.

If F (x) = 1, there exists at least one clause c such that Ac(x) = 1; hence 1 −∑
cAc(x) ≤ 0. It follows that

fu(x) = 1 −
(

1 −
∑
c

Ac(x)

)
(1 − f(x))2 ≥ 1 = F (x).

Moreover, fl(x) = 1 − (1 − f(x))2 ≤ 1 = F (x), which verifies (i) when F (x) = 1.
To establish (ii), it is enough to argue that E(fu − fl) ≤ mE(F − f)2 since (by

(i)) E(fu − fl) is an upper bound on both E(F − fl) and E(fu − F ).
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We have

fu(x) − fl(x) =
∑
c

Ac(x)(1 − f(x))2 =
∑
c

Ac(x)(F (x) − f(x))2.

To verify the second equality, consider two cases depending on whether F (x) = 1 or
0. The F (x) = 1 case is immediate. If F (x) = 0, then Ac(x) = 0 for each c, and
hence the equality holds because both terms are zero. It follows that

E(fu − fl) = E

(
m∑
c=1

Ac

)
(F − f)2 ≤ mE(F − f)2.

We derive in section 10 a compact form of the optimal solution of the least square
problem underlying the definition of the t-zero-energy of an s-DNF formula (we focus
on the monotone case for simplicity). Unable to estimate the optimal solution, we
leave the problem open and construct next a suboptimal solution.

5.6. Construction overview. Let F be an m-clause s-DNF formula and t ≥ s
be an integer. We want to upper bound the t-zero-energy of F , i.e., construct f :
{0, 1}n → R of degree at most t such that the mean square error E(F − f)2 is small,
and f satisfies the zeros-constraint: f = 0 whenever F = 0.

In this section we explain a construction of a function f satisfying the zeros-
constraints. We do not analyze the corresponding mean square error, but we give
some intuition as to why one would speculate that it is small. The mean square error
analysis is fully presented in section 7. In a first reading, the reader may skip this
overview section without loss of formal continuity and move to the end results in
sections 5.7 and 5.8.

The zeros-constraint is behind the difficulty of the problem. It is worth mentioning
that it excludes setting f to the truncation TrntF of F by the Fourier truncation
operator Trnt (defined in section 3). This choice minimizes the mean square error,
but it is not an option for us because TrntF typically violates the zeros-constraint as
it is rarely equal to 0 (or 1). We will not truncate the formula F , but we will apply
truncation to carefully chosen components arising from rewriting the formula using
inclusion-exclusion as we explain next.

For simplicity, we assume in this overview section that the DNF formula F is
monotone. A DNF formula is called monotone if none of its clauses contains a negated
variable. Represent F by a bipartite graph F = (C, [n], N) between the set C = [m]
of clauses and the set [n] of variable indices. For each clause c ∈ C, N(c) is the
neighborhood of c consisting of the indices of the variables in c. If S ⊂ C is a set of
clauses, let N(S) be the neighborhood of S; i.e., N(S) def= ∪c∈SN(c). If z ⊂ [n] is a
set of variable indices, denote the corresponding monotone AND gate by ANDz, i.e.,

ANDz(x)
def=
∧
i∈z

xi =
∏
i∈z

xi,

for all x ∈ {0, 1}n. Thus

F (x) =
∨
c∈C

ANDN(c)(x).



2232 LOUAY M. J. BAZZI

To construct f , expand F as follows:

F (x) = 1 −
∏
c∈C

⎛⎝1 −
∏

i∈N(c)

xi

⎞⎠
=

∑
S⊂C:S =∅

−(−1)|S|
∏

i∈N(S)

xi

=
∑

S⊂C:S =∅
−(−1)|S|ANDN(S)(x).(5.1)

A direct way to obtain from this summation a low degree function which satisfies the
zeros-constraint is to throw away the terms where N(S) is larger than t. This reduces
the degree to t and satisfies the zeros-constraint (since if F = 0, then ANDN(c) = 0
for each c ∈ C, and hence ANDN(S) = 0 for each S �= ∅ ⊂ C). But this does not work
since the resulting mean square error may grow exponentially as t grows (the simplest
example is when the DNF formula consists of a single OR gate on the n variables,
i.e., C = [n] and N(i) = {i} for each i ∈ C).

Instead of throwing away the large terms, we will modify them while guaranteeing
that each is still zero on the zeros of F . Let S ⊂ C such that S �= ∅, and consider the
term corresponding to S. For each c ∈ S, we have

ANDN(S) = ANDN(c)ANDN(S)\N(c).

Averaging over all c ∈ S, we trivially get

ANDN(S) = Ec∈SANDN(c)ANDN(S)\N(c);

hence we can express F as

F =
∑

S⊂C:S =∅
−(−1)|S|Ec∈SANDN(c)ANDN(S)\N(c).

Consider constructing f by truncating each ANDN(S)\N(c) to a degree-(t−|N(c)|)
polynomial via the Fourier truncation operator Trnt−|N(c)|. That is, define

f
def=

∑
S⊂C:S =∅

−(−1)|S|Ec∈SANDN(c)Trnt−|N(c)|ANDN(S)\N(c).

The degree of each Trnt−|N(c)|ANDN(S)\N(c) is at most t− |N(c)|, and the degree of
each ANDN(c) is |N(c)|. Thus, by construction, deg(f) ≤ t.

The key point is that if F (x) = 0, then ANDN(c)(x) = 0 for each clause c ∈ C,
and hence f(x) = 0. That is, f satisfies the zeros-constraint.

To sum up, let F be a monotone s-DNF formula and t ≥ s be an integer. Then
we have the bound

(5.2) zeroEnergy(F ; t) ≤ E(F − f)2 = ‖F̂ − f‖2
2,

where F − f is the construction error term given by

(5.3) F − f =
∑

S⊂C:S =∅
−(−1)|S|Ec∈SANDN(c)(1 − Trnt−|N(c)|)ANDN(S)\N(c).
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Needless to say, the signs (−1)|S| in the above summation are critical. That is, using
a triangular inequality to upper bound E(F − f)2 does not give a nontrivial bound
since we have exponentially many terms whose values are not small enough to make
the sum value less than 1.

Estimating the mean square error E(F − f)2 = ‖F̂ − f‖2
2 as t grows is difficult.

Before proceeding with that, we give some intuition as to why one would speculate
that the mean square error of this construction decays as t grows.

It can be shown that f̂(y) = T̂rntF (y) if |y| ≤ t−s and that f̂(y) = T̂rntF (y) = 0
if |y| > t (see section 7 for a verification). In the region t− s < |y| ≤ t, f̂(y) behaves
oddly. Since f̂(y) and T̂rntF (y) are equal outside this region, and since we know from
the LMN energy bound (Theorem 5.8) that energy(F ; t) = ‖ ̂F − TrntF‖2

2 decays
quickly as t grows, we can hope that f̂(y) is not too bad in the region t− s < |y| ≤ t

and hence speculate that E(F −f)2 = ‖F̂ − f‖2
2 also decays in some way with t. This

makes f a potential candidate for bounding the t-zero-energy of F , but unfortunately
this intuition does not help in the analysis as the frequencies in the region t−s < |y| ≤ t
are too many to handle separately by trivial bounds.

Using analytical means, we bound ‖F̂ − f‖2
2 in section 7 in terms of the energies

of auxiliary functions associated with DNF formulas derived from F , which reduces
via (5.2) the problem of bounding the t-zero-energy of F to that of bounding the
energies of those functions. After defining the auxiliary functions in section 5.7, we
state the reduction in section 5.8 without going into the above construction of f .

5.7. Skin and cover auxiliary functions. The proof uses the following aux-
iliary functions associated with DNF formulas.

Definition 5.6. Let G be a DNF formula on n variables whose clauses are
A1, . . . , Am.

• (Skin) If u ≥ 0, define the u-skin of G to be the real-valued function skinG,u :
{0, 1}n → R given by

skinG,u(x)
def= 1 − (1 − e−u)

∑m
c=1 Ac(x).

Note that
∑m

c=1Ac(x) is the number of clauses of G satisfied by x. The
function skinG,u is extended to u = 0 by continuity; i.e., skinG,0 = G.

• (Cover) Define the cover of G to be the real-valued function coverG : {0, 1}n →
R given by

coverG(x) def=
∫ ∞

0

skinG,u(x)e−udu = 1 − 1
1 +
∑m
c=1Ac(x)

.

To evaluate the integral, note that∫ ∞

0

(1 − (1 − e−u)a)e−udu =
∫ ∞

0

e−udu −
∫ 1

0

(1 − e−u)ad(1 − e−u) = 1 − 1
1 + a

for all a �= −1.
Remark 5.7. The function skinG,u converges to G from above as u approaches

0, and hence the name u-skin of G. Moreover, coverG ≥ G, and hence the name
cover of G. The fact that both functions are greater than G is not used in the proof.
Note that we defined coverG as an integral. The fact that this integral evaluates to
1 − 1/(1 +

∑m
c=1Ac) is not used either in the proof (it is needed, however, to justify
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the “cover” name). The proof is based on those functions in the Fourier domain. The
origin of the skin and cover functions is the construction overviewed in section 5.6
above. We show in section 7 that the Fourier transform of the cover function naturally
appears when analyzing the Fourier transform of the construction error term given
in (5.3), and the skin function naturally appears when trying to recover the cover
function from its Fourier transform.

5.8. From zero-energy to the energies of auxiliary functions. In this
section, we state the end results of section 7 in which we reduce the problem of
bounding the t-zero-energy of an s-DNF formula F to that of bounding the (t − s)-
energies of cover and skin auxiliary functions associated with DNF formulas derived
from F .

First, we reduce the problem of bounding the t-zero-energy of an s-DNF formula
F to that of bounding the (t − s)-energies of the cover functions of DNF formulas
derived from F as follows.

For simplicity, we start by stating the reduction in the context of monotone DNF
formulas.

Theorem 7.3 (zero-energy � energy of cover). Let F be an s-DNF formula on
the variables x1, . . . , xn, and let t ≥ s be an integer. Let A1, . . . , Am be the clauses of
F , and let C = [m] be the set of indices of the clauses of F .

(a) (Monotone case) Assume that F is monotone and m ≥ 2. For each clause
index c ∈ C, let Fc be the DNF formula on the variables x1, . . . , xn whose
clauses are {Ac ∧ Ad}d∈C\{c}. That is, Fc is the formula resulting from re-
moving from F the clause Ac and adding the variables of Ac to each of the
remaining clauses. Then

zeroEnergy(F ; t) ≤ m2 max
c∈C

energy(coverFc ; t− s).

(b) (General case) We call two clauses Ac and Ad consistent if they have a com-
mon satisfying assignment. If c ∈ C, let Cc be the set of indices of clauses
other than Ac which are consistent with Ac; i.e., Cc = {d ∈ C\{c} : Ac
and Ad are consistent}. Let Cmain be the set of indices of the clauses of F
which are consistent with at least one clause of F other than themselves; i.e.,
Cmain = {c ∈ C : Cc �= ∅}.
For each clause index c ∈ Cmain, let Fc be the DNF formula on the variables
x1, . . . , xn whose clauses are {Ac ∧ Ad}d∈Cc. That is, Fc is the formula re-
sulting from removing from F the clause Ac and all the clauses not consistent
with Ac, and adding the literals of Ac to each of the remaining clauses. Then

zeroEnergy(F ; t) ≤ |Cmain|2 max
c∈Cmain

energy(coverFc ; t− s).

Thus if F is monotone, then Cc = C\{c} for each c ∈ C, and Cmain = C.
The proof of Theorem 7.3 is in section 7 and uses the machinery developed in

section 6. The construction underlying the reduction is overviewed in section 5.6.
Note that each Fc is a 2s-DNF formula on n variables with at most m− 1 clauses

and at least one clause (by the definition of Cmain). That is, the complexity of each
Fc is in the worst case comparable to that of F . Recall from section 5.5 that we care
about the case when s = Θ(

√
t) (since t = �k−s2 � and s = Θ(

√
k)); hence t − s ≈ t.

Moreover, typically t = Θ(log2m) (in the typical case when k = Θ(log2m)).
Therefore, in general, we can now focus on estimating the t-energy of the cover

of a DNF formula G, where t ≥ 0 is an integer. Unable to argue directly on the cover
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function, we move to the u-skin function. The fact that coverG =
∫∞
0

skinG,ue−udu
immediately reduces the problem of estimating the t-energy of the cover function of
a DNF to that of estimating the t-energies of its u-skin functions for all u ≥ 0. In
particular, we have the following bound, which is verified via the Cauchy–Schwarz
inequality in section 7.4.

Lemma 7.4 (energy of cover � energy of skin). Let G be a DNF formula, and let
t ≥ 0 be an integer. Then

energy(coverG ; t) ≤ sup
u≥0

energy(skinG,u ; t).

5.9. Back to DNF formulas. Let G be a DNF formula, u ≥ 0, and t ≥ 0 be
an integer. We want to estimate the t-energy of the u-skin of G. We bound in section
8 the t-energy of the u-skin of G by the t-energies of DNF formulas derived from G
by adding new auxiliary variables, which enables us to use the LMN energy bound.

First we state the reduction in the special case when there exists a nonnegative
integer v such that e−u = 2−v. We construct from G a new DNF formula Gv by add-
ing v new auxiliary nonnegated variables to each clause of G. Thus, the total num-
ber of variables of Gv is n + mv. We show in section 8 that energy(skinG,u; t) ≤
energy(Gv; t). The proof is based on examining the Fourier transforms of skinG,u and
uses the machinery developed in section 6.

In general, if v is not necessarily an integer, we show in section 8 that the following
theorem holds.

Theorem 8.1 (energy of skin � energy). Let G be a DNF formula whose clauses
are A1, . . . , Am, and let t ≥ 0 be an integer. If d ∈ Nm, construct from G a new DNF
formula Gd by adding dc new auxiliary nonnegated variables to each clause Ac. That
is, the clauses of Gd are {Ac ∧

∧dc

i=1 ẍci}mc=1, where {ẍci}dc

i=1 are the new auxiliary
variables added to clause Ac.

Let u ≥ 0 and let v ≥ 0 such that e−u = 2−v; i.e., v = u/ ln 2. Then

energy(skinG,u; t) ≤ max
d∈{�v�,	v
}m

energy(Gd; t).

Note that for each d ∈ {�v�, �v�}m, the formula Gd is an m-clause DNF on
n+

∑
c dc variables.

This enables us to use the bound derived from Hastad’s switching lemma in [13]
on the t-energy of a DNF formula.

Theorem 5.8 (LMN energy bound [13]). Let G be an m-clause DNF formula,
and let t ≥ 0 be an integer; then energy(G; t) ≤ 2m2−

√
t/20.

The proof of (an asymptotic version of) Theorem 1.1 follows by first substituting
the bound of Theorem 5.8 in Theorem 8.1 and backtracking the bounds till Lemma
5.4. We summarize in section 5.10; then we backtrack the bounds in section 5.11.

5.10. Summary. Tables 1 and 2 below summarize the main definitions and
reductions.

The full presentation in sections 7 and 8 uses the machinery in section 6. In
sections 6, 7, and 8, we separate between the monotone case and the general case to
introduce the arguments in a simple context. We recommend that the reader first
traverse the monotone part of the full sections in the following order: sections 6.1,
6.2, 6.3, 7.1, 7.2, 7.4, introduction of section 8.

For future reference in sections 5.11 and 9, we list below compact statements of
the above reductions.
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Table 1

Notion Terminology Definition

k-bias of a function g : {0, 1}n → {0, 1} bias(g; k) Definition 5.1
Fourier truncation operator Trnt section 3
t-energy of a function g : {0, 1}n → R energy(g; t) Definition 5.2
t-zero-energy of a function g : {0, 1}n → {0, 1} zeroEnergy(g; t) Definition 5.3
boolean function of a DNF formula G G by notational abuse section 5.1
u-skin function of a DNF formula G skinG,u Definition 5.6
cover function of a DNF formula G coverG Definition 5.6

Table 2

Reduction Statement Overview Full presentation

bias � zero-energy Lemma 5.5 section 5.5
zero-energy � energy of cover Theorem 7.3 sections 5.6, 5.8 section 7
energy of cover � energy of skin Lemma 7.4 section 5.8 section 7
energy of skin � energy Theorem 8.1 section 5.9 section 8

• Lemma 5.4 (focus on s-DNF). Let k ≥ s ≥ 1 be integers, and let ε ≥ 0. If
bias(F ; k) ≤ ε for eachm-clause s-DNF formula F , then bias(F ; k) ≤ ε+m2−s

for each m-clause DNF formula F .
At the end, we will set s = Θ(

√
k). Thus s = Θ(logm) in the typical case

when k = Θ(log2m).
• Lemma 5.5 (bias � zero-energy). Let F be an m-clause s-DNF formula, and

let k ≥ s be an integer. Then bias(F ; k) ≤ m × zeroEnergy(F ; t), where
t = �k−s2 �.
Note that t ≈ k/2 for s = Θ(

√
k). Moreover, t = Θ(log2m) in the typical

case when k = Θ(log2m).
• Theorem 7.3 (zero-energy � energy of cover). Let F be an s-DNF formula

on the variables x1, . . . , xn, and let t ≥ s be an integer. Let A1, . . . , Am be the
clauses of F . Let C = [m] be the set of indices of the clauses of F . If c ∈ C, let
Cc = {d ∈ C\{c} : Ac and Ad are consistent}. Let Cmain = {c ∈ C : Cc �= ∅}.
For each c ∈ Cmain, let Fc be the DNF formula on the variables x1, . . . , xn
whose clauses are {Ac ∧Ad}d∈Cc . Then

zeroEnergy(F ; t) ≤ |Cmain|2 max
c∈Cmain

energy(coverFc ; t− s).

Note that for each c ∈ Cmain, Fc is a 2s-DNF formula with at most m − 1
clauses and least one clause. Moreover, |Cmain| ≤ |C| = m. Note also that
t− s ≈ t ≈ k/2 for t = �k−s2 � and s = Θ(

√
k).

• Lemma 7.4 (energy of cover � energy of skin). Let G be a DNF formula, and
let t ≥ 0 be an integer. Then

energy(coverG; t) ≤ sup
u≥0

energy(skinG,u; t).

• Theorem 8.1 (energy of skin � energy). Let G be a DNF formula, whose
clauses are A1, . . . , Am, and let t ≥ 0 be an integer. If d ∈ Nm, construct from
G a new DNF formula Gd by adding dc new auxiliary nonnegated variables
to each clause Ac. Let u ≥ 0 and v = u/ ln 2. Then

energy(skinG,u; t) ≤ max
d∈{�v�,	v
}m

energy(Gd; t).
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Note that for each d, the number of clauses of Gd is equal to that of G.
• Theorem 5.8 (LMN energy bound). Let G be an m-clause DNF formula,

and let t ≥ 0 be an integer; then energy(G; t) ≤ 2m2−
√
t/20.

5.11. Backtracking. In this section, we derive an asymptotic version of The-
orem 1.1 by substituting the bound of Theorem 5.8 in Theorem 8.1 and backtrack-
ing the bounds via Lemma 7.4, Theorem 7.3, Lemma 5.5, till Lemma 5.4. Namely,
we show that if F is an m-clause DNF formula and k ≥ 1 is an integer, then
bias(F ; k) = O(mΘ(1)2−Θ(

√
k)). Since the bound of Theorem 5.8 does not depend

on the maximum number of literals in a clause, the needed calculations are minimal.
Let G be an m-clause DNF formula, and let t ≥ 0. Substituting the bound

of Theorem 5.8 in Theorem 8.1, we get that energy(skinG,u; t) ≤ 2m2−
√
t/20 for all

u ≥ 0. Substituting in Lemma 7.4, we obtain energy(coverG; t) ≤ 2m2−
√
t/20. Thus,

by Theorem 7.3, if F is an m-clause s-DNF formula and t ≥ s is an integer, then
zeroEnergy(F ; t) ≤ 2m2(m − 1)2−

√
t−s/20. It follows from Lemma 5.5 that if k ≥ s

is an integer, then bias(F ; k) ≤ 2m3(m − 1)2−
√

�(k−s)/2�−s/20. Finally, substituting
in Lemma 5.4, we get that if F is an m-clause DNF formula and k ≥ 1 is an integer,
then

bias(F ; k) ≤ m2−s + 2m3(m− 1)2−
√

�(k−s)/2�−s/20

for all integers s such that k ≥ s ≥ 1. Optimizing on s, we obtain bias(F ; k) =
O(m42−Θ(

√
k)) for s = Θ(

√
k).

The exact bound m2.22−
√
k/10 of Theorem 1.1 is derived in section 9. It uses

another form of the LMN energy bound which is tighter than Theorem 5.8 for s-DNF
formulas when s is not relatively large (Theorem 9.1 in section 9), and a sharper form
of Lemma 7.4 (part (a) of Lemma 7.4 in section 7).

6. Möbius and Fourier analysis of DNF formulas and auxiliary func-
tions. We develop in this section the proof machinery used in sections 7 and 8.

We develop the monotone machinery in sections 6.2 and 6.3. Monotone DNF
formulas and their skin and cover auxiliary functions have natural expansions as
linear combinations of monotone AND gates. We are interested in the coefficients of
those expansions. The Fourier transforms of those functions can be extracted from
those coefficients by a basis change. When expanding a real-valued function f defined
on the hypercube as a linear combination of monotone AND gates, it is convenient
to view the hypercube as the poset Bn of subsets of [n] ordered by inclusion. We
note in section 6.2 that this enables us to interpret the coefficients of the expansion
of f as the Möbius transform of f with respect to the poset Bn. We also derive a
simple change of basis formula to extract the Fourier transform of a function from its
Möbius transform. In section 6.3, we compute the Möbius and Fourier transforms of
monotone DNF formulas and their auxiliary functions. The monotone machinery is
used in sections 7.1 and 8.

The poset language is essential to generalize to nonnecessarily monotone DNF for-
mulas. The monotone machinery naturally generalizes to the nonnecessarily monotone
case by essentially replacing the poset Bn with another poset B(2)

n , defined in section
6.4. We develop the general machinery in sections 6.4 and 6.5. It is used in section
7.3.

6.1. Posets preliminaries. For a general reference on posets, see [24]. We need
only a few elementary definitions. A poset (partially ordered set) X is a set X with
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a reflexive, antisymmetric, and transitive binary relation ≤X . We denote ≤X by ≤
when there is no confusion. We implicitly assume that X is finite. We denote the set
of real-valued functions on X by L(X) = {f : X → R}. The zeta function ζX of X is
the linear transformation ζX : L(X) → L(X) given by

(ζXf)(x) =
∑
y≤x

f(y) =
∑
y∈X

ζX(y, x)f(y).

That is, the matrix coefficients (ζX(y, x))x,y of ζX are given by

(6.1) ζX(y, x) =
{

1 if y ≤ x,
0 otherwise.

The zeta function ζX is always nonsingular. The inverse ζ−1
X of ζX is called the Möbius

function of X and is denoted by μX = ζ−1
X .

We are interested in two posets defined in sections 6.2 and 6.4.

6.2. Poset Bn. Let [n] def= {1, . . . , n}. Let Bn be the poset of subsets of [n]
ordered by inclusion. We denote the subset inclusion a ⊂ b by a ≤ b and b ≥ a.

We identify the hypercube {0, 1}n with the poset Bn by associating x ∈ {0, 1}n

with support(x) def= {i ∈ [n] : xi = 1} ∈ Bn. Thus x ∈ Bn means both a subset of [n]
and a vector in {0, 1}n depending on the context.

If z ∈ Bn, define the monotone AND function ANDz : Bn → {0, 1} by

ANDz(x)
def=
∧
i∈z

xi.

The functions {ANDz}z∈Bn form a basis of L(Bn). When working with the {ANDz}z∈Bn

basis, it is convenient to view the hypercube as the poset Bn since

(6.2) ANDz(x) = ζBn(z, x)

by (6.1). That is, the functions {ANDz}z∈Bn are the rows of the matrix of the zeta
function ζBn of the poset Bn. Any function f ∈ L(Bn) can be expressed as

f =
∑
z∈Bn

f̃(z)ANDz

for some f̃ ∈ L(Bn). By (6.2),

f(x) =
∑
z∈Bn

f̃(z)ζBn(z, x) = (ζBn f̃)(x).

That is, f = ζBn f̃ , and hence f̃ = μBnf . We call f̃ = μBnf the Möbius transform of f .
Our interest in the Möbius transform on Bn is motivated by the fact that mono-

tone DNF formulas and auxiliary functions have natural expansions in the {ANDz}z
basis from which we can extract their Möbius transforms. We show that in section
6.3.

Given the Möbius transform of a function, its Fourier transform can be extracted
via a simple weighted summation, which we derive next. Recall the (Z/2Z)n group
structure on {0, 1}n from section 3. In terms of the identification of {0, 1}n with Bn,
Bn is an abelian group under the set exclusive union operation, which we denote by
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⊕. In the Bn-terminology, the characters of this abelian group defined in section 3
are {X y(x) = (−1)|x∩y|}y∈Bn .

To extract the Fourier transform of a function f ∈ L(Bn) from its Möbius trans-
form, we need a change of basis formula between the {ANDz}z basis and the {X y}y
basis of L(Bn). We have

ANDz(x) =
∧
i∈z

xi =
∏
i∈z

xi =
∏
i∈z

1 − (−1)xi

2
=

1
2|z|
∑
y≤z

(−1)|y|(−1)
∑

i∈y xi .

That is,

(6.3) ANDz(x) =
1

2|z|
∑
y≤z

(−1)|y|X y(x).

Note that if z = ∅, by convention
∏
i∈z xi =

∧
i∈z xi = 1. Thus

f(x) =
∑
z

f̃(z)ANDz(x)

=
∑
z

f̃(z)2−|z|
∑
y≤z

(−1)|y|X y(x)

=
∑
y

X y(x)(−1)|y|
∑
z≥y

2−|z|f̃(z).

Therefore, the desired change of basis formula is

(6.4) f̂(y) = (−1)|y|
∑
z≥y

2−|z|f̃(z) for all y ∈ Bn and f ∈ L(Bn).

Conversely, one can verify that

f̃(z) = (−1)|z|2|z|
∑
y≥z

f̂(y),

but we will not use that.
Finally, if f : {0, 1}n → R, the degree of f is the smallest degree of a polynomial

p ∈ R[x1, . . . , xn] such that p(x) = f(x) for all x ∈ {0, 1}n. In terms of the {X y}y
basis, the degree of f is equal to the maximal cardinality of y ∈ Bn such that f̂(y) �= 0.
In terms of the {ANDz}z basis, the degree of f is equal to the maximal cardinality
of z ∈ Bn such that f̃(z) �= 0.

6.3. Monotone DNF formulas and auxiliary functions. In this section we
compute the Möbius and Fourier transforms of monotone DNF formulas and auxiliary
functions.

A DNF formula is called monotone if none of its clauses contains a negated vari-
able. We represent a monotone DNF formula F on n variables by a bipartite graph
F = (C, [n], N) between the set C of clauses and the set [n] of variables indices. For
each clause c ∈ C, N(c) is the neighborhood of c consisting of the indices of the
variables in c. To avoid degenerate cases, we assume that we have at least one clause,
i.e., |C| ≥ 1, and that each clause contains at least one variable, i.e., N(c) �= ∅, for
each c ∈ C. If S ⊂ C, N(S) denotes the neighborhood of S, i.e., N(S) = ∪c∈SN(c).
Finally, if s ≥ 1 is an integer, we call a monotone DNF formula F = (C, [n], N) an
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s-DNF formula if each clause contains at most s variables, i.e., |N(c)| ≤ s, for each
c ∈ C.

We chose the bipartite graph representation to allow for duplicate clauses; formu-
las possibly containing duplicate clauses will be derived in the proof of Theorem 1.1
(see section 7.2.C).

If F = (C, [n], N) is a monotone DNF formula, we abuse notation and denote by
F also the boolean function computed by F . That is, the boolean function F : Bn →
{0, 1} is given by

F (x) def=
∨
c∈C

ANDN(c)(x) for x ∈ Bn.

Monotone DNF formulas and auxiliary functions have natural expansions in the
{ANDz}z basis from which we can extract their Möbius transforms. To get the
Fourier transforms, we use the change of basis formula (6.4). To warm up, let us
compute the Möbius and Fourier transforms of F .

Lemma 6.1. Let F = (C, [n], N) be a monotone DNF formula. Then for all
z, y ∈ Bn,

F̃ (z) =
∑

S =∅⊂C:N(S)=z

−(−1)|S|,(6.5)

F̂ (y) = (−1)|y|
∑

S =∅⊂C:N(S)≥y
−(−1)|S|2−|N(S)|.(6.6)

Proof. By expanding F (x) as in (5.1) and grouping terms, we get

F (x) =
∑

S⊂C:S =∅
−(−1)|S|ANDN(S)(x) =

∑
z∈Bn

ANDz(x)
∑

S =∅⊂C:N(S)=z

−(−1)|S|,

which verifies (6.5). The correctness of (6.6) follows from (6.5) via (6.4):

F̂ (y) = (−1)|y|
∑
z≥y

2−|z|
∑

S =∅⊂C:N(S)=z

−(−1)|S|

= (−1)|y|
∑

S =∅⊂C:N(S)≥y
−(−1)|S|2−|N(S)|.

If F = (C, [n], N) is a monotone DNF formula and u ≥ 0, recall from Definition
5.6 the auxiliary functions u-skin of F and cover of F : skinF,u, coverF ∈ L(Bn) are
given by

skinF,u(x)
def= 1 − (1 − e−u)

∑
c∈C ANDN(c)(x),

coverF (x) def=
∫ ∞

0

skinF,u(x)e−udu,

where skinF,u is extended to u = 0 by continuity, i.e., skinF,0 = F .
We compute below their Möbius and Fourier transforms which play a critical role

in the proof of Theorem 1.1 as shown in sections 7 and 8.
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Lemma 6.2. Let F = (C, [n], N) be a monotone DNF formula, and let u ≥ 0.
Then for all z, y ∈ Bn,

s̃kinF,u(z) =
∑

S =∅⊂C:N(S)=z

−(−1)|S|e−u|S|,(6.7)

c̃overF (z) =
∑

S =∅⊂C:N(S)=z

−(−1)|S|
1

|S| + 1
,(6.8)

ŝkinF,u(y) = (−1)|y|
∑

S =∅⊂C:N(S)≥y
−(−1)|S|2−|N(S)|e−u|S|,(6.9)

ĉoverF (y) = (−1)|y|
∑

S =∅⊂C:N(S)≥y
−(−1)|S|2−|N(S)| 1

|S| + 1
.(6.10)

Remark 6.3.

1. Our interest in the cover and skin functions originates from the last sum-
mation in (6.10). The analysis of the construction error term overviewed
in section 5.6 and fully presented in section 7 leads to summations like the
right-hand side of (6.10) (see the proof of Lemma 7.1 and section 7.2.A).
To interpret this summation, we expressed 1

|S|+1 as 1
|S|+1 =

∫∞
0 e−u|S|e−udu,

which led us to the right-hand side of (6.9). Using the Fourier–Möbius change
of basis formula (6.4), we obtained (6.7) which we identified as the Möbius
transform of the skin function as shown in the proof below.

2. Comparing Lemmas 6.1 and 6.2, we see that the Möbius and Fourier trans-
forms of the u-skin and cover of F are smoothed or weighted versions of those
of F . The smoothing or weighting factor of the u-skin function is e−u|S|, and
that of the cover function is 1

|S|+1 .

Proof. We start with (6.7). It is enough to verify it under the assumption that
u > 0. The u = 0 case follows from (6.5). We have

1 − (1 − e−u)
∑

c∈C ANDN(c)(x) = 1 −
∏
c∈C

(1 − e−u)ANDN(c)(x).

Since u > 0, we have (1− e−u)ANDN(c)(x) = 1− e−uANDN(c)(x) for all c ∈ C and all
x ∈ {0, 1}n (if ANDN(c)(x) = 0, both terms are 1; if ANDN(c)(x) = 1, both terms
are 1 − e−u). Thus

1 − (1 − e−u)
∑

c∈C ANDN(c)(x) = 1 −
∏
c∈C

(1 −ANDN(c)(x)e−u)

=
∑

S =∅⊂C
−(−e−u)|S|

∏
c∈S

ANDN(c)(x)

=
∑

S =∅⊂C
−(−1)|S|e−u|S|ANDN(S)(x)

=
∑
z∈Bn

ANDz(x)
∑

S =∅⊂C:N(S)=z

−(−1)|S|e−u|S|,(6.11)

which verifies (6.7). Applying the linear operator μBn to coverF =
∫∞
0

skinF,ue−udu,
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we get

c̃overF (z) =
∫ ∞

0

s̃kinF,u(z)e−udu

=
∑

S =∅⊂C:N(S)=z

−(−1)|S|
∫ ∞

0

e−u(|S|+1)du

=
∑

S =∅⊂C:N(S)=z

−(−1)|S|
1

|S| + 1
,

which verifies (6.10). Finally, as in Lemma 6.1, (6.10) and (6.9) follow immediately
from (6.8) and (6.7) via (6.4).

6.4. The poset B(2)
n . To generalize the monotone machinery in sections 6.2

and 6.3 to the nonnecessarily monotone case, we basically only have to replace the
poset Bn with another poset B(2)

n , which we study in this section. Below, we define
this poset and give the corresponding analogues of (6.2) and (6.4).

When the DNF formula is not necessarily monotone, the AND gates are of the
form

AND(z′,z′′)(x) =
∧
i∈z′

xi ∧
∧
i∈z′

¬xi = ANDz′(x) ∧ANDz′′(xc) for x ∈ Bn,

where (z′, z′′) ∈ Bn ×Bn are such that z′ ∩ z′′ = ∅ and xc def= [n]\x ∈ Bn.
This motivates looking at the poset B(2)

n defined as follows. Consider the product
poset B2

n
def= Bn × Bn; i.e., the order relation on B2

n is given by (x′, x′′) ≤ (y′, y′′) if
x′ ≤ y′ and x′′ ≤ y′′. Let B(2)

n be the poset given by

(6.12) B(2)
n

def= {(x′, x′′) ∈ B2
n : x′ ∩ x′′ = ∅}

and ordered via the ordered relation of B2
n. That is, B(2)

n is the subposet of B2
n given

by (6.12).
If x ∈ B

(2)
n , we denote by x′ and x′′ the elements of Bn such that x = (x′, x′′).

If z ∈ B
(2)
n , the corresponding AND gate ANDz : Bn → {0, 1} is given by

ANDz(x)
def= ANDz′(x) ∧ANDz′′(xc) for x ∈ Bn.

To get a relation similar to (6.2), lift ANDz to B(2)
n as follows. If z ∈ B

(2)
n , define

ANDz : B(2)
n → {0, 1} by

ANDz(x)
def= ANDz′(x′) ∧ANDz′′(x′′) = ζ

B
(2)
n

(z, x).

Thus

ANDz(x) = ANDz(x, xc) for x ∈ Bn,

and

(6.13) ANDz(x) = ζ
B

(2)
n

(z, x) for x ∈ B(2)
n ,
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which is the analogue of (6.2) on B(2)
n . We are using the bar-notation to indicate that

ANDz is the lift of ANDz from Bn to B(2)
n (the bar-notation should not be confused

with negation).
The functions {ANDz}z∈B(2)

n
form a basis for L(B(2)

n ) since by (6.13) they are
the rows of the matrix of the invertible linear transformation ζ

B
(2)
n

. Any function

f ∈ L(B(2)
n ) can be expressed as

f =
∑

z∈B(2)
n

f̃(z)ANDz

for some f̃ ∈ L(B(2)
n ). Indeed, by (6.13),

f(x) =
∑
z

f̃(z)ζ
B

(2)
n

(z, x) = (ζ
B

(2)
n
f)(x).

That is, f̃ = μ
B

(2)
n
f and f = ζ

B
(2)
n
f̃ . We call f̃ = μ

B
(2)
n
f the Möbius transform of f .

We need an analogue of (6.4) on B(2)
n . If f ∈ L(B(2)

n ), we relate next the Fourier
transform of its projection to Bn to the Möbius transform of f .

Consider the injective embedding Bn → B
(2)
n , x �→ (x, xc). It induces the linear

map Proj : L(B(2)
n ) → L(Bn) given by (Proj f)(x) = f(x, xc). In terms of Proj, we

have ANDz = Proj ANDz ; thus

(Proj f)(x) =
∑
z

f̃(z)ANDz(x).

If f ∈ L(B(2)
n ), we show below how to extract P̂roj f from f̃ . Let z ∈ B

(2)
n . From

(6.3), we have

ANDz′(x) = 2−|z′|
∑
y′≤z′

(−1)|y
′|X y′(x)

and

ANDz′′(xc) = 2−|z′′|
∑
y′′≤z′′

(−1)|y
′′|X y′′(xc).

Now

X y′′(xc) = (−1)|y
′′∩xc| = (−1)|y

′′|−|y′′∩x| = (−1)|y
′′|X y′′(x);

hence

ANDz′′(x) = 2−|z′′|
∑
y′′≤z′′

X y′′(x).

It follows that

ANDz(x) = ANDz′(x)ANDz′′ (xc)

= 2−|z′|
∑
y′≤z′

(−1)|y
′|X y′(x)2−|z′′|

∑
y′′≤z′′

X y′′(x)

= 2−|z|
∑
y≤z

(−1)|y
′|X y′⊕y′′(x)

= 2−|z|
∑
y≤z

(−1)|y
′|X y′∪y′′(x),(6.14)
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where y′ ⊕ y′′ = y′ ∪ y′′ since y′ ∩ y′′ = ∅. Note that we are working in B
(2)
n and

not in B2
n; i.e., if z ∈ B

(2)
n , then summing over all y ≤ z (y ≥ z, respectively) means

summing over all y ∈ B
(2)
n such that y ≤ z (y ≥ z, respectively). Thus

(Proj f)(x) =
∑
z

f̃(z)2−|z|
∑
y≤z

(−1)|y
′|X y′∪y′′(x)

=
∑
w∈Bn

Xw(x)
∑
a≤w

(−1)|a|
∑

z≥(a,w\a)
2−|z|f̃(z).

That is, the desired analogue of the change of basis formula (6.4) on B(2)
n is

(6.15)
̂(Proj f)(w) =

∑
a≤w

(−1)|a|
∑

z≥(a,w\a)
2−|z|f̃(z) for all w ∈ Bn and f ∈ L(B(2)

n ).

Finally, we define some basic notions on B(2)
n used in section 7.3.

• Size. If x ∈ B
(2)
n , define the size or rank of x to be |x| def= |x′∪x′′| = |x′|+ |x′′|,

and note that 0 ≤ |x| ≤ n.
• Consistent elements and union. We call two elements x, y ∈ B

(2)
n consistent

if x′ and y′′ are disjoint and x′′ and y′ are disjoint. It is straightforward to
verify that two elements x and y of B(2)

n are consistent if and only if they
have an upper bound (i.e., an element z of B(2)

n such that z ≥ x and z ≥ y), or
equivalently, a least upper bound (i.e., an upper bound ≤ all upper bounds of
x and y). If x, y ∈ B

(2)
n are consistent, their least upper bound, which we also

call union and denote by x ∪ y, is given by x ∪ y def= (x′ ∪ y′, x′′ ∪ y′′) ∈ B
(2)
n .

Let y, z ∈ B
(2)
n . If y and z are consistent, then ANDyANDz = ANDy∪z.

If y and z are not consistent, then ANDy(x)ANDz(x) = 0 for all x ∈ B
(2)
n .

The reason is that if ANDy(x)ANDz(x) = 1, then y ≤ x and z ≤ x. Hence
y and z have an upper bound; i.e., they are consistent.

• Intersection and complement. To avoid degenerate cases, we define the inter-
section x ∩ y and complement x\y only for consistent elements x, y ∈ B

(2)
n as

follows. Let x∩y def= (x′∩y′, x′′∩y′′) ∈ B
(2)
n and y\x def= (y′\x′, y′′\x′′) ∈ B

(2)
n .

Note that x ∩ y ≤ y, y\x ≤ y, and (x ∩ y) ∪ (y\x) = y. Note also that if
x ≤ y, then x and y are obviously consistent; hence y\x is defined.

• Separated elements. We call two elements x, y ∈ B
(2)
n separated if x′, x′′, y′, y′′

are mutually disjoint. Separated elements are consistent. If x and y are
separated, then |y∪x| = |y|+|x|. If x and y are consistent, but not necessarily
separated, then y\x and x are separated and (y\x)∪x = y∪x; hence |y∪x| =
|y\x| + |x|.

6.5. General DNF formulas and auxiliary functions. In this section we
compute the Möbius and Fourier transforms of general DNF formulas and auxiliary
functions.

We represent a DNF formula F on n variables by two bipartite graphs (C, [n], N ′)
and (C, [n], N ′′) both between the set C of clauses and the set [n] of variable indices.
For each clause c ∈ C, N ′(c) is the neighborhood of c consisting of the indices of
the nonnegated variables of c, and N ′′(c) is the neighborhood of c consisting of the
indices of the negated variables in c. We assume that N ′(c) ∩ N ′′(c) = ∅ for each
clause c ∈ C. To avoid degenerate cases, we assume, as in the monotone case, that
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we have at least one clause, i.e., |C| ≥ 1, and that each clause contains at least one
literal, i.e., N ′(c) ∪ N ′′(c) �= ∅ for each c ∈ C. Let N def= (N ′, N ′′), i.e., N(c) def=
(N ′(c), N ′′(c)) ∈ B

(2)
n for each clause c ∈ C, and N(S) def= (N ′(S), N ′′(S)) ∈ B2

n for
each set of clauses S ⊂ C. Note that N(S) is not necessarily in B

(2)
n since possibly

N ′(S) ∩N ′′(S) �= ∅. We denote F by F = (C, [n], N). Finally, if s ≥ 1 is an integer,
we call a DNF formula F = (C, [n], N) an s-DNF formula if each clause contains at
most s literals, i.e., |N(c)| ≤ s for each c ∈ C.

Let F = (C, [n], N) be a DNF formula. We have the boolean function computed
by F , which by notational abuse we denote by F ∈ L(Bn). We also have the u-skin
and cover functions coverF , skinF,u ∈ L(Bn) associated with F (for u ≥ 0). They are

given by Definition 5.6 as F def=
∨
c∈C ANDN(c), skinF,u

def= 1−(1−e−u)
∑

c∈C ANDN(c) ,

coverF
def=
∫∞
0

skinF,ue−udu, where skinF,0 = F by taking the limit. By lifting each
of the AND gates of the DNF from Bn to B(2)

n , we get the following natural lifts of
F as a boolean function, coverF , and skinF,u.

Definition 6.4 (lifted DNF boolean function, skin, and cover). Let F =
(C, [n], N) be a DNF formula and u ≥ 0, and define F , coverF , skinF,u ∈ L(B(2)

n )
as

F (x) def=
∨
c∈C

ANDN(c)(x),

skinF,u(x)
def= 1 − (1 − e−u)

∑
c∈C ANDN(c)(x),

coverF (x) def=
∫ ∞

0

skinF,u(x)e−udu

for all x ∈ B
(2)
n . Thus F = Proj F , coverF = Proj coverF , and skinF,u = Proj skinF,u.

Those lifted functions have natural expansions in the {ANDz}z basis from which
we can extract their Möbius transforms. To get the Fourier transforms of the original
functions, we use (6.15).

We have the following analogue of Lemmas 6.1 and 6.2.
Lemma 6.5. Let F = (C, [n], N) be a DNF formula, and let u ≥ 0. Then for all

z ∈ B
(2)
n and w ∈ Bn,

F̃ (z) =
∑

S =∅⊂C:N(S)=z

−(−1)|S|,(6.16)

s̃kinF,u(z) =
∑

S =∅⊂C:N(S)=z

−(−1)|S|e−u|S|,(6.17)

c̃overF (z) =
∑

S =∅⊂C:N(S)=z

−(−1)|S|
1

|S| + 1
,(6.18)

F̂ (w) =
∑
a≤w

(−1)|a|
∑

S =∅⊂C : N ′(S)∩N ′′(S)=∅ &N(S)≥(a,w\a)
−(−1)|S|2−|N(S)|,(6.19)

ŝkinF,u(w) =
∑
a≤w

(−1)|a|
∑

S =∅⊂C : N ′(S)∩N ′′(S)=∅ & N(S)≥(a,w\a)
−(−1)|S|2−|N(S)|e−u|S|,(6.20)

ĉoverF (w) =
∑
a≤w

(−1)|a|
∑

S =∅⊂C : N ′(S)∩N ′′(S)=∅ & N(S)≥(a,w\a)
−(−1)|S|2−|N(S)| 1

|S| + 1
.(6.21)
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Proof. For u ≥ 0, we have

1 −
∏
c∈C

(1 −ANDN(c)(x)e−u) =
∑

S =∅⊂C
−(−e−u)|S|

∏
c∈S

ANDN(c)(x)

=
∑

S =∅⊂C
−(−e−u)|S|ANDN ′(S)(x′)ANDN ′′(S)(x′′).

If ANDN ′(S)(x′)ANDN ′′(S)(x′′) = 1, then N ′(S) ≤ x′ and N ′′(S) ≤ x′′, and hence
N ′(S) and N ′′(S) must be disjoint since x′ and x′′ are disjoint; i.e., we can exclude
from the sum the sets S such that N ′(S) ∩N ′′(S) �= ∅. Thus

1 −
∏
c∈C

(1 −ANDN(c)(x)e−u) =
∑

S =∅⊂C:N ′(S)∩N ′′(S)=∅
−(−1)|S|e−u|S|ANDN(S)(x)

=
∑

z∈B(2)
n

⎛⎝ ∑
S =∅⊂C:N(S)=z

−(−1)|S|e−u|S|

⎞⎠ANDz(x).

Setting u = 0, we get (6.16). To establish (6.17), it is enough to note that, for u > 0,
we have

1 − (1 − e−u)
∑

c∈C ANDN(c)(x) = 1 −
∏
c∈C

(1 − e−u)ANDN(c)(x)

= 1 −
∏
c∈C

(1 −ANDN(c)(x)e−u).

This verifies (6.17) for u > 0. The u = 0 case follows by taking the limit.
Applying the linear operator μ

B
(2)
n

to coverF =
∫∞
0

skinF,ue−udu, we get

c̃overF (z) =
∫ ∞

0

s̃kinF,u(z)e−udu

=
∑

S =∅⊂C:N(S)=z

−(−1)|S|
∫ ∞

0

e−u(|S|+1)du

=
∑

S =∅⊂C:N(S)=z

−(−1)|S|
1

|S| + 1
,

which establishes (6.18).
The correctness of (6.19) follows from (6.16) via (6.15):

F̂ (w) =
∑
a≤w

(−1)|a|
∑

z≥(a,w\a)
2−|z|

∑
S =∅⊂C:N(S)=z

−(−1)|S|

=
∑
a≤w

(−1)|a|
∑

S =∅⊂C:N ′(S)∩N ′′(S)=∅ &N(S)≥(a,w\a)
−(−1)|S|2−|N(S)|.

Similarly, (6.20) and (6.21) follow from (6.17) and (6.18) via (6.15).

6.6. Miscellaneous remarks. This section can be skipped without loss of con-
tinuity. In poset terminology,5 B(2)

n can be alternatively defined as the order ideal of
B2
n generated by the antichain An

def= {(x, xc) : x ∈ Bn} ⊂ B2
n.

5An antichain of a poset X is a subset A of X such that any two distinct elements of A are
incomparable. A subset I of X is called an order ideal if x ∈ I and y ≤ x; then y ∈ I. We say that
an order ideal is generated by a subset a A of X if I = {x ∈ X : x ≤ y for some y ∈ A}. Any order
ideal has a generating antichain.
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If X is a poset, the matrix coefficients of μX are denoted by (μX(y, x))x,y; i.e.,

(6.22) (μXf)(x) =
∑
y∈X

μX(y, x)f(y).

Since ζX is lower triangular, μX is also lower triangular; i.e., μX(y, x) = 0 if y �≤ x.
It is worth mentioning that the coefficients of the Möbius functions of the posets

Bn and B(2)
n have the following simple expressions:

(i) μBn(y, x) = (−1)|x\y| if y ≤ x ∈ Bn (see [24]).
(ii) μ

B
(2)
n

(y, x) = (−1)|x\y| if y ≤ x ∈ B
(2)
n . This can be derived from (i) via the

fact that B(2)
n is an order ideal of B2

n = Bn×Bn. (In general, if I is an order
ideal of a poset X regarded as a subposet of X , then μI(y, x) = μX(y, x) for
all x, y ∈ I.)

Those expressions are not used in the proof since, instead of using (6.22) to compute
the Möbius transforms of DNF formulas and their auxiliary functions, we extracted
the Möbius transforms from natural expansions of the functions in the {ANDz}z
basis.

7. From zero-energy to energies of auxiliary functions. In this section,
we reduce the problem of bounding the t-zero-energy of an s-DNF formula F to that
of bounding the (t− s)-energies of auxiliary functions derived from F .

Let F = (C, [n], N) be an s-DNF formula, and let t ≥ s be an integer. We want
to bound the t-zero-energy of F . That is, we want to construct f ∈ L(Bn) of degree
at most t such that the mean square error E(F − f)2 is small and f satisfies the
zeros-constraint: f = 0 whenever F = 0 (i.e., f(x) = 0 for each x ∈ {0, 1}n such
that F (x) = 0). For any such f , we have the bound zeroEnergy(F ; t) ≤ E(F − f)2 =
‖F̂ − f‖2

2.
We presented the construction of f in the monotone case in section 5.6 without

analyzing its mean square error. In sections 7.1 and 7.2, we analyze the Fourier
transform of the construction error term F̂ − f in the monotone case. Then we
generalize to arbitrary DNF formulas in section 7.3. The analysis of F̂ − f naturally
leads us to the cover and u-skin functions. In Lemmas 7.1 and 7.2, we express F̂ − f
in terms of the Fourier transforms of cover functions of DNF derived from F . The
analysis in sections 7.1, 7.2, and 7.3 uses the machinery developed in section 6.

In section 7.4, we apply two simple bounds to the obtained expression of F̂ − f .
The first bound reduces the problem of bounding the t-zero-energy of F to that of
bounding the (t−s)-energies of the cover functions of the derived DNF formulas. The
second bound reduces the latter problem to bounding the (t−s)-energies of the u-skin
functions of the derived formulas, for all u ≥ 0.

7.1. Monotone case error analysis. This section uses the monotone machin-
ery developed in sections 6.2 and 6.3.

In this section we analyze the mean square error of the monotone construction
defined in section 5.6. Assume that F = (C, [n], N) is monotone and construct f as
in section 5.6. That is, define f ∈ L(Bn) as

(7.1) f
def=

∑
S⊂C:S =∅

−(−1)|S|Ec∈SANDN(c)Trnt−|N(c)|ANDN(S)\N(c).

We know from section 5.6 that deg(f) ≤ t and f satisfies the zeros-constraint.
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The difficult part is estimating the mean square error E(F − f)2 = ‖F̂ − f‖2
2 as

t grows. Toward this end, we start analyzing F̂ − f by first computing the Fourier
transform of f , which gives some intuition as to why one would speculate that the
mean square error of this construction decays as t grows. Then we interpret F̂ − f
in Lemma 7.1 in terms of the Fourier transforms of cover functions of DNF formulas
derived from F .

Recall from (6.6) that

(7.2) F̂ (y) = (−1)|y|
∑

S =∅⊂C:N(S)≥y
−(−1)|S|2−|N(S)|.

We show below that the Fourier transform of f is given by

(7.3) f̂(y) = (−1)|y|
∑

S =∅⊂C:N(S)≥y
−(−1)|S|2−|N(S)|Prc∈S [|y ∪N(c)| ≤ t].

Proof of (7.3). Recall from (6.3) that

ANDz =
1

2|z|
∑
y≤z

(−1)|y|X y.

Let S �= ∅ ⊂ C, and let c ∈ S. Then

ANDN(c) =
1

2|N(c)|

∑
y1≤N(c)

(−1)|y1|X y1 ,

and

Trnt−|N(c)|ANDN(S)\N(c) =
1

2|N(S)\N(c)|

∑
y2≤N(S)\N(c):|y2|≤t−|N(c)|

(−1)|y2|X y2 .

Thus

ANDN(c)Trnt−|N(c)|ANDN(S)\N(c) =
1

2|N(S)|

∑
y1≤N(c),

y2≤N(S)\N(c):
|y2|≤t−|N(c)|

(−1)|y1|+|y2|X y1⊕y2

=
1

2|N(S)|

∑
y≤N(S):|y∪N(c)|≤t

(−1)|y|X y,(7.4)

where we used the fact that y1 ⊕ y2 = y1 ∪ y2 since y1 and y2 are disjoint because
N(c) and N(S)\N(c) are disjoint.

Substituting (7.4) in (7.1) and writing the expectation operator in (7.1) as Ec∈S =
1
|S|
∑

c∈S, we get

f =
∑

S⊂C:S =∅
−(−1)|S|

1
|S|
∑
c∈S

2−|N(S)|
∑

y≤N(S):|y∪N(c)|≤t
(−1)|y|X y

=
∑
y

X y(−1)|y|
∑

S =∅⊂C:N(S)≥y
−(−1)|S|2−|N(S)| 1

|S|
∑

c∈S:|y∪N(c)|≤t
1
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after rearranging the summations. Noting that 1
|S|
∑

c∈S:|y∪N(c)|≤t 1 = Prc∈S [|y ∪
N(c)| ≤ t], we obtain (7.3).

Comparing the expressions of F̂ and f̂ in (7.2) and (7.3), and noting that |N(c)| ≤
s ≤ t for each c ∈ C since F is an s-DNF formula, we get

f̂(y) =
{
F̂ (y) if |y| ≤ t− s,
0 if |y| > t.

This relation gives some intuition why the mean square error ‖F̂ − f‖2
2 of this

construction decays as t grows. It says that f̂(y) = T̂rntF (y) if |y| ≤ t − s or
|y| > t. We know from the LMN energy bound (Theorem 5.8) that E(F −TrntF )2 =
‖ ̂F − TrntF‖2

2 decays quickly as t grows. Thus, we can hope that f̂(y) is not too bad
in the region t − s < |y| ≤ t and accordingly speculate that the mean square error
‖F̂ − f‖2

2 also decays as t grows.
Unfortunately, we could not turn this intuition into a bound on ‖F̂ − f‖2

2 since
the frequencies in the region t − s < |y| ≤ t are too many to handle separately by
trivial bounds. We can think of other equally intuitive constructions, which we briefly
mention in section 7.2.4. The reason behind favoring this choice of f is analytical.
Using analytical means, we managed to bound ‖F̂ − f‖2

2 by interpreting the Fourier
transform of the error term f−F in terms of the Fourier transforms of cover functions
of DNF formulas derived from F as shown in Lemma 7.1. We consider f −F instead
of F − f for technical convenience.

Lemma 7.1 (error interpretation). Let F = (C, [n], N) be a monotone s-DNF
formula, and let t ≥ s be an integer. Assume that |C| ≥ 2. Let f ∈ L(Bn) be given by

(7.5) f =
∑

S⊂C:S =∅
−(−1)|S|Ec∈SANDN(c)Trnt−|N(c)|ANDN(S)\N(c).

For each clause c ∈ C, define the new DNF formula Fc = (Cc, [n], Nc) resulting from
removing the clause c from F and adding its variables to all the other clauses; i.e.,
Cc = C\{c} and Nc(d) = N(d) ∪N(c) for each d ∈ Cc.

Then (i) deg(f) ≤ t; (ii) f satisfies the zeros-constraint f = 0 whenever F = 0;
and (iii) for each y ∈ Bn,

(7.6) ̂(f − F )(y) =
∑

c∈C:|y∪N(c)|>t
ĉoverFc(y).

We show in section 7.4 that (7.6) immediately leads to a bound on ‖f̂ − F‖2
2 in

terms of the (t− s)-energies of the covers of the derived DNF formulas.
It is important to note that the following error analysis is the origin of the cover

and skin functions. We highlight in section 7.2.1 how the error analysis in the proof
below naturally leads to the definitions of skin and cover.

Proof of Lemma 7.1. We have (i) and (ii) from section 5.6. We need to establish
(7.6). Let

Δ def= f − F.

Subtracting the summation (7.2) from (7.3), we get

(7.7) Δ̂(y) = (−1)|y|
∑

S =∅⊂C:N(S)≥y
(−1)|S|2−|N(S)| 1

|S|
∑

c∈S:|y∪N(c)|>t
1
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for all y ∈ Bn.
First, for technical convenience, we note that the summation

∑
S⊂C:S =∅ in (7.7)

can be replaced by
∑

S⊂C:|S|>1. The condition |S| > 1 is nonrestrictive since the size-
1 subsets S of C do not contribute to the summation. Indeed, assume that |S| = 1;
hence S = {c0} for some c0 ∈ C. Thus the expression in (7.7) is nonzero only if
N(c0) ≥ y and |y ∪N(c0)| > t. But then we get |N(c0)| > t since y ∪N(c0) = N(c0)
because N(c0) ≥ y. This is not possible since |N(c0)| ≤ s because F is an s-DNF and
s ≤ t by the lemma hypothesis.

If we replace
∑
S⊂C:S =∅ by

∑
S⊂C:|S|>1 and reverse the order of the summations

in (7.7), we get

Δ̂(y) =
∑
c∈C:

|y∪N(c)|>t

(−1)|y|
∑

S⊂C:|S|>1
N(S)≥y
c∈S

(−1)|S|2−|N(S)| 1
|S|

=
∑
c∈C:

|y∪N(c)|>t

(−1)|y|
∑
z≥y

⎛⎜⎜⎝ ∑
S⊂C:|S|>1

N(S)=z & c∈S

(−1)|S|
1
|S|

⎞⎟⎟⎠ 2−|z|.

Using the change of basis formula (6.4), we obtain

Δ̂(y) =
∑

c∈C:|y∪N(c)|>t
X̂c(y),

where Xc ∈ L(Bn) is a function given by its Möbius transform

X̃c(z) =
∑

S⊂C:|S|>1
N(S)=z
c∈S

(−1)|S|
1
|S| .

By a change of variables from S to T = S\{c}, we can write this as

X̃c(z) =
∑

T =∅⊂C\{c}:
N(T∪{c})=z

(−1)|T |+1 1
|T |+ 1

.

By the definition of the formula Fc, we have Cc = C\{c} and Nc(d) = N(d) ∪ N(c)
for each d ∈ Cc. Hence for each T ⊂ Cc, Nc(T ) = ∪d∈TNc(d) = ∪d∈T∪{c}N(d) =
N(T ∪ {c}). Thus

(7.8) X̃c(z) =
∑

T =∅⊂Cc:Nc(T )=z

−(−1)|T | 1
|T |+ 1

.

Using (6.8), we identify this as the Möbius transform of the cover of Fc, i.e., Xc =
coverFc , which proves (7.6).

7.2. Discussion. In this section, we make some remarks related to the above
construction.
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7.2.1. Origin of the cover and skin functions. Equation (7.6) is the reason
behind our interest in the cover and skin functions. We explain below how the analysis
of f̂ − F led us to the cover and skin functions. As shown in the proof of Lemma 7.1,
f̂ − F can be expressed as

̂(f − F )(y) =
∑

c∈C:|y∪N(c)|>t
X̂c(y)

for some function Xc ∈ L(Bn) whose Möbius transform is given by (7.8). By ex-
pressing 1

|T |+1 as 1
|T |+1 =

∫∞
0 e−u|T |e−udu we concluded that Xc =

∫∞
0 Yc,ue

−udu,
for some family of functions Yc,u ∈ L(Bn) whose Möbius transforms are given by

Ỹc,u(z) =
∑

T =∅⊂Cc:Nc(T )=z

−(−1)|T |e−u|T |.

The u-skin function was identified from its Möbius transform via (6.11) with respect
to Fc:∑
z∈Bn

⎛⎝ ∑
T =∅⊂Cc:Nc(T )=z

−(−1)|T |e−u|T |

⎞⎠ANDz(x) = 1 − (1 − e−u)
∑

d∈Cc
ANDNc(d)(x).

That is, we first did the computations in Lemma 6.2 backward on Fc to conclude
that Yc,u = skinFc,u, and hence Xc = coverFc by evaluating the integral

∫∞
0

skinFc,u

e−udu.
The right way to understand (7.6) is in the Fourier domain. It does not have a

simple analogue outside this domain due to the condition |y ∪N(c)| > t on y in the
summation.

We do not have an intuitive nonanalytical explanation of (7.6). Recall that we
constructed f so that it satisfies the zeros-constraint and the low degree condition.
As explained in the discussion preceding the theorem statement, the construction
intuition is “hopefully f̂(y) is not too bad in the region t − s < |y| ≤ t.” The same
intuition applies to other similar constructions of f which we failed to analyze (see
below). The issue is that we could not turn this intuition into an argument. We
managed instead in (7.6) to interpret the construction error term using analytical
means which led us to the cover and skin functions.

7.2.2. Identifying the components of (7.6). From a big perspective, the
components of (7.6) can be identified with the definition of f in (7.5) as follows.
Write the expectation operator in (7.5) as Ec∈S = 1

|S|
∑
c∈S . The summation on c in

Ec∈S corresponds to the summation on c in (7.6). The latter summation is subject
to the condition |y ∩ N(c)| > t which comes from the truncation operator in (7.5).
The 1

|S| term of the expectation operator Ec∈S corresponds to the 1
|T |+1 weighting

factor in (7.8) via the change of variables done in the proof of Lemma 7.1 from S to
T = S\{c}. Note that this 1

|T |+1 weighting factor is what distinguishes the cover of
Fc from Fc in the Möbius and Fourier domains (see item 2 of Remark 6.3).

7.2.3. Duplicate clause issue. It is possible that there exist c, d1, d2 ∈ C such
that N(d1) �= N(d2), but N(c) ∪N(d1) = N(c) ∪N(d2); i.e., Nc(d1) = Nc(d2). Thus
it is possible that the DNF formula Fc has duplicate clauses even if F does not.
Duplicate clauses in Fc affect the function coverFc . This is the reason why we chose
to represent a DNF formula by a bipartite graph and not a set of clauses, i.e., a subset
of Bn (or B(2)

n in the general case).
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7.2.4. Alternative constructions. In what follows, we briefly mention two
intuitive alternative constructions of f which we failed to analyze. Instead of starting
from (5.1), it is natural to try grouping terms first; i.e., express

F (x) =
∑
z∈Bn

F̃ (z)ANDz(x),

where the Möbius transform of F is given in (6.5) by F̃ (z) =
∑
S =∅⊂C:N(S)=z−(−1)|S|.

Starting from this expression, we can define

f ′ =
∑
z

F̃ (z)Ec∈N−1(z)ANDN(c)Trnt−|N(c)|ANDz\N(c),

where N−1(z) = {c ∈ C : c ≤ z}. Here again the degree of f ′ is at most t, f ′

satisfies the zeros-constraint, and the same intuition behind the above construction
of f applies to f ′. We can also express ̂(f ′ − F )(y) similarly to (7.6) as a sum over
c ∈ C of the Fourier coefficients of some functions. The issue, however, is that, unlike
the covers of the derived formulas, those functions are hard to analyze and they have
no clear interpretation.

The second construction is the following. Rather than averaging over all the
c ∈ S, we could have fixed an arbitrary map α : 2C → C which attaches to each
S ⊂ C a fixed element cS

def= α(S) ∈ S (e.g., the smallest clause in S). Then we can
define

fα =
∑

S⊂C:S =∅
−(−1)|S|ANDN(cS)Trnt−|N(cS)|ANDN(S)\N(cS).

Here again, the degree of fα is at most t, fα satisfies the zeros-constraint, and the
same intuition behind the above construction of f applies to fα. The issue is again
in the difficulty of interpreting and analyzing the functions in the resulting analogue
of (7.6). We can view f , however, as the average of fα over all the maps α, i.e.,
f = Eαfα.

7.3. General case construction. This section uses the general machinery in
sections 6.4 and 6.5.

If F is not necessarily monotone, the monotone case construction generalizes
naturally as follows. Following the derivations in the proof of Lemma 6.5 (for u = 0),
expand F as

F (x) = 1 −
∏
c∈C

(1 −ANDN(c)(x))

=
∑

S =∅⊂C
−(−1)|S|

∏
c∈S

ANDN(c)(x)

=
∑

S =∅⊂C
−(−1)|S|ANDN ′(S)(x′)ANDN ′′(S)(x′′)

=
∑

S =∅⊂C:N ′(S)∩N ′′(S)=∅
−(−1)|S|ANDN ′(S)(x′)ANDN ′′(S)(x′′)

=
∑

S =∅⊂C:N ′(S)∩N ′′(S)=∅
−(−1)|S|ANDN(S)(x).
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Let S ⊂ C such that S �= ∅ and N ′(S) ∩N ′′(S) = ∅; i.e., N(S) ∈ B
(2)
n \{(∅, ∅)}.

For each c ∈ S, we have

ANDN(S) = ANDN(c)ANDN(S)\N(c).

Recall from section 6.4 that we defined y\x ∈ B
(2)
n for consistent elements x, y ∈ B

(2)
n ,

and note that N(c) and N(S) are consistent since N(c) ≤ N(S). Averaging over all
c ∈ S, we trivially get

ANDN(S) = Ec∈SANDN(c)ANDN(S)\N(c);

hence

F =
∑

S =∅⊂C:N ′(S)∩N ′′(S)=∅
−(−1)|S|Ec∈SANDN(c)ANDN(S)\N(c).

We construct f as in the monotone case by truncating eachANDN(S)\N(c) to Trnt−|N(c)|
ANDN(S)\N(c).

Lemma 7.2 (error interpretation). Let F = (C, [n], N) be an s-DNF formula,
and let t ≥ s be an integer. Let f ∈ L(Bn) be given by

f =
∑

S⊂C:S =∅ &N ′(S)∩N ′′(S)=∅
−(−1)|S|Ec∈SANDN(c)Trnt−|N(c)|ANDN(S)\N(c).

If c ∈ C, let Cc be the set of clauses other than c which are consistent with c,
i.e., Cc = {d ∈ C\{c} : N(d) and N(c) are consistent}. Let Cmain be the set of
clauses which are consistent with at least one clause of F other than themselves, i.e.,
Cmain = {c ∈ C : Cc �= ∅}.

For each clause c ∈ Cmain, define the new DNF formula Fc = (Cc, [n], Nc), where
Nc(d) = N(d) ∪ N(c) for each d ∈ Cc. That is, Fc is the formula resulting from
removing from F the clause c and all the clauses not consistent with c, and adding
the literals of c to each of the remaining clauses.

Then (i) deg(f) ≤ t; (ii) f satisfies the zeros-constraint f = 0 whenever F = 0;
and (iii) for each w ∈ Bn

(7.9) ̂(f − F )(w) =
∑

c∈Cmain:|w∪N ′(c)∪N ′′(c)|>t
ĉoverFc(w).

Proof. We have deg(f) ≤ t since the degree of each Trnt−|N(c)|ANDN(S)\N(c) is
at most t− |N(c)| and the degree of ANDN(c) is |N(c)|. Moreover, if F (x) = 0, then
ANDN(c)(x) = 0 for each c ∈ C; thus f(x) = 0, and hence (ii). We have to establish
(7.9). Let

Δ def= f − F.

We have

Δ =
∑

S =∅⊂C:N ′(S)∩N ′′(S)=∅
(−1)|S|Ec∈SANDN(c)(1 − Trnt−|N(c)|)ANDN(S)\N(c)

=
∑

S⊂C:|S|>1 & N ′(S)∩N ′′(S)=∅
(−1)|S|Ec∈SANDN(c)(1 − Trnt−|N(c)|)ANDN(S)\N(c).

(7.10)
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As in the monotone case, we impose the nonrestrictive condition |S| > 1 for technical
convenience. This is nonrestrictive since if |S| = 1, then S = {c0} for some c0 ∈ C;
hence ANDN(S)\N(c0) = 1. Therefore (1 − Trnt−|N(c0)|)ANDN(S)\N(c0) = 0 since
t − |N(c0)| ≥ 0 because |N(c0)| ≤ s as F is an s-DNF and t ≥ s by the lemma
hypothesis.

Recall from (6.14) that

ANDz =
∑
y≤z

(−1)|y
′|X y′∪y′′ ,

and recall also that we are working in B
(2)
n and not in B2

n; i.e., if z ∈ B
(2)
n , then

summing over all y ≤ z (y ≥ z, respectively) means summing over all y ∈ B
(2)
n such

that y ≤ z (y ≥ z, respectively).
Let S �= ∅ ⊂ C such that N ′(S) ∩ N ′′(S) = ∅, i.e., such that N(S) ∈ B

(2)
n , and

let c ∈ S. Then

ANDN(c) =
1

2|N(c)|

∑
y1≤N(c)

(−1)|y
′
1|X y′1∪y′′1

and

(1 − Trnt−|N(c)|)ANDN(S)\N(c) =
1

2|N(S)\N(c)|

∑
y2≤N(S)\N(c):|y2|>t−|N(c)|

(−1)|y
′
2|X y′2∪y′′2 .

Thus

ANDN(c)(1 − Trnt−|N(c)|)ANDN(S)\N(c)

=
1

2|N(S)|

∑
y1≤N(c),

y2≤N(S)\N(c):
|y2|>t−|N(c)|

(−1)|y
′
1|+|y′2|X y′1∪y′′1 ⊕y′2∪y′′2

=
1

2|N(S)|

∑
y≤N(S):|y\N(c)|>t−|N(c)|

(−1)|y
′|X y′∪y′′ .(7.11)

To verify (7.11), recall first from section 6.4 the definitions of basic operations in B(2)
n .

Equation (7.11) follows from the fact that N(c) and N(S)\N(c) are separated and
hence y1 and y2 are separated. Thus summing over y1 ≤ N(c) and y2 ≤ N(S)\N(c) is
equivalent to summing over y = y1 ∪ y2 ≤ N(c)∪ (N(S)\N(c)) = N(S). Since y1 and
y2 are separated, i.e., y′1, y

′′
1 , y

′
2, y

′′
2 are mutually disjoint, we have y′1 ∪ y′′1 ⊕ y′2 ∪ y′′2 =

y′1 ∪ y′′1 ∪ y′2 ∪ y′′2 = y′ ∪ y′′ and |y′1| + |y′2| = |y′1 ∪ y′2| = |y′|.
Now, note that

(7.12)
|y\N(c)|+ |N(c)| = |y∪N(c)| = |(y∪N(c))′∪ (y∪N(c))′′| = |y′∪N ′(c)∪y′′∪N ′′(c)|.

The first equality holds because, in general, if x and y are consistent, then |y ∪ x| =
|y\x|+ |x| as noted at the end of section 6.4 (y and N(c) are consistent as they have
the upper bound N(S) in B

(2)
n ). The second (third, respectively) equality follows

from the definition of size (union, respectively) in B(2)
n .
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Substituting (7.12) in (7.11), and then (7.11) in (7.10), we get

Δ =
∑

S⊂C:|S|>1

N ′(S)∩N ′′(S)=∅

(−1)|S|
1
|S|
∑
c∈S

1
2|N(S)|

∑
y≤N(S):

|(y′∪y′′)∪N ′(c)∪N ′′(c)|>t

(−1)|y
′|X y′∪y′′ .

By rearranging the summations, we extract the Fourier coefficients of Δ: Δ =∑
w∈Bn

Δ̂(w)Xw, where

Δ̂(w) =
∑

S⊂C:|S|>1

N ′(S)∩N ′′(S)=∅

(−1)|S|
1
|S|

∑
c∈S:

|w∪N ′(c)∪N ′′(c)|>t

1
2|N(S)|

∑
a≤w:

(a,w\a)≤N(S)

(−1)|a|

=
∑
c∈C:

|w∪N ′(c)∪N ′′(c)|>t

∑
a≤w

(−1)|a|
∑

S⊂C:|S|>1

N ′(S)∩N ′′(S)=∅
N(S)≥(a,w\a)

c∈S

(−1)|S|2−|N(S)| 1
|S|

=
∑
c∈C:

|w∪N ′(c)∪N ′′(c)|>t

∑
a≤w

(−1)|a|
∑

z≥(a,w\a)

⎛⎜⎜⎝ ∑
S⊂C:|S|>1

N(S)=z & c∈S

(−1)|S|
1
|S|

⎞⎟⎟⎠ 2−|z|.

Using (6.15), we obtain

(7.13) Δ̂(w) =
∑
c∈C:

|w∪N ′(c)∪N ′′(c)|>t

̂Proj Xc(w),

where Xc ∈ L(B(2)
n ) is given by its Möbius transform

X̃c(z) =
∑

S⊂C:|S|>1
N(S)=z & c∈S

(−1)|S|
1
|S|

=
∑

T =∅⊂C\{c}:N(T∪{c})=z
(−1)|T |+1 1

|T | + 1

after a change of variables from S to T = S\{c}.
We will show that Xc = coverFc if c ∈ Cmain, and Xc = 0 if c ∈ C\Cmain.
First we handle the degenerate case when c ∈ C\Cmain. Assume c ∈ C\Cmain;

thus there is no d �= c ∈ C such that N(d) and N(c) are consistent. Hence T = ∅ is
the only T ⊂ C\{c} such that N(T ∪ {c}) ∈ B

(2)
n . But T = ∅ is not allowed in the

summation. It follows that Xc = 0.
Now, assume that c ∈ Cmain. By the definition of the formula Fc, Cc = {d ∈

C\{c} : N(d) and N(c) are consistent} �= ∅, and Nc(d) = N(d)∪N(c) for each d ∈ Cc.
Hence for each T ⊂ Cc,

Nc(T ) = (N ′
c(T ), N ′′

c (T )) = (N ′(T ∪ {c}), N ′′(T ∪ {c})) = N(T ∪ {c}).

Moreover, if T ⊂ C\{c}, but T �⊂ Cc, then T contains an element d of C such
that N(c) and N(d) are not consistent. Consequently, N ′({c, d}) ∩ N ′′({c, d}) �= ∅,
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and hence N ′(T ∪ {c})∩N ′′(T ∪ {c}) �= ∅; i.e., N(T ∪ {c}) �∈ B
(2)
n . Therefore T does

not contribute to the summation. It follows that

X̃c(z) =
∑

T =∅⊂Cc:Nc(S)=z

−(−1)|T | 1
|T | + 1

.

Using (6.18), we identify this as the Möbius transform of the lifted cover of Fc,
i.e., Xc = coverFc . Thus Proj Xc = coverFc , and hence (7.9) follows from (7.13).

7.4. Bounds. The analysis in sections 7.1 and 7.3 consists of exact derivations
not because we are interested in exact evaluations, but because we could not use
approximations since the involved summations have exponentially many terms of
alternating signs. The expression of f̂ − F in Lemma 7.1 (or Lemma 7.2) can be
regarded as a way to hide those huge summations in the Fourier transforms of the
cover functions.

In this section, we apply two simple bounds to this expression. The first bound
(Theorem 7.3) reduces the problem of bounding the t-zero-energy of F to that of
bounding the (t− s)-energies of the cover functions of DNF formulas derived from F .
The second bound (Lemma 7.4) reduces the latter problem to bounding the (t − s)-
energies of the u-skin functions of the derived formulas for all u ≥ 0.

Theorem 7.3 (zero-energy � energy of cover). Let F = (C, [n], N) be an s-DNF
formula, and let t ≥ s be an integer.

(a) (Monotone case) Assume that F is monotone and |C| ≥ 2. For each clause
c ∈ C, define the new DNF formula Fc = (Cc, [n], Nc) resulting from removing
the clause c from F and adding its variables to all the other clauses, i.e.,
Cc = C\{c} and Nc(d) = N(d) ∪N(c) for each d ∈ Cc. Then

zeroEnergy(F ; t) ≤ |C|2 max
c∈C

energy(coverFc ; t− s).

(b) (General case) In general, if c ∈ C, let Cc be the set of clauses other than
c which are consistent with c, i.e., Cc = {d ∈ C\{c} : N(d) and N(c) are
consistent}. Let Cmain be the set of clauses which are consistent with at least
one clause of F other than themselves, i.e., Cmain = {c ∈ C : Cc �= ∅}.
For each clause c ∈ Cmain, define the new DNF formula Fc = (Cc, [n], Nc),
where Nc(d) = N(d) ∪ N(c) for each d ∈ Cc. That is, Fc is the formula
resulting from removing from F the clause c and all the clauses not consistent
with c, and adding the literals of c to each of the remaining clauses. Then

zeroEnergy(F ; t) ≤ |Cmain|2 max
c∈Cmain

energy(coverFc ; t− s).

Proof. (a) Let f ∈ L(Bn) be as defined in the statement of Lemma 7.1. Thus

zeroEnergy(F ; t) ≤ E(F − f)2 = ‖f̂ − F‖2
2

and

̂(f − F )(y) =
∑

c∈C:|y∪N(c)|>t
ĉoverFc(y),

for each y ∈ Bn. To hide the dependency of the summation on y, for each c ∈ C,
define ac ∈ L(Bn) by

ac(y) =
{

ĉoverFc(y) if |y ∪N(c)| > t,
0 otherwise.
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Thus f̂ − F =
∑

c∈C ac. Applying a triangular inequality, we get

‖f̂ − F‖2 ≤
∑
c∈C

‖ac‖2

=
∑
c∈C

⎛⎝ ∑
y∈Bn:|y∪N(c)|>t

ĉoverFc(y)
2

⎞⎠1/2

≤
∑
c∈C

⎛⎝ ∑
y∈Bn:|y|>t−s

ĉoverFc(y)
2

⎞⎠1/2

=
∑
c∈C

√
energy(coverFc ; t− s),

where the second inequality follows from the fact that |y∪N(c)| ≤ |y|+|N(c)| ≤ |y|+s
since F is an s-DNF. If follows that

zeroEnergy(F ; t) ≤
(∑
c∈C

√
energy(coverFc ; t− s)

)2

≤ |C|2 max
c∈C

energy(coverFc ; t− s).

(b) The general case follows from exactly the same argument. Just replace Lemma
7.1 with Lemma 7.2, y with w, C with Cmain, and N(c) with N ′(c) ∪N ′′(c).

It is not clear how to estimate the t-energy of the cover function without resorting
to the u-skin function for all u ≥ 0.

Lemma 7.4 (energy of cover � energy of skin). Let G be a DNF formula, and
let t ≥ 0 be an integer. Then

(a)

energy(coverG; t) ≤
(∫ ∞

0

√
energy(skinG,u; t)e−udu

)2

,

(b)

energy(coverG; t) ≤ sup
u≥0

energy(skinG,u; t).

Proof. Part (b) follows immediately from part (a) since (
∫∞
0
e−udu)2 = 1.

Part (a) follows from the fact that coverG =
∫∞
0

skinG,ue−udu via the Cauchy–
Schwarz inequality as we explain next. Let au = skinG,u and b =

∫∞
0 aue

udu. Thus
b̂ =

∫∞
0
âue

udu by the linearity of the Fourier transform operator. Hence

b̂(y)2 =
∫ ∞

0

∫ ∞

0

âu1(y)âu2(y)e
−u1−u2du1du2
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for all y ∈ {0, 1}n. It follows from the Cauchy–Schwarz inequality that

∑
y:|y|>t

b̂(y)2 =
∫ ∞

0

∫ ∞

0

⎛⎝ ∑
y:|y|>t

âu1(y)âu2(y)

⎞⎠ e−u1−u2du1du2

≤
∫ ∞

0

∫ ∞

0

√ ∑
y:|y|>t

âu1(y)2
√ ∑
y:|y|>t

âu2(y)2 e
−u1−u2du1du2

=

⎛⎝∫ ∞

0

√ ∑
y:|y|>t

âu(y)2e−udu

⎞⎠2

=
(∫ ∞

0

√
energy(au; t)e−udu

)2

.

Problem 7.5. Let G = (C, [n], N) be a DNF formula, t ≥ 0 be an integer, and
u ≥ 0. If G is monotone, it follows from (6.10) and (6.9) that

energy(coverG; t) =
∑

y∈Bn:|y|>t

⎛⎝ ∑
S⊂C:N(S)≥y

(−1)|S|2−|N(S)| 1
|S| + 1

⎞⎠2

,

energy(skinG,u; t) =
∑

y∈Bn:|y|>t

⎛⎝ ∑
S⊂C:N(S)≥y

(−1)|S|2−|N(S)|e−u|S|

⎞⎠2

.

In general, it follows from (6.21) and (6.20) that

energy(coverG; t) =
∑

w∈Bn:|w|>t

⎛⎝∑
a≤w

(−1)|a|
∑

S⊂C:N ′(S)∩N ′′(S)=∅ & N(S)≥(a,w\a)
,(−1)|S|2−|N(S)| 1

|S| + 1

⎞⎠2

,

energy(skinG,u; t) =
∑

w∈Bn:|w|>t

⎛⎝∑
a≤w

(−1)|a|
∑

S⊂C:N ′(S)∩N ′′(S)=∅ & N(S)≥(a,w\a)
(−1)|S|2−|N(S)|e−u|S|

⎞⎠2

.

Analyze and estimate those sums without using the technique of section 8. In the
monotone case the sums are expressions associated with bipartite graphs. Note also
that, experimentally, it is evident that energy(skinG,u; t) exponentially decreases with
u for fixed G and t.

8. Back to DNF formulas. Let G be a DNF formula, u ≥ 0, and t ≥ 0 be
an integer. We want to estimate the t-energy of the u-skin of G. In this section, we
bound the t-energy of the u-skin of G by the t-energies of DNF formulas derived from
G by adding new auxiliary variables.

To motivate the technique, assume for simplicity that G is monotone. Let G =
(C, [n], N). The key idea behind the reduction can be easily pointed out using the
Fourier transform expression of the u-skin function derived in section 6.3.

We have

energy(skinG,u; t) =
∑

y:|y|>t
ŝkinG,u(y)2
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with

ŝkinG,u(y) = (−1)|y|
∑

S =∅⊂C:N(S)≥y
−(−1)|S|2−|N(S)|e−u|S|

by (6.9). Recall also from (6.6) that

Ĝ(y) = (−1)|y|
∑

S =∅⊂C:N(S)≥y
−(−1)|S|2−|N(S)|.

We have a bound on energy(G; t) from the LMN energy bound (Theorem 5.8). Since
G = skinG,0, this is a bound on energy(skinG,u; t) for u = 0. We need a bound for all
u ≥ 0.

The key observation is the following. Consider the special case when e−u = 2−v,
where v is a nonnegative integer. Then

ŝkinG,u(y) = (−1)|y|
∑

S =∅⊂C:N(S)≥y
−(−1)|S|2−(|N(S)|+v|S|).

Construct from G a new monotone DNF formula Gv by adding v new auxiliary vari-
ables to each clause c ∈ C. That is, for each c ∈ C, let N̈(c) be a size-v set of variable
indices such that N̈(c1) ∩ N̈(c2) = ∅ and N̈(c1) ∩ [n] = ∅ for all c1 �= c2 ∈ C. Let
Ï = ∪c∈CN̈(c). Then Gv = (C, [n] ∪ Ï , Nv), where Nv(c) = N(c) ∪ N̈(c) for each
c ∈ C.

If S ⊂ C, then Nv(S) = N(S) ∪ N̈(S) and hence |Nv(S)| = |N(S)| + v|S|.
Moreover, if y ⊂ [n], then N(S) ≥ y if and only if Nv(S) ≥ y because Ï and [n] are
disjoint. Thus

ŝkinG,u(y) = (−1)|y|
∑

S =∅⊂C:Nv(S)≥y
−(−1)|S|2−|Nv(S)| for all y ⊂ [n].

This leads us to the key Fourier relation

(8.1) ŝkinG,u(y) = Ĝv(y) for all y ⊂ [n],

which is the key point behind adding new auxiliary variables. It immediately implies
that

energy(skinG,u; t) =
∑

y⊂[n]:|y|>t
ŝkinG,u(y)2

=
∑

y⊂[n]:|y|>t
Ĝv(y)2

≤
∑

y⊂[n]∪Ï:|y|>t

Ĝv(y)2(8.2)

= energy(Gv; t),

which enables us to use the LMN energy bound. The same argument works if G is
not necessarily monotone. The above argument assumes that v is an integer. If v is
not necessarily an integer and G is not necessarily monotone, we prove the following
theorem.
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Theorem 8.1 (energy of skin � energy). Let G = (C, [n], N) be a DNF formula,
and let t ≥ 0 be an integer.

If d ∈ NC , construct from G a new DNF formula Gd by adding dc new auxiliary
nonnegated variables to each clause c ∈ C. That is, for each c ∈ C, let N̈(c) be a
size-dc set of variables indices such that N̈(c1) ∩ N̈(c2) = ∅ and N̈(c1) ∩ [n] = ∅ for
all c1 �= c2 ∈ C. Let Ï = ∪c∈CN̈(c). Then Gd = (C, [n] ∪ Ï , Nd), where Nd(c) =
(N ′(c) ∪ N̈(c), N ′′(c)) for each c ∈ C.

Let u ≥ 0 and let v ≥ 0 such that e−u = 2−v; i.e., v = u/ ln 2.
Then

energy(skinG,u; t) ≤ max
d∈{�v�,	v
}C

energy(Gd; t).

The underlying analogue of the key Fourier relation in (8.1) is the following. If v is
not necessarily an integer, let 0 ≤ p ≤ 1 such that p2−	v
 +(1−p)2−�v� = 2−v = e−u.
We note in the proof below that ŝkinG,u(y) = ED ĜD(y), for each y ⊂ [n], where D is
a random vector chosen from {�v�, �v�}C by independently setting each of its entries
to �v� with probability p and to �v� with probability 1 − p.

As noted above, the key point behind adding new auxiliary variables is (8.1),
which can be easily seen by examining the summation in the expression of the Fourier
transform of the u-skin function. We can directly verify (8.1) and its analogue without
going into this summation, but with little insight into what is going on. We do that
below to avoid the messy summations in the nonnecessarily monotone case.

Remark 8.2.

1. It is not clear how tight the bound is; i.e., it is not clear how much we are
losing in (8.2).

2. Experimentally, it is evident that energy(skinG,u; t) exponentially decreases
with u for fixedG and t. We conjecture that there is a bound on energy(skinG,u; t)
in terms of u, the number m of clauses, and t which exponentially decreases
with u.
Note that skinG,u(x) is a strictly decreasing function in u for fixed G and x.
But this fact alone is not enough to conclude anything about the variation of
its energy energy(skinG,u; t) with u for fixed G and t.

3. It is not clear whether the bound of Theorem 8.1 decays exponentially with
u for fixed m and t. It is not hard to derive an exponentially decaying bound
for t = 1. We were not able to do that for larger values of t.

4. It is worth mentioning that the u-skin of G does not simplify to a low de-
gree polynomial under random restrictions, which excludes the possibility of
directly adapting the argument in [13] to the u-skin function without going
into the process of deriving the formulas Gd from G. The same holds for the
cover function.

8.1. Proof of Theorem 8.1. We view Gd and Ĝd as functions defined on
{0, 1}n × {0, 1}Ï. We denote the elements of {0, 1}n × {0, 1}Ï by (x, ẍ) or (y, ÿ).

Let 0 ≤ p ≤ 1 such that p2−	v
 + (1 − p)2−�v� = 2−v = e−u. Such p exists since
2−	v
 ≤ 2−v ≤ 2−�v�. Consider the random vector D = (Dc)c∈C ∈ {�v�, �v�}C whose
entries are chosen independently by setting each to �v� with probability p and to �v�
with probability 1− p. Thus EDc2−Dc = 2−v = e−u, for each c ∈ C, by the definition
of p.

We show below that

(8.3) ŝkinG,u(y) = EDĜD(y, 0)
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for each y ∈ {0, 1}n.
Theorem 8.1 follows from (8.3) as follows. We have

ŝkinG,u(y)2 =
(
ED ĜD(y, 0)

)2

≤ ED ĜD(y, 0)2,

since 0 ≤ E(X − EX)2 = EX2 − (EX)2 for any random variable X . Thus

energy(skinG,u; t) =
∑

y∈{0,1}n:|y|>t
ŝkinG,u(y)2

≤ ED
∑

y∈{0,1}n:|y|>t
ĜD(y, 0)2

≤ ED
∑

(y,ÿ)∈{0,1}n×{0,1}Ï :|(y,ÿ)|>t

ĜD(y, ÿ)2

= ED energy(GD; t)
≤ max
d∈{�v�,	v
}C

energy(Gd; t).

To establish (8.3), we use an intermediate function. If d ∈ NC , define shellG,d :
{0, 1}n → R as

shellG,d(x)
def= 1 −

∏
c∈C

(1 − 2−dcANDN(c)(x)).

This is a nonuniform variation of the skin function where the clauses are weighted
differently.

Lemma 8.3. If d ∈ NC , then

Ĝd(y, 0) = ŝhellG,d(y)

for each y ∈ {0, 1}n.
Lemma 8.4. For all u ≥ 0,

ED shellG,D = skinG,u .

Thus, by the linearity of the Fourier transform operator,

ŝkinG,u(y) = Ex skinG,u(x)X y(x)
= ExED shellG,D(x)X y(x)
= EDEx shellG,D(x)X y(x)

= ED ŝhellG,D(y)

= ED ĜD(y, 0),

which verifies (8.3).
Proof of Lemma 8.3. We have

Ĝd(y, ÿ) = E(x,ẍ)Gd(x, ẍ)X (y,ÿ)(x, ẍ).

Thus

Ĝd(y, 0) = E(x,ẍ)Gd(x, ẍ)X (y,0)(x, ẍ) = E(x,ẍ)Gd(x, ẍ)X y(x)

= Ex∈{0,1}n

(
Eẍ∈{0,1}ÏGd(x, ẍ)

)
X y(x).(8.4)
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First note that if c ∈ C and (x, ẍ) ∈ {0, 1}n × {0, 1}Ï, then

ANDNd(c)(x, ẍ) = ANDN(c)(x)ANDN̈(c)(ẍ).

Thus

Gd(x, ẍ) =
∨
c∈C

ANDNd(c)(x, ẍ) = 1 −
∏
c∈C

(
1 −ANDN(c)(x)ANDN̈(c)(ẍ)

)
.

Since each of the new auxiliary variables belongs to one and only one clause, by
decomposing ẍ ∈ {0, 1}Ï as ẍ = (ẍc)c∈C ∈

∏
c∈C{0, 1}N̈(c), we get

Eẍ∈{0,1}ÏGd(x, ẍ) = 1 −
∏
c∈C

(
1 −ANDN(c)(x)

(
Eẍc∈{0,1}N̈(c)ANDN̈(c)(ẍc)

))
= 1 −

∏
c∈C

(
1 −ANDN(c)(x)2−dc

)
= shellG,d(x).

Substituting in (8.4), we get

Ĝd(y, 0) = Ex∈{0,1}n shellG,d(x)X y(x) = ŝhellG,d(y).

Proof of Lemma 8.4. Since, by construction, the entries of the random vector D
are independent and the expected value of each is e−u, we have

ED shellG,D(x) = 1 − ED
∏
c∈C

(1 − 2−DcANDN(c)(x))

= 1 −
∏
c∈C

(1 − (EDc2
−Dc)ANDN(c)(x))

= 1 −
∏
c∈C

(1 − e−uANDN(c)(x)).

If u = 0, we get ED shellG,D(x) = 1 −
∏
c∈C(1 − ANDN(c)(x)) = G(x) = skinG,0(x)

by the definition of the extension of skinG,u to u = 0.
If u > 0, we have 1− e−uANDN(c)(x) = (1− e−u)ANDN(c)(x) for all c ∈ C and all

x ∈ {0, 1}n (if ANDN(c)(x) = 0, both terms are 1; if ANDN(c)(x) = 1, both terms
are 1 − e−u). Thus

ED shellG,D(x) = 1 −
∏
c∈C

(1 − e−u)ANDN(c)(x)

= 1 − (1 − e−u)
∑

c∈C ANDN(c)(x)

= skinG,u(x).

It follows that ED shellG,D(x) = skinG,u(x) for all u ≥ 0.

9. A sharper bound. We derived in section 5.11 an asymptotic version of
Theorem 1.1 based on the LMN energy bound stated in Theorem 5.8. In this section,
we drive the exact bound 16m2.22−

√
k/10 of Theorem 1.1 using (1) another form of

the LMN energy bound (Theorem 9.1 below), and (2) part (a) instead of part (b) of
Lemma 7.4.
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If we know that F is an s-DNF formula, we can extract from [13] the following
bound which is tighter than that of Theorem 5.8 when s is not relatively large.

Theorem 9.1 (LMN energy bound for s-DNF [13]). Let G be an m-clause s-DNF
formula and t ≥ 0 be an integer; then energy(G; t) ≤ 2e−t/(10es) if t > 40es.

Proof. It follows from Lemmas 5 and 6 in [13] that if f : {0, 1}n → {0, 1} and
pt > 8, then

energy(f ; t) ≤ 2Prρ[deg (fρ) > pt/2],

where ρ is a random p-restriction. Corollary 1 in [13] on Hastad’s switching lemma
asserts that if G is an s-DNF formula, then

Prρ[deg (Gρ) > k] < (5ps)k,

where ρ is a random p-restriction. It follows that energy(G; t) ≤ 2(5ps)pt/2 if pt > 8.
Setting p = 1/(5es) to minimize (5ps)pt/2, we get energy(G; t) ≤ 2e−t/(10es) if t >
40es.

First, we substitute the bound of Theorem 9.1 in Theorem 8.1.
Corollary 9.2 (energy of skin). Let G be an m-clause s-DNF formula, u ≥ 0,

and let t ≥ 0 be an integer. Then

energy(skinG,u; t) ≤ 2 exp
(
− t

10e(s+ �u/ ln 2�)

)
if t > 40e(s+ �u/ ln 2�).

Proof. It is enough to note that in the setting of Theorem 8.1, for each d ∈
{�v�, �v�}m, Gd is by construction an (s+ �v�)-DNF whose number of clauses equals
that of G.

Remark 9.3. In section 5.11, we obtained from Theorem 8.1 via Theorem 5.8 the
bound energy(skinG,u; t) ≤ 2m2−

√
t/20. This bound does not depend on u. In the

above corollary, we used Theorem 9.1 to derive a bound on energy(skinG,u; t) which
depends on u. If u is less than some value, this bound is better than 2m2−

√
t/20.

However, the bound increases with u for s and t fixed, contradicting the experimental
behavior of energy(skinG,u; t). This stems from the fact that the special structure of
Gd (the large number of new auxiliary variables) was not exploited when bounding
energy(Gd; t). Is it possible to exploit this structure to get a better bound? See also
Remark 8.2 and Problem 7.5 for related open problems and improvement directions.
Now we substitute the bound of Corollary 9.2 in part (a) of Lemma 7.4, which says
that

energy(coverG; t) ≤
(∫ ∞

0

√
energy(skinG,u; t)e−udu

)2

for each DNF formula G and each integer t ≥ 0.
Corollary 9.4 (energy of cover). Let G be an m-clause s-DNF formula and

t ≥ 0 be an integer. Then

energy(coverG; t) ≤ 6 × 2−
(√

t/(5e ln 2)+(s+1)2−(s+1)
)

if
√
t/(5e ln 2) + (s+ 1)2 − (s+ 1) > 4/ ln 2.
Proof. To bound energy(coverG; t) in terms of s, we divide the integral into

two parts
∫ u0

0
and

∫∞
u0

, where u0 > 0 is a parameter we optimize on. In the range
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0 < u ≤ u0, we use the bound of Corollary 9.2. For u > u0, we use the trivial bound
energy(skinG,u; t) ≤

∑
y ŝkin

2

G,u(y) = E[skin2
G,u] ≤ 1 (we can do better than that for

u > u0, but that will not significantly help). That is,√
energy(coverG; t) ≤

∫ u0

0

√
energy(skinG,u; t)e−udu +

∫ ∞

u0

√
energy(skinG,u; t)e−udu

≤
(

2 exp
(
− t

10e(s+ �u0/ ln 2�)

))1/2 ∫ u0

0

e−udu+
∫ ∞

u0

e−udu

≤
√

2 exp
(
− t

20e(s+ u0/ ln 2 + 1)

)
+ e−u0 ,

since
∫ u0

0 e−udu ≤ 1 and
∫∞
u0
e−udu = e−u0 . This holds assuming that t > 40e(s +

�u0/ ln 2�), which is satisfied if t > 40e(s + u0/ ln 2 + 1). We use a suboptimal
value of u0 to simplify the bound. Set u0 ≥ 0 so that the two exponents are equal,
i.e., t = 20e(s+ u0/ ln 2 + 1)u0. Solving the quadratic equation, we get 2u0/ ln 2 =√
t/(5e ln 2) + (s+ 1)2 − (s + 1). Since t = 20e(s+ u0/ ln 2 + 1)u0, the condition

on t is equivalent to u0 > 2, i.e., 2u0/ ln 2 > 4/ ln 2. Therefore energy(coverG; t) ≤
((1 +

√
2)e−u0)2 < 6e−2u0 = 6 × 2−2u0/ ln 2.

Then we substitute the bound of Corollary 9.4 in Theorem 7.3.
Corollary 9.5 (zero-energy of s-DNF). Let F be an m-clause s-DNF formula

and t ≥ s be an integer. Then

(9.1) zeroEnergy(F ; t) ≤ 6m22−
(√

(t−s)/(5e ln 2)+(2s+1)2−(2s+1)
)

if m ≥ 4.
Proof. It is enough to note that, in the language of part (b) of Theorem 7.3, for

each c ∈ Cmain, Fc is a 2s-DNF formula with at most m − 1 clauses and at least
one clause (by the definition of Cmain). Moreover, |Cmain| ≤ |C| = m. Theorem 7.3
implies (9.1) subject to the condition

√
(t− s)/(5e ln 2) + (2s+ 1)2−(2s+1) > 4/ ln 2.

If this condition is not satisfied, then the upper bound in (9.1) is ≥ 6m22−4/ ln 2 =
6m2e−4 > 1 if m ≥ 4. That is, under the assumption m ≥ 4, the upper bound in
(9.1) is trivial when the condition is not satisfied.

Substituting the bound of Corollary 9.5 in Lemma 5.5 for t = �k−s2 �, we obtain
the following corollary.

Corollary 9.6 (bias of s-DNF). Let F be an m-clause s-DNF formula and
k ≥ 3s be an integer; then

bias(F ; k) ≤ 6m32−
(√

(k−3s−1)/(10e ln 2)+(2s+1)2−(2s+1)
)
.

Proof. The condition t = �k−s2 � ≥ s is equivalent to k ≥ 3s. To simplify the
exponent, we used the bound t = �k−s2 � ≥ k−s

2 − 1
2 ; hence t − s ≥ k−3s−1

2 . Finally,
we drop the condition m ≥ 4 since if m < 4, then F has at most ms ≤ 3s variables,
in which case the condition k ≥ 3s implies that bias(F ; k) = 0.

Finally, substituting the bound in Corollary 9.6 in Lemma 5.4 and optimizing on
s, we conclude the proof of Theorem 1.1. We set below s = Θ(

√
k) if k = Ω(log2m).

Corollary 9.7 (bias of DNF). Let F be an m-clause DNF formula and k ≥ 0
be an integer; then

bias(F ; k) ≤ 16m2.22−
√
k/10.
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Proof. Let ε = bias(F ; k). Substituting the bound of Corollary 9.6 in Lemma 5.4,
we get that, for each integer s ≥ 1 such that k ≥ 3s, we have

ε ≤ 6m32−
(√

(k−3s−1)/(10e ln 2)+(2s+1)2−(2s+1)
)

+m2−s

= m

(
2−
(√

(k−3s−1)/(10e ln 2)+(2s+1)2−(2s+1)−log (6m2)
)

+ 2−s
)
.

Allowing s to take noninteger values, we obtain

ε ≤ m

(
2−
(√

(k−3�s�−1)/(10e ln 2)+(2�s�+1)2−(2�s�+1)−log (6m2)
)

+ 2−�s�
)

≤ m

(
2−
(√

(k−3s−1)/(10e ln 2)+(2s−1)2−(2s+1)−log (6m2)
)

+ 2−(s−1)

)
(9.2)

for each real number s ≥ 1 such that k ≥ 3s. We will equate the two exponents of
(9.2) and solve for s. If s is a real number such that the two exponents are equal, i.e.,

(9.3)
√

(k − 3s− 1)/(10e ln 2) + (2s− 1)2 − (2s+ 1) − log (6m2) = s− 1,

then ε ≤ 2m2−(s−1). Note that we ignored the conditions on s: s ≥ 1 and k ≥ 3s.
We can do that since if s < 1, then m2−(s−1) > m ≥ 1, and hence the right-hand
side of (9.2) is a trivial bound on ε since ε ≤ 1. Similarly, if k < 3s and s ≥ 1, then

m2−
(√

(k−3s−1)/(10e ln 2)+(2s−1)2−(2s+1)−log (6m2)
)
> m ≥ 1, which again makes the

right-hand side of (9.2) a trivial bound on ε. We verify below that

(9.4) s =

√
k

M
+ α log2 (6m2) + β log (6m) + γ − a log (6m2) − b

is a solution of (9.3), where M ≈ 94.208, α = 0.16, β ≈ 0.499, γ ≈ 0.362, a = 2.2,
and b ≈ 0.416. It follows that

ε ≤ 2m2−(s−1) = 22m2−
√
k/M+α log2 (6m2)+β log (6m2)+γ+a log (6m2)+b

< 22m2−
√
k/M+a log (6m2)+b = (22+b6a)m1+2a2−

√
k/M

< 16m2.22−
√
k/10.

To verify that (9.4) is a solution of (9.3), write (9.3) as

0 =
(
3s+ log (6m2)

)2 − (2s− 1)2 − k − 3s− 1
10e ln 2

= 5s2 +
(

6 log (6m2) + 4 +
3

10e ln 2

)
s+ log2 (6m2) − 1 +

1
10e ln 2

− k

10e ln 2

= 5
(
s2 + 2(a log (6m2) + b)s+ c log2 (6m2) − d− k

M

)
,

where a = 0.6, b = 0.4 + 3
100e ln 2 ≈ 0.416, c = 0.2, d = 0.2 − 1

50e ln 2 ≈ 0.189, and
M = 50e ln 2 ≈ 94.208. The larger solution is

s =

√
k

M
+ (a log (6m2) + b)2 − c log2 (6m2) + d− a log (6m2) − b

=

√
k

M
+ α log2 (6m2) + β log (6m2) + γ − a log (6m2) − b,

where α = a2 − c = 0.16, β = 2ab ≈ 0.499, and γ = b2 + d ≈ 0.362.
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10. Optimal solution. The proof of Theorem 1.1 does not depend on this
section since the former is based on the suboptimal solution constructed in section 7.

Let F = (C, [n], N) be a DNF formula, and let t ≥ 0. Recall that zeroEnergy(F ; t)
is the minimum value of E(F −f)2 over the choice of f ∈ L(Bn) such that deg(f) ≤ t,
and f satisfies the F -zeros-constraint f(x) = 0 for each x ∈ Bn such that F (x) = 0.

In this section, we derive a compact form of the optimal solution of the least square
problem underlying the definition of zeroEnergy(F ; t). For simplicity, we restrict our
attention to the case when F is a monotone DNF formula. The optimal solution
can be characterized in terms of the zeta function of the dual order ideal PF of Bn
consisting of satisfying assignments of F . Unable to estimate the optimal solution,
we leave the problem open.

Recall first the posets terminology in section 6.1. We need the following additional
elementary poset notions. An antichain of a poset X is a subset A of X such that any
two distinct elements of A are incomparable. A subset I of X is called a dual order
ideal if x ∈ I and y ≥ x; then y ∈ I. We say that a dual order ideal is generated by
a subset A of X if I = {x ∈ X : x ≥ y for some y ∈ A}. Any dual order ideal has a
generating antichain.

Let F = (C, [n], N) be a monotone DNF. We can associate with F the subposet
PF ofBn consisting of the satisfying assignments of F , i.e., PF = {x ∈ Bn : F (x) = 1}.
Let AF be the set of clauses of F regarded as subsets of [n], i.e., AF = {N(c) : c ∈
C} ⊂ Bn. Equivalently, PF is the dual order ideal of Bn generated by AF . We call a
dual order ideal of Bn nontrivial if it is not the empty ideal or Bn itself. Recall that
we assumed in the definition of a DNF formula that it contains at least one clause
and no empty clauses to avoid degenerate cases. Thus PF is a nontrivial dual order
ideal of Bn. Conversely, to each nontrivial dual order ideal P of Bn and to each set
of generator A of P , we can associate a monotone DNF formula F such that AF = A
and PF = P . The formula F is unique up to duplicate clauses. Note also that AF
is an antichain if and only if no clause of F can be removed without changing the
boolean function computed by F .

A key remark is the following.
Lemma 10.1. Let F be a monotone DNF formula on n variables. If f ∈ L(Bn),

then f satisfies the F -zeros-constraint if and only if f is a linear combination of
{ANDz}z∈PF .

Proof. Let ZF = Bn\PF = {x ∈ Bn : F (x) = 0}. Thus the F -zeros-constraint
on f is f |ZF = 0. The if part follows from the fact that, by the definitions of ZF and
PF , ANDz|ZF = 0 for all z ∈ PF . One way to demonstrate the only if part is to note
that, since {ANDz}z∈Bn are linearly independent, dim span{ANDz}z∈PF = |PF | =
dim{f ∈ L(PF ) : f |ZF = 0}.

We cast the zero-energy problem in the language of zeta functions of dual order
ideals.

Definition 10.2. Say that P is a nontrivial dual order of ideal of Bn, and
let t ≥ 0 be an integer. Let Pt = {z ∈ P : |z| ≤ t}, and define the projection
map πt : L(P ) → L(Pt), f �→ f |Pt , and its transpose πTt : L(Pt) → L(P ), the
extension by zeros map. Consider the zeta function ζP of P as a linear transformation
L(P ) → L(P ), and consider the linear transformation ζPπ

T
t : L(Pt) → L(P ). Define

Δt(P ) def= min
g∈L(Pt)

‖1P − ζPπ
T
t g‖2

2,

where 1P ∈ L(P ) is the all ones function and ‖.‖2 is the L2-norm on L(P ). Note that
if Pt = ∅, by convention, L(Pt) consists of the zero function.
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That is, Δt(P ) is the least square L2-approximation error resulting from approx-
imating the all ones function on P by ζPπTt g over the choice of g ∈ L(Pt).

Lemma 10.3. Let F be a monotone DNF formula on n variables, and let t ≥ 0
be an integer; then 2nzeroEnergy(F ; t) = Δt(PF ).

Proof. Let P = PF , Z = Bn\P = {x ∈ Bn : F (x) = 0}, and Vt = {f ∈ L(Bn) :
f |Z = 0 and deg(f) ≤ t}. Thus

2nzeroEnergy(F ; t) = min
f∈Vt

2nE(F − f)2 = min
f∈Vt

‖1P − f |P ‖2
2,

since F |Z = f |Z = 0 and F |P = 1P . The lemma then follows from the key remark in
Lemma 10.1, which says that if f ∈ L(Bn), then f |Z = 0 if and only if there exists
g ∈ L(P ) such that f =

∑
z∈P g(z)ANDz. Note that (1) deg(f) ≤ t if and only if

g ∈ πTt L(Pt), and (2) f =
∑

z∈P g(z)ANDz can be expressed as f = πTP ζP g, where
πTP : L(P ) → L(Bn) is the extension by zeros map (the transpose of the projection
map πP : L(Bn) → L(P ), f �→ f |P ).

Lemma 10.4. Let P be a nontrivial dual order of ideal of Bn, and let t ≥ 0 be
an integer such that Pt �= ∅. Let v = πtζ

T
P 1P , and let M = πtζ

T
P ζPπ

T
t ; i.e., M is the

Pt-truncation of the matrix ζTP ζP . Then M is invertible and

(10.1) Δt(P ) = |P | − vTM−1v.

Moreover,

v = 2n(2−|x|)x∈Pt ,(10.2)
M = 2n(2−|x∪y|)x,y∈Pt .(10.3)

We can also express Δt(P ) as follows. Let

M∗ =
[
1 vT

v M

]
,

and let D be the value which, when added to the (∅, ∅)-entry of the matrix M∗, makes
it singular; then

Δt(P ) = |P | −D − 1(10.4)

= |P | + det(M∗)
det(M)

− 1.(10.5)

Proof. We have a least square problem of the form ming ‖b−Ag‖2
2, where b = 1P

and A = ζPπ
T
t . The matrix A has full column rank since ζP is nonsingular. The

optimal solution is ‖b−Ag∗‖2
2 = bT b− (AT b)T g∗, where ATAg∗ = AT b. Since A has

full column rank, the matrix ATA is invertible. In our case, we have bT b = 1TP 1P =
|P |, AT b = πtζ

T
P 1p = v, and ATA = πtζ

T
P ζPπ

T
t = M . This proves (10.1).

To verify (10.2), let x ∈ P . We have (ζTP 1P )(x) =
∑

y∈P :x≤y 1 =
∑

y∈Bn:x≤y 1
since x ∈ P and P is a dual order ideal of Bn. Thus (ζTP 1P )(x) = 2|[n]\x| = 2n2−|x|.
Then (10.2) follows from restricting x to Pt. To verify (10.3), let f ∈ L(P ) and x ∈ P .
We have

(ζTP ζP f)(x) =
∑

z∈P :z≥x

∑
y∈P :y≤z

f(y) =
∑
y∈P

f(y)
∑

z∈P :z≥x,y
1.
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Since x ∈ P and P is a dual order ideal, we have∑
z∈P :z≥x,y

1 =
∑

z∈Bn:z≥x,y
1 =

∑
z∈Bn:z≥x∪y

1 = 2|[n]\(x∪y)| = 2n2−|x∪y|.

Hence (ζTP ζP f)(x) = 2n
∑
y∈P f(y)2−|x∪y|. Then (10.3) follows by restricting f to

L(Pt) and x to Pt.
To verify (10.4), write (10.1) as Δt(P ) = |P | − vT g∗, where Mg∗ = v. In matrix

form, we can express this system as[
1+D vT

v M

] [
1

−g∗
]

= [ 0
0 ] ,

where D = |P |− 1−Δt(P ). Then (10.4) follows from the fact that the ∅-entry of any
vector in the null space of the perturbation of M∗ by D must be nonzero since M is
nonsingular.

Finally, (10.5) follows from (10.4). In general if M is a p× p matrix, M∗ = [ a ∗
∗ M ]

is a (p + 1) × (p + 1) augmentation of M , and M∗′ =
[
a+D ∗
∗ M

]
is a perturbation of

M∗′, then det(M∗′) = det(M∗) + D det(M). Thus when M∗′ is singular and M is
nonsingular, we get D = − det(M∗)/ det(M).

Problem 10.5. Let P be a nontrivial dual order ideal of Bn, generated by m
elements of Bn, and let t ≥ 0. Study and bound Δt(P ) in terms of m and t starting
from the characterization in Lemma 10.4.

We leave this problem open. We can conclude the following bounds from Lemma
10.3 and Corollary 9.5.

Corollary 10.6. Let P be a nontrivial dual order of ideal of Bn generated by
m elements of Bn each of size at most s, and let t ≥ s be an integer. Then we have
the following bound:

2−nΔt(P ) ≤ 6m22−
(√

(t−s)/(5e ln 2)+(2s+1)2−(2s+1)
)

if m ≥ 4.

11. Concluding remarks. After the results of this paper were described in
a preliminary form [6], Razborov [23] obtained a simpler construction of a function
satisfying the zeros-constraint leading to a simpler proof of an asymptotic version
of our main result in Theorem 1.1. The construction of Razborov is randomized
and simplifies the second step of the proof, which reduces the s-DNF constrained
L2-approximation problem to the s-DNF L2-approximation problem.

We conclude with some problems.
The bound in Theorem 1.1 probably can be improved by studying the problems

in Remarks 8.2 and 9.3 and Problems 7.5 and 10.5.
Is it possible to somehow generalize the argument of Theorem 1.1 from depth-

2 circuits to AC0 circuits, i.e., to show that logO(d) n-wise independence o(1)-fools
polynomial-size depth-d circuits? A different approach toward proving this is the low
degree polynomial predictor approach in [5] (see section 5.7).

One of the basic questions motivating the work reported in this paper is the
quadratic residue PRG introduced in [2]. Let p be an odd prime, and denote by Fp
the finite field of size p. Fix a subset6 I ⊂ Fp of size n ≥ 1. The quadratic residue

6In [2], I = {0, 1, . . . , n − 1}, but the authors’ analysis does not use this restriction.
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PRG (QR-PRG) is given by GIp : Fp → {0, 1}I, where for each t ∈ I, GIp(a)t = 1 if
a+ t is a quadratic residue and 0 otherwise.

The irregularity of the quadratic residue distribution promises great derandom-
ization capabilities and has intrigued mathematicians long before complexity theory
existed. The following conjecture was the motivation behind the work reported in
this paper.

Conjecture 11.1. For all positive integers m,n and every ε > 0, there is an
integer p0 = poly(m,n, 1

ε ) such that if p ≥ p0 is a prime and I ⊂ Fp is of size n,
then the QR-PRG GIp ε-fools any boolean function computable by an m-clause DNF
(or CNF) formula on n variables.

The QR-PRG was introduced in [2] as a n√
p -biased probability distribution. This

follows from Weil’s theorem on the analogue of the Riemann hypothesis for curves over
finite fields. Using the n√

p -bias property of the QR-PRG, we obtain from Corollary
2.3 the following quasi-polynomial version.

Corollary 11.2. For all positive integers m,n and every ε > 0, there is an
integer p0 = 2O(log2 m

ε logn) such that if p ≥ p0 is a prime and I ⊂ Fp is of size n,
then the QR-PRG GIp ε-fools any boolean function computable by an m-clause DNF
(or CNF) formula on n variables.

The conjecture would imply the first (unconditional) polynomial complexity PRG
for depth-2 circuits. Note that there is no reason not to believe that the derandomiza-
tion capabilities of the QR-PRG are far beyond the small bias property. Conjecture
11.1 is a natural starting point. At the other extreme, can one construct an infinite
family of (unrestricted) circuits {Cn}n, where Cn is a polynomial-size circuit on n
variables, such that the prime cannot be made polynomially large enough in n and 1

ε
in order for the QR-PRG to ε-fool Cn?

Appendix A. LP duality calculations. In this appendix we show the LP
duality calculations needed to characterize the class of functions that are fooled by
the (δ, k)-bias property. The characterization is in Theorem A.1 below and is in terms
of L1-approximability by sandwiching polynomials of degree at most k and small L1-
norm in the Fourier domain.

Recall that we stated in Theorem 4.2 the special case of Theorem A.1 correspond-
ing to the k-wise independence property, i.e., when δ = 0.

Let μ be a probability distribution on {0, 1}n, k ≥ 0 be an integer, and δ ≥ 0. By
definition μ has the (δ, k)-bias property if μ δ-fools all parity functions on k or fewer of
the n binary variables. In terms of the characters {X y}y, this is equivalent to saying
that |EμX y| ≤ 2δ for each nonzero y in {0, 1}n whose weight is less than or equal to
k.

Theorem A.1. Let g : {0, 1}n → {0, 1}, k ≥ 0 be an integer, and δ, ε ≥ 0. Then
the (δ, k)-bias property ε-fools g if and only if there exist gl, gu : {0, 1}n → R such that

(i) deg(gl) ≤ k and deg(gu) ≤ k,
(ii) gl ≤ g ≤ gu,
(iii) 2δ

∑
y =0 |ĝl(y)| + E(g − gl) ≤ ε and 2δ

∑
y =0 |ĝu(y)| + E(gu − g) ≤ ε, where

the expectation is over the uniform probability distribution.
Therefore, asymptotically and for δ > 0, the (δ, k)-bias property o(ε)-fools a boolean
function g : {0, 1}n → {0, 1} if and only if there exist gl, gu : {0, 1}n → R such that

• (low degree) deg(gl) ≤ k and deg(gu) ≤ k,
• (sandwiching polynomials) gl ≤ g ≤ gu,
• (small L1-norm in the Fourier domain) ‖ĝl‖1 = o

(ε
δ

)
and ‖ĝu‖1 = o

(ε
δ

)
,

• (small L1-approximation error) E(gu − gl) = o(ε).
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Proof. The proof is by LP duality. Let Mk ⊂ R{0,1}n

be the convex polytope of
(δ, k)-biased probability distributions μ on {0, 1}n.

If μ is a probability distribution μ on {0, 1}n, then by definition μ is (δ, k)-biased
if |EμX y| ≤ 2δ for each nonzero y in {0, 1}n whose weight is less than or equal to k.

Thus Mk consists of all μ : {0, 1}n → R such that μ ≥ 0,
∑
x μ(x) = 1, and

−2δ ≤
∑

x μ(x)X y(x) ≤ 2δ for each y ∈ N∗
k , where N∗

k = {y ∈ {0, 1}n : y �= 0 and
|y| ≤ k}.

Fix g : {0, 1}n → {0, 1}, and note that if μ is a probability distribution on {0, 1}n,
then Prx∼μ[g(x) = 1] = Eμg since g takes binary values.

We have two feasible linear programs:

Pu = max
μ∈Mk

Eμg − Eg and Pl = max
μ∈Mk

Eg − Eμg.

It is enough to show that the dual linear programs are as follows:
(I) Pu = mingu E(gu − g) + 2δ

∑
y =0 |ĝu(y)|, where we are minimizing over all

gu : {0, 1}n → R such that deg(gu) ≤ k and gu(x) ≥ g(x) for all x ∈ {0, 1}n.
(II) Pl = mingl

E(g − gl) + 2δ
∑

y =0 |ĝl(y)|, where we are minimizing over all
gl : {0, 1}n → R such that deg(gl) ≤ k and gl(x) ≤ g(x) for all x ∈ {0, 1}n.

Actually, we have to establish only (I) since (II) follows from (I) by replacing g with
1 − g and performing a change of variable from gu to 1 − gu.

Explicitly, Pu = maxμ
∑

x μ(x)g(x)−Eg, where μ : {0, 1}n → R is subject to the
constraints ∑

x

μ(x) = 1,∑
x

μ(x)X y(x) ≤ 2δ for all y ∈ N∗
k ,

−
∑
x

μ(x)X y(x) ≤ 2δ for all y ∈ N∗
k ,

μ(x) ≥ 0 for all x ∈ {0, 1}n.

Its dual is thus Pu = minα0 + 2δ
∑

y∈N∗
k
(α′
y + α′′

y) − Eg, where α0, {α′
y}y∈N∗

k
and

{α′′
y}y∈N∗

k
are real coefficients subject to the constraints

α0 +
∑
y∈N∗

k

(α′
y − α′′

y)X y(x) ≥ g(x) for all x ∈ {0, 1}n,

α′
y, α

′′
y ≥ 0 for all y ∈ N∗

k .

In general, if a is real number, then min{a′ + a′′ : a′, a′′ ≥ 0 such that a′ − a′′ =
a} = |a|. Applying this to a′ = α′

y, a
′′ = α′′

y , and a = αy = α′
y − α′′

y , we get
Pu = minα0 + 2δ

∑
y∈N∗

k
|αy| − Eg, where α0 and {αy}y are real coefficients subject

to the constraints

α0 +
∑

y∈N∗
k
αyX y(x) ≥ g(x) for all x ∈ {0, 1}n.

Let gu = α0 +
∑
y∈N∗

k
αyX y. Noting that α0 = Egu and αy = ĝu(y) for all y ∈ N∗

k ,
we get Pu = minE(gu − g) + 2δ

∑
y =0 |ĝu(y)|, where we are minimizing over all

gu : {0, 1}n → R such that deg(gu) ≤ k and gu(x) ≥ g(x) for all x ∈ {0, 1}n.
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Appendix B. What will not work. To justify the move from L1 to L2 in
section 5.5, it is appropriate to briefly mention two natural L1-approaches which fall
short of bounding the k-bias of s-DNF formulas.

Inclusion-exclusion. It is natural to try to construct the sandwiching polynomials
of an s-DNF formula by inclusion-exclusion as explained in [5] (see section 5.5). This
approach can be used to resolve the case of read-once DNF formulas (i.e., distinct
clauses do not share variables), but we were unable to push it beyond the read-once
case.

Lift and reduce to a linear program. Let F be an s-DNF formula on n variables,
and let A1, . . . , Am be the clauses of F . Let μ be a k-wise independent probability
distribution on {0, 1}n such that k > s. Let μunif be the uniform probability dis-
tribution on {0, 1}n. Consider the map L : {0, 1}n → {0, 1}m, x �→ (Ac(x))mc=1. Let
μ∗ (μ∗

unif , respectively) be the probability distribution induced via L on {0, 1}m by
μ (μunif , respectively). Thus Prμ[F (x) = 0] = μ∗(0), Prμunif

[F (x) = 0] = μ∗
unif (0),

and Eμ∗X y = Eμ∗
unif

X y for each y ∈ {0, 1}m such that |y| ≤ �k/s�.
This suggests relaxing the problem to the following linear program: maxμ1,μ2 |μ1(0)−

μ2(0)|, where μ1, μ2 are probability distributions on {0, 1}m such that Eμ1X y =
Eμ2X y, for each y ∈ {0, 1}m such that |y| ≤ t, where t = �k/s�.

Unfortunately, that will not work. This follows from the approximate inclusion-
exclusion lower bound of [14], which implies that the maximum of the above linear
program cannot be made arbitrarily small unless t = Ω(

√
m). One of the issues of

this relaxation is that it ignores the actual values of the t-moments7 of μ1 and μ2. It
uses only the fact that the t-moments of μ1 and μ2 are equal. The values of those
moments are simple and easy to derive from F , but taking them into consideration
gives us an intriguing linear program, which is not clear how to bound.
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ON THE VALUE OF COORDINATION IN NETWORK DESIGN∗

SUSANNE ALBERS†

Abstract. We study network design games where n self-interested agents have to form a network
by purchasing links from a given set of edges. We consider Shapley cost sharing mechanisms that
split the cost of an edge in a fair manner among the agents using the edge. It is well known that the
price of anarchy of these games is as high as n. Another line of research has focused on evaluating
the price of stability, i.e., the cost of the best Nash equilibrium relative to the social optimum. In
this paper we investigate to which extent coordination among agents can improve the quality of
solutions. We resort to the concept of strong Nash equilibria, which were introduced by Aumann and
are resilient to deviations by coalitions of agents. We analyze the price of anarchy of strong Nash
equilibria and develop lower and upper bounds for unweighted and weighted games in both directed
and undirected graphs. These bounds are tight or nearly tight for many scenarios. It shows that, by
using coordination, the price of anarchy drops from linear to logarithmic bounds. We complement
these results by also proving the first superconstant lower bound on the price of stability of standard
equilibria (without coordination) in undirected graphs. More specifically, we show a lower bound
of Ω(log W/ log log W ) for weighted games, where W is the total weight of all the agents. This
almost matches the known upper bound of O(log W ). Our results imply that, for most settings, the
worst-case performance ratios of strong coordinated equilibria are essentially always as good as the
performance ratios of the best equilibria achievable without coordination. These settings include
unweighted games in directed graphs as well as weighted games in both directed and undirected
graphs.

Key words. coalition, price of anarchy, price of stability, Shapley cost sharing, strong Nash
equilibrium
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1. Introduction. Communication networks are pervasive and critical to mod-
ern society. Nonetheless, the formation and evolution of large networks is not well
understood, a major reason being that these networks typically are not built by a
central authority but rather by many economic agents that have selfish interests. For
this reason, research on network design has focused on game-theoretic approaches
over the past years; see, e.g., [2, 3, 5, 6, 7, 8, 9, 11, 16, 21, 22].

We study network design games that have recently received a lot of attention [2,
3, 6, 7, 15, 18] and are simple yet powerful enough to capture the two most important
objectives of agents: connection establishment and cost minimization. Consider a
directed or undirected graph G where each edge e has a nonnegative cost c(e). There
are n agents, each of which has to connect a set of terminals. The agents form a
network by selecting edges. A strategy Si of an agent i is a set of edges connecting
the desired terminals. The cost of the edges used by all the agents has to be covered. A
fundamental cost sharing mechanism is Shapley cost sharing, which was proposed by
Anshelevich et al. [3] for network design games and has been studied with respect to
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other networking problems as well [12, 17]. In Shapley cost sharing, the cost of an edge
is shared in a fair manner among the agents using that edge. In an unweighted game,
if k agents use an edge e in their strategies, then each of these agents pays a share of
c(e)/k. In a weighted game, each agent i has a weight wi and contributes a share of
c(e)wi/We, where We is the total weight of agents using e. We are interested in stable
networks where no agent has the incentive to deviate from its strategy. Stability is
modeled by considering Nash equilibria. A combination S = (S1, . . . , Sn) of strategies
forms a Nash equilibrium if no agent has a better strategy with a strictly smaller cost
if all the other agents adhere to their strategies. A widely accepted performance
measure for evaluating the quality of Nash equilibria is the price of anarchy [19],
which is the maximum ratio of the total cost incurred by any Nash equilibrium to the
cost spent by the social optimum. Unfortunately, for our network design games, the
price of anarchy is as high as n. An interesting alternative quality measure, proposed
by Anshelevich et al. [2], is price of stability which is the ratio of the best Nash
equilibrium relative to the social optimum. Anshelevich et al. [2] proved that the
price of stability in unweighted network design games is O(log n).

The scenario described so far assumes that agents are completely noncoopera-
tive, isolated entities. However, for long-term decisions such as network design, given
today’s communication infrastructure, this assumption is not entirely realistic. It is
more natural that agents will discuss possible strategies and, as in other economic
markets, form coalitions taking strategic actions that are beneficial to all members of
the group. In such cooperative environments we again seek stable solutions. In this
context, in 1959 Aumann [4] introduced the concept of strong Nash equilibria, which
ensure stability against deviations by every conceivable coalition of agents. More
specifically, no coalition can cooperatively deviate in a way that benefits all its mem-
bers, taking the actions of the agents outside the coalition as given. With respect to
network design, an important question is whether coordination among agents yields
strictly better solutions. Is it possible to achieve significant improvements? We prove
that this is the case. When coordination is allowed, the price of anarchy of strong Nash
equilibria drops from n to O(log n) in unweighted games. Similar improvements show
in weighted games. Obviously, any strong Nash equilibrium is a standard Nash equi-
librium, which is immune to deviations of single agents. Hence strong Nash equilibria
cannot be better than the best standard Nash equilibria. A second natural question is
how strong Nash equilibria rank relative to the best standard Nash equilibrium. When
coordination is allowed, is the worst-case performance of stable states close to that of
the best stable states achievable without cooperation? We answer this question in the
affirmative in terms of anarchy and stability measures. For most settings, the price of
anarchy of strong Nash equilibria is essentially always as good as the corresponding
stability bounds of standard equilibria. These settings include unweighted games in
directed graphs as well as weighted games in both directed and undirected graphs.

Previous results. Research on the network design games defined above was
initiated by Anshelevich et al. [3]. In this paper the authors considered general
cost sharing schemes that are not restricted to Shapley mechanisms. Anshelevich
et al. studied undirected graphs and first addressed scenarios where each agent has to
connect one terminal to a common destination. They designed Nash equilibria whose
cost is equal to the cost of the optimum. Furthermore Anshelevich et al. [3] investi-
gated the general scenario that each agent has to connect a set of terminals. In this
case there are graphs that do not admit Nash equilibria. The authors therefore stud-
ied α-approximate Nash equilibria in which no agent can improve its cost by a factor
of more than α, where α > 1. Anshelevich et al. proved that there always exists a
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3-approximate Nash equilibrium whose cost is equal to that of the optimum. Further-
more, they derived a polynomial time algorithm that gives a (4.65 + ε)-approximate
Nash equilibrium whose cost is twice the optimum.

In the following two paragraphs we describe the results known for network de-
sign games with Shapley cost sharing. The setting was introduced in a second paper
by Anshelevich et al. [2] who first analyzed unweighted games. Using elegant po-
tential function arguments based on a potential by Monderer and Shapley [20], the
authors proved that every directed or undirected graph admits a Nash equilibrium
and that the price of stability is upper bounded by H(n). Here H(n) =

∑n
i=1 1/i is

the nth harmonic number, which is closely approximated by the natural logarithm,
i.e., ln(n+1) ≤ H(n) ≤ lnn+1. The upper bound of H(n) on the price of stability is
tight for directed graphs. For undirected graphs Anshelevich et al. [2] showed a lower
bound of 4/3 on the price of stability; the lower bound construction uses two agents
that have to establish a connection to a common destination. Additionally, Anshele-
vich et al. [2] considered weighted games and showed the existence of Nash equilibria
in two-agent games. For directed graphs they gave a lower bound of Ω(max{n, logW})
on the price of stability, where W is the total weight of all the agents.

Chen and Roughgarden [7] further investigated weighted games in directed graphs.
They showed that there are graphs that do not admit Nash equilibria. Chen and
Roughgarden then demonstrated that, for any α = Ω(logwmax), α-approximate Nash
equilibria do exist and that the price of stability is O((logW )/α). Here wmax is the
maximum weight of any agent. These trade-offs are nearly tight. Further work on
unweighted games was presented by Fiat et al. [15] and Chekuri et al. [6].

We became aware that, independent of our work, very recently Epstein, Feldman,
and Mansour [10] studied strong Nash equilibria for unweighted network design games
in directed graphs. They assumed that each agent has to connect a pair of terminals
and considered Shapley as well as general cost sharing mechanisms. Epstein, Feld-
man, and Mansour first observed that there are directed graphs that do not admit
strong Nash equilibria. As their main contribution they presented topological charac-
terizations for equilibrium existence. More specifically, they showed that if each agent
has to connect a terminal to a common destination, each series parallel graph has a
strong Nash equilibrium. If arbitrary terminal pairs are allowed, every extension par-
allel graph admits a strong Nash equilibrium when Shapley cost sharing is adopted.
Furthermore, they analyzed the quality of strong Nash equilibria, showing a bound of
Θ(logn) on the price of anarchy for Shapley cost sharing and a bound of 1 for general
cost sharing schemes when each agent has to connect to a common destination.

Finally, the authors of [1, 13, 14] studied the strong Nash equilibria in scheduling
and load balancing games.

Our contribution. This paper presents an in-depth study of network design
games with Shapley cost sharing when coordination among agents is allowed. We
present upper and lower bounds on the price of anarchy achieved by strong Nash
equilibria. We study scenarios with unrestricted coordination, i.e., coalitions of any
size (or weight) may be formed, and we also consider settings where the size (or
weight) of a coalition is limited.

The first part of the paper addresses unweighted network design games. We first
observe that there are directed as well as undirected graphs that do not admit strong
Nash equilibria and then give a sufficient existence condition. More specifically, we
show that α-approximate strong Nash equilibria exist in any directed or undirected
graph, for any α ≥ H(c), if coalitions of size up to c, 1 ≤ c ≤ n, are allowed. Again,
H(c) is the cth harmonic number. An α-approximate strong Nash equilibrium, for
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α ≥ 1, is one where no coalition (of prescribed size or weight) can deviate such that
every member of the coalition improves its cost by a factor of more than α.

We next prove that the price of anarchy of strong Nash equilibria is upper bounded
by H(n) ≈ lnn, allowing coalitions of any size. This upper bound holds for any
directed or undirected graph that admits a strong Nash equilibrium. Hence, using
coordination, we achieve an exponential improvement in terms of the price of anarchy,
compared to noncooperative environments. We show that the upper bound of H(n) is
tight in directed graphs. For undirected graphs we develop a lower bound of Ω(

√
logn)

on the price of anarchy. These results can be generalized to α-approximate strong
Nash equilibria for any α ≥ 1. In this case all the upper and lower bounds multiply by
a factor of α. For the generalized setting that coalitions of size up to c, 1 ≤ c ≤ n, are
allowed, we prove an upper bound of αncH(c) on the price of anarchy of α-approximate
strong Nash equilibria. Again, this bound holds for any directed or undirected graph
that admits an α-approximate strong Nash equilibrium for some α ≥ 1, and not just
for the range α ≥ H(c). Suppose that α = 1. If c = 1, we obtain the anarchy ratio
of n achieved by standard equilibria. If c = n, we obtain the best ratio of H(n).
Since H(n) is a lower bound on the price of stability of (standard) Nash equilibria in
directed graphs [2], we conclude that in directed graphs the worst-case performance
ratios of strong Nash equilibria are essentially always as good as the performance
ratios achievable by the best standard Nash equilibria.

In the second part of the paper we extend the above results to weighted network
design games. We first give a sufficient condition for the existence of α-approximate
strong Nash equilibria. We then prove that in directed and undirected graphs the
price of anarchy of strong Nash equilibria is at most 1 + lnW if the formation of
coalitions is not restricted. Here W is the sum of the weights of all agents. For di-
rected graphs we show a matching lower bound of Ω(logW ). For undirected graphs
we prove a lower bound of Ω(

√
logW ). Again, for any α ≥ 1, the results extend

to α-approximate strong Nash equilibria, where the lower and upper bounds simply
multiply by α. When coordination among agents is limited, we consider two scenarios:
(1) As usual, the number of agents in a coalition might be limited. (2) The sum of the
weights of the agents forming a coalition may be limited so that agents of high weight
cannot leave agents of low weight in costly configurations. For this general setting we
present bounds trading the price of anarchy vs. the coalition size or weight. Further-
more, we prove a lower bound on the price of stability of standard Nash equilibria in
undirected graphs. We construct a family of graphs in which the price of stability is
Ω(logW/ log logW ). No superconstant lower bound was known for undirected graphs,
for neither weighted nor unweighted games. Our lower bound holds even if every agent
has to connect only a pair of terminals. However, individual terminal pairs are al-
lowed. Together with the known lower bound of Ω(logW ) for directed graphs [2],
we conclude that, in undirected as well as directed graphs, anarchy bounds of strong
Nash equilibria essentially match the stability bounds of standard Nash equilibria.

We remark that our set of results is disjoint from that of Epstein, Feldman, and
Mansour [10], except for the observation that graphs do not necessarily admit strong
Nash equilibria, the upper bound of n

cH(c), and the lower bound of H(n) on the
price of anarchy in unweighted games. While the upper bound proof by Epstein,
Feldman, and Mansour is based on the potential function by Monderer and Shapley,
in our paper we use new combinatorial arguments to establish the result. Generally
speaking, our study here is more comprehensive in that we allow each agent to connect
a set of terminals and consider directed and undirected graphs as well as unweighted
and weighted games.
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Analysis techniques. As mentioned above, our upper bounds on the price of
anarchy are achieved using new combinatorial arguments that do not rely on potential
functions: Starting from a strong Nash equilibrium, we perform a sequence of specific
strategy changes for varying size coalitions. For each strategy change there exists one
unsatisfied agent whose original cost can be bounded relative to the optimum. From a
technical point of view, our strongest contribution is the lower bounds for undirected
graphs. We present a new recursive framework for constructing lower bounds in
network design games. Applying the recursive construction for varying parameters, we
are able to obtain anarchy as well as stability bounds in both unweighted and weighted
games. The protocol could also be applied to derive bounds for directed graphs, but
simpler constructions work in the directed case. While the same recursive framework
can be applied to construct graphs for anarchy and stability bounds, the analyses of
the graphs differ. To establish anarchy bounds we have to prove that no coalition can
deviate, which turns out to be a nontrivial task because all possible coalitions and
strategy changes over the recursive levels must be examined. To establish a stability
bound, we have to show that no better Nash equilibria exist. In fact, we will prove
that our graphs admit only one Nash equilibrium.

2. Problem statement and definitions. We formally introduce the network
design problems and game-theoretic concepts studied in this paper.

Network design games. Consider a graph G = (V,E, c) with a nonnegative
cost function c : E �→ R

0
+ defined on the edges. GraphGmay be directed or undirected

as we will study network design in both directed and undirected graphs. Associated
with G are n selfish agents, each of which has certain connectivity requirements.
More specifically, let Ti ⊆ V be the set of terminals that agent i wishes to connect.
If G is a directed graph, then for (selected) terminal pairs t, t′ ∈ Ti we additionally
have to specify which direction between the pair should be established. A strategy of
an agent i consists of a set Si ⊆ E of edges satisfying the connection requirements.
We assume that strategies Si are minimal; i.e., dropping any edge of Si leads to
a configuration in which the connectivity requirements of agent i are not satisfied
anymore. A combination S of strategies is the vector S = (S1, . . . , Sn) of individual
agent strategies. Edges used by the agents have to be paid for. We consider Shapley
cost sharing mechanisms that split the cost c(e) of an edge e in a fair manner among
the agents using that edge. In an unweighted game, if k agents use an edge e, then
each of the k agents pays a share of c(e)/k for that edge. Thus, for a combination S
of strategies, the total cost of agent i is equal to costi(S) =

∑
e∈Si

c(e)/|{j : e ∈ Sj}|.
In a weighted game each agent i has a weight wi and pays a share proportional to
its weight. For any edge e ∈ Si, agent i pays a share of c(e)wi/We, where We =∑

j:e∈Sj
wj is the total weight of the agents j using e in their strategies. Formally,

the cost of agent i in a weighted game is costi(S) =
∑

e∈Si
c(e)wi/We.

Strong Nash equilibria. We are interested in stable solutions where agents
have no incentive to deviate from their strategies. Previous work has considered
Nash equilibria that are resilient to deviations of single agents. A weakness of Nash
equilibria is their vulnerability to deviations by coalitions of agents. To overcome
this problem, Aumann [4] defined the notion of strong Nash equilibria. A strong
Nash equilibrium is resilient to deviations of coalitions; i.e., there exists no coalition
of agents that can jointly change strategies such that every agent in the coalition
has a strictly smaller cost. Formally, let I be a nonempty coalition of agents. For
a combination S of strategies, let SI be the projection of S on I; i.e., SI are the
strategies of agents i ∈ I. Similarly, S−I represents the strategies of agents i /∈ I.
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For coalition I, let S′
I be another choice of strategies. A combination S of strategies

forms a strong Nash equilibrium if, for no nonempty coalition I, there exists a strategy
change S′

I such that costi(S′
I ,S−I) < costi(S) for all agents i ∈ I. Note that a

standard Nash equilibrium is a strong Nash equilibrium where only coalitions of size
one are allowed. In this spirit one can consider generalized settings in which coalitions
of size at most c are permitted, 1 ≤ c ≤ n. As for weighted games we will also be
interested in scenarios where the total weight of agents forming a coalition is limited.
This ensures that agents of high weight cannot impose too much control on agents
outside a coalition.

As we shall see, strong Nash equilibria do not always exist. For this reason
we relax the notion of stability, calling a combination of strategies stable if agents
cannot improve their cost by a factor of more than α. More specifically, for a real
value α ≥ 1, a combination S of strategies forms an α-approximate strong Nash
equilibrium if, for no nonempty coalition I, there exists a strategy change S′

I such
that costi(S′

I ,S−I) < costi(S)/α for all agents i ∈ I. Similarly, we can define α-
approximate Nash equilibria when the size or weight of a coalition is limited. We
remark that in the context of α-approximate strong equilibria another definition seems
reasonable. We could call a combination of strategies an α-approximate strong Nash
equilibrium if no coalition can improve its total cost by a factor of more than α, while
still requiring that every agent of the coalition performs strictly better than before.
Obviously, an α-approximate Nash equilibrium according to this second definition is
an α-approximate equilibrium under the former definition but not vice versa. Thus,
our original definition allows for more configurations representing equilibrium states.
For this reason and because our first definition requires a sufficiently high benefit for
each agent of a coalition to perform a strategy change, we adopt the original definition
in this paper. However, all the results that we will present in the following sections
also hold for the second definition as well.

Performance measures. We are interested in the performance of strong Nash
equilibria relative to the social optimum. Let cost(S) =

∑n
i=1 costi(S) be the total

cost of all the agents, and let cost(OPT ) be the cost of the globally optimal solution.
We say that strong Nash equilibria achieve a price of anarchy of c if maxS

cost(S)
cost(OPT ) ≤

c, where the maximum is taken over all strong Nash equilibria. The notion can be
extended to (α-approximate) strong Nash equilibria with coalitions of limited size or
weight. In this paper we will also be interested in the price of stability of standard
Nash equilibria where coordination among agents is not allowed. The price of stability
is minS

cost(S)
cost(OPT ) , where the minimum is taken over all Nash equilibria.

3. Upper bounds for unweighted games. We study the existence of strong
Nash equilibria and then develop upper bounds on the price of anarchy. The proof of
the following proposition is presented in the appendix.

Proposition 3.1. There exist directed and undirected graphs that do not admit
strong Nash equilibria.

Theorem 3.2. In any directed or undirected graph, α-approximate strong Nash
equilibria exist, for any α ≥ H(c), if coalitions of size up to c are allowed.

Proof. We use a classical potential function by Monderer and Shapley [20] to show
the existence of α-approximate strong Nash equilibria. Given a graph G = (V,E, c)
and a combination S = (S1, . . . , Sn) of strategies, let ne be the number of agents
currently using edge e ∈ E in their strategies, i.e., ne = |{i : e ∈ Si}|. The potential
is defined as Φ(S) =

∑
e∈E c(e)H(ne). We will show that, while S does not form

an α-approximate strong Nash equilibrium, when allowing coalitions of size up to c,
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any α-improvement move strictly decreases the potential. An α-improvement move,
for a coalition I with |I| ≤ c, is a strategy change S′

I such that costi(S′
I ,S−I) <

costi(S)/α for any agent i ∈ I. Suppose that we perform a sequence of such α-
improvement moves starting from the social optimum. As the potential is upper
bounded by H(n)cost(OPT ) and lower bounded by 0, the sequence of improvement
moves must converge to an α-approximate strong Nash equilibrium.

We analyze an α-improvement move, performed by a coalition I with |I| ≤ c.
The strategy change S′

I of I can be viewed as being executed in two steps: (1) In a
first step agents i ∈ I drop all the edges used in strategies Si. At this point no agent
i ∈ I shares the cost of any edge. (2) In a second step agents i ∈ I join the edges they
want to use in their new strategies S′

I . Let E1 be the set of edges dropped in step (1),
and let E2 be the set of edges added in step (2). These edge sets need not be disjoint.
For any e ∈ E, let n1

e be the number of agents sharing e just after step (1), and let
n2
e be the number of agents sharing e after step (2). The absolute value of the cost

reduction experienced by I due to step (1) is

cost− =
∑
e∈E1

c(e)
ne − n1

e

ne
,

because e ∈ E1 is dropped by ne − n1
e agents that each paid a share of c(e)/ne. The

value of this cost reduction is equal to the cost of I in the original configuration,
i.e., cost− =

∑
i∈I costi(S), because after step (1) the cost of I is 0. The cost increase

of I due to step (2) is

cost+ =
∑
e∈E2

c(e)
n2
e − n1

e

n2
e

,

since e ∈ E2 is bought by n2
e−n1

e agents i ∈ I who pay c(e)/n2
e each. This cost increase

is equal to the cost of I in the new configuration, i.e., cost+ =
∑

i∈I costi(S′
I ,S−I),

because the cost of I was 0 before step (2) and the strategy change is complete
after step (2). By the definition of an α-improvement move,

∑
i∈I costi(S′

I ,S−I) <∑
i∈I costi(S)/α and hence

(3.1) αcost+ − cost− < 0.

Next we consider the potential change ΔΦ. The potential change stems from edges
e ∈ E1 ∪ E2 where cost shares change. Let Φ− be the absolute value of the potential
drop due to step (1) of the improvement move, and let Φ+ be the potential increase
due to step (2). We will show −Φ− ≤ −cost− and Φ+ ≤ αcost+. This implies
ΔΦ = −Φ− + Φ+ ≤ −cost− +αcost+, and using (3.1) we obtain ΔΦ < 0, which is to
be proved.

To verify −Φ− ≤ −cost− we observe

Φ− =
∑
e∈E1

c(e)(H(ne) −H(n1
e)) ≥

∑
e∈E1

c(e)
ne − n1

e

ne
= cost−.

The inequality holds because H(ne)−H(n1
e) = 1/(n1

e+1)+1/(n1
e+2)+ · · ·+1/ne ≥

(ne − n1
e)/ne. It remains to prove Φ+ ≤ αcost+. The potential increase is given by

Φ+ =
∑
e∈E2

c(e)(H(n2
e) −H(n1

e)). We show that, for any e ∈ E2,

(3.2) H(n2
e) −H(n1

e) ≤ H(n2
e − n1

e)
n2
e − n1

e

n2
e

.
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The desired inequality for the potential increase then follows because n2
e − n1

e ≤ c as
at most c agents can join any edge in step (2) and H(c) ≤ α. The expressions in (3.2)
are

H(n2
e) −H(n1

e) =
1

n1
e + 1

+
1

n1
e + 2

+ · · · + 1
n2
e

,

H(n2
e − n1

e)
n2
e − n1

e

n2
e

=
(

1 +
1
2

+ · · · + 1
n2
e − n1

e

)
n2
e − n1

e

n2
e

.

We compare the kth terms of these expressions, for k = 1, . . . , n2
e − n1

e, and es-
tablish (3.2) by proving 1

n1
e+k ≤ 1

k · n
2
e−n1

e

n2
e

. This is equivalent to showing 0 ≤
n1
e(n

2
2 − n1

e) − kn1
e, and this holds because f(k) = n1

e(n
2
2 − n1

e) − kn1
e is decreasing in

k and f(n2
e − n1

e) = 0.
Theorem 3.3. In any directed or undirected graph and for any α ≥ 1, the price

of anarchy of α-approximate strong Nash equilibria is upper bounded by αn
c H(c) if

coalitions of size up to c are allowed.
If there are no restrictions on the coalition size and we are interested in true

strong Nash equilibria (i.e., α = 1), we obtain the following corollary.
Corollary 3.4. In any directed or undirected graph the price of anarchy of

strong Nash equilibria is upper bounded by H(n).
Proof of Theorem 3.3. Let G be a graph that admits α-approximate strong Nash

equilibria for some α ≥ 1, and let S = (S1, . . . , Sn) be such an equilibrium state. The
basic idea of the proof is to consider all coalitions of size exactly c. For each coalition
I we perform a process consisting of exactly c steps in which the agents of I try to
buy the edges of the social optimum. At the end of each step exactly one agent will
leave the process. Making use of the fact that in S no coalition of size up to c can
improve its cost by a factor of more than α, we will be able to upper bound costi(S)
of the agent i leaving the process relative to the cost of the social optimum. More
specifically, we will prove that, for any coalition I of size exactly c,

(3.3)
∑
i∈I

costi(S) ≤ αH(c)cost(OPT ).

Let I be the set of all coalitions of size exactly c. Summing (3.3) over all the
(
n
c

)
coali-

tions I ∈ I, we obtain
∑
I∈I

∑
i∈I costi(S) ≤ α

(
n
c

)
H(c)cost(OPT ). Any fixed agent

i, 1 ≤ i ≤ n, occurs in exactly
(
n−1
c−1

)
coalitions I ∈ I. Hence

∑
I∈I

∑
i∈I costi(S) =(

n−1
c−1

)
cost(S). We conclude that

cost(S) ≤
(
n
c

)
/
(
n−1
c−1

)
· αH(c)cost(OPT ) =

n

c
· αH(c)cost(OPT ),

which establishes the stated price of anarchy.
Fix an arbitrary coalition I of size exactly c. We will prove (3.3). Let EOPT be

the set of edges bought by the social optimum and, for any i ∈ I, let EOPTi be a
minimal set of edges necessary to connect the terminals of agent i within the optimal
solution. We now start the process mentioned above. Let I1 := I be the initial
coalition consisting of c agents. Suppose that we have already performed k − 1 steps
of the process, where initially k = 1, and let Ik be the coalition given at the beginning
of the kth step, where 1 ≤ k ≤ c. The kth step proceeds as follows. Starting from
initial configuration S, the agents of Ik perform a strategy change SkIk

in which i ∈ Ik
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buys set EOPTi . Let Sk = (SkIk
,S−Ik

) be the resulting configuration. The new cost of
agent i ∈ Ik is

costi(Sk) =
∑

e∈EOP T
i

c(e)
|{j ∈ Ik : e ∈ EOPTj } ∪ {j /∈ Ik : e ∈ Sj}|

≤
∑

e∈EOP T
i

c(e)
|{j ∈ Ik : e ∈ EOPTj }|

.

Since the original configuration S forms an α-approximate strong Nash equilibrium,
the strategy change cannot improve the cost of every agent i ∈ Ik by a factor of more
than α. Thus there must exist an agent ik with costik(Sk) ≥ costik(S)/α and hence

(3.4) costik(S) ≤ α
∑

e∈EOP T
ik

c(e)
|{j ∈ Ik : e ∈ EOPTj }| .

This agent ik leaves the coalition Ik. If there is more than one agent satisfying the
above cost inequality, we select an arbitrary one of them. The new coalition at the
end of the step is Ik+1 := Ik \ {ik}. The process ends after exactly c steps when the
coalition is empty. Summing (3.4) over all of the c steps and taking into account that
the sequence of agents leaving the process forms I, we find

(3.5)
∑
i∈I

costi(S) ≤ α

c∑
k=1

∑
e∈EOP T

ik

c(e)
|{j ∈ Ik : e ∈ EOPTj }| .

We analyze the right-hand side of the above inequality, which sums edge costs c(e)
over edges e ∈ EOPT . Consider any fixed edge e ∈ EOPT , and let ne = |{i ∈ I : e ∈
EOPTi }| be the number of agents in I using e in the described strategy changes. The
cost of e contributes to the right-hand side of (3.5) whenever one of the ne agents
leaves the process. The �th time this happens, the contribution is c(e)/(ne− �+1) for
� = 1, . . . , ne. Thus, the cost contribution is c(e)H(ne) ≤ c(e)H(c), and we conclude
that

∑
i∈I costi(S) ≤ α

∑
e∈EOP T c(e)H(c) = αH(c)cost(OPT ).

4. Lower bounds for unweighted games. We first present a lower bound
for directed graphs. This lower bound implies that if there is no restriction on the
coalition size, our upper bound of Corollary 3.4 is optimal.

Theorem 4.1. In directed graphs and for any α ≥ 1, the price of anarchy of
α-approximate strong Nash equilibria is at least αmax{n/c,H(n)} if coalitions of size
at most c are allowed.

Proof. We modify lower bound graphs that were presented previously in the
literature [2]. For the bound of αn/c, consider a simple graph consisting of two vertices
s and t that are connected by two parallel edges of cost αn and c+ ε, respectively; see
Figure 4.1(a). Associated with the graph are n agents, all of which have to connect
terminals s and t. An optimal solution will buy the edge of cost c+ ε. On the other
hand, the configuration in which all of the n agents share the expensive edge of cost
αn, each one paying a cost of α, represents an α-approximate strong Nash equilibrium:
Any coalition of size up to c, when performing a strategy change and buying the edge
of cost c + ε, incurs a cost of at least 1 + ε/c per agent. Hence the agents of the
coalition do not save a factor of more than α in cost.
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(a)

s

t

αn c + ε
v1 v2 v3 vn

w

t

· · ·

0

(b)

0

α
3

α
2

00

1 + ε

α
n

α

Fig. 4.1. Directed graphs enforcing a high price of anarchy.

In order to establish the lower bound of αH(n), we use the graph depicted in
Figure 4.1(b). There are n vertices v1, . . . , vn, where vi is connected to a vertex t
via a directed edge (vi, t) of cost α/i and to a vertex w via a directed edge (vi, w)
of cost 0. Additionally, there is a directed edge (w, t) of cost 1 + ε. Associated with
the graph are n agents, where agent i has to connect vi to t. An optimal solution
satisfies the connection requirements by buying the edges of cost 0 and the edge (w, t)
of cost 1+ ε. The configuration in which agent i connects vi to t using its private edge
(vi, t) of cost α/i forms an α-approximate strong Nash equilibrium. Any coalition of
size, say c, that performs a strategy change and purchases edge (w, t) incurs a cost
of (1 + ε)/c per agent. However, there is at least one agent in the coalition whose
original cost was at most α/c and to whom the incentive of changing is not sufficiently
high.

We next develop a lower bound for undirected networks. Our lower bound con-
struction is quite involved, and we therefore concentrate on the most general scenario
where there is no limit on the coalition size.

Theorem 4.2. For any α ≥ 1, there exists a family of undirected graphs, each
admitting an α-approximate strong Nash equilibrium whose cost is Ω(α

√
logn) times

that of the social optimum.
Proof. For ease of exposition we first prove the theorem for α = 1 and then show

how to adapt the proof for any α > 1. In the following we first define our family of
graphs. We then identify the social optimum and prove that there exists an expensive
strong Nash equilibrium.

The graphs G are defined recursively. Let n be a positive integer such that
�
√

logn� ≥ 2. In this proof logarithms are taken to the base 3. Let dmax =
�
√

logn� − 1. The recursive construction proceeds in dmax + 1 steps. At the bot-
tom level of the recursion, i.e., at maximum depth dmax, G consists of graphs Gdmax

of order dmax; cf. Figure 4.2(a). A graph Gdmax is composed of a stem edge {v, w} of
cost sdmax = 1/3dmax and a bridge {u, v} of order dmax having cost bdmax = 2/32dmax.
The bridge and the stem are joined at vertex v. Vertices u and w are connected via
an arc {u,w} of order dmax having cost admax = 1/3dmax. We call u the base and
w the tip of Gdmax . Associated with Gdmax are ndmax = n/3dmax(dmax+1)� agents of
order dmax, each having to connect terminals u and w. By the choice of dmax we have
ndmax ≥ 1.

Assume that graphs of order dmax, dmax − 1, . . . , d+ 1 are defined. Then a graph
Gd of order d, which resides at depth d of the recursion, is constructed as follows;
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u

Gdmax

arc
stem

bridge

w

v

(a)

Gd+1
3

Gd+1
2

Gd+1
1

(b)

ud

(c)

G0

bridge

arc

wd = w3,d+1
Gd

u1,d+1

Fig. 4.2. The recursive construction of graphs Gd.

see Figure 4.2(b). Graph Gd consists of three graphs Gd+1
1 , Gd+1

2 , and Gd+1
3 of order

d+1 that are attached to each other. More specifically, the tip of Gd+1
1 and the base of

Gd+1
2 are merged, i.e., the two vertices are united, and the tip of Gd+1

2 is merged with
the base of Gd+1

3 . Let u1,d+1 be the base of Gd+1
1 . Attached to this vertex is a bridge

{ud, u1,d+1} of order d having a cost of bd = 2/32d. Let w3,d+1 be the tip of Gd+1
3

and set wd := w3,d+1. We call ud the base and wd the tip of Gd. Additionally, Gd

contains an arc {ud, wd} of order d connecting the base and the tip. This arc has
cost ad = 1/3d. Associated with Gd are nd = n/3d(d+1)� − 3n/3(d+1)(d+2)� agents
of order d, all of which have to connect ud to wd. As we shall see, these agents will
govern the connection decisions within Gd. The bridge will have the effect that, in a
strong Nash equilibrium, the order-d agents will establish their connections using the
arc of order d instead of routing through the graphs Gd+1

k , 1 ≤ k ≤ 3.
The construction proceeds down to a depth d = 0. Associated with graph G0

are n0 = n/30� − 3n/32� = n− 3n/32� agents of order 0 that have to connect the
outermost vertices of G0. Graph G := G0 is the graph we will work with. A high
level sketch of G = G0 is given in Figure 4.2(c).

We start with some observations on G. First, all the vertices and terminals of
the graph are located on a backbone consisting of all the stem edges and bridges. The
nested structure of G contains 3d subgraphs of order d for any 0 ≤ d ≤ dmax.

Proposition 4.3. The least expensive path connecting the base and the tip of
a graph Gd using only edges of Gd has a total edge cost of exactly 1/3d for any
0 ≤ d ≤ dmax.

Proof. The statement holds for d = dmax as the arc of Gdmax has cost admax =
1/3dmax, while the path crossing the bridge has cost bdmax +sdmax = 2/32dmax+1/3dmax.
Suppose that the statement holds for depths dmax, . . . , d+1. In Gd the arc of order d
has cost ad = 1/3d, while, using the inductive hypothesis, any path using the bridge
of order d has a cost of at least bd + 3 · 1/3d+1 = 2/32d + 1/3d > 1/3d.
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The total number of agents associated with G and all of its subgraphs is equal to

N0 =
dmax−1∑
d=0

3d(n/3d(d+1)� − 3n/3(d+1)(d+2)�) + 3dmaxn/3dmax(dmax+1)�

= n− 3dmaxn/3dmax(dmax+1)� + 3dmaxn/3dmax(dmax+1)�
= n.

More generally, in G the total number of agents associated with all the order-d graphs
Gd and the subgraphs therein is, for any d with 0 ≤ d ≤ dmax,

Nd =
dmax−1∑
i=d

3i(n/3i(i+1)� − 3n/3(i+1)(i+2)�) + 3dmaxn/3dmax(dmax+1)�

= 3dn/3d(d+1)�,

which is equal to n/3d
2

when ignoring ceilings.
The social optimum in G buys the backbone of the graph. As there are 3dmax

graphs of order dmax, the total cost of the stem edges is 3dmaxsdmax = 3dmax ·1/3dmax =
1. There are 3d graphs of order d, 0 ≤ d ≤ dmax, and hence the total cost of order-d
bridges is 3dbd = 3d · 2/32d = 2/3d. Summing over all d we find that the total cost
of the bridges is

∑dmax
d=0 2/3d ≤ 3. We conclude that the cost of the social optimum is

bounded by 4.
Consider the configuration S in which, for any graph Gd within G, any order-

d agent associated with this graph Gd establishes its required connection via the
corresponding arc of order d. That is, S buys all the arcs but no bridges or stem edges.
As we will show in the remainder of this proof, S forms a strong Nash equilibrium.
We evaluate the cost of S. As there are 3d graphs of order d, the total cost of order-d
arcs is 3dad = 3d ·1/3d = 1 for any fixed d with 0 ≤ d ≤ dmax. Summing over all d, we
obtain cost(S) = dmax + 1 ≥ �

√
log n�, and this establishes the desired performance

ratio.
It remains to show that S is indeed a strong Nash equilibrium. To this end we

have to show that no coalition I of agents has an improvement move. We will always
consider nonempty coalitions. An improvement move, for a coalition I, is a strategy
change S′

I such that costi(S′
I ,S−I) < costi(S) for any agent i ∈ I. In our graph

G, as all the agents have to connect pairs of terminals, a strategy of an agent is a
simple path connecting the desired vertices. The property that there does not exist
an improvement move follows from Lemma 4.4, which we prove below.

Lemma 4.4. For d = 0, . . . , dmax, no coalition involving agents of order d has an
improvement move.

For the proof of Lemma 4.4 we need Lemma 4.5, which we prove first.
Lemma 4.5. Consider a fixed d, 0 ≤ d ≤ dmax, and suppose that no coalition

involving agents of order smaller than d has an improvement move. Furthermore,
assume that no coalition I involving agents of order d has an improvement move in
which an order-d agent i ∈ I associated with a graph Gd(i) chooses a path containing
edges outside Gd(i). Then no coalition involving agents of order d has an improvement
move.

Proof of Lemma 4.5. Let I be a coalition that involves agents of order d. We have
to show that I has no improvement move. Based on the assumptions of the lemma,
we can restrict ourselves to coalitions I that do not contain agents of order smaller
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than d. Furthermore, based on the assumptions, we only have to consider strategy
changes where each order-d agent i ∈ I establishes the required connection within
its graph Gd(i). Let I ′ ⊆ I be any maximal subcoalition of order-d agents that are
associated with the same graph Gd(I ′). We will show that any strategy change S′

I′

that consists of choosing connection paths within Gd(I ′) leads to a strictly higher cost
for that subcoalition; i.e., at least one agent i ∈ I ′ has a strictly higher cost, and the
strategy change is no improvement move.

Graph Gd(I ′) has nd order-d agents associated with it. Let f be the fraction
defecting, i.e., f = |I ′|/nd. In the original configuration S, when routing through the
arc of order d, subcoalition I ′ paid a cost of fad = f/3d. When changing strategy
and choosing a different connection route within Gd(I ′), each i ∈ I ′ selects a path Pi
that crosses the bridge of order d and then, if d = dmax, traverses the stem edge of
Gdmax(I ′) (see Figure 4.2(a)). If d < dmax, path Pi then traverses the order-(d + 1)
graphs Gd+1

k (I ′), 1 ≤ k ≤ 3, located within Gd(I ′) (see Figure 4.2(b)). If d = dmax,
then the total cost of edges on Pi is bdmax + sdmax ≥ (1 + 2/3d)/3d. If d < dmax, then
the total cost is at least bd + 3 · 1/3d+1 ≥ (1 + 2/3d)/3d because, by Proposition 4.3,
the least expensive path traversing an order-(d+ 1) graph has cost 1/3d+1. In both
cases we have the same lower bound on the cost, expressed in terms of d. The cost
of Pi is not shared by agents of order smaller than d, as they are not part of the
original coalition I, nor is the cost shared by order-d agents associated with other
graphs Gd �= Gd(I ′). The cost of Pi can be shared only by agents of order larger than
d, and there exist Nd+1 such agents if d < dmax. If d = dmax, the cost is not shared
by other agents.

If d = dmax, we are done because the new cost of I ′ is (1 + 2/3d)/3d, while the
original cost was f/3d ≤ 1/3d. If d < dmax, then at best all the Nd+1 agents of order
larger than d support the edges traversed by I ′, and the new cost of I ′ is at least
cost′I′ ≥

fnd

fnd+Nd+1
(1 + 2

3d ) 1
3d . We need to show that cost′I′ is higher than the original

cost of f/3d, which is equivalent to proving nd

fnd+Nd+1
(1 + 2

3d ) > 1. Since 0 < f ≤ 1
it suffices to show that

nd
nd +Nd+1

(
1 +

2
3d

)
> 1.

Using the definition of nd, eliminating ceilings, we find

nd > n/3d(d+1) − n/3(d+1)2+d − 3 =
n3d

3(d+1)2

(
3 − 1

32d
− 3d

2+d+2

n

)

≥ n3d

3(d+1)2

(
2 − 3(d+1)(d+2)

n

)

≥ n3d

3(d+1)2
.

The second inequality holds because 1/32d ≤ 1. For the third inequality note that d <
dmax and dmax = �

√
logn�− 1 imply (d+1)(d+2) ≤ logn and hence 3(d+1)(d+2) ≤ n.

Moreover, we have Nd+1 < 2n/3(d+1)2. We conclude that

nd
nd +Nd+1

(
1 +

2
3d

)
>

3d

3d + 2

(
1 +

2
3d

)
=

3d

3d + 2
· 3d + 2

3d
= 1.

Proof of Lemma 4.4. We prove the lemma inductively for increasing values of d.
For d = 0, the statement follows immediately from Lemma 4.5 as the assumptions of
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Fig. 4.3. The paths traversed after strategy change.

that lemma are trivially satisfied: There are no agents of order smaller than 0, and an
agent of order 0 cannot connect its terminals using edges outside G0. Suppose that
the statement of Lemma 4.4 holds for depth 0, . . . , d− 1. We prove that no coalition
I involving order-d agents has an improvement move in which an order-d agent i ∈ I
associated with a graph Gd(i) chooses a path using edges outside Gd(i). The inductive
step then follows from Lemma 4.5.

So consider a coalition I involving agents of order d and a corresponding strat-
egy change S′

I in which at least one order-d agent chooses edges outside its order-d
graph to connect the desired terminals. We show that the strategy change is not an
improvement move. By the inductive hypothesis, we can restrict ourselves to coali-
tions I not involving agents of order smaller than d. Thus I contains only agents
of order d or larger. Let I ′ ⊆ I be the maximum subcoalition of order-d agents i
choosing connection paths outside their graph Gd(i). As d ≥ 1, each such graph
belongs to a graph Gd−1 in the nested structure of G0. Consider all graphs of or-
der d − 1 containing at least one Gd(i), i ∈ I ′, and number these order-(d − 1)
graphs in an arbitrary way. Let J be the resulting index set. Each graph Gd−1,j ,
j ∈ J , contains three graphs Gd,j1 , Gd,j2 , Gd,j3 of order d. For k = 1, 2, 3, let f jk
be the fraction of the order-d agents associated with Gd,jk that are members of I ′;
i.e., f jk = |{i ∈ I ′ : i is order-d agent associated with Gd,jk }|/nd. Recall that nd is
the number of agents associated with an order-d graph. We have 0 ≤ f jk ≤ 1 and
f j1 + f j2 + f j3 > 0.

In the original configuration S, coalition I ′ buys the order-d arcs and hence pays
a total cost of costI′ =

∑
j∈J

∑3
k=1 f

j
kad. This expression holds even if some of the

f jk are zero. We show in the following that the new cost cost′I′ of I ′ is strictly higher
than costI′ . Hence at least one agent in I ′ does not improve its cost, and the strategy
change is not an improvement move.

In order to estimate cost′I′ consider an agent i ∈ I ′, and let Gd−1,j, with j ∈ J , be
the graph where i’s graph Gd(i) is located. First suppose that Gd(i) = Gd,j1 ; cf. Figure
4.3(a). After the strategy change, i connects the base and the tip of Gd,j1 on a path Pi
that uses edges outside Gd,j1 . Since strategies are simple paths, all the edges of Pi are
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outside Gd,j1 . Starting at the base of Gd,j1 , path Pi has to traverse the bridge of order
d − 1 in Gd−1,j . To reach the tip of Gd,j1 , path Pi has to travel to the tip of Gd−1,j .
This can be done using the arc of order d−1 or using another subpath outside Gd−1,j .
After having reached the tip of Gd−1,j, path Pi traverses Gd,j3 and Gd,j2 , reaching the
desired terminal. Ignoring edges visited between the base and the tip of Gd−1,j , agent
i has to pay a share for the order-(d − 1) bridge and for the subpaths of Pi within
Gd,j2 and Gd,j3 . The total cost of edges traversed within graph Gd,jk , k ∈ {2, 3}, is at
least 1/3d by Proposition 4.3. The cost may be shared with other agents.

If Gd(i) = Gd,j2 orGd(i) = Gd,j3 , the situation is similar; see Figures 4.3(b) and (c),
respectively. In the first case, Pi has to traverse Gd,j1 and the order-(d − 1) bridge.
From there it has to travel to the tip of Gd−1,j and pass through Gd,j3 . Edges used
within a graph Gd,jk , k ∈ {1, 3}, have a total cost of at least 1/3d; cost sharing may
occur. If Gd(i) = Gd,j3 , path Pi passes through Gd,j2 and Gd,j1 . After traversing the
bridge of order d − 1 it connects to the tip of Gd−1,j, which is also the tip of Gd,j3

representing the desired terminal.
Next let Cj be the total number of agents i′ ∈ I ′ that are not associated with

Gd,j1 , Gd,j2 , or Gd,j3 , but choose edges of these graphs when performing the strategy
change. In order to use such edges, the new path Pi′ of i′ must pass through the base
and the tip of Gd−1,j; see Figure 4.3(d). The path between these two vertices crosses
the bridge of order d− 1 and must consist of subpaths within Gd,jk , k = 1, 2, 3.

We are ready to lower bound the new cost cost′I′ of I ′. To this end we will
consider only the cost spent in graphs Gd,jk , 1 ≤ k ≤ 3 and j ∈ J , and on order-(d−1)
bridges in Gd−1,j . Fix a j ∈ J . Graph Gd,j1 is traversed by exactly (f j2 + f j3 )nd + Cj

agents from I ′, each using edges of cost at least 1/3d. The cost is shared by at most
(f j2 + f j3 )nd + Cj + (1 − f j1 )nd + Nd+1 agents. Here (1 − f j1 )nd is the number of
order-d agents associated with Gd,j1 that establish their connection within this graph,
and Nd+1 is the total number of agents of order larger than d that may participate
in the strategy change and reside in the entire coalition I. If d = dmax, then we set
Nd+1 = 0. Thus subcoalition I ′ spends a cost of at least

1
3d

· (f j2 + f j3 )nd + Cj

(1 − f j1 + f j2 + f j3 )nd +Nd+1 + Cj

in graph Gd,j1 . Similarly, in Gd,j2 and Gd,j3 the costs are

1
3d

· (f j1 + f j3 )nd + Cj

(1 − f j2 + f j1 + f j3 )nd +Nd+1 + Cj
and

1
3d

· (f j1 + f j2 )nd + Cj

(1 − f j3 + f j1 + f j2 )nd +Nd+1 + Cj
.

Finally the bridge of order d − 1 has cost bd−1 = 2/32(d−1), which is shared by
(f j1 +f j2 +f j3 )nd+Nd+1 +Cj agents, and I ′ incurs a cost of 2

32(d−1) ((f
j
1 +f j2 +f j3 )nd+

Cj)/((f j1 + f j2 + f j3 )nd +Nd+1 + Cj).
Note that for any k ∈ {1, 2, 3} the other two indices from that set can be expressed

as k′ = k mod 3 + 1 and k′′ = (k + 1) mod 3 + 1. We conclude that

cost′I′ ≥
∑
j∈J

(
3∑

k=1

(f jk′ + f jk′′ )nd + Cj

(1 − f jk + f jk′ + f jk′′ )nd +Nd+1 + Cj
· 1
3d

+
(f j1 + f j2 + f j3 )nd + Cj

(f j1 + f j2 + f j3 )nd +Nd+1 + Cj
· 2
32(d−1)

)
.
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Ratios of the form (x+ c)/(y+ c) are increasing in c if x ≤ y. Hence we can drop the
terms Cj and obtain

cost′I′ ≥
∑
j∈J

(
3∑

k=1

(f jk′ + f jk′′)nd
(1 − f jk + f jk′ + f jk′′)nd +Nd+1

· 1
3d

+
(f j1 + f j2 + f j3 )nd

(f j1 + f j2 + f j3 )nd +Nd+1

· 2
32(d−1)

)
.

Reordering the expression in the brackets, by focusing on one particular f jk in the
numerators, we find

cost′I′ ≥
∑
j∈J

3∑
k=1

((
f jknd

(1 + f jk − f jk′ + f jk′′)nd +Nd+1

+
f jknd

(1 + f jk + f jk′ − f jk′′)nd +Nd+1

)
· 1
3d

+
f jknd

(f j1 + f j2 + f j3 )nd +Nd+1

· 2
32(d−1)

)
.

To simplify the last expression we observe that for any real values x, y, and c inequality
1

x−y+c + 1
x+y+c ≥ 2

x+c holds, which we apply for x = f jknd and y = (f jk′ − f jk′′)nd
as well as c = nd + Nd+1. Thus the two terms in the inner bracket sum to at least

2fj
knd

(1+fj
k)nd+Nd+1

. Furthermore, as for the last term in the above expression,

f jknd

(f j1 + f j2 + f j3 )nd +Nd+1

≥ f jknd

(f jk + 2)nd +Nd+1

≥ 1
2
· f jknd

(1 + f jk)(nd +Nd+1)
.

Hence

cost′I′ ≥
∑
j∈J

3∑
k=1

(
2f jknd

(1 + f jk)nd +Nd+1

· 1
3d

+
f jknd

(1 + f jk)(nd +Nd+1)
· 1
32(d−1)

)

>
∑
j∈J

3∑
k=1

2f jknd
(1 + f jk)(nd +Nd+1)

(
1 +

2
3d

)
1
3d
.

The last line follows because 1
32(d−1) ≥ 2 2

3d
1
3d .

As shown at the end of the proof of Lemma 4.5, nd

nd+Nd+1
(1+ 2

3d ) > 1 if d < dmax.
If d = dmax, then Nd+1 = 0 and the inequality is also satisfied. In each case

cost′I′ >
∑
j∈J

3∑
k=1

2f jk
1 + f jk

1
3d

≥
∑
j∈J

3∑
k=1

f jk
1
3d
,

and the new cost of I ′ is strictly larger than the original cost of I ′ in configura-
tion S.

This completes the proof of Theorem 4.2 for α = 1. Finally, we show how to
adapt the proof for any α > 1. In the construction of the graphs Gd only the costs of
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the arcs change. An arc of order d now has cost αad. All other costs remain the same.
This increases the cost of configuration S by a factor of α, i.e., cost(S) ≥ α�

√
logn�,

while the cost of the social optimum remains the same. This establishes a performance
ratio of Ω(α

√
logn).

In the statements of Lemmas 4.4 and 4.5, the term “improvement move” has to
be replaced by “α-improvement move.” An α-improvement move, for a coalition I, is
a strategy change S′

I such that costi(S′
I ,S−I) < costi(S)/α for any agent i ∈ I. In the

proof of Lemma 4.5 we considered any coalition I involving agents of order d or larger
and investigated strategy changes where order-d agents establish connections with
their respective graph of order d. We identified a subcoalition I ′, with f = |I ′|/nd,
incurring a new cost of cost′I′ > f/3d. This cost inequality still holds in our modified
graph as edge costs did not decrease. Since cost′I′ > f/3d = (αf/3d)/α and αf/3d is
the original cost of I ′ in the scaled graph, the strategy change is not an α-improvement
move.

In the proof of Lemma 4.4 we studied coalitions I involving agents of order d or
larger. We analyzed strategy changes in which order-d agents buy edges outside their
graph of order d and identified a subcoalition I ′ of order-d agents incurring a new
total cost of cost′I′ >

∑
j∈J

∑3
k=1 f

j
k/3

d, where Gd,jk were the graphs the agents i ∈ I ′

are associated with. Again, when arcs are scaled by a factor of α, this cost inequality
still holds. As the original cost of I ′ in the scaled graph is

∑
j∈J

∑3
k=1 αf

j
k/3

d, the
strategy change is not an α-improvement move.

5. Weighted games. In this section we study weighted network design games
where each agent i has a positive weight wi. We scale the weights such that the
minimum weight is equal to 1, and hence wi ≥ 1 for all agents. Let W =

∑n
i=1 wi be

the total weight of all the agents.
If agents are allowed to coordinate their strategies, two scenarios are of interest.

In a first setting we assume that coalitions of size up to c are allowed for any 1 ≤ c ≤ n.
In this case let W c be the maximum total weight of any coalition having size at most
c. In a second setting we assume that the total weight of a coalition is upper bounded
so that agents of high weight cannot impose too much control on agents of low weight.
In this case let Wmax be the maximum total weight any coalition may have.

We extend our results shown for unweighted games.

5.1. Upper bounds. We first give a sufficient condition for the existence of
strong Nash equilibria in weighted games and evaluate their performance in terms of
the price of anarchy.

Theorem 5.1. In any directed or undirected graph α-approximate strong Nash
equilibria exist for any α ≥ 1 + ln(1 +W ). Here W = W c if coalitions of size up to c
are allowed, and W = Wmax if coalitions of weight up to Wmax are allowed.

Proof. We again use potential function arguments to show the existence of α-
approximate strong Nash equilibria but have to work with a more general potential
function, compared to that used in unweighted games. Given a graph G = (V,E, c)
and a configuration S = (S1, . . . , Sn), let ES = ∪ni=1Si be the union of all edges used
by the agents. For any e ∈ ES , let We =

∑
i:e∈Si

wi be the total weight of the agents
currently using e in their strategies. Define

Φ(S) =
∑
e∈ES

c(e)(1 + lnWe).

We show that while S does not form an α-approximate strong Nash equilibrium, an
α-improvement move of a coalition I strictly decreases the potential. This ensures
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that a sequence of improvement moves starting from the social optimum will converge
because, at any time, 0 ≤ Φ ≤ (1 + lnW )cost(OPT ).

Consider an α-improvement move of a coalition I of agents. Again, we view the
move as being performed in two steps: (1) Agents i ∈ I first drop all the edges of their
strategies Si. Let E1 be this set of edges. (2) Agents i ∈ I buy the edges they wish
to have in their new strategies. Let E2 be the set of edges involved. In the following,
let cost− be the absolute value of the cost reduction experienced by I due to step (1).
Note that cost− is equal to the cost of I in configuration S. Let Φ− be the absolute
value of the potential drop. Similarly, let cost+ be the value of the cost increase of I
in step (2), and let Φ+ be the corresponding potential increase. The value of cost+

is equal to the cost of I in the new configuration after their strategy change. Using
the definition of an α-improvement move, we find αcost+ − cost− < 0. It remains to
show that cost− ≤ Φ− and Φ+ ≤ αcost+, which implies ΔΦ = −Φ− + Φ+ < 0.

For any edge e ∈ E, let W 1
e be the total weight of agents sharing e after step (1).

The cost reduction experienced by I due to edge e ∈ E1 is cost−e = c(e)(We−W 1
e )/We.

For any e ∈ E1, let Φ−
e denote the potential drop caused by this edge. If W 1

e = 0,
then cost−e = c(e) ≤ c(e)(1 + lnWe) = Φ−

e . If W 1
e > 0, then W 1

e ≥ 1 and

cost−e = c(e)
We −W 1

e

We
≤ c(e)

∫ We

W 1
e

1
z
dz = c(e)(lnWe − lnW 1

e ) = Φ−
e .

We conclude that cost− =
∑

e∈E1
cost−e ≤

∑
e∈E1

Φ−
e = Φ−.

For any e ∈ E2 let W 2
e be the total weight of agents sharing e after step (2). The

cost increase experienced by I due to edge e ∈ E2 is cost+e = c(e)(W 2
e −W 1

e )/W 2
e

because agents in I purchasing e have a total weight of W 2
e −W 1

e . Let Φ+
e be the

potential increase caused by e ∈ E2. If W 1
e = 0, then Φ+

e = c(e)(1 + lnW 2
e ) ≤

c(e)(1 + ln(1 + W )) ≤ αcost+e . If W 1
e > 0, then Φ+

e = c(e)(lnW 2
e − lnW 1

e ) =
c(e) ln(W 2

e /W
1
e ). To establish Φ+

e ≤ αcost+e , we prove that

f(W 2
e ) = ln(W 2

e /W
1
e ) − (1 + ln(1 +W ))

W 2
e −W 1

e

W 2
e

is upper bounded by 0 for all W 2
e ≥W 1

e . This implies, as desired, Φ+ =
∑

e∈E2
Φ+
e ≤∑

e∈E2
αcost+e = αcost+, because α ≥ 1 + ln(1 +W ). Computing the first derivative

of f , we find that f is decreasing for values of W 2
e between W 1

e and (1+ln(1+W))W 1
e

and increasing for larger values. Since f(W 1
e ) = 0, we obtain that f is upper bounded

by 0 for any W 2
e with W 1

e ≤W 2
e ≤ (1 + ln(1 +W ))W 1

e . If W 2
e > (1 + ln(1 +W ))W 1

e ,
then W 1

e < W 2
e /(1 + ln(1 +W )) and

(1 + ln(1 +W ))(W 2
e −W 1

e )/W 2
e ≥ ln(1 +W ).

Hence

f(W 2
e ) ≤ ln(W 2

e /W
1
e ) − ln(1 +W )

= ln
(

1 +
W 2
e −W 1

e

W 1
e

)
− ln(1 +W )

≤ ln(1 +W ) − ln(1 +W ) = 0.

The last inequality follows because W 2
e −W 1

e

W 1
e

≤W 2
e−W 1

e , sinceW 1
e ≥ 1, andW 2

e−W 1
e ≤

W , since agents of total weight at most W can join any edge e.
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Theorem 5.2. In any directed or undirected graph and for any α ≥ 1, the price of
anarchy of α-approximate strong Nash equilibria is upper bounded by αn

c (1 + lnW c)
if coalitions of size up to c are allowed. The price of anarchy is upper bounded by
2αW
Wmax

(1 + lnWmax) if coalitions of weight up to Wmax are allowed.
If there are no restrictions on the coalitions being formed and for α = 1, we obtain

the following corollary.
Corollary 5.3. In any directed or undirected graph the price of anarchy of

strong Nash equilibria is upper bounded by 1 + lnW .
Proof of Theorem 5.2. We generalize the proof of Theorem 3.3. Given an α-

approximate strong Nash equilibrium S = (S1, . . . , Sn), we consider a coalition I of
legal size or weight and show

(5.1)
∑
i∈I

costi(S) ≤ α(1 + lnWI)costi(OPT ),

where WI it the total weight of agents i ∈ I. If coalitions of size up to c are al-
lowed, inequality (5.1) gives

∑
i∈I costi(S) ≤ α(1 + lnW c)cost(OPT ). Summing

this inequality over all the
(
n
c

)
coalitions of size exactly c, we obtain cost(S) ≤

αn
c (1+lnW c)cost(OPT ). If coalitions of weight up to Wmax are allowed, we partition

the n agents into maximal possible coalitions of admissible weight. This partition-
ing consists of at most 2W/Wmax coalitions because only one of these coalitions can
have a total weight of at most Wmax/2 and the total weight of any two coalitions is
larger than Wmax. For each coalition of the partitioning we sum up (5.1) and obtain
cost(S) ≤ 2αW

Wmax
(1 + lnWmax)cost(OPT ).

In order to establish (5.1), for any fixed coalition I, we perform the same process
as in the proof of Theorem 3.3, where subcoalitions of I change strategy and purchase
the edge set EOPT of the social optimum. For any i ∈ I, let EOPTi ⊆ EOPT be a
minimal edge set necessary to connect the terminals of agent i in the optimal solution.
The process starts with I1 := I. In the kth step, for k = 1, . . . , |I|, agents i in the
remaining subcoalition Ik change strategies and connect their terminals using EOPTi .
Since the original configuration S is an α-approximate strong Nash equilibrium, there
must exist one agent ik whose cost in the original configuration S is bounded by

(5.2) costik(S) ≤ α
∑

e∈EOP T
ik

c(e)
wik
W e
Ik

,

where W e
Ik

is the total weight of agents sharing e, i.e., W e
Ik

=
∑

i∈Ie
k
wi with Iek =

{i : i ∈ Ik and e ∈ EOPTi }. This agent ik leaves the process, and Ik+1 := Ik \ {ik}.
Summing (5.2) over all the |I| steps, we obtain

(5.3)
∑
i∈I

costi(S) ≤ α

|I|∑
k=1

∑
e∈EOP T

ik

c(e)
wik
W e
Ik

.

We estimate the contribution of c(e), for a fixed edge e ∈ EOPT , in the right-hand side
expression of (5.3). A contribution to the sum occurs whenever an agent i ∈ I with e ∈
EOPTi leaves the process. Let i1, . . . , i� ∈ I be the agents using e, i.e., e ∈ EOPTij for
j = 1, . . . , �, and assume that these agents are numbered according to the time when
they leave the process of strategy changes. For j = 1, . . . , �, let sj = wij + · · · + wi�
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be the suffix sum of these agents’ weights. Then edge e contributes a total of

c(e)
(

wi1
wi1 + · · · + wi�

+
wi2

wi2 + · · · + wi�
+ · · · + wi�

wi�

)

≤ c(e)
( �−1∑
j=1

∫ sj

sj+1

1
z
dz + 1

)
≤ c(e)

(
1 +

∫ s1

s�

1
z
dz

)

≤ c(e)
(

1 +
∫ s1

1

1
z
dz

)
= c(e)(1 + ln s1)

≤ c(e)(1 + lnWI).

The third inequality holds because s� = w� ≥ 1. Summing this cost estimate over all
edges e ∈ EOPT , we obtain the desired bound on

∑
i∈I costI(S).

5.2. Lower bounds. We develop lower bounds on the performance of strong
Nash equilibria in directed and undirected graphs.

Theorem 5.4. In directed graphs the price of anarchy of α-approximate strong
Nash equilibria is at least Ω(αmax{n/c, logW}) if coalitions of size at most c are
allowed, and at least Ω(αmax{W/Wmax, logW}) if coalitions of weight up to Wmax

are allowed.
Proof. In the setting where coalitions of size up to c are permitted, a lower bound

of αn/c was already shown for unweighted games in Theorem 4.1. We first prove the
lower bound of αW/Wmax if coalitions of weight up to Wmax are feasible. Consider n
agents with arbitrary weights wi, 1 ≤ i ≤ n. We use the simple network depicted in
Figure 4.1(a) but change the costs of the two parallel edges. The expensive edge now
has cost αW , whereas the inexpensive one costs Wmax+ε. Recall that all the n agents
have to connect terminals s and t. The state in which all the agents establish their
connection using the expensive edge forms an α-approximate strong Nash equilibrium:
Any legal coalition incurs a cost of at most αW Wmax

W = αWmax on the expensive edge.
Switching to the inexpensive edge results in a cost of Wmax +ε for the coalition, which
is not attractive enough. Obviously, the social optimum routes connections via the
inexpensive edge.

We next show a lower bound of Ω(α logW ) for both scenarios, where either the
size or the weight of a coalition is limited. Without loss of generality let W be a
power of 2 and let n = log2W + 1. We use the graph of Figure 4.1(b) but change the
costs of the edges. Each edge (vi, t) now has cost α, 1 ≤ i ≤ n, and edge (w, t) has
cost 2 + ε. The edges (vi, w) still have a cost of 0. Agent i, 1 ≤ i < n, has a weight
of W/2i and wishes to connect terminals vi and t. The last agent n has a weight of 1
and has to connect vn to t. The total weight of all of the n agents is exactly W . The
state in which every agent i, 1 ≤ i ≤ n, establishes its connection using edge (vi, t)
represents an α-approximate strong Nash equilibrium: In any coalition I of legal size
or weight, the agent i0 ∈ I of maximum weight in I dominates the other agents in I;
i.e., the weight of i0 is at least as large as the total weight of all the other agents
in I. Hence, when I changes strategy and purchases edge (w, t), agent i0 has to pay
at least 1 + ε/2, and this is not smaller than an α-fraction of the cost incurred for the
private edge (vi0 , t). The cost of the strong Nash equilibrium is α(1 + log2W ) while
the social optimum incurs a cost of 2 + ε.

Theorem 5.5. For any α ≥ 1, there exists a family of undirected graphs, each
admitting an α-approximate strong Nash equilibrium whose cost is Ω(α

√
logW ) times

that of the social optimum.
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Proof. We extend the proof of Theorem 4.2 and first concentrate on α = 1. Let W
be a real weight with �

√
logW � ≥ 2. Again logarithms are taken to the base 3. As be-

fore we construct a graph G = G0 in a recursive manner, choosing dmax = �
√

logW �−
1 in the case of weighted games. In any graph Gd, 0 ≤ d ≤ dmax, the edge costs are the
same as those defined in the proof of Theorem 4.2. However, the number of associated
agents changes. Associated with a graph Gdmax is one agent of order dmax having a
weight of wdmax = W/3dmax(dmax+1). Associated with a graph Gd, 0 ≤ d < dmax, is
one agent of order d having a weight of wd = W/3d(d+1) − 3W/3(d+1)(d+2). The total
weight of all the agents is exactlyW . The total weight of all the agents associated with
order-d graphs Gd and the subgraphs therein is Wd = W/3d

2
for any 0 ≤ d ≤ dmax.

As edge costs have not changed, the social optimum is still constant. As usual, let
S be the configuration in which an order-d agent purchases the arc of order-d within
its graph. Then cost(S) ≥ dmax + 1 ≥ �

√
logW �.

To show that S forms a strong Nash equilibrium, we can extend Lemmas 4.4
and 4.5 in a straightforward way. In the arguments agent numbers such as nd andNd+1

are to be replaced by weights wd and Wd+1. Some of the arguments and calculations
in the proofs simplify because ceilings can be ignored and fractions f and f jk , reflecting
portions of order-d agents that defect from routing through their order-d arcs, are now
equal to either 0 or 1. Finally, for α > 1, we again scale the arc costs by α.

6. The price of stability in undirected graphs. In this section we address
the price of stability of standard Nash equilibria in weighted games. Anshelevich
et al. [2] showed a lower bound of Ω(logW ) for directed graphs. Again, W =

∑n
i=1 wi

is the total weight of all the agents. We prove a lower bound for undirected graphs. No
superconstant lower bound was known for undirected graphs, for neither unweighted
nor weighted games.

Theorem 6.1. In undirected graphs the price of stability is Ω(logW/ log logW ).
This lower bound holds even if each agent has to connect only a pair of terminals.
Individual terminal pairs are allowed.

Proof. We construct a family of graphs, each admitting only one Nash equilib-
rium. The cost of this equilibrium will be Ω(logW/ log logW ) times that of the social
optimum. The basic structure of the graphs is the same as those constructed in the
proof of Theorem 4.2. However, the parameters are chosen differently here. Let W
be a positive integer with logW ≥ 3. Again, logarithms are taken to the base 3. Let
dmax = �logW/(log logW + 1)�. Inequality logW ≥ 3 implies dmax ≥ 1.

In the basic graphs Gdmax a stem edge has cost sdmax = 1/3dmax, and the bridge of
order dmax has cost bdmax = 3/(3dmax logW ). The arc of order dmax costs admax =
1/3dmax. Associated with any Gdmax is one order-dmax agent of weight wdmax =
W/(3 logW )dmax wishing to connect the base and the tip of Gdmax .

For any d, 0 ≤ d < dmax, in a graph Gd of order d, the bridge of order d has cost
bd = 3/(3d logW ), and the arc of order d costs ad = 1/3d. Associated with Gd is one
order-d agent of weight wd = W/(3 logW )d− 3W/(3 logW )d+1 having to connect the
base and the tip of Gd. The outermost graph G = G0 is the graph we will work with.

The total weight of agents associated with one order-d graph Gd and all the
subgraphs therein is Wd = W/(3 logW )d. This holds for d = dmax. Suppose that
the property holds for orders dmax, dmax − 1, . . . , d + 1. Since a graph of order d is
composed of three graphs of order d+ 1, the total weight of agents in Gd is equal to

Wd = wd + 3W/(3 logW )d+1 = W/(3 logW )d.

In particular, we obtain that the total weight of agents in G = G0 is exactly W .
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Proposition 6.2. The least expensive path connecting the base and the tip of
a graph Gd using only edges of Gd has a total edge cost of exactly 1/3d for any
0 ≤ d ≤ dmax.

Proof. The statement of the proposition holds for d = dmax because the arc
of Gdmax has cost admax = 1/3dmax, while the path crossing the bridge has cost
bdmax + sdmax = 3/(3dmax logW ) + 1/3dmax. Assume that the statement of the propo-
sition holds for depths dmax, . . . , d + 1. In Gd the arc of order d has cost ad = 1/3d,
while, by the induction hypothesis, any path using the bridge of order d has a cost of
at least bd + 3 · 1/3d+1 = 3/(3d logW ) + 1/3d > 1/3d.

The social optimum in G buys the backbone consisting of stem edges and bridges.
There exist exactly 3dmax subgraphs of order dmax, and hence the total cost of stem
edges is 3dmaxsdmax = 1. For any fixed d, 0 ≤ d ≤ dmax, graph G contains 3d graphs of
order d, each being equipped with an order-d bridge of cost bd = 3/(3d logW ). Thus
the total cost of order-d bridges is 3dbd = 3d · 3/(3d logW ) = 3/ logW . Summing
over all d we find that the total cost of bridges is upper bounded by (dmax + 1) ·
3/ logW ≤ (2 logW/ log logW )(3/ logW ) ≤ 6/ log logW ≤ 6. Hence the cost of the
social optimum is constant.

Consider configuration S in which, for any graph Gd within G, the order-d agent
associated with Gd purchases the order-d arc in this graph. We will prove in the
following that S is a Nash equilibrium and that it is the only Nash equilibrium in G.
As there are 3d graphs of order d, the total cost of order-d arcs is 3dad = 3d ·1/3d = 1,
and summing over all d we obtain cost(S) = dmax + 1 ≥ logW/(log logW + 1), which
gives the stated lower bound on the price of stability.

In the remainder of this proof we show, in a first step, that S forms a Nash
equilibrium and then, in a second step, that S is the only equilibrium in G.

We proceed with the proof that S forms an equilibrium state. Let i be an order-d
agent associated with a graph Gd. We show that any strategy change performed by
i yields a strictly higher cost. If i deviates from its original strategy in S, it can
establish the required connection either (1) by using a path within Gd or (2) by using
a path of edges outside Gd.

In case (1), the path Pi used by agent i to connect its terminal pair has to traverse
the order-d bridge in Gd, which has a cost of bd = 3/(3d logW ). If d = dmax, path
Pi continues on the stem edge of cost sdmax = 1/3dmax. If d < dmax, then Pi has to
traverse three graphs of order d+1, the total cost of which is at least 3·1/3d+1 = 1/3d.
The total weight of agents that can share the cost of Pi is upper bounded by Wd.
Thus agent i incurs a cost of at least

wd
Wd

· 1
3d

(
1 +

3
logW

)
.

If d = dmax, then wd = Wd and the latter expression is larger than the cost of 1/3dmax

incurred for buying the order-dmax arc in Gdmax . If d < dmax, then we have

wd
Wd

· 1
3d

(
1 +

3
logW

)
=
W/(3 logW )d − 3W/(3 logW )d+1

W/(3 logW )d
· 1
3d

(
1 +

3
logW

)

=
(

1 − 1
logW

)(
1 +

3
logW

)
1
3d

=
log2W + 2 logW − 3

log2W
· 1
3d

> 1/3d,
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because logW ≥ 3. Again, buying the order-d arc of cost ad = 1/3d is a strictly
better strategy.

In case (2), we have d > 0, and the path Pi used by agent i crosses the bridge
of order d − 1 and visits the base of graph Gd−1 containing Gd. The structure of
Pi is depicted in Figures 4.3(a)–(c), which we used in the proof of Theorem 4.2; the
situation here is the very same. To reach the tip of Gd, path Pi must visit the tip
of Gd−1, from where it can continue. Path Pi must fully traverse two subgraphs of
order d within Gd−1. Such a subgraph can be traversed on an arc of order d, having
cost ad = 1/3d, where the weight of the agent that bought this arc in S is wd. Thus
the cost of ad can be shared among two order-d agents. If Pi does not use the order-d
arc, the total cost of edges traversing an order-d subgraph is at least 1/3d, and the
total weight of agents sharing the edge cost is Wd −wd < wd. Thus, for the traversal
of the two order-d subgraphs, agent i pays at least

2
wd
2wd

· 1
3d

=
1
3d
.

Since the traversal of the order-(d− 1) bridge has positive cost, path Pi incurs a cost
strictly higher than that of the original strategy of i in S.

It remains to show that S is the only Nash equilibrium. To this end we will prove
that in any Nash equilibrium, an order-d agent associated with a given graph Gd must
buy the corresponding order-d arc in Gd. In other words, an equilibrium state must
be equal to S. The desired statement that in any Nash equilibrium an order-d agent
purchases the corresponding order-d arc in its graph Gd follows from the next lemma.
Loosely speaking, this lemma says that in a Nash equilibrium connections in G are
established locally. We first state the lemma and then explain its implications.

Lemma 6.3. Consider a fixed order-d graph Gd in G and assume that in any Nash
equilibrium all the agents associated with Gd and its subgraphs establish their connec-
tions using only edges of Gd. Furthermore, assume that all agents not associated with
Gd or its subgraphs do not use any edges of Gd when routing their connections. Then
in any Nash equilibrium the following two properties hold.

(a) The order-d agent associated with Gd buys the arc of order d in Gd.
(b) If d < dmax, then for any of the three order-(d+1) subgraphs Gd+1

k , 1 ≤ k ≤ 3,
within Gd, the agents associated with Gd+1

k and its subgraphs establish their
connections using only edges of Gd+1

k .
Using this lemma we can finish the proof of our theorem: For d = 0, trivially, all

agents associated with G = G0 and its subgraphs must establish connections within
G0, and there exist no agents outside G0 that could use edges of G0. Thus the
conditions of Lemma 6.3 are met, and we obtain that the order-0 agent buys the arc
of order 0 (part (a)) and that, for any of the three subgraphs G1

k, 1 ≤ k ≤ 3, agents
associated with any G1

k and its subgraphs establish connections using only edges of
this graph G1

k (part (b)). Inductively, Lemma 6.3 yields that, for any d, (a) any
order-d agent purchases the order-d arc within its graph and (b) for any subgraph
Gd+1 of order d + 1, all agents associated with Gd+1 at its subgraphs establish the
required connections locally within Gd+1.

Proof of Lemma 6.3. Part (a): Suppose that in a Nash equilibrium, an order-d
agent associated with a graph Gd does not purchase the arc of order d. Let P be
the path used by the agent to connect its terminal pair. Since, by assumption of the
lemma, the agent establishes its connection within Gd, path P must cross the order-d
bridge; see Figures 4.2(a) and (b). If d = dmax, then the path traverses the stem edge
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Fig. 6.1. The paths taken by an order-(d + 1) agent within Gd
k, 1 ≤ k ≤ 3.

of cost sdmax = 1/3dmax in Gd = Gdmax to reach the tip of the graph. If d < dmax,
path P traverses the three subgraphs Gd+1

k , 1 ≤ k ≤ 3, to reach the tip of Gd. When
traversing the subgraphs, then by Proposition 6.2 path P visits edges of total cost at
least 3 · 1/3d+1 = 1/3d. Hence, in any case, the total cost of edges traversed by P
is at least bd + 1/3d = 3/(3d logW ) + 1/3d = (1 + 3/ logW )/3d. By assumption of
the lemma, agents not associated with Gd or its subgraphs do not use edges of Gd.
Hence the cost of P is shared by agents of total weight at most Wd = W/(3 logW )d

that are associated with Gd and its subgraphs. Hence the total cost of the order-d
agent is at least wd

Wd

1
3d (1 + 3

logW ). We argue that this expression is strictly larger
than ad = 1/3d, which is the cost of purchasing the arc of order d. If d = dmax, then
wd = Wd and we are done. If d < dmax, then as shown on the previous page we have
wd

Wd

1
3d (1 + 3

logW ) > 1
3d .

Part (b): We first prove that any order-(d + 1) agent associated with a graph
Gd+1
k , 1 ≤ k ≤ 3, establishes its connection within Gd+1

k . We then show that agents
of order larger than d+ 1 associated with subgraphs of Gd+1

k , if such subgraphs exist,
also route their connections within Gd+1

k .
In a first step we lower bound the cost incurred by order-(d + 1) agents if they

buy edges outside their graph. In the following, if d+ 1 = dmax, we set Wd+2 = 0.
Claim 1. If the agent of order d + 1 associated with a graph Gd+1

k estab-
lishes its connection using edges outside Gd+1

k , then its total cost is at least C =
2wd+1

2wd+1+9Wd+2

1
3d+1 (1 + 3

logW ).

Proof. We first show that if the order-(d+ 1) agent associated with Gd+1
k imple-

ments its connection using edges outside Gd+1
k , then the path P used by this agent

must traverse the bridge of order d as well as the other two graphs of order d+1 within
Gd. We consider all possible values of k and refer the reader to Figures 6.1(a)–(c) for
the structure of P . The situation is the same as that described in Figures 4.3(a)–(c);
the only difference is that here the outer graph has order d instead of d − 1. Recall
that strategies are simple paths connecting the desired terminals. If k = 1 (cf. Figure
6.1(a)), then the order-(d+ 1) agent associated with Gd+1

1 must traverse the order-d
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bridge of Gd. In order to reach the tip of Gd+1
1 , path P must visit the tip of Gd from

where P traverses Gd+1
3 and Gd+1

2 . Similarly, if k = 2 (cf. Figure 6.1(b)), then path P
traverses Gd+1

1 , crosses the bridge of order d, travels to the tip of Gd, and visits Gd+1
3

to reach the tip of Gd+1
2 . Finally, if k = 3 (cf. Figure 6.1(c)), path P must traverse

Gd+1
2 and Gd+1

1 . The path then crosses the bridge of order d and travels to the tip of
Gd, which is also the tip of Gd+1

3 .
We lower bound the cost incurred by the order-(d + 1) agent associated with

Gd+1
k for path P . For brevity, we will denote this agent by ik. By the assumptions of

the lemma to be proved, agents not associated with Gd or its subgraphs do not use
edges of Gd. Graph Gd contains three order-(d+ 1) agents of total weight 3wd+1. If
d ≤ dmax − 2, then Gd also contains nine graphs of order d+2, each hosting agents of
total weight Wd+2. We set Wd+2 = 0 if d = dmax−1. We argued in the last paragraph
that path P must cross the bridge of order d, which has a cost of bd = 3/(3d logW ).
This cost is split among agents of total weight at most 3wd+1 + 9Wd+2. Hence, for
the bridge of order d, agent ik pays at least

(6.1)
wd+1

3wd+1 + 9Wd+2
· 3
3d logW

≥ 2wd+1

2wd+1 + 9Wd+2
· 3
3d+1 logW

.

Also, as argued in the last paragraph, path P connecting the terminals of ik has
to traverse the other two subgraphs of order d + 1 in Gd, which are indexed k′ =
k mod 3 + 1 and k′′ = (k + 1) mod 3 + 1. To traverse one such subgraph, path
P traverses edges of total cost at least 1/3d+1. We distinguish cases depending on
whether the order-(d + 1) agents associated with Gd+1

k′ and Gd+1
k′′ implement their

connections using edges inside or outside their respective graphs. First, assume that
the order-(d+ 1) agents associated with Gd+1

k′ and Gd+1
k′′ establish connections within

their respective subgraphs. In this case path P encounters other agents of total weight
at most wd+1 + 9Wd+2 in each of these subgraphs. Thus, the traversal cost of P is
shared among agents of total weight at most 2wd+1 + 9Wd+2. We obtain that agent
ik incurs a cost of at least

(6.2) 2
wd+1

2wd+1 + 9Wd+2
· 1
3d+1

for the traversal of Gd+1
k′ and Gd+1

k′′ . Next, assume that the order-(d+ 1) agents asso-
ciated with Gd+1

k′ and Gd+1
k′′ establish connections using edges outside their graphs. In

this case, again, path P encounters other agents of total weight at most wd+1+9Wd+2

when traversing any of these subgraphs (in Gd+1
k′ the associated order-(d+ 1) agent

is not present; the analogous statement holds for Gd+1
k′′ ). Hence the cost incurred in

traversing any of the two subgraphs Gd+1
k′ and Gd+1

k′′ is shared among agents of total
weight at most 2wd+1 + 9Wd+2, and we obtain the same cost bound as that given in
(6.2). Finally, assume that in exactly one of the subgraphs among Gd+1

k′ and Gd+1
k′′

the associated order-(d+ 1) agent establishes its connection within its subgraph. As
for the other of the two subgraphs, the associated order-(d+ 1) agent uses edges out-
side its graph. Without loss of generality let Gd+1

k′ be the graph where connections
are made inside, and let Gd+1

k′′ be the graph where connections are established using
edges outside. The other case is symmetric. When P traverses Gd+1

k′ , agents of total
weight at most 2wd+1 + 9Wd+2 are present, and cost sharing on edges can be done
among agents of weight at most 3wd+1 +9Wd+2. When P visits Gd+1

k′′ , agents of total
weight at most 9Wd+2 are present: The order-(d+ 1) agent associated with Gd+1

k′ is
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not present because it uses connections inside its graph, and the order-(d+ 1) agent
associated with Gd+1

k′′ is not present because it uses a strategy outside its graph. Hence
cost sharing on edges can be done among agents of total weight at most wd+1+9Wd+2

and the cost incurred by ik in traversing the two other order-(d+1) graphs is at least
(

wd+1

3wd+1 + 9Wd+2
+

wd+1

wd+1 + 9Wd+2

)
1

3d+1
≥ 2

wd+1

2wd+1 + 9Wd+2
· 1
3d+1

,

which is the same expression as (6.2). Summing the costs incurred for crossing the
order-d bridge and for traversing other order-(d+ 1) graphs (see (6.1) and (6.2)), we
conclude that agent ik pays at least the cost of C stated in the claim.

If the order-(d+ 1) agent associated with Gd+1
k purchases the arc of order d+ 1

within Gd+1
k , its cost is at most ad+1 = 1/3d+1. A strategy using edges outside the

graph incurs a cost of at least C as stated in the above claim. We show that C > ad+1,
which proves that in a Nash equilibrium the order-(d+1) agent associated with Gd+1

k

establishes the required connection via the order-(d + 1) arc. If d = dmax − 1, then
Wd+2 = 0, and we are done because C = 1

3d+1 (1 + 3
logW ) > 1

3d+1 .
If d ≤ dmax − 2, then

C =
2wd+1

2wd+1 + 9Wd+2

1
3d+1

(
1 +

3
logW

)
=

1
1 + (9Wd+2/2wd+1)

1
3d+1

(
1 +

3
logW

)
.

It remains to show 9Wd+2/(2wd+1) < 3/ logW , which proves the desired inequality
C > 1/3d+1. We have

9Wd+2

2wd+1
=

9W/(3 logW )d+2

2W/(3 logW )d+1 − 6W/(3 logW )d+2
=

3
2 logW − 2

<
3

logW
.

The last inequality holds because logW ≥ 3.
To finish the proof of part (b) of the lemma we have to show that if d ≤ dmax −2,

then any agent i of order d+ 2 or larger that is associated with a subgraph of Gd+1
k ,

1 ≤ k ≤ 3, establishes its connection within Gd+1
k . Suppose this were not the case.

Then agent i chooses a path P that leaves Gd+1
k through its base. Figure 6.1(d) shows

a sample path for k = 2. To connect to the desired terminal, path P must visit the tip
of Gd+1

k from where it can continue on edges inside Gd+1
k . Since P uses edges outside

Gd+1
k , it does not use the arc of order d + 1 in Gd+1

k and hence must traverse the
bridge of order d in Gd. The cost of this bridge is shared by agents of total weight at
most 9Wd+2 because we have shown that all the agents of order d+ 1 in Gd establish
connections within their respective subgraphs and the order-d agent associated with
Gd purchases the arc of order d (see part (a)). Let P ′ be the subpath of P connecting
the base and the tip of Gd+1

k . On P ′ agent i incurs a cost of at least

cost(P ′) ≥ w(i)
9Wd+2

3
3d logW

,

where w(i) is the weight of agent i. In the given Nash equilibrium, consider the
strategy used by the order-(d+ 1) agent associated with Gd+1

k . The cost of this agent
is at most 1/3d+1 because this is the cost incurred when buying the order-(d+ 1) arc
in Gd+1

k , which is always an option. This order-(d+ 1) agent has to connect the base
and the tip of Gd+1

k and, as shown in the previous paragraphs, use edges within Gd+1
k .

Now, agent i can replace P ′ by the strategy used by the order-(d+ 1) agent of Gd+1
k ,
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incurring a cost of at most w(i)/(w(i)+wd+1) ·1/3d+1 ≤ w(i)/wd+1 ·1/3d+1. We show
that the latter expression is strictly smaller than the cost cost(P ′), contradicting the
fact that the configuration in which i used edges outside Gd+1

k was a Nash equilibrium.
Inequality cost(P ′) > w(i)/wd+1 · 1/3d+1 is equivalent to showing 9Wd+2/wd+1 <
9/ logW . We have

9Wd+2

wd+1
=

9W/(3 logW )d+2

W/(3 logW )d+1 − 3W/(3 logW )d+2
≤ 3

logW − 1
<

9
logW

,

since logW ≥ 3.
This completes the proof of the theorem.
The lower bound of Theorem 6.1 is nearly tight. First, the potential function

arguments of the proof of Theorem 5.1 imply that there exists an α-approximate
Nash equilibrium whose cost is at most 1 + lnW times that of the social optimum if
α ≥ 1 + ln(1 +wmax). Here wmax is the maximum weight of any agent. Second, Chen
and Roughgarden [7] showed that in directed graphs, for any α = Ω(logwmax), the
price of stability of α-approximate Nash equlibria is O((logW )/α). This result can
be extended to undirected graphs.

7. Conclusions. In this paper we have investigated the value of coordination
in network design games. We have developed lower and upper bounds on the price
of anarchy attained by strong Nash equilibria in unweighted and weighted games,
considering both undirected and directed graphs. It shows that strong Nash equilibria
achieve much better performance ratios than standard Nash equilibria and that these
ratios are often as good as those of the best standard equilibrium states. There is still
room for improvements. For undirected graphs we have developed an upper bound
of Hn ≈ lnn and a lower bound of Ω(

√
logn) on the price of anarchy in unweighted

games. In weighted games the bounds are 1 + lnW and Ω(
√

logW ), respectively. An
interesting open problem is to determine the true ratios for undirected graphs.

Furthermore, in this paper we have also devised the first superconstant lower
bound on the price of stability in undirected graphs. More specifically, we proved a
lower bound of Ω(logW/ log logW ) for weighted network design games. A challenging
open problem is to determine the price of stability in unweighted games.

Appendix.
Proof of Proposition 3.1. We prove the result for undirected graphs and then

show how to direct edges to obtain the desired statement for directed networks as
well. Consider the graph given in Figure A.1. We have a vertex set V = {v1, v2, v3,
w1, w2, w3, t}, where vertex wi is connected to t via a main edge {wi, t} of cost 1,
1 ≤ i ≤ 3. Furthermore, there are auxiliary edges {vi, wi} of cost 1/2 and auxiliary
edges {vi, wi mod 3+1} of cost 1/2 + ε, 1 ≤ i ≤ 3. Here ε > 0 is an arbitrarily small
value. Associated with the graph are three agents, where agent i has to connect
terminals vi and t, 1 ≤ i ≤ 3. We will consider all possible states and show that
none represents a strong Nash equilibrium. Any state in which all of the three main
edges are purchased does not form a strong Nash equilibrium because two agents i
and i′ = i mod 3 + 1 could team up, sharing the main edge {wi′ , t}. As the original
cost of each of the two agents was at least 1 + 1/6 = 7/6 and the new cost is at most
1 + ε, this yields a cost reduction for each member of the coalition.

Next suppose that there exists a strong Nash equilibrium in which two agents
share a main edge {wi, t}, while the third agent buys a second main edge {wj , t},
j �= i. Then agent i is one of the agents sharing {wi, t} and connects to wi using
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Fig. A.1. A graph without a strong Nash equilibrium.

edge {vi, wi} since otherwise agent i could strictly improve its cost by purchasing a
third of {wi, t}. We now distinguish cases depending on whether j = i mod 3 + 1 or
j = (i + 1) mod 3 + 1. Note that our graph is symmetric in vertex index and agent
number i. Thus we may assume without loss of generality that i = 1; i.e., agent 1 and
some other agent share {w1, t}. A third agent buys {wj , t}, where j = 2 or j = 3. We
distinguish cases depending on whether j = 2 or j = 3.

If j = 2, then agent 2 must be the one buying {w2, t} as connecting v2 to w1

requires the traversal of three auxiliary edges, the cost of which is at least 1/2 + ε/3.
This cost is higher than that of buying {v2, w2}, and hence agent 2 would prefer to
share {w2, t} instead of {w1, t}. Thus agent 3 shares main edge {w1, t} and connects
to w1 using edge {v3, w1} of cost 1/2+ε because any other path of auxiliary edges has
a strictly higher cost. We conclude that agent 2 pays a cost of 3/2 and agent 3 a cost
of 1/2 + ε+ 1/2 = 1 + ε. Now agents 2 and 3 can form a coalition, sharing main edge
{w3, t}. The new cost of agent 2 is 1/2+ ε+1/2 < 3/2 and the new cost of agent 3 is
1/2 + 1/2 < 1 + ε, contradicting the assumption that the original configuration was a
strong Nash equilibrium.

If j = 3, then again agent 3 buys main edge {w3, t}: If agent 3 shared {w1, t}
and agent 2 bought {w3, t}, agent 2 would connect to w3 using edge {v2, w3} and
agent 3 would connect to w1 using edge {v3, w1} as other paths of auxiliary edges are
strictly more expensive. Both agents pay a cost of 1/2 + ε for these connections. In
this situation agent 3 could strictly improve its cost by connecting to w3 and sharing
{w3, t} instead of {w1, t}. We conclude that agent 2 shares main edge {w1, t} and
connects to w1 at a cost of 1 + ε+ 1/4. Now agent 2 can improve its cost by buying
edge {v2, w3} at a cost of 1/2 + ε and sharing edge {w3, t} instead of {w1, t}. We
obtain a contradiction to the fact that the original configuration was a strong Nash
equilibrium.

We finally have to investigate the case that a configuration buys only one main
edge {wi, t}, the cost of which is shared among the three agents. Again we may assume
without loss of generality that i = 1. Then agent 3 connects to w1 using edge {v3, w1}
and agent 2 connects to w1 using a path of auxiliary edges that results in a cost of at
least 1 + ε+ 1/4. Hence the total cost of agent 2 is at least 1 + 1/4 + 1/3 + ε > 3/2,
and agent 2 can improve its strategy by buying edges {v2, w2} and {w2, t}.

We note that the graph can be extended to any agent number n by inserting nodes
v4, . . . , vn affiliated with agents numbered 4 to n, where agent i wishes to connect vi
to t, 4 ≤ i ≤ n. Each such vi is connected to t via a private edge.
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This concludes the analysis of undirected graphs. To obtain the result for directed
graphs we simply direct edges toward the destination t. We have main edge (wi, t)
as well as auxiliary edges (vi, wi) and (vi, wi mod 3+1), 1 ≤ i ≤ 3. Directing the edges
only restricts the set of possible states, while all strategy changes proposed above can
still be performed.
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Abstract. We consider the problem of embedding finite metrics with slack : We seek to pro-
duce embeddings with small dimension and distortion while allowing a (small) constant fraction
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networking community, which achieved striking empirical success at embedding Internet latencies
with low distortion into low-dimensional Euclidean space, provided that some small slack is allowed.
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are increased by the embedding1. The popularity of distortion has been driven by
its applicability to approximation algorithms: If the embedding ϕ : V → V ′ has a
distortion of D, then the cost of solutions to some optimization problems on (V, d)
and on (ϕ(V ), d′) can differ only by some function of D; this idea has led to numerous
approximation algorithms [24].

In parallel with theoretical work on embeddings, there has been a surge of in-
terest in the networking community on network embedding problems closely related
to the framework above (see, e.g., [13, 37, 42]). This work is motivated by different
applications: One takes the point-to-point latencies among nodes in a network such
as the Internet, treats this as a distance matrix,2 and embeds the nodes into a low-
dimensional space so as to approximately preserve the distances. In this way, each
node is assigned a short sequence of virtual “coordinates,” and distances between
nodes can be approximated simply by looking up their coordinates and computing
the distance, rather than having to interact with the relevant nodes themselves. As
location-aware applications in networks become increasingly prevalent—for example,
finding the nearest server in a distributed application with replicated services or find-
ing the nearest copy of a file or resource in a peer-to-peer system—having such distance
information in a compact and easily usable form is an issue of growing importance
(see, e.g., the discussion in [13]).

In the context of these networking applications, however, distortion as defined
above has turned out to be too demanding an objective function—many metrics can-
not be embedded into Euclidean space with constant distortion; many of those that
can be so embedded require a very large number of dimensions; and the algorithms
to achieve these guarantees require a type of centralized coordination (and extensive
measurement of distances) that is generally not feasible in Internet settings. Instead,
the recent networking work has provided empirical guarantees of the following form: If
we allow a small fraction of all distances to be arbitrarily distorted, we can embed the
remainder with (apparently) constant distortion in constant-dimensional Euclidean
space. Such guarantees are natural for the underlying networking applications; essen-
tially, a very small fraction of the location-based lookups may yield poor performance
(due to the arbitrary distortion), but for the rest the quality of the embedding will
be very good.

These types of results form a suggestive contrast with the theoretical work on
embeddings. In particular, are the strong empirical guarantees for Internet latencies
the result of fortuitous artifacts of this particular set of distances, or is something more
general going on? To address this, Kleinberg, Slivkins, and Wexler [28] defined the
notion of embeddings with slack : In addition to the metrics (V, d) and (V ′, d′) in the
initial formulation above, we are also given a slack parameter ε, and we want to find
a map ϕ whose distortion is bounded by some quantity D(ε) on all but an ε fraction
of the pairs of points in V × V . (Note that we allow the distortion on the remaining
εn2 pairs of points to be arbitrarily large.) Roughly, Kleinberg, Slivkins, and Wexler
[28] showed that any metric of bounded doubling dimension—in which every ball can
be covered by a constant number of balls of half the radius—can be embedded with

1Formally, for an embedding ϕ : V → V ′, the distortion is the smallest D so that ∃α, β ≥ 1
with α · β ≤ D such that 1

α
d(x, y) ≤ d′(ϕ(x), ϕ(y)) ≤ β d(x, y) for all pairs x, y ∈ V × V . Note that

this definition of distortion is slightly nonstandard—since α, β ≥ 1, it is no longer invariant under
arbitrary scaling; however, this is merely for notational convenience, and all of our results can be
cast in the usual definitions of distortion.

2While the triangle inequality can be violated by network latencies, empirical evidence suggests
that these violations are small and/or infrequent enough to make metric methods a useful approach.
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constant distortion into constant-dimensional Euclidean space, allowing a constant
slack ε. Such metrics, which have been extensively studied in their own right, have
also been proposed on several occasions as candidates for tractable abstractions of the
set of Internet latencies (see, e.g., [16, 26, 37, 39]).

There were two main open questions posed in [28].
(1) There was no evidence that the main embedding result of [28] needed to be

restricted to metrics of bounded doubling dimension. Could it be the case
that for every finite metric space, and every ε > 0, there is an embedding of
the metric with distortion f(ε) into Euclidean space?

(2) Rather than have the embedding depend on the given slack parameter ε,
a much more flexible and powerful alternative would be to have a single
embedding of the metric with the property that, for some (slowly growing)
function D(·), it achieved distortion D(ε) on all but an ε fraction of distance
pairs for all ε > 0. We call such an embedding gracefully degrading [28] and
ask whether such an embedding (with a polylogarithmic function D(·)) could
exist for all metrics.

In this paper we resolve the first of these questions in the affirmative, showing
constant distortion with constant slack for all metrics. Moreover, the embedding we
design to achieve this guarantee is beacon-based, requiring only the measurement of dis-
tances involving a small set of distinguished “beacon nodes”; see section 2. Approaches
that measure only a small number of distances are crucial in networking applications,
where the full set of distances can be enormous; see, e.g., [21, 17, 29, 37, 38, 43]
for beacon-based approaches and further discussions. We then resolve the second
question in the affirmative for metrics that admit an O(1)-padded decomposition (a
notion from previous work on embeddings that we specify precisely in section 1.1);
this includes several well-studied classes of metrics including those with bounded dou-
bling dimension and those arising from the shortest-path metric of a graph with an
excluded minor. We further show that gracefully degrading distortion can be achieved
in the �1 norm for all metrics. The second question has been subsequently solved in
full in [2] (see also the bibliographic notes in what follows), providing an embeddings
with gracefully degrading distortion for all metrics in �p for every p ≥ 1. Finally,
we show that many of our constructions are tight and give a general technique to
obtain lower bounds for ε-slack embeddings from lower bounds for low-distortion em-
beddings.

Basic definitions. Before we formally present our results, let us present some of
the notions that will be used throughout the paper. We will assume that the metric
space (V, d) is also represented as a graph on the nodes V , with the length of edge
uv being d(u, v) = duv. We imagine this graph as having n2 edges, one for each pair
u, v ∈ V ×V ; this makes the exposition cleaner and does not change the results in any
significant way. For a map ϕ : V → V ′ let us define the notion of the distortion of a
set S of edges under embedding ϕ as the smallest D ≥ 1 such that for some positive
constant K and all edges (u, v) ∈ S we have

d(u, v) ≤ d′(ϕ(u), ϕ(v))/K ≤ D · d(u, v).

Note that the distortion of ϕ (as given in Footnote 1) is the same as the distortion of
the set of all edges.

Definition 1.1 (ε-slack distortion). Given ε, an embedding ϕ : V → V ′ has
distortion D with ε-slack if a set of all but an ε-fraction of edges has distortion at
most D under ϕ.



2306 CHAN, DHAMDHERE, GUPTA, KLEINBERG, AND SLIVKINS

We will also consider a stronger notion of slack, for which we need the following
definition. Let ρu(ε) be the radius of the smallest ball around u that contains at least
εn nodes. Call an edge uv ε-long if duv ≥ min(ρu(ε), ρv(ε)). Then there are at least
(1 − ε)n2 edges that are ε-long. For any such edge uv, at least one end point u is at
least as far from the other end point v as the (εn)th closest neighbor of v.

Definition 1.2 (ε-uniform slack distortion). Given ε, an embedding ϕ : V → V ′

has distortion D with ε-uniform slack if the set of all ε-long edges has distortion at
most D.

Note that for an ε-uniform slack embedding, the number of ignored edges incident
on any node is at most εn.

While the above notions of embeddings with slack allow the map ϕ to depend on
the slack ε, the following notion asks for a single map that is good for all ε simulta-
neously.

Definition 1.3 (gracefully degrading distortion). An embedding ψ : V → V ′

has a gracefully degrading distortion D(e) if, for each ε > 0, the distortion of the set
of all ε-long edges is at most D(ε).

Our results. We now make precise the main results described above and also
describe some further results in the paper. Our first result shows that if we are allowed
constant slack, we can indeed embed any metric space into constant dimensions with
constant distortion.

Theorem 1.4. For any source metric space (V, d), any target metric space �p, p ≥
1, and any parameter ε > 0, we give the following two O(log 1

ε )-distortion embeddings:
(a) with ε-slack into O(log2 1

ε ) dimensions, and
(b) with ε-uniform slack into O(log n log 1

ε ) dimensions.
Both embeddings can be computed with high probability by randomized beacon-based
algorithms.

These results extend Bourgain’s theorem on embedding arbitrary metrics into �p,
p ≥ 1, with distortion O(log2 n) [10] and are proved in a similar manner.

Note that the bounds on both the distortion as well as the dimension in Theo-
rem 1.4(a) are independent of the number of nodes n, which suggests that they could
be extended to infinite metrics; this is further discussed in section 2. In part (b), the
dimension is proportional to logn; we show that, for arbitrary metrics, this depen-
dence on n is indeed inevitable. As an aside, let us mention that metrics of bounded
doubling dimension do not need such a dependence on n: In Slivkins [43], these metrics
are embedded into any �p, p ≥ 1, with ε-uniform slack, distortion O(log 1

ε log log 1
ε ),

and dimension (log 1
ε )
O(log 1

ε ).
We then study embeddings into trees. We extend the known results of probabilistic

embedding into trees [5, 6, 14, 7] to obtain embeddings with slack. In particular, we
use the technique of Fakcharoenphol, Rao, and Talwar [14] to obtain the following
two results.

Theorem 1.5. For any input metric space (V, d) and any parameter ε > 0 there
exists an embedding into a tree metric with ε-uniform slack and distortion O(1

ε log 1
ε ).

In fact, the tree metric in Theorem 1.5 is induced by a hierarchically separated
tree (HST ) [5], which is a rooted tree with edge weights we such that we < we′/2
whenever edge e′ is on the path from the root to edge e.

Theorem 1.6. For any input metric space (V, d), the randomized embedding
of [14] into tree metrics has expected gracefully degrading distortion D(ε) = O(log 1

ε ).
3

3More formally, we show that if an edge uv is ε-long, then duv ≤ ET [dT (u, v)] ≤ O(log 1
ε
) duv ,

where dT is the tree metric generated by the randomized algorithm in [14].
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Since tree metrics are isometrically embeddable into L1, this immediately implies
that we can embed any metric into L1 with gracefully degrading distortion D(ε) =
O(log 1

ε ).
However, the dimension of the above embedding into L1 may be prohibitively

large. To overcome this hurdle and to extend this embedding to �p, p > 1, we explore
a different approach.

Theorem 1.7. Consider a metric space (V, d) which admits β-padded decom-
positions. Then it can be embedded into �p, p ≥ 1, with O(log2 n) dimensions and
gracefully degrading distortion D(ε) = O(β)(log 1

ε )
1/p.

For the reader unfamiliar with padded decompositions, let us mention that β ≤
O(dimV ), the doubling dimension of the metric, which in turn is always bounded above
by O(log n). Moreover, doubling metrics and metrics induced by planar graphs have
β = O(1); hence Theorem 1.7 implies that such metrics admit embeddings into �p,
p ≥ 1, with gracefully degrading distortion O(log 1

ε )
1/p. Note that for p > 1 this result

can be seen as a strengthening of Theorem 1.4(b) on embeddings with ε-uniform slack.
The proof of Theorem 1.7 is technically the most involved part of the paper; at

a high level, we develop a set of scale-based embeddings which are then combined
together (as in most previous embeddings)—however, since the existing ways to per-
form this do not seem to guarantee gracefully degrading distortion, we construct new
ways of defining distance scales.

Finally, we prove lower bounds on embeddings with slack: We give a very general
theorem that allows us to convert lower bounds on the distortion and dimension of
embeddings that depend only on n = |V | into lower bounds in terms of the slack
parameter ε. This result works under very mild conditions and allows us to prove
matching or nearly matching lower bounds for all of our results on ε-slack embeddings.
These lower bounds are summarized in Table 5.1 on page 2322.

Related work. This work is closely related to the large body of work on metric
embeddings in theoretical computer science; see the surveys [24, 25] for a general
overview of the area. Our results build on much of the previous work on embeddings
into �p, including [10, 33, 41, 34, 19, 30, 31], and on embeddings of metrics into
distributions of trees [3, 5, 6, 20, 14, 7]. Among the special classes of metrics we
consider are doubling metrics [4, 19, 44, 22]; the book by Heinonen [23] gives more
background on the analysis of metric spaces.

All of these papers consider low-distortion embeddings without slack. Note that
an embedding with (ε = 1/2n2)-slack or (ε = 1/2n)-uniform-slack is the same as an
embedding with no slack; for many of our results, plugging in these values of ε gives
us the best known slackless results—hence our results can be viewed as extensions of
these previous results.

The notion of embedding with slack can be viewed as a natural variant of metric
Ramsey theory. The first work on metric Ramsey-type problems was by Bourgain,
Figiel, and Milman [11], and a comprehensive study was more recently developed by
Bartal and coworkers [8, 9]. In the original metric Ramsey problem we seek a large
subset of the points in the metric space which admit a low-distortion embedding,
whereas an embedding with slack provides low distortion for a subset of the pairs of
points.

Bibliographic note. The results in this paper have been obtained indepen-
dently by Abraham, Bartal, and Neiman, which led to a merged publication [1].
The results on lower bounds (section 5) and on embedding into distributions of trees
(Theorem 1.6) were proved similarly by both groups. For the rest of the results, the
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techniques are quite different. The two groups of authors have agreed to write up the
full versions of their results separately.

Extensions and further directions. The main question left open by this work
is whether every metric admits a low-dimensional embedding into �p, p ≥ 1, with
gracefully degrading distortion D(ε). This has been answered affirmatively in Abra-
ham, Bartal, and Neiman [2], with D(ε) = O(log 1

ε ) and dimension O(log n), using a
new type of more advanced metric decomposition. They also show a tight result of
O(1/

√
ε) distortion for ε-slack embedding into a tree metric and improve the distortion

in Theorem 1.7 by a factor of β1/p.
For specific families of metrics it is still interesting to provide embeddings into �p

with gracefully degrading distortion D(ε) = o(log 1
ε ); recall that Theorem 4.1 gives

such embeddings for decomposable metrics. In particular, we would like to ask this
question for embedding arbitrary subsets of �1 into �2.

1.1. Notation and preliminaries. Throughout the paper (V, d) is the metric
space to be embedded, and duv = d(u, v) is the distance between nodes u, v ∈ V .
Define the closed ball Bu(r) = {v ∈ V | duv ≤ r}. The distance between a node u
and set S ⊆ V is denoted d(u, S) = minv∈S duv, and hence d(u, V \ Bu(r)) > r. We
will assume that the smallest distance in the metric is 1 and the largest distance (or
the diameter) is Φd.

A coordinate map f is a function from V to R; for an edge uv define f(uv) =
|f(u) − f(v)|. Call such map 1-Lipschitz if for every edge f(uv) ≤ duv. For k ∈ N

define [k] as the set {0, 1, . . . , k − 1}.
Doubling metrics and measures. A metric space (V, d) is s-doubling if every

set S ⊆ V of diameter Δ can be covered by s sets of diameter Δ/2; the doubling
dimension of such a metric is �log s	 [23, 19]. A doubling metric is one whose doubling
dimension is bounded. A measure is s-doubling if the measure of any ball Bu(r) is at
most s times larger than the measure of Bu(r/2). It is known that for any s-doubling
metric there exists an s-doubling measure; moreover, such measure can be efficiently
computed [23, 22].

Padded decompositions. Let us recall the definition of a padded decomposition
(see, e.g., [19, 30]). Given a finite metric space (V, d), a positive parameter Δ > 0, and
β : V → R, a Δ-bounded β-padded decomposition is a distribution Π over partitions
of V such that the following conditions hold.

(a) For each partition P in the support of Π, the diameter of every cluster in P
is at most Δ.

(b) If P is sampled from Π, then each ball Bx( Δ
β(x)) is partitioned by P with

probability at most 1
2 .

For simplicity say that a metric admits β-padded decompositions (where β is a num-
ber) if for every Δ > 0 it admits a Δ-bounded β-padded decomposition. It is known
that any finite metric space admits O(log n)-padded decomposition [5]. Moreover,
metrics of doubling dimension dimV admit O(dimV )-padded decompositions [19]; fur-
thermore, if a graph G excludes a Kr-minor (e.g., if it has treewidth ≤ r), then its
shortest-path metric admits O(r2)-padded decompositions [27, 41, 15].

2. Embeddings with slack into �p. In this section we show that for any ε > 0
any metric can be embedded into �p for p ≥ 1 with ε-slack and distortion O(log 1

ε ),
thus resolving one of the two main questions left open by [28].

Let us fix ε > 0 and write ρu = ρu(ε). Recall that an edge uv is ε-long if
duv ≥ min(ρu, ρv); call it ε-good if duv ≥ 4 min(ρu, ρv). We partition all of the ε-long
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edges into two groups, namely, those which are ε-good and those which are not, and
use a separate embedding (i.e., a separate block of coordinates) to handle each of
the groups. Specifically, we handle ε-good edges using a Bourgain-style embedding
from [28], and for the rest of the ε-long edges we use an auxiliary embedding such that
for any edge uv the embedded uv-distance is Θ(ρu+ρv). The combined embedding has
dimension O(log2 1

ε ) and achieves distortion O(log 1
ε ) on a set of all but an ε-fraction

of edges.
There are several ways in which this result can be refined. First, we can ask for

low ε-uniform-slack distortion and require distortion O(log 1
ε ) on the set of all ε-long

edges; we can indeed get this, but we have to boost the number of dimensions to
O(log n log 1

ε ). As Theorem 2.2 shows, this increase is indeed required. We note that
this logarithmic increase in the number of dimensions is not the case for doubling
metrics: Slivkins [43] shows how these metrics are embedded into any �p, p ≥ 1, with
ε-uniform slack, distortion O(log 1

ε log log 1
ε ), and dimension (log 1

ε )
O(log 1

ε ).
Second, this embedding can be computed in a distributed beacon-based framework.

Here a small number of nodes are selected independently and uniformly at random
and designated as beacons. Then the coordinates of each node are computed as a
(possibly randomized) function of its distances to the beacons.

Third, note that, for the ε-slack result, the target dimension is independent of n,
which suggests that this result can be extended to infinite metrics. To state such an
extension, let us modify the notion of slack accordingly. Following [43], let us assume
that an infinite metric space is equipped with a probability measure μ on nodes. This
measure induces a product measure μ×μ on edges. We say that a given embedding φ
has distortion D with (ε, μ)-slack if some set of edges of product measure at least 1−ε
incurs distortion at most D under φ. Note that, in the finite case, ε-slack coincides
with (ε, μ)-slack when μ is the counting measure, i.e., when all nodes are weighted
equally.

In the embedding algorithm, instead of selecting beacons uniformly at random
(i.e., with respect to the counting measure) we select them with respect to measure
μ. The proof carries over without much modification; we omit it from this version of
the paper.

Theorem 2.1. For any source metric space (V, d), any target metric space �p, p ≥
1, and any parameter ε > 0, we give the following two O(log 1

ε )-distortion embeddings:
(a) with ε-slack into O(log2 1

ε ) dimensions, and
(b) with ε-uniform slack into O(log n log 1

ε ) dimensions.
These embeddings can be computed with high probability by randomized beacon-based
algorithms that use, respectively, only O(1

ε log 1
ε ) and O(1

ε log n) beacons.
Proof. Let δ > 0 be the desired total failure probability. The embedding algorithm

is essentially the same for both parts, with one difference: We let k = O(log 1
δ +log 1

ε )
for part (a) and k = O(log 1

δ +logn) for part (b). We describe a centralized algorithm
first and prove that it indeed constructs the desired embedding. Then we show how
to make this algorithm beacon-based.

We use two blocks of coordinates of size kt and k, respectively, where t = �log 1
ε 	.

The first block comes from a Bourgain-style embedding without the smaller distance
scales. For each i ∈ [t] choose k independent random subsets of V of size 2i each; call
them Sij , j ∈ [k]. The first-block coordinates of a given node u are

fij(u) = (kt)−1/p d(u, Sij), where i ∈ [t], j ∈ [k].(2.1)

For every node u and every j ∈ [k], choose a number βui ∈ {−1, 1} independently and
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uniformly at random. The second-block coordinates of u are gj(u) = k−1/p ρu βuj ,
where j ∈ [k]. This completes the embedding.

For an edge uv, let f(uv) and g(uv) denote the �p-distance between u and v in the
first and the second block of coordinates, respectively. By construction, f(uv) ≤ duv
and g(uv) ≤ ρu + ρv. Moreover,

(2.2) for every ε-good edge uv, f(uv) ≥ Ω(duv/t) with probability ≥ 1 − t/2Ω(k).

Indeed, fix an ε-good edge uv and let d = duv. Let αi be the minimum of the following
three quantities: ρu(2−i), ρv(2−i), and d/2. The numbers αi are nonincreasing; α0 =
d/2. Moreover, since uv is ε-good, we have αt ≤ min(ρu, ρv, d/2) ≤ d/4. By a
standard Bourgain-style argument it follows that for each i the event

∑
j

|d(u, Sij) − d(v, Sij)| ≥ Ω(k)(αi − αi+1)

happens with failure probability at most 1/2Ω(k). (We omit the details from this
version of the paper.) Therefore, with failure probability at most t/2Ω(k), this event
happens for all i ∈ [t] simultaneously, in which case

∑
ij

|d(u, Sij) − d(v, Sij)| ≥
∑
i∈[t]

Ω(k)(αi − αi+1) = Ω(k)(α0 − αt) ≥ Ω(kd),

so f(uv) ≥ Ω(d/t) for the case p = 1. It is easy to extend this to p > 1 using standard
inequalities. This proves the claim (2.2).

Furthermore, we claim that for each edge uv, g(uv) = Ω(ρu + ρv) with failure
probability at most 1/2Ω(k). Indeed, let Nj be the indicator random variable for the
event βuj 
= βvj . Since Nj’s are independent and their sum N has expectation k/2,
by Chernoff bounds (Lemma A.1(a)) N ≥ k/4 with the desired failure probability.
This completes the proof of the claim.

Now fix an ε-long edge uv and let d = duv. Without loss of generality assume
ρu ≤ ρv; note that ρu ≤ d. Since Bu(ρu) ⊂ Bv(ρu + d), the cardinality of the latter
ball is at least εn. It follows that ρv ≤ ρu + d, so g(uv) ≤ ρu + ρv ≤ 3d. Since
f(uv) ≤ d, the embedded uv-distance is O(d).

To lower-bound the embedded uv-distance, note that with failure probability at
most t/2Ω(k) the following happens: If edge uv is ε-good, then this distance is Ω(d/t)
due to f(uv); else it is Ω(d) due to g(uv). For part (a) we use the Markov inequality
to show that with failure probability at most δ this happens for all but an ε-fraction of
ε-long edges. For part (b) we take a union bound to show that with failure probability
at most δ this happens for all ε-long edges. This completes the proof of correctness
for the centralized embedding.

It remains to provide the beacon-based version of the algorithm. Let S be the
union of all sets Sij . The Bourgain-style part of the algorithm depends only on
distances to the Θ(k/ε) nodes in S, so it can be seen as beacon-based, with all nodes
in S acting as beacons. To define the second block of coordinates we need to know
the ρu’s, which we do not. However, we will estimate them using the same set S of
beacons.

Fix a node u. Let B be the open ball around u of radius ρu, i.e., the set of all
nodes v such that duv < ρu. Let B′ be the smallest ball around u that contains
at least 4εn nodes. Note that S is a set of ck/ε beacons chosen independently and
uniformly at random for some constant c.
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In expectation at most ck beacons land in B and at least 4ck beacons land in B′.
By Chernoff bounds (Lemma A.1(a) and (b) with failure probability at most 1/2Ω(k)

the following event Eu happens: At most 2ck beacons land in B and at least 2ck
beacons land in B′. Rank the beacons according to their distance from u, and let w
be the (2ck)th closest beacon. Define our estimate of ρu as ρ′u = duw. Note that if
event Eu happens, then ρ′u lies between ρu and ρu(4ε).

Consider a 4ε-good edge uv such that both Eu and Ev happen. Then (as in the
non-beacon-based proof) we can upper-bound the embedded uv-distance by O(duv)
and lower-bound it by Ω(duv/t) with high probability. For part (a) we use the Markov
inequality to show that with failure probability at most δ event Eu happens for all
but an ε-fraction of nodes. For part (b) we take a union bound to show that with
failure probability at most δ this event happens for all nodes.

The following theorem lower-bounds the target dimension required for ε-uniform
slack, essentially showing that in part (b) of the above theorem the dependence on
logn is indeed necessary.

Theorem 2.2. For any ε < 1
2 there is a metric space (V, d) such that any

ε-uniform slack embedding into lp, p ≥ 1, with distortion D requires Ω(logD n) di-
mensions.

Proof. Take a clique on ε n red and (1− ε)n blue nodes, assign length two to each
of the blue-blue edges, and assign unit lengths to all of the remaining edges. Consider
the metric induced by this graph. Now all of the blue-blue edges are ε-long, and
thus any distortion-D ε-uniform-slack embedding must maintain all of the distances
between the blue vertices. But this is just a uniform metric on (1 − ε)n nodes, and
the lower bound follows by a simple volume argument.

3. Embeddings into trees. Probabilistic embedding of finite metric space into
trees was introduced in [5]. Fakcharoenphol, Rao, and Talwar [14] proved that finite
metric space embeds into a distribution of dominating trees with distortion O(log n)
(slightly improving the result of [6]); other proofs can be found in [7]. In this section
we exploit the technique of [14] to obtain embeddings with slack. First we show that
it gives a probabilistic embedding of arbitrary metrics into tree metrics with expected
gracefully degrading distortion D(ε) = O(log 1/ε). For technical convenience, we will
treat n-point metrics as functions from [n] × [n] to reals. Note that all metrics dT
generated by the algorithm in [14] are dominating; i.e., for any edge uv we have
d(u, v) ≤ dT (u, v).

Theorem 3.1. For any input metric space (V, d), let dT be the dominating
HST metric on V constructed by the randomized algorithm in Fakcharoenphol, Rao,
and Talwar [14]. Then the embedding from (V, d) to (V, dT ) has expected gracefully
degrading distortion D(ε) = O(log 1/ε). Specifically, for any parameter ε > 0 and any
ε-long edge uv we have

(3.1) duv ≤ Eϕ[dT (u, v)] ≤ O(log 1/ε) duv.

Since tree metrics are isometrically embeddable into L1, it follows that we can embed
any metric into L1 with gracefully degrading distortion D(ε) = O(log 1

ε ).
Proof. For simplicity let us assume that all distances in (V, d) are distinct; other-

wise we can perturb them a little bit and make them distinct, without violating the
triangle inequality; see the full version of this paper for details. In what follows we
will assume a working knowledge of the decomposition scheme in [14].

Let us fix the parameter ε > 0 and an ε-long edge uv, and let d = d(u, v). Let us
assume without loss of generality that ρu(ε) ≤ ρv(ε). Then ρu(ε) ≤ d, so |Bu(d)| ≤ εn.
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Run the randomized algorithm of [14] to build a tree T and the associated tree
metric dT . The decomposition scheme will separate u and v at some distance scale 2i ≥
d/2. Let Δ be the maximum distance in the input metric. Under the distribution over
tree metrics dT that is induced by the algorithm, the expected distance E[dT (u, v)]
between u and v in tree T is equal to the sum

log Δ∑
i≥log d−1

4 · 2i × Pr[(u, v) first separated at level 2i].

Look at the sum for i such that d/2 ≤ 2i < 4d; this is at most 48d. By the analysis
of [14], the rest of the sum, i.e., the sum for i ≥ log 4d, is at most

log Δ∑
i≥log 4d

4 · 2i × 2d
2i

log
|Bu, 2i)|

|Bu, 2i−2)| .

Since the above sum telescopes, it is at most

8d · 2 log (n/|Bu(d)|) ≤ O(d log 1/ε),

which proves the second inequality in (3.1). The first inequality in (3.1) holds trivially
because all metrics dT generated by the algorithm in [14] are dominating.

The above embedding into �1 can be made algorithmic by sampling from the
distribution and embedding each sampled tree into �1 using a fresh set of coordinates;
however, the number of trees now needed to give a small distortion may be as large as
Ω(n logn). We will see how to obtain gracefully degrading distortion with a smaller
number of dimensions in the next section.

A slightly modified analysis yields an embedding into a single tree.
Theorem 3.2. For any source metric space (V, d) and any parameter ε > 0

there exists an embedding into a dominating HST metric with ε-uniform slack and
distortion O(1

ε log 1
ε ).

4. Low-dimensional embeddings with gracefully degrading distortion.
In this section we prove our result on embeddings into �p, p ≥ 1, with gracefully
degrading distortion.

Theorem 4.1. Consider a metric space (V, d) which admits β-padded decom-
positions. Then it can be embedded into �p, p ≥ 1, with O(log2 n) dimensions and
gracefully degrading distortion D(ε) = O(β)(log 1

ε )
1/p. The embedding procedure is

given as a randomized algorithm which succeeds with high probability.
The proof of this theorem builds on the well-known embedding algorithms of

Bourgain [10] and Linial, London, and Rabinovich [33] and combines ideas given
in [41, 19, 28, 43, 30] with some novel ones. To the best of our understanding, the
embeddings given in the previous papers do not directly give us gracefully degrading
distortion, and hence the additional machinery indeed seems to be required.

Let us fix k = O(log n), where the constant will be specified later. We will
construct an embedding ϕ : V → �p with 7k2 dimensions; the coordinates of ϕ will
be indexed by triples (i, j, l) ∈ [k] × [k] × [7].

We will show how to construct the map ϕ in the rest of this section, which has
the following conceptual steps. We first define a concrete notion of “distance scales”
in section 4.1, in terms in which we can cast many previous embeddings, and specify
the desired properties for the distance scales in our embedding. We then show how
to construct the distance scales as well as the claimed embedding ϕ in section 4.2 and
show that it has gracefully degrading distortion in section 4.3.
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4.1. Distance scales and scale bundles. Our algorithm, just like the algo-
rithms in [10, 33, 41, 19, 28, 30, 31], operates on distance scales that start around
the diameter of the metric and go all the way down to the smallest distance in the
metric. Informally, the embedding ϕ has a block of coordinates for each distance
scale such that if the true uv-distance for some edge uv is within this scale, then the
uv-distance in these coordinates of ϕ is roughly equal to the true distance. These
blocks of coordinates are then combined into an embedding that works for all scales
simultaneously.

Different embeddings use very different notions of distance scales; in cases like
the Rao-style embeddings [41, 19], there are clear coordinates for each distance that
is a power of 2—but in Bourgain-style embeddings, this is not the case. To be able
to give a unified picture, let us formally define a distance scale f to be a coordinate
map f : V → R. A scale bundle {fij} is then a collection of coordinate maps fij such
that, for every fixed index j and node u, the values fij(u) are decreasing with i.

We can now cast and interpret previous embeddings in this language: In the
Bourgain-style embeddings [10, 33], fij(u) is the radius of the smallest ball around u
containing 2n−i nodes, and hence the cardinality of Bu(fij(u)) halves as we increase
i. In the Rao-style embeddings, the scales are fij(u) = diameter(V )/2i, and hence the
distance scales halve as we increase i. The measured descent embedding in [30] essen-
tially ensures a judicious mixture of the above two properties: As we increase i, the
ball Bu(fij(u)) either halves in radius or halves in cardinality, whichever comes first.

For our embedding, we need both the radius and the cardinality of Bu(fij(u)) to
halve—and hence we have to define the scale bundles accordingly. This would be easy
to achieve by itself; however, to give good upper bounds on the embedded distance,
we also need each distance scale to be sufficiently smooth, by which we mean that all
of the distance scales fij must themselves be 1-Lipschitz. In other words, we want
that |fij(u) − fij(v)| ≤ d(u, v). The construction of the scale bundle {fij} with both
halving and smoothness properties turns out to be a bit nontrivial, the details of
which are given in the next section.

4.2. The embedding algorithm. Let us construct the embedding for Theo-
rem 4.1. We have not attempted to optimize the multiplicative constant for distortion,
having chosen the constants for ease of exposition while ensuring that the proofs work.

First we will construct a scale bundle {fij : i, j ∈ [k]}. For a fixed j, the maps
fij are constructed by an independent random process, inductively from i = 0 to
i = k − 1. We start with f(0,j)(·) equal to the diameter Φd of the metric. Given fij ,
we construct f(i+1,j) as follows. Let Uij be a random set such that each node u is
included independently with probability 1/|Bu(4fij(u))|. Assuming Uij is nonempty,
define f(i+1,j)(u) as the minimum of d(u, Uij) and fij(u)/2. If Uij is empty, set
f(i+1,j)(u) = fij(u)/2. This completes the construction of the scale bundle.

To proceed, let us state a lemma that captures, for our purposes, the structure of
the source metric space: This is the only place in the proof of Theorem 4.1 where we
use padded decomposition.

Lemma 4.2. Consider a metric space (V, d) which admits β-padded decomposi-
tions. Then for any 1-Lipschitz coordinate map f and any p ≥ 1 there is a randomized
embedding g into �p with t = 6 dimensions so that

(a) each coordinate of g is positive, 1-Lipschitz, and upper-bounded by f ; and
(b) if f(u)/duv ∈ [14 ; 4] for some edge uv, then, with probability Ω(1),

‖g(u) − g(v)‖p ≥ Ω(duv t1/p/β).(4.1)
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In short, this lemma transforms a “smooth” distance scale f into a “smooth”
low-dimensional embedding g which approximately preserves distances along the “rel-
evant” edges. Here “smooth” means “1-Lipschitz,” an edge (u, v) is relevant to f if
duv ≈ f(u) or duv ≈ f(v), and distances are preserved in the sense of (4.1). Once
the relevant edges are taken care of, we want the coordinates of g to be as small as
possible in order to upper-bound the embedded distance on larger distance scales.

Sections 4.4 and 4.6 contain two different proofs of this lemma; the first one uses
padded decomposition techniques from [19, 30], and the other uses some Bourgain-
style ideas [10, 33] which we believe are novel and possibly of independent interest.4

Fix a pair i, j ∈ [k]. Apply Lemma 4.2 to the map fij , and obtain a 6-dimensional
embedding; denote these 6 coordinates as g(i, j, l), 1 ≤ l ≤ 6. Let Wij be a random set
such that each node u is included independently with probability 1/|Bu(fij(u)/2)|.
Define g(i, j, 0)(u) as the minimum of fij(u) and d(u,Wij). Finally, we set

ϕ(i, j, l) = k−1/p g(i, j, l).(4.2)

Lemma 4.3. The maps fij, gij, and ϕ(i, j, l) are 1-Lipschitz.
Proof. Indeed, f(0,j) is 1-Lipschitz by definition, and the inductive step follows

since the min of two 1-Lipschitz maps is 1-Lipschitz. For the same reason, the maps
g(i, j, l) are 1-Lipschitz as well, and therefore so are the maps ϕ(i, j, l).

Since k = O(log n), it immediately follows that the embedded distance is at most
O(log n) times the true distance. In the next section we will prove a sharper upper
bound of O(duv)(log 1

ε )
1/p for any ε-long edge uv and a lower bound Ω(duv/β) for any

edge.

4.3. Analysis. In this section we complete the proof of Theorem 4.1 by giving
bounds on the stretch and contraction of the embedding ϕ. The following definition
will be useful: For a node u, an interval [a, b] is u-broad if a or b is equal to duv for
some v, a ≤ b/4 and |Bu(a)| ≤ 1

32 |Bu(b)|.
Let us state two lemmas that capture the useful properties of the maps fij and

g(i, j, 0), respectively; note that these properties are independent of the doubling di-
mension of the underlying metric. The proofs are deferred to section 4.5.

Lemma 4.4. With high probability it is the case that
(a) for any 1-Lipschitz maps f ′

ij ≤ fij and any ε-long edge uv it is the case that∑
ij f

′
ij(uv) ≤ O(kduv log 1

ε ).
(b) for each node u each u-broad interval contains values fij for Ω(k) different

values of j.
Lemma 4.5. Fix edge uv and indices ij; let R = fij(u) and d = duv. Given

that R ≥ 4d and |Bu(d/4)| = c |Bu(R)|, the event g(i, j, 0)(uv) ≥ Ω(d) happens with
conditional probability Ω(c).

Proof of Theorem 4.1. Recall that the final embedding ϕ is defined by (4.2). Fix
an ε-long edge uv, and let d = duv. Since g(i, j, l) ≤ fij for each l, by Lemma 4.4(a) the
embedded uv-distance is upper-bounded by O(d log 1

ε ) for p = 1; the same argument
gives an upper bound of O(d)(log 1

ε )
1/p for p > 1.

It remains to lower-bound the embedded uv-distance by Ω(d/β), where β is the
parameter in Theorem 4.1 and Lemma 4.2. Denote by gij(uv) the total �p-distance
between u and v in the coordinates g(i, j, l), l ≥ 1. Denote by Eij the event that

4More precisely, the second proof is for the important special case when β is the doubling dimen-
sion. In this proof the target dimension becomes t = O(β log β), which results in target dimension
O(log2 n)(β log β) in Theorem 4.1.
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g(i, j, 0)(uv) or gij(uv) is at least Ω(d/β). It suffices to prove that with high probability
events Eij happen for at least Ω(k) (i, j)-pairs. We consider two cases, depending on
whether ρu(ε/32) ≥ d/4.

Case a. If ρu(ε/32) ≥ d/4, then the interval I = [d/4; d] is u-broad, so by
Lemma 4.4(b) there are Ω(k) different j’s such that fij(u) ∈ I for some i. By
Lemma 4.2 and Chernoff bounds (Lemma A.1(a)) for Ω(k) of these ij pairs, we have
gij(uv) ≥ Ω(d/β), Case a complete.

Case b. Assume ρu(ε/32) < d/4; consider interval I = [d; max[4d, ρu(32ε)]]. We
claim that

(4.3) Pr [Eij | fij(u) ∈ I] ≥ Ω(1) for each (i, j)-pair.

Indeed, fix ij and suppose f = fij(u) ∈ I. There are two cases f ∈ [d; 4d] and
f ∈ (4d; ρu(32ε)]. In the first case by Lemma 4.2 gij(uv) ≥ Ω(d/β) with conditional
probability at least Ω(1). In the second case

|Bu(d/4)| ≥ εn/32 ≥ 2−10 (32εn) ≥ 2−10 |Bu(f)|,

so by Lemma 4.5 g(i, j, 0)(uv) ≥ Ω(d) with conditional probability Ω(1). This com-
pletes the proof of (4.3).

Let Xj be the indicator variable of the following random event: Eij and fij(u) ∈ I
for some i. Since the interval I is u-broad, by Lemma 4.4(b) there are Ω(k) different
j’s such that fij(u) ∈ I for some i. Let J be the set of all such j’s. Then conditional
on J , {Xj, j ∈ J} are Ω(k) independent 0-1 random variables of expectation Ω(1). By
Chernoff bounds (Lemma A.1(a)) their sum is Ω(1) with high probability, completing
the proof for Case b.

4.4. Analysis: Proof of Lemma 4.2. In this section we use padded decom-
position techniques from [19, 30] to prove Lemma 4.2. Let us recall the definitions of
a padded decomposition and a decomposition bundle [19, 30].

Definition 4.6. Given a finite metric space (V, d), a positive parameter Δ > 0,
and a mapping β : V → R, a Δ-bounded β-padded decomposition is a distribution Π
over partitions of V such that the following conditions hold.

(a) For each partition P in the support of Π, the diameter of every cluster in P
is at most Δ.

(b) If P is sampled from Π, then each ball Bx(Δ/β(x)) is partitioned by P with
probability < 1

2 .
Given a function β : V × Z → R, a β-padded decomposition bundle on V is a set of
padded decompositions {η(i) : i ∈ Z} such that each η(i) is a 2i-bounded β(·, i)-padded
decomposition of V .

If a metric admits a β-padded decomposition bundle such that β is constant, we
simply say that this metric admits β-padded decompositions.

The randomized construction. Let η be a β-padded decomposition bundle.
For each s ∈ Z, let the decomposition Ps be chosen according to the distribution η(s).
We denote Ps(x) to be the unique cluster in Ps containing x.

Moreover, for s ∈ Z, let {σs(C) : C ⊆ V } be independently and identically
distributed (i.i.d.) unbiased {0, 1}-random variables. Let T = {0, 1, . . . , 5}. Let
s(x) := �log2 f(x)	. For each t ∈ T , we define a (random) subset

W t := {x ∈ V : σs(x)−t(Ps(x)−t(x)) = 0},(4.4)

from which we obtain gt(·) = min{d(·,W t), f(·)}.
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Bounding the contraction of the embedding. We fix vertices x, y ∈ V and
let d = d(x, y). Consider the embedded distance between them. The aim is to show
that, under some condition, there exists t such that |gt(x)− gt(y)| ≥ ρd happens with
constant probability, where ρ depends on the β-padded decomposition bundle.

Lemma 4.7. Suppose f(x) ∈ [d4 , 4d] and t ∈ T is the integer such that ŝ := s(x)−t
satisfies 2ŝ ∈ [d/8, d/4). Let J := {−1, 0, 1} and ρ := min{ 1

32β(x,s) : s ∈ ŝ+ J}. Then
the event |gt(x) − gt(y)| ≥ ρd happens with probability at least 1/64.

Proof. Consider the random process that determines the coordinate gt. We like
to show that the union of the following two disjoint events happens with constant
probability, which implies our goal. There are two cases.
Case 1. The set W t contains x but is disjoint with By(ρd).
Case 2. The set W t contains no points from Bx(2ρd) but at least one point from

By(ρd).
Let us define the following auxiliary events.

• Event E1 occurs when x is contained in W t.
• Event E2 occurs when W t is disjoint with By(ρd).
• Event E3 occurs when, for all z ∈ Bx(2ρd) and s ∈ ŝ+ J , x and z are in the

same cluster in η(s).
• Event E4 occurs if, for all s ∈ ŝ+ J , σs(Ps(x)) = 1.

Observe that the event E1 ∩ E2 implies the event in Case 1. Note that, given
a decomposition η(ŝ), the point x lies in a cluster different from those intersecting
By(ρd), because 2ŝ < d

4 < (1 − ρ)d. Hence the events E1 and E2 are conditionally
independent, given η(ŝ); this in turn implies that

Pr [E1 ∩ E2| η(ŝ)] = Pr [E1| η(ŝ)] Pr [E2| η(ŝ)] = 1
2 Pr [E2| η(ŝ)] .

Since this fact holds for all decompositions η(ŝ), it follows that Pr[E1 ∩E2] = 1
2 Pr[E2].

Observe that the event E3∩E4 ∩E2 implies the event in Case 2. This follows from
the fact that |s(x)−s(z)| ∈ J . Since f(x) ≥ d

4 , f is 1-Lipschitz, and d(x, z) ≤ 2ρd ≤ d
8 ,

it follows that f(x) and f(z) are within a multiplicative factor of 2 from each other.
Hence s(x) and s(z) differ by at most one. Again, given the decompositions η(s),
s ∈ ŝ+ J , the event E4 is independent of the event E3 ∩ E2. Hence

Pr
[
E3 ∩ E4 ∩ E2

]
= Pr [E4] Pr

[
E3 ∩ E2

]
= 1

8 Pr
[
E3 ∩ E2

]
.

Finally, it follows that the union of the events in Cases 1 and 2 happens with
probability at least

1
2 Pr[E2] + 1

8 Pr[E3 ∩ E2] ≥ 1
8 Pr[E3 ∩ E2] + 1

8 Pr[E3 ∩ E2] = 1
8 Pr[E3].

In order to show that E3 happens with constant probability, we make use of the
properties of β-padded decomposition bundle. Since for all s ∈ ŝ+ J we have

2ρd ≤ 2/32β(x, s) · d ≤ 2s/β(x, s),

it follows that E3 happens with probability at least 1/8. Therefore, it follows that the
desired event happens with probability at least 1/64.

4.5. Analysis: Maps fij and g(i, j, 0). In this subsection we prove Lemmas 4.4
and 4.5. First we prove part (a) of Lemma 4.4, which is essentially the upper bound
on the embedded distance for the case p = 1. We start with a local smoothness
property of the sets Uij .
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Claim 4.8. Fix i, j ∈ [k] and an edge uv. Condition on the map fij; i.e., pause
our embedding algorithm right after fij is constructed; let r = fij(u). If duv ≤ r/4,
then

Pr[v ∈ Uij ] ≤ 1/|Bu(r)| ≤ Pr
[
v ∈ U(i+3,j)

]
.

Proof. Let B = Bu(r). For the right-hand side inequality, letting r′ = f(i+3,j)(v)
we have

4r′ ≤ fij(v)/2 ≤ (r + duv)/2 ≤ 5r/8,

so duv + 4r′ < r. It follows that Bv(r′) ⊂ B, so v ∈ U(i+3,j) with probability
1/|Bv(4r′)| ≥ 1/|B|.

For the left-hand side inequality, letting r′ = fij(v) we have

4r′ ≥ 4(r − duv) ≥ r + duv,

so B ⊂ Bv(4r′). Therefore, v ∈ Uij with probability 1/|Bv(4r′)| ≤ 1/|B|.
Fix a node u; for simplicity assume k = 4k0 + 1 for some k0 ∈ N. Let Bij =

Bu(fij), and let Xij be the indicator random variable for the event that |B(4i+4, j)| ≤
|B(4i, j)|/2. Note that, for a fixed j, the random variables Xij are not independent.
However, we can show that, given all previous history, the ijth event happens with
at least a constant probability.

Claim 4.9. For each i ∈ [k0], j ∈ [k], and q = 1 − e−1/2 we have

Pr[Xij = 1 | flj, l < i] ≥ q.

Proof. Indeed, fix ij, and let f = f(4i,j)(u) and f ′ = f(4i+4,j)(u). Let r be the
radius of the smallest ball around u that contains at least |B(4i, j)|/2 nodes, and let
B = Bu(r).

Clearly, Xij = 1 if and only if f ′ ≤ r. By definition of fij ’s we have f ′ ≤ f/16,
so we are done if r ≥ f/16. Else by Claim 4.8 any node v ∈ B included into the set
U(4i+3,j) with probability at least 1/2|B|, so the probability of including at least one
node in B into this set (in which case f ′ ≤ r) is at least 1− (1− 1/2|B|)|B| ≥ q.

For a random variable X define the distribution function FX(t) = Pr[X < t]. For
two random variables X and Y , say Y stochastically dominates X (written as Y � X
or X � Y ) if FY (t) ≤ FX(t) for all t ∈ R. Note that if X ≥ Y , then X � Y . Consider
a sequence of i.i.d. Bernoulli random variables {Yi} with success probability q. By
Claim 4.9 and Lemma A.3 (proved in Appendix A) we have the following:

(4.5)
t∑
i=0

Xij �
t∑
i=0

Yi for any t ∈ [k0] and each j ∈ [k].

We’ll use (4.5) to prove the following crucial claim.
Claim 4.10. Fix node u and ε > 0; for each j let Tj be the smallest i such that

fij(u) ≤ ρu(ε) or k if no such i exists. Then
∑
j Tj = O(k log 1

ε ) with high probability.
Proof. Let α = �log 1

ε 	. Let Lj be the smallest t such that
∑t

i=0Xij ≥ α or k0 if
such t does not exist; note that Tj ≤ 4Lj. For the sequence {Yi}, let Zr be the number
of trials between the (r− 1)th success and the rth success. Let Aj =

∑jα
r=(j−1)α+1 Zr

and Z =
∑kα
r=1 Zr. By (4.5) for any integer t ∈ [k0]

(4.6)

Pr[Lj > t] = Pr

[
t∑
i=0

Xij < α

]
≤ Pr

[
t∑
i=0

Yi < α

]
= Pr

[
α∑
r=1

Zr > t

]
= Pr[A1 > t].
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Since {Aj} are i.i.d., by (4.6) and Lemma A.2 it follows that
∑
j Lj �

∑
j Aj = Z.

Therefore, by Lemma A.4

Pr
[∑

Tj > 8kα/q
]
≤ Pr

[∑
Lj > 2kα/q

]
≤ Pr[Z > 2kα/q] < (0.782)kα,

which is at most 1/n3 when k = O(log n) with large enough constant.
Now we have all tools to prove Lemma 4.4(a).
Proof of Lemma 4.4(a). Use Tj = Tj(u) from Claim 4.10. Fix some ε-long edge

uv, and let d = duv. Let tj = max(Tj(u), Tj(v)). Then by the 1-Lipschitz property
f ′
ij(uv) ≤ d for all ij; moreover, for any ij such that i ≥ tj both fij(u) and fij(v) are

at most d/2i−tj . Then f ′
ij(uv) is at most twice that much (since f ′

ij ≤ fij), so taking
the sum of the geometric series we see that

∑
ij

f ′
ij(uv) ≤

∑
j

(
dtj +

∑
i≥tj

d
2

i−tj
)
≤

∑
j O(dtj) = O

(
kd log 1

ε

)
,

where the last inequality follows by Claim 4.10.
To prove part (b) of Lemma 4.4, let us recall the definition of a u-broad interval:

For a node u, an interval [a, b] is u-broad if a or b is equal to duv for some v, a ≤ b/4
and |Bu(a)| ≤ 1

32 |Bu(b)|.
Proof of Lemma 4.4(b). It suffices to consider the u-broad intervals [a, b] such

that one of the end points is equal to duv for some v and the other is the largest a
or the smallest b, respectively, such that the interval is u-broad. Call these intervals
u-interesting; note that there are at most 2n such intervals for each u.

Fix node u and a u-broad interval I = [a, b], fix j, and let ri = fij(u). It suffices
to show that with constant probability some ri lands in I. Indeed, then we can use
Chernoff bounds (Lemma A.1(a)), and then we can take the union bound over all
nodes u and all u-interesting intervals.

Denote by Ei the event that ri > b and ri+1 < a; note that these events are
disjoint. Since some ri lands in I if and only if none of the Ei’s happen, we need to
bound the probability of ∪Ei away from 1.

For each integer l ≥ 0 define the interval

Il =
[
ρu

(
ε 2l

)
, ρu

(
ε 2l+1

))
, where εn = |Bu(b)|.

For each α ∈ {0, 1, 2, 3} let N(l,α) be the number of i’s such that r4i+α ∈ Il. We claim
that E[N(l,α)] ≤ 1/q.

Consider the case α = 0; other cases are similar. Let Nl = N(l,α), and suppose
Nl ≥ 1. Let i0 be the smallest i such that r4i ≤ Il. Then Nl ≥ t implies Xij = 0
for each i ∈ [i0; i0 + t − 2]. Recall that the construction of the maps fij starts with
f(0,j). Given the specific map f = f(i0,j), the construction of the maps fij , i > i0, is
equivalent to a similarly defined construction that starts with f(i0,j) = f . Therefore,
by (4.5) (applied to this modified construction) we have

Pr[Nl ≥ t] ≤ Pr

⎡
⎣t−2∑
β=0

X(i0+β, j) = 0

⎤
⎦ ≤ Pr

⎡
⎣ t−2∑
β=0

Yβ = 0

⎤
⎦ = (1 − q)t−1,

E[Nl] =
∞∑
t=1

Pr [Nl ≥ t] ≤
∞∑
t=1

(1 − q)t−1 =
1
q
,
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claim proved. For simplicity assume k = 4k0 + 1; it follows that

(4.7)
k−1∑
i=0

Pr[ri ∈ Il] =
3∑

α=0

k0−1∑
i=0

Pr[r4i+α ∈ Il] =
3∑

α=0

E
[
N(l,α)

]
≤ 4/q.

By Claim 4.8 if ri ∈ Il, then ri+1 ≤ a with conditional probability at most
|Bu(a)|/|Bu(ru)| ≤ 2−l/32. Therefore, Pr[Ei | ri ∈ Il] ≤ 2−l/32. By (4.7) it follows
that

Pr[∪Ei] =
k−1∑
i=0

Pr[Ei] =
k−1∑
i=0

∞∑
l=0

Pr [ri ∈ Il and Ei] ≤
k−1∑
i=0

∞∑
l=0

Pr[ri ∈ Il] ×
2−l

32

=
1
32

∞∑
l=0

2−l
k−1∑
i=0

Pr[ri ∈ Il] ≤
1
8q

∞∑
l=0

2−l =
1
4q

< 1,

so some ri lands in I with at least a constant probability.
It remains to prove Lemma 4.5 about the maps g(i, j, 0).
Proof of Lemma 4.5. Let’s pause our embedding algorithm right after the map

fij is chosen and consider the probability space induced by the forthcoming random
choices. Let Xw = fij(w). First we claim that

(4.8) Pr
[
g(i, j, 0)(u) ≤ r | r ≤ Xu/8

]
≥ Ω(βr),

where βr = |Bu(r)|/|Bu(Xu)|. Indeed, suppose r ≤ Xu/8, let B = Bu(r), and
consider any w ∈ B. Then by (4.11)

Pr[w ∈ Wij ] = 1/|Bw(Xw/2)| ≥ 1/|Bu(X)| ≥ βr|B|,
Pr

[
g(i, j, 0)(u) ≤ r

]
= Pr[Wij hits B] ≥ 1 − (1 − βr|B|)|B| ≥ 1 − e−βr ≥ Ω(βr),

proving (4.8). Now let B = Bv(Xv/8); then by (4.11) any w ∈ B is included into the
set Wij with probability at most 1/B, so

(4.9) Pr
[
g(i, j, 0)(v) ≥ Xv/8

]
= Pr[Wij misses B] ≥ (1 − 1/|B|)|B| ≥ 1/4.

Finally, let’s combine (4.8) and (4.9) to prove the claim. Let r = d/4, and suppose
X ≥ 4d. Since Xv ≥ X − duv ≥ 3d, by (4.9) event g(i, j, 0)(v) ≥ 3d/8 happens with
probability at least 1/4. This event and the one in (4.8) are independent since they
depend only on what happens in the balls Bu(d/4) and Bv(3d/8), respectively, which
are disjoint. Therefore, with probability at least Ω(βr) both events happen, in which
case g(i,j,0)(uv) ≥ d/8.

4.6. A Bourgain-style proof of Lemma 4.2 for doubling metrics. In this
section we use the ideas of [10, 33] to derive an alternative proof of Lemma 4.2 for the
important special case when β is the doubling dimension. In this proof the target di-
mension becomes t = O(β log β), which results in target dimension O(log2 n)(β log β)
in Theorem 4.1.

Let us note that in the well-known embedding algorithms of Bourgain [10] and
Linial, London, and Rabinovich [33] any two nodes are sampled with the same prob-
ability, i.e., with respect to the counting measure. Here use a nontrivial extension
of Bourgain’s technique where we sample with respect to a doubling measure trans-
formed with respect to a given 1-Lipschitz map.
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We state our result as follows.
Lemma 4.11. Consider a finite metric space (V, d) equipped with a nondegenerate

measure μ and a 1-Lipschitz coordinate map f ; write fu = f(u). For every node u let

βμ(u) = 2μ[Bu(fu) ] / μ[Bu(fu/16) ].

Then for any k, t ∈ N there is a randomized embedding g into �p, p ≥ 1, with dimension
kt so that

(a) each coordinate map of g is 1-Lipschitz and upper-bounded by f ; and
(b) ‖g(u) − g(v)‖p ≥ Ω(duv/t)(kt)1/p with failure probability at most < t/2Ω(k)

for any edge uv such that

(4.10) f(u)/duv ∈ [1/4; 4] and max
w∈{u,v}

βμ(w) ≤ 2t.

To prove Lemma 4.2 for a metric of doubling dimension β, recall that for any
such metric there exists a 2β-doubling measure μ. Plug this measure in Lemma 4.11,
with t = 4β + 1 and k = O(log β); note that βμ(u) ≤ 2t for every node u. We
get the embedding in �p with O(β log β) dimensions that satisfies the conditions in
Lemma 4.2.

We’ll need the following simple fact:
(4.11)

If duv ≤ f(u)/8 for some edge uv, then Bu(f(u)/8) ⊂ Bv(f(v)/2) ⊂ Bu(f(u)).

Indeed, letting fu = f(u) the first inclusion follows since fv/2 ≥ (fu − duv)/2 ≥
fu/8 + duv, and the second one holds since duv + fv/2 ≤ duv + (fu + duv)/2 < fu.

Proof of Lemma 4.11. Define the transformation of μ with respect to f as μf (u) =
μ(u)/2μ(B), where B = Bu(fu/2). The coordinates are indexed by ij, where i ∈ [t]
and j ∈ [k]. For each (i, j)-pair construct a random set Uij by selecting �2iμf (V )	
nodes independently according to the probability distribution μf (·)/μf (V ). Let us
define the ijth coordinate of u as gij(u) = min (fu, d(u, Uij)).

Note that each map gij is 1-Lipschitz as the minimum of two 1-Lipschitz maps.
Therefore, part (a) holds trivially. The hard part is part (b). Fix an edge uv; let
d = duv. For any node w let αw(ε) be the smallest radius r such that μf [Bw(r)] ≥ ε,
and let

ρi = max[ψu(2−i), ψv(2−i)], where ψw(ε) = min[αw(ε), d/2, fw].

Claim 4.12. For each i ≥ 1 and each j ∈ [k] with probability Ω(1) we have

gij(uv) := |gij(u) − gij(v)| ≥ ρi − ρi+1.

Then by Chernoff bounds (Lemma A.1(a)) with probability at least 1 − 2−Ω(k)

(4.12)
∑
ij

gij(uv) ≥
t∑
i=1

Ω(k)(ρi − ρi+1) = Ω(k)(ρ1 − ρt).

Proof of Claim 4.12. Fix i ≥ 1 and j, and note that if ρi+1 = d/2, then ρi = d/2,
in which case the claim is trivial. So let’s assume ρi+1 < d/2 and without loss of
generality suppose ψu(2−i) ≥ ψv(2−i). Consider the open ball B of radius ρi around
u. Since ρi = ψu(2−i) ≤ αu(2−i), it follows that μf (B) ≤ 2−i. Now there are two
cases:
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• If ρi+1 = fv, then the desired event gij(uv) ≥ ρi−ρi+1 happens whenever Uij
misses B, which happens with at least a constant probability since μf (B) ≤
2−i.

• If ρi+1 < fv, then the desired event happens whenever Uij misses B and
hits B′ = Bv(ρi+1). This happens with at least a constant probability by
Claim 4.14 since ρi+1 ≥ ψv(1/2i+1) ≥ αv(1/2i+1) and therefore μf (B′) ≥
1/2i+1, and the two balls B and B′ are disjoint.

This completes the proof of the claim.
Claim 4.13. For any node w we have αw(1

2 ) ≥ fw/8 and αw(1/βμ(w)) ≤ fw/16.
Proof. Let B = Bw(fw/8). By (4.11) for any w′ ∈ B

μ(w) / 2μ[Bw(fw) ] ≤ μf (w′) ≤ μ(w)/2μ(B),

so μf (B) ≤ 1
2 and μf [Bw(fw/16) ] ≥ 1/βμ(w).

Suppose (4.10) holds; let x = max(fu, fv). Then by Claim 4.13 and the definitions
of ρi and ψw we have

ρ1 ≥ max
w∈{u,v}

min(fw/8, d/2) ≥ min(x/8, d/2),

ρt ≤ max
w∈{u,v}

αw(2−t) ≤ max
w∈{u,v}

αw (1/βμ(w)) ≤ max
w∈{u,v}

fw/16 ≤ x/16.

By (4.12) for p = 1 it remains to show that ρ1 − ρt ≥ Ω(d). There are two cases:
• If fv ≤ 4d, then ρ1 ≥ x/8, so ρ1 − ρt ≥ x/16 ≥ Ω(d).
• If fv > 4d, then ρ1 ≥ d/2 and (since f is 1-Lipschitz)

ρt ≤ fv/16 ≤ (fu + d)/16 ≤ 5d/16,

so ρ1 − ρt ≥ 3d/16.
This completes the proof for the case p = 1. To extend it to p > 1, note that the
embedded uv-distance is⎛

⎝∑
ij

gij(uv)p

⎞
⎠

1/p

= (kt)1/p

⎛
⎝ 1
kt

∑
ij

gij(uv)p

⎞
⎠

1/p

≥ (kt)1/p

⎛
⎝ 1
kt

∑
ij

gij(uv)

⎞
⎠ ≥ Ω

(
d

t

)
(kt)1/p.

This completes the proof of the lemma.
In the above proof we used the following claim which is implicit in [33] and also

stated in [28]; we prove it here for the sake of completeness.
Claim 4.14. Let μ be a probability measure on a finite set V . Consider disjoint

events E,E′ ⊂ V such that μ(E) ≥ q and μ(E′) ≤ 2q < 1/2 for some number q > 0.
Let S be a set of �1/q	 points sampled independently from V according to μ. Then S
hits E and misses E′ with at least a constant probability.

Proof. Obviously, the probability that S hits E and misses E′ can decrease only if
we set Pr[E] = q and Pr[E′] = 2q. Treat sampling a given point as three independent
random choices (which result in exactly the same selection probabilities): First we
choose, with probability 1−2q, whether this point misses E′; then (if it indeed misses)
we choose, with probability q′ = q

1−2q ≤ 2q, whether it hits E; and finally the specific
point is chosen from, respectively, E, E′, or V \ (E ∪ E′). Without loss of generality
rearrange the order of events: First we choose whether all points miss E′ and then
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upon success choose whether at least one point hits E. These two events happen
independently with probabilities, respectively, (1 − 2q)1/q ≥ 2−1/2 and

1 − (1 − q′)1/q ≥ 1 − (1 − 2q)1/q ≥ 1 − e−2.

So the total success probability is at least c = (1 − e−2)/
√

2, which is an absolute
constant as required.

5. Lower bounds on embeddings with slack. In this section we describe a
general technique to derive lower bounds for ε-slack embeddings from lower bounds for
ordinary embeddings. For simplicity of exposition, we will first give a concrete example
proving lower bounds for ε-slack embeddings into �p (which will follow from a lower
bound for embedding expanders into �p [34]). Then we provide the general technique;
the bounds obtained by this technique are given in Table 5.1. Let us mention that
allowing arbitrary expansions is crucial to our results: If we insisted that none of the
pairwise distances should increase, the lower bound of Ω( 1

p logn) distortion [34] for
embeddings into �p holds even with ε-slack (see section 5.2 for more details).

Theorem 5.1. For an arbitrarily small positive ε there exists a finite metric
space on arbitrarily many nodes that requires distortion Ω( 1

p log 1
ε ) to embed into �p,

p ≥ 1, with ε-slack.
Proof. Given an ε such that 0 < ε ≤ 1/12, let k = 1/(3

√
ε). Fix n, the number of

nodes in our counterexample.
We now construct a graph G on n vertices. Consider a constant degree expander

graph H on k vertices. Let (H, d) be the shortest path metric defined by H . For each
vertex s ∈ H , let Ls be a path containing n/k vertices. Attach the path Ls to s at
one of its end points. The length of each edge of Ls is small enough so that if δ is the
length of path Ls, then δ ·D ≤ 1/2. Let the new graph be G and the shortest path
metric defined on it be (G, d). We now prove that if (G, d) can be embedded into �p
with distortion D and ε-slack, then H can be embedded into �p with distortion 4D
without any slack.

Let ϕ : G→ �p be the embedding of (G, d) into �p with distortion D and ε-slack.
Let E denote the set of ignored pairs; i.e., let us assume that the complement of E
incurs distortion at most D. Note that ε-slack means that |E| ≤ εn22. We delete all
of the vertices that participate in more than

√
εn pairs in E. By a simple counting

argument, at most
√
εn vertices of G can be deleted. Therefore, at least one point

from each path survives. For each s ∈ H , let vs denote a survived vertex from the
path Ls. We define an embedding ψ of H into �p as ψ(s) = ϕ(vs).

We now bound the distortion of the embedding ψ by 4D. Let x, y be two vertices
in H . Then vx and vy are the survivors in Lx and Ly, respectively. Note that vx and

Table 5.1

Embeddings with slack ε. Lower bounds on distortion. Here F is the family of doubling metrics
that are induced by planar graphs. Bounds for ε-uniform slack can be obtained by replacing

√
ε by ε.

Type of embedding Our lower bound Original example

All metrics into �p, p ≥ 1 Ω( 1
p
)(log 1

ε
) Constant-degree expanders [34]

F into �p, p ∈ (1, 2] Ω(p − 1)
√

log 1/ε Laakso fractal [32]

Growth-constrained �1-metrics into �d
1 Ω(

√
logd 1/ε) Laakso fractal [32]

F into distributions of dominating trees Ω(log 1
ε
) n × n grid [3]

All metrics into tree metrics Ω(1/
√

ε ) n-cycle [40, 18]

�2m+1
2 into �2m

2 Ω(1/
√

ε )1/m [36]
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vy participate in at most
√
εn pairs in E. Since |Ly| = 3

√
εn, it follows that there

is another survivor t ∈ Ly such that neither {t, vx} nor {t, vy} is in E. Since the
distortion of the map ϕ is D, we can assume that for edge (u, v) 
∈ E,

d(u, v) ≤ ‖ϕ(u) − ϕ(v)‖p ≤ D · d(u, v).

Now we can bound ψ(xy) := ‖ψ(x) − ψ(y)‖p as follows:

ψ(xy) = ‖ϕ(vx) − ϕ(vy)‖p
≤ ‖ϕ(vx) − ϕ(t)‖ + ‖ϕ(t) − ϕ(vy)‖
≤ D (d(vx, t) + d(t, vy))
≤ D (1 + 3δ) d(x, y) ≤ 2Dd(x, y).

Similarly,

ψ(xy) ≥ ‖ϕ(vx) − ϕ(t)‖p − ‖ϕ(t) − ϕ(vy)‖p
≥ d(vx, t) −Dd(t, vy) ≥ (1 −Dδ)d(x, y)
≥ d(x, y)/2.

Hence 1
2d(u, v) ≤ ψ(uv) ≤ 2D ·d(u, v), and so ψ is a map from H to �p with distortion

4D.
To finish the proof of the theorem, we note that a constant-degree expander on k

vertices requires Ω(log k/p) distortion to embed into �p [34].

5.1. General lower-bounding technique. The technique used in Theorem 5.1
of starting with a O(1)-degree expander Hk on k vertices, replacing each vertex with
a path on n/k vertices to get G, and for suitable k ≈ O(1/

√
ε) arguing that ε-

slack embeddings of Gn give us slackless embeddings of Hk with (roughly) the same
distortion is quite general. In fact, we use it to obtain lower bounds on both the
distortion and dimensions of embeddings into �p from similar lower bounds for slackless
embeddings; similar results can be obtained for embeddings into trees or distributions
of trees. We summarize these results in Table 5.1.

Theorem 5.2. Suppose for each k there exists a k-node metric Hk such that any
embedding of Hk into �p with L(k) dimensions has distortion at least D(k). Then for
an arbitrarily small positive ε there exist finite metrics M , M∗ on an arbitrarily large
number of nodes such that any embedding of

(a) M into �p with L( 1
3
√
ε
) dimensions has ε-slack distortion Ω(D( 1

3
√
ε
)).

(b) M∗ into �p with L( 1
3ε) dimensions has ε-uniform slack distortion Ω(D( 1

3ε )).
Moreover, if metrics {Hk} are planar (resp., Kr-minor-free, doubling, �dp), then so
are M and M∗.

Note that this result can be used to translate, e.g., the Brinkman and Charikar [12]
lower bound for dimensionality reduction in �1 into the realm of ε-slack as well.

Similarly, we provide a lower bound theorem for (probabilistic) embeddings into
trees.

Theorem 5.3. Suppose for each k there exists a k-node metric Hk such that any
(probabilistic) embedding of Hk into trees has distortion at least D(k). Then for an
arbitrarily small positive ε there exist finite metrics M , M∗ on an arbitrarily large
number of nodes such that any (probabilistic) embedding of

(a) M into trees has ε-slack distortion Ω(D( 1
3
√
ε
)).

(b) M∗ into trees has ε-uniform slack distortion Ω(D( 1
3ε )).

Moreover, if metrics {Hk} are planar (resp., Kr-minor-free, doubling, �dp), then so
are M and M∗.
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For instance, we can now derive a lower bound of Ω(1/
√
ε) on the distortion

incurred when embedding the n-cycle into a single tree.
The proofs of the two above theorems are based on the following lemma.
Lemma 5.4 (master lemma). Suppose H is a metric on k points and T is

a collection of metrics on k points such that any embedding of H into T incurs a
distortion at least D. Suppose S is a collection of metrics such that every subset of k
points in each metric in S embeds into T with distortion at most ρ. Setting ε = 1/9k2,
there exist arbitrarily large metrics that embed into S with ε-slack distortion Ω(Dρ ).

Remark. In order to obtain lower bounds for ε-uniform slack embeddings instead
of ε-slack embeddings, we need to set ε = 1/3k instead of ε = 1/9k2; the rest of the
proof remains essentially unchanged.

Before we prove Lemma 5.4, let us show how to derive the above results from it.
Proof of Theorem 5.2. Suppose {Hk} is the given family of metrics. Let us fix a

large enough k such that ε = 1/9k2 is small enough. Now in Lemma 5.4, let us set H
to be Hk and T to be the collection of metrics with k points in �p with at most L(k)
dimensions. Hence H embeds into T with distortion at least D(k) = D( 1

3
√
ε
). We set

S to be the family of metrics in �p with at most L(k) = L( 1
3
√
ε
) dimensions. It follows

that any subset of k points in any metric in S embeds into T with distortion 1. Hence
we conclude that there exists a family of metrics, each of which embeds into �p with
at most L( 1

3
√
ε
) dimensions with ε-slack distortion at least Ω(D( 1

3
√
ε
)).

The application of Lemma 5.4 to prove the lower bounds for embeddings into
trees is very similar; we sketch it here to emphasize the general patterns, as well as
the slight changes required.

Proof of Theorem 5.3. Again, we fix a large enough k, and set ε = 1/9k2. As
before, H is set to be Hk. We set T to be the family of tree metrics on k points (or
distribution of tree metrics on k points). Again, H embeds into T with distortion
at least D(k) = D( 1

3
√
ε
). We set S to be the family of tree metrics (or distribution

of tree metrics). Note that, by a result of Gupta [18], any subset of k points in any
metric in S embeds into T with distortion at most 8. Now the result of Theorem 5.3
follows from Lemma 5.4 as before.

Let us now prove the Lemma 5.4: First we show how to construct a family of
metrics with the desired properties. Suppose H = (S, d) is a metric such that |S| = k.
Moreover, H embeds into T with distortion at least D. Without loss of generality,
assume that the pairwise distance in H is at least 1. For each n that is a multiple
of 3k, we define a metric Ĥ with n points in the following way. These would be the
family of metrics that exhibits the lower bound for slack embeddings.

Consider a uniform line metric with point set L of size n
k such that the two

terminal points are at distance δ away from each other, where δ is small and whose
value will be specified later. For each s ∈ S, we identify s with a terminal point of
a copy Ls of the line metric L. We call the augmented metric Ĥ = (V, d) with point
set V = ∪s∈SLs. If H is already in some host space X , we just need the condition
that, for each s ∈ S, we can embed a copy of L of length δ isomorphically into X that
identifies one end point with s. Common metric spaces like �p certainly satisfy this
condition. (Note that to avoid too many symbols, we use d for the various metrics.)
Hence, for u ∈ Lx and v ∈ Ly, |d(u, v) − d(x, y)| ≤ 2δ.

Proposition 5.5. Let H and Ĥ be metrics defined as above. Then (a) if H is
a metric induced by a Kr-minor-free graph, then so is Ĥ, and (b) if H is a doubling
metric, then so is Ĥ.

The next lemma states a crucial property of the edges that are ignored by any
ε-slack embedding.
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Lemma 5.6. Suppose an ε-slack embedding of some metric space (V, d) ignores
the set of edges E. Then there exists a subset T ⊆ V of size at least (1 −

√
ε)n such

that each vertex in T intersects with at most
√
εn edges in E.

Proof. It suffices to show that it is impossible to have a subset S ⊆ V of size
greater than

√
εn such that each vertex in S intersects more than

√
εn edges in E.

Otherwise, the total number of edges ignored would be greater than (
√
εn)2/2 >

εn2/2 > ε
(
n
2

)
.

Note that, for an ε-uniform slack embedding, the number of ignored edges incident
on any node is at most εn by definition; this is one place in the proof which changes
when considering uniform slack.

The following lemma implies Lemma 5.4.
Lemma 5.7. Let H = (S, d) be a metric space on k points. Suppose T and S are

families of metrics such that H embeds into T with distortion at least D, and every
subset of k points in each metric in S embeds into T with distortion at most ρ.

Suppose δ is small enough such that (D4ρ + 2)δ ≤ 1
2 . Let Ĥ = (V, d) be the metric

space defined as above. Let ε := 1/9k2. Then, Ĥ embeds into S with ε-slack distortion
at least D/4ρ.

Proof. Suppose, on the contrary, ϕ is an embedding of Ĥ into S with ε-slack
distortion R < D/4ρ that ignores the set E of edges. Then, by Lemma 5.6, there
exists a subset T of V such that |T | ≥ (1 −

√
ε)n and, for all v ∈ T , v intersects at

most
√
εn edges in E.

For each s ∈ S, the set Ls contains n
k = 3

√
εn points, and hence there exists

some point in T ∩Ls, which we call vs. We define an embedding ψ of H into S given
by ψ(s) := ϕ(vs). We next bound the distortion of the embedding ψ. Let x, y ∈ S.
Since vx and vy are in T , each of them has at most

√
εn neighbors. Observing

that |Ly| = 3
√
εn, it follows that there exists a point t ∈ Ly such that neither

{vx, t} nor {vy, t} is contained in E. We can assume that for {u, v} 
∈ E, d(u, v) ≤
||ϕ(u) − ϕ(v)|| ≤ Rd(u, v).

Hence it follows that

‖ψ(x) − ψ(y)‖ =‖ϕ(vx) − ϕ(vy)‖
≤‖ϕ(vx) − ϕ(t)‖ + ‖ϕ(t) − ϕ(vy)‖
≤R(d(vx, t) + d(t, vy)) ≤ R(d(x, y) + 3δ)
≤R(1 + 3δ)d(x, y) ≤ 2Rd(x, y),

and, similarly,

‖ψ(x) − ψ(y)‖ ≥‖ϕ(vx) − ϕ(t)‖ − ‖ϕ(t) − ϕ(vy)‖
≥d(vx, t) −Rd(t, vy) ≥ d(x, y) − 2δ −Rδ

≥(1 − (R + 2)δ)d(x, y) ≥ d(x, y)/2,

where the last inequality follows from the fact that (R + 2)δ ≤ 1/2. It then follows
that ψ embeds H into S with distortion at most 4R. However, since any metric in
S embeds into T with distortion at most ρ, it follows that H embeds into T with
distortion at most 4ρR < D, from which we obtain the desired contradiction.
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5.2. Lower bounds for contracting embeddings. Let us consider contract-
ing embeddings with slack. Formally, a contracting embedding has distortion D with
ε-slack if no pairwise distance expands and all but ε-fraction of the pairs contract by
no more than D. We show that such embeddings incur an Ω(log n) distortion in order
to embed constant-degree expander graphs into �p, p ≥ 1.

Theorem 5.8. For the shortest-paths metric of a bounded-degree expander on n
vertices, distortion of any contracting embedding into �p, p ≥ 1, is Ω( 1

p logn) even if
we allow slack ε < 1

2 .
Proof. Let G = (V,E) be a bounded-degree expander on n vertices, and let ρ

denote its shortest-path metric. Let ϕ be a contracting embedding of this metric to
�p, p ≥ 1, with distortion D and slack ε < 1

2 . Let σ denote the metric on �p; to
simplify the notation, we will denote ϕ(V ) ⊆ �p by V . Define

R(σ) =
√
σ2(V × V )/σ2(E) , where

σ2(S) =
∑

(x,y)∈S σ(x, y)2 for any set S ⊆ V × V .

First we show that R(σ) ≤ O(
√
n). The proof is exactly the same as that of

Theorem 15.5.1 in Matǒusek [35] and works despite the fact that we allow ε · n2

pairwise distances to be as low as 0. Note that

σ2(E) =
∑

(x,y)∈E
σ(x, y)2 ≤

∑
(x,y)∈E

ρ(x, y)2 = O(n).

Now we bound σ2(V ×V ) from below. If all n2 pairs were contracted by at most
D, then we would get

σ2(V × V ) ≥
∑
(u,v)

(
ρ(u, v)
D

)2

≥ n2 log2 n

D2
.

However, we need to take into account the fact that ε · n2 pairs of vertices could
have distance 0 between them. Therefore, σ2(V ×V ) is at least (n/D)2(log2 n) minus
the loss due to the slack. To upper-bound this loss, consider a pair (x, y) of nodes for
which the distortion is bigger than D. The pair will contribute 0 instead of ρ(x, y)/D.
Thus the loss due to the pair (x, y) is at most (logn)/D. Therefore, the total loss due
to the slack is at most ε(n/D)2(log2 n). Therefore, since R(σ) ≤ O(

√
n), it follows

that D = Ω(logn).

Appendix A. Tools from probability theory. Here we state some tools from
probability theory that we used in section 4.

Lemma A.1 (Chernoff bounds). Consider the sum X of n independent random
variables on [0,Δ].

(a) For any μ ≤ E(X) and any ε ∈ (0, 1) we have

Pr[X < (1 − ε)μ] ≤ exp(−ε2μ/2Δ).

(b) For any μ ≥ E(X) and any β ≥ 1 we have Pr[X > βμ] ≤
[

1
e (e/β)β

]μ/Δ.
For a random variable X define the distribution function FX(t) = Pr[X < t]. For

two random variables X and Y , say Y stochastically dominates X (written as Y � X
or X � Y ) if FY (t) ≤ FX(t) for all t ∈ R.

Lemma A.2. Consider two sequences of independent random variables {Xi} and
{Yi} such that all Xi and Yi have finite domains and Xi � Yi for each i. Then for
each k we have

∑k
i=1Xi �

∑k
i=1 Yi.
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Lemma A.3. Consider two sequences of Bernoulli random variables {Xi} and
{Yi} such that variables {Yi} are independent and

Pr[Xi = 1 | Xj , j < i] ≥ Pr[Yi = 1]

for each i. Then
∑k

i=1Xi �
∑k

i=1 Yi for each k.
Proof. We first show that for all t ∈ [T ],

(A.1) Pr

[
t∑

r=1

Xr +
T∑

r=t+1

Yr ≤ m

]
≤ Pr

[
t−1∑
r=1

Xr +
T∑
r=t

Yr ≤ m

]
,

which would immediately imply the lemma. Observe that for any fixed number a
(or in general any random variable that is measurable in the σ-field generated by the
random variables {Xr : r < t}), we have

Pr [Xt ≤ a|Xr, r < t] ≤ Pr[Yt ≤ a] = Pr [Yt ≤ a|Xr, r < t] .

Note that the interesting case is when a ∈ [0, 1). The inequality comes from the
assumption concerning the conditional probabilities of the sequence {Xr}, and the
equality comes from the fact that Yt is independent of the sequence {Xr}.

Since both Xt and Yt are independent of {Yr : r > t}, the above inequality would
still hold if we further condition on the random variables {Yr : r > t}. Finally,
setting a = m−

∑
i<tXr −

∑
i>t Yr, which is measurable in the σ-field generated by

J := {Xr : r < t} ∪ {Yr : r > t}, we obtain

Pr

[
t∑

r=1

Xr +
T∑

r=t+1

Yr ≤ m | J
]
≤ Pr

[
t−1∑
r=1

Xr +
T∑
r=t

Yr ≤ m | J
]
.

Taking the expectation on both sides gives (A.1).
Lemma A.4. Consider a sequence of i.i.d. Bernoulli random variables {Yi} with

success probability q. Let Zr be the number of trials between the (r− 1)th success and
the rth success. Then

(A.2) Pr

[
k∑
r=1

Zr > 2k/q

]
≤ (0.782)k.

Proof. Each Zr has a geometric distribution with parameter q, so its moment
generating function is

E
[
etZr

]
=

qet

q − (1 − q)et
.

Let Z =
∑k

r=1Zr. Since Zr’s are i.i.d., it follows that

E
[
etZ

]
= E

[∏
r

etZr

]
=

(
E
[
etZ1

])k
.

By the Markov inequality for any t > 0 we have

Pr

[
Z > 2

k

q

]
= Pr

[
etZ > e2tk/q

]
≤ E

[
etZ

]
e−2tk/q ≤

(
qet

(1 − (1 − q)et)e2t/q

)k
.

Plugging in q = 1 − 1/
√
e and t = q we have (A.2).
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Abstract. Boolean satisfiability problems are an important benchmark for questions about
complexity, algorithms, heuristics, and threshold phenomena. Recent work on heuristics and the
satisfiability threshold has centered around the structure and connectivity of the solution space.
Motivated by this work, we study structural and connectivity-related properties of the space of
solutions of Boolean satisfiability problems and establish various dichotomies in Schaefer’s framework.
On the structural side, we obtain dichotomies for the kinds of subgraphs of the hypercube that can be
induced by the solutions of Boolean formulas, as well as for the diameter of the connected components
of the solution space. On the computational side, we establish dichotomy theorems for the complexity
of the connectivity and st-connectivity questions for the graph of solutions of Boolean formulas. Our
results assert that the intractable side of the computational dichotomies is PSPACE-complete, while
the tractable side—which includes but is not limited to all problems with polynomial-time algorithms
for satisfiability—is in P for the st-connectivity question, and in coNP for the connectivity question.
The diameter of components can be exponential for the PSPACE-complete cases, whereas in all
other cases it is linear; thus, diameter and complexity of the connectivity problems are remarkably
aligned. The crux of our results is an expressibility theorem showing that in the tractable cases, the
subgraphs induced by the solution space possess certain good structural properties, whereas in the
intractable cases, the subgraphs can be arbitrary.
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1. Introduction. In 1978, Schaefer [31] introduced a rich framework for ex-
pressing variants of Boolean satisfiability and proved a remarkable dichotomy theo-
rem: the satisfiability problem is in P for certain classes of Boolean formulas, while
it is NP-complete for all other classes in the framework. This result pinpoints the
computational complexity of numerous well-known variants of Boolean Sat, such as
3-Sat, Horn 3-Sat, Not-All-Equal 3-Sat, and 1-in-3 Sat. Schaefer’s dichotomy
theorem yields a classification of the computational complexity of constraint satisfac-
tion problems (CSPs) over the Boolean domain. Feder and Vardi [15] conjectured that
a dichotomy theorem holds for the complexity of CSPs over arbitrary finite domains.
This conjecture remains open to date, in spite of concerted efforts and some partial
progress, such as the case of domains of size 3 [8].
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In this article we concentrate on the Boolean CSPs, but we ask a new set of
questions, which was motivated from the study of random instances of satisfiability.
In recent years, the structure of the space of solutions for random instances has been
the main consideration at the basis of both algorithms for and mathematical analysis
of the satisfiability problem [3, 26, 28, 25]. It has been conjectured for 3-Sat [28, 4]
and proved for 8-Sat [27, 1] that the solution space fractures as one approaches the
critical region from below. This apparently leads to performance deterioration of the
standard satisfiability algorithms, such as WalkSAT [32] and DPLL [2]. It is also the
main consideration behind the design of the survey propagation algorithm, which has
far superior performance on random instances of satisfiability [28]. This body of work
has served as a motivation for us to pursue the investigation reported here.

Our aim in this article is to carry out a comprehensive exploration of the connec-
tivity properties of the space of solutions of Boolean formulas from a worst-case point
of view. The solutions (satisfying assignments) of a given n-variable Boolean formula
ϕ induce a subgraph G(ϕ) of the n-dimensional hypercube. Thus, the following two
decision problems, called the connectivity problem and the st-connectivity problem,
arise naturally: (i) Given a Boolean formula ϕ, is G(ϕ) connected? (ii) Given a
Boolean formula ϕ and two solutions s and t of ϕ, is there a path from s to t in
G(ϕ)?

While there has been an intensive study of the structure of the solution space of
Boolean satisfiability problems for random instances, our work seems to be the first
to explore this issue from a worst-case viewpoint. A priori, it is not clear what to
expect. Is the hardness of the satisfiability question for a given CSP at all correlated
with the properties of the graphs realizable as G(ϕ) of formulas in the given class?
What kinds of graphs are realizable? Are there Boolean CSPs whose connectivity
graphs can have connected components with exponential diameter and, if yes, can
we characterize these CSPs? What is the complexity of the st-connectivity and the
connectivity problem, and is it correlated with the answer to the previous question?

In this article, we investigate the above questions for Boolean CSPs and obtain
answers for all of them. Our first complexity-theoretic result is a dichotomy theorem
for the st-connectivity problem. This result reveals that the tractable side is much
more generous than the tractable side for satisfiability, while the intractable side is
PSPACE-complete. Specifically, Schaefer showed that the satisfiability problem is
solvable in polynomial time precisely for formulas built from Boolean relations all of
which are bijunctive, or all of which are Horn, or all of which are dual Horn, or all of
which are affine. We identify new classes of Boolean relations, called tight relations,
that properly contain the classes of bijunctive, Horn, dual Horn, and affine relations.
We show that st-connectivity is solvable in linear time for formulas built from tight
relations, and PSPACE-complete in all other cases. Our second main result is a
dichotomy theorem for the connectivity problem: it is in coNP for formulas built
from tight relations, and PSPACE-complete in all other cases.

In addition to these two complexity-theoretic dichotomies, we establish a struc-
tural dichotomy theorem for the diameter of the connected components of the solution
space of Boolean formulas. This result asserts that, in the PSPACE-complete cases,
the diameter of the connected components can be exponential, but in all other cases
it is linear. Thus, small diameter and tractability of the st-connectivity problem are
remarkably aligned.

To establish our results, the main challenge is to show that for noneasy relations,
both the connectivity problem and the st-connectivity problem are PSPACE-hard.
In Schaefer’s dichotomy theorem, NP-hardness of satisfiability was a consequence of
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an expressibility theorem, which asserted that every Boolean relation can be obtained
as a projection over a formula built from clauses in the “hard” relations. Schaefer’s
notion of expressibility is inadequate for our problem. Instead, we introduce and work
with a delicate and stricter notion of expressibility, which we call structural express-
ibility. Intuitively, structural expressibility means that, in addition to definability via
a projection, the space of witnesses of the existential quantifiers in the projection has
certain strong connectivity properties that allow us to capture the graph structure of
the relation that is being defined. It should be noted that Schaefer’s dichotomy theo-
rem can also be proved using a Galois connection and Post’s celebrated classification
of the lattice of Boolean clones (see [5]). This method, however, does not appear to
apply to connectivity, as the boundaries discovered here cut across Boolean clones.
Thus, the use of structural expressibility or some other refined definability technique
seems unavoidable.

The first step towards proving PSPACE-completeness is to show that both connec-
tivity and st-connectivity are hard for 3-CNF-formulas; this is proved by a reduction
from a generic PSPACE computation. Next, we identify the simplest relations that
are not tight: these are ternary relations whose graph is a path of length 4 between
assignments at Hamming distance 2. We show that these paths can structurally ex-
press all 3-CNF clauses. The crux of our hardness result is an expressibility theorem
to the effect that one can structurally express such a path from any set of relations
which is not tight.

Finally, we show that all tight relations have “good” structural properties. Specif-
ically, in a tight relation every component has a unique minimum element, or every
component has a unique maximum element, or the Hamming distance coincides with
the shortest-path distance in the relation. These properties are inherited by every for-
mula built from tight relations and yield both small diameter and linear algorithms
for st-connectivity.

Related work. In parallel and independently of our work, a similar dichotomy
was found for the k-colorability problem by Bonsma and Cereceda [6] and Cere-
ceda, van den Heuvel, and Johnson [9]. Specifically, Cereceda, van den Heuvel, and
Johnson [9] showed that the case of 3-colorability has properties similar to our tight
problems—its structure implies (by a proof that is much more intricate than ours for
tight problems) that the diameter of connected components of the graph of 3-colorings
is at most quadratic in the number of vertices. This implies that the st-connectivity
question for 3-colorability is in coNP. Furthermore, Bonsma and Cereceda [6] showed
that for k ≥ 4, st-connectivity is PSPACE-complete. This result shows an interesting
complexity-theoretic difference between 3-colorability and 4-colorability. It also indi-
cates that an extension of our result to larger domains will be quite challenging, since
one would have to identify a set of “tight” problems that includes 3-colorability. It is
conceivable that characterizing the complexity of the connectivity question is easier
than characterizing the complexity of the satisfiability question, but at present there
is no conjecture that generalizes both the Boolean case and the case of colorings.

In an earlier piece of related work, Brightwell and Winkler [7] considered the
connectivity of the graph of solutions of the graph-homomorphism problems (which
are a subclass of CSPs). They characterized those graphs H for which the graph-
homomorphism problem with template H , also known as the H-coloring problem,
has a graph of solutions that is always connected. Their motivation is the study of
uniqueness of Gibbs measures, which is related to the performance of standard Markov
chain algorithms for sampling and counting solutions. We note that the state-space
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of many of the Markov chains studied in this area is the set of solutions, and steps
of the chain are single-variable flips, so that the chain is just a random walk on the
graph of solutions considered here.

In a different direction, there has been a substantial body of work on dichotomy
theorems for various aspects of constraint satisfaction on the Boolean domain, in-
cluding optimization [10, 14, 21], counting [12], inverse satisfiability [20], minimal
satisfiability [22], lexicographically minimal satisfiability [30], and propositional ab-
duction [13]. Our results contribute to this body of work.

Finally, it is worth mentioning that satisfiability in the context of random in-
stances has also been considered not only for specific CSPs such as k-Sat and k-
colorability, but also for general CSPs. Several models of general random CSPs have
been studied by Creignou and Daudé [11], and independently by Molloy [29].

2. Basic concepts and statements of results. A CNF-formula is a Boolean
formula of the form C1∧· · ·∧Cn, where each Ci is a clause, i.e., a disjunction of literals.
If k is a positive integer, then a k-CNF-formula is a CNF-formula C1 ∧ · · · ∧ Cn in
which each clause Ci is a disjunction of at most k literals.

A logical relation R is a nonempty subset of {0, 1}k for some k ≥ 1; k is the
arity of R. Let S be a finite set of logical relations. A CNF(S)-formula over a set
of variables V = {x1, . . . , xn} is a finite conjunction C1 ∧ · · · ∧ Cn of clauses built
using relations from S, variables from V , and the constants 0 and 1; this means
that each Ci is an expression of the form R(ξ1, . . . , ξk), where R ∈ S is a relation of
arity k, and each ξj is a variable in V or one of the constants 0, 1. Note that the
constants 0 and 1 are allowed in CNF(S)-formulas; this is equivalent to assuming
that the set S contains the singleton logical relations {0} and {1}. One could also
consider CNF(S)-formulas without constants. In fact, this class of formulas has
already been considered by Schaefer [31], as well as by other researchers in subsequent
investigations. In particular, Schaefer [31] also established a dichotomy theorem for
the complexity of the satisfiability problem for CNF(S)-formulas without constants.
A solution of a CNF(S)-formula ϕ is an assignment s = (a1, . . . , an) of Boolean values
to the variables that makes every clause of ϕ true. A CNF(S)-formula is satisfiable
if it has at least one solution.

The satisfiability problem Sat(S) associated with a finite set S of logical rela-
tions asks the following: Given a CNF(S)-formula ϕ, is it satisfiable? Many well-
known restrictions of Boolean satisfiability, such as 3-Sat, Not-All-Equal 3-Sat,
and Positive 1-in-3 Sat, can be cast as Sat(S) problems, for a suitable choice of
S. For instance, let R0 = {0, 1}3\{000}, R1 = {0, 1}3\{100}, R2 = {0, 1}3\{110},
R3 = {0, 1}3\{111}. Then 3-Sat is the problem Sat({R0, R1, R2, R3}). Similarly,
Positive 1-in-3Sat is Sat({R1/3}), where R1/3 = {100, 010, 001}.

Schaefer [31] identified the complexity of every satisfiability problem Sat(S),
where S ranges over all finite sets of logical relations. To state Schaefer’s main result,
we need to define some basic concepts.

Definition 2.1. Let R be a logical relation.
1. R is bijunctive if it is the set of solutions of a 2-CNF-formula.
2. R is Horn if it is the set of solutions of a Horn formula, where a Horn formula

is a CNF-formula such that each conjunct has at most one positive literal.
3. R is dual Horn if it is the set of solutions of a dual Horn formula, where a

dual Horn formula is a CNF-formula such that each conjunct has at most
one negative literal.

4. R is affine if it is the set of solutions of a system of linear equations over Z2.
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Each of these types of logical relations can be characterized in terms of closure
properties [31]. In what follows, we use boldface letters to denote vectors of Boolean
values or vectors of variables. A relation R is bijunctive if and only if it is closed
under the majority operation; this means that if a,b, c ∈ R, then maj(a,b, c) ∈ R,
where maj(a,b, c) is the vector whose ith bit is the majority of ai, bi, ci. A relation R
is Horn if and only if it is closed under ∧; this means that if a,b ∈ R, then a∧b ∈ R,
where a∧b is the vector whose ith bit is ai∧ bi. Similarly, R is dual Horn if and only
if it is closed under ∨. Finally, R is affine if and only if it is closed under a ⊕ b⊕ c.

Definition 2.2. A set S of logical relations is Schaefer if at least one of the
following conditions holds:

1. Every relation in S is bijunctive.
2. Every relation in S is Horn.
3. Every relation in S is dual Horn.
4. Every relation in S is affine.

A logical relation R is Schaefer if the singleton {R} is Schaefer.
Since the property of a set being Schaefer is characterized in terms of closure

under operations that are binary or ternary, it follows that there is a cubic algorithm
to determine whether or not a given a finite set S of logical relations is Schaefer
(assuming that each relation in S is given as a list of Boolean vectors).

Theorem 2.3 (Schaefer’s dichotomy theorem [31]). Let S be a finite set of logical
relations. If S is Schaefer, then Sat(S) is in P; otherwise, Sat(S) is NP-complete.

Theorem 2.3 is called a dichotomy theorem because Ladner [23] has shown that if
P �= NP, then there are problems in NP that are neither in P nor NP-complete. Thus,
Theorem 2.3 asserts that no Sat(S) problem is a problem of the kind discovered by
Ladner. Note that the aforementioned characterization of Schaefer sets in terms of
closure properties yields a cubic algorithm for determining, given a finite set S of
logical relations, whether Sat(S) is in P or is NP-complete (here, the input size is
the sum of the sizes of the relations in S).

The more difficult part of the original proof of Schaefer’s dichotomy theorem is to
show that if S is not Schaefer, then Sat(S) is NP-complete. This is a consequence of
a powerful result about the expressibility of logical relations. We say that a relation
R is expressible from a set S of relations if there is a CNF(S)-formula ϕ(x,y) such
that R = {a| ∃yϕ(a,y)}.

Theorem 2.4 (Schaefer’s expressibility theorem [31]). Let S be a finite set of
logical relations. If S is not Schaefer, then every logical relation is expressible from
S.

In this paper, we are interested in the connectivity properties of the space of
solutions of CNF(S)-formulas. If ϕ is a CNF(S)-formula with n variables, then
the solution graph G(ϕ) of ϕ denotes the subgraph of the n-dimensional hypercube
induced by the solutions of ϕ. This means that the vertices of G(ϕ) are the solutions
of ϕ, and there is an edge between two solutions of G(ϕ) precisely when they differ
in exactly one variable.

We consider the following two algorithmic problems for CNF(S)-formulas.
Problem 1. The Connectivity Problem Conn(S). Given a CNF(S)-formula ϕ, is

G(ϕ) connected? (If ϕ is unsatisfiable, then the answer to this problem is “yes.”)
Problem 2. The st-Connectivity Problem st-Conn(S). Given a CNF(S)-formula

ϕ and two solutions s and t of ϕ, is there a path from s to t in G(ϕ)?
To pinpoint the computational complexity of Conn(S) and st-Conn(S), we need

to introduce certain new types of relations.
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Definition 2.5. Let R ⊆ {0, 1}k be a logical relation.
1. R is componentwise bijunctive if every connected component of the graph
G(R) is a bijunctive relation.

2. R is OR-free if the relation OR = {01, 10, 11} cannot be obtained from R
by setting k − 2 of the coordinates of R to a constant c ∈ {0, 1}k−2. In
other words, R is OR-free if (x1 ∨ x2) is not definable from R by fixing k− 2
variables.

3. R is NAND-free if the relation NAND = {00, 01, 10} cannot be obtained from
R by setting k − 2 of the coordinates of R to a constant c ∈ {0, 1}k−2. In
other words, R is NAND-free if (x̄1 ∨ x̄2) is not definable from R by fixing
k − 2 variables.

We are now ready to introduce the key concept of a tight set of relations.
Definition 2.6. A set S of logical relations is tight if at least one of the following

three conditions holds:
1. Every relation in S is componentwise bijunctive.
2. Every relation in S is OR-free.
3. Every relation in S is NAND-free.

A logical relation R is tight if the singleton {R} is tight.
In section 4, we show that if S is Schaefer, then it is tight. Moreover, we show

that the converse does not hold. It is also easy to see that there is a polynomial-time
algorithm (in fact, a cubic algorithm) for testing whether a given relation is tight.

Just as Schaefer’s dichotomy theorem follows from an expressibility statement,
our dichotomy theorems are derived from the following theorem, which we will call
the structural expressibility theorem. The precise definition of the concept of struc-
tural expressibility is given in section 3. Intuitively, this concept strengthens the
concept of expressibility with the requirement that the space of the witnesses to the
existentially quantified variables has certain strong connectivity properties.

Theorem 2.7 (structural expressibility theorem). Let S be a finite set of logical
relations. If S is not tight, then every logical relation is structurally expressible from
S.

Using the structural expressibility theorem, we obtain the following dichotomy
theorems for the computational complexity of Conn(S) and st-Conn(S).

Theorem 2.8. Let S be a finite set of logical relations. If S is tight, then
Conn(S) is in coNP; otherwise, it is PSPACE-complete.

Theorem 2.9. Let S be a finite set of logical relations. If S is tight, then st-

Conn(S) is in P; otherwise, st-Conn(S) is PSPACE-complete.
We also show that if S is tight, but not Schaefer, then Conn(S) is coNP-complete.
Example 1. The set S = {R1/3}, where R1/3 = {100, 010, 001}, is tight (actually,

it is componentwise bijunctive), but not Schaefer. It follows that Sat(S) is NP-
complete (recall that this problem is Positive 1-in-3 Sat), st-Conn(S) is in P, and
Conn(S) is coNP-complete.

Example 2. The set S = {RNAE}, where RNAE = {0, 1}3\{000, 111}, is not tight;
hence Sat(S) is NP-complete (this problem is Positive Not-All-Equal 3-Sat),
while both st-Conn(S) and Conn(S) are PSPACE-complete.

Example 3. The set S = {RV }, where RV = {110, 100, 000, 001, 011}, is not tight.
It is OR-free, but not NAND-free or componentwise bijunctive, and it is not Schaefer.
Hence Sat(S) is NP-complete, st-Conn(S) is in P, and Conn(S) is in coNP.

Remark. The last example illustrates that OR-free (NAND-free) relations cannot
be thought of as componentwise Horn (dual Horn).
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The dichotomy in the computational complexity of Conn(S) and st-Conn(S) is
accompanied by a parallel structural dichotomy in the size of the diameter of G(ϕ)
(where, for a CNF(S)-formula ϕ, the diameter of G(ϕ) is the maximum of the diam-
eters of the components of G(ϕ)).

Theorem 2.10. Let S be a finite set of logical relations. If S is tight, then for
every CNF(S)-formula ϕ, the diameter of G(ϕ) is linear in the number of variables
of ϕ; otherwise, there are CNF(S)-formulas ϕ such that the diameter of G(ϕ) is
exponential in the number of variables of ϕ.

Our results and their comparison to Schaefer’s dichotomy theorem are summa-
rized in the table below.

S Sat(S) st-Conn(S) Conn(S) Diameter
Schaefer P P coNP O(n)
Tight, non-Schaefer NP-complete P coNP-complete O(n)

Nontight NP-complete PSPACE-complete PSPACE-complete 2Ω(
√

n)

We conjecture that the complexity of Conn(S) exhibits a trichotomy, that is, for
every finite set S of logical relations, one of the following holds:

1. Conn(S) is in P.
2. Conn(S) is coNP-complete.
3. Conn(S) is PSPACE-complete.

As mentioned above, we will show that if S is tight but not Schaefer, then
Conn(S) is coNP-complete. We will also show that if S is bijunctive or affine, then
Conn(S) is in P. Hence, to settle the above conjecture, it remains to pinpoint the
complexity of Conn(S) whenever S is Horn and whenever S is dual Horn. In the con-
ference version [16] of the present paper, we further conjectured that if S is Horn or
dual Horn, then Conn(S) is in P. In other words, we conjectured that if S is Schaefer,
then Conn(S) is in P. This second conjecture, however, was subsequently disproved
by Makino, Tamaki, and Yamamoto [24], who discovered a particular Horn set S such
that Conn(S) is coNP-complete. Here, we go beyond the results obtained in the con-
ference version of the present paper and identify additional conditions on a Horn set S
implying that Conn(S) is in P. These new results suggest a natural dichotomy within
Schaefer sets of relations and, thus, provide evidence for the trichotomy conjecture.

The remainder of this paper is organized as follows. In section 3, we prove
the structural expressibility theorem, establish the hard side of the dichotomies for
Conn(S) and for st-Conn(S), and contrast our result to Schaefer’s expressibility and
dichotomy theorems. In section 4, we describe the easy side of the dichotomy—the
polynomial-time algorithms and the structural properties for tight sets of relations.
In addition, we obtain partial results towards the trichotomy conjecture for Conn(S).

3. The hard case of the dichotomy: Nontight sets of relations. In this
section, we address the hard side of the dichotomy, where we deal with the more
computationally intractable cases. This is also the harder part of our proof. We
define the notion of structural expressibility in section 3.1 and prove the structural
expressibility theorem in section 3.2. This theorem implies that for all nontight sets
S and S′, the connectivity problems Conn(S) and Conn(S′) are polynomial-time
equivalent; moreover, the same holds for the connectivity problems st-Conn(S) and
st-Conn(S′). In addition, the diameters of the solution graphs of CNF(S)-formulas
and CNF(S′)-formulas are also related polynomially. In section 3.3, we prove that
for 3-CNF-formulas the connectivity problems are PSPACE-complete, and the di-
ameter can be exponential. This fact combined with the structural expressibility
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theorem yields the hard side of all of our dichotomy results, as well as the exponential
size of the diameter.

We will use a,b, . . . to denote Boolean vectors, and x and y to denote vectors of
variables. We write |a| to denote the Hamming weight (number of 1’s) of a Boolean
vector a. Given two Boolean vectors a and b, we write |a−b| to denote the Hamming
distance between a and b. Finally, if a and b are solutions of a Boolean formula ϕ and
lie in the same component of G(ϕ), then we write dϕ(a,b) to denote the shortest-path
distance between a and b in G(ϕ).

3.1. Structural expressibility. As stated in the previous section, in his di-
chotomy theorem, Schaefer [31] used the following notion of expressibility: a relation
R is expressible from a set S of relations if there is a CNF(S)-formula ϕ so that
R = {a| ∃yϕ(a,y)}. This notion is not sufficient for our purposes. Instead, we in-
troduce a more delicate notion which we call structural expressibility. Intuitively, we
view the relation R as a subgraph of the hypercube, rather than just a subset, and
require that this graph structure also be captured by the formula ϕ.

Definition 3.1. A relation R is structurally expressible from a set of relations
S if there is a CNF(S)-formula ϕ such that the following conditions hold:

1. R = {a| ∃yϕ(a,y)}.
2. For every a ∈ R, the graph G(ϕ(a,y)) is connected.
3. For a,b ∈ R with |a− b| = 1, there exists w such that (a,w) and (b,w) are

solutions of ϕ.
For a ∈ R, the witnesses of a are the y’s such that ϕ(a,y) is true. The last

two conditions say that the witnesses of a ∈ R are connected, and that neighboring
a,b ∈ R have a common witness. This allows us to simulate an edge (a,b) in G(R)
by a path in G(ϕ), and thus relate the connectivity properties of the solution spaces.
There is, however, a price to pay: it is much harder to come up with formulas that
structurally express a relationR. An example is when S is the set of all paths of length
4 in {0, 1}3, a set that plays a crucial role in our proof. While 3-Sat relations are easily
expressible from S in Schaefer’s sense, the CNF(S)-formulas that structurally express
3-Sat relations are fairly complicated and have a large witness space.

An example of the difference between a structural and a nonstructural expression
is shown in Figure 3.1. Consider the logical relation given by the formula (x1∨x2∨x3);
the graph of this logical relation is depicted in Figure 3.1(a). Consider also the
Not-All-Equal relation RNAE = {0, 1}3 \ {000, 111}. Figure 3.1(b) depicts the
graph of the expression ϕ(x1, x2, x3, y1, y2) = RNAE(x1, x2, y1) ∧ RNAE(x2, x3, y2) ∧
RNAE(y1, y2, 1). This is a structural expression because (x1∨x2∨x3) ≡ ∃y1, y2ϕ(x1, x2,
x3, y1, y2) and connectivity is preserved. Finally, Figure 3.1(c) depicts the graph of
the expression ψ(x1, x2, x3, y1) = RNAE(x1, x2, y1)∧RNAE(ȳ1, x3, 0)∧RNAE(y1, x2, 1).
Even though (x1 ∨ x2 ∨ x3) ≡ ∃y1ψ(x1, x2, x3, y1), this is not a structural expression
because connectivity is not preserved.

Lemma 3.2. Let S and S′ be sets of relations such that every R ∈ S′ is struc-
turally expressible from S, and, moreover, there is a polynomial-time algorithm that
produces a structural expression from S for every R ∈ S′. Given a CNF(S′)-formula
ψ(x), one can efficiently construct a CNF(S)-formula ϕ(x,y) such that

1. ψ(x) ≡ ∃y ϕ(x,y);
2. if (s,ws), (t,wt) ∈ ϕ are connected in G(ϕ) by a path of length d, then there

is a path from s to t in G(ψ) of length at most d;
3. if s, t ∈ ψ are connected in G(ψ), then for every witness ws of s, and every

witness wt of t, there is a path from (s,ws) to (t,wt) in G(ϕ).
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Fig. 3.1. Expressing the relation (x1 ∨ x2 ∨ x3) from the RNAE relation.

Proof. Suppose ψ is a formula on n variables that consists ofm clausesC1, . . . , Cm.
For clause Cj , assume that the set of variables is Vj ⊆ [n] = {1, . . . , n}, and that it
involves relation Rj ∈ S. Thus, ψ(x) is ∧mj=1Rj(xVj ). Let ϕj be the structural ex-
pression for Rj from S′, so that Rj(xVj ) ≡ ∃yj ϕj(xVj ,yj). Let y be the vector
(y1, . . . ,ym) and let ϕ(x,y) be the formula ∧mj=1ϕj(xVj ,yj). Then ψ(x) ≡ ∃y ϕ(x,y).

Statement 2 follows from 1 by projection of the path on the coordinates of x. For
statement 3, consider s, t ∈ ψ that are connected in G(ψ) via a path s = u0 → u1 →
· · · → ur = t . For every ui,ui+1, and clause Cj , there exists an assignment wi

j

to yj such that both (ui
Vj ,w

i
j) and (ui+1

Vj ,w
i
j) are solutions of ϕj , by condition

2 of structural expressibility. Thus (ui,wi) and (ui+1,wi) are both solutions of ϕ,
where wi = (wi

1, . . . ,wi
m). Further, for every ui, the space of solutions of ϕ(ui,y)

is the product space of the solutions of ϕj(ui
Vj ,yj) over j = 1, . . . ,m. Since these

are all connected by condition 3 of structural expressibility, G(ϕ(ui,y)) is connected.
The following describes a path from (s,ws) to (t,wt) in G(ϕ): (s,ws)� (s,w0) →
(u1,w0)� (u1,w1) → · · ·� (ur−1,wr−1) → (t,wr−1)� (t,wt). Here� indicates
a path in G(ϕ(ui,y)).

Corollary 3.3. Suppose S and S′ are sets of relations such that every R ∈ S′ is
structurally expressible from S, and, moreover, there is a polynomial-time algorithm
that produces a structural expression from S for every R ∈ S′.

1. There are polynomial-time reductions from Conn(S′) to Conn(S), and from
st-Conn(S′) to st-Conn(S).

2. If there exists a CNF(S′)-formula ψ(x) with n variables, m clauses, and
diameter d, then there exists a CNF(S)-formula ϕ(x,y), where y is a vector
of O(m) variables, such that the diameter of G(φ) is at least d.
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3.2. The structural expressibility theorem. In this subsection, we prove the
structural expressibility theorem. The main step in the proof is Lemma 3.4, which
shows that if S is not tight, then we can structurally express the 3-clause relations
from the relations in S. If k ≥ 2, then a k-clause is a disjunction of k variables or
negated variables. For 0 ≤ i ≤ k, let Di be the set of all satisfying truth assignments
of the k-clause whose first i literals are negated, and let Sk = {D0, D1, . . . , Dk}. Thus,
CNF(Sk) is the collection of k-CNF-formulas.

Lemma 3.4. If set S of relations is not tight, S3 is structurally expressible from
S.

Proof. First, observe that all 2-clauses are structurally expressible from S. There
exists R ∈ S which is not OR-free, so we can express (x1∨x2) by substituting constants
in R. Similarly, we can express (x̄1 ∨ x̄2) using a relation that is not NAND-free. The
last 2-clause (x1 ∨ x̄2) can be obtained from OR and NAND by a technique that
corresponds to reverse resolution. (x1 ∨ x̄2) = ∃y (x1 ∨ y) ∧ (ȳ ∨ x̄2). It is easy to
see that this gives a structural expression. From here onwards we assume that S
contains all 2-clauses. The proof now proceeds in four steps. First, we will express
a relation in which there exist two elements that are at graph distance larger than
their Hamming distance. Second, we will express a relation that is just a single path
between such elements. Third, we will express a relation which is a path of length 4
between elements at Hamming distance 2. Finally, we will express the 3-clauses.

Step 1. Structurally expressing a relation in which some distance expands. For
a relation R, we say that the distance between a and b expands if a and b are
connected in G(R), but dR(a,b) > |a − b|. In section 4.2, Lemma 4.3, we will
show that no distance expands in componentwise bijunctive relations. The same also
holds true for the relation RNAE = {0, 1}3 \ {000, 111}, which is not componentwise
bijunctive. Nonetheless, we show here that if R is not componentwise bijunctive,
then, by adding 2-clauses, we can structurally express a relation Q in which some
distance expands. For instance, when R = RNAE, then we can take Q(x1, x2, x3) =
RNAE(x1, x2, x3) ∧ (x̄1 ∨ x̄3), as shown in Figure 3.2. The distance between a = 100
and b = 001 in Q expands. Similarly, in the general construction, we identify a and
b on a cycle, and add 2-clauses that eliminate all the vertices along the shorter arc
between a and b.

Since S is not tight, it contains a relation R which is not componentwise bijunc-
tive. If R contains a,b where the distance between them expands, we are done. So
assume that for all a,b ∈ G(R), dR(a,b) = |a − b|. Since R is not componentwise
bijunctive, there exists a triple of assignments a,b, c lying in the same component
such that maj(a,b, c) is not in that component. Choose the triple such that the sum
of pairwise distances dR(a,b)+dR(b, c)+dR(c, a) is minimized. Let U = {i|ai �= bi},
V = {i|bi �= ci}, and W = {i|ci �= ai}. Since dR(a,b) = |a − b|, a shortest path does
not flip variables outside of U , and each variable in U is flipped exactly once. The
same holds for V and W . We note some useful properties of the sets U, V,W :

1. Every index i ∈ U ∪ V ∪W occurs in exactly two of U, V,W . Consider going
by a shortest path from a to b to c and back to a. Every i ∈ U ∪ V ∪W is
seen an even number of times along this path since we return to a. It is seen
at least once, and at most thrice, so in fact it occurs twice.

2. Every pairwise intersection U ∩ V, V ∩W , and W ∩U is nonempty. Suppose
the sets U and V are disjoint. From property 1, we must have W = U ∪ V .
But then it is easy to see that maj(a,b, c) = b. This contradicts the choice
of a,b, c.
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Fig. 3.2. Step 1 of the proof of Lemma 3.4, and an example.

3. The sets U ∩ V and U ∩W partition the set U . By property 1, each index of
U occurs in one of V and W as well. Also since no index occurs in all three
sets U, V,W this is in fact a disjoint partition.

4. For each index i ∈ U ∩W , it holds that a ⊕ ei �∈ R. Assume for the sake of
contradiction that a′ = a⊕ ei ∈ R. Since i ∈ U ∩W we have simultaneously
moved closer to both b and c. Hence we have dR(a′,b)+dR(b, c)+dR(c, a′) <
dR(a,b) + dR(b, c) + dR(c,a). Also maj(a′,b, c) = maj(a,b, c). But this
contradicts our choice of a,b, c.

Property 4 implies that the shortest paths to b and c diverge at a, since for any
shortest path to b the first variable flipped is from U ∩V , whereas for a shortest path
to c it is from W ∩ V . Similar statements hold for the vertices b and c. Thus along
the shortest path from a to b the first bit flipped is from U∩V and the last bit flipped
is from U ∩W . On the other hand, if we go from a to c and then to b, all the bits
from U ∩W are flipped before the bits from U ∩ V . We use this crucially to define
Q. We will add a set of 2-clauses that enforce the following rule on paths starting
at a: Flip variables from U ∩W before variables from U ∩ V . This will eliminate all
shortest paths from a to b since they begin by flipping a variable in U ∩ V and end
with U ∩W . The paths from a to b via c survive since they flip U ∩W while going
from a to c and U ∩ V while going from c to b. However, all remaining paths have
length at least |a − b| + 2 since they flip twice some variables not in U .

Take all pairs of indices {(i, j)|i ∈ U ∩W, j ∈ U ∩ V }. The following conditions
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hold from the definition of U, V,W : ai = c̄i = b̄i and aj = cj = b̄j . Add the 2-clause
Cij asserting that the pair of variables xixj must take values in {aiaj , cicj , bibj} =
{aiaj , āiaj , āiāj}. The new relation is Q = R ∧i,j Cij . Note that Q ⊂ R. We verify
that the distance between a and b in Q expands. It is easy to see that for any j ∈ U ,
the assignment a ⊕ ej �∈ Q. Hence there are no shortest paths left from a to b. On
the other hand, it is easy to see that a and b are still connected, since the vertex c is
still reachable from both.

Step 2. Isolating a pair of assignments whose distance expands. The relation Q
obtained in Step 1 may have several disconnected components. This cleanup step
isolates a single pair of assignments whose distance expands. By adding 2-clauses, we
show that one can express a path of length r + 2 between assignments at distance r.

Take a,b ∈ Q whose distance expands in Q and dQ(a,b) is minimized. Let
U = {i|ai �= bi} and |U | = r. Shortest paths between a and b have certain useful
properties:

1. Each shortest path flips every variable from U exactly once. Observe that
each index j ∈ U is flipped an odd number of times along any path from a
to b. Suppose it is flipped thrice along a shortest path. Starting at a and
going along this path, let b′ be the assignment reached after flipping j twice.
Then the distance between a and b′ expands, since j is flipped twice along
a shortest path between them in Q. Also dQ(a,b′) < dQ(a,b), contradicting
the choice of a and b.

2. Every shortest path flips exactly one variable i �∈ U . Since the distance be-
tween a and b expands, every shortest path must flip some variable i �∈ U .
Suppose it flips more than one such variable. Since a and b agree on these
variables, each of them is flipped an even number of times. Let i be the first
variable to be flipped twice. Let b′ be the assignment reached after flipping i
the second time. It is easy to verify that the distance between a and b′ also
expands, but dQ(a,b′) < dQ(a,b).

3. The variable i �∈ U is the first and last variable to be flipped along the path.
Assume the first variable flipped is not i. Let a′ be the assignment reached
along the path before we flip i the first time. Then dQ(a′,b) < dQ(a,b). The
distance between a′ and b expands since the shortest path between them flips
the variables i twice. This contradicts the choice of a and b. Assume j ∈ U
is flipped twice. Then as before we get a pair a′,b′ that contradict the choice
of a,b.

Every shortest path between a and b has the following structure: first a variable
i �∈ U is flipped to āi, then the variables from U are flipped in some order, and finally
the variable i is flipped back to ai.

Different shortest paths may vary in the choice of i �∈ U in the first step and in the
order in which the variables from U are flipped. Fix one such path T ⊆ Q. Assume
that U = {1, . . . , r} and the variables are flipped in this order, and the additional
variable flipped twice is r + 1. Denote the path by a → u0 → u1 → · · · → ur → b.
Next we prove that we cannot flip the r+1th variable at an intermediate vertex along
the path.

4. For 1 ≤ j ≤ r−1 the assignment uj⊕er+1 �∈ Q. Suppose that for some j we
have c = uj ⊕ er+1 ∈ Q. Then c differs from a on {1, . . . , i} and from b on
{i+ 1, . . . , r}. The distance from c to at least one of a or b must expand, or
else we get a path from a to b through c of length |a−b|, which contradicts the
fact that this distance expands. However, dQ(a, c) and dQ(b, c) are strictly
less than dQ(a,b), so we get a contradiction to the choice of a,b.
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We now construct the path of length r + 2. For all i ≥ r + 2 we set xi = ai to
get a relation on r+ 1 variables. Note that b = ā1 . . . ārar+1. Take i < j ∈ U . Along
the path T the variable i is flipped before j so the variables xixj take one of three
values {aiaj , āiaj , āiāj}. So we add a 2-clause Cij that requires xixj to take one of
these values and take T = Q ∧i,j Cij . Clearly, every assignment along the path lies
in T . We claim that these are the only solutions. To show this, take an arbitrary
assignment c satisfying the added constraints. If for some i < j ≤ r we have ci = ai
but cj = āj , this would violate Cij . Hence the first r variables of c are of the form
ā1 . . . āiai+1 . . . ar for 0 ≤ i ≤ r. If cr+1 = ār+1, then c = ui. If cr+1 = ar+1, then
c = ui ⊕ er+1. By property 4 above, such a vector satisfies Q if and only if i = 0 or
i = r, which correspond to c = a and c = b, respectively.

Step 3. Structurally expressing paths of length 4. Let P denote the set of all ternary
relations whose graph is a path of length 4 between two assignments at Hamming
distance 2. Up to permutations of coordinates, there are 6 such relations. Each
of them is the conjunction of a 3-clause and a 2-clause. For instance, the relation
M = {100, 110, 010, 011, 001} can be written as (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄3). (It is
named so because its graph looks like the letter M on the cube.) These relations are
“minimal” examples of relations that are not componentwise bijunctive. By projecting
out intermediate variables from the path T obtained in Step 2, we structurally express
one of the relations in P . We structurally express other relations in P using this
relation.

We will write all relations in P in terms of M(x1, x2, x3) = (x1∨x2∨x3)∧(x̄1∨x̄3)
by negating variables. For example, M(x̄1, x2, x3) = (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄3) =
{000, 010, 110, 111, 101}.

Define the relation P (x1, xr+1, x2) = ∃x3 . . . xr T (x1, . . . , xr+1). The table below,
listing all tuples in P and their witnesses, shows that the conditions for structural ex-
pressibility are satisfied, and P ∈ P .

x1, x2, xr+1 x3, . . . , xr

a1a2ar+1 a3 . . . ar

a1a2ār+1 a3 . . . ar

ā1a2ār+1 a3 . . . ar

ā1ā2ār+1 a3 . . . ak, ā3a4 . . . ar , ā3ā4a5 . . . ar , . . . , ā3ā4 . . . ār

ā1ā2ar+1 ā3ā4 . . . ār

Let P (x1, x2, x3) = M(l1, l2, l3), where li is one of {xi, x̄i}. We can now use P
and 2-clauses to express every other relation in P . Given M(l1, l2, l3), every relation
in P can be obtained by negating some subset of the variables. Hence it suffices to
show that we can express structurally M(l̄1, l2, l3) and M(l1, l̄2, l3) (M is symmetric
in x1 and x3). In the following let λ denote one of the literals {y, ȳ}, such that it is
ȳ if and only if l1 is x̄1.

M(l̄1, l2, l3) = (l̄1 ∨ l2 ∨ l3) ∧ (l1 ∨ l̄3)
= ∃y (l̄1 ∨ λ̄) ∧ (λ ∨ l2 ∨ l3) ∧ (l1 ∨ l̄3)
= ∃y (l̄1 ∨ λ̄) ∧ (λ ∨ l2 ∨ l3) ∧ (l1 ∨ l̄3) ∧ (λ̄ ∨ l̄3)
= ∃y (l̄1 ∨ λ̄) ∧ (l1 ∨ l̄3) ∧M(λ, l2, l3)
= ∃y (l̄1 ∨ λ̄) ∧ (l1 ∨ l̄3) ∧ P (y, x2, x3).

In the second step the clause (λ̄ ∨ l̄3) is implied by the resolution of the clauses
(l̄1 ∨ λ̄) ∧ (l1 ∨ l̄3).
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For the next expression let λ denote one of the literals {y, ȳ}, such that it is
negated if and only if l2 is x̄2.

M(l1, l̄2, l3) = (l1 ∨ l̄2 ∨ l3) ∧ (l̄1 ∨ l̄3)
= ∃y (l1 ∨ l3 ∨ λ) ∧ (λ̄ ∨ l̄2) ∧ (l̄1 ∨ l̄3)
= ∃y (λ̄ ∨ l̄2) ∧M(l1, λ, l3)
= ∃y (λ̄ ∨ l̄2) ∧ P (x1, y, x3).

The above expressions are both based on resolution, and it is easy to check that they
satisfy the properties of structural expressibility.

Step 4. Structurally expressing S3. We structurally express (x1 ∨ x2 ∨ x3) from
M using a formula derived from a gadget in [17]. This gadget expresses (x1 ∨x2 ∨x3)
in terms of “Protected OR,” which corresponds to our relation M .

(x1 ∨ x2 ∨ x3) = ∃y1 . . . y5 (x1 ∨ ȳ1) ∧ (x2 ∨ ȳ2) ∧ (x3 ∨ ȳ3) ∧ (x3 ∨ ȳ4)
∧M(y1, y5, y3) ∧M(y2, ȳ5, y4).(3.1)

The table below, listing the witnesses of each assignment for (x1, x2, x3), shows that
the conditions for structural expressibility are satisfied.

x1, x2, x3 y1 . . . y5

111 00011 00111 00110 00100 01100 01101 01001 11001 11000 10000 10010 10011
110 01001 11001 11000 10000
100 10000
101 00011 00111 00110 00100 10000 10010 10011
001 00011 00111 00110 00100
011 00011 00111 00110 00100 01100 01101 01001
010 01001

From the relation (x1∨x2∨x3) we derive the other 3-clauses by reverse resolution,
for instance,

(x̄1 ∨ x2 ∨ x3) = ∃y (x̄1 ∨ ȳ) ∧ (y ∨ x2 ∨ x3).

To complete the proof of the structural expressibility theorem, we show that an
arbitrary relation can be expressed structurally from S3.

Lemma 3.5. Let R ⊆ {0, 1}k be any relation of arity k ≥ 1. R is structurally ex-
pressible from S3.

Proof. If k ≤ 3, then R can be expressed as a formula in CNF(S3) with constants,
without introducing witness variables. This kind of expression is always structural.

If k ≥ 4, then R can be expressed as a formula in CNF(Sk), without wit-
nesses (i.e., structurally). We will show that every k-clause can be expressed struc-
turally from Sk−1. Then, by induction, it can be expressed structurally from S3. For
simplicity we express a k-clause corresponding to the relation D0. The remaining
relations are expressed equivalently. We express D0 in a way that is standard in other
complexity reductions and turns out to be structural:

(x1 ∨ x2 ∨ · · · ∨ xk) = ∃y (x1 ∨ x2 ∨ y) ∧ (ȳ ∨ x3 ∨ · · · ∨ xk).

This is the reverse operation of resolution. For any satisfying assignment for x, its
witness space is either {0}, {1}, or {0, 1}, so in all cases it is connected. Furthermore,
the only way two neighboring satisfying assignments for x can have no common witness
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is if one of them has witness set {0} and the other one has witness set {1}. This implies
that the first one has (x3, . . . , xk) = (0, . . . , 0), and the other one has (x1, x2) = (0, 0),
and thus they differ in the assignments of at least two variables: one from {x1, x2}
and one from {x3, . . . , xk}. In that case they cannot be neighboring assignments.
Therefore all requirements of structural expressibility are satisfied.

3.3. Hardness results for 3-CNF-formulas. From Lemma 3.4 and Corollary
3.3, it follows that, to prove the hard side of our dichotomy theorems, it suffices to
focus on 3-CNF-formulas.

The proof that Conn(S3) and st-Conn(S3) are PSPACE-complete is fairly in-
tricate; it entails a direct reduction from the computation of a space-bounded Turing
machine. The result for st-Conn can also be proved easily using results of Hearne
and Demaine on nondeterministic constraint logic [17]. However, it does not appear
that completeness for Conn follows from their results.

Lemma 3.6. st-Conn(S3) and Conn(S3) are PSPACE-complete.
Proof. Given a CNF(S3)-formula ϕ and satisfying assignments s, t, we can guess

a path of length at most 2n between them and verify that each vertex along the
path is indeed a solution to ϕ. Hence st-Conn(S3) is in NPSPACE, which equals
PSPACE by Savitch’s theorem. Similarly for Conn(S3), by reusing space we can
check for all pairs of assignments whether they are satisfying and, if they both are,
whether they are connected in G(ϕ). It follows that both problems are in PSPACE.

Next we show that Conn(S3) and st-Conn(S3) are PSPACE-hard. Let A be a
language decided by a deterministic Turing machineM = (Q,Σ,Γ, δ, q0, qaccept, qreject)
in space nk for some constant k ≥ 1, where n is the length of the input. We give a
polynomial-time reduction from A to st-Conn(S3) and Conn(S3).

The reduction maps a string w (with |w| = n) to a 3-CNF-formula ϕ and two
satisfying assignments for the formula, which are connected in G(ϕ) if and only if M
accepts w. Furthermore, all satisfying assignments of ϕ are connected to one of these
two assignments, so that G(ϕ) is connected if and only if M accepts w.

Before we show how to construct ϕ, we modify M in several ways to obtain a new
machine M ′ which depends on w:

1. We define the tape of M ′ to be cyclical of length nk+1 with a special symbol
# written in cell 0 which cannot be overwritten. The input w is placed
after this symbol. Notice that the machine M accepts or rejects w within
nk space, and therefore the # symbol is never read when the machine is
initialized in a legal way (at the state q0, input from Σ∗, and the head at the
initial position). The # symbol may be read if the machine is initialized at
a different configuration. We modify the transitions of M so that if the #
symbol is read, the machine M ′ goes into the state qreject.

2. We add to M ′ a clock that counts from 0 to nk × |Q| × |Γ|nk

= 2O(nk+1),
which is the total number of possible distinct configurations of M when it
uses only nk space. For this, M ′ uses a separate tape of length O(nk+1) with
the alphabet {0, 1}. Before a transition happens, control is passed on to the
clock, its counter is incremented, and finally the transition is completed.

3. We define a standard accepting configuration. Whenever qaccept is reached,
the clock is stopped and set to zero, the original tape is erased (except for #)
and the head is placed in the initial position, always in state qaccept.

4. Whenever qreject is reached the machine goes into its initial configuration.
First w is written back on the input tape after the # symbol. This step
requires adding n states to the machine in order to write the n letters of w.
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This increases the number of states of M ′ to O(n). Next, the rest of the tape
is erased, the clock is set to zero, the head is placed in the initial position,
and the state is set to q0 (and thus the computation resumes).

5. Whenever the clock overflows, the machine goes into qreject.
The new machine M ′ runs forever if w is not in A, and it accepts if w is in A. It

also has the property that every configuration having # in position 0 leads either to
the accepting configuration or to the initial configuration with input w. Therefore the
space of such configurations is connected if and only if w ∈ A. Let’s denote by Q′ the
states of M ′ and by δ′ its transitions. As mentioned earlier, |Q′| = O(n), and M ′ runs
on two tapes, one of size N = nk and the other (for the clock) of size Nc = O(nk+1).
The alphabet of M ′ on one tape is Γ, and on the other {0, 1}. For simplicity we can
also assume that at each transition the machine uses only one of the two tapes and
moves its head either left or right.

Next, we construct an intermediate CNF-formula ψ whose solutions are the con-
figurations of M ′. However, the space of solutions of ψ is disconnected.

For each i ∈ [N ] and a ∈ Γ, we have a variable x(i, a). If x(i, a) = 1, this means
that the ith tape cell contains symbol a. For every i ∈ [N ] there is a variable y(i)
which is 1 if the head is at position i. For every q ∈ Q′, there is a variable z(q) which
is 1 if the current state is q. Similarly for every j ∈ [Nc] and a ∈ {0, 1} we have
variables xc(j, a) and a variable yc(j) which is 1 if the head of the clock tape is at
position j.

We enforce the following conditions:
1. Every cell contains some symbol and cell 0 contains #:

ψ1 =
∧
i∈[N ]

(∨a∈Γ x(i, a))
∧

j∈[Nc]

(
∨a∈{0,1} xc(j, a)

)
∧ x(0,#).

2. No cell contains two symbols:

ψ2 =
∧
i∈[N ]

∧
a�=a′∈Γ

(
x(i, a) ∨ x(i, a′)

) ∧
j∈[Nc]

(
xc(j, 0) ∨ xc(j, 1)

)
.

3. The head is in some position, the clock head is in some position, and the
machine is in some state:

ψ3 =
(
∨i∈[N ] y(i)

)∧(
∨j∈[Nc] yc(j)

)∧
(∨q∈Q′ z(q)) .

4. The main tape head is in a unique position, the clock head is in a unique
position, and the machine is in a unique state:

ψ4 =
∧

i�=i′∈[N ]

(
y(i) ∨ y(i′)

) ∧
j �=j′∈[Nc]

(
yc(j) ∨ yc(j′)

) ∧
q �=q′∈Q′

(
z(q) ∨ z(q′)

)
.

Solutions of ψ = ψ1∧ψ2∧ψ3∧ψ4 are in 1-1 correspondence with configurations of
M ′. Furthermore, the assignments corresponding to any two distinct configurations
differ in at least two variables (hence the space of solutions is totally disconnected).

Next, to connect the solution space along valid transitions of M ′, we relax condi-
tions 2 and 4 by introducing new transition variables, which allow the head to have
two states or a cell to have two symbols at the same time. This allows us to go from
one configuration to the next.

Consider a transition δ′(q, a) = (q′, b, R), which operates on the first tape, for
example. Fix the position of the head of the first tape to be i. The variables that are
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changed by the transition are x(i, a), y(i), z(q), x(i, b), y(i+ 1), z(q′) (some of these
may be the same variable, such as if a = b, but at least two are guaranteed to be
different since the head has to move left or right). Before the transition the first three
are set to 1, the second three are set to 0, and after the transition they are all flipped.
Corresponding to this transition (which is specified by i, q, and a), we introduce a
transition variable t(i, q, a). We now relax conditions 2 and 4 as follows:

• Replace
(
x(i, a) ∨ x(i, b)

)
by

(
x(i, a) ∨ x(i, b) ∨ t(i, q, a)

)
.

• Replace
(
y(i) ∨ y(i+ 1)

)
by

(
y(i) ∨ y(i+ 1) ∨ t(i, q, a)

)
.

• Replace
(
z(q) ∨ z(q′)

)
by

(
z(q) ∨ z(q′) ∨ t(i, q, a)

)
.

This is done for every value of q, a, and i (and also for transitions acting on the
clock tape). We add the transition variables to the corresponding clauses so that, for
example, the clause

(
x(i, a) ∨ x(i, b)

)
could potentially become very long, such as

(
x(i, a) ∨ x(i, b) ∨ t(i, q1, a) ∨ t(i, q2, a) ∨ · · ·

)
.

However, the total number of transition variables is only polynomial in n. We also
add a constraint for every pair of transition variables t(i, q, a), t(i′, q′, a′), saying
they cannot be 1 simultaneously: (t(i, q, a) ∨ t(i′, q′, a′)). This ensures that only one
transition can be happening at any time. The effect of adding the transition variables
to the clauses of ψ2 and ψ4 is that by setting t(i, q, a) to 1, we can simultaneously
set x(i, a) and x(i, b) to 1, and so on. This gives a path from the initial configuration
to the final configuration as follows: Set t(i, q, a) = 1, set x(i, b) = 1, y(i + 1) = 1,
z(q′) = 1, x(i, a) = 0, y(i) = 0, z(q) = 0, then set t(i, q, a) = 0. Thus consecutive
configurations are now connected. To avoid connecting to other configurations, we
also add an expression to ensure that these are the only assignments the 6 variables
can take when t(i, q, a) = 1:

ψi,q,a = t(i, q, a) ∨ ((x(i, a), y(i), z(q), x(i, b)), y(i+ 1), z(q′))
∈ {111000, 111100, 111110, 111111, 011111, 001111, 000111}.

This expression can of course be written in conjunctive normal form.
Call the resulting CNF-formula ϕ(x,xc,y,yc, z, t). Note that ϕ(x,xc,y,yc, z,0)

= ψ(x,xc,y,yc, z), so a solution where all transition variables are 0 corresponds to
a configuration of M ′. To see that we have not introduced any shortcut between
configurations that are not valid machine transitions, notice that in any solution of
ϕ, at most a single transition variable can be 1. Therefore none of the transitional
solutions belonging to different transitions can be adjacent. Furthermore, out of the
solutions that have a transition variable set to 1, only the first and the last correspond
to a valid configuration. Therefore none of the intermediate solutions (between the
starting and the ending configuration of a transition) can be adjacent to a solution
with all transition variables set to 0.

Finally, we define the assignment s to be the one corresponding to the initial
configuration of M ′ with w on the tape, and t to be the assignment corresponding to
the accepting configuration—where the state is qaccept, and the tape has only the #
symbol at position 0. This completes the reduction.

The formula ϕ is a CNF-formula where clause size is unbounded. We use the
same algorithm for producing structural expressions for k-clauses as in the proof of
Lemma 3.5 to get a 3-CNF-formula. By Lemma 3.2 and Corollary 3.3, st-Conn and
Conn for S3 are PSPACE-complete.
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By Lemma 3.4 and Corollary 3.3, this completes the proof of the hardness part
of the dichotomies for Conn and st-Conn (Theorems 2.8 and 2.9).

Finally, we show that 3-CNF-formulas can have exponential diameter by induc-
tively constructing a path of length at least 2

n
2 on n variables and then identifying

it with the solution space of a 3-CNF-formula with O(n2) clauses. By Lemma 3.4
and Corollary 3.3, this implies the hardness part of the diameter dichotomy (Theo-
rem 2.10).

Lemma 3.7. For n even, there is a 3-CNF-formula ϕn with n variables and
O(n2) clauses, such that G(ϕn) is a path of length greater than 2

n
2 .

Proof. The construction is in two steps: We first exhibit an induced subgraph Gn
of the n-dimensional hypercube with large diameter. We then construct a 3-CNF-
formula ϕn so that Gn = G(ϕn).

The graph Gn is a path of length 2
n
2 . We construct it using induction. For n = 2,

we take V (G2) = {(0, 0), (0, 1), (1, 1)} which has diameter 2. Assume that we have
constructed Gn−2 with 2

n−2
2 vertices, and with distinguished vertices sn−2, tn−2 such

that the shortest path from sn−2 to tn−2 in Gn−2 has length 2
n−2

2 . We now describe
the set V (Gn). For each vertex v ∈ V (Gn−2), V (Gn) contains two vertices (v, 0, 0)
and (v, 1, 1). Note that the subgraph induced by these vertices alone consists of two
disconnected copies of Gn−2. To connect these two components, we add the vertex
m = (t, 0, 1) (which is connected to (t, 0, 0) and (t, 1, 1) in the induced subgraph).
Note that the resulting graph Gn is connected, but any path from (u, 0, 0) to (v, 1, 1)
must pass through m. Further note that by induction the graph Gn is also a path.
The vertices sn = (sn−2, 0, 0) and tn = (sn−2, 1, 1) are diametrically opposite ends
of this path. The path length is at least 2 · 2 n−2

2 + 2 > 2
n
2 . Also s2 = (0, 0), sn =

(sn−2, 0, 0), tn = (sn−2, 1, 1) and hence sn = (0, . . . , 0), tn = (0, . . . , 0, 1, 1).
We construct a sequence of 3-CNF-formulas ϕn(x1, . . . , xn) so that Gn = G(ϕn).

Let ϕ2(x1, x2) = x̄1 ∨ x2. Assume we have ϕn−2(x1, . . . , xn−2). We add two variables
xn−1 and xn and the clauses

ϕn−2(x1, . . . , xn−2), x̄n−1 ∧ xn,
xn−1 ∨ x̄n ∨ x̄i for i ≤ n− 4,(3.2)
xn−1 ∨ x̄n ∨ xi for i = n− 3, n− 2.(3.3)

Note that a clause in (3.2) is just the implication (x̄n−1 ∧ xn) → x̄i. Thus clauses
(3.2), (3.3) enforce the condition that xn−1 = 0, xn = 1 implies that (x1, . . . , xn−2) =
tn−2 = (0, . . . , 0, 1, 1).

4. The easy case of the dichotomy: Tight sets of relations.

4.1. Schaefer sets of relations. We begin by showing that all Schaefer sets of
relations are tight. Schaefer relations are characterized by closure properties. We say
that an r-ary relation R is closed under some k-ary operation α : {0, 1}k → {0, 1} if
for every a1,a2, . . . ,ak ∈ R, the tuple (α(a1

1, a
2
1, . . . , a

k
1), . . . , α(a1

r , . . . , a
k
r)) is in R.

We denote this tuple by α(a1, . . . ,ak).
We will use the following lemma about closure properties on several occasions.
Lemma 4.1. If a logical relation R is closed under an operation α : {0, 1}k →

{0, 1} such that α(1, 1, . . . , 1) = 1 and α(0, 0, . . . , 0) = 0 (a.k.a. an idempotent opera-
tion), then every connected component of G(R) is closed under α.

Proof. Consider a1, . . . ,ak ∈ R, such that they all belong to the same connected
component of G(R). It suffices to prove that a = α(a1, . . . ,ak) is in the same con-
nected component of G(R). To that end we will first prove that for any s, t ∈ R if there
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is a path from s to t in G(R), then there is a path from α(b1, . . . ,bi−1, s,bi+1, . . . ,bk)
to α(b1, . . . ,bi−1, t,bi+1, . . . ,bk) for any b1, . . . ,bk ∈ R. This observation implies
that there is a path from a1 = α(a1,a1, . . . ,a1) to α(a1, a2, a1, . . . ,a1), from there
to α(a1,a2,a3,a1, . . . ,a1) and so on, to α(a1, a2, . . . ,ak) = a. Thus a is in the same
connected component of G(R) as a1.

Let the path from s to t be s = s1 → s2 → . . . sm = t. For every j ∈ {1, 2, . . . ,m−
1}, the tuples α(b1, . . . ,bi−1, sj,bi+1, . . . ,bm) and α(b1, . . . ,bi−1, sj+1,bi+1, . . . ,bm)
differ in at most one position (the position in which sj and sj+1 are different); therefore
they belong to the same component of G(R). Thus α(b1, . . . ,bi−1, s1,bi+1, . . . ,bm)
and α(b1, . . . ,bi−1, sm,bi+1, . . . ,bm) belong to the same component.

We are ready to prove that all Schaefer relations are tight.
Lemma 4.2. Let R be a logical relation.
1. If R is bijunctive, then R is componentwise bijunctive.
2. If R is Horn, then R is OR-free.
3. If R is dual Horn, then R is NAND-free.
4. If R is affine, then R is componentwise bijunctive, OR-free, and NAND-free.

Proof. The case of bijunctive relations follows immediately from Lemma 4.1 and
the fact that a relation is bijunctive if and only if it is closed under the ternary
majority operation maj, which is idempotent.

The cases of Horn and dual Horn are symmetric. Suppose an r-ary Horn relation
R is not OR-free. Then there exist i, j ∈ {1, . . . , r} and constants t1, . . . , tr ∈ {0, 1}
such that the relation R(t1, . . . , ti−1, x, ti+1, . . . , tj−1, y, tj+1, . . . , tr) on variables x
and y is equivalent to x ∨ y, i.e.,

R(t1, . . . , ti−1, x, ti+1, . . . , tj−1, y, tj+1, . . . , tr) = {01, 11, 10}.

Thus the tuples t00, t01t10, t11 defined by (tabi , t
ab
j ) = (a, b) and tabk = tk for every

k �∈ {i, j}, where a, b,∈ {0, 1} satisfy t10, t11, t01 ∈ R and t00 �∈ R. However, since
every Horn relation is closed under ∧, it follows that t01 ∧ t10 = t00 must be in R,
which is a contradiction.

For the affine case, a small modification of the last step of the above argument
shows that an affine relation also is OR-free; therefore, dually, it is also NAND-free.
Namely, since a relation R is affine if and only if it is closed under ternary ⊕, it follows
that t01 ⊕ t11 ⊕ t10 = t00 must be in R.

Since the connected components of an affine relation are both OR-free and NAND-
free, the subgraphs that they induce are hypercubes, which are also bijunctive rela-
tions. Therefore an affine relation is also componentwise bijunctive.

These containments are proper. For instance, R1/3 = {100, 010, 001} is compo-
nentwise bijunctive, but not bijunctive as maj(100, 010, 001) = 000 �∈ R1/3.

4.2. Structural properties of tight sets of relations. In this section, we
explore some structural properties of the solution graphs of tight sets of relations.
These properties provide simple algorithms for Conn(S) and st-Conn(S) for tight
sets S, and also guarantee that for such sets, the diameter of G(ϕ) of CNF(S)-formula
ϕ is linear.

Lemma 4.3. Let S be a set of componentwise bijunctive relations and ϕ a
CNF(S)-formula. If a and b are two solutions of ϕ that lie in the same component
of G(ϕ), then dϕ(a,b) = |a − b|, i.e., no distance expands.

Proof. Consider first the special case in which every relation in S is bijunctive.
In this case, ϕ is equivalent to a 2-CNF-formula and so the space of solutions of
ϕ is closed under majority. We show that there is a path in G(ϕ) from a to b
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such that along the path only the assignments on variables with indices from the
set D = {i|ai �= bi} change. This implies that the shortest path is of length |D|
by induction on |D|. Consider any path a → u1 → · · · → ur → b in G(ϕ). We
construct another path by replacing ui by vi = maj(a,ui,b) for i = 1, . . . , r and
removing repetitions. This is a path because for any i vi and vi+1 differ in at most
one variable. Furthermore, vi agrees with a and b for every i for which ai = bi.
Therefore, along this path only variables in D are flipped.

For the general case, we show that every component F of G(ϕ) is the solution
space of a 2-CNF-formula ϕ′. Let R ∈ S be a relation with two components, R1, R2,
each of which are bijunctive. Consider a clause in ϕ of the form R(x1, . . . , xk). The
projection of F onto x1, . . . , xk is itself connected and must satisfy R. Hence it lies
within one of the two components R1, R2; assume it is R1. We replace R(x1, . . . , xk)
by R1(x1, . . . , xk). Call this new formula ϕ1. G(ϕ1) consists of all components ofG(ϕ)
whose projection on x1, . . . , xk lies in R1. We repeat this for every clause. Finally we
are left with a formula ϕ′ over a set of bijunctive relations. Hence ϕ′ is bijunctive and
G(ϕ′) is a component of G(ϕ). So the claim follows from the bijunctive case.

Corollary 4.4. Let S be a set of componentwise bijunctive relations. Then
1. for every ϕ ∈ CNF(S) with n variables, the diameter of each component of
G(ϕ) is bounded by n;

2. st-Conn(S) is in P;
3. Conn(S) is in coNP.

Proof. The bound on diameter is an immediate consequence of Lemma 4.3.
The following algorithm solves st-Conn(S) given vertices s, t ∈ G(ϕ). Start with

u = s. At each step, find a variable xi so that ui �= ti and such that if we flip xi,
the assignment would still be satisfying. Repeat until t is reached. If at any stage
no such variable exists, then declare that s and t are not connected. If the s and t
are disconnected, the algorithm is bound to fail. So assume that they are connected.
Correctness is proved by induction on d = |s− t|. It is clear that the algorithm works
when d = 1. Assume that the algorithm works for d − 1. If s and t are connected
and are distance d apart, Lemma 4.3 implies there is a path of length d between them
in G(ϕ). In particular, the algorithm will find a variable xi to flip. The resulting
assignment is at distance d− 1 from t, so now we proceed by induction.

Next we prove that Conn(S) ∈ coNP. A short certificate that the graph is not
connected is a pair of assignments s and t which are solutions from different com-
ponents. To verify that they are disconnected it suffices to run the algorithm for
st-Conn.

We consider sets of OR-free relations. Define the coordinatewise partial order ≤
on Boolean vectors as follows: a ≤ b if ai ≤ bi for each i. A monotone path between a
and b is a path in G(ϕ), a → u1 → · · · → ur → b such that a ≤ u1 ≤ · · · ≤ ur ≤ b.

Lemma 4.5. Let S be a set of OR-free relations and ϕ a CNF(S)-formula. Every
component of G(ϕ) contains a minimum solution with respect to the coordinatewise
order; moreover, every solution is connected to the minimum solution in the same
component via a monotone path.

Proof. We call a satisfying assignment locally minimal if it has no neighboring
satisfying assignments that are smaller than it. We will show that there is exactly
one such assignment in each component of G(ϕ).

Suppose there are two distinct locally minimal assignments u and u′ in some
component of G(ϕ). Consider the path between them where the maximum Hamming
weight of assignments on the path is minimized. If there are many such paths, pick
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one where the smallest number of assignments have the maximum Hamming weight.
Denote this path by u = u1 → u2 → · · · → ur = u′. Let ui be an assignment of
largest Hamming weight in the path. Then ui �= u and ui �= u′, since u and u′ are
locally minimal. The assignments ui−1 and ui+1 differ in exactly 2 variables, say,
in x1 and x2. So {ui−1

1 ui−1
2 , ui1u

i
2, u

i+1
1 ui+1

2 } = {01, 11, 10}. Let û be such that
û1 = û2 = 0, and ûi = ui for i > 2. If û is a solution, then the path u1 → u2 →
· · · → ui−1 → û → ui+1 → · · · → ur contradicts the way we chose the original path.
Therefore, û is not a solution. This means that there is a clause that is violated by it
but is satisfied by ui−1, ui, and ui+1. So the relation corresponding to that clause is
not OR-free, which is a contradiction.

The unique locally minimal solution in a component is its minimum solution,
because starting from any other assignment in the component, it is possible to keep
moving to neighbors that are smaller, and the only time it becomes impossible to
find such a neighbor is when the locally minimal solution is reached. Therefore,
there is a monotone path from any satisfying assignment to the minimum in that
component.

Corollary 4.6. Let S be a set of OR-free relations. Then
1. for every ϕ ∈ CNF(S) with n variables, the diameter of each component of
G(ϕ) is bounded by 2n;

2. st-Conn(S) is in P;
3. Conn(S) is in coNP.

Proof. Given solutions s and t in the same component ofG(ϕ), there is a monotone
path from each to the minimal solution u in the component. This gives a path from
s to t of length at most 2n. To check if s and t are connected, we just check that the
minimal assignments reached from s and t are the same.

Sets of NAND-free relations are handled dually to OR-free relations. In this
case there is a maximum solution in every connected component of G(φ) and every
solution is connected to it via a monotone path. Finally, putting everything together,
we complete the proofs of all our dichotomy theorems.

Corollary 4.7. Let S be a tight set of relations. Then
1. for every ϕ ∈ CNF(S) with n variables, the diameter of each component of
G(ϕ) is bounded by 2n;

2. st-Conn(S) is in P;
3. Conn(S) is in coNP.

4.3. The complexity of CONN for tight sets of relations. We pinpoint the
complexity of Conn(S) for the tight cases which are not Schaefer, using a result of
Juban [19].

Lemma 4.8. For S tight, but not Schaefer, Conn(S) is coNP-complete.
Proof. The problem Another-Sat(S) is as follows: Given a formula ϕ in

CNF(S) and a solution s, does there exist a solution t �= s? Juban [19, Theorem 2]
shows that if S is not Schaefer, then Another-Sat is NP-complete. He also shows
[19, Corollary 1] that if S is not Schaefer, then the relation x �= y is expressible from
S through substitutions.

Since S is not Schaefer, Another-Sat(S) is NP-complete. Let ϕ, s be an instance
of Another-Sat on variables x1, . . . , xn. We define a CNF(S)-formula ψ on the
variables x1, . . . , xn, y1, . . . , yn as

ψ(x1, . . . , xn, y1, . . . , yn) = ϕ(x1, . . . , xn) ∧i (xi �= yi).
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It is easy to see that G(ψ) is connected if and only if s is the unique solution to
ϕ.

We are left with the task of determining the complexity of Conn(S) for the case
when S is a Schaefer set of relations. In Lemmas 4.9 and 4.10 we show that Conn(S)
is in P if S is affine or bijunctive. This leaves the case of Horn and dual Horn, which
we discuss at the end of this section.

Lemma 4.9. If S is a bijunctive set of relations, then there is a polynomial-time
algorithm for Conn(S).

Proof. Consider a formula φ(x1, . . . , xn) in CNF(S). Since S is a bijunctive set of
relations φ can be written as a 2-CNF-formula. Since satisfiability of 2-CNF-formulas
is decidable in polynomial time, it is easy to decide for a given variable xi whether
there exist solutions in which it takes a particular value in {0, 1}. The variables which
can take only one value are assigned that value. Without loss of generality we can
assume that the resulting 2-CNF formula is ψ(x1, . . . , xm).

Consider the graph of implications of ψ defined in the following way: The vertices
are the literals x1, . . . , xm, x̄1, . . . , x̄m. There is a directed edge from literal l1 to literal
l2 if and only if ψ contains a clause containing l2 and the negation of l1, which we
denote by l̄1 (if l1 is a negated variable x̄, then l̄1 denotes x). The directed edge
represents the fact that in a satisfying assignment if the literal l1 is assigned true,
then the literal l2 is also assigned true. We will show that G(ψ) is disconnected if
and only if the graph of implications contains a directed cycle. This property can be
checked in polynomial time.

Suppose the graph of implications contains a directed cycle of literals l1 → l2 →
l3 → · · · → lk → l1. By the construction, the graph also contains a directed cycle
on the negations of these literals, but in the opposite direction: l̄k → l̄k−1 → · · · →
l̄2 → l̄1 → l̄k. There is a satisfying assignment s in which l1 is assigned 1, and also a
satisfying assignment t in which l̄1 is assigned 1. By the implications, in s the literals
l1, l2, . . . , lk are assigned 1, and in t l̄1, l̄2, . . . , l̄k are assigned 1. Suppose there is a
path from s to t. Then let li be the first literal in the cycle whose value changes along
the path from s to t. Then there is a satisfying assignment in which li is assigned
0, whereas all other literals on the cycle are assigned 1. On the other hand, this
cannot be a satisfying assignment because the edge (li−1, li) implies that there is a
clause containing only li and the negation of li−1, and this clause is violated by the
assignment. This is a contradiction, and therefore there can be no path from s to t.

Next, suppose the graph of implications contains no directed cycle, and G(ψ) is
disconnected. Let s and t be satisfying assignments from different connected compo-
nents of G(ψ) that are at minimum Hamming distance. Let U be the set of variables
on which s and t differ. There are two literals corresponding to each variable, and
let U s and U t denote, respectively, the literals that are true in s and in t. Since the
directed graph induced by U s in the implications graph contains no directed cycle,
there exists a literal l ∈ U s without an incoming edge from another literal in U s.
Otherwise, by following the incoming edges we would find a cycle in the graph in-
duced by U s. In addition, for every literal l′ �∈ U s that is assigned true by s, there is
no edge from l′ to l because that would contradict the fact that t is also a satisfying
assignment (by the definition of U , l′ is assigned true by t). Therefore, with respect
to s the literal l does not appear in any clause in which it is implied, i.e., in which
it is the only satisfying literal. Thus, the value of the corresponding variable can be
flipped and the resulting assignment is still satisfying. This assignment is in the same
component as s but it is closer to t, which contradicts our choice of s and t.
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Lemma 4.10. If S is an affine set of relations, then there is a polynomial-time
algorithm for Conn(S).

Proof. An affine formula can be described as the set of solutions of a linear system
of equations. For any solution, if only a variable that appears in at least one of the
equations is flipped, the resulting assignment is not a solution. Therefore it suffices
to check whether the system has more than one solution (after variables that don’t
appear in any equation are removed), which is easily done by checking the rank of the
matrix obtained from the Gaussian elimination algorithm.

We are left with characterizing the complexity of Conn for sets of Horn relations
and for sets of dual Horn relations. In the conference version [16] of the present paper,
we had conjectured that if S is Horn or dual Horn, then Conn(S) is in P, but this was
disproved by Makino, Tamaki, and Yamamoto [24]. They showed that Conn({R2}) is
coNP-complete, where R2 = {0, 1}3\{110}; hence there exist Horn (and by symmetry
also dual Horn) sets of relations for which Conn is coNP-complete. Their proof
is via a reduction from Positive Not-All-Equal 3-Sat, which as seen earlier is
Sat({RNAE}), where RNAE = {0, 1}3 \ {000, 111}. This problem is also known as
3-hypergraph 2-colorability,

The relation R2 is a 3-clause with one positive literal. We will describe a natural
set of Horn relations first introduced in [14], which cannot be used to express R2. We
show that for this set there is a polynomial-time algorithm for Conn.

Definition 4.11. A logical relation R is implicative hitting set-bounded−
( IHSB−) if it is the set of solutions of a Horn formula in which all clauses of size
greater than 2 have only negative literals. Similarly, R is implicative hitting set-
bounded+ ( IHSB+) if it is the set of solutions of a dual Horn formula in which all
clauses of size greater than 2 have only positive literals.

These types of logical relations can be characterized by closure properties. A
relation R is IHSB− if and only if it is closed under a ∧ (b ∨ c); in other words if
a,b, c ∈ R, where R is of arity r, then a∧ (b∨ c) = (a1 ∧ (b1 ∨ c1), a2 ∧ (b2 ∨ c2), . . . ,
ar ∧ (br ∨ cr)) ∈ R. A relation R is IHSB+ if and only if it is closed under a∨ (b∧c).
While the definition may at first look unnatural, it comes from Post’s classification
of Boolean functions (see [5]). One of the consequences of this classification is that
IHSB− relations cannot express all Horn relations, and in particular R2, even in the
sense of Schaefer’s expressibility. For the purposes of structural expressibility we can
define an even larger class of relations which cannot structurally express R2 (unless
P = coNP).

Definition 4.12. A logical relation R is componentwise IHSB− (IHSB+) if
every connected component of G(R) is IHSB− (IHSB+).

By Lemma 4.1, every relation that is IHSB− (IHSB+) is also componentwise
IHSB− (IHSB+). Of course, the class of componentwise IHSB− relations is much
broader and in fact includes relations that are not even Horn, such as R1/3. However,
in the following lemma we consider only componentwise IHSB− (IHSB+) relations
which are Horn (dual Horn). We will say that a set of relations S is componentwise
IHSB− (IHSB+) if every relation in S is componentwise IHSB− (IHSB+).

Lemma 4.13. If S is a set of relations that are Horn (dual Horn) and compo-
nentwise IHSB− (IHSB+), then there is a polynomial-time algorithm for Conn(S).

Proof. First we consider the case in which every relation in S is IHSB−. The for-
mula can be written as a conjunction of Horn clauses, such that clauses of length
greater than 2 have only negative literals. Let all unit clauses be assigned and
propagated—their variables take the same value in all satisfying assignments. The
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resulting formula is also IHSB− and has two kinds of clauses: 2-clauses with one
positive and one negative literal, and clauses of size 2 or more with only negative
literals. The assignment of zero to all variables is satisfying. There is more than
one connected component if and only if there is another assignment that is locally
minimal by Lemma 4.5. A locally minimal satisfying assignment is such that if any
of the variables assigned 1 is changed to 0 the resulting assignment is not satisfying.
Thus all variables assigned 1 appear in at least one 2-clause with one positive and
one negative literal for which both variables are assigned 1. We say that such an
assignment certifies the disconnectivity.

To describe the algorithm, we first define the following implication graph G. The
vertices are the set of variables. There is a directed edge (xi, xj) if and only if (xj∨ x̄i)
is a clause in the IHSB− representation. Let S1, . . . , Sm be the sets of variables in
clauses with only negative literals. For every variable xi let Ti denote the set of
variables reachable from xi in the directed graph. If xi ∈ Ti, then xi lies in a directed
cycle. Note that if xi is set to 1, then every variable in Ti must also be set to 1. The
algorithm rejects if and only if there exists a variable xi such that xi ∈ Ti and Ti does
not contain Sj for any j ∈ {1, . . . ,m}. We show that this happens if and only if the
solution graph is disconnected. Note that the algorithm runs in polynomial time.

Assume that the graph of solutions is disconnected and consider the satisfying
assignment s that certifies disconnectivity. Let U be the set of variables xi such that
si = 1. Since every variable in U appears in at least one 2-clause for which both
variables are from U , the directed graph induced by U is such that every vertex has
an incoming edge. By starting at any vertex in U and following the incoming edge
backwards until we repeat some vertex, we find a cycle in the subgraph induced by
U . For any variable xi in such a cycle it holds that xi ∈ Ti. Further Ti ⊆ U , since
setting xi to 1 forces all variables in Ti to be 1. Also Ti cannot contain Sj for any j,
else the corresponding clause would not be satisfied by s. Thus the algorithm rejects
whenever the solution graph is disconnected.

Conversely, if the algorithm rejects, there exists a variable xi such that xi ∈ Ti
and Ti does not contain Sj for any j ∈ {1, . . . ,m}. Consider the assignment in which
all variables from Ti are assigned 1, and the rest are assigned 0. We will show that
this assignment is satisfying and it is a certificate for disconnectivity. Clauses which
contain only negated variables are satisfied since Sj �⊂ Ti for all j. Now consider a
clause of the form (xj ∨ x̄k) and note that there is a directed edge (xk, xj). If xk = 0,
this is satisfied. If xk = 1, then xk ∈ Ti, and hence xj ∈ Ti because of the edge
(xk, xj). But then xj is set to 1, so the clause is satisfied. To show that this solution
is minimal, consider trying to set xk ∈ Ti to 0. There is an incoming edge (xj , xk) for
some xj ∈ Ti, and hence a clause (xk ∨ x̄j), which will become unsatisfied if we set
xk = 0. Thus we have a certificate for the space being disconnected.

Next, consider a formula φ(x1, . . . , xn) in CNF(S). We reduce the connectivity
question to one for a formula with IHSB− relations. Since satisfiability of Horn
formulas is decidable in polynomial time and every connected component of a Horn
relation is a Horn relation by Lemma 4.1, it is easy to decide for a given clause and a
given connected component of its corresponding relation (the relation obtained after
identifying repeated variables) whether there exists a solution for which the variables
in this clause are assigned a value in the specified connected component. If there exists
a clause for which there is more than one connected component for which solutions
exist, then the space of solutions is disconnected. This follows from the fact that the
projection of G(φ) onto the hypercube corresponding to the variables appearing in
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this clause is disconnected. Therefore we can assume that the relation corresponding
to every clause has a single connected component. Since that component is IHSB−
the relation itself is IHSB−.

It is still open whether Conn is coNP-complete for every remaining Horn set of
relations, i.e., every set of Horn relations that contains at least one relation that is not
componentwise IHSB−. Following the same line of reasoning as in the proof of our
structural expressibility theorem, we are able to show that one of the paths of length
4 defined in section 3.2, namely, M(x̄1, x̄2, x3), can be expressed structurally from
every such set of relations. Thus the trichotomy would be established if one shows
that Conn({M(x̄1, x̄2, x3)}) is coNP-hard.

5. Discussion and open problems. In section 2, we conjectured a trichotomy
for Conn(S). In view of the results established here, what remains is to pinpoint the
complexity of Conn(S) when S is Horn but not componentwise IHSB−, and when
S is dual Horn but not componentwise IHSB+. We conjecture that for those cases
Conn(S) is coNP-complete.

We mentioned that one could also consider CNF(S)-formulas without constants,
and the extension of our results to this setting is still an open problem. A more
interesting and challenging direction is the extension of our results to larger domains.

Finally, our techniques may shed light on other connectivity-related problems,
such as approximating the diameter and counting the number of components, or
proving hardness of other configuration connectivity problems. An example of the
latter appears in recent work of Ito et al. [18].
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Abstract. Self-assembly, the process by which objects autonomously come together to form
complex structures, is omnipresent in the physical world. Recent experiments in self-assembly demon-
strate its potential for the parallel creation of a large number of nanostructures, including possibly
computers. A systematic study of self-assembly as a mathematical process has been initiated by
L. Adleman and E. Winfree. The individual components are modeled as square tiles on the infinite
two-dimensional plane. Each side of a tile is covered by a specific “glue,” and two adjacent tiles will
stick iff they have matching glues on their abutting edges. Tiles that stick to each other may form
various two-dimensional “structures” such as squares and rectangles, or may cover the entire plane.
In this paper we focus on a special type of structure, called a ribbon: a non-self-crossing rectilinear
sequence of tiles on the plane, in which successive tiles are adjacent along an edge and abutting
edges of consecutive tiles have matching glues. We prove that it is undecidable whether an arbitrary
finite set of tiles with glues (infinite supply of each tile type available) can be used to assemble an
infinite ribbon. While the problem can be proved undecidable using existing techniques if the ribbon
is required to start with a given “seed” tile, our result settles the “unseeded” case, an open problem
formerly known as the “unlimited infinite snake problem.” The proof is based on a construction,
due to R. Robinson, of a special set of tiles that allow only aperiodic tilings of the plane. This con-
struction is used to create a special set of directed tiles (tiles with arrows painted on the top) with
the “strong plane-filling property”—a variation of the “plane-filling property” previously defined by
J. Kari. A construction of “sandwich” tiles is then used in conjunction with this special tile set,
to reduce the well-known undecidable tiling problem to the problem of the existence of an infinite
directed zipper (a special kind of ribbon). A “motif” construction is then introduced that allows
one tile system to simulate another by using geometry to represent glues. Using motifs, the infinite
directed zipper problem is reduced to the infinite ribbon problem, proving the latter undecidable.
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1. Introduction. Self-assembly, the process by which objects autonomously
come together to form complex structures, is omnipresent in the physical world.
Atoms bind to each other by chemical bonds to form molecules, molecules may form
crystals or macromolecules, and cells interact to form biological organisms. Recently
it has been suggested that complex self-assembly processes will ultimately be used in
circuit fabrication, nanorobotics, DNA computation, and amorphous computing. In-
deed, in electronics, engineering, medicine, material science, manufacturing, and other
disciplines, there is a continuous drive toward miniaturization. Unfortunately, current
“top-down” techniques such as lithography may not be capable of efficiently creat-
ing structures with features the size of molecules or atoms. Self-assembly provides a
“bottom-up” approach by which such fine structures might be created.

Experimental research on self-assembly includes simulation of one-dimensional
cellular automata by using macroscopic plastic tiles that assemble at an oil/water
interface [38], studies of self-directed growth of hybrid organic molecules on a silicon
substrate [31], self-assembly of regular lipid hollow icosahedra [14], self-assembly of
patterns of lead on a copper surface as templates for fabricating nanostructures [35],
formation of electrical networks by self-assembly of small plastic and metal objects
[22], [49], self-assembly of molecular machines [20], the construction by self-assembly of
a molecular-thickness transistor [43], and DNA nanomachines made by self-assembly
(e.g., molecular switches [30], tweezers [53], [33], walkers [44], autonomous DNA mo-
tors [47], [9], [23]), as well as algorithmic self-assembled Sierpinski triangles [41],
self-assembled cloneable DNA octahedra [45], stiff self-assembled tetrahedra for three-
dimensional electronic circuits [21], and DNA origami [40].

Investigations into DNA computing [2] and amorphous computing [1] have pointed
out a strong connection between self-assembly and computation. While [52], [29], [36],
[50] have shown the potential of DNA self-assembly for computation, [51] has exper-
imentally demonstrated the self-assembly of periodic two-dimensional arrays from
DNA “tiles,” in which “binding” is regulated by the “sticky” ends of the DNA tiles.
Reference [32] has demonstrated the execution of logical operations (cumulative XOR)
by self-assembly of DNA triple cross-over molecules and [10] has demonstrated the
potential for programmable self-assembled computing devices.

A systematic study of self-assembly as a computational process has been initiated
in [3]. The individual components are therein modeled as square tiles on the infinite
two-dimensional plane. The tiles cannot be rotated. Each side of a tile is covered
by a specific “glue,” and two adjacent tiles will stick iff they have matching glues
on their abutting edges. As such, tiles have been previously studied in the context
of classic questions about tilings of the plane [48]. The tiling problem, for example
(proved undecidable in [11], [37]), asks whether a given set of tiles (supply of each
tile type unlimited) can be used to correctly tile the entire plane. However, the new
requirements of experimental self-assembly of tiles into required nanoscale shapes pose
new types of questions. What is the minimal number of tiles required for the self-
assembly of a desired shape [5], [19], [13], [46], [25], [39]? What is the running time of
such a self-assembly [5], [4]? Do the results still hold if one generalizes the model by
making the “sticking” reversible, or by defining different bond strengths and requiring
more than one bond for sticking to occur [42], [4], [6], [5]? Do reversible self-assemblies
achieve equilibrium [6]? What is the optimal initial concentration of tile types that
guarantees the fastest assembly of a required shape [5]? Can a self-assembled shape
recover from the loss of arbitrary many tiles [12]? What are possible computational
primitives for algorithmic self-assembly [8]?

One of the interesting problems of self-assembly is whether or not a given set of
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tiles allows uncontrollable growth, that is, whether arbitrarily large structures can
be produced. It turns out that this question is equivalent to asking whether or not,
given a set of tiles, there exists an infinite ribbon that can be formed with tiles from
this set. A ribbon is a non-self-crossing sequence of tiles on the plane, in which
successive tiles are adjacent along an edge and abutting edges of consecutive tiles
have matching glues. If a given “seed” tile is specified, the problem of existence of
an infinite ribbon starting at that tile has been proved undecidable [16], [15], [17].
However, when no such seed is specified, existing proof techniques failed to produce
an answer and the problem was declared open in [17]. The unseeded problem is also
relevant given that, in some physical simulations of self-assembly [38], the growth
mechanism was deemed incompatible with computations that use a chosen input.
(More recently, in [18], successful experimental “seeded” self-assembly of fixed-length
Sierpinski-patterned ribbons was reported. The assemblies, which use DNA tiles, start
their growth from DNA “origami seeds”—special DNA tiles obtained by using the
origami method [40].) Here we prove that the unseeded problem is also undecidable.
This result settles an open problem known hitherto as the “unlimited infinite snake
problem” [17]. Our results are placed within the framework of the “classical” tiling by
self-assembly, in that our model does not take into account physical phenomena that
may affect experimental DNA self-assembly such as concentrations of tiles, different
glue strengths, and glue-matching errors.

The paper is organized as follows. Section 2 introduces the notions of tile, glue,
tile system, sticking, ribbon, zipper, valid tiling of the plane, and directed tiles. In par-
ticular, a zipper is a ribbon with the additional requirement that even nonconsecutive
tiles that touch must have matching glues at their abutting edges.

Section 3 starts with defining a directed tile system with the strong plane-filling
property: in such a system, any infinite directed zipper is forced to follow a specific
plane-filling self-similar path, and, moreover, an infinite directed zipper is always
guaranteed to exist. The construction of a directed tile system with the above property
uses a 3× 3 block construction based on directed tiles defined in [27], [26], which, in
turn, resemble tiles devised by Robinson in [37] to produce only aperiodic tilings of
the plane. These tiles were augmented in [26], [27] with directions that forced any
directed tiled path to form a self-similar plane-filling Hilbert curve that recursively fills
arbitrarily large squares by filling each of their quadrants. The original construction
used the condition that no glue mismatch be present in the 3×3 neighborhood of any
tile on the path, to force the path to follow the desired curve. Here, the additional 3×3
block construction is needed to ensure that the weaker condition of no glue mismatch
between any two tiles on the directed tiled path is enough to force its course.

Section 4 then proves the undecidability of the existence of an infinite directed
zipper by reducing the tiling problem to it. The reduction is based on a construction
of sandwich tiles, which have directed tiles from the directed tile system with the
strong plane-filling property on top and undirected tiles from a given tile system on
the bottom. The next result of the section proves the undecidability of the existence
of an infinite ribbon by reducing the undecidable infinite directed zipper problem to
it. The proof uses a “ribbon motif” construction that simulates each directed zipper
tile by a ribbon of undirected tiles following its contours, and it uses geometry (bumps
and dents) to simulate zipper-tile glues.

Sections 5 and 6 point to the implications of the undecidability of existence of
infinite ribbons for the problem of self-assembly of arbitrarily large supertiles, and
they summarize our results.
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2. Notation and definitions. A tile is an oriented unit square. The north,
east, south, and west edges of the tile are each labeled with a symbol called a glue
from a finite alphabet X . Tiles can be placed on the plane but not rotated. The
positions of the tiles on the plane are indexed by Z

2, the set of pairs of integers.
Formally, a tile t is a quadruple t = (tN , tE , tS , tW ) ∈ X4, where X is a finite

set. The components tN , tE , tS , tW will be called the glues on the north, east, south,
and west edges of the tile, respectively. A tile system T is a finite subset of X4. For
all tiles t = (tN , tE , tS , tW ) and t′ = (t′N , t

′
E , t

′
S , t

′
W ), t sticks on the north to t′ iff

tN = t′S . Sticking on the east, south, and west is defined similarly.
The directions D = {N,E, S,W} are functions from Z

2 to Z
2: N(x, y) = (x, y+1),

E(x, y) = (x+1, y), S(x, y) = (x, y−1), W (x, y) = (x−1, y). We say that the positions
(x, y) and (x′, y′) are adjacent iff (x′, y′) ∈ {N(x, y), E(x, y), S(x, y),W (x, y)}. In
addition, (x, y) abuts (x′, y′) on the north iff (x′, y′) = N(x, y), and similarly for the
other directions.

Given a tile system T , a T -tiling of the plane is a total function f : Z
2 −→ T .

The tiling f is valid at position (x, y) iff f(x, y) sticks on the north to f(N(x, y)),
f(x, y) sticks on the east to f(E(x, y)), f(x, y) sticks on the south to f(S(x, y)), and
f(x, y) sticks on the west to f(W (x, y)). That is to say, f is valid at (x, y) iff the tile
at position (x, y) sticks on the appropriate sides to all the tiles that are at positions
adjacent to it. The tiling is valid iff it is valid at every position (x, y) ∈ Z

2. The
well-known tiling problem posed by Wang asks the following: Given a tile system T ,
does there exist a valid T -tiling of the plane? The tiling problem was first proved
undecidable by Berger [11], and the result was improved by Robinson [37]. One can
generalize the notion of T -tiling of the entire plane by defining a partial T -tiling as a
partial function g : Z

2 −→ T . A partial tiling g is valid on a region R ⊆ dom(g) iff,
for all (x1, y1), (x2, y2) ∈ R, if (x1, y1) abuts (x2, y2) on the north (east, south, west),
then g(x1, y1) sticks to g(x2, y2) on the north (east, south, west). The partial tiling g
is called valid iff it is valid on the entire dom(g).

A path is a function P : I −→ Z
2, where I is a set of consecutive integers and

for all (i, i + 1 ∈ I), P (i) and P (i + 1) are adjacent. That is, a path is a sequence
of adjacent positions on the plane. For all i ∈ I, we denote P (i) as (xi, yi). We say
that (x, y) is on P iff (x, y) ∈ range(P ). For all tile systems T , a T -tiled path is a pair
(P, r), where P is a path and r is a function r : range(P ) −→ T .

A T -tiled path (P, r) is a T -ribbon iff
(a) P is one-to-one, and
(b) for all (i, i + 1 ∈ dom(P )), if (xi+1, yi+1) abuts (xi, yi) on the north (south,

east, west), then r(xi+1, yi+1) sticks to r(xi, yi) on the north (south, east,
west).

Informally, a tiled path is a ribbon iff it does not cross itself and the glue between
tiles at consecutive positions along the path match.

A T -ribbon (P, r) is a T -zipper iff for all (x, y), (x′, y′) on P , if (x′, y′) abuts (x, y)
on the north (south, east, west), then r(x′, y′) sticks to r(x, y) on the north (south,
east, west). Note that the notion of a zipper is more restrictive than the notion of a
ribbon in that a zipper requires all of its tiles (consecutive or not) in adjacent positions
to stick.

A directed tile system is a pair (T, d), where T is a tile system and d : T −→
{N,E, S,W} is a function from the tile system to the direction functions. A directed
tile system can be thought of as a tile system in which each tile has an arrow painted
on it pointing north, east, south, or west.
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A (T, d)-directed tiled path is a pair (P, r), where (P, r) is a T -tiled path and for
all (i, i + 1 ∈ dom(P )) we have that (xi+1, yi+1) = d(r(xi, yi))(xi, yi). A directed
tiled path is a tiled path in which each tile points to its successor on the path. If
(P, r) is a (T, d)-directed tiled path and (P, r) is a T -ribbon (zipper), then (P, r) is a
(T, d)-directed ribbon (zipper).

A path, (directed) tiled path, (directed) ribbon, or (directed) zipper is called
finite, semi-infinite, or infinite iff the domain of the associated path is finite, has a
least or greatest element and is infinite, or is Z, respectively.

To prove the undecidability of existence of infinite ribbons, we shall first prove
the undecidability of existence of infinite directed zippers. Afterwards, a “ribbon
motif” construction will be employed to prove the result for ribbons: the construction
simulates a directed zipper by a ribbon motif of smaller tiles that goes around the
contours of the zipper tiles, and it uses geometry to simulate zipper-tile glues.

In order to prove the undecidability of existence of infinite directed zippers, we
shall use the undecidability of the tiling problem in conjunction with a sandwich
construction that makes use of the existence of a directed tile system with the so-
called strong plane-filling property.

Definition 2.1. A directed tile system (T, d) has the strong plane-filling property
iff

(i) there exists an infinite (T, d)-directed zipper, and
(ii) for all infinite (T, d)-directed zippers (P, r), for all natural numbers n there

exists (x, y) such that (x + i, y + j) is on P for i = 0, 1, 2, . . . , n and j =
0, 1, 2, . . . , n.

If a directed zipper (or ribbon or path) (P, r) satisfies the property in Defini-
tion 2.1(ii), we also say that it covers arbitrarily large squares.

Definition 2.1 states that in a directed tile system with the strong plane-filling
property any infinite directed zipper is forced to be plane-filling (by filling arbitrarily
large squares) and, moreover, that such an infinite directed zipper always exists.

3. A directed tile system with the strong plane-filling property. An
essential element of our subsequent proofs will be the main result of this section,
Theorem 3.1, namely the construction of a directed tile system that satisfies the
strong plane-filling property of Definition 2.1. In fact, our directed tiles satisfy an
even stronger requirement than (ii): any infinite directed tiled path is either plane-
filling or it has a glue mismatch between two of its tiles. In particular, using our
tiles, an infinite directed tiled path may not even form a loop without encountering
a glue mismatch along the way. Consequently, every infinite directed tiled path that
does not fill the plane must necessarily contain two neighboring tiles with a glue
mismatch. The constructed tiles therefore satisfy a stronger version of Definition 2.1,
thus satisfying a stronger property than the original plane-filling property defined in
[26, 27].

In [27], any infinite directed tiled path was forced to be plane-filling unless there
was a mismatch of glues inside the 3 × 3 neighborhood of some tile of the path. As
described in subsections 3.2 and 3.3, directed tiles with this weaker plane-filling prop-
erty were explicitly constructed by augmenting Robinson’s aperiodic tiles [37] with
directions. With these tiles, all directed tiled paths consisting of tiles without errors
in their 3×3 neighborhood formed self-similar plane-filling curves of the kind used by
Hilbert [24] to show that the unit square is a continuous image of the unit segment.
The constructed tiles filled arbitrarily large squares recursively, by first filling the in-
dividual quadrants of a square. The process was guided by the direction associated
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with each tile, which forced the construction to proceed along the self-similar Hilbert
curve that traversed each quadrant of a square and linked the quadrants to each other.

In the present application we need the stronger variant of the plane-filling property
introduced in Definition 2.1. In our case the infinite directed tiled path must be forced
to be plane-filling even under the weak assumption that there is no glue mismatch
between any two tiles belonging to it. It turns out that such a directed tile system
is obtained by taking 3 × 3 blocks of the tiles in [27], as described in subsection 3.4.
For this particular set of tiles, our 3× 3 block construction ensures that the weak
requirement of absence of glue mismatches between any two tiles belonging to the
directed tiled path is sufficient to determine its uniqueness. Namely, we can prove
that the constructed directed tile system has the property that, starting with any
arbitrary tile, the only way to build an infinite error-free directed zipper is by forming
a Hilbert curve that covers arbitrarily large squares.

3.1. Generalized tile systems. We begin by generalizing the notion of neigh-
borhood from section 2, where the “neighbors” of a position were the positions at its
north, east, south, and west.

Definition 3.1. A neighborhood vector is a k-tuple

V = (x̄1, x̄2, . . . , x̄k), x̄i ∈ Z
2, 1 ≤ i ≤ k.

The neighbors of a position x̄ ∈ Z
2 are the positions x̄+ x̄i for 1 ≤ i ≤ k.

The classical von Neumann neighborhood is defined by the vector

VvN = [(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1)].

In the von Neumann neighborhood, each position has five neighbors: itself and its
four adjacent positions, as defined in section 2. In fact, all notions defined in section 2
are based on the von Neumann neighborhood.

Another particular neighborhood of interest, the Moore neighborhood, is defined
as follows:

VM = [(−1, 1), (0, 1), (1, 1), (−1, 0), (0, 0), (1, 0), (−1,−1), (0,−1), (1,−1)].

The Moore neighborhood of a position is a 3× 3 block centered at that position, where
the eight directions of the compass are used when we refer to the eight surrounding
positions.

In contrast, in the generalized sense of Definition 3.1, the neighbors of a position
need not be adjacent to it. Under this generalized definition, the neighborhood of a
position may even have holes in it; i.e., adjacent positions may not belong to its neigh-
borhood, while positions further away may. For example, V = [(−2, 2), (0, 2), (2, 2),
(−1, 1), (1, 1), (−2, 0), (0, 0), (2, 0), (−1,−1), (1,−1), (−2,−2), (0,−2), (2,−2)] defines
a checkerboard type of neighborhood, where the neighbors of the center “white” po-
sition are all the “white” positions in the 5 × 5 square centered at it.

We shall now use the generalized notion of neighborhood to define a generalized
tile system and its corresponding notion of valid tiling.

Definition 3.2. A generalized tile system is a triple (T, V,R), where T is a
finite set, V = (x̄1, x̄2, . . . , x̄k), x̄i ∈ Z

2, 1 ≤ i ≤ k, is a neighborhood vector, and
R ⊆ T k is a k-ary relation on T .

As usual, a (partial) (T, V,R)-tiling (shortly T -tiling if the other elements are
obvious from the context) is a (partial) function ψ : Z

2 o−→ T.
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Definition 3.3. A (T, V,R)-tiling ψ is valid at x̄ ∈ dom(ψ) iff there exists r ∈ R
such that, for all i, 1 ≤ i ≤ k, either (x̄ + x̄i) ∈ dom(ψ) and ψ(x̄ + x̄i) = r(i) or
otherwise ψ(x̄+ x̄i) is undefined.

A (T, V,R)-tiling ψ is valid on a region S ⊆ dom(ψ) iff ψ|S is valid at every point
x̄ ∈ S. We say that ψ is valid iff it is valid on dom(ψ). If ψ is valid on Z

2, then ψ is
called a valid (T, V,R)-tiling of the plane.

As before, we can define a generalized directed tile system (T, V,R, d), where
(T, V,R) is a generalized tile system and d : T −→ {N,E, S,W} is a function from
the generalized directed tile system to the direction functions.

3.2. Microtiles. The starting point of our construction of a directed tile system
(T0, d0) with the strong plane-filling property will be a generalized directed tile system
(Tµ, Vµ, Rµ, dµ) constructed in [27]. The elements of Tµ are called microtiles. Instead
of glues, they use labeled arrows to define their correspondence so that arrow heads
match arrow tails on the edges of tiles. A Tµ-tiling will sometimes be called microtiling.

There are five different types of microtiles in Tµ (Figure 1): (a) single and (b) dou-
ble crosses, (c) single, (d) double, and (e) mixed arms. The arms can be horizontal
or vertical arms. There are also labeled diagonal arrows assigned to microtiles in
[27]. They play a role in proofs of Lemmata 3.1 and 3.2. Since these proofs are not
reproduced here, we omit the description of the diagonal arrows.

e)a) b) c) d)

Fig. 1. The five types of microtiles: (a) single cross, (b) double cross, (c) single arm, (d) double
arm, and (e) mixed arm. Diagonal arrows are not shown. Reprinted from the Journal of Computer
and System Sciences, Volume 48, Jarkko Kari, Reversibility and surjectivity problems of cellular
automata, pages 149–182, 1994, with permission from Elsevier.

A cross, either single or double, has its arrow heads labeled from {SE ,SW ,NE ,
NW }, but all four arrow heads must have the same label. The principal arrow of
an arm (single, double, or mixed) has a label from {SE ,SW ,NE ,NW }, with the
same label on both ends. The side arrows of mixed arms have labels as described in
Figure 2. A single or double horizontal arm has its upper (lower) arrow labeled SX
(NX, respectively) for X ∈ {E,W}. A single or double vertical arm has its left (right)
arrow labeled YE (YW, respectively) for Y ∈ {N,S}. To conclude the description of
microtiles, we note that more labels will be described in the next section.

NE

SE

NW

SW

NW NE SW SE�
� �
� ��

�
� �� �

�

Fig. 2. The possible labels of the two side arrows on a mixed arm. Reprinted from the Journal
of Computer and System Sciences, Volume 48, Jarkko Kari, Reversibility and surjectivity problems
of cellular automata, pages 149–182, 1994, with permission from Elsevier.

Definition 3.4 (see [27]). A microtile system is a generalized directed tile system
(Tµ, Vµ, Rµ, dµ), where
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(2 - 1)-SE-square

(2 - 1)-NW-square
n

XY

n
(2 - 1)-SW-square

n

n
(2 - 1)-NE-square

Fig. 3. Constructing the (2n+1 − 1)-XY -square. Reprinted from the Journal of Computer
and System Sciences, Volume 48, Jarkko Kari, Reversibility and surjectivity problems of cellular
automata, pages 149–182, 1994, with permission from Elsevier.

• Tµ is the set of tiles with labeled arrows described above;
• Vµ is the Moore neighborhood;
• Rµ is the set of all v ∈ T 9

µ such that in the 3× 3 tiling {(Vµ(i), v(i)) | 1 ≤ i ≤
9} all arrow heads meet on the edges of tiles matching arrow tails with the
same labels and vice versa.

The labeling of microtiles described above allows that, for each n ∈ N, four special
squares called (2n − 1)-XY -squares can be defined recursively.

Definition 3.5. A (2n − 1)-XY -square, n ≥ 1, XY ∈ {NE ,NW ,SE ,SW }, is a
microtiling fXY : Sn −→ Tµ, where Sn = {(x+ i, y + j) | 1 ≤ i, j ≤ 2n − 1} for some
(x, y) ∈ Z

2. It is iteratively constructed in the following way.
A single cross labeled XY is a 1-XY -square. A (2n+1 − 1)-XY -square consists

of four (2n − 1)-X ′Y ′-squares, X ′Y ′ ∈ {NW ,NE ,SW ,SE}, ordered as in Figure 3.
These squares are separated by a double cross labeled XY at the position (x+2n, y+2n),
called the central cross of the square, and rows of arms radiating from it. The arms
are double near the central cross, but halfway the mixed arms make them single.

The iterative construction is illustrated in Figure 3. By the construction of a
microtile system, all (2n − 1)-XY -squares are valid microtilings. Figure 4 provides
an example of a 7-XY -square. We may sometimes refer to a (2n − 1)-XY -square as
(2n−1)-square if XY is arbitrary. Proofs of the following results can be found in [27].

Lemma 3.1 (see [27]). Let f : S(1) −→ Tµ, g : S(2) −→ Tµ be two (2n−1)-squares
with the same n. If f |S(1)∩S(2) = g|S(1)∩S(2) and there exists (x, y) ∈ S(1) ∩ S(2) such
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XY

NW

NW

NW

NW NW

NE NE

NE NE

NE

SW SW

SW SW

SW SE

SESE

SESE

Fig. 4. The 7-XY -square with the labels on the crosses. Only the principal arrows of the arms
are drawn. Reprinted from the Journal of Computer and System Sciences, Volume 48, Jarkko Kari,
Reversibility and surjectivity problems of cellular automata, pages 149–182, 1994, with permission
from Elsevier.

that f(x, y) is a single cross, then S(1) = S(2).
In other words, if S(1) and S(2) have a nonempty common overlap containing a

single cross, then they are identical.
Lemma 3.2 (see [27]). Let f : Z

2 −→ Tµ be a microtiling of the plane and
assume there exists a (2n − 1)-XY -square fXY : Sn −→ Tµ such that f |Sn = fXY

and, moreover, f is valid on Sn. Let XY = SW (NW, NE, SE). Then
(i) the microtile just outside the NE (SE, SW, NW, respectively) corner of the

square is a double cross;
(ii) the row of arms radiating Y -wise (X-wise) from this double cross has the

length 2n − 1 and consists of 2n−1 − 1 horizontal (vertical) double arms,
followed by a horizontal (vertical) mixed arm, and then followed by 2n−1 − 1
horizontal (vertical) single arms;

(iii) the microtile just outside the SE (NE, NW , SW , respectively) corner is
a horizontal arm and the microtile just outside the NW (SW , SE, NE,
respectively) corner is a vertical arm.

In Figure 4, for example, the double cross right outside the NE corner of the
3-SW-square is the double cross microtile labeled XY , with the row of microtiles
radiating westwise and southwise as required.

3.3. Minitiles. Another type of tile needed in our construction is a minitile [27].
Each minitile will be a 2 × 2 block of microtiles that has exactly one single cross in
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its upper right corner ; see Figure 8(center).
Definition 3.6. Consider the microtile system (Tµ, Vµ, Rµ, dµ). A minitile is a

quadruple a = (μa
1 , μ

a
2 , μ

a
3 , μ

a
4) ∈ T 4

µ such that μa
1 is a single cross, μa

2 , μ
a
3 , μ

a
4 are not,

and the microtiling {((1, 1), μa
1), ((1, 0), μa

2), ((0, 0), μa
3), ((0, 1), μa

4)} is valid.
Therefore, by the above definition, all the arrow heads and tails between μa

1 , μ
a
2 , μ

a
3 ,

μa
4 match. Let Tm be a set of minitiles; then a Tm-tiling will be called minitiling. If
f : Z

2 o−→ Tm is a minitiling, then its corresponding microtiling m(f) : Z
2 o−→ Tµ is

defined as follows. If f(x, y) = a = (μa
1 , μ

a
2 , μ

a
3 , μ

a
4), then

m(f)(2x+ 1, 2y + 1) = μa
1 ,

m(f)(2x+ 1, 2y) = μa
2 ,

m(f)(2x, 2y) = μa
3 ,

m(f)(2x, 2y + 1) = μa
4 .

Next, directions are added to minitiles. As we restricted ourselves to 2× 2 blocks
having exactly one single cross located in the upper right corner, attaching directions
to minitiles will amount to attaching directions to single-cross microtiles. Let us
describe first the types of directed minitiled paths (or simply paths, if no danger of
confusion exists) these directions will define. The paths are constructed recursively
through squares of size 2n × 2n minitiles.

Definition 3.7. For each n ≥ 0 we define recursively an A2n (B2n , C2n , D2n)
-minitiled path as follows. For n = 0, a minitile with its single cross labeled X is an
X1-path for X ∈ {A,B,C,D}.

For each n ≥ 0, a A2n+1 (B2n+1 , C2n+1 , D2n+1)-path is built recursively from four
X2n-paths, X ∈ {A,B,C,D}, as described in Figure 5.

A2n A2n

D2n C2n

�
�

�

D2n C2n

B2n B2n

���

C2n B2n

C2n A2n

�

�

�
B2n D2n

A2n D2n

�

�

�

A2n+1 B2n+1 C2n+1 D2n+1

Fig. 5. Constructing paths through squares of 2n+1 × 2n+1 minitiles. Reprinted from the
Journal of Computer and System Sciences, Volume 48, Jarkko Kari, Reversibility and surjectivity
problems of cellular automata, pages 149–182, 1994, with permission from Elsevier.

For example, the A4-path starts in the lower right corner of the square, visits all
its minitiles, and ends in the lower left corner (see Figure 6). Paths created using
Definition 3.7 form the familiar Hilbert curve. One can easily verify the following
result.

Lemma 3.3. For each n ≥ 0 the A2n (B2n , C2n , D2n)-path starts in the SE
(NW, SE, NW, respectively) corner, ends in the SW (NE, NE, SW, respectively)
corner, visits all minitiles of the underlying 2n×2n minitile square, and does not visit
any minitiles outside of the underlying square.

Let fXY : Sn+1 −→ Tµ be a (2n+1 − 1)-XY -square of microtiles, where Sn+1 =
{(x+i, y+j) | 1 ≤ i, j ≤ 2n+1−1}.Then, by the iterative construction in Definition 3.5,
those (and only those) microtiles at positions (x+2i−1, y+2j−1), 1 ≤ i, j ≤ 2n, are
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Fig. 6. The paths A4 and A16. Reprinted from the Journal of Computer and System Sciences,
Volume 48, Jarkko Kari, Reversibility and surjectivity problems of cellular automata, pages 149–182,
1994, with permission from Elsevier.

Table 1

The labeling of mixed arms. The four rows of the table represent (i) the direction of the principal
arrow of the arm, (ii) the label of the principal arrow, (iii) the label of the arrow situated clockwise
relative to the principal arrow, and (iv) the label of the arrow situated counterclockwise relative to
the principal arrow.

(i) E W N S E W N S E W N S E W N S
(ii) A A A A B B B B C C C C D D D D
(iii) C A A D B D C B A C B C D B D A
(iv) A D A C C B D B B C C A D A B D

single crosses. Since, moreover, fXY is a valid microtiling, all 2 × 2 squares of Sn+1

with single crosses in their upper right corner form minitiles. The single crosses in the
leftmost column and the bottommost row of Sn+1 can be easily completed by adding
another column and a row of microtiles to fXY so that they again form valid 2 × 2
squares of microtiles. Therefore, by Definition 3.6, we obtain a (partial) minitiling
f : Z

2 o−→ Tm from which the square fXY arose, i.e., m(f)|Sn+1 = fXY .
If a minitile has its single cross in Sn+1, we say that it is attached to Sn+1.

Recall that there are exactly 2n × 2n single crosses in Sn+1; therefore there will be
2n × 2n = 4n minitiles attached to it. The directions will be defined in such a way
that the path these minitiles form is exactly an A2n -, B2n -, C2n -, or D2n-path.

In order to control which of the four possible paths the directions define in a
specific square, additional labels are assigned to arrows in microtiles [27]. Each arrow
(single or double) can be given any label from the set {A,B,C,D}, the only restric-
tions we impose on crosses and mixed arms. As usual, in each cross all four arrow
heads must have the same label. The central cross of each (2n+1 − 1)-square will
determine the type of path the directions define on the square (see Lemma 3.6). The
labeling of mixed arms is crucial for the composition of A-, B-, C-, or D-squares and
is specified in Table 1. As usual, in a valid microtiling the meeting arrow heads and
arrow tails must have the same label.

One can verify that the labels in Table 1 correspond exactly to the construction
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Fig. 7. The labeling of mixed arms whose principal arrow has the label A.

of the paths in Figure 5. For example, the mixed arms in the first four columns in
Table 1 are illustrated in Figure 7. The first of these mixed arms has its principal
arrow labeled A. This indicates that the mixed arm is a connector in a (2n+1 − 1)-
square whose central cross is labeled A and which therefore contains an A2n+1-path.
The vertical arrow incoming from the north (south) is labeled A (C, respectively).
These facts indicate that the (2n − 1)-NE-square on top of the mixed arm contains
an A2n -path, and that the (2n − 1)-SE-square below it contains a C2n -path, as they
should, according to the recursive construction of A2n -paths in Figure 5.

Table 2

The definition of directions assigned to minitiles (or to their respective single crosses).
Reprinted from the Journal of Computer and System Sciences, Volume 48, Jarkko Kari, Reversibility
and surjectivity problems of cellular automata, pages 149–182, 1994, with permission from Elsevier.

The direction of a single cross is
N if its NE neighbor is a double cross with label C or a vertical arm whose

left edge has a side arrow with label A or B,
E if its NE neighbor is a double cross with label B or a horizontal arm whose

lower edge has a side arrow with label C or D,
S if its SW neighbor is a double cross with label D or a vertical arm whose

right edge has a side arrow with label A or B,
W if its SW neighbor is a double cross with label A or a horizontal arm whose

upper edge has a side arrow with label C or D.

The definitions of directions are summarized in Table 2. It has been shown in
[27] that if fXY : Sn −→ Tµ is a (2n − 1)-XY -square, then for each single cross whose
Moore neighborhood is contained in Sn there exists exactly one rule in Table 2 that
can be applied. All the above defined elements forming the directed paths, i.e., the
new labels A,B,C,D and the directions of minitiles, are unified together by means
of the neighborhood relation Rm. Now we can complete the formal definition of a
minitile system, based on the above described microtile system (Tµ, Vµ, Rµ, dµ).

Definition 3.8. A minitile system is a generalized directed tile system (Tm, Vm,
Rm, dm) such that

(i) Tm is the set of all minitiles as defined in Definition 3.6;
(ii) Vm is the Moore neighborhood;
(iii) Rm is the set of all 9-tuples r ∈ T 9

m such that all the following conditions are
met:
(a) the underlying 6 × 6 microtiling m({(Vm(i), r(i)) | 1 ≤ i ≤ 9}) is valid;
(b) exactly one rule in Table 2 is applicable to the single cross μr(5)

1 of the
central minitile r(5);

(c) exactly one of the following four conditions holds: dm(r(2)) = S,
dm(r(4)) = E, dm(r(6)) = W, dm(r(8)) = N ;

(iv) dm(a) = dµ(μa
1) for each a = (μa

1 , μ
a
2 , μ

a
3 , μ

a
4) ∈ Tm.

Recall that a 9-tuple r ∈ Rm corresponds to a 3 × 3 block of minitiles. The
condition (a) states that a necessary condition for the minitiling f to be valid at
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Fig. 8. Left: a microtile; center: a minitile is a 2 × 2 block of microtiles having exactly one
single cross, in its upper right corner; right: a macrotile (shaded); the nonshaded minitiles define
the “glues” of the macrotile.

(x, y) ∈ Z
2 is that its corresponding microtiling m(f) be valid at (2x + i, 2y + j) for

all −1 ≤ i, j ≤ 2. In other words, inside the 6 × 6 block of microtiles corresponding
to the 3× 3 Moore neighborhood of (x, y), all arrow heads match meeting arrow tails
and their labels match as well, including the new labels A,B,C,D.

The condition (b) adds another necessary requirement that the direction of the
minitile at (x, y) must be uniquely defined via Table 2. Finally, by the condition (c)
a minitiling is not valid at (x, y) unless exactly one of the four adjacent minitiles at
its N, S, E, W has its direction pointing towards it.

Recall that, due to Definition 3.3, if some minitiles in the Moore neighborhood
of (x, y) are missing, we consider the minitiling valid at (x, y) if the missing positions
can be filled with minitiles such that conditions (iii)(a)–(c) would be met.

3.4. Macrotiles: The 3 × 3 block construction. In this section we finalize
the construction of a directed tile system (T0, d0) with the strong plane-filling prop-
erty. We will use the generalized directed tile system of minitiles (Tm, Vm, Rm, dm)
constructed so far to obtain the directed tile system of macrotiles (T0, d0). When
dealing with (T0, d0) we revert to the usual notion of tiles sticking by glues as defined
in section 2.

The idea of the construction is as follows. Consider all the validly minitiled
Moore neighborhoods as defined by Rm. With each such 9-tuple, which intuitively is
a 3× 3 block of minitiles, we associate a macrotile (see Figure 8). The position of the
macrotile in a plane is identical with the position of its center minitile. The glues of
a macrotile will be the 2 × 3 and 3 × 2 subblocks of minitiles corresponding to each
side. Two adjacent macrotiles will stick if they have the same glues at their abutting
edges (see Figure 9).

Definition 3.9. Consider the minitile system (Tm, Vm, Rm, dm). A macrotile
system is a directed tile system (T0, d0), T0 ⊆ X4

0 , where the following hold:
(i) X0 = T 6

m.
(ii) T0 is constructed as follows. For each validly minitiled Moore neighborhood

t ∈ Rm, there exists a macrotile t∗ ∈ T0 with glues
t∗N = (t(1), t(2), t(3), t(4), t(5), t(6)),
t∗S = (t(4), t(5), t(6), t(7), t(8), t(9)),



THE UNDECIDABILITY OF THE INFINITE RIBBON PROBLEM 2369

Fig. 9. Two adjacent macrotiles m∗ and n∗ (shaded) stick iff their glues at the abutting edges
are equal. This means that the overlapping 2 × 3 portions of their Moore neighborhoods coincide,
i.e., m(2) = n(1), m(3) = n(2), m(5) = n(4), etc.

t∗E = (t(2), t(3), t(5), t(6), t(8), t(9)),
t∗W = (t(1), t(2), t(4), t(5), t(7), t(8)).

(iii) d0(t∗) = dm(t(5)).
If intuitively a macrotile corresponds to a 3 × 3 block of minitiles, its north glue

is the 2 × 3 top subblock, the south glue is the bottom 2 × 3 subblock, the west glue
the left 3 × 2 subblock, and the east glue the right 3 × 2 subblock of minitiles.

The direction of a macrotile t∗ is the direction of its center minitile t(5) which we
will denote also by c(t∗). Similarly as with minitiles, we say that t∗ is attached to a
(2n − 1)-square Sn −→ Tµ if the single cross of c(t∗) is located within Sn.

Two adjacent macrotiles will stick iff the glues on their abutting edges are iden-
tical. For example, two macrotiles at positions (x, y), (x + 1, y) will stick if, when
viewed as 3 × 3 blocks centered at (x, y), respectively, (x + 1, y), their overlapping
minitiles coincide. (See Figure 9.)

Definition 3.10. Consider the macrotile system (T0, d0) and a T0-tiling f :
Z

2 o−→ T0.
(i) The overlap map o(f) : Z

2 o−→ 2Tm is a function defined as follows. For all
x̄ ∈ dom(f), if f(x̄) = t∗, then t(i) ∈ o(f)(x̄+ Vm(i)).

(ii) The projection map p(f) : Z
2 o−→ Tm is a function defined as follows: If

(x, y) ∈ dom(f) and f(x, y) = t∗, then p(f)(x, y) = c(t∗).
In other words, the overlap map of a set of macrotiles situated on the plane will

place at each position all the minitiles that would occupy it if we were to view each
macrotile at (x, y) as a 3×3 block centered at (x, y) and covering a 3× 3 neighborhood
around it. The projection map replaces each macrotile at (x, y) with the minitile c(t∗)
at its center. Note that, while dom(p(f)) = dom(f), dom(f) ⊆ dom(o(f)).

Consider the following special case of the overlap map: for all (x, y) ∈ Z
2, either

o(f) is undefined or card(o(f)) = 1. Such a one-to-one overlap map is called a perfect
overlap. The following results are straightforward.

Lemma 3.4. Let f : Z
2 o−→ T0 be a T0-tiling with dom(f) = {(x, y), (x′, y′)} and

the positions (x, y) and (x′, y′) be adjacent; then f(x, y) will stick to f(x′, y′) iff o(f)
is a perfect overlap.
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In other words, two macrotiles situated at adjacent positions will stick (in the glue-
match-at-abutting-edges sense defined in section 2) iff the overlap map they define is
one-to-one.

Let us introduce the following notation for the set of positions on the plane
belonging to the Moore neighborhood of x̄ ∈ Z

2 : NM (x̄) = {x̄+ VM (i) | 1 ≤ i ≤ 9}.
Lemma 3.5. Let f : Z

2 o−→ T0 be a T0-tiling and let x̄, ȳ ∈ dom(f). Further let f
contain a T0-ribbon (P, r) such that {x̄, ȳ} ⊆ range(P ) and

NM (x̄) ∩NM (ȳ) ⊆
⋂

z̄∈range(P )

NM (z̄).

Then the overlap map o(f |{x̄,ȳ}) is perfect.
Informally, let two macrotiles x∗ and y∗ be connected with a (short) ribbon such

that the intersection of the Moore neighborhoods of x∗ and y∗ is included in (and
hence is equal to) the intersection of the Moore neighborhoods of all tiles in the
ribbon. Then, by Lemma 3.4, each two adjacent tiles in the ribbon have perfect
overlap. By transitivity, we deduce that the intersection of overlap maps of all the
tiles in the ribbon is one-to-one and hence so is the common overlap map of x∗ and y∗.

The following lemma states that each infinite directed zipper of macrotiles covers
arbitrarily large squares.

Lemma 3.6. Let n ∈ N and let (P, r) be a T0-directed zipper, P : I −→ Z
2,

r : range(P ) −→ T0, such that there exists i ∈ I with min(I) + 4n ≤ i ≤ max(I)− 4n.
Denote P (i) = (xi, yi) and r(xi, yi) = t∗. Then the following hold:

(i) There exists a (2n+1 − 1)-square fXY : Sn+1 −→ Tµ such that (2xi + 1, 2yi +
1) ∈ Sn+1, Sn+1 ⊆ dom(m(p(r))) and fXY = m(p(r))|Sn+1 .

(ii) Let Q = {(k, l) ∈ Z
2 | (2k+1, 2l+1) ∈ Sn+1}. If the central cross of Sn+1 has

label A (B, C, D), then p(r|Q) is an A2n (B2n , C2n , D2n , respectively)-path.
(iii) The overlap map o(r|Q) is a perfect overlap.
Informally, consider a directed zipper of macrotiles that passes through a macrotile

t∗ and extends for at least 4n positions preceding and the 4n positions succeeding the
position of t∗. Then (i) the single cross of the minitile c(t∗) belongs to a (2n+1 − 1)-
square fXY : Sn+1 −→ Tµ. Moreover, (ii) the projection of the portion of the directed
zipper consisting of the macrotiles attached to Sn+1 is an A2n -, B2n -, C2n -, or D2n-
directed minitiled path if the central cross microtile of the square has label A, B, C,
or D, respectively. Last, (iii) the overlap map of that portion of the directed zipper
is a perfect overlap.

Proof. The proof is by induction on n.
n = 0. Assume there is no zipper error involving 40 = 1 macrotile before and one

macrotile after t∗. Then the required 2n+1 − 1 = 21 − 1 = 1-square consists of only
the single cross at the upper right corner of the minitile c(t∗) and the statement is
vacuously true.

Assuming the statement holds for n − 1, we prove it for n. Assume there are
no zipper errors involving any of the 4n macrotiles that precede or succeed t∗. By
induction hypothesis (I.H.) (i), the minitile c(t∗) is attached to a (2n − 1)-square
S(1) −→ Tµ with the required properties. Assume that it is a (2n−1)-SW-square (the
other cases are analogous.)

Properties of the square S(1).
Let Q1 = {(k, l) ∈ Z

2| (2k + 1, 2l + 1) ∈ S(1)} be the square of macrotiles
attached to S(1). By I.H. (iii), the overlap map of r|Q1 is perfect (one-to-one). The
underlying microtiling m(o(r|Q1 )) covers S(1) and the Moore neighborhood of all its
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Fig. 10. The (2n+1 − 1)-square constructed during the proof of Lemma 3.6. Reprinted from the
Journal of Computer and System Sciences, Volume 48, Jarkko Kari, Reversibility and surjectivity
problems of cellular automata, pages 149–182, 1994, with permission from Elsevier.

tiles (actually, it is even larger) and, by Definitions 3.8 and 3.9, is valid. Then, by
Lemma 3.2, the microtile just outside the upper right corner of S(1) is a double cross,
denoted by X in Figure 10. The double cross can have any of the four labels A, B,
C, D. Assume it has label C.

By Lemma 3.2 again, the microtiles exactly on top of S(1) are horizontal arms
(first double arms, then one mixed arm, then single arms) radiating westwise, with
the same label C. Then, by Table 1, the lower edge of the mixed arm has a side arrow
labeled C (column 10, row 4 of the table). Then the central cross of S(1) has the
same label C, due to the column of arms radiating from it northwise to the mentioned
mixed arm (see Definition 3.5). This means the path through S(1) is, by I.H. (ii), a
C-path which, by Lemma 3.3, starts at a single cross f and ends at a single cross a
(Figure 10).

Adding the square S(2).
As a has at its NE a double cross labeled C, according to Table 2, the direction

of a is N. This means that the path of macrotiles, passing through the macrotile a∗

with the center single cross a, will proceed to b∗. Denote by b the single cross of c(b∗)
(Figure 10).

Recall that for the macrotile t∗ attached to S(1) we assumed that it is preceded
and succeeded by at least 4n macrotiles on the path P. Since there are exactly 4n−1

macrotiles attached to S(1), the distance of t∗ and b∗ on the path P is at most 4n−1,
by Lemma 3.3. Hence the I.H. can be applied to b∗ because the number of macrotiles
preceding and succeeding b∗ on P is at least 4n − 4n−1 = 3 · 4n−1 > 4n−1. By I.H. (i),
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b belongs to a (2n − 1)-square S(2) −→ Tµ.

Observe that a is not in S(2) (otherwise, by Lemma 3.1, S(1) and S(2) would
coincide, which is impossible as b is in S(2) − S(1)). Hence S(1) and S(2) are disjoint.
By I.H. (ii), S(2) contains an A-, B-, C-, or D-path. As c(b∗) is the first minitile of the
path, and b is located just above a, by Lemma 3.3 the path must be either an A-path
or C-path. In both cases b is located in the SE corner of S(2), and we conclude that
S(2) is above S(1).

As S(2) has all the properties conferred by I.H., we repeat for S(2) the steps
previously made for S(1). In particular, let Q2 = {(k, l) ∈ Z

2| (2k+ 1, 2l+ 1) ∈ S(2)}.
By I.H. (iii), the overlap map o(r|Q2 ) of the macrotiles attached to S(2) is one-to-one.
Hence, the microtiling m(o(r|Q2 )) covering S(2) and its Moore neighborhood is valid.

By definition of mixed arms in Figure 2, the mixed arm under S(2) has an upper
edge with a side arrow labeled NW. As there is a column of arms connecting this
arrow with the central microtile of S(2), we have that S(2) is a (2n − 1)-NW-square.
By Lemma 3.2 we have to the right of S(2) a column of vertical arms with a mixed arm
in the middle. By Table 1, the left edge of this mixed arm has a side arrow labeled
C, and hence the central cross of S(2) is also labeled C. By I.H. (ii), the path through
S(2) is a C-path. By Lemma 3.3, the path enters through b∗ and exits through c∗

(Figure 10).
We know already that, when taken separately, the overlap maps of the partial

tilings with macrotiles attached to S(1), respectively, S(2), are one-to-one. When
considering the overlap map associated with S(1) and S(2), we have to inspect the
cases when there are two macrotiles, x∗ attached to S(1) and y∗ attached to S(2),
such that their Moore neighborhoods overlap. The possible cases are those described
in Figure 11 and the symmetrical ones. Recall that, by Lemma 3.3, the zipper (P, r)
visits all the macrotiles attached to S(1)∪S(2). Hence any adjacent pair of them sticks
and any tiled path forms a ribbon. Then, in each of the cases in Figure 11 the figure
also shows the short ribbon required by Lemma 3.5. (These ribbons have nothing to
do with the zipper (P, r).) Hence, by Lemma 3.5, the common overlap map of x∗

and y∗ is perfect. This further implies that the overlap map o(r|Q1∪Q2) of all the
macrotiles attached to S(1) and S(2) is one-to-one.

Fig. 11. Pairs of macrotiles attached to S(1) and S(2) with nonempty common overlap.

Adding the square S(3).
By Lemma 3.2(ii) applied to S(2), there is a row of vertical arms labeled C to the

right of S(2) which ends just to the right of the single cross c. By Lemma 3.2(iii) Z
must be a horizontal arm whose lower edge has its side arrow labeled C. As Z is the
NE neighbor of c, by Table 2, the direction of c is E. We can reason similarly as in
the case of tile b in S(2) to conclude that d is the first single cross in a B-path through
a (2n − 1)-NE-square S(3) −→ Tµ situated at the right side of S(2). The path ends
at tile e (Figure 10).

Reasoning as in the case of S(1) and S(2) we can conclude that the overlap map of
macrotiles associated with S(2) and S(3) is one-to-one. To conclude that the overlap
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map associated with S(1) and S(2) and S(3) is one-to-one, we have to consider pairs
of macrotiles, x∗ attached to S(1) and y∗ attached to S(3), such that their Moore
neighborhoods overlap. One can easily verify that there are at most nine such pairs.
Similarly as in the case of common overlap of S(1) and S(2), for each of these pairs
there exists a short ribbon satisfying the requirements of Lemma 3.5. By reasoning
similar to the previous case, the overlap map of x∗ and y∗ is one-to-one and so is the
common overlap map of macrotiles attached to S(1) ∪ S(2) ∪ S(3).

Adding the square S(4).
Consider the overlap map of macrotiles attached to S(1), S(2), and S(3) which

forms a valid minitiling. Let f∗ be the macrotile with the center single cross f , where
the C-path through S(1) starts. The overlap map extends one minitile to the east and
south of f∗, hence covering both microtiles g and Y. By Lemma 3.2, Y is a horizontal
arm whose upper edge has a side arrow labeled C. As Y is the SW neighbor of the
single cross g, it implies, by Table 2, that g has to have direction W.

Moreover, by the nonexistence of a zipper error on the path segment considered,
and the definition of the overlap map, there is no tiling error in the overlap map of
S(1), S(2), and S(3). Recall that, by Definition 3.8, in a valid minitiling each single
cross has only one other single cross pointing towards it. Consequently, g is the unique
predecessor of f on the path; therefore g∗ uniquely precedes f∗.

According to I.H. (i), g is known to belong to a (2n − 1)-square S(4) −→ Tµ. In
the same way as before, we conclude that S(4) is situated at the right side of S(1),
and the path through S(4) is an A-path starting at h and ending at g that visits all
its single crosses. We can also reason as before to prove that the overlap map of
macrotiles involved in S(1), S(2), S(3), and S(4) is one-to-one.

Conclusion.
Altogether, by Definition 3.5 and Lemma 3.2, the squares S(1), S(2), S(3), and

S(4) form a (2n+1 − 1)-square fXY : Sn+1 −→ Tµ. All its single crosses are visited
by the projection of the path and the macrotile t∗ is on this path, as required in the
statement (i) of the lemma.

Furthermore, by Definition 3.7, the A-, C-, C-, and B-paths through fXY form
a C2n+1 -path. As we have started with the assumption that the central cross X of
Sn+1 is labeled C, the statement (ii) of the lemma holds, too.

Finally, we have also shown that the common overlap map of the partial macrotil-
ing with macrotiles attached to S(1), S(2), S(3), and S(4) is a perfect overlap. This
verifies the statement (iii) of the lemma and concludes the induction step. The
other cases (X labeled by A, B, D, and S(1) having other label than SW) are analo-
gous.

Theorem 3.1. There exists a directed macrotile system (T0, d0) with the strong
plane-filling property.

Proof. Consider the macrotile system (T0, d0) from Definition 3.9. Observe that
there exists an infinite directed zipper of macrotiles from T0, namely the zipper (P, r)
constructed inductively in the proof of Lemma 3.6. Moreover, by the statement of
Lemma 3.6(i), any infinite path following the directions, which in addition has no
zipper errors, covers arbitrarily large squares.

4. Undecidability of existence of infinite ribbons. We shall now use The-
orem 3.1 to prove the undecidability of existence of an infinite directed zipper.

Theorem 4.1. The set {(T, d)|(T, d) is a directed tile system and there exists an
infinite (T, d)-directed zipper } is undecidable.

Proof. Reduce the undecidable tiling problem to our problem.
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a

b
Fig. 12. A sandwich tile σ(a, b) consists of a directed tile a ∈ T0 placed on top of a tile b ∈ T1.

The direction of σ(a, b) is d(σ(a, b)) = d0(a), the direction of its top tile.

By Theorem 3.1 there exists a directed tile system (T0, d0) with the strong plane-
filling property.

Let T1 be a tile system. Consider the following “sandwich tiles,” each consisting
of a tile from T0 placed on top of a tile from T1. That is, create a new directed tile
system (T, d) of sandwich tiles such that T = {σ(a, b)|a ∈ T0 and b ∈ T1}, where,
for all a = (aN , aE , aS , aW ) ∈ T0 and b = (bN , bE , bS, bW ) ∈ T1, the sandwich tile
σ(a, b) = ((aN , bN ), (aE , bE), (aS , bS), (aW , bW )) and the direction of the sandwich
tile is d(σ(a, b)) = d0(a) (see Figure 12).

Hence, a sandwich tile σ(a, b) sticks on the north (east, south, west) to σ(a′, b′) iff
a sticks on the north (east, south, west) to a′ and b sticks on the north (east, south,
west) to b′.

We will show now that there exists a valid T1-tiling of the plane iff there exists
an infinite (T, d)-directed zipper.

“⇒” Assume that there exists a valid T1-tiling of the plane f : Z
2 −→ T1.

Consider an infinite (T0, d0)-directed zipper (P, r) (which exists, since (T0, d0) has the
strong plane-filling property). Consider the T -tiled path (P, q) of sandwich tiles such
that, for all (x, y) on P , q(x, y) = σ(r(x, y), f(x, y)). Informally, the directed tiled
path of sandwich tiles consists of the infinite (T0, d0)-directed zipper on its top and
the corresponding partial valid T1-tiling f |range(P ) on the bottom. It is clear that in
fact (P, q) is an infinite (T, d)-directed zipper of sandwich tiles.

“⇐” Assume that there exists an infinite (T, d)-directed zipper (P, q) of sandwich
tiles. Then, let (P, r) be its top layer; i.e., for all (x, y) on P , r(x, y) = a iff q(x, y) =
σ(a, b) for some b ∈ T1. Then clearly, (P, r) is an infinite (T0, d0)-directed zipper.
Hence, as (T0, d0) has the strong plane-filling property, P contains “arbitrarily large
squares”: for all n there exists (x, y) such that, (x+i, y+j) is on P for i = 0, 1, 2, . . . , n
and j = 0, 1, 2, . . . , n. Let (P, z) be the bottom layer of (P, q), i.e., the T1-tiled path
such that, for all (x, y) on P , z(x, y) = b iff q(x, y) = σ(a, b). Then clearly, (P, z) is
in fact an infinite T1-zipper. It follows that range(P ) = dom(z) contains arbitrarily
large squares and, moreover, for all n, z : range(P ) −→ T1 is a partial tiling valid on
a square of size n. It now follows from the König infinity lemma [28] that there exists
a valid T1-tiling of the plane.

Having proved the undecidability of existence of an infinite directed zipper, we
shall use this result to show that the existence of an infinite ribbon is also undecidable.

Theorem 4.2. The set {T |T is a tile system and there exists an infinite T -ribbon}
is undecidable.

Proof. Reduce the set of Theorem 4.1 to this set.
Given a directed tile system (T, d), we will construct a tile system T ′ such that

there exists an infinite (T, d)-directed zipper iff there exists an infinite T ′-ribbon.
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Fig. 13. A ribbon motif with input tile on the west and output tile on the north.

Recall that a zipper differs from a ribbon in that in a ribbon only consecutive
tiles are required to have matching glues on abutting edges, while on a zipper even
nonconsecutive neighboring tiles have to have matching glues on their abutting edges.

The construction is as follows. For each directed tile t ∈ T , construct three T ′-
motifs. A motif is a finite T ′-ribbon (P, r) of special form. We construct these ribbon
motifs as follows (see Figure 13).

Each motif is essentially a tiled path that outlines the contours of a square. There
are dents and bumps on the north, east, south, and west sides of the motif. In addition,
if (P, r) is a motif, then the first position on P is midway along one side of the motif.
This side is called the input side of the motif and the tile at the first position is called
the input tile of the motif. The last position on P is midway along a side of the motif
different from the input side. This side is called the output side of the motif and the
tile at the last position is called the output tile of the motif.

Given a directed tile t ∈ T , we construct the three possible motifs with output side
d(t). We call these three motifs the “variants” of t (see Figure 14). On each variant,
we put a bump on the east (south) side, to encode the glue on the east (south) side
of t. We also put a dent on the west (north) side, to encode the glue on the west
(north) side of t. The dents and bumps are designed so that if, for example, t1 sticks
on the north to t2, then the dents on the north of t1 variant motifs fit the bumps on
the south of t2 variants (see Figure 15). If, however, t1 does not stick on the north to
t2, then the north sides of t1 variant motifs will overlap the bumps on the south of t2
variants. Since overlaps are not allowed in ribbons, if t1 does not stick on the north
to t2, no T ′-ribbon can have a t2 variant motif directly north of a t1 variant motif.

The glues on tiles in T ′ are chosen so that each tile can occur in exactly one
variant motif, and in each variant motif it occurs exactly once. To this aim, the
two edges of each ribbon tile connecting it with the preceding (succeeding) tile on a
variant motif are labeled so that this is the only sticking that can form along those
edges. The only exception to this rule are the input (output) tiles of motifs, which
have the edges connecting them to the preceding (succeeding) tiles labeled differently,
as detailed below.
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Fig. 14. The two remaining variant motifs corresponding to a directed zipper tile with direction
north (the first one is depicted in Figure 13). The bumps and dents are omitted from the variant
motifs for clarity.

Bump

Dent

Fig. 15. The bump-and-dent pair that simulates a glue. Each glue is assigned a unique position
on the side of a motif. If the glues on two directed zipper tiles situated at adjacent positions match,
then the bump on the first motif will be placed exactly at the necessary position to fit in the dent of
the second motif.
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So far, the bumps and dents were used to simulate the glues of zipper tiles. We
now simulate the direction of a zipper tile by incorporating it in the glues of the input
and output tiles of its variant motifs. We namely use four new glues, West-to-East,
East-to-West, North-to-South, and South-to-North as follows. If the direction of a
directed zipper tile t1 is north, i.e., d(t1) = N , then

(a) the output ribbon-tiles of all three variant motifs of t1 will have their north
edge labeled South-to-North, and

(b) the input tile of the variant motif of t1 with a west (east, south) input side will
have its west (east, south) edge labeled West-to-East (East-to-West, South-to-North).

We label in a similar way the appropriate edges of the input and output tiles of
other motifs, namely those edges that are meant to connect the motifs to each other.
This labeling ensures that the variant motifs will be connected to each other in the
proper order dictated by the direction of the originating directed zipper tiles.

Last, we want to ensure that only motifs of the kind described above can form,
and that motifs can connect to each other only through their input and output tiles.
To this aim, we have two new different “null” glues: null(1) and null(2). We label,
for all the above constructed ribbon tiles, the so-far-unlabeled north and west edges
with null(1) and the unlabeled east and south edges with null(2). Because null(1)
matches only null(1), and null(1) is used only on the west and north edges, the edges
of tiles labeled with these glues will not stick to any other tiles along those edges.
The same is true for null(2). These “nonstick” glues ensure that the ribbon will only
follow the intended motif and will not fill it in, or stick to anything outside it, except
at the input and output tiles.

To summarize, given the directed tile system (T, d) we can construct the tile
system T ′ consisting of the ribbon tiles used in all variant motifs of tiles in T , as
described above.

Assume that there exists an infinite directed (T, d)-zipper (P, r). One can easily
construct an infinite T ′-ribbon (P ′, r′). The idea is that, for each position (xi, yi) on
P , the tile r(xi, yi) is replaced by one of its variant motifs. The variant chosen is one
with input side opposite d(r(xi−1 , yi−1)).

Conversely, assume that there exists an infinite T ′-ribbon, (P ′, r′). It is clear from
our choice of ribbon tiles and glues that (P ′, r′) must consist of an infinite sequence
of motifs. Hence we can construct an infinite (T, d)-directed zipper by replacing each
motif with the tile t of which it is a variant.

Theorem 4.2 proves the undecidability of existence of an infinite ribbon. This
settles the open problem [17], stating the following: “Problem 4.1. Given a tiling
system T , is there an infinite T -snake within the infinite grid G = Z × Z?”

In the terminology of [17], a tiling system T is exactly as defined in section 2, a
finite set of tiles, i.e., of squares with colored edges that cannot be rotated and with
infinitely many copies of each tile available. The grid G is the integer grid of positions
in the plane. An infinite T -snake is a sequence of tiles on the plane in which successive
tiles are adjacent along an edge and touching edges have the same color; i.e., infinite
T -snakes are (possibly self-crossing) 2-way infinite ribbons where identical tiles must
be present at the crossing sites. In general [17], [34], an infinite snake problem asks,
given a tiling system T , and some portion P of the plane, whether there is an infinite
T -snake that lies entirely within P . Reference [17] proves that, given T and a strip
of width k ∈ N , the existence of an infinite T -snake that lies entirely within the
strip is decidable. Given a tile system T , and a specific tile t0 ∈ T , the problem of
whether there exists an infinite T -snake that contains t0 is proved undecidable in [17]
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using methods in [16] (the case of a 1-way infinite snake starting at t0 was proven
undecidable in [15]). If the special “seed” tile is not specified, like in Problem 4.1, [17]
conjectures the problem undecidable but states that “[. . .] it seems that this would
be difficult to prove. We have not been able to adjust the proof techniques of other
undecidability results for this purpose.”

Theorem 4.2, by showing the undecidability of existence of infinite non-self-
crossing snakes, proves Problem 4.1 undecidable.

5. Undecidability of self-assembly of arbitrarily large supertiles. Let us
return to the discussion of self-assembly. Supertiles are constructed by an incremental
process starting from a single tile and proceeding by addition of single tiles that “stick”
to the hitherto built structure. The problem we are addressing is whether or not, given
a tile system, an infinite supertile can self-assemble with tiles from that system. To
formalize our notions, we have the following definition.

Definition 5.1. A shape is a function f : I −→ Z
2 such that I is a set of

consecutive natural numbers, 0 ∈ I, and the following condition holds. For all i ∈ I,
if i > 0, then there exists j ∈ I such that j < i and f(i) and f(j) are adjacent.

A shape thus describes a connected region of the plane. The size of a shape f is
the cardinality of its range, i.e., the number of positions it contains, regardless of how
many times they are visited. If we fill in each position of a shape with tiles from a
given tile system T , we obtain the notion of a T -supertile.

Definition 5.2. For all tile systems T , a T -supertile is a pair (f, g), where f
is a shape and g : range(f) −→ T is a function such that the following condition
holds. For all i ∈ dom(f), if i > 0, then there exists j ∈ dom(f) such that j < i and
f(i) abuts f(j) on the north (east, south, west) and g(f(i)) sticks on the north (east,
south, west) to g(f(j)).

The size of a T -supertile (f, g) is the size of its corresponding shape f . Two
T -supertiles (f, g) and (f ′, g′) are equivalent iff there exists i, j ∈ Z such that for all
(x, y) ∈ Z

2, (x, y) ∈ range(f) iff (x+ i, y+ j) ∈ range(f ′) and for all (x, y) ∈ range(f),
g(x, y) = g′(x+i, y+j). That is, the T -supertile (f ′, g′) is equivalent to the T -supertile
(f, g) iff (f ′, g′) can be obtained by translating (f, g) on the plane.

Note that the definitions of shape and supertile may differ in other papers. The
ideas are similar, but the details may not be the same. The problem stated at the
beginning of this section is settled by the following result.

Theorem 5.1. The following sets are undecidable:
S1 = {T |T is a tile system and there exists an infinite T -supertile};
S2 = {T |T is a tile system and there exists infinitely many nonequivalent finite

T -supertiles}.
Proof. It is easily shown that sets S1 and S2 are identical to the set {T |T is a

tile system and there exists an infinite T -ribbon }. Hence Theorem 5.1 follows from
Theorem 4.2.

6. Conclusion. In this paper we prove the undecidability of the “unseeded ver-
sion” of the problem of distinguishing tile systems that allow infinite ribbons to self-
assemble from those that do not. The proof includes the construction of a special set
of directed tiles with the so-called strong plane-filling property, whereby any directed
zipper (a special kind of ribbon) is forced to be plane-filling and, moreover, such an
infinite directed zipper always exists.

This result settles an open problem formerly known as the “unlimited infinite
snake problem.”



THE UNDECIDABILITY OF THE INFINITE RIBBON PROBLEM 2379

We also prove the undecidability of the “unseeded version” of the problem of
distinguishing tile systems that allow the self-assembly of infinite supertiles from those
that do not.

We introduce a “motif” construction that allows one tile system to simulate an-
other by using geometry to represent glues. This construction may be useful in other
contexts.
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DYNAMIC PROGRAMMING OPTIMIZATION OVER RANDOM
DATA: THE SCALING EXPONENT FOR

NEAR-OPTIMAL SOLUTIONS∗
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Abstract. A very simple example of an algorithmic problem solvable by dynamic programming
is to maximize, over A ⊆ {1, 2, . . . , n}, the objective function |A| −

∑
i ξi11(i ∈ A, i + 1 ∈ A) for

given ξi > 0. This problem, with random (ξi), provides a test example for studying the relationship
between optimal and near-optimal solutions of combinatorial optimization problems. We show that,
amongst solutions differing from the optimal solution in a small proportion δ of places, we can find
near-optimal solutions whose objective function value differs from the optimum by a factor of order
δ2 but not of smaller order. We conjecture this relationship holds widely in the context of dynamic
programming over random data, and Monte Carlo simulations for the Kauffman–Levin NK model are
consistent with the conjecture. This work is a technical contribution to a broad program initiated
in [D. J. Aldous and A. G. Percus, Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 11211–11215] of
relating such scaling exponents to the algorithmic difficulty of optimization problems.

Key words. dynamic programming, local weak convergence, Markov chain, near-optimal solu-
tions, optimization, probabilistic analysis of algorithms, scaling exponent
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1. Introduction and motivation.

1.1. Near-optimal solutions in combinatorial optimization. Consider a
combinatorial optimization problem which is “size n” in the sense that a feasible
solution x = (xi, 1 ≤ i ≤ n) consists of n elements (e.g., edges of a graph; binary
digits) subject to some constraints, and the objective function f(x) is akin to a sum
over i of costs or rewards associated with each xi. In such a setting one can define
the relative distance between the structure of a feasible solution x and the optimal
solution x∗ by

δn(x) = n−1|{i : xi �= x∗i }|,

and the relative difference in objective function is n−1|f(x)− f(x∗)|. So the quantity

εn(δ) := min{n−1|f(x) − f(x∗)| : δn(x) ≥ δ}(1)

measures how close we can get to the optimal value using feasible solutions which have
nonnegligibly different structure from the optimal solution. A program initiated in [3]
is to study this quantity for combinatorial optimization problems over random data.
In this setting εn(δ) becomes a random variable, but in many cases one expects that
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as n→ ∞ there is a deterministic limit function ε(δ). Motivation for this program is
a conjecture that (within some suitable class of problems)

ε(δ) � δα as δ → 0

for some scaling exponent α, whose value is robust under model details, and that for
“algorithmically easy” problems we have α = 2 (which of course mimics the behavior
we expect by calculus for smooth functions f : R

d → R) whereas for “algorithmically
hard” problems we have α > 2. Here is the previous evidence in support of this
conjecture.

(i) Traveling salesman problem and minimum matching problem [3]. In the ran-
dom link (mean-field) model, a cavity method analysis (nonrigorous but generally
regarded as accurate) enables one to compute ε(δ) numerically and to observe scaling
exponent α = 3. In the random Euclidean model, Monte Carlo simulations suggest
the same α = 3.

(ii) Minimum spanning tree. Here we expect α = 2. This is proved in [2] for the
d ≥ 2 dimensional random Euclidean model and also for a “disordered lattice” model.

The purpose of this paper is to consider some problems which are algorithmically
easy to solve via dynamic programming, and where we therefore expect α = 2. We
first give a trivial but instructive case (section 1.2) and then describe a prototypical
“interesting” case, the Kauffman–Levin NK model (section 1.3). Here both a heuristic
argument and simulations suggest α = 2, but we do not have a proof. Our main focus
is on giving a complete analysis of a simple nontrivial model (section 1.4), where we
are required to pick a subset A ⊆ [n] := {1, 2, . . . , n} of items with a reward of 1
per item picked and independent and identically distributed (i.i.d.) costs ξi incurred
if both items i and i + 1 are picked. Theorem 2 establishes α = 2 for this specific
model. In these dynamic programming examples and the minimum spanning tree
example, the key structural property is that the near-optimal solutions attaining the
minimum in (1) differ from the optimal solution via only “local changes,” each local
change affecting only a number of items which remains O(1) as δ → 0. It is natural to
speculate that this structural property corresponds quite generally to the α = 2 case.

Related work. We do not know any other lines of research in theoretical computer
science which are close to the topic of this paper. A recent survey of average-case com-
plexity of NP problems is given in [7]. Interest in the average-case gap between optimal
and second-optimal solutions arises in several contexts; see, e.g., [5]. Closer in spirit is
the statistical physics of disordered systems, where for low temperatures the Gibbs dis-
tribution on configurations concentrates on near-minimal-cost configurations. In the
context of random energy models (the precise analogue of optimization over random
data), two random picks from the Gibbs distribution over the same random choice of
energy are called replicas, and study of such replicas and their overlaps is a central
theme of the replica method [15, 17]. So that topic studies the structural difference
between two typical near-optimal configurations, whereas we study the maximal (over
all near-optimal configurations) structural difference from the optimal configuration.
Our mathematical arguments are much less sophisticated than those in statistical
physics, but there are some intriguing parallels, described briefly in section 5.2.

1.2. A trivial example. Let (Xi, i ≥ 1) be i.i.d. real-valued random variables
with continuous density h(x) and EX < ∞. For each n consider the problem of
finding

Mn = max
A⊆[n]

∑
i∈A

(Xi − 1).
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The maximum is obviously obtained by choosing A = {i : Xi > 1} and then as n→ ∞

n−1Mn → E(X1 − 1)+ a.s.

Fix 0 < δ < 1. It is also obvious that the subset A′ that minimizes

M ′
n = max

A′⊆[n]

∑
i∈A′

(Xi − 1)

subject to |A′ 	A| ≥ δn

is the subset A′ = A	D, where D is the set of indices of the 
δn� smallest values of
|Xi − 1|. So as n→ ∞

n−1(Mn −M ′
n) →L1 ε(δ) :=

∫ 1+a(δ)

1−a(δ)
|x− 1|h(x) dx,

where a(δ) is defined by

δ =
∫ 1+a(δ)

1−a(δ)
h(x) dx.

So by continuity of h(x), and assuming 0 < h(1) <∞, as δ ↓ 0 we have

a(δ) ∼ δ
2h(1) ; ε(δ) ∼ a2(δ)h(1) ∼ δ2

4h(1) ,(2)

which is the desired “scaling exponent = 2” result.
Discussion. (i) This example illustrates a feature that arises in other examples,

that proving α = 2 reduces to showing that the density of a certain measure at a
certain point is finite and nonzero. In nontrivial examples the measure in question
arises in the analysis of the problem rather than the statement of the problem: see
Lemma 19 below and Proposition 8 of [2].

(ii) In this example we could see the form of the best near-optimal solution by
inspection, but a systematic method is to use Lagrange multipliers. In this example,
introduce a parameter θ > 0 and consider for each n

Aθ := argmax
A

(∑
i∈A

(Xi − 1) + θ|A	A∗|
)
,

where A∗ = {i : Xi > 1} is the optimal solution. By inspection the solution is

Aθ = {i : 1 − θ ≤ Xi ≤ 1 or 1 + θ ≤ Xi}.

Although now |Aθ 	 A∗| is random, we can use the law of large numbers to obtain
existence of the limits

δ(θ) := lim
n→∞

n−1|A∗ 	Aθ| =
∫ 1+θ

1−θ
h(x) dx,

ε(θ) := lim
n→∞

n−1

(∑
i∈A∗

(Xi − 1) −
∑
i∈Aθ

(Xi − 1)

)
=
∫ 1+θ

1−θ
|x− 1| dx.

By the interpretation of Lagrange multipliers, this is an implicit function representa-
tion of ε as a function of δ and rederives the limit (2) above.
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01100011011010111010001001101010001110100000101011010 y

Fig. 1. Excursions of lengths l = 3 and 11. Here K = 2.

1.3. The NK model. The Kauffman–Levin NK model of random fitness land-
scape has attracted extensive literature in statistical physics [10, 19] and has been
studied by probabilists [9, 11]. For our version of the model we fix K ≥ 2. We
seek to minimize, over binary sequences x = (x1, . . . , xN ), the objective function
HN (x) =

∑N−K
i=1 Wi(xi, xi+1, . . . , xi+K), where the values (Wi(b0, b1, . . . , bK) : i ≥

1,b ∈ {0, 1}K+1) are independent exponential(1) random variables. This is algo-
rithmically easy via dynamic programming. Write xN for the minimizing sequence.
By subadditivity there is an a.s. limit N−1HN (xN ) → cK . For a general sequence
y = yN write

δN (y) = N−1|{1 ≤ i ≤ N −K : (yi, . . . , yi+K) �= (xNi , . . . , x
N
i+K)}|,

εN (y) = N−1(HN (y) −HN (xN ))

and then set

εN (δ) = min{εN(y) : δN(y) ≥ δ}.(3)

We expect existence of a deterministic limit

ε(δ) = a.s.- lim
N→∞

εN (δ).

A heuristic analysis. The purpose of this section is to give a heuristic argument
for ε(δ) � δ2. Given i and l ≥ K + 1, consider the set of sequences y such that

(yj , . . . , yj+K) = (xNj , . . . , x
N
j+K) ∀j �∈ [i+ 1, i+ l],

(yj , . . . , yj+K) �= (xNj , . . . , x
N
j+K) ∀j ∈ [i+ 1, i+ l].

Over this set, let Di,l be the minimum of HN (y) − HN (xN ) and let y(i,l) be the
minimizing sequence. The distribution of Di,l essentially depends only on l, not on i
or N ; write fl(0+) for its density at 0+. Let us assume∑

l≥K+1

l2fl(0+) = A <∞.(4)

It is intuitively clear how to choose a sequence y which minimizes εN (y) for a
given δ. Just fix a small η > 0 and create a sequence of “excursion” away from xN as
follows. For each pair (i, l) such that Di,l < ηl, choose y to equal y(i,l) on the sites
[i+K + 1, i+ l]; set y = xN elsewhere. See Figure 1.

With this scheme, δ will be the mean length of possible excursions starting from
a given site, that is,

δ ∼
∑

l≥K+1

l · ηlfl(0+).
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Table 1

Monte Carlo simulations with K = 3, N = 10, 000; 1000 repeats. These are exact optimizations
done by introducing a Lagrange multiplier θ which penalizes matching (K + 1)-tuples. We find
c3 = 0.3065.

θ δ ε ε/δ2 ELδ

0.002 0.0397 4.85 · 10−5 0.0308 10.9
0.004 0.0774 2.00 · 10−4 0.0334 11.0
0.008 0.147 7.69 · 10−4 0.0354 11.3
0.016 0.266 2.75 · 10−3 0.0388 11.8

And ε is the mean increment of HN associated with possible excursions starting from
a given site, that is,

ε ∼
∑

l≥K+1

(ηl/2) · ηlfl(0+).

In other words δ ∼ Aη, ε ∼ Aη2/2, giving ε ∼ (2A)−1δ2, which is the desired “scaling
exponent = 2” result.

Why should assumption (4) be true? Well, for large l we expect central limit
behavior: Dl ≈ Normal(μl, σ2l) for some μ > 0 and 0 < σ2 < ∞. This in turn
suggests that fl(0+) should decrease at least geometrically fast in l.

Note that the optimizing yN in (3) will have (in the N → ∞ limit) some distri-
bution Lδ of excursion lengths. The heuristic argument predicts that as δ ↓ 0 we have
Lδ

d→ L, where the limit distribution has P(L = l) ∝ lfl(0+) and EL <∞.
Simulations (Table 1) with K = 3 are consistent with both the predicted scaling

exponent 2 and the prediction of existence of a δ ↓ 0 limit distribution L for excursion
lengths. Making a rigorous proof seems difficult, and so we turn to a simpler example.

1.4. Main model and results. Let (ξi, i ≥ 1) be i.i.d. copies of a strictly
positive random variable ξ, and write G(x) = P(ξ ≤ x). Define the benefit function

fn(A) =

(
|A| −

n−1∑
i=1

ξi11(i ∈ A, i+ 1 ∈ A)

)
, A ⊆ {1, 2, . . . , n},(5)

where 11(B) = 11B denotes the indicator random variable associated with an event B.
Intuitively, we choose a set A of items, getting reward 1 from each item chosen but
paying cost ξi if we choose both i and i+ 1; we seek to maximize benefit = reward −
cost. So we shall study

Mn := max
A⊆{1,2,...,n}

fn(A).(6)

To simplify exposition we will assume

G has bounded continuous density g with g(1
2 ) > 0,(7)

which implies

0 < G(1
2 ) < 1,(8)

though we suspect that Theorems 1 and 2 remain true under some much weaker
nondegeneracy assumptions. See section 5.1 for further remarks.
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We will first prove the following.
Theorem 1. There exists 1

2 ≤ c ≤ 1 such that, a.s. and in L1,

lim
n→∞

n−1Mn = c.

The constant c is given by the forthcoming formula (31). If ξ is an exponential random
variable with parameter λ > 0, then

c = (1 − e−λ)−1 − λ−1.

We record the explicit value of c only in the exponential case, but one could use
formula (31) to obtain explicit values for other standard distributions.

We now formalize the setup in the introduction. The optimization problem (6)
has a solution, a random subset Aopt

n ⊆ {1, 2, . . . , n}, and Corollary 4 will show the
solution is unique with probability → 1 as n→ ∞. Define the random variable:

εn(δ) := min
{
n−1(fn(Aopt

n ) − fn(B)) : |B 	Aopt
n | ≥ δn

}
,(9)

where the minimum is over all subsets B ⊂ {1, . . . , n} such that the symmetric dif-
ference with Aopt

n is at least δn. Our main result is the following.
Theorem 2. ε̄(δ) := limn Eεn(δ) exists for all 0 < δ < 1, and

lim sup
δ↓0

δ−2ε̄(δ) <∞,(10)

lim inf
δ↓0

δ−2ε̄(δ) > 0.(11)

We now outline the key ideas in the proof and the organization of this paper.
Dynamic programming over i.i.d. data is essentially just study of a related Markov

chain (section 2.2), and in our model there are simple inclusion criteria for whether
item i is in the optimal solution. The inclusion criterion involves two Markov chains
(one looking left, one looking right) and the cost ξi (Table 2 and Lemma 5). By consid-
ering the related infinite-time stationary Markov chain and using the same inclusion
criteria, we can define a random subset Aopt ⊂ Z interpretable as the solution of an
infinite optimization problem (section 2.3). The n → ∞ limit benefit in Theorem 1
is just the mean benefit per item using Aopt in the infinite problem (section 2.4).

Study of εn(δ) is an “optimization under constraint” problem, most naturally
handled via introduction of a Lagrange multiplier θ. So the Bopt

n attaining the maxi-
mum in (9) can be studied as above by introducing a more complicated Markov chain
parametrized by θ (section 4.1), finding the inclusion criteria (Table 3), formulating
the parallel optimization under constraint problem, and observing that ε̄(δ) is repre-
sentable via functions δ(θ), ε(θ) defined in terms of the stationary distribution of the
more complicated Markov chain (Proposition 12). Without trying to write details,
it seems intuitively clear that the methodology above could be implemented in more
general dynamic programming models such as the NK model of section 1.3. However,
to complete the argument we need to analyze the θ → 0 behavior of the functions
δ(θ), ε(θ). Even in our simple model, we do not have any useful explicit expression for
the needed stationary distribution, so we proceed via inequalities rather than using
the exact formulas. For the upper bound (10) we just identify a “local configuration”
which can be replaced by a different local configuration at small extra cost (section 3).
For the lower bound, we decompose the process into blocks by breaking at certain
special configurations, and then we get bounds on the chance that Bopt

n differs from
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g − (g + 1) − − (d− 1) − d
A1 ◦ − • − ◦ . . . • − ◦ − •
A2 • − ◦ − • . . . ◦ − • − ◦

Fig. 2. Included items marked •, excluded items marked ◦.

Aopt
n on a block and bounds on the mean decrease in benefit if it does differ (sec-

tion 4.5). But these arguments rely on the particular combinatorial structure of our
special model. It is not clear how readily they can be extended to general models.

2. Analysis of optimal solutions.

2.1. Nonuniqueness. In the case n = 2, if ξ1 > 1, then both {1} and {2}
attain the maximum value 1 of the optimization problem (6): the optimizing set
is not unique. Corollary 4 shows that, provided some ξi + ξi+1 < 1 is less than
1, the optimizing set Aopt

n is unique, and by assumption (8) this proviso holds with
probability → 1 as n → ∞. After this section we generally ignore the possibility of
nonuniqueness.

We start with some terminology that will also be used later. For an integer
interval [g, d] with d− g + 1 even, the two complementary alternating subsets A1, A2

are as shown in Figure 2.
Lemma 3. Let n ≥ 2. For almost all realizations of ξ1, . . . , ξn−1, the following

are equivalent:
(a) The subset maximizing (6) is not unique.
(b) n is even and the only optimal solutions are the two complementary alternating

subsets of [1, n].
(c) n is even and Mn = n/2.
Proof. Either of (b), (c) implies (a), so it is enough to show (a) implies (b) and

(c). Suppose distinct subsets B1 and B2 attain the maximum. Then a.s. the values
of ξi used in the optimal sum are identical, that is,

{i : (i, i+ 1) ⊂ B1} = {i : (i, i+ 1) ⊂ B2} := S, say.(12)

First suppose S is empty. Then each of B1 and B2 has only isolated elements. But
amongst such sets, the maximum of (6) is attained (for n odd) uniquely by the al-
ternating subset giving Mn = (n + 1)/2, or (for n even) only by the complementary
alternating subsets. So S empty implies (b) and (c). For general S, take some
i ∈ B1 	 B2, and then take the maximal interval i ∈ [g, d] ⊂ [1, n] which is disjoint
from S. Repeating the argument above, the restrictions of B1 and B2 to [g, d] must
be complementary alternating subsets. If [g, d] �= [1, n], then either d + 1 or g − 1
is in S—say d + 1—and so d + 1 ∈ B1 ∩ B2. But exactly one of B1, B2 contains d,
contradicting (12). So [g, d] = [1, n], and so S is empty.

Corollary 4. If ξi + ξi+1 < 1 for some 1 ≤ i ≤ n− 2, then a.s. Aopt
n is unique.

Proof. Fix i with ξi + ξi+1 < 1 and let B be the alternating subset of [1, n]
containing i and i+2. Replacing B by B∪{i+1} increases the benefit by 1−ξi−ξi+1 >
0, so B cannot be optimal, and the result follows from Lemma 3.

2.2. Dynamic programming. Finding the maximum value and the maximiz-
ing subset of (6) is algorithmically easy by dynamic programming, as follows. Define

V Ln,i = max
i∈A⊆{1,...,i−1,i}

⎛⎝|A| −
i−1∑
j=1

ξj11(j ∈ A, j + 1 ∈ A)

⎞⎠ ,(13)
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WL
n,i = max

i�∈A⊆{1,...,i−1,i}

⎛⎝|A| −
i−1∑
j=1

ξj11(j ∈ A, j + 1 ∈ A)

⎞⎠ ,(14)

which differ in that the former requires i ∈ A and the latter requires i �∈ A. The
superscripts L here and R later indicate left and right. Note that in fact V Ln,i,W

L
n,i

above and XL
n,i below do not depend on n, but the notation is useful to distinguish

from the limit process XL
i later.

From (13), (14) we see V Ln,1 = 1,WL
n,1 = 0, and by induction over 1 ≤ i

V Ln,i+1 = 1 + max(V Ln,i − ξi,W
L
n,i),

WL
n,i+1 = max(V Ln,i,W

L
n,i),

the two terms in the max indicating the choice of using or not using element i. Then
Mn = max(V Ln,n,W

L
n,n), and by examining which max term is used at each stage

leading to Mn we can recover the optimizing subset Aopt
n .

We now describe an alternative, more useful way to obtain Aopt
n . First, consider

the evolution rule for the process

XL
n,i := V Ln,i −WL

n,i(15)

as i increases; the rule is

XL
n,i+1 = 1 + max(0, XL

n,i − ξi) − max(0, XL
n,i)

= 1 + max(−XL
n,i,−ξi)11(XL

n,i ≥ 0).(16)

One can check by induction that 0 ≤ XL
n,i ≤ 1 and thus rewrite the recursion as

XL
n,i+1 = max(1 −XL

n,i, 1 − ξi).

For n fixed we define the right processes analogously:

V Rn,i = max
i∈A⊆{i,i+1,...,n}

⎛⎝|A| −
n−1∑
j=i

ξj11(j ∈ A, j + 1 ∈ A)

⎞⎠ ,(17)

WR
n,i = max

i�∈A⊆{i,i+1,...,n}

⎛⎝|A| −
n−1∑
j=i

ξj11(j ∈ A, j + 1 ∈ A)

⎞⎠ ,(18)

with V Rn,n = 1,WR
n,n = 0. Observe that the evolution rule for the process

XR
n,i := V Rn,i −WR

n,i(19)

as i decreases does not depend on n. In fact, we have

XR
n,i−1 = max(1 −XR

n,i, 1 − ξi−1).(20)

The point is that we can determine the optimizing random set Aopt
n in terms of the

quantities above. Fix i, consider the quantities (XL
n,i, V

L
n,i,W

L
n,i), ξi, and (XR

n,i+1,

V Rn,i+1,W
R
n,i+1), and drop subscripts. We have four choices of whether to include
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Table 2

Inclusion criteria for i, i + 1 in Aopt
n .

−i − (i + 1)− Absolute benefit Relative benefit When used

− • −− •− V L + V R − ξ XL + XR − ξ ξ < min(XL, XR)
− • −− ◦− V L + W R XL if XR < min(XL, ξ)
− ◦ −− •− W L + V R XR if XL < min(XR, ξ)
− ◦ −− ◦− W L + W R 0 never

(marked as • in Table 2) or exclude (marked as ◦ in Table 2) items i and i + 1 in
the optimal set Aopt

n . For each choice, the table shows the absolute benefit of that
choice and then the relative benefit (relative to the choice to exclude both items).
For each i the optimal Aopt

n will contain, in positions (i, i+ 1), the combination with
the largest relative benefit, and the final column indicates the criteria for use of each
combination. (The case of nonuniqueness of Aopt

n , Lemma 3, is the case where XL
i

and XR
i alternate between 0 and 1 throughout the interval [1, n], and where we have

equalities XL
i = XR

i+1 < ξi. Outside this case, one of the three strict inequalities
holds. We ignore the nonuniqueness possibility in the summary below.)

We summarize the argument above as follows.
Lemma 5. For each n define XL

n,i, 1 ≤ i ≤ n, and XR
n,i, 1 ≤ i ≤ n, by

XL
n,1 = 1; XL

n,i+1 = max(1 −XL
n,i, 1 − ξi), 1 ≤ i ≤ n− 1,(21)

XR
n,n = 1; XR

n,i−1 = max(1 −XR
n,i, 1 − ξi−1), 2 ≤ i ≤ n.(22)

Then Aopt
n is the random subset of {1, 2, . . . , n} specified by the following: for each

1 ≤ i ≤ n− 1,

if ξi < min(XL
n,i, X

R
n,i+1), then i ∈ Aopt

n , i+ 1 ∈ Aopt

n ,

if XR
n,i+1 < min(XL

n,i, ξi), then i ∈ Aopt

n , i+ 1 �∈ Aopt

n ,

if XL
n,i < min(XR

n,i+1, ξi), then i �∈ Aopt

n , i+ 1 ∈ Aopt

n .

Let us emphasize two points:
• whether or not i ∈ Aopt

n depends only on the three random variables XL
n,i,

ξi, X
R
n,i+1;

• the only place where the value of n enters is as the boundary conditionXR
n,n =

1.
In the next section, we show how to define a corresponding stationary process

((XL
i , ξi, X

R
i+1), −∞ < i <∞).

By applying the specification in Lemma 5 to this process, we will define a set Aopt ⊆ Z

which will be shown (Lemma 8) to be the limit of Aopt
n . As a consequence, we will be

able to derive the limit of Mn/n.

2.3. A stationary Markov chain and the infinite limit problem. The
recursion (21) specifies a Markov chain on the continuous state space [0, 1] with tran-
sitions

x→ max(1 − x, 1 − ξ),(23)
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where ξ has distribution function G. Write F (x) = P(XL ≤ x) for a stationary
distribution function for this chain. Then

F (x) = P(max(1 −XL, 1 − ξ) ≤ x)

= P(min(XL, ξ) > 1 − x)

= G(1 − x)F (1 − x),

where for any distribution function F we write F (x) = 1−F (x). Iterating this identity
once gives

F (x) = G(1 − x)
(
1 −G(x)F (x)

)
,

and solving this equation gives

F (x) =
G(1 − x)G(x)

1 −G(x)G(1 − x)
.(24)

The assumption (7) that G has a density implies that F has a density, so in what
follows we do not need to distinguish carefully between weak and strict inequalities
for random variables with these distributions.

Now consider the infinite line graph, with vertices −∞ < i < ∞ and with i.i.d.
edge-costs ξi on edge (i, i+ 1) such that P(ξ0 + ξ1 < 1) > 0, which is ensured by the
condition G(1/2) < 1.

Lemma 6. The recursion

XL
i+1 = max(1 −XL

i , 1 − ξi), −∞ < i <∞,(25)

defines uniquely a joint distribution for ((ξi, XL
i ),−∞ < i <∞) in which (XL

i ) is the
stationary Markov chain with transition kernel (23) and stationary distribution (24).
And

XL
i = φ(. . . , ξi−2, ξi−1)(26)

for a certain function φ not depending on i.
Proof. Having proved existence and uniqueness of the stationary distribution at

(24), it remains only to prove the measurability property (26). Iterating (25) once
shows

1 − ξi ≤ XL
i+1 ≤ max(1 − ξi, ξi−1).(27)

So outside the event {1− ξi < ξi−1} the value of XL
i+1 depends only on (ξi−1, ξi) and

not on the value of XL
i . So inductively on Q ≥ 1 there exists a measurable function

φQ such that

XL
1 = φQ(ξ−2Q−1, ξ−2Q, . . . , ξ0) outside ∩0

q=−Q {1 − ξ2q < ξ2q−1}.

Now (26) follows because P
(
∩0
q=−Q{1 − ξ2q < ξ2q−1}

)
= (P(ξ0 + ξ1 > 1))Q+1 →

0.
If we define an “i decreasing” process by

XR
i = φ(. . . , ξi+2, ξi+1, ξi),(28)
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then (XR
i ) satisfies the analogous recursion

XR
i = max(1 −XR

i+1, 1 − ξi), −∞ < i <∞,(29)

and is distributed as the same stationary Markov chain. Hence we have a rigorous
definition of a unique (in distribution) stationary process ((XL

i , ξi, X
R
i+1), −∞ < i <

∞) satisfying (25), (29) which we will call the triple process. Note that from (26),
(28)

for each i the three random variables XL
i , ξi, X

R
i+1 are independent.(30)

Lemma 7. Let (XL
i , ξi, X

R
i+1), −∞ < i < ∞, be the stationary triple process.

Then there is a random subset Aopt of Z specified by the following: for each −∞ <
i <∞,

if ξi < min(XL
i , X

R
i+1), then i ∈ Aopt, i+ 1 ∈ Aopt,

if XR
i+1 < min(XL

i , ξi), then i ∈ Aopt, i+ 1 �∈ Aopt,

if XL
i < min(XR

i+1, ξi), then i �∈ Aopt, i+ 1 ∈ Aopt.

Proof. We need only check that the definition of Aopt is consistent, in that the
criterion for item i to be excluded should be the same whether we look at the pair
(i, i+ 1) or the pair (i− 1, i). (Of course this is intuitively clear from the consistency
in the finite setting of Lemma 5, but let us give an algebraic verification anyway.) We
need to check

{XL
i < min(XR

i+1, ξi)}
?= {XR

i < min(XL
i−1, ξi−1)}.

Using the recursions (29), (25) for XR
i and XL

i , we need to check

{max(1−XL
i−1, 1−ξi−1) < min(XR

i+1, ξi)}
?= {max(1−XR

i+1, 1−ξi) < min(XL
i−1, ξi−1)}.

But these are equal by applying the transformation u → 1 − u to the right-hand
side.

Because the rule defining Aopt is translation-invariant, the augmented triple pro-
cess

((XL
i , ξi, X

R
i+1, 11(i ∈ Aopt)), −∞ < i <∞)

is also stationary. The next lemma shows this process is the limit of the correspond-
ing finite-n process. The mode of convergence can be viewed as a very elementary
case of local weak convergence [4] of random graphical structures. In other words,
it asserts that relative to a random time-origin the finite processes approximate the
limit process.

Lemma 8. Let Un be uniform on {1, . . . , n}. As n→ ∞

((XL
n,Un+i, ξUn+i, X

R
n,Un+i+1, 11(Un + i ∈ Aopt

n )), −∞ < i <∞)

d→ ((XL
i , ξi, X

R
i+1, 11(i ∈ Aopt)), −∞ < i <∞),

where the left-hand side is defined arbitrarily for Un+i �∈ {1, . . . , n} and where conver-
gence in distribution is with respect to the usual product topology on infinite sequence
space.
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Proof. Because theX ’s are bounded and the ξ’s are i.i.d., the sequence of processes
is tight in the product topology. Write

((X̂L
i , ξ̂i, X̂

R
i+1, 11(i ∈ Âopt)), −∞ < i <∞)

for a subsequential weak limit. Clearly (ξ̂i)
d= (ξi). Because for each n the process

(XL
n,i, ξi) satisfies recursion (21), the limit (X̂L

i , ξ̂i) satisfies this recursion, and so by

the “uniqueness of joint distribution” assertion of Lemma 6, (X̂L
i , ξ̂i)

d= (XL
i , ξi).

Applying the same argument to XR we deduce

((XL
Un+i, ξUn+i, X

R
n,Un+i+1), −∞ < i <∞) d→ ((XL

i , ξi, X
R
i+1), −∞ < i <∞).

For fixed i0 the event i0 ∈ Aopt is a function of the limit process, the function implied
by Lemma 7, and by a standard fact [6, Theorem 5.2] it is enough to check that this
function is a.s. continuous with respect to the limit process. But this just requires
that the probability of an equality between some two of XL

i0
, ξi0 , X

R
i0+1 should be zero,

which follows from their independence (30) and existence of densities (7), (24).

2.4. Proof of Theorem 1. Because

Mn =
n∑
i=1

11(i ∈ Aopt
n ) −

n−1∑
i=1

ξi11(i ∈ Aopt
n , i+ 1 ∈ Aopt

n ),

we can write

n−1EMn = P(Un ∈ Aopt
n ) − EξUn11(Un ∈ Aopt

n , Un + 1 ∈ Aopt
n )11(Un �= n)

and then by Lemma 8

n−1EMn → c := P(0 ∈ Aopt) − Eξ011(0 ∈ Aopt, 1 ∈ Aopt).

Note that clearly c ≤ 1; the other inequality c ≥ 1/2 holds because the subset
{1, 3, 5, . . .} is a feasible choice.

We now exploit the method of bounded differences [12] in a very routine way. We
observe that Mn = mn(ξ1, . . . , ξn) for a certain function mn with the property

changing any one argument of mn(z1, . . . , zn) changes the value of
mn(·) by at most 1

This property holds because Aopt
n will never contain a pair (i, i+ 1) for which ξi > 1.

And this property implies the well-known Azuma–Hoeffding inequality of the form
(see, e.g., [16])

P(|Mn − median(Mn)| ≥ t) ≤ 4 exp(− t2

4n ).

It is now routine to use this large deviation inequality to establish the a.s. and L1

convergence of n−1Mn to c.
To evaluate c, abbreviate (XL

0 , ξ0, X
R
1 ) to (XL, ξ,XR) and use the Lemma 7

definition of Aopt to write

P(0 ∈ Aopt) = 1 − P(XL < min(XR, ξ))

= 1 − 1
2 (1 − P(ξ < min(XL, XR))) by symmetry

= 1
2 + 1

2P(ξ < min(XL, XR))
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and then

c = 1
2 + 1

2P(ξ < min(XL, XR)) − Eξ11(ξ < min(XL, XR)).(31)

Recall that XL, ξ, and XR are independent and that XL and XR have common
distribution F given in terms of G by (24). So (31) constitutes a formula for c in
terms of the underlying distribution function G of ξ.

We now evaluate c in the special case where ξ has the exponential(λ) distribution:

G(x) = e−λx, 0 < x <∞,

so that, from formula (24), we have

F (x) =
e−λ(1−x)(1 − e−λx)

1 − e−λ
=
eλx − 1
eλ − 1

.

We deduce

P(ξ < min(XL, XR)) =
∫ 1

0

λe−λuP 2(XL > u) du

=
λ

(eλ − 1)2

∫ 1

0

e−λu
(
eλ − eλu

)2
du

=
λ

(eλ − 1)2

(
e2λ
∫ 1

0

e−λudu− 2eλ +
∫ 1

0

eλudu

)

=
e2λ − 2λeλ − 1

(eλ − 1)2
,

Eξ11(ξ < min(XL, XR)) =
∫ 1

0

uλe−λuP 2(XL > u) du

=
λ

(eλ − 1)2

∫ 1

0

ue−λu
(
eλ − eλu

)2
du

=
λ

(eλ − 1)2

(
e2λ
∫ 1

0

ue−λudu− eλ +
∫ 1

0

ueλudu

)

=
1

λ(eλ − 1)2
(
e2λ − (λ2 + 2)eλ + 1

)
.

Combining,

c =
1
2

+
λ
2 (e2λ − 2λeλ − 1) − (e2λ − (λ2 + 2)eλ + 1)

λ(eλ − 1)2

=
1

1 − e−λ
− 1
λ
.
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3. The upper bound in Theorem 2. Local weak convergence (Lemma 8 above
and Lemma 11 below) provides one sense in which the n → ∞ limit of the solution
Aopt
n of the size-n optimization problem is Aopt. A logically different sense is provided

by coupling, as follows. Part of the stationary triple process is the doubly infinite
i.i.d. sequence (. . . , ξ−1, ξ0, ξ1, ξ2, . . .). For each n use these same random variables
ξ1, . . . , ξn to construct Aopt

n . Because of boundary effects it is not always true that
Aopt∩[1, n] = Aopt

n . But we expect the sets to coincide “away from the boundary,” and
Lemma 9(b) below provides one expression of this equality. We call this technique
localization.

3.1. Optimality properties of Aopt. Lemma 7 gave a concise definition of Aopt

but did not explicitly identify its optimality properties. Lemma 9 below will relate
Aopt to certain finite optima and thereby allow us to deduce some explicit properties.

The benefit function fn(A) and its maximum value Mn defined at (5), (6) refer
to subsets of [1, n], and it is convenient to make the corresponding definitions for an
arbitrary interval [�,m]:

f[�,m](A) := |A| −
m−1∑
i=�

ξi11(i ∈ A, i+ 1 ∈ A), A ⊆ {�, �+ 1, . . . ,m},(32)

M[�,m] := max
A⊆{�,�+1,...,m}

f[�,m](A),(33)

and denote by Aopt

[�,m] the corresponding optimizing set.
Lemma 9. (a) If ξi−1 + ξi ≤ 1, then i ∈ Aopt.
(b) If � < m and ξ�−1 + ξ� ≤ 1 and ξm−1 + ξm ≤ 1, then Aopt

[�,m] is unique and

Aopt ∩ [�,m] = Aopt

[�,m].(34)

If, furthermore, [�,m] ⊆ [1, n], then Aopt
n ∩[�,m] = Aopt

[�,m] (interpreting ξ0 = 0 if � = 1).
(c) If both i, i+ 1 ∈ Aopt, then ξi ≤ 1.
(d) If ξi + ξi+1 > 1, then i, i+ 1 and i+ 2 together cannot belong to Aopt.
(e) Let k ≥ 2. If [g, g + 2k − 1] is an interval such that ξg > ξg+1 > · · · >

ξg+2k−1 > ξg+2k and

ξj + ξj+1 > 1, g ≤ j ≤ g + 2k − 2,

then Aopt ∩ [g, g+2k− 1] must be one of the two complementary alternating sequences
in [g, g + 2k − 1].

Proof. (a) If ξi−1 +ξi ≤ 1, then XL
i ≥ 1−ξi−1 ≥ ξi, and hence from the Lemma 7

definition we see that for any possible value of XR
i+1, we have i ∈ Aopt.

(b) First note that both � and m are in Aopt

[�,m]; otherwise adding each element
would increase f[�,m](A

opt

[�,m]) by at least 1 − ξ� and 1 − ξm−1, respectively. Next
note that by rewriting Lemma 5 (which concerns the special case [�,m] = [1, n]) for
general [�,m], we have a construction of Aopt

[�,m] in terms of processes XL
[�,m],i and

XR
[�,m],i for � ≤ i ≤ m defined by the recursions analogous to (21), (22). By (a)

both � and m are in Aopt. We have now shown XL
[�,m],� = 1 − ξ�−1 = XL

� and
XR

[�,m],m−1 = 1−ξm−1 = XR
m−1; because the restricted and unrestricted processes have

the same boundary conditions and satisfy the same recursions over [l,m] they must
agree throughout the interval. Finally, because both endpoints � and m are in Aopt

[�,m]
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it cannot fit the “complementary alternating sequences” criteria for nonuniqueness
(Lemma 3). The same argument works for Aopt

n .
One could prove (c), (d), (e) algebraically from the definition of Aopt, but it is

more intuitive to exploit the finite optimality criterion as follows. From assumption (8)
there are infinitely many � with ξ�−1+ξ� ≤ 1, and so for any given i there is a (random)
long interval [�,m] containing i for which by (b) Aopt∩ [�,m] = Aopt

[�,m]. In other words,
the restriction of Aopt to [�,m] is the solution of the finite optimization problem (32),
and we can derive its properties by considering the effect of local changes. Now (c)
and (d) follow from the following observations:

(for (c)): if i, i+ 1 are in Aopt, then removing i+ 1 will give a relative benefit of
at least ξi − 1.

(for (d)): if i, i+ 1, i+ 2 are all in Aopt, then removing i + 1 will give a relative
benefit of ξi + ξi+1 − 1.

For (e), consider j ∈ [g, g + 2k]. By (d) we cannot have {j, j + 1, j + 2} ⊂ Aopt.
If j and j + 1 but not j + 2 are in Aopt, then deleting j + 1 while adding j + 2 would
increase the benefit by at least ξj − ξj+2 > 0, which is impossible. It follows that
we cannot have {j, j + 1} ⊂ Aopt. Thus Aopt ∩ [g, g + 2k − 1] contains only isolated
elements. It is now easy to check that one can change Aopt ∩ [g, g + 2k − 1] into one
of the alternating sequences on [g, g+ 2k− 1] in such a way that the cardinality does
not decrease, and the end items g, g + 2k − 1 change (if at all) only from included to
excluded. Thus the change can only increase the benefit; appealing to the uniqueness
property (b) in a larger interval establishes (e).

3.2. Proof of upper bound. In this section we prove the bound

lim sup
δ↓0

δ−2 lim sup
n

Eεn(δ) <∞(35)

via a simple construction of near-optimal sets. We first describe a particular configu-
ration. Let g, d ∈ Z such that d− g = 2k for some k ≥ 2, and consider the sets A and
B below:

g − (g + 1) − (g + 2k − 1) − g + 2k

A • − ◦ − • − ◦ . . . • − ◦ − •

B • − • − ◦ − • . . . ◦ − • − •

where |A	B| = 2k − 1 and the difference between the benefits of A and B is

f[g,g+2k](A) − f[g,g+2k](B) = (k + 1) − ((k + 2) − ξg − ξg+2k−1)

= ξg + ξg+2k−1 − 1.(36)

Now fix k ≥ 2 and α > 0 such that αk < 1/2. Consider the event Ωg defined by

ξg > ξg+1 > ξg+2 > · · · > ξg+2k−2 > ξg+2k−1 >
1
2 > ξg+2k;

ξg−1 + ξg < 1; ξg+2k−1 + ξg+2k < 1.

By assumption (7) this event has nonzero probability. If this event occurs, Lemma
9(a) shows that Aopt contains g and g+ 2k, and then Lemma 9(e) implies that Aopt ∩
[g, g + 2k] is the set A above. By applying Lemma 9(b) to [�,m] = [g, g + 2k] we
have the analogue in the finite n setting: if Ωg occurs for [g, g + 2k] ⊂ [1, n], then
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Aopt
n ∩ [g, g + 2k] is the set A above. So if we change Aopt

n by replacing pattern
A by pattern B on such an interval, then from (36) the decrease in benefit equals
ξg + ξg+2k−1 − 1 > 0. Now define

Ω(α)
g = Ωg ∩ {1 < ξg + ξg+2k−1 < 1 + 2kα},

q(α) = P(Ω(α)
g ),

r(α) = E(ξg + ξg+2k−1 − 1)11(Ω(α)
g )

so that r(α) is the unconditional mean increase in benefit from the possible change,
now performed only if event Ω(α)

g happens. Using assumption (7) we see that (ξg +
ξg+2k−1) restricted to Ω(α)

g has a continuous density which is nonzero at 1, which
easily implies that for fixed k

q(α) ∼ q̄α, r(α) ∼ r̄α2 as α ↓ 0(37)

for constants q̄, r̄ ∈ (0,∞).
Given n and the optimal set Aopt

n , construct a near-optimal set B(α)
n as follows.

Let g1 = 1 and let

[g1, g1 + 2k], [g2, g2 + 2k], [g3, g3 + 2k], . . . , [gjn , gjn + 2k]

be the adjacent disjoint intervals in [1, n] containing 2k + 1 integers. For each such
g = gj , if event Ω(α)

g occurs, then on [g, g + 2k] replace pattern A by pattern B.
Letting n→ ∞ and using the weak law of large numbers, we get

1
n |B

(α)
n 	Aopt

n | → 2kq(α)/(2k + 1) in probability,

1
n (fn(Aopt

n ) − fn(B(α)
n )) → r(α)/(2k + 1) in probability.

If 1
n |B

(α)
n 	 Aopt

n | ≤ kq(α)/(2k + 1), then redefine B(α)
n to be the empty set. Then

(taking k = 3 for concreteness)

1
n |B

(α)
n 	Aopt

n | ≥ 3q(α)/7,

lim
n

1
n (Efn(Aopt

n ) − Efn(B(α)
n )) = r(α)/7.

The upper bound (35) now follows from the α→ 0 asymptotics (37).

4. Proof of Theorem 2: The lower bound.

4.1. Analysis of near-optimal solutions: The quintuple process. Through-
out section 4 we fix a constant τ > 0 such that

G
(

1
2 − τ

)
> 0.(38)

Such a constant exists by assumption (7). To study near-optimal solutions, fix a
Lagrange multiplier θ such that

0 < θ < τ.(39)

We will derive the existence of, and derive an exact expression for, the function
ε̄(δ) = limn Eεn(δ) when δ is sufficiently small. The expression is an implicit function



2398 D. J. ALDOUS, C. BORDENAVE, AND M. LELARGE

representation ε̄(δ(θ)) = ε(θ) via two functions ε(θ), δ(θ) defined (49), (50) in terms
of the stationary distribution of a certain quintuple process.

We study the modified optimization problem in which we get an extra reward θ
for choosing an item which is not in Aopt

n or for not choosing an item which is in Aopt
n :

max
A⊆[n]

(
|A| −

n∑
i=1

ξi11(i ∈ A, i+ 1 ∈ A) + θ|A	 Aopt
n |
)
.(40)

To study this we modify (13), (14) to

(41)

Ṽ Ln,i = max
i∈A⊆{1,2,...,i}

⎛⎝|A| −
i−1∑
j=1

ξj11(j, j + 1 ∈ A) + θ |(A	Aopt
n ) ∩ {1, 2, . . . , i}|

⎞⎠ ,

(42)

W̃L
n,i = max

i�∈A⊆{1,2,...,i}

⎛⎝|A| −
i−1∑
j=1

ξj11(j, j + 1 ∈ A) + θ |(A	Aopt
n ) ∩ {1, 2, . . . , i}|

⎞⎠ .

We also define M̃n = max(Ṽ Ln,n, W̃
L
n,n) and write Bopt

n for the corresponding optimizing
set. Note that these quantities depend on θ. Analogous to the definition (15) of XL

n,i

we define

ZLn,i := Ṽ Ln,i − W̃L
n,i.

Then as the analogue of (16) we can obtain the recursion

ZLn,i+1 = 1 − min(ZLn,i, ξi)11(Z
L
n,i > 0) + θJn,i+1,

where

ZLn,1 = 1 + θJn,1,

Jn,i = 11(i /∈ Aopt
n ) − 11(i ∈ Aopt

n ).

Recall from section 2.3 the stationary triple process ((XL
i , ξi, X

R
i+1),−∞ < i <∞)

and define

Ji = 11(i /∈ Aopt) − 11(i ∈ Aopt).

Just as the stationary triple process is interpretable (Lemma 8) as an n → ∞ limit
of the process (XL

n,i, ξi, X
R
n,i+1), we want to define a process which will be the limit

of (ZLn,i, X
L
n,i, ξi, X

R
n,i+1). So define a quadruple process (ZLi , X

L
i , ξi, X

R
i+1) to be a

process such that
(i) (XL

i , ξi, X
R
i+1) evolves as the triple process,

(ii) ZLi satisfies the recursion

ZLi+1 = 1 − min(ZLi , ξi)11(Z
L
i > 0) + θJi+1.(43)

Recall 0 < θ < τ .
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Lemma 10. The quadruple process ((ZLi , X
L
i , ξi, X

R
i+1),−∞ < i < ∞) has a

unique stationary distribution, for which

ZLi = ψ(. . . , ξi−2, ξi−1, ξi, X
R
i+1)(44)

for a certain function ψ not depending on i. On the event {ξi−1 + ξi ≤ 1 − τ}, we
have

XL
i+1 = 1 − ξi,Z

L
i+1 = 1 − ξi + θJi+1.(45)

Proof. Recursion (43) implies ZLi+1 ≥ 1 − ξi + θJi+1. Thus iterating once (43)
and using this last inequality, we obtain

1 − ξi + θJi+1 ≤ ZLi+1 ≤ 1 − min(1 − ξi−1 + θJi, ξi)11(1 − ξi−1 + θJi > 0) + θJi+1.

Thus, on the event {ξi−1 + ξi ≤ 1 − θ} we have ZLi+1 = 1 − ξi + θJi+1 and also,
by (27), we have XL

i+1 = 1 − ξi, establishing (45). Assumption (7) implies that
the event {ξi−1 + ξi ≤ 1 − τ} occurs for infinitely many i < 0, so in particular
K := max{i < 0 : ξi−1 + ξi ≤ 1 − τ} is finite. By the recursion (43) we can write ZL0
in the form

ZL0 = ψ1(ξK+1, ξK+2, . . . , ξ−1;ZLK+1; JK+2, JK+3, . . . , J0)

for some function ψ1. Then by (45) with ZLi = ZLK+1 we can rewrite as

ZL0 = ψ2(ξK , ξK+1, ξK+2, . . . , ξ−1; JK+1, JK+2, JK+3, . . . , J0).

By the definition of Aopt, each Ji is a function of XL
i , ξi, X

R
i+1, and then from the

recursions for XL
i and XR

i

ZL0 = ψ3(ξK , ξK+1, ξK+2, . . . , ξ0;XL
K+1, X

R
1 ).

By (45) with XL
i = XL

K+1 this is of the form

ZL0 = ψ(. . . , ξ−2, ξ−1, ξ0, X
R
1 ).

Now (44) defines a stationary version of the quadruple process.
Just as XR

n,i was the “looking right” analogue of the “looking left” process XL
n,i,

we can define a “looking right” process ZRn,i analogous to ZLn,i as follows. Define

(46)

Ṽ Rn,i= max
i∈A⊆{i,i+1,...,n}

⎛⎝|A| − n−1∑
j=i

ξj11(j, j + 1 ∈ A) + θ |(A	 Aopt)∩{i, i+ 1, . . . , n}|

⎞⎠ ,

(47)

W̃R
n,i= max

i�∈A⊆{i,i+1,...,n}

⎛⎝|A| − n−1∑
j=i

ξj11(j, j + 1 ∈ A) + θ |(A	Aopt)∩{i, i+ 1, . . . , n}|

⎞⎠ .

Then the difference ZRn,i = Ṽ Rn,i − W̃R
n,i satisfies the recursion

ZRn,i = 1 − min(ZRn,i+1, ξi)11(Z
R
n,i+1 > 0) + θJn,i; ZRn,n = 1 + θJn,n.
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Table 3

Inclusion criteria for i, i + 1 in Bopt
n .

−i − (i + 1)− Absolute benefit Relative benefit When used

− • − − •− Ṽ L + Ṽ R − ξ ZL + ZR − ξ ξ < min(ZL − θJi,

+θ(11i�∈Aopt + 11i+1�∈Aopt ) −θ(Ji + Ji+1) ZR − θJi+1)

− • − − ◦− Ṽ L + W̃ R ZL − θJi (ZR − θJi+1)+

+θ(11i�∈Aopt + 11i+1∈Aopt ) < min(ZL − θJi, ξ)

− ◦ − − •− W̃ L + Ṽ R ZR − θJi+1 (ZL − θJi)
+

+θ(11i∈Aopt + 11i+1�∈Aopt ) < min(ZR − θJi+1, ξ)

− ◦ − − ◦− W̃ L + W̃ R 0 otherwise

+θ(11i∈Aopt + 11i+1∈Aopt )

Recall that Bopt
n attains maxA⊆{1,...,n}(|A|−

∑n−1
i=1 ξi11(i ∈ A, i+1 ∈ A)+θ|A	Aopt

n |).
As in section 2.2, we can write down the benefits of each of the four possible choices
for including or excluding items i and i + 1, and thereby obtain criteria for which
combination is used in Bopt

n . See Table 3, in which (ZLn,i, ξi, Z
R
n,i+1) is abbreviated to

(ZL, ξ, ZR) and the n subscript is dropped. It should now be clear that the stationary
quadruple process can be extended to a stationary quintuple process

(ZLi , X
L
i , ξi, X

R
i+1, Z

R
i+1), −∞ < i <∞,

in which ZR satisfies the recursion

ZRi = 1 − min(ZRi+1, ξi)11(Z
R
i+1 > 0) + θJi, −∞ < i <∞,

satisfied by ZRn,i. By “reflection symmetry” between ZR and ZL, the functional
relationship (44) holds for ZR in reflected form with the same function ψ:

ZRi = ψ(. . . , ξi+1, ξi, ξi−1, X
L
i−1).(48)

We can now use the stationary quintuple process to define a random subset Bopt ⊂ Z

by specifying that, for each pair (i, i+1), we use the one of the four choices which has
the largest relative benefit in Table 3. Analogously to Lemma 7 one can check that
this definition is consistent. The local weak convergence property (Lemma 8) extends
to the present setting as follows.

Lemma 11. Let Un be uniform on {1, . . . , n}. As n→ ∞

((ZLn,Un+i, X
L
n,Un+i, ξUn+i, X

R
n,Un+i+1, Z

R
n,Un+i+1,

11(Un + i ∈ Aopt

n ), 11(Un + i ∈ Bopt

n )))−∞<i<∞

d→ ((ZLi , X
L
i , ξi, X

R
i+1, Z

R
i+1, 11(i ∈ Aopt), 11(i ∈ Bopt)))−∞<i<∞.

Proof. The proof repeats the proof of Lemma 8, using (44), (48) to incorpo-
rate the (ZL, ZR) terms. In order to incorporate the Bopt component, we need to
check that the function 11(0 ∈ Bopt) is a.s. continuous with respect to the station-
ary distribution of (ZL0 , X

L
0 , ξ0, X

R
1 , Z

R
1 ). From Table 3, we get that {0 ∈ Bopt} =

{ZL0 − θJ0 > min(ξ0,max(ZR1 − θJ1, 0)}. Hence, it requires that the probability of
an equality between some of two ZL0 − θJ0, ξ0, Z

R
1 − θJ1 is zero. We check only

that P(ZL0 − θJ0 = ξ0) = 0. The recursion satisfied by ZL0 reads ZL0 − θJ0 =
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1 − min(ZL−1, ξ−1)11(ZL−1 > 0). Thus, arguing as in the proof of Lemma 10, ZL0 − θJ0

is a function of (ZLK+1, ξK+1, . . . , ξ−1, JK+1, JK+2, . . . , J−1) with K = max{i < 0 :
ξi−1 + ξi ≤ 1− τ}. Since ZLK+1 = 1− ξK + θJK+1 and Ji ∈ {−1, 1}, we deduce by re-
cursion that there exists a pair of integers (i0, n) with K ≤ i0 ≤ −1 and −K ≤ n ≤ K
such that ZL0 ∈ {1 − ξi0 + nθ, ξi0 + nθ}. The independence of ξi and ξ0 for i < 0 and
assumption (7) imply that P(ZL0 − θJ0 = ξ0) = 0.

Now define

δ(θ) = P({0 ∈ Aopt} 	 {0 ∈ Bopt}),(49)

ε(θ) = P(0 ∈ Aopt) − Eξ011(0 ∈ Aopt, 1 ∈ Aopt) − P(0 ∈ Bopt)(50)

+ Eξ011(0 ∈ Bopt, 1 ∈ Bopt).

So δ(θ) is the proportion of items at which Aopt and Bopt differ, and ε(θ) is the
difference in mean benefit per item between Aopt and Bopt. By Lemma 11,

1
n

E|Aopt
n 	 Bopt

n | = E|11(Un ∈ Aopt
n ) − 11(Un ∈ Bopt

n )|

→ P({0 ∈ Aopt} 	 {0 ∈ Bopt}) = δ(θ),(51)

and similarly the mean benefits satisfy

n−1(Efn(Aopt
n )) − Efn(Bopt

n )) → ε(θ).(52)

Proposition 12. Let M̃n = fn(Bopt
n ) be the benefit associated with Bopt

n ; then a.s.
and in L1

lim
n→∞

n−1|Bopt

n 	 Aopt

n | = δ(θ),(53)

lim
n→∞

n−1(Mn − M̃n) = ε(θ).(54)

Moreover for any choice B′
n satisfying (53) in L1, the associated benefit M ′

n = fn(B′
n)

satisfies

lim inf
n

n−1E(Mn −M ′
n) ≥ ε(θ).

Proof. The convergence assertions (53), (54) follow from (51), (52) and the same
concentration argument used in the proof of Theorem 1; we will not repeat the details.
By construction, for any B′

n the associated reward M ′
n satisfies

M ′
n + θ|B′

n 	Aopt
n | ≤ M̃n + θ|Bopt

n 	Aopt
n |.

Then because both (Bopt
n ) and (B′

n) satisfy (53), we see that

EM ′
n ≤ EM̃n + o(n).
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Discussion. For 0 < θ < τ and for δ = δ(θ), Proposition 12 implies that the limit
ε̄(δ) = limn Eεn(δ) exists and that

ε̄(δ(θ)) = ε(θ).

So to prove Theorem 2 it should be enough to prove

δ(θ) ∼ αθ, ε(θ) ∼ βθ2 as θ → 0(55)

for positive constants α, β. Now the definitions (49), (50) enable us to rewrite (using
Table 3) δ(θ) and ε(θ) in terms of the stationary distribution (ZL0 , X

L
0 , ξ0, X

R
1 , Z

R
1 ) of

the quintuple process, as

δ(θ) = P
(
{XL

0 > min(XR
1 , ξ0)} 	 {ZL0 − θJ0 > min((ZR1 − θJ1)+, ξ0)}

)
,(56)

ε(θ) = P(XL
0 > min(XR

1 , ξ0)) − P(ZL0 − θJ0 > min((ZR1 − θJ1)+, ξ0))

− Eξ0
(
11(ξ0 < min(XL

0 , X
R
1 )) − 11(ξ0 < min(ZL0 − θJ0, Z

R
1 − θJ1))

)
.

So if we had an explicit formula for the stationary distribution (ZL0 , XL
0 , ξ0, X

R
1 , Z

R
1 ),

then we could derive an explicit formula for δ(θ) and ε(θ) and seek to prove (55)
by calculus. But we do not have such an explicit formula—note the independence
property (30) of the triple process does not hold for the quintuple process—and we
have not completely succeeded in that program. We could prove the δ(θ) ∼ αθ part
of (55), though we use only the weaker upper bound, proved by a simpler argument
in section 4.2. To handle ε(θ) we show how to rewrite δ(θ) and ε(θ) in a different way
(Proposition 18) that allows us to derive inequalities, which will establish the stated
form of Theorem 2.

4.2. Existence of the limit function ε̄(δ). There is a minor technical point
we deal with first. We expect intuitively that the function δ(θ) should be continuous
monotone, but neither property is obvious. If there were small values of δ which were
not of the form δ = δ(θ) for some θ, then we cannot use Proposition 12 to establish
existence of a limit ε̄(δ). Instead we outline an argument (reusing previous methods)
to prove more abstractly (Lemma 13) that the limit ε̄(δ) always exists. We could have
started the proof of Theorem 2 this way, but we wanted to emphasize the Lagrange
multiplier approach as more useful for calculation.

Lemma 13. ε̄(δ) := limn Eεn(δ) exists for each 0 < δ < 1.
Note that εn(δ) is a priori nondecreasing in δ, and hence ε̄(·) is nondecreasing.
Outline proof. Fix 0 < δ < 1. Let B(δ)

n attain the minimum in the definition (9) of
εn(δ). Set ε̄∗(δ) = lim infn Eεn(δ). There exists a subsequence (of the subsequence of
n attaining the liminf) in which the local weak convergence (Lemma 8) of Aopt

n to Aopt

extends to joint convergence of B(δ)
n to some limit random set B(δ). The analogues of

(49), (50) with B(δ) in place of Bopt equal δ and ε̄∗(δ). For arbitrary n, start with the
restriction (B∗

n, say) of B(δ) to [1, n] and then show that by modifying B∗
n near the

endpoints we can construct B∗∗
n satisfying |B∗∗

n 	 Aopt
n | ≥ δn and E[n−1(fn(Aopt

n ) −
fn(B∗∗

n ))] → ε̄∗(δ).
The following lemma (to be proved in section 4.4) allows us to complete the proof

of Theorem 2.
Lemma 14. There exist positive constants C1, C2 such that, for all 0 < θ < τ ,

δ(θ) ≤ C1θ,(57)

ε(θ) ≥ C2θ
2.(58)
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We now finish the proof of Theorem 2. Recall that Proposition 12 showed
ε̄(δ(θ)) = ε(θ), and that (Lemma 13) ε̄(·) is a nondecreasing function. Using (57)

ε̄(C1θ) ≥ ε̄(δ(θ)) = ε(θ) ≥ C2θ
2,

and setting δ = C1θ gives ε̄(δ) ≥ C2δ
2/C2

1 . This establishes the lower bound (11) and
completes the proof of Theorem 2.

4.3. A cycle formula representation.
Lemma 15. If ξi−1 + ξi < 1 − τ , then i ∈ Aopt and i ∈ Bopt.
Proof. Suppose ξi−1 + ξi < 1 − τ . Lemma 9(a) showed i ∈ Aopt. Recall that

Bopt
n maximizes (40). If i �∈ A, then the increase in the benefit at (40) obtained

by including i is at least 1 − ξi − ξi−1 − θ, so by our standing assumption (39) the
increase is positive, and so i ∈ Bopt

n . Letting n → ∞ and using Lemma 11 gives the
same conclusion for Bopt.

We next need a lemma (analogous to Lemma 9(b)) giving conditions under which
we can “localize” Aopt and Bopt by forcing them to coincide with the optimal sets Aopt

n

and Bopt
n for the optimization problem on [1, n] for suitable n, which we now write as

t− 1.
Lemma 16. Let t ≥ 2. Suppose ξi−1 + ξi < 1 − τ for each of i = 0, 1, t − 1, t.

Then the following hold:
(a) Aopt and Bopt contain {0, 1, t− 1, t}.
(b) The restrictions of Aopt and Bopt to [1, t− 1] coincide with Aopt

t−1 and Bopt

t−1.
(c) For any B ⊆ {1, 2, . . . , t− 1}, either B = Aopt

t−1 or ft−1(B) < ft−1(Aopt

t−1).
(d) In particular, either Aopt

t−1 = Bopt

t−1 or ft−1(Aopt

t−1) > ft−1(Bopt

t−1).
Proof. (a) follows from Lemma 15. Observe that Aopt

t−1 and Bopt
t−1 contain 1 and

t− 1, because ξ1 < 1− τ and ξt−2 < 1− τ . If we consider the solutions Aopt

[�,m], B
opt

[�,m]

for some interval [�,m] strictly containing [0, t], then they contain 1 and t− 1 by the
argument for Lemma 15. Thus by optimality the restrictions of Aopt

[�,m] and Bopt

[�,m] to
[1, t − 1] must coincide with Aopt

t−1 and Bopt
t−1. So (b) follows from weak convergence,

Lemma 11. And (c) follows from the uniqueness result, Lemma 3.
We start by quoting a standard form (cf. [8, Exercise 6.3.4]) of Kac’s identity for

stationary processes.
Lemma 17. Let (Ξi,−∞ < i < ∞) be a stationary ergodic sequence on some

state space, let P(Ξ1 ∈ D̄) > 0, and let h(Ξ1) be real-valued and integrable. For any
t0 ≥ 1, define T = t0 min{i ≥ 2 : Ξit0 ∈ D̄). Then

Eh(Ξ1) = E

[
11(Ξ1 ∈ D̄)

T−1∑
i=1

h(Ξi)

]
.

We apply this to Ξi = (ZLi , X
L
i , ξi, ξi−1, ξi−2, X

R
i+1, Z

R
i+1), t0 = 3, and

D := {ξ−1 + ξ0 < 1 − τ, ξ0 + ξ1 < 1 − τ} = {Ξ1 ∈ D̄}(59)

for suitable D̄, making the T in Lemma 17 be

T = 3 min{t ≥ 2 : ξ3t−2 + ξ3t−1 < 1 − τ, ξ3t−1 + ξ3t < 1 − τ}.(60)

Now definition (49) says δ(θ) = Eh(Ξ0) for

h(Ξ0) = 11({0 ∈ Aopt} 	 {0 ∈ Bopt}).
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So
∑T−1

i=1 h(Ξi) equals the cardinality of Aopt 	 Bopt restricted to [1, T − 1]. On the
event D, Lemma 16 identifies this restriction as Aopt

T−1	Bopt
T−1, so Kac’s identity gives

(61) below. Similarly, definition (50) says ε(θ) = Eh(Ξ0) for

h(Ξ0) = 11(0 ∈ Aopt)− ξ011(0 ∈ Aopt, 1 ∈ Aopt)− 11(0 ∈ Bopt) + ξ011(0 ∈ Bopt, 1 ∈ Bopt),

and on the event D the sum
∑T−1

i=1 h(Ξi) equals the difference fT−1(Aopt
T−1) − fT−1

(Bopt
T−1) between the benefits. This establishes (62), and the final assertion (63) follows

from Lemma 16(d). To summarize:
Proposition 18. Let D be the event (59) and let T be the random time (60).

Then

δ(θ) = E[11D × |Aopt

T−1 	 Bopt

T−1|],(61)

ε(θ) = E[11D × (fT−1(Aopt

T−1) − fT−1(Bopt

T−1))],(62)

on D, either Aopt

T−1 = Bopt

T−1 or fT−1(Aopt

T−1) − fT−1(Bopt

T−1) > 0.(63)

4.4. An integration lemma. Let us rewrite the difference in (62) as

W (θ) := fT−1(Aopt
T−1) − fT−1(Bopt

T−1)

to emphasize its dependence on θ; and note D does not depend on θ. The key
ingredient in the proof of the lower bound is the following lemma, to be proved in
section 4.5.

Lemma 19. There exists C3 > 0 such that for all 0 < θ < τ , for all k ≥ 0, and
x > 0,

P(T ≥ k, 0 < 11DW (θ) < x) ≤ C3x(k + 1)P(T ≥ k).

Taking k = 0 in this lemma we get

P(0 < 11DW (θ) < x) ≤ C3x.(64)

Recall a simple integration lemma (for a more general result see [2, Lemma 6(a)]).
Lemma 20. Let V ≥ 0 be a real-valued random variable such that

P(0 < V < x) ≤ Cx, 0 < x <∞.

Then

EV ≥ [P(V > 0)]2

2C
.

By (64) and Lemma 20, we get

ε(θ) = E(11DW (θ)) by (62)

≥ [P(W (θ)11D > 0)]2

2C3
.(65)

To finish the proof of (58), we need the following lemma.
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Lemma 21. There exists a positive constant C4 such that, for all 0 < θ < τ ,

P(W (θ)11D > 0) ≥ C4θ.(66)

Proof. By assumption (7) we may assume that the constant τ at (38) is such that

inf
1/2−2τ<x<1/2τ

g(x) > 0,(67)

where g is the density function for ξi. Consider the following event:

Ω(θ) = {ξ−1 ∈ (0, 1/2), ξ0 ∈ (0, 1/2 − τ), ξ1 ∈ (1/2 − τ, 1/2),

ξ2 ∈ (1 − ξ1 − θ, 1 − ξ1), ξ3 ∈ (0, 1/2 − 2τ)} .

Using (67) there exists C4 > 0 such that

P(Ω(θ)) ≥ C4θ.

Assume this event Ω(θ) happens. Then ξ−1+ξ0 ≤ 1−τ , ξ0+ξ1 ≤ 1−τ , 1−θ < ξ1+ξ2 <
1, and ξ2 +ξ3 ≤ 1−τ . So D happens and, using Lemma 9(a), we have {1, 2, 3} ∈ Aopt,
and by Lemma 16(b) the same holds true for Aopt

T−1. Still assuming Ω(θ) occurs, we
see that for B = Aopt

T−1\{2}, we have fT−1(Aopt
T−1) − fT−1(B) = 1 − ξ1 − ξ2 ∈ (0, θ)

and therefore fT−1(B)+ θ|Aopt
T−1 	B| > fT−1(Aopt

T−1), implying 0 < W (θ) by (63). In
particular

P(W (θ)11D > 0) ≥ P(Ω(θ)) ≥ C4θ,

and we have proved assertion (66).
From (65) and (66), we directly get the second assertion (58) of Lemma 14. We

now show how to obtain the first assertion of Lemma 14. Recall that, by definition,
we have

fT−1(Bopt
T−1) + θ|Aopt

T−1 	Bopt
T−1| ≥ fT−1(Aopt

T−1);

hence we get θT > θ|Aopt
T−1 	 Bopt

T−1| ≥ W (θ). In particular, by Proposition 18, we
have D ∩ {W (θ) > 0} ⊂ D ∩ {θT > W (θ) > 0}. Also, by Lemma 19, we have

δ(θ) ≤ E[T 11D11(W (θ) > 0)] by (61)

≤
∑
j

jP(T ≥ j, θj > W (θ) > 0)

≤ C3θ
∑
j

j2(j + 1)P(T ≥ j)

≤ C3θE[(T + 1)4],

and T/3 has a geometric distribution so that assertion (57) of Lemma 14 follows.
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4.5. Proof of Lemma 19. Write W = W (θ). Consider the random collection

B(T − 1) := {B ⊆ {1, 2, . . . , T − 1} : B �= Aopt
T−1, 1 ∈ B, T − 1 ∈ B}.

By Proposition 18

on D, either W = 0 or W ≥ min
B∈B(T−1)

(fT−1(Aopt
T−1) − fT−1(B)) > 0.(68)

Our first goal is to derive a lower bound (Lemma 24) for the right-hand side of (68)
in terms of the ξi’s. Until the end of the proof of Lemma 24, we are working on the
event D.

Let C = arg minB∈B(T−1)(fT−1(Aopt
T−1) − fT−1(B)) be the optimal perturbation

of Aopt on [1, T − 1]. For any subinterval I = [�,m] ⊆ [1, T − 1] write Ie = [max(�−
1, 1),min(m + 1, T − 1)]. Decompose Aopt 	 C as ∪iIi, where the Ii’s are disjoint
maximal intervals of Aopt 	 C. Then

fT−1(Aopt) − fT−1(C) =
∑
i

(
f(Ii)e

(Aopt ∩ (Ii)e) − f(Ii)e
(C ∩ (Ii)e)

)
=
∑
i

(
fT−1(Aopt

T−1) − fT−1(Ci)
)
,

where Ci = (Aopt
T−1∩Ii

c)∪(C∩(Ii)e). This implies that Aopt	C is a single subinterval
I of [1, T − 1].

We now look at the possible perturbations of Aopt on the interval [0, T ]. Re-
call that we are working on the event D, and that Aopt contains 0, 1, T − 1, T . Let
L0, L1, . . . , LK be the maximal subintervals [a, b] ⊆ Aopt ∩ [0, T ] for which b > a, that
is, with at least two elements. So we can partition [0, T ] as L0∪S0∪L1∪S1∪ . . .∪LK ,
where the Sk’s are the complementary intervals. We call the Lk’s lakes and the Sk’s
switches.

Lemma 22. Let L = [a, b] be a lake. For any set B ∈ B(T − 1) such that
B ∩ Lc = Aopt ∩ Lc and hence B ∩ L �= Aopt ∩ L, we have

fT−1(Aopt) − fT−1(B) ≥ min
{

1 − ξa, 1 − ξb−1, min
a≤i≤b−1

1 − ξi−1 − ξi

}
> 0.(69)

Proof. First suppose B is obtained by removing from Aopt a single item. If this
item is a, we have fT−1(Aopt) − fT−1(B) = 1 − ξa; if it is b, we have fT−1(Aopt) −
fT−1(B) = 1 − ξb−1, and if it is i ∈ (a, b), then we have fT−1(Aopt) − fT−1(B) =
1 − ξi−1 − ξi. So by optimality of Aopt

T−1 the first inequality in (69) holds for these B,
and Lemma 16 implies the last inequality in (69). Now recall that Lemma 9(c) shows
mina≤i≤b−1 1− ξi ≥ 0. So construct a general B by removing items from Aopt one by
one, and for items after the first the benefit can only decrease. So the first inequality
holds generally.

Lemma 23. Let S = [a, b] be a switch and Se = [a− 1, b+1]. For any set B such
that B ∩ Sce = Aopt ∩ Sce and B ∩ S �= Aopt ∩ S, we have

fSe(A
opt) − fSe(B) ≥ min

{
min

a−1≤i<j≤b
ξi + ξj − 1, min

a−1≤i≤b
ξi, min

a≤i≤b
ξi − ξa−2,

min
a≤i≤b

ξi − ξb+1, 1 − ξa−2 − ξb+1

}
.
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a u v b
Aopt ◦ . . . • − ◦ − • . . . • − ◦ − • . . . ◦

B ◦ . . . • − • − ◦ . . . ◦ − • − • . . . ◦

Fig. 3. Case [◦ . . . ◦], where a ≤ u ≤ v ≤ b. Benefit change = ξu−1 + ξv − 1.

a u v b
Aopt ◦ . . . • − ◦ − • . . . • − ◦ − • − ◦ . . . ◦
C ◦ . . . • − • − ◦ . . . ◦ − • − ◦ − ◦ . . . ◦

Fig. 4. Case [◦ . . . •], where a ≤ u ≤ v ≤ b − 1. Benefit change = ξu−1.

a u v b
Aopt ◦ . . . ◦ − • − ◦ − • . . . • − ◦ − • . . . ◦
D ◦ . . . ◦ − ◦ − • − ◦ . . . ◦ − • − • . . . ◦

Fig. 5. Case [• . . . ◦], where a + 1 ≤ u ≤ v ≤ b. Benefit change = ξv.

Table 4

[u, v] [a − 1, ◦] [a − 1, •] [◦, b + 1] [•, b + 1] [a − 1, b + 1]

benefit change ξv − ξa−2 1 − ξa−2 ξu − ξb+1 1 − ξb+1 1 − ξa−2 − ξb+1

Proof. By construction a switch starts and ends with items not in Aopt, and the
two items before and after the switch are in Aopt. Moreover, Table 2 shows that two
adjacent items cannot both be not in Aopt, so the items in a switch [a, b] must strictly
alternate between in and not in Aopt, as illustrated in Figure 3.

We first consider a set B obtained from Aopt by flipping all items in some subin-
terval [u, v] of [a, b]. There are four cases, corresponding to whether the endpoints
u, v are in or not in Aopt. We exhibit three cases in Figures 3, 4, and 5, labeled as,
e.g., [• . . . ◦], together with the value of the benefit change fSe(Aopt)− fSe(B). In the
fourth case [• . . . •], the benefit change equals 1.

We also need to consider cases where the flipped subinterval [u, v] has u = a− 1
or v = b+ 1 or both. There are five cases, indicated in Table 4.

Now consider any subset B satisfying the hypothesis of Lemma 23. Decompose
Aopt	B into disjoint maximal intervals Ii. It is easy to check that the benefit change
between Aopt and B is just the sum of the separate benefit changes between Aopt and
Aopt with interval Ii flipped. Thus the minimum over B is attained by one of the
cases we have considered, establishing the lemma.

Lemma 24. Set w = min1≤i<j≤T−1{|ξi + ξj − 1|; ξi; |1 − ξi|; |ξi − ξj |}. On the
event D, either W = 0 or W ≥ w.

Proof. We need only consider the case W > 0. Recall that C = arg minB∈B(T−1)

(fT−1(Aopt
T−1) − fT−1(B)) is such that Aopt 	 C is a single subinterval I of [1, T − 1].

It is enough to show that C satisfies the assumptions of Lemmas 22 (for some lake) or
the assumptions of Lemma 23 (for some switch), for then the lower bound w follows
from the lower bounds in those lemmas.

We argue by contradiction: if false, then I intersects some lake and some adjacent
switch, say Lk and Sk (the case of Lk and Sk−1 is similar). So there exists a < b < c
such that b = supLk and I = [a, c]. Now check the following:
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If c ∈ Aopt, then f(B)− f(C) = 1, for B := C ∪ {b, b+ 2, b+ 4, . . . , c}\{b+ 1, b+
3, . . . , c− 1}.

If c �∈ Aopt, then f(B) − f(C) = ξc, for B := C ∪ {b, b+ 2, b+ 4, . . . , c− 1}\{b+
1, b+ 3, . . . , c}.

Either case contradicts the optimality of C.
We may now complete the proof of Lemma 19. The key point is that the bound

w in Lemma 24 does not depend on θ. From Lemma 24,

P(T ≥ 3k, 0 < W (θ)11D < x)

≤ P(T ≥ 3k, D; 0 < w < x) ≤ P(T ≥ 3k, w < x)

≤ P
(
T ≥ 3k, min

1≤i<j≤T−1
|ξi + ξj − 1| < x

)
+ P

(
T ≥ 3k, min

1≤i≤T−1
ξi < x

)

+ P
(
T ≥ 3k, min

1≤i≤T−1
|ξi − 1| < x

)
+ P

(
T ≥ 3k, min

1≤i<j≤T−1
|ξi − ξj | < x

)
.

The four terms on the right-hand side are treated similarly: we will just study the
final term and will prove that there exists C > 0 independent of k such that

P
(

min
1≤i<j≤T−1

|ξi − ξj | < x

∣∣∣∣T ≥ 3k
)
≤ C(k + 1)x.(70)

The effect of conditioning on the event {T ≥ 3k} is that each nonoverlapping triple
(ξ3m, ξ3m+1, ξ3m+2) is conditioned to satisfy either {ξ3m+ ξ3m+1 ≥ 1− τ}∪{ξ3m+1 +
ξ3m+2 ≥ 1 − τ} or {ξ3m + ξ3m+1 < 1 − τ, ξ3m+1 + ξ3m+2 < 1 − τ} (for m = T ). It
follows that, for any i < j,

P((ξi, ξj) ∈ ·|T > j) ≤ a−2P((ξi, ξj) ∈ ·),(71)

where

a = min (P({ξ0 + ξ1 ≥ 1 − τ} ∪ {ξ1 + ξ2 ≥ 1 − τ}) ,

P(ξ0 + ξ1 < 1 − τ, ξ1 + ξ2 < 1 − τ)) .

From assumption (7) the density of ξj − ξi is bounded by some constant b, and so

P
(

min
1≤i<j≤T−1

|ξi − ξj | < x

∣∣∣∣T ≥ 3k
)

≤
∑
i<j

P(|ξi − ξj | < x, T ≥ j|T ≥ 3k)

=
∑
i<j

P(|ξi − ξj | < x|T ≥ max(j + 1, 3k))P(T ≥ j + 1|T ≥ 3k)

≤ ba−2x
∑

j≥3k−1

(j − 1)P(T ≥ j + 1|T ≥ 3k)

≤ ba−2x
∑
j≥k

3(j + 1)P(T ≥ 3j|T ≥ 3k)
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= ba−2x
∑
j≥k

3(j + 1)P(T ≥ 3(j − k))

≤ ba−2x(kE[T ] + E[T (T + 1)]),

where we used the fact that T/3 has a geometric distribution. This concludes the
proof of Lemma 19.

5. Final remarks.

5.1. Technical assumptions on G. We stated a single assumption (7) on G.
What we actually used was three consequences of this assumption:

• P(ξ < 1/2) > 0, which implies P(ξi + ξi+1 < 1) > 0, was used in Lemma 15
and thereby throughout section 4 (because it implies i ∈ Aopt) to implement
“localization” arguments.

• P(ξ ≤ 1/2) < 1 was used in section 3.2 to show P (Ωg) > 0. Note that if
P(ξ ≤ 1/2) = 1, then the optimization problem is degenerate in that the
optimal Aopt

n = {1, 2, . . . , n}.
• ξ1 + ξ2 has density bounded below in some interval (1, 1+ η), which was used

in section 3.2 to obtain (37).
The latter two are used only in a convenient way to exhibit one near-optimal set. The
“localization” arguments essentially just require one to find some event of positive
probability involving (ξ−k, . . . , ξk) which forces items 0 and 1 to be in (or not in) Aopt.
Lemma 15 is just a simple way to exhibit such an event. So we expect Theorem 2 to
remain true under much weaker assumptions on G.

5.2. Parallels with the cavity method. The arguments in this paper in the
context of i.i.d.-DP (dynamic programming) may be compared with the more sophis-
ticated arguments from the statistical physics cavity method [14], as reformulated in
more probabilistic language in [1, 4], whose prototype example we take to be the anal-
ysis of the traveling salesman problem (TSP) in the “mean-field” model of geometry
where there are n points and each of the

(
n
2

)
interpoint links has random length. Of

course algorithmically DP and TSP are quite different, but there are striking parallels
between the analysis of optimal solutions of i.i.d.-DP and mean-field-TSP, as follows:

• There are n → ∞ limits for the random data; in DP this is just the obvious
infinite i.i.d. sequence, while for mean-field-TSP it is a certain random infinite
tree.

• The “inclusion criterion” for i.i.d.-DP involves XL
i , X

R
i+1 and the edge-cost

ξi. Finite-n TSP has of course no simple inclusion criteria, but in the n→ ∞
limit of mean-field-TSP there is an analogous criterion for inclusion of an
edge (i, j) in terms of quantities ZLi , Z

R
j and the edge-length ξij . Each Z is

interpreted (cf. (19) for DP) as the difference between costs of two optimal
solutions (subject to different local constraints) on one side of the tree.

• The distribution we use for X in i.i.d.-DP, the stationary distribution of a
Markov chain, is the solution of an equation with abstract structure X d=
h(ξ,X1). The distribution we use for Z in mean-field-TSP, by a recur-
sion on the limit tree, is the solution of an equation with abstract structure
Z

d= h(ξ;Z1, Z2, Z3, . . .), where the Zj ’s are i.i.d. copies of the unknown
distribution Z.

These parallels provide a glimpse of how the analogue of Theorem 1, a formula for the
asymptotic expected cost in mean-field-TSP, may be derived (the original nonrigorous
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argument was in [13]; a rigorous proof was given only recently via more combinato-
rial methods [18]). The analogue of Theorem 2 for mean-field-TSP, using Lagrange
multipliers as in this paper, and leading to a nonrigorous argument that the scaling
exponent equals 3, was given in [3].

Acknowledgment. We thank Vlada Limic for discussions regarding the NK
model and Guilhem Semerjian for explaining to us an alternative proof of the δ(θ) ∼
αθ part of (55).
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